WO2014139493A1 - Procédé de mesure mini-invasive de l'intensité d'un rayonnement - Google Patents

Procédé de mesure mini-invasive de l'intensité d'un rayonnement Download PDF

Info

Publication number
WO2014139493A1
WO2014139493A1 PCT/DE2014/000059 DE2014000059W WO2014139493A1 WO 2014139493 A1 WO2014139493 A1 WO 2014139493A1 DE 2014000059 W DE2014000059 W DE 2014000059W WO 2014139493 A1 WO2014139493 A1 WO 2014139493A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary beam
detector
radiation
target material
primary
Prior art date
Application number
PCT/DE2014/000059
Other languages
German (de)
English (en)
Inventor
Michael MONKENBUSCH
Olaf HOLDERER
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Publication of WO2014139493A1 publication Critical patent/WO2014139493A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation

Definitions

  • the invention relates to a method for measuring the intensity of a beam with little influence thereof.
  • Radiation sources in particular sources of particle beams or other non-optical radiation, may vary in intensity. However, when measurements are taken with the radiation, it is usually necessary to know the intensity used in order to obtain a correct result. Therefore, the intensity of the radiation is continuously monitored.
  • a part of the radiation can be coupled out of the beam path with a beam splitter and directed onto a detector.
  • beam splitters with division ratios of up to 99: 1 are available on the market. This can be monitored with only slight influence of the primary beam whose intensity.
  • monitoring the intensity with a beam splitter is impractical because too much intensity is lost.
  • neutron monitors are usually used in which a part of the passing neutrons ionized either directly by capture reactions a counting gas or nuclei, such as uranium nuclei, cleaves, so that the cleavage products in turn ionize the counting gas. The ionization is measured electrically.
  • such neutron monitors require too much space in the beam path; This space is regularly scarce on neutron radiation measuring structures.
  • the primary neutron beam is influenced by absorption, scattering and production of gamma quanta. Task and solution
  • a detector arranged outside the beam path of the primary beam the intensity of this secondary radiation is measured.
  • the spatial separation of target material and detector means that high accuracy and efficiency of the measurement on the one hand and little influence on the primary beam on the other hand are no contradictory objectives. Any material that is additionally introduced into the beam path of the primary beam, affects the primary beam and may affect its usability for the actual application.
  • the detector no longer needs to be arranged in this beam path, the influence of the primary beam is advantageously minimized.
  • the freedom in the placement of the detector is the greater, the more undirected the secondary radiation is emitted.
  • the target material is excited to emit an isotropic secondary radiation.
  • neutron monitors consisted of a target material that either ionized directly upon neutron bombardment or ionized a counting gas after a nuclear reaction, and an ionization electrical detector.
  • Target material and detector could not be separated here, so that a good efficiency inevitably went hand in hand with a larger size and thus a greater influence on the neutron beam.
  • the sensitivity of the measurement ie the measuring range, can advantageously also be adapted without intervention in the beam path of the primary beam.
  • only the detector for the secondary radiation must be made less sensitive, for example, by introducing an absorber for the secondary radiation between the target material and the detector.
  • Neutron monitors according to the prior art were essentially factory-set in their sensitivity, for example by the pressure of the counting gas, and could only be slightly adjusted by varying the detection thresholds for the signal evaluation or the supply high voltage.
  • the influence of the primary beam and thus the downstream devices (such as feelingssauf buildings) that use this primary beam can be advantageously further reduced by the target material for emitting a secondary radiation is excited with a different radiation than the radiation of the primary beam.
  • the target material for example aluminum, can be excited to emit gamma radiation. Since neutrons interact with matter differently than gamma quanta, a downstream device designed for the use of neutrons will as a rule only be much less sensitive to gamma quanta.
  • the gamma radiation in particular prompt gamma radiation, is emitted by the target material isotropically in all directions.
  • the intensity of the secondary radiation in the direction of the primary beam is negligible compared to the intensity of the primary beam.
  • a primary beam is selected, which is capable of causing ionization and / or nuclear reaction in the target material.
  • Ionization in this context means that the beam of atoms or molecules can remove one or more electrons, leaving a positive residue.
  • the primary beam may in particular be an x-ray beam, a gamma ray or a particle beam.
  • the higher the beam energy the more difficult it is both the generation of a high beam intensity and the production of beam splitters.
  • decoupling a portion of the primary beam with a beam splitter becomes an increasingly poorer alternative.
  • even higher-energy radiation can excite the target material well to secondary radiation of another type of radiation.
  • the ionization and / or nuclear reaction effected in the target material can excite the target material for the emission of the secondary radiation.
  • radiation which is of the same type of radiation as the secondary radiation but does not originate from the action of the primary beam on the target material is kept away from the detector by an energy filter.
  • sources of interference which emit gamma radiation and could falsify the measurement result.
  • the prompt gamma radiation produced by the neutron bombardment of aluminum has significantly greater energy than the gamma radiation from the sources of interference, the latter can be masked out by filtering and shielding the detector, for example with lead.
  • Lead is characterized by the fact that its cross-section for the absorption of gamma radiation decreases with increasing energy of the gamma quanta. It is therefore an energy filter in the sense that it reads through the high-energy prompt gamma radiation much better than the low-energy gamma radiation from the sources of interference.
  • the measurement is carried out without intervention in the beam path of the primary beam by selecting a material already located in this beam path for other reasons as the target material. Then, the measurement can be performed even if no additional installation space for an additional measuring instrument is free in the beam path of the primary beam.
  • the beam paths of experimental setups, which are operated with a neutron beam as a primary beam often extremely cramped, so that a
  • Neutron monitor according to the prior art can not be used.
  • In the beam path are often components that are excited by neutron bombardment to emit gamma radiation, such as aluminum windows.
  • gamma radiation emanating from these components are used as secondary radiation, nothing has to be changed in the beam path of the primary beam. He does not even have to be readjusted.
  • the beam path contains no aluminum windows, alternatively, a thin aluminum plate, for example, from a few 0.1 mm to a few mm thick, can be pushed as a target material in the beam path. Although this is an influence on the primary beam, it is minimal.
  • a background signal is measured with a second detector for the secondary radiation, which is spaced from the first detector and the beam path of the primary beam, and the measurement result of the first detector is corrected for this background signal.
  • a background of gamma Radiation present, which could falsify the measurement result.
  • a special design of the measuring device comprises a trolley on which the entire measuring structure (1-2 scintillation monitors with associated lead shielding against background gamma radiation and variable lead shielding as energy filter for the prompt gamma radiation with which the beam intensity is monitored) is accommodated.
  • the variable lead shield can consist of several 2 cm thick lead plates, which can be pushed individually in front of the entrance window of the scintillation detector. With a 10 cm shielding thickness, the measuring device weighs approx. 200-300 kg in total.
  • FIG. 1 shows an exemplary embodiment of the method according to the invention.
  • the neutron intensity flowing through the neutron guide 1 is to be monitored.
  • the neutron guide contains an aluminum window 2. This is excited by the neutron beam as a primary beam for the emission of secondary gamma radiation, which is emitted isotropically in all directions, thus also in the direction of the detector 3.
  • the gamma radiation can be directed in other directions through one in FIG not drawn additional shielding be absorbed so that it is not emitted uncontrolled in the laboratory.
  • the detector 3 includes a first sodium iodide (Nal) crystal 31 76 mm in diameter and 102 mm in height. This converts incoming gamma quanta into flashes of light, which in turn are converted by a photomultiplier into electrical signals.
  • the photomultiplier, its high voltage supply and the measuring amplifier for the signals of the photomultiplier are not shown for the sake of clarity.
  • the Nal scintillator 31 is surrounded by a lead shield. In the region 32 directly facing the aluminum window 2, the latter is 5 cm thick, so that it can essentially pass only high-energy, prompt gamma radiation which has been excited by the neutron bombardment of the aluminum. The beam path for the prompt gamma radiation between the
  • the detector 3 also includes a second Nal crystal 34 which is identical in construction to the first Nal crystal 31 and is separated therefrom by a lead wall 35 having a thickness of preferably 10 cm or more.
  • the crystals 31 and 34 are surrounded all around except for the region of the thin shield 32 and the collimator structure 33 with a thicker shield (conveniently 10 cm or more) 36, which serves as protection against interference. Through this shield, the signal lines are led by the crystals 31 and 34 to the counter 37.
  • Each event registered by the crystal 31 increments its count by one.
  • Each event registered by the crystal 34 reduces the count by one, since it can only result from gamma radiation from sources of interference.
  • This embodiment of the detector was tested on the J-NSE instrument at the research reactor FRM-II in Garching and reached a counting statistic without fluctuations in the beam path, which corresponded to that of a conventional neutron monitor with BF 3 as counting gas.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

L'invention concerne un procédé de mesure de l'intensité d'un rayonnement en influant de manière minime sur celui-ci. Pour cela, on excite à l'aide du rayonnement primaire un matériau cible situé dans la trajectoire du rayonnement primaire afin qu'il émette un rayonnement secondaire. Au moyen d'un détecteur disposé en dehors de la trajectoire du rayonnement primaire, on mesure l'intensité de ce rayonnement secondaire. On a constaté que la séparation dans l'espace du matériau cible et du détecteur permet d'une part d'effectuer les mesures avec une précision et une efficacité élevées et une influence minime sur le rayonnement primaire sans que d'autre part ces objectifs soient contradictoires. Chaque matériau introduit en plus dans la trajectoire du rayonnement primaire influe sur ce dernier et peut compromettre son aptitude à être utilisé dans l'application concernée. Du fait qu'il n'est plus nécessaire désormais de disposer le détecteur dans cette trajectoire, l'impact sur le rayonnement primaire est avantageusement minimisé. La liberté de placement du détecteur est d'autant plus grande que le rayonnement secondaire est émis de manière non directive. L'agencement du détecteur en dehors de la trajectoire du rayonnement primaire permet aussi, de manière avantageuse, d'adapter la sensibilité de la mesure, c'est-à-dire la plage de mesure, sans pénétrer dans la trajectoire du rayonnement primaire. Il suffit pour cela de rendre le détecteur plus insensible au rayonnement secondaire.
PCT/DE2014/000059 2013-03-15 2014-02-12 Procédé de mesure mini-invasive de l'intensité d'un rayonnement WO2014139493A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013004616.5 2013-03-15
DE102013004616.5A DE102013004616B4 (de) 2013-03-15 2013-03-15 Verfahren zur minimalinvasiven Messung einer Strahlintensität

Publications (1)

Publication Number Publication Date
WO2014139493A1 true WO2014139493A1 (fr) 2014-09-18

Family

ID=50396822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2014/000059 WO2014139493A1 (fr) 2013-03-15 2014-02-12 Procédé de mesure mini-invasive de l'intensité d'un rayonnement

Country Status (2)

Country Link
DE (1) DE102013004616B4 (fr)
WO (1) WO2014139493A1 (fr)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019016326A1 (fr) * 2017-07-21 2019-01-24 Varian Medical Systems Particle Therapy Gmbh Systèmes et procédés de surveillance de faisceaux de particules
US10609806B2 (en) 2017-07-21 2020-03-31 Varian Medical Systems Particle Therapy Gmbh Energy modulation of a cyclotron beam
US10843011B2 (en) 2017-07-21 2020-11-24 Varian Medical Systems, Inc. Particle beam gun control systems and methods
US10898730B2 (en) 2017-07-21 2021-01-26 Varian Medical Systems International Ag Triggered treatment systems and methods
US11090508B2 (en) 2019-03-08 2021-08-17 Varian Medical Systems Particle Therapy Gmbh & Co. Kg System and method for biological treatment planning and decision support
US11103727B2 (en) 2019-03-08 2021-08-31 Varian Medical Systems International Ag Model based PBS optimization for flash therapy treatment planning and oncology information system
US11116995B2 (en) 2019-03-06 2021-09-14 Varian Medical Systems, Inc. Radiation treatment planning based on dose rate
US11291859B2 (en) 2019-10-03 2022-04-05 Varian Medical Systems, Inc. Radiation treatment planning for delivering high dose rates to spots in a target
US11348755B2 (en) 2018-07-25 2022-05-31 Varian Medical Systems, Inc. Radiation anode target systems and methods
US11529532B2 (en) 2016-04-01 2022-12-20 Varian Medical Systems, Inc. Radiation therapy systems and methods
US11534625B2 (en) 2019-03-06 2022-12-27 Varian Medical Systems, Inc. Radiation treatment based on dose rate
US11541252B2 (en) 2020-06-23 2023-01-03 Varian Medical Systems, Inc. Defining dose rate for pencil beam scanning
US11554271B2 (en) 2019-06-10 2023-01-17 Varian Medical Systems, Inc Flash therapy treatment planning and oncology information system having dose rate prescription and dose rate mapping
US11590364B2 (en) 2017-07-21 2023-02-28 Varian Medical Systems International Ag Material inserts for radiation therapy
US11673003B2 (en) 2017-07-21 2023-06-13 Varian Medical Systems, Inc. Dose aspects of radiation therapy planning and treatment
US11712579B2 (en) 2017-07-21 2023-08-01 Varian Medical Systems, Inc. Range compensators for radiation therapy
US11766574B2 (en) 2017-07-21 2023-09-26 Varian Medical Systems, Inc. Geometric aspects of radiation therapy planning and treatment
US11857805B2 (en) 2017-11-16 2024-01-02 Varian Medical Systems, Inc. Increased beam output and dynamic field shaping for radiotherapy system
US11865361B2 (en) 2020-04-03 2024-01-09 Varian Medical Systems, Inc. System and method for scanning pattern optimization for flash therapy treatment planning
US11957934B2 (en) 2020-07-01 2024-04-16 Siemens Healthineers International Ag Methods and systems using modeling of crystalline materials for spot placement for radiation therapy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2343260A1 (fr) * 1976-03-02 1977-09-30 Ca Atomic Energy Ltd Appareil pour le controle de faisceaux d'electrons notamment d'accelerateurs d'electrons
WO2006005059A2 (fr) * 2004-06-30 2006-01-12 Lexitek, Inc. Moniteur de faisceau de protons haute resolution
EP2006349A1 (fr) * 2006-03-02 2008-12-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Element de detection de faisceau et detecteur de faisceau l'utilisant
FR2930995A1 (fr) * 2008-05-07 2009-11-13 Centre Nat Rech Scient Procede et dispositif de mesure en temps reel d'une dose locale lors du bombardement d'une cible par des hadrons au moyen des gamma prompts

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1139587B (de) 1960-04-15 1962-11-15 Atomic Energy Of Canada Ltd Einrichtung zur Messung des thermischen Neutronenflusses eines Kernreaktors
DE19900878C2 (de) 1999-01-12 2003-08-28 Forschungszentrum Juelich Gmbh Verfahren zur Analyse eines primären Neutronenstrahls einer Neutronenquelle sowwie Strahlmonitor zur Untersuchung eines in einer Neutronenquelle erzeugten primären Neutronenstrahls
DE102008050731A1 (de) 2008-10-08 2010-04-15 Bundesrepublik Deutschland, vertr.d.d. Bundesministerium für Wirtschaft und Technologie, d.vertr.d.d. Präsidenten der Physikalisch-Technischen Bundesanstalt Neutronendosimeter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2343260A1 (fr) * 1976-03-02 1977-09-30 Ca Atomic Energy Ltd Appareil pour le controle de faisceaux d'electrons notamment d'accelerateurs d'electrons
WO2006005059A2 (fr) * 2004-06-30 2006-01-12 Lexitek, Inc. Moniteur de faisceau de protons haute resolution
EP2006349A1 (fr) * 2006-03-02 2008-12-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Element de detection de faisceau et detecteur de faisceau l'utilisant
FR2930995A1 (fr) * 2008-05-07 2009-11-13 Centre Nat Rech Scient Procede et dispositif de mesure en temps reel d'une dose locale lors du bombardement d'une cible par des hadrons au moyen des gamma prompts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EMBER P P ET AL: "Coincidence measurement setup for PGAA and nuclear structure studies", APPLIED RADIATION AND ISOTOPES, ELSEVIER, OXFORD, GB, vol. 57, no. 4, 1 October 2002 (2002-10-01), pages 573 - 577, XP004376029, ISSN: 0969-8043, DOI: 10.1016/S0969-8043(02)00137-9 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11529532B2 (en) 2016-04-01 2022-12-20 Varian Medical Systems, Inc. Radiation therapy systems and methods
US11478664B2 (en) 2017-07-21 2022-10-25 Varian Medical Systems, Inc. Particle beam gun control systems and methods
US11673003B2 (en) 2017-07-21 2023-06-13 Varian Medical Systems, Inc. Dose aspects of radiation therapy planning and treatment
US10609806B2 (en) 2017-07-21 2020-03-31 Varian Medical Systems Particle Therapy Gmbh Energy modulation of a cyclotron beam
US10702716B2 (en) 2017-07-21 2020-07-07 Varian Medical Systems Particle Therapy Gmbh Particle beam monitoring systems and methods
WO2019016326A1 (fr) * 2017-07-21 2019-01-24 Varian Medical Systems Particle Therapy Gmbh Systèmes et procédés de surveillance de faisceaux de particules
US10898730B2 (en) 2017-07-21 2021-01-26 Varian Medical Systems International Ag Triggered treatment systems and methods
CN110709133A (zh) * 2017-07-21 2020-01-17 瓦里安医疗系统粒子疗法有限责任公司 粒子束监测系统和方法
US11986677B2 (en) 2017-07-21 2024-05-21 Siemens Healthineers International Ag Triggered treatment systems and methods
US10843011B2 (en) 2017-07-21 2020-11-24 Varian Medical Systems, Inc. Particle beam gun control systems and methods
US11766574B2 (en) 2017-07-21 2023-09-26 Varian Medical Systems, Inc. Geometric aspects of radiation therapy planning and treatment
US11712579B2 (en) 2017-07-21 2023-08-01 Varian Medical Systems, Inc. Range compensators for radiation therapy
US11590364B2 (en) 2017-07-21 2023-02-28 Varian Medical Systems International Ag Material inserts for radiation therapy
US10245448B2 (en) 2017-07-21 2019-04-02 Varian Medical Systems Particle Therapy Gmbh Particle beam monitoring systems and methods
US11857805B2 (en) 2017-11-16 2024-01-02 Varian Medical Systems, Inc. Increased beam output and dynamic field shaping for radiotherapy system
US11854761B2 (en) 2018-07-25 2023-12-26 Varian Medical Systems, Inc. Radiation anode target systems and methods
US11348755B2 (en) 2018-07-25 2022-05-31 Varian Medical Systems, Inc. Radiation anode target systems and methods
US11534625B2 (en) 2019-03-06 2022-12-27 Varian Medical Systems, Inc. Radiation treatment based on dose rate
US11116995B2 (en) 2019-03-06 2021-09-14 Varian Medical Systems, Inc. Radiation treatment planning based on dose rate
US11103727B2 (en) 2019-03-08 2021-08-31 Varian Medical Systems International Ag Model based PBS optimization for flash therapy treatment planning and oncology information system
US11090508B2 (en) 2019-03-08 2021-08-17 Varian Medical Systems Particle Therapy Gmbh & Co. Kg System and method for biological treatment planning and decision support
US11554271B2 (en) 2019-06-10 2023-01-17 Varian Medical Systems, Inc Flash therapy treatment planning and oncology information system having dose rate prescription and dose rate mapping
US11865364B2 (en) 2019-06-10 2024-01-09 Varian Medical Systems, Inc. Flash therapy treatment planning and oncology information system having dose rate prescription and dose rate mapping
US11291859B2 (en) 2019-10-03 2022-04-05 Varian Medical Systems, Inc. Radiation treatment planning for delivering high dose rates to spots in a target
US11986672B2 (en) 2019-10-03 2024-05-21 Siemens Healthineers International Ag Radiation treatment planning for delivering high dose rates to spots in a target
US12023519B2 (en) 2019-10-03 2024-07-02 Siemens Healthineers International Ag Radiation treatment planning for delivering high dose rates to spots in a target
US11865361B2 (en) 2020-04-03 2024-01-09 Varian Medical Systems, Inc. System and method for scanning pattern optimization for flash therapy treatment planning
US11541252B2 (en) 2020-06-23 2023-01-03 Varian Medical Systems, Inc. Defining dose rate for pencil beam scanning
US11957934B2 (en) 2020-07-01 2024-04-16 Siemens Healthineers International Ag Methods and systems using modeling of crystalline materials for spot placement for radiation therapy

Also Published As

Publication number Publication date
DE102013004616A1 (de) 2014-09-18
DE102013004616B4 (de) 2020-04-23

Similar Documents

Publication Publication Date Title
DE102013004616B4 (de) Verfahren zur minimalinvasiven Messung einer Strahlintensität
EP1889094B1 (fr) Procede destine a la dosimetrie photonique spectrometrique pour des rayons x et gamma
EP1569012B1 (fr) Procédé pour la détection de rayonnement ionisant
EP2331985A2 (fr) Dosimètre de neutrons
DE102012204350B4 (de) Verfahren zur Energie-Kalibrierung quantenzählender Röntgendetektoren in einem Dual-Source Computertomographen
CN104990946A (zh) K荧光x射线辐射装置
DE102011083729A1 (de) Verfahren und Vorrichtung zur Bestimmung des Verschleißes einer Röntgenanode
DE69009354T2 (de) Verfahren und Vorrichtung zur Gammaspektroskopie.
DE102011051365B4 (de) Detektionseinrichtung und System zum Messen der Dicke einer Zinkschicht auf Stahl und zum Messen des Eisengehaltes einer Zinkschicht
DE112012005517T5 (de) Verfahren und Vorrichtungen zum Messen der effektiven Kernladungszahl eines Objekts
DE19900878C2 (de) Verfahren zur Analyse eines primären Neutronenstrahls einer Neutronenquelle sowwie Strahlmonitor zur Untersuchung eines in einer Neutronenquelle erzeugten primären Neutronenstrahls
EP3509074A1 (fr) Procédé d'étalonnage d'un générateur haute tension d'un tube à rayons x dans un système de détecteur tubulaire
EP1903355A2 (fr) Procédé et système de mesure du nombre de neutrons hautement énergétiques
EP3561459B1 (fr) Dispositif et procédé de mesure du niveau de remplissage ou de la densité d'un milieu à l'aide de muons
EP1859300B1 (fr) Procede et systeme pour determiner la fluence de neutrons de grande energie
CN204789416U (zh) K荧光x射线辐射装置
CH416388A (de) Ionisations-Feuermelder
DE3516696A1 (de) Anordnung zur messung der wahrscheinlichsten energie gerichteter elektronenstrahlung
EP3662306B1 (fr) Détecteur de neutrons
DE10020582C2 (de) Verfahren zur Ermittlung der absoluten Intensität hochenergetischer Ionenstrahlung
DE102008054676B4 (de) Anordnung und Verwendung der Anordnung zur Erzeugung einzelner relativistischer Elektronen
EP3922961B1 (fr) Procédé d'étalonnage d'un dispositif permettant de mesurer une valeur de processus d'au moins une substance, procédé de mesure d'une valeur de processus d'au moins une substance au moyen d'un dispositif et système
Cormack et al. Measurement of continuous X-ray spectra with a scintillation spectrometer
EP3922962A1 (fr) Procédé d'étalonnage d'un dispositif permettant de mesurer une valeur de processus d'au moins une substance, procédé de mesure d'une valeur de processus d'au moins une substance au moyen d'un dispositif et système
DE3050716C2 (de) Verfahren zum Betrieb eines ortsempfindlichen Proportionalzählrohrs

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14714154

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14714154

Country of ref document: EP

Kind code of ref document: A1