WO2012137399A1 - Motor drive device and electric appliance using same - Google Patents

Motor drive device and electric appliance using same Download PDF

Info

Publication number
WO2012137399A1
WO2012137399A1 PCT/JP2012/001050 JP2012001050W WO2012137399A1 WO 2012137399 A1 WO2012137399 A1 WO 2012137399A1 JP 2012001050 W JP2012001050 W JP 2012001050W WO 2012137399 A1 WO2012137399 A1 WO 2012137399A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
arm
output
brushless
switching element
Prior art date
Application number
PCT/JP2012/001050
Other languages
French (fr)
Japanese (ja)
Inventor
義典 竹岡
田中 秀尚
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to BR112013024711A priority Critical patent/BR112013024711A2/en
Priority to CN201280016932.4A priority patent/CN103460596B/en
Publication of WO2012137399A1 publication Critical patent/WO2012137399A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/12Monitoring commutation; Providing indication of commutation failure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements

Definitions

  • the present invention relates to a motor drive device for driving a brushless DC motor and an electric device using the same.
  • the first conventional motor drive apparatus performs speed feedback drive and square wave drive according to the drive speed.
  • FIG. 7 is a block diagram of a first conventional motor driving apparatus that performs rectangular wave driving.
  • FIG. 8 is a diagram showing a waveform of a drive signal in the first conventional motor drive device.
  • the AC power from the AC power source 201 is converted into DC power by the rectifying / smoothing unit 202 including the four rectifying diodes 202 a to 202 d and the smoothing capacitor 202 e, and the DC power is input to the inverter 203.
  • the inverter 203 is configured by connecting six arms including six switching elements 203a to 203f and six return current diodes 203g to 203l in a three-phase bridge connection.
  • the inverter 203 converts the input DC power into AC power having a predetermined frequency and outputs the AC power to the brushless DC motor 204.
  • the position detection unit 205 acquires information on the induced voltage generated by the rotation of the brushless DC motor 204 based on the voltage at the output terminal of the inverter 203. Based on this information, the position detection unit 205 detects the relative position of the rotor 204a of the brushless DC motor 204.
  • the speed estimation unit 206 calculates the rotation speed of the brushless DC motor 204 based on the signal from the position detection unit 205.
  • the waveform generation unit 207 calculates the duty on width in PWM (Pulse Width Modulation) according to the speed calculated by the speed estimation unit 206, determines the arm to be energized in the inverter 203 based on the signal from the position detection unit 205, A waveform signal indicating the result is generated.
  • PWM Pulse Width Modulation
  • the drive unit 208 drives the switching elements 203a to 203f of the inverter 203 based on the waveform signal from the waveform generation unit 207.
  • the drive signal output from the drive unit 208 has a switching waveform as shown in FIG. FIG. 8 shows waveforms of drive signals inputted to the gates of the six switching elements 203a to 203f.
  • the switching element of one of the three upper arms outputs a PWM signal that repeatedly turns on and off based on pulse width modulation, and the lower arm of one of the three lower arms.
  • the ON output is always turned on.
  • the current flowing to the brushless DC motor 204 is adjusted by the PWM duty on width of the upper switching elements 203a, 203c and 203e constituting the upper arm, and the change in the rotational speed of the brushless DC motor 204 and the change in the load are dealt with. enable.
  • the first conventional configuration can provide a motor drive device that drives the brushless DC motor while arbitrarily changing the speed.
  • FIG. 9 shows a block diagram of a second conventional motor driving apparatus using such a small-capacity smoothing capacitor.
  • the AC power from the AC power supply 301 is rectified by the rectifying diodes 302a to 302d of the rectifying and smoothing unit 302, and then smoothed by the smoothing capacitor 302e.
  • the voltage (bus voltage) from the rectifying / smoothing unit 302 is input to the inverter 303 in a state including a large ripple component.
  • the inverter 303 is configured by connecting six arms including six switching elements 303a to 303f and six return current diodes 303g to 303l in a three-phase bridge connection.
  • the inverter 303 converts the input DC power including ripples into AC power having a predetermined frequency and outputs the AC power to the brushless DC motor 304 (strictly, the stator 304b).
  • the position detection unit 305 acquires information on the induced voltage generated by the rotation of the brushless DC motor 304 based on the voltage at the output terminal of the inverter 303. Based on this information, the position detector 305 detects the relative position of the rotor 304a of the brushless DC motor 304. Further, in the voltage including a large ripple output from the rectifying / smoothing unit 302, it is difficult for the position detection unit 305 to accurately detect the relative position when the voltage is low.
  • the position estimation unit 306 estimates the relative position of the rotor 304a.
  • the switching unit 308 adopts the signal from the position estimation unit 306 as the position detection signal, and the waveform generation unit 309 In 303, the arm to be energized and the PWM duty width are determined, and a waveform signal indicating the result is generated.
  • the drive unit 310 drives the switching elements 303 a to 303 f of the inverter 303 based on the waveform signal generated by the waveform generation unit 309.
  • the load can be driven while arbitrarily changing the speed of the brushless DC motor even if the bus voltage output from the rectifying and smoothing unit 302 includes a large ripple. Since the capacity of the smoothing capacitor 302e can be made smaller than that of the first conventional motor driving device, a smaller and smaller motor driving device can be provided than the first conventional motor driving device.
  • the second conventional motor driving device has a problem that the bus voltage suddenly increases when the energized phase of the brushless DC motor is switched, and smooth driving of the brushless DC motor becomes difficult.
  • the current is large, such as high-speed driving or high-load driving, there is a problem that the circuit is destroyed by overvoltage in the worst case.
  • times (1) to (5) are periods in which the energized phases in the brushless DC motor 304 are the same.
  • the switching element 303a performs switching (that is, PWM output), and the switching element 303d 100% energization (that is, ON output) (strictly speaking, the switching element 303d is ON output in time (1) to (4)).
  • the same switching pattern is obtained, and the current path is the path shown in FIG.
  • the same switching pattern is obtained, and the current path is as shown in (b) of FIG.
  • the switching element 303d in the lower arm is switched from on to off, and the switching element 303f is switched from off to on.
  • the switching element 303a in the upper arm is off. Therefore, the current passing through the return current diode 303h flows to the brushless DC motor 304, while the current from the brushless DC motor 304 flows through the return current diode 303i. As a result, the current passes through the path shown in FIG. A current flows into the smoothing capacitor 302e.
  • the smoothing capacitor 302e has a small capacity, the voltage across the smoothing capacitor 302e, that is, the bus voltage rises rapidly.
  • the second conventional motor driving device has a problem that the bus voltage rapidly increases when the energized phase of the brushless DC motor is switched, and it is difficult to smoothly drive the brushless DC motor.
  • the present invention solves the above-described conventional problems, and is inexpensive and small in size, which enables more stable and smooth driving without rapidly increasing the bus voltage despite having a small-capacity smoothing capacitor.
  • An object of the present invention is to provide a simple motor drive device.
  • a motor driving apparatus is a motor driving apparatus that rotates and drives the brushless DC motor by switching an energized phase of a brushless DC motor that is connected to an AC power source and has a plurality of windings.
  • a rectifier circuit that rectifies AC power input from an AC power source, a capacitor and a reactor whose values are determined to have a resonance frequency higher than 40 times the frequency of the AC power, and smoothes the output from the rectifier circuit.
  • a circuit composed of a smoothing section, a switching element and a return current diode is used as one arm, the upper arm and the lower arm have a plurality of legs connected in series, and are obtained from the smoothing section.
  • An inverter that converts direct current power into alternating current power and supplies the brushless DC motor, and the inverter serves as the brushless DC motor
  • a control unit that outputs to the inverter a drive signal instructing a supply timing of power to be supplied, and the drive signal is turned on when a switching element of one of the plurality of arms is based on pulse width modulation.
  • the inverter is controlled so that the switching element of one arm among the plurality of arms opposite to the upper and lower sides is always turned on.
  • the control unit outputs the drive signal so that when the energized phase of the brushless DC motor is switched, the switching element of the arm on the opposite side to the arm on which the on-output is completed starts on-output.
  • the motor drive device of the present invention can provide an inexpensive and small motor drive device that can suppress a rapid rise in the bus voltage when switching the energized phase and can realize more stable and smooth motor drive.
  • FIG. 1 is a block diagram of a motor driving apparatus according to an embodiment of the present invention.
  • FIG. 2 is a timing chart showing the waveform of the drive signal in the same embodiment.
  • FIG. 3 is a diagram showing a drive signal and current waveforms in the same embodiment.
  • FIG. 4 is a diagram showing a current path in the same embodiment.
  • FIG. 5A is a diagram showing the waveform of the bus voltage in the conventional motor driving apparatus
  • FIG. 5B is a diagram showing the waveform of the bus voltage in the same embodiment.
  • FIG. 6 is a cross-sectional view of a main part of the brushless DC motor in the same embodiment.
  • FIG. 7 is a block diagram of a first conventional motor drive device.
  • FIG. 1 is a block diagram of a motor driving apparatus according to an embodiment of the present invention.
  • FIG. 2 is a timing chart showing the waveform of the drive signal in the same embodiment.
  • FIG. 3 is a diagram showing a drive signal and current waveforms in the same
  • FIG. 8 is a timing chart showing the waveform of the drive signal in the first conventional motor drive device.
  • FIG. 9 is a block diagram of a second conventional motor driving device.
  • FIG. 10 is a diagram showing the drive signal and current waveforms of the second conventional motor drive device.
  • FIG. 11 is a diagram illustrating a current path of a second conventional motor drive device.
  • a motor driving apparatus is a motor driving apparatus that rotates and drives the brushless DC motor by switching an energized phase of a brushless DC motor that is connected to an AC power source and has a plurality of windings.
  • a rectifier circuit that rectifies AC power input from an AC power source, a capacitor and a reactor whose values are determined to have a resonance frequency higher than 40 times the frequency of the AC power, and smoothes the output from the rectifier circuit.
  • a circuit composed of a smoothing section, a switching element and a return current diode is used as one arm, the upper arm and the lower arm have a plurality of legs connected in series, and are obtained from the smoothing section.
  • An inverter that converts direct current power into alternating current power and supplies the brushless DC motor, and the inverter serves as the brushless DC motor
  • a control unit that outputs to the inverter a drive signal instructing a supply timing of power to be supplied, and the drive signal is turned on when a switching element of one of the plurality of arms is based on pulse width modulation.
  • the inverter is controlled so that the switching element of one arm among the plurality of arms opposite to the upper and lower sides is always turned on.
  • the control unit outputs the drive signal so that when the energized phase of the brushless DC motor is switched, the switching element of the arm on the opposite side to the arm on which the on-output is completed starts on-output.
  • control unit further includes an arm in which the on-output is completed until a bus voltage that is a voltage output from the smoothing unit rises to a predetermined voltage when the energized phase of the brushless DC motor is switched.
  • the on-output of the switching element of the arm on the opposite side may be started.
  • the period during which the switching element of the arm on the opposite side of the arm where the on output has been completed continues the on output may be at least until the current flowing through the arm where the on output has been completed becomes equal to or less than a predetermined value.
  • the period during which the switching element of the arm opposite to the arm on which the ON output is completed continues the ON output may be until the energized phase of the brushless DC motor is next switched. This facilitates the setting of the energization pattern and simplifies the software and system for driving, thereby improving the maintainability and quality.
  • the rotor of the brushless DC motor is configured by embedding a permanent magnet in an iron core, and may further have saliency. This enables effective use of reluctance torque due to saliency as well as magnet torque due to permanent magnets in the drive of brushless DC motors, thus reducing the output torque by increasing the advance angle when the bus voltage drops. Can be mitigated, and more stable driving becomes possible.
  • the brushless DC motor may drive a compressor.
  • the compressor In the drive control of the compressor, there is no need for high-precision rotation speed control or acceleration control like industrial servo motor control, etc., and the compressor is a load with relatively large inertia, so it can be done in a short time. Speed fluctuations are very light loads. Therefore, even when the bus voltage is lowered, the speed variation is small and more stable driving is possible.
  • the compressor may be a reciprocating compressor.
  • the reciprocating type that performs reciprocating motion is structurally connected to the rotor, which is metallic and heavy, with a heavy crankshaft and piston. Therefore, the inertia is very large and operates more stably when the voltage drops. be able to.
  • the refrigerant used in the compressor may be R600a.
  • the cylinder volume and the inertia are increased in order to obtain the refrigerating capacity, and further, stable driving that is hardly affected by fluctuations in the applied torque becomes possible.
  • Another embodiment of the present invention may be an electric device including the motor driving device and a brushless DC motor driven by the motor driving device.
  • the motor drive device when used in a refrigerator as an electrical device, the motor drive device can be reduced in size so that the motor drive device can be stored in a small space of the refrigerator that is driven at a constant speed, and the speed can be changed more efficiently.
  • a good refrigerator can be provided at low cost.
  • the blower when used as an electric device, since the blower has a very large inertia, a small blower that is easy to carry can be realized.
  • FIG. 1 is a block diagram of a motor drive device 22 according to an embodiment of the present invention.
  • an AC power source 1 is a general commercial power source, and in Japan, a power source of 50 or 60 Hz with an effective value of 100V.
  • the motor driving device 22 is connected to the AC power source 1 and drives the brushless DC motor 4.
  • the motor drive device 22 will be described.
  • This motor drive device 22 employs PWM control that can arbitrarily change the rotation speed of the brushless DC motor 4, and stably and smoothly drives the brushless DC motor 4 despite having a smoothing capacitor with a small capacity.
  • the motor drive device can include a rectifying and smoothing circuit 2, an inverter 3, and a control unit 30.
  • the rectifying / smoothing circuit 2 is a circuit that rectifies and smoothes AC power from the AC power source 1 into DC power, and includes four bridge-connected rectifier diodes 2a to 2d, a smoothing capacitor 2e, and a reactor 2f. .
  • the output from the rectifying / smoothing circuit 2 is input to the inverter 3.
  • the four rectifying diodes 2 a to 2 d constitute a rectifying unit that rectifies AC power from the AC power supply 1.
  • the smoothing capacitor 2e and the reactor 2f are set such that the resonance frequency is higher than 40 times the frequency of the AC power from the AC power supply 1, and constitutes the smoothing unit 2g.
  • the current at the resonance frequency is outside the range of the power supply harmonic regulation, and the harmonic current can be reduced.
  • the smoothing capacitor 2e to such a value (small capacity, details will be described later)
  • the bus voltage includes a large ripple component
  • the current flowing from the AC power source 1 to the smoothing capacitor 2e is also a frequency component of the AC power source 1.
  • the harmonic current can be reduced because the current is close to.
  • the reactor 2f since the reactor 2f is inserted between the AC power supply 1 and the smoothing capacitor 2e, it may be either before or after the rectifier diodes 2a to 2d. Further, the reactor 2f corresponds to a combined component with the reactance component of the high frequency removing means when the common mode filter constituting the high frequency removing means is provided in the rectifying and smoothing circuit 2.
  • the inverter 3 converts the DC power containing a large ripple component into the voltage from the rectifying / smoothing circuit 2 in a cycle twice the power cycle of the AC power source 1 into AC power.
  • the inverter 3 is configured by connecting six switching elements 3a to 3f in a three-phase bridge.
  • the six return current diodes 3g to 3l are connected in parallel to the switching elements 3a to 3f in the reverse direction.
  • the inverter 3 has one upper arm and one lower arm in series when a circuit composed of a parallel connection of one switching element and one return current diode is used as one arm. There are 3 legs connected to.
  • the brushless DC motor 4 includes a rotor 4a having a permanent magnet and a stator 4b having a three-phase (U-phase, V-phase, W-phase) winding.
  • the brushless DC motor 4 rotates the rotor 4a when the three-phase alternating current generated by the inverter 3 flows in the three-phase winding of the stator 4b.
  • the control unit 30 is a circuit that outputs to the inverter 3 a drive signal that instructs the supply timing of the power supplied from the inverter 3 to the brushless DC motor 4.
  • the drive signal output from the control unit 30 is a PWM output in which the switching element of one of the plurality of arms constituting the inverter 3 repeats on and off based on pulse width modulation (PWM).
  • PWM pulse width modulation
  • the control signal is for controlling the inverter 3 so that the switching element of one of the plurality of arms on the opposite side to the arm is always turned on.
  • the speed of the brushless DC motor 4 can be arbitrarily changed by changing the PWM duty on width.
  • the control unit 30 outputs a drive signal so that the switching element of the arm on the opposite side to the arm on which the ON output is completed starts the ON output. That is, the arm (that is, the switching element) that is the target of the on output is switched so that the on output is seamlessly continued.
  • the energized phase is switched, a current path through which a current flows through the small-capacity smoothing capacitor 2e does not occur, so that a rapid rise in the bus voltage is suppressed.
  • each component which comprises the control part 30 is demonstrated in detail.
  • the position detection unit 5 acquires the terminal voltage of the brushless DC motor 4 in the present embodiment. That is, the magnetic pole relative position of the rotor 4a of the brushless DC motor 4 is detected. Specifically, the position detector 5 detects the relative rotational position of the rotor 4a based on the induced voltage generated in the three-phase winding of the stator 4b. As another position detection method, there is a method of estimating the magnetic pole position by performing vector calculation on the detection result of the motor current (phase current or bus current).
  • the voltage detector 6 detects the voltage across the smoothing capacitor 2e, which is the voltage between the DC buses (bus voltage).
  • the speed estimation unit 7 estimates the driving speed of the brushless DC motor 4 from the speed of the position change detected by the position detection unit 5. However, the speed estimation unit 7 stops the speed estimation when the voltage detected by the voltage detection unit 6 is equal to or lower than a predetermined threshold, and is performed by the position detection unit 5 after the bus voltage becomes equal to or higher than the threshold again. The speed estimation is resumed after the first position is detected.
  • the threshold value for stopping the speed estimation is a value of the bus voltage at which the position detection by the position detection unit 5 becomes unstable, and is determined in advance by the system.
  • the switching unit 8 Since the position information from the position detection unit 5 becomes unstable when the bus voltage becomes a predetermined voltage or less, the switching unit 8 detects the position when the detected value of the bus voltage detected by the voltage detection unit 6 becomes a threshold value or less. The position information of the position estimation unit 9 is selected and output instead of the position information of the unit 5. When the voltage value detected by the voltage detection unit 6 exceeds the threshold value, the switching unit 8 selects and outputs the position information of the position detection unit 5 again.
  • the position estimation unit 9 estimates and outputs the relative position of the rotor 4a of the brushless DC motor 4 from the position information output from the switching unit 8 and the speed estimated by the speed estimation unit 7. For example, when the control cycle is 100 ⁇ s, the relative position indicated by the position information from the switching unit 8 is 60 degrees in electrical angle, and when the speed estimated by the speed estimation unit 7 is 50 r / s, the brushless DC Since the motor 4 has a four-pole configuration in this embodiment and the current frequency is 100 Hz, which is twice the speed, the position estimation unit 9 advances the signal of 100 Hz in 100 ⁇ s to 60 degrees. The sum of the phases (3.6 deg), that is, position information of 63.6 deg is output.
  • the switching arm determination unit 10 switches either the upper arm including the switching elements 3a, 3c and 3e or the lower arm including the switching elements 3b, 3d and 3f to perform PWM. Decide whether to output. These can be easily realized by providing in advance a table for position information. In the present embodiment, the switching arm determination unit 10 determines whether the arm that performs PWM output is changed (that is, whether the upper arm performs PWM output or the lower arm performs PWM output). Determine at the same time as the phase is switched.
  • the PWM output and the ON output are set to 60 degrees as the phase angle of the brushless DC motor 4 during the period in which the upper and lower arms continue respectively.
  • position detection is performed on the basis of 0 cross by induced voltage
  • the current value of the energized phase whose output is stopped during 60 deg becomes 0 within the drivable range. That is, the on-output is continued until the current value is at least equal to or less than a predetermined current value of 0.
  • the waveform generation unit 11 determines the energized phase of the brushless DC motor 4 from the position information from the switching unit 8 and outputs a waveform signal that PWM-controls the arm on the side determined by the switching arm determination unit 10.
  • the waveform generation unit 11 determines the PWM duty width from the difference between the target speeds managed by the speed estimation unit 7 and the waveform generation unit 11.
  • the target speed is managed by the waveform generation unit 11, but there is no problem even if the target speed is input from the outside. Thereby, the rotational speed of the brushless DC motor 4 can be changed by an instruction from the outside.
  • the waveform generation unit 11 uses the bus voltage detected by the voltage detection unit 6 and performs control so that the advance angle becomes large when the voltage drops.
  • the drive unit 12 outputs a drive signal that instructs the supply timing of the power that the inverter 3 supplies to the three-phase winding of the brushless DC motor 4 based on the waveform signal output from the waveform generation unit 11. Specifically, the drive signal turns on or off switching elements 3a to 3f of inverter 3 (hereinafter referred to as on / off). As a result, optimum AC power is applied to the stator 4b, the rotor 4a rotates, and the brushless DC motor 4 is driven.
  • a refrigerator 21 will be described as an example of the electric device.
  • the compressor 17 is mounted in the refrigerator 21, the rotational motion of the rotor 4a of the brushless DC motor 4 is converted into a reciprocating motion by a crankshaft (not shown).
  • a piston (not shown) connected to the crankshaft reciprocates in a cylinder (not shown) to compress the refrigerant in the cylinder. That is, the compressor 17 is configured by the brushless DC motor 4 and the crankshaft, piston, and cylinder.
  • the compression method (mechanism method) of the compressor 17 an arbitrary method such as a rotary type or a scroll type is used.
  • the case of the reciprocating type will be described. Since the reciprocating compressor 17 compresses the refrigerant by changing the volume of the cylinder due to the reciprocating motion of the piston, the inertia is large. For this reason, even when the bus voltage drops and the torque decreases, the fluctuation of the rotational speed of the brushless DC motor 4 is small, so that the drive of the compressor 17 is stabilized.
  • the refrigerant used in the compressor 17 is generally R134a (HFC; Hydro Fluoro Carbon) or the like, but in this embodiment, R600a (isobutane) is used as the refrigerant.
  • R600a has a lower global warming potential than R134a, but has a low refrigeration capacity.
  • the compressor 17 is constituted by a reciprocating compressor, and the cylinder volume is increased in order to ensure the refrigerating capacity. Since the compressor 17 having a large cylinder volume has a large inertia, the brushless DC motor 4 is rotated by the inertia even when the bus voltage drops. As a result, fluctuations in the rotational speed are reduced, and more stable synchronous driving is possible.
  • the refrigerant compressed by the compressor 17 passes through the condenser 18, the decompressor 19, and the evaporator 20 in this order, and returns to the compressor 17 again.
  • Such a refrigeration cycle is configured.
  • the condenser 18 radiates heat and the evaporator 20 absorbs heat, so that cooling and heating can be performed.
  • a refrigerator 21 is configured with this refrigeration cycle.
  • there is a blower and specifically, there is a blower including a fan driven by the brushless DC motor 4.
  • FIG. 2 is a timing chart showing the waveform of the drive signal to the inverter 3 in the present embodiment for one electrical angle cycle.
  • each waveform is a drive signal for turning on / off the switching elements 3a, 3c, 3e, 3b, 3d, and 3f.
  • the switching elements 3a to 3f are active high elements that turn on the switching elements when the drive signal is high.
  • the switching arm determination unit 10 has a table in advance so as to switch the arm on the PWM output side every 60 degrees with 30 degrees as a reference.
  • the phase at which the upper arm performs PWM output is 30 to 90 deg, 150 to 210 deg, 270 to 330 deg, and the lower arm performs PWM output at other phases.
  • the arm on the side where PWM output is not performed is set to be ON output during that time.
  • a waveform indicating the timing of energization is determined by the waveform generator 11.
  • the waveform generator 11 is energized by shifting the switching elements 3a, 3c, and 3e of the upper arm by 120 deg using a 120 deg rectangular wave.
  • the lower arm is also shifted by 120 degrees to energize the switching elements 3b, 3d, and 3f.
  • the switching elements 3a and 3b, 3c and 3d, 3e and 3f each have an off period of 60 degrees between the energization periods. Whether the arm outputs PWM or turns on depends on the determination of the switching arm determination unit 10, and the switching of the arm to be energized and the switching of the upper or lower arm to output the PWM are performed simultaneously. .
  • FIG. 3 is a diagram showing drive signal and current waveforms in the present embodiment in which the timing at which the energized phase is switched is enlarged.
  • FIG. 4 is a diagram showing a current path in the present embodiment.
  • the V-phase current in FIG. 3 is a current flowing through the winding (V phase) of the stator 4b connected to the switching elements 3c and 3d.
  • the bus current in FIG. 3 indicates the current flowing from the smoothing capacitor 2e to the inverter 3.
  • the phase when the energization pattern (energization phase) switches from time (4) to time (5) in FIG. 3 is 90 degrees in FIG.
  • the V-phase current passes through the same current path. Specifically, as shown in FIG. 4A, the current passes from the smoothing capacitor 2e through the switching element 3a and the switching element 3d of the inverter 3 to the smoothing capacitor 2e again.
  • V-phase current passes through the same current path at time (2) and time (4) in FIG. Specifically, as shown in FIG. 4B, there is no current path from the smoothing capacitor 2e, and the current flowing through the switching element 3a passes through the return current diode 3h and becomes a return current.
  • the output when the output is started next on the arm (lower arm) on which the ON output has been completed, the output becomes the PWM output, and the control by the PWM output can be continued.
  • the PWM is not turned on immediately because the PWM is off timing.
  • the V-phase current passes through the return current diode 3i.
  • a loop is formed in which a current flows through the switching element 3a to the brushless DC motor 4 ((c) in FIG. 4). Since the switching element 3a is kept on for 60 degrees, the switching element 3a continues to be turned on until the V-phase current becomes 0, so that a current path to the smoothing capacitor 2e is not generated and the bus voltage rises. There is nothing.
  • the on-output of the opposite arm is started simultaneously with the end of the on-output in one arm, and the current flowing in the arm that has finished the on-output is at least during the period in which the switching element of the opposite arm continues the on output. Until the value falls below a predetermined value.
  • the switching element 3a is on, so that the V-phase current is applied to the smoothing capacitor 2e as in time (5) in FIG. There is no return path.
  • the switching element 3f is turned on for the first time after switching the energized phase, current starts to flow through the current path shown in FIG. Since the V-phase current is 0 at time (7) in FIG. 3 (FIG. 3), the current path is only the current path in (d) of FIG.
  • the current path during PWM OFF as shown in FIG. 4 (e) is the same as that in the prior art, and the current path to the smoothing capacitor 2e does not occur in the same way, and the bus voltage does not increase. .
  • FIG. 5A shows a conventional bus voltage waveform when the energized phase is switched
  • FIG. 5B shows a bus voltage waveform when the energized phase of the present embodiment is switched.
  • the conventional method there is a current path in which energy is charged in the smoothing capacitor 2e when the energized phase is switched. Therefore, as shown by the waveform 35 in FIG. Yes.
  • the present embodiment since there is no current path for charging the smoothing capacitor 2e when the energized phase is switched, as shown in the bus voltage waveform in FIG. Stable and smooth drive is possible without any occurrence.
  • FIG. 6 is a cross-sectional view showing a cross section perpendicular to the rotation axis of the rotor 4a of the brushless DC motor 4 in the present embodiment.
  • the rotor 4a is composed of an iron core 4g and four magnets (permanent magnets) 4c to 4f.
  • the iron core 4g is formed by stacking punched thin steel sheets of about 0.35 to 0.5 mm.
  • the magnets 4c to 4f are arc-shaped ferrite permanent magnets, and are arranged symmetrically about the center so that the arc-shaped recesses face outward as shown in the figure.
  • rare earth permanent magnets such as neodymium
  • a flat plate shape may be used.
  • the axis going from the center of the rotor 4a toward the center of one magnet (eg, magnet 4f) is defined as a d-axis
  • one magnet (eg, magnet) from the center of the rotor 4a is defined as a d-axis
  • the axis that goes between 4f) and the adjacent magnet (for example, magnet 4c) is defined as the q axis.
  • the inductance Ld in the d-axis direction and the inductance Lq in the q-axis direction have opposite saliency and are different. That is, this means that the motor can effectively use torque (reluctance torque) using reverse saliency other than torque (magnet torque) due to magnetic flux of the magnet. Therefore, torque can be used more effectively as a motor. As a result, a highly efficient motor is obtained as the present embodiment.
  • the waveform generation unit 11 since the capacity of the smoothing capacitor 2e is reduced, pulsation occurs in the bus voltage, and the output torque decreases in a section where the bus voltage falls. However, it is possible to control the waveform generation unit 11 to increase the advance amount in accordance with the drop in the bus voltage detected by the voltage detection unit 6, thereby suppressing a decrease in output torque and enabling stable driving. .
  • the brushless DC motor 4 of the present embodiment has a rotor 4a in which magnets 4c to 4f are embedded in an iron core 4g and has saliency.
  • magnets 4c to 4f are embedded in an iron core 4g and has saliency.
  • reluctance torque due to saliency is used. This not only improves efficiency at low speeds, but also improves high-speed drive performance.
  • a rare earth magnet such as neodymium is used for the magnets 4c to 4f to increase the ratio of the magnet torque, or the difference between the inductances Ld and Lq is increased to increase the ratio of the reluctance torque, the optimum conduction angle is obtained. The efficiency can be increased by changing.
  • the compressor 17 is driven using the motor drive device 22 of the present embodiment for the refrigerator 21 and the air conditioner.
  • a smoothing capacitor and a reactor are large, and a large space is required for incorporation into the system.
  • the smoothing capacitor 2e which conventionally required about 400 ⁇ F, to several ⁇ F, and to 1/3 or less in volume.
  • the reactor 2f that is conventionally several millimeters H can be covered with the inductance component of the filter (general common mode filter).
  • the motor drive device 22 can be greatly reduced in size and cost.
  • a conventional motor drive device capable of variable speed drive has a small space in the system, and the motor drive device cannot be easily incorporated into the system.
  • the motor drive device can be made very small, restrictions on installation space are eased, and a motor drive device capable of variable speed drive can be incorporated into a compressor system that drives only at a constant speed. It becomes easy. If the speed is variable, the system efficiency of the refrigerator can be improved, and a more energy-saving refrigerator can be provided.
  • the motor drive device 22 in the present embodiment is connected to the AC power source 1 and is motor driven to rotate the brushless DC motor 4 by switching the energized phase of the brushless DC motor 4 having a plurality of windings.
  • a rectifier circuit (rectifier diodes 2a to 2d) for rectifying AC power input from the AC power source 1, and a smoothing capacitor 2e having a value determined to have a resonance frequency higher than 40 times the frequency of AC power;
  • the upper arm and the lower arm are connected in series when the smoothing unit 2g that smoothes the output from the rectifier circuit, and the circuit that includes the switching element and the return current diode are configured as one arm.
  • An input which has a plurality of connected legs, converts DC power obtained from the smoothing unit 2g into AC power and supplies the AC power to the brushless DC motor 4. And over motor 3, and a control unit 30 for outputting a drive signal inverter 3 instructs the power supply timing of supplying the brushless DC motor 4 to the inverter 3.
  • the drive signal is a plurality of arms whose upper and lower sides are opposite to each other in a period in which the switching element of one of the arms performs PWM output that repeats ON and OFF based on pulse width modulation. This is a signal for controlling the inverter 3 so that the switching element of one of the arms is turned on so that the switching element is always turned on.
  • the control unit 30 outputs a drive signal so that the switching element of the arm on the opposite side to the arm on which the ON output is completed starts the ON output.
  • the rectifying and smoothing circuit 2 is constituted by the smoothing capacitor 2e and the reactor 2f whose values are determined so as to have a resonance frequency higher than 40 times the frequency of the AC power supply 1, the current flowing through the resonance is regulated by the harmonic power supply regulation. Since it is out of range, the harmonic current can be reduced.
  • the rectifying and smoothing circuit 2 is constituted by the smoothing capacitor 2e and the reactor 2f whose values are determined so as to have a resonance frequency higher than 40 times the frequency of the AC power supply 1, the smoothing capacitor has a small capacity and an inrush current peak is generated. The harmonic current can be reduced because of lowering.
  • control unit 30 further turns on output until the bus voltage, which is the voltage output from the smoothing unit 2g, rises to a predetermined voltage when the energized phase of the brushless DC motor 4 is switched.
  • the on-output of the switching element of the arm on the opposite side to the arm that has finished is started.
  • the bus voltage can be suppressed to a voltage increase value that does not cause an influence such as overvoltage and drive rattling, which are problems due to the rise of the bus voltage, and a stable motor driving device can be provided.
  • the period during which the switching element of the arm on the opposite side to the arm on which the on-output has ended continues the on-output until at least the current flowing in the arm on which the on-output has ended is equal to or less than a predetermined value.
  • the period during which the switching element of the arm on the opposite side to the arm on which the on-output is completed continues the on-output until the energized phase of the brushless DC motor 4 is switched to the next.
  • the rotor 4a of the brushless DC motor 4 is configured by embedding magnets (permanent magnets) 4c to 4f in the iron core 4g, and has saliency.
  • the waveform generator 11 takes a larger advance angle as the bus voltage drops, By reducing the reduction in output torque, more stable driving is possible.
  • the brushless DC motor 4 drives the compressor 17.
  • the drive control of the compressor 17 does not require high-accuracy rotational speed control or acceleration control as in the industrial servo motor control, and the compressor 17 is a load having a relatively large inertia. Speed fluctuations are very light loads. Therefore, even when the bus voltage is lowered, the speed fluctuation is small and more stable driving is possible.
  • the compressor 17 is a reciprocating compressor.
  • the reciprocating type that performs reciprocating motion has a very large inertia and is operated more stably when the voltage drops because the rotor is connected to a crankshaft and piston that are metallic and heavy in weight. be able to.
  • the refrigerant used in the compressor 17 is R600a.
  • the cylinder volume and the inertia are increased in order to obtain the refrigerating capacity, and further, stable driving that is hardly affected by fluctuations in the applied torque becomes possible.
  • the motor drive device 22 of the present embodiment when used in the refrigerator 21 as an electrical device using the motor drive device 22 of the present embodiment, the motor drive device can be reduced in size, so that it can be stored in a small space in a refrigerator that is driven at a constant speed. The more efficient refrigerator 21 can be provided at low cost.
  • the blower when used as a blower as an electrical device, the blower has a very large inertia, so that it is possible to realize a small blower that can be driven stably and is easy to carry.
  • the motor drive device of the present invention reduces the capacity of the smoothing capacitor, and enables a small, stable and smooth drive.
  • the motor drive device of the present invention can be applied not only to a refrigerator and a blower but also to a compressor in a vending machine, a showcase, and a heat pump water heater.
  • the motor driving device of the present invention can be applied to miniaturization of electrical equipment using a brushless DC motor such as a washing machine, a vacuum cleaner, and a pump.

Abstract

Provided is an inexpensive, small motor drive device (22) that can drive stably and smoothly without sudden increases in bus voltage even though small capacity flat capacitors are provided. The motor drive device (22) has a rectification and smoothing circuit (2), an inverter (3) that converts direct current power obtained from the rectification and smoothing circuit (2) to alternating current power and provides the same to a brushless DC motor (4), and a control unit (30) that outputs a drive signal to the inverter (3). During a period in which a switching element for one arm of a plurality of arms has a PMW output, the drive signal controls the inverter (3) such that a switching element for another arm of the plurality of arms, for which upper and lower are on the opposite side to the one arm, forms ON output. When the control unit (30) switches the phase of the electrification of the brushless DC motor (4), the drive signal is output such that the switching element for the arm on the opposite of the arm for which the ON output is complete starts an ON output.

Description

モータ駆動装置およびにこれを用いた電気機器MOTOR DRIVE DEVICE AND ELECTRIC DEVICE USING THE SAME
 本発明は、ブラシレスDCモータを駆動するモータ駆動装置およびこれを用いた電気機器に関する。 The present invention relates to a motor drive device for driving a brushless DC motor and an electric device using the same.
 第一の従来のモータ駆動装置は、駆動速度に応じて、速度フィードバック駆動を行い、矩形波駆動を行っている。図7は矩形波駆動を行う第一の従来のモータ駆動装置のブロック図である。図8は第一の従来のモータ駆動装置における駆動信号の波形を示す図である。 The first conventional motor drive apparatus performs speed feedback drive and square wave drive according to the drive speed. FIG. 7 is a block diagram of a first conventional motor driving apparatus that performs rectangular wave driving. FIG. 8 is a diagram showing a waveform of a drive signal in the first conventional motor drive device.
 図7において、交流電源201からの交流電力は、4個の整流ダイオード202a~202dおよび平滑コンデンサ202eから構成される整流平滑部202によって直流電力となり、インバータ203にその直流電力が入力される。インバータ203は、6個のスイッチング素子203a~203fおよび6個の還流電流用ダイオード203g~203lから構成される6個のアームを3相ブリッジ接続することにより構成される。インバータ203は、入力された直流電力を所定の周波数の交流電力に変換し、ブラシレスDCモータ204に出力する。 7, the AC power from the AC power source 201 is converted into DC power by the rectifying / smoothing unit 202 including the four rectifying diodes 202 a to 202 d and the smoothing capacitor 202 e, and the DC power is input to the inverter 203. The inverter 203 is configured by connecting six arms including six switching elements 203a to 203f and six return current diodes 203g to 203l in a three-phase bridge connection. The inverter 203 converts the input DC power into AC power having a predetermined frequency and outputs the AC power to the brushless DC motor 204.
 位置検出部205は、インバータ203の出力端子での電圧に基づき、ブラシレスDCモータ204の回転により発生する誘起電圧の情報を取得する。この情報を基に位置検出部205は、ブラシレスDCモータ204の回転子204aの相対位置を検出する。速度推定部206は位置検出部205からの信号を元にブラシレスDCモータ204の回転速度を計算する。波形生成部207は速度推定部206で計算された速度に従ってPWM(Pulse Width Modulation)におけるデューティオン幅を計算し、位置検出部205からの信号を元にインバータ203において通電するアームを決定し、その結果を示す波形信号を生成する。ドライブ部208は波形生成部207からの波形信号をもとにインバータ203のスイッチング素子203a~203fの駆動を行う。その際、ドライブ部208から出力される駆動信号は、図8に示すようなスイッチング波形となる。図8には、6個のスイッチング素子203a~203fのゲートに入力される駆動信号の波形が示されている。図8に示されるように、3つの上アームのうちの一つの上アームのスイッチング素子がパルス幅変調に基づくオンとオフとを繰り返すPWM出力をし、3つの下アームのうちの一つの下アームのスイッチング素子が常時オンとなるオン出力をする。これにより、上アームを構成する上側スイッチング素子203a、203cおよび203eのPWMデューティオン幅によってブラシレスDCモータ204に流れる電流を調整し、ブラシレスDCモータ204の回転速度の変更および負荷の変化への対応を可能にする。 The position detection unit 205 acquires information on the induced voltage generated by the rotation of the brushless DC motor 204 based on the voltage at the output terminal of the inverter 203. Based on this information, the position detection unit 205 detects the relative position of the rotor 204a of the brushless DC motor 204. The speed estimation unit 206 calculates the rotation speed of the brushless DC motor 204 based on the signal from the position detection unit 205. The waveform generation unit 207 calculates the duty on width in PWM (Pulse Width Modulation) according to the speed calculated by the speed estimation unit 206, determines the arm to be energized in the inverter 203 based on the signal from the position detection unit 205, A waveform signal indicating the result is generated. The drive unit 208 drives the switching elements 203a to 203f of the inverter 203 based on the waveform signal from the waveform generation unit 207. At that time, the drive signal output from the drive unit 208 has a switching waveform as shown in FIG. FIG. 8 shows waveforms of drive signals inputted to the gates of the six switching elements 203a to 203f. As shown in FIG. 8, the switching element of one of the three upper arms outputs a PWM signal that repeatedly turns on and off based on pulse width modulation, and the lower arm of one of the three lower arms. The ON output is always turned on. As a result, the current flowing to the brushless DC motor 204 is adjusted by the PWM duty on width of the upper switching elements 203a, 203c and 203e constituting the upper arm, and the change in the rotational speed of the brushless DC motor 204 and the change in the load are dealt with. enable.
 上記第一の従来の構成によって、ブラシレスDCモータの速度を任意に変更しながら駆動するモータ駆動装置を提供できる。 The first conventional configuration can provide a motor drive device that drives the brushless DC motor while arbitrarily changing the speed.
 また、第二の従来のモータ駆動装置として、例えば特許文献1に開示されたように、第一の従来のモータ駆動装置の特徴を有し、かつ、第一の従来のモータ駆動装置よりも平滑用コンデンサの容量を小さくし、母線電圧(整流平滑部の出力電圧、つまり、インバータに印加される直流電圧)に大きなリプル成分を含みながら駆動するものがある。図9は、そのような小容量平滑コンデンサを用いた第二の従来のモータ駆動装置のブロック図を示す。 As a second conventional motor drive device, for example, as disclosed in Patent Document 1, it has the characteristics of the first conventional motor drive device and is smoother than the first conventional motor drive device. Some capacitors are driven with a large ripple component in the bus voltage (the output voltage of the rectifying / smoothing unit, that is, the direct-current voltage applied to the inverter) with a small capacity. FIG. 9 shows a block diagram of a second conventional motor driving apparatus using such a small-capacity smoothing capacitor.
 図9において交流電源301からの交流電力は整流平滑部302の整流ダイオード302a~302dによって整流され、その後、平滑コンデンサ302eによって平滑される。ここで、平滑コンデンサ302eの容量が小さいため、整流平滑部302からの電圧(母線電圧)は、大きなリプル成分を含んだ状態で、インバータ303に入力される。インバータ303は、6個のスイッチング素子303a~303fおよび6個の還流電流用ダイオード303g~303lから構成される6個のアームを3相ブリッジ接続することにより構成される。インバータ303は、入力されたリプルを含んだ直流電力を所定の周波数の交流電力に変換し、ブラシレスDCモータ304(厳密には、固定子304b)に出力する。 In FIG. 9, the AC power from the AC power supply 301 is rectified by the rectifying diodes 302a to 302d of the rectifying and smoothing unit 302, and then smoothed by the smoothing capacitor 302e. Here, since the capacity of the smoothing capacitor 302e is small, the voltage (bus voltage) from the rectifying / smoothing unit 302 is input to the inverter 303 in a state including a large ripple component. The inverter 303 is configured by connecting six arms including six switching elements 303a to 303f and six return current diodes 303g to 303l in a three-phase bridge connection. The inverter 303 converts the input DC power including ripples into AC power having a predetermined frequency and outputs the AC power to the brushless DC motor 304 (strictly, the stator 304b).
 位置検出部305は、インバータ303の出力端子での電圧に基づき、ブラシレスDCモータ304の回転により発生する誘起電圧の情報を取得する。この情報を基に位置検出部305は、ブラシレスDCモータ304の回転子304aの相対位置を検出する。また、整流平滑部302が出力する大きなリプルを含んだ電圧において、電圧が低いときには位置検出部305が正確に上記相対位置を検出することが困難になるため、位置検出部305の位置情報を元に位置推定部306が回転子304aの相対位置を推定する。つまり、電圧検出部307によって検出された整流平滑部302の出力電圧が所定値以下の場合は、切換部308が位置推定部306からの信号を位置検出信号として採用し、波形生成部309がインバータ303において通電するアームとPWMデューティ幅を決定し、その結果を示す波形信号を生成する。波形生成部309によって生成された波形信号を元にドライブ部310がインバータ303のスイッチング素子303a~303fを駆動する。 The position detection unit 305 acquires information on the induced voltage generated by the rotation of the brushless DC motor 304 based on the voltage at the output terminal of the inverter 303. Based on this information, the position detector 305 detects the relative position of the rotor 304a of the brushless DC motor 304. Further, in the voltage including a large ripple output from the rectifying / smoothing unit 302, it is difficult for the position detection unit 305 to accurately detect the relative position when the voltage is low. The position estimation unit 306 estimates the relative position of the rotor 304a. That is, when the output voltage of the rectifying / smoothing unit 302 detected by the voltage detection unit 307 is equal to or lower than a predetermined value, the switching unit 308 adopts the signal from the position estimation unit 306 as the position detection signal, and the waveform generation unit 309 In 303, the arm to be energized and the PWM duty width are determined, and a waveform signal indicating the result is generated. The drive unit 310 drives the switching elements 303 a to 303 f of the inverter 303 based on the waveform signal generated by the waveform generation unit 309.
 上記第二の従来の構成によって、整流平滑部302から出力される母線電圧が大きなリプルを含んだ電圧であってもブラシレスDCモータの速度を任意に変更しながら負荷を駆動することができ、つまり、第一の従来のモータ駆動装置よりも平滑コンデンサ302eの容量を小さくできるので、第一の従来のモータ駆動装置よりも安価で小型のモータ駆動装置を提供できる。 According to the second conventional configuration, the load can be driven while arbitrarily changing the speed of the brushless DC motor even if the bus voltage output from the rectifying and smoothing unit 302 includes a large ripple. Since the capacity of the smoothing capacitor 302e can be made smaller than that of the first conventional motor driving device, a smaller and smaller motor driving device can be provided than the first conventional motor driving device.
特開2005-198376号公報JP 2005-198376 A
 しかしながら、上記第二の従来のモータ駆動装置では、ブラシレスDCモータの通電相の切換時に母線電圧が急激に上昇し、ブラシレスDCモータの滑らかな駆動が困難になるという問題がある。特に、高速駆動や高負荷駆動など電流が大きな状態では、最悪の場合には回路が過電圧で破壊するなどの課題を有している。このような課題の具体例を図9、図10および図11を用いて説明する。図10は第二の従来のモータ駆動装置の駆動信号と電流の波形を示し、図11は第二の従来のモータ駆動装置の電流経路を示す。 However, the second conventional motor driving device has a problem that the bus voltage suddenly increases when the energized phase of the brushless DC motor is switched, and smooth driving of the brushless DC motor becomes difficult. In particular, when the current is large, such as high-speed driving or high-load driving, there is a problem that the circuit is destroyed by overvoltage in the worst case. Specific examples of such problems will be described with reference to FIGS. FIG. 10 shows the driving signal and current waveform of the second conventional motor driving apparatus, and FIG. 11 shows the current path of the second conventional motor driving apparatus.
 ここで、図9のインバータ303のスイッチング素子303cとスイッチング素子303dにつながるブラシレスDCモータ304の固定子304bでの相をV相として説明する。図10において、時間(1)~(5)はブラシレスDCモータ304における通電相が同一となる期間であり、この期間では、スイッチング素子303aがスイッチング(つまり、PWM出力)を行い、スイッチング素子303dが100%通電(つまり、オン出力)となっている(厳密には、時間(1)~(4)でスイッチング素子303dがオン出力)。図10の時間(1)および(3)では、同じスイッチングパターンとなり、電流経路は図11の(a)に示される経路である。図10の時間(2)および(4)では、同じスイッチングパターンとなり、電流経路は図11の(b)となる。 Here, the phase at the stator 304b of the brushless DC motor 304 connected to the switching element 303c and the switching element 303d of the inverter 303 in FIG. 9 will be described as the V phase. In FIG. 10, times (1) to (5) are periods in which the energized phases in the brushless DC motor 304 are the same. In this period, the switching element 303a performs switching (that is, PWM output), and the switching element 303d 100% energization (that is, ON output) (strictly speaking, the switching element 303d is ON output in time (1) to (4)). At times (1) and (3) in FIG. 10, the same switching pattern is obtained, and the current path is the path shown in FIG. At times (2) and (4) in FIG. 10, the same switching pattern is obtained, and the current path is as shown in (b) of FIG.
 図10の時間(5)では、下アームにあるスイッチング素子303dがオンからオフに切り換わり、スイッチング素子303fがオフからオンに切り換わるが、このとき、上アームのスイッチング素子303aがオフしているため、還流電流用ダイオード303hを通る電流がブラシレスDCモータ304へ流れ、一方、ブラシレスDCモータ304からの電流は還流電流用ダイオード303iを流れ、その結果、図11の(c)に示す経路を通り平滑コンデンサ302eに電流が流れ込む。このとき、平滑コンデンサ302eが小容量であるため、平滑コンデンサ302eの両端の電圧、つまり、母線電圧が急激に上昇する。このように、上記第二の従来のモータ駆動装置では、ブラシレスDCモータの通電相の切換時に母線電圧が急激に上昇し、ブラシレスDCモータの滑らかな駆動が困難になるという問題がある。 At time (5) in FIG. 10, the switching element 303d in the lower arm is switched from on to off, and the switching element 303f is switched from off to on. At this time, the switching element 303a in the upper arm is off. Therefore, the current passing through the return current diode 303h flows to the brushless DC motor 304, while the current from the brushless DC motor 304 flows through the return current diode 303i. As a result, the current passes through the path shown in FIG. A current flows into the smoothing capacitor 302e. At this time, since the smoothing capacitor 302e has a small capacity, the voltage across the smoothing capacitor 302e, that is, the bus voltage rises rapidly. As described above, the second conventional motor driving device has a problem that the bus voltage rapidly increases when the energized phase of the brushless DC motor is switched, and it is difficult to smoothly drive the brushless DC motor.
 そこで、本発明は上記従来の課題を解決するもので、小容量の平滑コンデンサを備えるにも拘わらず、母線電圧が急激に上昇することなく、より安定した滑らかな駆動を可能にする安価で小型なモータ駆動装置を提供することを目的とする。 Therefore, the present invention solves the above-described conventional problems, and is inexpensive and small in size, which enables more stable and smooth driving without rapidly increasing the bus voltage despite having a small-capacity smoothing capacitor. An object of the present invention is to provide a simple motor drive device.
 本発明の一形態に係るモータ駆動装置は、交流電源に接続され、複数の巻線を有するブラシレスDCモータの通電相を切り替えることで前記ブラシレスDCモータを回転駆動するモータ駆動装置であって、前記交流電源から入力された交流電力を整流する整流回路と、前記交流電力の周波数の40倍より高い共振周波数となるよう値を決定したコンデンサとリアクタとで構成され、前記整流回路からの出力を平滑する平滑部と、スイッチング素子と還流電流用ダイオードとで構成される回路を一つのアームとしたときに、上アームおよび下アームが直列に接続されたレグを複数有し、前記平滑部より得られる直流電力を交流電力に変換して前記ブラシレスDCモータに供給するインバータと、前記インバータが前記ブラシレスDCモータに供給する電力の供給タイミングを指示する駆動信号を前記インバータに出力する制御部とを有し、前記駆動信号は、前記複数のアームのうちの一つのアームのスイッチング素子がパルス幅変調に基づくオンとオフとを繰り返すPWM出力をしている期間では、当該アームと上下が反対側の複数のアームのうちの一つのアームのスイッチング素子が常時オンとなるオン出力をするように、前記インバータを制御する信号であり、前記制御部は、前記ブラシレスDCモータの通電相を切り換えた際に、オン出力が終了したアームと反対側のアームのスイッチング素子がオン出力を開始するように、前記駆動信号を出力する。 A motor driving apparatus according to an aspect of the present invention is a motor driving apparatus that rotates and drives the brushless DC motor by switching an energized phase of a brushless DC motor that is connected to an AC power source and has a plurality of windings. A rectifier circuit that rectifies AC power input from an AC power source, a capacitor and a reactor whose values are determined to have a resonance frequency higher than 40 times the frequency of the AC power, and smoothes the output from the rectifier circuit. When a circuit composed of a smoothing section, a switching element and a return current diode is used as one arm, the upper arm and the lower arm have a plurality of legs connected in series, and are obtained from the smoothing section. An inverter that converts direct current power into alternating current power and supplies the brushless DC motor, and the inverter serves as the brushless DC motor A control unit that outputs to the inverter a drive signal instructing a supply timing of power to be supplied, and the drive signal is turned on when a switching element of one of the plurality of arms is based on pulse width modulation. During the period in which PWM output is repeatedly turned off, the inverter is controlled so that the switching element of one arm among the plurality of arms opposite to the upper and lower sides is always turned on. The control unit outputs the drive signal so that when the energized phase of the brushless DC motor is switched, the switching element of the arm on the opposite side to the arm on which the on-output is completed starts on-output. To do.
 かかる構成によれば、ブラシレスDCモータの通電相を切り換えても、オフした通電相に流れる電流がブラシレスDCモータに戻る経路が常に存在することになるので、小容量平滑コンデンサに戻る電流経路がなくなり、母線電圧の急激な上昇が抑制される。 According to such a configuration, even when the energized phase of the brushless DC motor is switched, there is always a path for the current flowing in the energized phase that has been turned off to return to the brushless DC motor, so there is no current path to return to the small-capacity smoothing capacitor. , A rapid rise in the bus voltage is suppressed.
 本発明のモータ駆動装置は、通電相の切換時に母線電圧の急激な上昇を抑え、より安定した滑らかなモータ駆動を実現できる安価で小型なモータ駆動装置を提供できる。 The motor drive device of the present invention can provide an inexpensive and small motor drive device that can suppress a rapid rise in the bus voltage when switching the energized phase and can realize more stable and smooth motor drive.
図1は、本発明の実施の形態におけるモータ駆動装置のブロック図である。FIG. 1 is a block diagram of a motor driving apparatus according to an embodiment of the present invention. 図2は、同実施の形態における駆動信号の波形を示すタイミング図である。FIG. 2 is a timing chart showing the waveform of the drive signal in the same embodiment. 図3は、同実施の形態における駆動信号と電流の波形を示す図である。FIG. 3 is a diagram showing a drive signal and current waveforms in the same embodiment. 図4は、同実施の形態における電流経路を示す図である。FIG. 4 is a diagram showing a current path in the same embodiment. 図5の(a)は、従来のモータ駆動装置における母線電圧の波形を示す図であり、図5の(b)は同実施の形態における母線電圧の波形を示す図である。FIG. 5A is a diagram showing the waveform of the bus voltage in the conventional motor driving apparatus, and FIG. 5B is a diagram showing the waveform of the bus voltage in the same embodiment. 図6は、同実施の形態におけるブラシレスDCモータの要部断面図である。FIG. 6 is a cross-sectional view of a main part of the brushless DC motor in the same embodiment. 図7は、第一の従来のモータ駆動装置のブロック図である。FIG. 7 is a block diagram of a first conventional motor drive device. 図8は、第一の従来のモータ駆動装置における駆動信号の波形を示すタイミング図である。FIG. 8 is a timing chart showing the waveform of the drive signal in the first conventional motor drive device. 図9は、第二の従来のモータ駆動装置のブロック図である。FIG. 9 is a block diagram of a second conventional motor driving device. 図10は、第二の従来のモータ駆動装置の駆動信号と電流の波形を示す図である。FIG. 10 is a diagram showing the drive signal and current waveforms of the second conventional motor drive device. 図11は、第二の従来のモータ駆動装置の電流経路を示す図である。FIG. 11 is a diagram illustrating a current path of a second conventional motor drive device.
 本発明の一形態に係るモータ駆動装置は、交流電源に接続され、複数の巻線を有するブラシレスDCモータの通電相を切り替えることで前記ブラシレスDCモータを回転駆動するモータ駆動装置であって、前記交流電源から入力された交流電力を整流する整流回路と、前記交流電力の周波数の40倍より高い共振周波数となるよう値を決定したコンデンサとリアクタとで構成され、前記整流回路からの出力を平滑する平滑部と、スイッチング素子と還流電流用ダイオードとで構成される回路を一つのアームとしたときに、上アームおよび下アームが直列に接続されたレグを複数有し、前記平滑部より得られる直流電力を交流電力に変換して前記ブラシレスDCモータに供給するインバータと、前記インバータが前記ブラシレスDCモータに供給する電力の供給タイミングを指示する駆動信号を前記インバータに出力する制御部とを有し、前記駆動信号は、前記複数のアームのうちの一つのアームのスイッチング素子がパルス幅変調に基づくオンとオフとを繰り返すPWM出力をしている期間では、当該アームと上下が反対側の複数のアームのうちの一つのアームのスイッチング素子が常時オンとなるオン出力をするように、前記インバータを制御する信号であり、前記制御部は、前記ブラシレスDCモータの通電相を切り換えた際に、オン出力が終了したアームと反対側のアームのスイッチング素子がオン出力を開始するように、前記駆動信号を出力する。 A motor driving apparatus according to an aspect of the present invention is a motor driving apparatus that rotates and drives the brushless DC motor by switching an energized phase of a brushless DC motor that is connected to an AC power source and has a plurality of windings. A rectifier circuit that rectifies AC power input from an AC power source, a capacitor and a reactor whose values are determined to have a resonance frequency higher than 40 times the frequency of the AC power, and smoothes the output from the rectifier circuit. When a circuit composed of a smoothing section, a switching element and a return current diode is used as one arm, the upper arm and the lower arm have a plurality of legs connected in series, and are obtained from the smoothing section. An inverter that converts direct current power into alternating current power and supplies the brushless DC motor, and the inverter serves as the brushless DC motor A control unit that outputs to the inverter a drive signal instructing a supply timing of power to be supplied, and the drive signal is turned on when a switching element of one of the plurality of arms is based on pulse width modulation. During the period in which PWM output is repeatedly turned off, the inverter is controlled so that the switching element of one arm among the plurality of arms opposite to the upper and lower sides is always turned on. The control unit outputs the drive signal so that when the energized phase of the brushless DC motor is switched, the switching element of the arm on the opposite side to the arm on which the on-output is completed starts on-output. To do.
 これにより、ブラシレスDCモータの通電相を切り換えても、オフした通電相にたまったエネルギーがブラシレスDCモータに戻る経路が常にインバータ内に存在することにより、小容量平滑コンデンサにエネルギーが戻ることがなくなり、母線電圧の急激な上昇を抑制し、前記ブラシレスDCモータの安定した滑らかな駆動が可能な小型で安価なモータ駆動装置を提供できる。 As a result, even when the energized phase of the brushless DC motor is switched, the energy does not return to the small-capacity smoothing capacitor because there is always a path in the inverter where the energy accumulated in the energized off phase is returned to the brushless DC motor. Thus, it is possible to provide a small and inexpensive motor driving device capable of suppressing a rapid increase in bus voltage and capable of stably and smoothly driving the brushless DC motor.
 ここで、前記制御部はさらに、前記ブラシレスDCモータの通電相を切り換えた際に、前記平滑部から出力される電圧である母線電圧が所定電圧に上昇するまでに、前記オン出力が終了したアームと反対側のアームのスイッチング素子のオン出力を開始させてもよい。このような構成にすることで、母線電圧が上昇して問題となる過電圧および駆動のがたつきなどの悪影響が起こらない電圧上昇値に母線電圧を抑えることとなり、安定したモータ駆動装置を提供できる。 Here, the control unit further includes an arm in which the on-output is completed until a bus voltage that is a voltage output from the smoothing unit rises to a predetermined voltage when the energized phase of the brushless DC motor is switched. The on-output of the switching element of the arm on the opposite side may be started. By adopting such a configuration, the bus voltage is suppressed to a voltage increase value that does not cause adverse effects such as overvoltage and drive rattling, which are problems due to the bus voltage rising, and a stable motor driving device can be provided. .
 また、前記オン出力が終了したアームと反対側のアームのスイッチング素子がオン出力を継続する期間は、少なくとも前記オン出力が終了したアームに流れる電流が所定値以下になるまでであってもよい。これにより、母線電圧が上昇しても問題とならない電流値以下の電流がコンデンサに流れ込むようにでき、より安定した駆動が可能となる。 Further, the period during which the switching element of the arm on the opposite side of the arm where the on output has been completed continues the on output may be at least until the current flowing through the arm where the on output has been completed becomes equal to or less than a predetermined value. As a result, a current equal to or lower than the current value that does not cause a problem even when the bus voltage rises can flow into the capacitor, and more stable driving is possible.
 また、前記オン出力が終了したアームと反対側のアームのスイッチング素子がオン出力を継続する期間は、前記ブラシレスDCモータの通電相が次に切り換わるまでであってもよい。これにより、通電パターンの設定が容易となり、駆動するためのソフトウェアやシステムが簡素化されるため、メンテナンス性と品質を向上することが可能となる。 Further, the period during which the switching element of the arm opposite to the arm on which the ON output is completed continues the ON output may be until the energized phase of the brushless DC motor is next switched. This facilitates the setting of the energization pattern and simplifies the software and system for driving, thereby improving the maintainability and quality.
 また、前記ブラシレスDCモータの回転子は、鉄心に永久磁石を埋め込んで構成され、さらに、突極性を有してもよい。これにより、ブラシレスDCモータの駆動において、永久磁石によるマグネットトルクとともに、突極性によるリラクタンストルクも有効に利用できるようになるため、母線電圧が落ち込んだ際に進角を大きくとることで出力トルクの低減を緩和でき、より安定した駆動が可能となる。 Further, the rotor of the brushless DC motor is configured by embedding a permanent magnet in an iron core, and may further have saliency. This enables effective use of reluctance torque due to saliency as well as magnet torque due to permanent magnets in the drive of brushless DC motors, thus reducing the output torque by increasing the advance angle when the bus voltage drops. Can be mitigated, and more stable driving becomes possible.
 また、前記ブラシレスDCモータは圧縮機を駆動してもよい。前記圧縮機の駆動制御では、工業用サーボモータ制御等の様に、高精度な回転数制御や加速制御などは必要無く、前記圧縮機はイナーシャが比較的大きい負荷であるため、短い時間での速度の変動は非常に少ない負荷である。従って、母線電圧の低下時であっても速度変動が少なく、より安定した駆動が可能となる。 The brushless DC motor may drive a compressor. In the drive control of the compressor, there is no need for high-precision rotation speed control or acceleration control like industrial servo motor control, etc., and the compressor is a load with relatively large inertia, so it can be done in a short time. Speed fluctuations are very light loads. Therefore, even when the bus voltage is lowered, the speed variation is small and more stable driving is possible.
 また、前記圧縮機はレシプロ圧縮機であってもよい。これにより、往復運動を行うレシプロタイプは、構造上回転子には、金属性で重量の大きいクランクシャフトやピストンが接続されているため、イナーシャが非常に大きく、電圧低下時により安定して動作することができる。 Further, the compressor may be a reciprocating compressor. As a result, the reciprocating type that performs reciprocating motion is structurally connected to the rotor, which is metallic and heavy, with a heavy crankshaft and piston. Therefore, the inertia is very large and operates more stably when the voltage drops. be able to.
 また、前記圧縮機で使用される冷媒はR600aであってもよい。これにより、冷凍能力を得るために気筒容積とイナーシャを大きくすることとなり、さらに印加トルクの変動に影響されにくい安定した駆動が可能となる。 Further, the refrigerant used in the compressor may be R600a. As a result, the cylinder volume and the inertia are increased in order to obtain the refrigerating capacity, and further, stable driving that is hardly affected by fluctuations in the applied torque becomes possible.
 本発明の別の一形態は、上記モータ駆動装置と、前記モータ駆動装置により駆動されるブラシレスDCモータとを備えた電気機器としてもよい。これにより、電気機器として冷蔵庫に用いた場合は、前記モータ駆動装置が小型化できるため一定速駆動を行っている冷蔵庫の小さいスペースにモータ駆動装置を収めることができ、速度変更が可能なより効率の良い冷蔵庫を安価に提供することができる。また、電気機器として送風機に用いた場合は、送風機はイナーシャが非常に大きいため、持ち運びが容易な小型送風機を実現することが可能となる。 Another embodiment of the present invention may be an electric device including the motor driving device and a brushless DC motor driven by the motor driving device. As a result, when used in a refrigerator as an electrical device, the motor drive device can be reduced in size so that the motor drive device can be stored in a small space of the refrigerator that is driven at a constant speed, and the speed can be changed more efficiently. A good refrigerator can be provided at low cost. Further, when the blower is used as an electric device, since the blower has a very large inertia, a small blower that is easy to carry can be realized.
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、信号波形、信号のタイミングなどは、一例であり、本発明を限定する主旨ではない。本発明は、特許請求の範囲によって特定される。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Each of the embodiments described below shows a preferred specific example of the present invention. Numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of constituent elements, signal waveforms, signal timings, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. The invention is specified by the claims. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept of the present invention are not necessarily required to achieve the object of the present invention. It will be described as constituting a preferred form.
 図1は、本発明の実施の形態におけるモータ駆動装置22のブロック図である。図1において、交流電源1は一般的な商用電源で、日本においては実効値100Vの50または60Hzの電源である。モータ駆動装置22は、交流電源1に接続され、ブラシレスDCモータ4を駆動する。以下、モータ駆動装置22について説明する。 FIG. 1 is a block diagram of a motor drive device 22 according to an embodiment of the present invention. In FIG. 1, an AC power source 1 is a general commercial power source, and in Japan, a power source of 50 or 60 Hz with an effective value of 100V. The motor driving device 22 is connected to the AC power source 1 and drives the brushless DC motor 4. Hereinafter, the motor drive device 22 will be described.
 このモータ駆動装置22は、ブラシレスDCモータ4の回転速度を任意に変更できるPWM制御を採用し、かつ、小さな容量の平滑コンデンサを備えるにも拘わらず安定して滑らかにブラシレスDCモータ4を駆動することができるモータ駆動装置であり、整流平滑回路2、インバータ3および制御部30を備える。 This motor drive device 22 employs PWM control that can arbitrarily change the rotation speed of the brushless DC motor 4, and stably and smoothly drives the brushless DC motor 4 despite having a smoothing capacitor with a small capacity. The motor drive device can include a rectifying and smoothing circuit 2, an inverter 3, and a control unit 30.
 整流平滑回路2は、交流電源1からの交流電力を直流電力に整流平滑する回路であり、ブリッジ接続された4個の整流ダイオード2a~2dと、平滑コンデンサ2eと、リアクタ2fとから構成される。整流平滑回路2からの出力はインバータ3に入力される。ここで、整流平滑回路2のうち、4個の整流ダイオード2a~2dは、交流電源1からの交流電力を整流する整流部を構成している。 The rectifying / smoothing circuit 2 is a circuit that rectifies and smoothes AC power from the AC power source 1 into DC power, and includes four bridge-connected rectifier diodes 2a to 2d, a smoothing capacitor 2e, and a reactor 2f. . The output from the rectifying / smoothing circuit 2 is input to the inverter 3. Here, in the rectifying / smoothing circuit 2, the four rectifying diodes 2 a to 2 d constitute a rectifying unit that rectifies AC power from the AC power supply 1.
 また、平滑コンデンサ2eとリアクタ2fとは、共振周波数が交流電源1からの交流電力の周波数の40倍より高い周波数になるように設定され、平滑部2gを構成する。これによって、共振周波数における電流は電源高調波規制の範囲外となり、高調波電流を低減することができる。また、平滑コンデンサ2eをこのような値(小さな容量、詳細は後述する)とすることで、母線電圧は大きなリプル成分を含み、交流電源1から平滑コンデンサ2eに流れる電流も交流電源1の周波数成分に近い電流となるため高調波電流を低減することができる。 Further, the smoothing capacitor 2e and the reactor 2f are set such that the resonance frequency is higher than 40 times the frequency of the AC power from the AC power supply 1, and constitutes the smoothing unit 2g. As a result, the current at the resonance frequency is outside the range of the power supply harmonic regulation, and the harmonic current can be reduced. Further, by setting the smoothing capacitor 2e to such a value (small capacity, details will be described later), the bus voltage includes a large ripple component, and the current flowing from the AC power source 1 to the smoothing capacitor 2e is also a frequency component of the AC power source 1. The harmonic current can be reduced because the current is close to.
 なお、リアクタ2fは、交流電源1と平滑コンデンサ2eとの間に挿入されるため、整流ダイオード2a~2dの前後どちらでも構わない。更にリアクタ2fは、高周波除去手段を構成するコモンモードフィルタを整流平滑回路2に設けた場合、その高周波除去手段のリアクタンス成分との合成成分に相当する。 In addition, since the reactor 2f is inserted between the AC power supply 1 and the smoothing capacitor 2e, it may be either before or after the rectifier diodes 2a to 2d. Further, the reactor 2f corresponds to a combined component with the reactance component of the high frequency removing means when the common mode filter constituting the high frequency removing means is provided in the rectifying and smoothing circuit 2.
 インバータ3は、整流平滑回路2からの電圧に交流電源1の電源周期の2倍周期で大きなリプル成分を含んだ直流電力を交流電力に変換する。インバータ3は、6個のスイッチング素子3a~3fを3相ブリッジ接続して構成される。また、6個の還流電流用ダイオード3g~3lは、各スイッチング素子3a~3fに、逆方向に並列接続される。つまり、インバータ3は、1個のスイッチング素子と1個の還流電流用ダイオードとの並列接続で構成される回路を一つのアームとしたときに、1個の上アームおよび1個の下アームが直列に接続されたレグを3個有する。 The inverter 3 converts the DC power containing a large ripple component into the voltage from the rectifying / smoothing circuit 2 in a cycle twice the power cycle of the AC power source 1 into AC power. The inverter 3 is configured by connecting six switching elements 3a to 3f in a three-phase bridge. The six return current diodes 3g to 3l are connected in parallel to the switching elements 3a to 3f in the reverse direction. In other words, the inverter 3 has one upper arm and one lower arm in series when a circuit composed of a parallel connection of one switching element and one return current diode is used as one arm. There are 3 legs connected to.
 ブラシレスDCモータ4は、永久磁石を有する回転子4aと、3相(U相、V相、W相)巻線を有する固定子4bとから構成される。ブラシレスDCモータ4は、インバータ3により作られた3相交流電流が固定子4bの3相巻線に流れることにより、回転子4aを回転させる。 The brushless DC motor 4 includes a rotor 4a having a permanent magnet and a stator 4b having a three-phase (U-phase, V-phase, W-phase) winding. The brushless DC motor 4 rotates the rotor 4a when the three-phase alternating current generated by the inverter 3 flows in the three-phase winding of the stator 4b.
 制御部30は、インバータ3がブラシレスDCモータ4に供給する電力の供給タイミングを指示する駆動信号をインバータ3に出力する回路であり、位置検出部5、電圧検出部6、速度推定部7、切換部8、位置推定部9、スイッチングアーム決定部10、波形生成部11およびドライブ部12を備える。 The control unit 30 is a circuit that outputs to the inverter 3 a drive signal that instructs the supply timing of the power supplied from the inverter 3 to the brushless DC motor 4. The position detection unit 5, voltage detection unit 6, speed estimation unit 7, switching Unit 8, position estimation unit 9, switching arm determination unit 10, waveform generation unit 11, and drive unit 12.
 ここで、制御部30から出力される駆動信号は、インバータ3を構成する複数のアームのうちの一つのアームのスイッチング素子がパルス幅変調(PWM)に基づくオンとオフとを繰り返すPWM出力をしている期間では、当該アームと上下が反対側の複数のアームのうちの一つのアームのスイッチング素子が常時オンとなるオン出力をするように、インバータ3を制御する信号である。これにより、PWMデューティオン幅を変更することで、ブラシレスDCモータ4の速度を任意に変更できる。 Here, the drive signal output from the control unit 30 is a PWM output in which the switching element of one of the plurality of arms constituting the inverter 3 repeats on and off based on pulse width modulation (PWM). In this period, the control signal is for controlling the inverter 3 so that the switching element of one of the plurality of arms on the opposite side to the arm is always turned on. Thereby, the speed of the brushless DC motor 4 can be arbitrarily changed by changing the PWM duty on width.
 このとき、制御部30は、ブラシレスDCモータ4の通電相を切り換えた際に、オン出力が終了したアームと反対側のアームのスイッチング素子がオン出力を開始するように、駆動信号を出力する。つまり、オン出力がシームレスに連続するように、オン出力の対象となるアーム(つまり、スイッチング素子)を切り換える。これによって、通電相を切り換えた際に、小容量の平滑コンデンサ2eに電流が流れるような電流経路が発生しないので、母線電圧の急激な上昇が抑制される。以下、制御部30を構成する各構成要素について、詳細に説明する。 At this time, when the energized phase of the brushless DC motor 4 is switched, the control unit 30 outputs a drive signal so that the switching element of the arm on the opposite side to the arm on which the ON output is completed starts the ON output. That is, the arm (that is, the switching element) that is the target of the on output is switched so that the on output is seamlessly continued. Thereby, when the energized phase is switched, a current path through which a current flows through the small-capacity smoothing capacitor 2e does not occur, so that a rapid rise in the bus voltage is suppressed. Hereinafter, each component which comprises the control part 30 is demonstrated in detail.
 位置検出部5は、本実施の形態においてはブラシレスDCモータ4の端子電圧を取得する。つまり、ブラシレスDCモータ4の回転子4aの磁極相対位置を検出する。具体的には、位置検出部5は、固定子4bの3相巻線に発生する誘起電圧に基づいて、回転子4aの相対的な回転位置を検出している。なお、別な位置検出方法としては、モータ電流(相電流または母線電流)の検出結果に対してベクトル演算を行って磁極位置の推定を行う方法が挙げられる。 The position detection unit 5 acquires the terminal voltage of the brushless DC motor 4 in the present embodiment. That is, the magnetic pole relative position of the rotor 4a of the brushless DC motor 4 is detected. Specifically, the position detector 5 detects the relative rotational position of the rotor 4a based on the induced voltage generated in the three-phase winding of the stator 4b. As another position detection method, there is a method of estimating the magnetic pole position by performing vector calculation on the detection result of the motor current (phase current or bus current).
 電圧検出部6は、直流母線間の電圧(母線電圧)である平滑コンデンサ2eの両端電圧を検出する。 The voltage detector 6 detects the voltage across the smoothing capacitor 2e, which is the voltage between the DC buses (bus voltage).
 速度推定部7は、位置検出部5で検出した位置の変化の速度からブラシレスDCモータ4の駆動速度を推定する。ただし、この速度推定部7は、電圧検出部6で検出した電圧が予め定められた閾値以下のときは速度推定を停止し、母線電圧が再び閾値以上となったのちに位置検出部5が行う最初の位置検出後から速度推定を再開する。速度推定を停止する閾値とは、位置検出部5での位置検出が不安定となる母線電圧の値であり、システムによって予め決定しておく。 The speed estimation unit 7 estimates the driving speed of the brushless DC motor 4 from the speed of the position change detected by the position detection unit 5. However, the speed estimation unit 7 stops the speed estimation when the voltage detected by the voltage detection unit 6 is equal to or lower than a predetermined threshold, and is performed by the position detection unit 5 after the bus voltage becomes equal to or higher than the threshold again. The speed estimation is resumed after the first position is detected. The threshold value for stopping the speed estimation is a value of the bus voltage at which the position detection by the position detection unit 5 becomes unstable, and is determined in advance by the system.
 切換部8は、位置検出部5からの位置情報は母線電圧が所定電圧以下になると不安定となるため、電圧検出部6で検出した母線電圧の検出値が閾値以下となった場合、位置検出部5の位置情報ではなく、位置推定部9の位置情報を選択し出力する。電圧検出部6で検出した電圧値が閾値以上となった場合は、切換部8は、再び位置検出部5の位置情報を選択し出力する。 Since the position information from the position detection unit 5 becomes unstable when the bus voltage becomes a predetermined voltage or less, the switching unit 8 detects the position when the detected value of the bus voltage detected by the voltage detection unit 6 becomes a threshold value or less. The position information of the position estimation unit 9 is selected and output instead of the position information of the unit 5. When the voltage value detected by the voltage detection unit 6 exceeds the threshold value, the switching unit 8 selects and outputs the position information of the position detection unit 5 again.
 位置推定部9は切換部8から出力される位置情報と速度推定部7で推定した速度からブラシレスDCモータ4の回転子4aの相対位置を推定し出力する。例えば、制御周期が100μ秒であった場合、切換部8からの位置情報が示す相対位置が電気角で60degであり、速度推定部7で推定した速度が50r/sであった場合、ブラシレスDCモータ4は本実施の形態では4極の構成を有しており、電流周波数は速度の2倍の100Hzとなるので、位置推定部9は、60degに、100Hzの信号が100μ秒の間に進む位相(3.6deg)を加算したもの、すなわち63.6degという位置情報を出力する。 The position estimation unit 9 estimates and outputs the relative position of the rotor 4a of the brushless DC motor 4 from the position information output from the switching unit 8 and the speed estimated by the speed estimation unit 7. For example, when the control cycle is 100 μs, the relative position indicated by the position information from the switching unit 8 is 60 degrees in electrical angle, and when the speed estimated by the speed estimation unit 7 is 50 r / s, the brushless DC Since the motor 4 has a four-pole configuration in this embodiment and the current frequency is 100 Hz, which is twice the speed, the position estimation unit 9 advances the signal of 100 Hz in 100 μs to 60 degrees. The sum of the phases (3.6 deg), that is, position information of 63.6 deg is output.
 スイッチングアーム決定部10は、切換部8より出力される位置情報を元にスイッチング素子3a、3cおよび3eを含む上アームか、スイッチング素子3b、3dおよび3fを含む下アームのどちらをスイッチングさせてPWM出力を行うかを決定する。これらは予め位置情報に対するテーブルで持たせておくことで簡単に実現ができる。本実施の形態では、スイッチングアーム決定部10は、PWM出力を行う側のアームの変更(つまり、上アームにPWM出力させるか、下アームにPWM出力させるか)については、ブラシレスDCモータ4の通電相の切り換えと同時に決定する。 Based on the position information output from the switching unit 8, the switching arm determination unit 10 switches either the upper arm including the switching elements 3a, 3c and 3e or the lower arm including the switching elements 3b, 3d and 3f to perform PWM. Decide whether to output. These can be easily realized by providing in advance a table for position information. In the present embodiment, the switching arm determination unit 10 determines whether the arm that performs PWM output is changed (that is, whether the upper arm performs PWM output or the lower arm performs PWM output). Determine at the same time as the phase is switched.
 本実施の形態では、PWM出力とオン出力とを上下のアームがそれぞれ継続する期間はブラシレスDCモータ4の位相角にして60degとしている。位置検出を誘起電圧による0クロスをベースに行っている場合、駆動可能な範囲では60degの間に出力停止した通電相の電流値は0となる。つまり、少なくとも0という所定電流値以下になるまでオン出力を継続していることとなる。 In the present embodiment, the PWM output and the ON output are set to 60 degrees as the phase angle of the brushless DC motor 4 during the period in which the upper and lower arms continue respectively. When position detection is performed on the basis of 0 cross by induced voltage, the current value of the energized phase whose output is stopped during 60 deg becomes 0 within the drivable range. That is, the on-output is continued until the current value is at least equal to or less than a predetermined current value of 0.
 波形生成部11は、切換部8からの位置情報から、ブラシレスDCモータ4の通電相を決定し、スイッチングアーム決定部10で決定された側のアームをPWM制御するような波形信号を出力する。また、波形生成部11は、PWMデューティ幅については、速度推定部7と波形生成部11で管理している目標速度の差分から決定する。なお、本実施の形態においては波形生成部11で目標速度を管理するとしたが、外部から目標速度を入力しても全く問題ない。これによって、外部から指示によってブラシレスDCモータ4の回転速度を変更できる。 The waveform generation unit 11 determines the energized phase of the brushless DC motor 4 from the position information from the switching unit 8 and outputs a waveform signal that PWM-controls the arm on the side determined by the switching arm determination unit 10. The waveform generation unit 11 determines the PWM duty width from the difference between the target speeds managed by the speed estimation unit 7 and the waveform generation unit 11. In the present embodiment, the target speed is managed by the waveform generation unit 11, but there is no problem even if the target speed is input from the outside. Thereby, the rotational speed of the brushless DC motor 4 can be changed by an instruction from the outside.
 また、波形生成部11は、電圧検出部6が検出した母線電圧を利用し、電圧の落ち込み時には進角が大きくなるよう制御を行っている。 Further, the waveform generation unit 11 uses the bus voltage detected by the voltage detection unit 6 and performs control so that the advance angle becomes large when the voltage drops.
 ドライブ部12は、波形生成部11から出力された波形信号に基づき、インバータ3がブラシレスDCモータ4の3相巻線に供給する電力の供給タイミングを指示する駆動信号を出力する。具体的には、駆動信号は、インバータ3のスイッチング素子3a~3fをオンまたはオフ(以下、オン/オフと記す)する。これにより、固定子4bに最適な交流電力が印加され、回転子4aが回転し、ブラシレスDCモータ4が駆動される。 The drive unit 12 outputs a drive signal that instructs the supply timing of the power that the inverter 3 supplies to the three-phase winding of the brushless DC motor 4 based on the waveform signal output from the waveform generation unit 11. Specifically, the drive signal turns on or off switching elements 3a to 3f of inverter 3 (hereinafter referred to as on / off). As a result, optimum AC power is applied to the stator 4b, the rotor 4a rotates, and the brushless DC motor 4 is driven.
 次に、本実施の形態におけるモータ駆動装置22を用いた電気機器について説明する。電気機器の一例として、冷蔵庫21について説明する。 Next, an electrical device using the motor drive device 22 in the present embodiment will be described. A refrigerator 21 will be described as an example of the electric device.
 冷蔵庫21には圧縮機17が搭載されているが、ブラシレスDCモータ4の回転子4aの回転運動は、クランクシャフト(図示せず)により、往復運動に変換される。クランクシャフトに接続されたピストン(図示せず)は、シリンダ(図示せず)内を往復運動することにより、シリンダ内の冷媒を圧縮する。つまり、ブラシレスDCモータ4と、クランクシャフト、ピストン、シリンダにより、圧縮機17が構成される。 Although the compressor 17 is mounted in the refrigerator 21, the rotational motion of the rotor 4a of the brushless DC motor 4 is converted into a reciprocating motion by a crankshaft (not shown). A piston (not shown) connected to the crankshaft reciprocates in a cylinder (not shown) to compress the refrigerant in the cylinder. That is, the compressor 17 is configured by the brushless DC motor 4 and the crankshaft, piston, and cylinder.
 圧縮機17の圧縮方式(機構方式)は、ロータリー型やスクロール型など、任意の方式が用いられる。本実施の形態においては、レシプロ型の場合について説明する。レシプロ型の圧縮機17は、ピストンの往復運動によるシリンダの容積変化で冷媒を圧縮するので、イナーシャが大きい。このため、母線電圧が落ち込み、トルクが低下する時であっても、ブラシレスDCモータ4の回転速度の変動が小さいため、圧縮機17の駆動が安定する。 As the compression method (mechanism method) of the compressor 17, an arbitrary method such as a rotary type or a scroll type is used. In this embodiment, the case of the reciprocating type will be described. Since the reciprocating compressor 17 compresses the refrigerant by changing the volume of the cylinder due to the reciprocating motion of the piston, the inertia is large. For this reason, even when the bus voltage drops and the torque decreases, the fluctuation of the rotational speed of the brushless DC motor 4 is small, so that the drive of the compressor 17 is stabilized.
 圧縮機17に用いる冷媒は、一般にR134a(HFC;Hydro Fluoro Carbon)等であるが、本実施の形態においては、冷媒はR600a(イソブタン)を用いる。R600aは、R134aと比較して地球温暖化係数は小さいが、冷凍能力が低い。本実施の形態においては、圧縮機17はレシプロ型圧縮機で構成するとともに、冷凍能力を確保するために、気筒容積を大きくしている。気筒容積の大きい圧縮機17は、イナーシャが大きいため、母線電圧が落ち込んだ場合であっても、イナーシャによってブラシレスDCモータ4が回転する。これにより、回転速度の変動が少なくなり、より安定した同期駆動が可能となる。 The refrigerant used in the compressor 17 is generally R134a (HFC; Hydro Fluoro Carbon) or the like, but in this embodiment, R600a (isobutane) is used as the refrigerant. R600a has a lower global warming potential than R134a, but has a low refrigeration capacity. In the present embodiment, the compressor 17 is constituted by a reciprocating compressor, and the cylinder volume is increased in order to ensure the refrigerating capacity. Since the compressor 17 having a large cylinder volume has a large inertia, the brushless DC motor 4 is rotated by the inertia even when the bus voltage drops. As a result, fluctuations in the rotational speed are reduced, and more stable synchronous driving is possible.
 圧縮機17で圧縮された冷媒が、凝縮器18、減圧器19、蒸発器20を順に通って、再び圧縮機17に戻る。このような冷凍サイクルが構成されている。この時、凝縮器18は放熱を、蒸発器20は吸熱を行うので、冷却や加熱を行うことができる。この冷凍サイクルを搭載して冷蔵庫21が構成される。ここで、別な電気機器の例としては、送風機があり、具体的には、ブラシレスDCモータ4が駆動するファンを備えた送風機がある。 The refrigerant compressed by the compressor 17 passes through the condenser 18, the decompressor 19, and the evaporator 20 in this order, and returns to the compressor 17 again. Such a refrigeration cycle is configured. At this time, the condenser 18 radiates heat and the evaporator 20 absorbs heat, so that cooling and heating can be performed. A refrigerator 21 is configured with this refrigeration cycle. Here, as another example of the electric device, there is a blower, and specifically, there is a blower including a fan driven by the brushless DC motor 4.
 次に、以上のように構成されたモータ駆動装置22について、その動作を説明する。まず、駆動信号とPWM出力する相(アーム)の決定に関して説明する。図2は電気角1周期の本実施の形態におけるインバータ3への駆動信号の波形を示すタイミング図である。 Next, the operation of the motor drive device 22 configured as described above will be described. First, the determination of the drive signal and the phase (arm) for PWM output will be described. FIG. 2 is a timing chart showing the waveform of the drive signal to the inverter 3 in the present embodiment for one electrical angle cycle.
 図2において、それぞれの波形はスイッチング素子3a、3c、3e、3b、3d、3fをオン/オフするための駆動信号である。スイッチング素子3a~3fは駆動信号がハイのときにスイッチング素子をオンさせるアクティブハイの素子である。スイッチングアーム決定部10は図2に示すように、30degを基準に60degごとにPWM出力する側のアームを切り換えるように予めテーブルを持っている。上アームがPWM出力する位相は30~90deg、150~210deg、270~330degとなり、それ以外の位相では下アームがPWM出力を行う。PWM出力を行っていない側のアームはその間オン出力となるよう設定している。通電のタイミングを示す波形は波形生成部11で決定される。つまり、本実施の形態では、波形生成部11は、120deg矩形波を用いて、上側アームのスイッチング素子3a、3c、3eをそれぞれ120degずつずらして通電している。下側アームも同様に120degずつずらして、スイッチング素子3b、3d、3fを通電している。スイッチング素子3aと3b、3cと3d、3eと3fについては、それぞれ、お互いの通電期間の間に60degずつのオフ期間が存在する。アームがPWM出力するかオン出力となるかはスイッチングアーム決定部10の決定に従っており、通電させるアームの切り換えと上下どちら側のアームをPWM出力するかの切り換えとは同時に行われるよう設定されている。 2, each waveform is a drive signal for turning on / off the switching elements 3a, 3c, 3e, 3b, 3d, and 3f. The switching elements 3a to 3f are active high elements that turn on the switching elements when the drive signal is high. As shown in FIG. 2, the switching arm determination unit 10 has a table in advance so as to switch the arm on the PWM output side every 60 degrees with 30 degrees as a reference. The phase at which the upper arm performs PWM output is 30 to 90 deg, 150 to 210 deg, 270 to 330 deg, and the lower arm performs PWM output at other phases. The arm on the side where PWM output is not performed is set to be ON output during that time. A waveform indicating the timing of energization is determined by the waveform generator 11. In other words, in the present embodiment, the waveform generator 11 is energized by shifting the switching elements 3a, 3c, and 3e of the upper arm by 120 deg using a 120 deg rectangular wave. Similarly, the lower arm is also shifted by 120 degrees to energize the switching elements 3b, 3d, and 3f. The switching elements 3a and 3b, 3c and 3d, 3e and 3f each have an off period of 60 degrees between the energization periods. Whether the arm outputs PWM or turns on depends on the determination of the switching arm determination unit 10, and the switching of the arm to be energized and the switching of the upper or lower arm to output the PWM are performed simultaneously. .
 なお、本実施の形態では120deg通電で説明しているが、150degなど広角での駆動も可能である。このときには、120degでの制御と同様に、オフしたアームと反対側のアームをオン状態にするだけで容易に実現が可能である。広角にすることで電流ピークが下がることに加えて、電流のコギング成分が低減されるため、駆動速度と極数の積によって現れる周波数成分の電源高調波が緩和される。 Note that although 120 deg energization is described in the present embodiment, driving at a wide angle such as 150 deg is also possible. At this time, similar to the control at 120 deg, it can be easily realized by simply turning on the arm opposite to the off arm. In addition to lowering the current peak by setting the wide angle, the cogging component of the current is reduced, so that the power supply harmonics of the frequency component that appears due to the product of the driving speed and the number of poles are alleviated.
 次に、ブラシレスDCモータ4の通電相が切り換わる際の駆動信号の波形と電流の流れについて説明する。図3は通電相が切り換わるタイミングを拡大した本実施の形態における駆動信号と電流の波形を示す図である。図4は本実施の形態における電流経路を示す図である。 Next, the waveform of the drive signal and the current flow when the energized phase of the brushless DC motor 4 is switched will be described. FIG. 3 is a diagram showing drive signal and current waveforms in the present embodiment in which the timing at which the energized phase is switched is enlarged. FIG. 4 is a diagram showing a current path in the present embodiment.
 図3におけるV相電流とはスイッチング素子3cと3dにつながる固定子4bの巻き線(V相)に流れる電流である。図3における母線電流とは平滑コンデンサ2eからインバータ3に流れる電流を示している。 The V-phase current in FIG. 3 is a current flowing through the winding (V phase) of the stator 4b connected to the switching elements 3c and 3d. The bus current in FIG. 3 indicates the current flowing from the smoothing capacitor 2e to the inverter 3.
 図3の時間(4)から時間(5)に通電パターン(通電相)が切り換わるときの位相は図2の90degとなっている。図3の時間(1)と時間(3)では、V相電流は、同じ電流経路を通る。具体的には、図4の(a)に示すように平滑コンデンサ2eからインバータ3のスイッチング素子3aとスイッチング素子3dを通り再び平滑コンデンサ2eに戻る電流経路を通る。 The phase when the energization pattern (energization phase) switches from time (4) to time (5) in FIG. 3 is 90 degrees in FIG. At time (1) and time (3) in FIG. 3, the V-phase current passes through the same current path. Specifically, as shown in FIG. 4A, the current passes from the smoothing capacitor 2e through the switching element 3a and the switching element 3d of the inverter 3 to the smoothing capacitor 2e again.
 また、図3の時間(2)と時間(4)では、V相電流は、同じ電流経路を通る。具体的には、図4の(b)に示すように、平滑コンデンサ2eからの電流経路は無く、スイッチング素子3aを流れていた電流は還流電流用ダイオード3hを通り、還流電流となる。 In addition, the V-phase current passes through the same current path at time (2) and time (4) in FIG. Specifically, as shown in FIG. 4B, there is no current path from the smoothing capacitor 2e, and the current flowing through the switching element 3a passes through the return current diode 3h and becomes a return current.
 この状態で、図3の時間(4)から時間(5)に移り、通電相が切り換わると、図4(c)に示す電流経路となる。位相が90degであるので、通電相が切り換わると同時に、PWM出力するアームは上アーム(スイッチング素子3a)から下アーム(スイッチング素子3f)に切り換わる。これによって、スイッチング素子3aはオン出力を開始し、スイッチング素子3fはPWM出力を開始する。つまり通電相の切り換えと同時に、オン出力を終了したアーム(下アーム(スイッチング素子3d))と反対側のアーム(上アーム(スイッチング素子3a))をオン出力した(オン出力を開始させた)こととなる。なお、オン出力を終了した側のアーム(下アーム)で次に出力を開始する場合はPWM出力となり、そのPWM出力による制御は継続して可能となる。ただし、図3の時間(5)ではPWMがオフタイミングであるため即座にオンとはならない。 In this state, when time (4) in FIG. 3 shifts to time (5) and the energized phase is switched, the current path shown in FIG. 4 (c) is obtained. Since the phase is 90 deg, the energized phase is switched, and at the same time, the arm for PWM output is switched from the upper arm (switching element 3a) to the lower arm (switching element 3f). As a result, the switching element 3a starts ON output, and the switching element 3f starts PWM output. In other words, simultaneously with the switching of the energized phase, the arm (upper arm (switching element 3a)) opposite to the arm (lower arm (switching element 3d)) that has finished the ON output was turned on (the on output was started). It becomes. In addition, when the output is started next on the arm (lower arm) on which the ON output has been completed, the output becomes the PWM output, and the control by the PWM output can be continued. However, at time (5) in FIG. 3, the PWM is not turned on immediately because the PWM is off timing.
 このように、下アームであるスイッチング素子3dのオン出力が終了したと同時に、上アームであるスイッチング素子3aのオン出力を開始しているので、V相電流は還流電流用ダイオード3iを通ったあとスイッチング素子3aを通りブラシレスDCモータ4へと電流が流れるループが形成される(図4の(c))。スイッチング素子3aではオンは60degの間保たれるので、V相電流が0になるまでスイッチング素子3aはオンを継続することとなり、平滑コンデンサ2eへの電流経路は発生せず、母線電圧が上昇することは無い。つまり、一つのアームにおけるオン出力の終了と同時に反対側のアームのオン出力が開始され、その反対側のアームのスイッチング素子がオン出力を継続する期間は、少なくともオン出力が終了したアームに流れる電流が所定値以下になるまでである。 Thus, since the ON output of the switching element 3a as the upper arm is started at the same time as the ON output of the switching element 3d as the lower arm is completed, the V-phase current passes through the return current diode 3i. A loop is formed in which a current flows through the switching element 3a to the brushless DC motor 4 ((c) in FIG. 4). Since the switching element 3a is kept on for 60 degrees, the switching element 3a continues to be turned on until the V-phase current becomes 0, so that a current path to the smoothing capacitor 2e is not generated and the bus voltage rises. There is nothing. That is, the on-output of the opposite arm is started simultaneously with the end of the on-output in one arm, and the current flowing in the arm that has finished the on-output is at least during the period in which the switching element of the opposite arm continues the on output. Until the value falls below a predetermined value.
 図3の時間(6)でもV相電流は流れているが(図3)、スイッチング素子3aがオンしているため、図3の時間(5)と同様に、V相電流が平滑コンデンサ2eに戻る経路は発生しない。このときスイッチング素子3fが通電相切り換え後初めてオンするため、図4の(d)に示される電流経路に電流が流れ始め母線電流が流れ始める。図3の時間(7)ではV相電流が0となるため(図3)、電流経路としては、図4の(d)の電流経路のみとなる。図3の時間(8)では、図4の(e)に示すような従来同様のPWMオフ時の電流経路となり、平滑コンデンサ2eへの電流経路は同様に発生せず母線電圧の上昇は起こらない。 Although the V-phase current is flowing at time (6) in FIG. 3 (FIG. 3), the switching element 3a is on, so that the V-phase current is applied to the smoothing capacitor 2e as in time (5) in FIG. There is no return path. At this time, since the switching element 3f is turned on for the first time after switching the energized phase, current starts to flow through the current path shown in FIG. Since the V-phase current is 0 at time (7) in FIG. 3 (FIG. 3), the current path is only the current path in (d) of FIG. At time (8) in FIG. 3, the current path during PWM OFF as shown in FIG. 4 (e) is the same as that in the prior art, and the current path to the smoothing capacitor 2e does not occur in the same way, and the bus voltage does not increase. .
 通電相を切り換えた際の従来の母線電圧波形を図5の(a)に、本実施の形態の通電相を切り換えた際の母線電圧波形を図5の(b)に示す。従来の方式では、通電相を切り換えた際に平滑コンデンサ2eにエネルギーがチャージされる電流経路が存在するため、図5の(a)の波形35に示すように、母線電圧が急激に上昇している。一方、本実施の形態では、通電相を切り換えた際に平滑コンデンサ2eにエネルギーがチャージされる電流経路が存在しないため、図5の(b)の母線電圧波形に示すように、母線電圧の上昇が発生しておらず安定した滑らかな駆動が可能となる。 FIG. 5A shows a conventional bus voltage waveform when the energized phase is switched, and FIG. 5B shows a bus voltage waveform when the energized phase of the present embodiment is switched. In the conventional method, there is a current path in which energy is charged in the smoothing capacitor 2e when the energized phase is switched. Therefore, as shown by the waveform 35 in FIG. Yes. On the other hand, in the present embodiment, since there is no current path for charging the smoothing capacitor 2e when the energized phase is switched, as shown in the bus voltage waveform in FIG. Stable and smooth drive is possible without any occurrence.
 次に、本実施の形態のブラシレスDCモータ4の構造について説明する。図6は、本実施の形態におけるブラシレスDCモータ4の回転子4aの、回転軸に対して垂直断面を示した断面図である。 Next, the structure of the brushless DC motor 4 of this embodiment will be described. FIG. 6 is a cross-sectional view showing a cross section perpendicular to the rotation axis of the rotor 4a of the brushless DC motor 4 in the present embodiment.
 回転子4aは、鉄心4gと4枚のマグネット(永久磁石)4c~4fとから構成される。鉄心4gは、0.35~0.5mm程度の薄い珪素鋼板を打ち抜いたものを積み重ねて構成される。マグネット4c~4fは、円弧形状のフェライト系永久磁石が用いられ、図示したように、円弧形状の凹部が外方を向くように、中心対称に配置される。なお、マグネット4c~4fとして、ネオジウムなどの希土類の永久磁石を用いる場合は、平板形状であってもよい。 The rotor 4a is composed of an iron core 4g and four magnets (permanent magnets) 4c to 4f. The iron core 4g is formed by stacking punched thin steel sheets of about 0.35 to 0.5 mm. The magnets 4c to 4f are arc-shaped ferrite permanent magnets, and are arranged symmetrically about the center so that the arc-shaped recesses face outward as shown in the figure. In the case where rare earth permanent magnets such as neodymium are used as the magnets 4c to 4f, a flat plate shape may be used.
 このような構造の回転子4aにおいて、いま、回転子4aの中心から、1つのマグネット(例えばマグネット4f)の中央に向かう軸をd軸とし、回転子4aの中心から、1つのマグネット(例えばマグネット4f)とこれに隣接するマグネット(例えばマグネット4c)との間に向かう軸をq軸とする。ここで、d軸方向のインダクタンスLdとq軸方向のインダクタンスLqとは逆突極性を有し、異なるものとなる。つまり、これは、モータとしては、マグネットの磁束によるトルク(マグネットトルク)以外に、逆突極性を利用したトルク(リラクタンストルク)を有効に使えることを意味する。したがって、モータとして、よりトルクが有効的に利用できる。この結果、本実施の形態としては、高効率なモータが得られる。 In the rotor 4a having such a structure, the axis going from the center of the rotor 4a toward the center of one magnet (eg, magnet 4f) is defined as a d-axis, and one magnet (eg, magnet) from the center of the rotor 4a. The axis that goes between 4f) and the adjacent magnet (for example, magnet 4c) is defined as the q axis. Here, the inductance Ld in the d-axis direction and the inductance Lq in the q-axis direction have opposite saliency and are different. That is, this means that the motor can effectively use torque (reluctance torque) using reverse saliency other than torque (magnet torque) due to magnetic flux of the magnet. Therefore, torque can be used more effectively as a motor. As a result, a highly efficient motor is obtained as the present embodiment.
 また、本実施の形態では、平滑コンデンサ2eの容量を低減しているために、母線電圧に脈動が発生し、母線電圧が落ち込んだ区間では出力トルクが減少する。しかしながら、電圧検出部6が検出する母線電圧の落ち込みにあわせて進角量を増加させるよう波形生成部11で制御を行い、出力トルクの減少を抑制することが可能となり、安定した駆動が可能なる。 In the present embodiment, since the capacity of the smoothing capacitor 2e is reduced, pulsation occurs in the bus voltage, and the output torque decreases in a section where the bus voltage falls. However, it is possible to control the waveform generation unit 11 to increase the advance amount in accordance with the drop in the bus voltage detected by the voltage detection unit 6, thereby suppressing a decrease in output torque and enabling stable driving. .
 また、本実施の形態のブラシレスDCモータ4は、鉄心4gにマグネット4c~4fを埋め込んでなる回転子4aを有し、かつ突極性を有する。また、マグネット4c~4fのマグネットトルクの他に、突極性によるリラクタンストルクを用いている。このことにより、低速時の効率向上はもちろん、高速駆動性能をさらに上げることになる。また、マグネット4c~4fにネオジウムなどの希土類磁石を採用してマグネットトルクの割合を多くしたり、インダクタンスLd、Lqの差を大きくしてリラクタンストルクの割合を多くしたりすると、最適な通電角を変えることにより効率を上げることができる。 Further, the brushless DC motor 4 of the present embodiment has a rotor 4a in which magnets 4c to 4f are embedded in an iron core 4g and has saliency. In addition to the magnet torque of the magnets 4c to 4f, reluctance torque due to saliency is used. This not only improves efficiency at low speeds, but also improves high-speed drive performance. Also, if a rare earth magnet such as neodymium is used for the magnets 4c to 4f to increase the ratio of the magnet torque, or the difference between the inductances Ld and Lq is increased to increase the ratio of the reluctance torque, the optimum conduction angle is obtained. The efficiency can be increased by changing.
 次に、本実施の形態のモータ駆動装置22を冷蔵庫21や空気調和機に用いて、圧縮機17を駆動した場合について説明する。従来のモータ駆動装置では平滑コンデンサやリアクタが大きくなりシステムに組み込むには大きなスペースが必要であった。しかしながら、本実施の形態では、平滑コンデンサ2eを、従来であれば400μF程度必要であったものを、数μFに低減することが可能となり、体積にして1/3以下に低減できる。また、冷蔵庫21のような低負荷での駆動であれば、リアクタ2fも、従来であれば数ミリHあったものを、フィルタ(一般的なコモンモードフィルタ)のインダクタンス成分で賄うことが可能となり、モータ駆動装置22の大幅なサイズダウンと低コスト化が可能となる。 Next, the case where the compressor 17 is driven using the motor drive device 22 of the present embodiment for the refrigerator 21 and the air conditioner will be described. In the conventional motor drive device, a smoothing capacitor and a reactor are large, and a large space is required for incorporation into the system. However, in the present embodiment, it is possible to reduce the smoothing capacitor 2e, which conventionally required about 400 μF, to several μF, and to 1/3 or less in volume. In addition, if the driving is performed at a low load like the refrigerator 21, the reactor 2f that is conventionally several millimeters H can be covered with the inductance component of the filter (general common mode filter). The motor drive device 22 can be greatly reduced in size and cost.
 また、一定速でのみ駆動するコンプレッサ制御のシステムにおいて、従来の可変速度駆動が可能なモータ駆動装置では、システムにおけるスペースが狭く、容易にモータ駆動装置をシステムに組み込むことができなかった。しかしながら、本実施の形態では、モータ駆動装置を非常に小型化できるため、設置スペースの制約が緩和され、可変速度駆動が可能なモータ駆動装置を、一定速でのみ駆動するコンプレッサシステムに組み込むことが容易となる。速度可変となれば、冷蔵庫のシステム効率を向上させることができ、より省エネルギーな冷蔵庫を提供することができる。 Also, in a compressor control system that drives only at a constant speed, a conventional motor drive device capable of variable speed drive has a small space in the system, and the motor drive device cannot be easily incorporated into the system. However, in this embodiment, since the motor drive device can be made very small, restrictions on installation space are eased, and a motor drive device capable of variable speed drive can be incorporated into a compressor system that drives only at a constant speed. It becomes easy. If the speed is variable, the system efficiency of the refrigerator can be improved, and a more energy-saving refrigerator can be provided.
 以上のように、本実施の形態におけるモータ駆動装置22は、交流電源1に接続され、複数の巻線を有するブラシレスDCモータ4の通電相を切り替えることでブラシレスDCモータ4を回転駆動するモータ駆動装置であって、交流電源1から入力された交流電力を整流する整流回路(整流ダイオード2a~2d)と、交流電力の周波数の40倍より高い共振周波数となるよう値を決定した平滑コンデンサ2eとリアクタ2fとで構成され、整流回路からの出力を平滑する平滑部2gと、スイッチング素子と還流電流用ダイオードとで構成される回路を一つのアームとしたときに、上アームおよび下アームが直列に接続されたレグを複数有し、平滑部2gより得られる直流電力を交流電力に変換してブラシレスDCモータ4に供給するインバータ3と、インバータ3がブラシレスDCモータ4に供給する電力の供給タイミングを指示する駆動信号をインバータ3に出力する制御部30とを有する。ここで、駆動信号は、複数のアームのうちの一つのアームのスイッチング素子がパルス幅変調に基づくオンとオフとを繰り返すPWM出力をしている期間では、当該アームと上下が反対側の複数のアームのうちの一つのアームのスイッチング素子が常時オンとなるオン出力をするように、インバータ3を制御する信号である。そして、制御部30は、ブラシレスDCモータ4の通電相を切り換えた際に、オン出力が終了したアームと反対側のアームのスイッチング素子がオン出力を開始するように、駆動信号を出力する。これにより、ブラシレスDCモータ4の通電相を切り換えても、オフした通電相にたまったエネルギーがブラシレスDCモータ4に戻る経路が常にインバータ3内に存在し、小容量の平滑コンデンサ2eにエネルギーが戻ることがなくなり、母線電圧の急激な上昇を抑制することとなるので、ブラシレスDCモータ4の安定した滑らかな駆動が可能な小型で安価なモータ駆動装置を提供できる。 As described above, the motor drive device 22 in the present embodiment is connected to the AC power source 1 and is motor driven to rotate the brushless DC motor 4 by switching the energized phase of the brushless DC motor 4 having a plurality of windings. A rectifier circuit (rectifier diodes 2a to 2d) for rectifying AC power input from the AC power source 1, and a smoothing capacitor 2e having a value determined to have a resonance frequency higher than 40 times the frequency of AC power; The upper arm and the lower arm are connected in series when the smoothing unit 2g that smoothes the output from the rectifier circuit, and the circuit that includes the switching element and the return current diode are configured as one arm. An input which has a plurality of connected legs, converts DC power obtained from the smoothing unit 2g into AC power and supplies the AC power to the brushless DC motor 4. And over motor 3, and a control unit 30 for outputting a drive signal inverter 3 instructs the power supply timing of supplying the brushless DC motor 4 to the inverter 3. Here, the drive signal is a plurality of arms whose upper and lower sides are opposite to each other in a period in which the switching element of one of the arms performs PWM output that repeats ON and OFF based on pulse width modulation. This is a signal for controlling the inverter 3 so that the switching element of one of the arms is turned on so that the switching element is always turned on. Then, when the energized phase of the brushless DC motor 4 is switched, the control unit 30 outputs a drive signal so that the switching element of the arm on the opposite side to the arm on which the ON output is completed starts the ON output. Thereby, even if the energized phase of the brushless DC motor 4 is switched, there is always a path in the inverter 3 for the energy accumulated in the energized phase that has been turned off to return to the brushless DC motor 4, and the energy returns to the small-capacity smoothing capacitor 2e. Therefore, a rapid increase in the bus voltage is suppressed, so that a small and inexpensive motor driving device that can stably and smoothly drive the brushless DC motor 4 can be provided.
 また、整流平滑回路2として、交流電源1の周波数の40倍より高い共振周波数となるよう値を決定した平滑コンデンサ2eとリアクタ2fとで構成したことにより、共振により流れる電流が高調波電源規制の範囲外であるため、高調波電流を低減できる。 Further, since the rectifying and smoothing circuit 2 is constituted by the smoothing capacitor 2e and the reactor 2f whose values are determined so as to have a resonance frequency higher than 40 times the frequency of the AC power supply 1, the current flowing through the resonance is regulated by the harmonic power supply regulation. Since it is out of range, the harmonic current can be reduced.
 また、整流平滑回路2として、交流電源1の周波数の40倍より高い共振周波数となるよう値を決定した平滑コンデンサ2eとリアクタ2fとで構成したことにより、平滑コンデンサは小容量となり突入電流ピークが下がるため、高調波電流が低減できる。 Further, since the rectifying and smoothing circuit 2 is constituted by the smoothing capacitor 2e and the reactor 2f whose values are determined so as to have a resonance frequency higher than 40 times the frequency of the AC power supply 1, the smoothing capacitor has a small capacity and an inrush current peak is generated. The harmonic current can be reduced because of lowering.
 なお、本実施の形態では、制御部30はさらに、ブラシレスDCモータ4の通電相を切り換えた際に、平滑部2gから出力される電圧である母線電圧が所定電圧に上昇するまでに、オン出力が終了したアームと反対側のアームのスイッチング素子のオン出力を開始させている。これにより、母線電圧が上昇して問題となる過電圧および駆動のがたつきなどの影響が起こらない電圧上昇値に母線電圧を抑えることができ、安定したモータ駆動装置を提供できる。 In the present embodiment, the control unit 30 further turns on output until the bus voltage, which is the voltage output from the smoothing unit 2g, rises to a predetermined voltage when the energized phase of the brushless DC motor 4 is switched. The on-output of the switching element of the arm on the opposite side to the arm that has finished is started. As a result, the bus voltage can be suppressed to a voltage increase value that does not cause an influence such as overvoltage and drive rattling, which are problems due to the rise of the bus voltage, and a stable motor driving device can be provided.
 また、本実施の形態では、オン出力が終了したアームと反対側のアームのスイッチング素子がオン出力を継続する期間は、少なくともオン出力が終了したアームに流れる電流が所定値以下になるまでとしている。これにより、母線電圧が上昇して問題とならない電流値以下の電流が平滑コンデンサ2eに流れ込むこととなり、より安定した駆動が可能となる。 Further, in the present embodiment, the period during which the switching element of the arm on the opposite side to the arm on which the on-output has ended continues the on-output until at least the current flowing in the arm on which the on-output has ended is equal to or less than a predetermined value. . As a result, the current below the current value that does not cause a problem due to the rise of the bus voltage flows into the smoothing capacitor 2e, and more stable driving is possible.
 また、本実施の形態では、オン出力が終了したアームと反対側のアームのスイッチング素子がオン出力を継続する期間は、ブラシレスDCモータ4の通電相が次に切り換わるまでとしている。これにより、通電パターンの設定が容易となり、駆動するためのソフトウェアやシステムが簡素化されるため、メンテナンス性と品質を向上することができる。 Further, in the present embodiment, the period during which the switching element of the arm on the opposite side to the arm on which the on-output is completed continues the on-output until the energized phase of the brushless DC motor 4 is switched to the next. This facilitates the setting of the energization pattern and simplifies the software and system for driving, thereby improving maintainability and quality.
 また、本実施の形態では、ブラシレスDCモータ4の回転子4aは、鉄心4gにマグネット(永久磁石)4c~4fを埋め込んで構成され、さらに、突極性を有している。これにより、ブラシレスDCモータ4の駆動において、永久磁石によるマグネットトルクとともに、突極性によるリラクタンストルクも有効に利用できるようになるため、波形生成部11が、母線電圧が落ち込むほど進角を大きくとり、出力トルクの低減を緩和することにより、より安定した駆動が可能となる。 In the present embodiment, the rotor 4a of the brushless DC motor 4 is configured by embedding magnets (permanent magnets) 4c to 4f in the iron core 4g, and has saliency. Thereby, in driving the brushless DC motor 4, since the reluctance torque due to the saliency can be effectively used together with the magnet torque due to the permanent magnet, the waveform generator 11 takes a larger advance angle as the bus voltage drops, By reducing the reduction in output torque, more stable driving is possible.
 また、本実施の形態では、ブラシレスDCモータ4は圧縮機17を駆動している。圧縮機17の駆動制御では、工業用サーボモータ制御等の様に、高精度な回転数制御や加速制御などは必要無く、圧縮機17はイナーシャが比較的大きい負荷であるため、短い時間での速度の変動は非常に少ない負荷である。従って、母線電圧低下時であっても速度変動が少なく、より安定した駆動が可能となる。 In the present embodiment, the brushless DC motor 4 drives the compressor 17. The drive control of the compressor 17 does not require high-accuracy rotational speed control or acceleration control as in the industrial servo motor control, and the compressor 17 is a load having a relatively large inertia. Speed fluctuations are very light loads. Therefore, even when the bus voltage is lowered, the speed fluctuation is small and more stable driving is possible.
 また、本実施の形態では、圧縮機17はレシプロ圧縮機である。これにより、往復運動を行うレシプロタイプは、構造上回転子には、金属性で重量の大きいクランクシャフトやピストンが接続されているため、イナーシャが非常に大きく、電圧低下時により安定して動作させることができる。 In the present embodiment, the compressor 17 is a reciprocating compressor. As a result, the reciprocating type that performs reciprocating motion has a very large inertia and is operated more stably when the voltage drops because the rotor is connected to a crankshaft and piston that are metallic and heavy in weight. be able to.
 また、本実施の形態では、圧縮機17で使用される冷媒はR600aである。これにより、冷凍能力を得るために気筒容積とイナーシャを大きくすることとなり、さらに印加トルクの変動に影響されにくい安定した駆動が可能となる。 Further, in the present embodiment, the refrigerant used in the compressor 17 is R600a. As a result, the cylinder volume and the inertia are increased in order to obtain the refrigerating capacity, and further, stable driving that is hardly affected by fluctuations in the applied torque becomes possible.
 また、本実施の形態のモータ駆動装置22を用いた電気機器として、冷蔵庫21に用いた場合は、モータ駆動装置が小型化できるため一定速駆動を行っている冷蔵庫における小さなスペースに収めることができ、より効率の良い冷蔵庫21を安価に提供することができる。 In addition, when used in the refrigerator 21 as an electrical device using the motor drive device 22 of the present embodiment, the motor drive device can be reduced in size, so that it can be stored in a small space in a refrigerator that is driven at a constant speed. The more efficient refrigerator 21 can be provided at low cost.
 また電気機器として送風機に用いた場合は、送風機はイナーシャが非常に大きいため、安定した駆動が可能で、持ち運びが容易な小型送風機を実現することが可能となる。 Also, when used as a blower as an electrical device, the blower has a very large inertia, so that it is possible to realize a small blower that can be driven stably and is easy to carry.
 以上、本発明に係るモータ駆動装置およびにこれを用いた電気機器について、実施の形態に基づいて説明したが、本発明は、このような実施の形態に限定されない。本発明の主旨を逸脱しない範囲で、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、実施の形態の構成要素を任意に組み合わせて得られる形態も、本発明に含まれる。 As mentioned above, although the motor drive device concerning this invention and the electric equipment using the same were demonstrated based on embodiment, this invention is not limited to such embodiment. Forms obtained by subjecting various embodiments to various modifications conceived by those skilled in the art and forms obtained by arbitrarily combining the constituent elements of the embodiments are within the scope of the present invention without departing from the spirit of the present invention. included.
 本発明のモータ駆動装置は、平滑コンデンサを小容量化し、小型かつ安定して滑らかな駆動を可能にする。これにより、本発明のモータ駆動装置は、冷蔵庫や送風機のみならず、自動販売機やショーケース、ヒートポンプ給湯器における圧縮機に適用できる。その他、洗濯機や掃除機、ポンプなどブラシレスDCモータを用いる電気機器の小型化にも本発明のモータ駆動装置を適用できる。 The motor drive device of the present invention reduces the capacity of the smoothing capacitor, and enables a small, stable and smooth drive. Thereby, the motor drive device of the present invention can be applied not only to a refrigerator and a blower but also to a compressor in a vending machine, a showcase, and a heat pump water heater. In addition, the motor driving device of the present invention can be applied to miniaturization of electrical equipment using a brushless DC motor such as a washing machine, a vacuum cleaner, and a pump.
 1 交流電源
 2 整流平滑回路
 2a、2b、2c、2d 整流ダイオード
 2e 平滑コンデンサ
 2g 平滑部2g
 2f リアクタ
 3 インバータ
 3a、3b、3c、3d、3e、3f スイッチング素子
 3g、3h、3i、3j、3k、3l 還流電流用ダイオード
 4 ブラシレスDCモータ
 4a 回転子
 4b 固定子
 4c、4d、4e、4f マグネット(永久磁石)
 4g 鉄心
 5 位置検出部
 6 電圧検出部
 7 速度推定部
 8 切換部
 9 位置推定部
 10 スイッチングアーム決定部
 11 波形生成部
 12 ドライブ部
 17 圧縮機
 18 凝縮器
 19 減圧器
 20 蒸発器
 21 冷蔵庫(電気機器)
 22 モータ駆動装置
 30 制御部
DESCRIPTION OF SYMBOLS 1 AC power supply 2 Rectification smoothing circuit 2a, 2b, 2c, 2d Rectifier diode 2e Smoothing capacitor 2g Smoothing part 2g
2f Reactor 3 Inverter 3a, 3b, 3c, 3d, 3e, 3f Switching element 3g, 3h, 3i, 3j, 3k, 3l Reflux current diode 4 Brushless DC motor 4a Rotor 4b Stator 4c, 4d, 4e, 4f Magnet (permanent magnet)
4 g Iron core 5 Position detection unit 6 Voltage detection unit 7 Speed estimation unit 8 Switching unit 9 Position estimation unit 10 Switching arm determination unit 11 Waveform generation unit 12 Drive unit 17 Compressor 18 Condenser 19 Decompressor 20 Evaporator 21 Refrigerator (electric equipment) )
22 Motor drive device 30 Control unit

Claims (9)

  1.  交流電源に接続され、複数の巻線を有するブラシレスDCモータの通電相を切り替えることで前記ブラシレスDCモータを回転駆動するモータ駆動装置であって、
     前記交流電源から入力された交流電力を整流する整流回路と、
     前記交流電力の周波数の40倍より高い共振周波数となるよう値を決定したコンデンサとリアクタとで構成され、前記整流回路からの出力を平滑する平滑部と、
     スイッチング素子と還流電流用ダイオードとで構成される回路を一つのアームとしたときに、上アームおよび下アームが直列に接続されたレグを複数有し、前記平滑部より得られる直流電力を交流電力に変換して前記ブラシレスDCモータに供給するインバータと、
     前記インバータが前記ブラシレスDCモータに供給する電力の供給タイミングを指示する駆動信号を前記インバータに出力する制御部とを有し、
     前記駆動信号は、前記複数のアームのうちの一つのアームのスイッチング素子がパルス幅変調に基づくオンとオフとを繰り返すPWM出力をしている期間では、当該アームと上下が反対側の複数のアームのうちの一つのアームのスイッチング素子が常時オンとなるオン出力をするように、前記インバータを制御する信号であり、
     前記制御部は、前記ブラシレスDCモータの通電相を切り換えた際に、オン出力が終了したアームと反対側のアームのスイッチング素子がオン出力を開始するように、前記駆動信号を出力する
     モータ駆動装置。
    A motor drive device that is connected to an AC power source and that rotates the brushless DC motor by switching the energization phase of the brushless DC motor having a plurality of windings,
    A rectifier circuit for rectifying AC power input from the AC power source;
    A smoothing unit configured by a capacitor and a reactor whose values are determined to be a resonance frequency higher than 40 times the frequency of the AC power, and smoothing the output from the rectifier circuit;
    When a circuit composed of a switching element and a return current diode is used as one arm, the upper arm and the lower arm have a plurality of legs connected in series, and the DC power obtained from the smoothing unit is AC power. An inverter that converts the power into the brushless DC motor and
    A control unit that outputs to the inverter a drive signal that instructs the supply timing of power supplied to the brushless DC motor by the inverter;
    The drive signal includes a plurality of arms whose upper and lower sides are opposite to each other in a period in which a switching element of one of the plurality of arms outputs a PWM signal that repeatedly turns on and off based on pulse width modulation. Is a signal that controls the inverter so that the switching element of one of the arms is turned on at all times,
    The control unit outputs the drive signal so that when the energized phase of the brushless DC motor is switched, the switching element of the arm on the opposite side to the arm on which the on-output is finished starts the on-output. .
  2.  前記制御部はさらに、前記ブラシレスDCモータの通電相を切り換えた際に、前記平滑部から出力される電圧である母線電圧が所定電圧に上昇するまでに、前記オン出力が終了したアームと反対側のアームのスイッチング素子のオン出力を開始させる
     請求項1に記載のモータ駆動装置。
    The control unit further includes a side opposite to the arm on which the ON output has been completed before the bus voltage, which is a voltage output from the smoothing unit, rises to a predetermined voltage when the energized phase of the brushless DC motor is switched. The motor drive device according to claim 1, wherein the on-output of the switching element of the arm is started.
  3.  前記オン出力が終了したアームと反対側のアームのスイッチング素子がオン出力を継続する期間は、少なくとも前記オン出力が終了したアームに流れる電流が所定値以下になるまでである
     請求項1または2に記載のモータ駆動装置。
    The period during which the switching element of the arm on the opposite side to the arm on which the ON output has ended continues the ON output is at least until the current flowing through the arm on which the ON output has ended becomes equal to or less than a predetermined value. The motor drive device described.
  4.  前記オン出力が終了したアームと反対側のアームのスイッチング素子がオン出力を継続する期間は、前記ブラシレスDCモータの通電相が次に切り換わるまでである
     請求項1~3のいずれか1項に記載のモータ駆動装置。
    The period during which the switching element of the arm on the opposite side to the arm on which the ON output has been completed continues the ON output is until the energized phase of the brushless DC motor is next switched. The motor drive device described.
  5.  前記ブラシレスDCモータの回転子は、鉄心に永久磁石を埋め込んで構成され、さらに、突極性を有する
     請求項1~4のいずれか1項に記載のモータ駆動装置。
    The motor driving device according to any one of claims 1 to 4, wherein the rotor of the brushless DC motor is configured by embedding a permanent magnet in an iron core, and further has a saliency.
  6.  前記ブラシレスDCモータは圧縮機を駆動する
     請求項1~5のいずれか1項に記載のモータ駆動装置。
    The motor driving apparatus according to any one of claims 1 to 5, wherein the brushless DC motor drives a compressor.
  7.  前記圧縮機はレシプロ圧縮機である
     請求項6に記載のモータ駆動装置。
    The motor driving device according to claim 6, wherein the compressor is a reciprocating compressor.
  8.  前記圧縮機で使用される冷媒はR600aである
     請求項7に記載のモータ駆動装置。
    The motor drive device according to claim 7, wherein the refrigerant used in the compressor is R600a.
  9.  請求項1~5のいずれか1項に記載のモータ駆動装置と、
     前記モータ駆動装置により駆動されるブラシレスDCモータと
     を備えた電気機器。
    A motor driving device according to any one of claims 1 to 5;
    An electric device comprising: a brushless DC motor driven by the motor driving device.
PCT/JP2012/001050 2011-04-04 2012-02-17 Motor drive device and electric appliance using same WO2012137399A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112013024711A BR112013024711A2 (en) 2011-04-04 2012-02-17 motor starter and electrical apparatus using motor starter
CN201280016932.4A CN103460596B (en) 2011-04-04 2012-02-17 Motor drive and the electric equipment using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-082483 2011-04-04
JP2011082483A JP2012222842A (en) 2011-04-04 2011-04-04 Motor drive device and electric appliance using the same

Publications (1)

Publication Number Publication Date
WO2012137399A1 true WO2012137399A1 (en) 2012-10-11

Family

ID=46968818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001050 WO2012137399A1 (en) 2011-04-04 2012-02-17 Motor drive device and electric appliance using same

Country Status (4)

Country Link
JP (1) JP2012222842A (en)
CN (1) CN103460596B (en)
BR (1) BR112013024711A2 (en)
WO (1) WO2012137399A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105027419A (en) * 2013-03-15 2015-11-04 松下知识产权经营株式会社 Motor drive device and electric device using same
CN107749725A (en) * 2017-10-20 2018-03-02 哈尔滨工程大学 A kind of commutation bearing calibration of position-sensor-free DC brushless motor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6383940B2 (en) * 2014-03-06 2018-09-05 パナソニックIpマネジメント株式会社 Motor drive device
WO2016162939A1 (en) * 2015-04-07 2016-10-13 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー (ホンコン) リミテッド Air conditioner
WO2019244743A1 (en) * 2018-06-19 2019-12-26 パナソニックIpマネジメント株式会社 Motor drive device and refrigerator using same
CN109660183B (en) * 2018-12-24 2021-03-12 哈尔滨工业大学 Capacitor miniaturization motor driving device
JP6776432B2 (en) * 2019-11-06 2020-10-28 株式会社ミツバ Rotating electric machine control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001259281A (en) * 2000-03-17 2001-09-25 Matsushita Electric Ind Co Ltd Electric washing machine
JP2007519384A (en) * 2003-09-05 2007-07-12 松下電器産業株式会社 Permanent magnet synchronous motor driving apparatus and driving method for expanding weakening magnetic flux region
JP2011010432A (en) * 2009-06-25 2011-01-13 Panasonic Corp Motor drive device
JP2011010476A (en) * 2009-06-26 2011-01-13 Panasonic Corp Motor drive device and electric apparatus employing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737828B2 (en) * 2001-07-19 2004-05-18 Matsushita Electric Industrial Co., Ltd. Washing machine motor drive device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001259281A (en) * 2000-03-17 2001-09-25 Matsushita Electric Ind Co Ltd Electric washing machine
JP2007519384A (en) * 2003-09-05 2007-07-12 松下電器産業株式会社 Permanent magnet synchronous motor driving apparatus and driving method for expanding weakening magnetic flux region
JP2011010432A (en) * 2009-06-25 2011-01-13 Panasonic Corp Motor drive device
JP2011010476A (en) * 2009-06-26 2011-01-13 Panasonic Corp Motor drive device and electric apparatus employing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105027419A (en) * 2013-03-15 2015-11-04 松下知识产权经营株式会社 Motor drive device and electric device using same
CN107749725A (en) * 2017-10-20 2018-03-02 哈尔滨工程大学 A kind of commutation bearing calibration of position-sensor-free DC brushless motor
CN107749725B (en) * 2017-10-20 2020-04-07 哈尔滨工程大学 Commutation correction method of position-sensorless direct-current brushless motor

Also Published As

Publication number Publication date
JP2012222842A (en) 2012-11-12
BR112013024711A2 (en) 2016-12-20
CN103460596B (en) 2016-08-17
CN103460596A (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5195444B2 (en) Brushless DC motor driving apparatus, refrigerator and air conditioner using the same
KR100644810B1 (en) Electrically powered compressor
WO2012137399A1 (en) Motor drive device and electric appliance using same
JP6134905B2 (en) MOTOR DRIVE DEVICE AND ELECTRIC DEVICE USING THE SAME
WO2010082473A1 (en) Motor driving device and electric equipment using same
JP5375260B2 (en) Motor drive device and refrigerator using the same
JP4352883B2 (en) Driving method and driving apparatus for brushless DC motor
JP5402310B2 (en) Motor drive device, compressor and refrigerator
JP5428746B2 (en) Brushless DC motor driving apparatus and electric apparatus using the same
JP7308389B2 (en) Motor drive device and refrigerator using the same
JP5521405B2 (en) Motor drive device and electric apparatus using the same
JP5387396B2 (en) Motor drive device, compressor and refrigerator
JP2011193585A (en) Motor drive and electric equipment using the same
JP5604991B2 (en) MOTOR DRIVE DEVICE AND ELECTRIC DEVICE USING THE SAME
JP4289003B2 (en) Method and apparatus for driving brushless DC motor
JP5747145B2 (en) Motor drive device and electric apparatus using the same
JP6383940B2 (en) Motor drive device
JP2019092353A (en) Motor drive device and refrigerator using the same
JP5927412B2 (en) MOTOR DRIVE DEVICE AND ELECTRIC DEVICE USING THE SAME
JP2019083594A (en) Motor drive device, and refrigerator using the same
JP5927411B2 (en) MOTOR DRIVE DEVICE AND ELECTRIC DEVICE USING THE SAME
JP2012092694A (en) Driving device for compressor and refrigerator using the same
JP2013236532A (en) Switching control apparatus for two-phase switched reluctance motor, and method therefor
JP6970871B2 (en) Motor drive device and refrigerator using it
JP2004324552A (en) Electric compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12767764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301005590

Country of ref document: TH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013024711

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 12767764

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112013024711

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130926