WO2014139493A1 - Method for minimally invasive measurement of a beam intensity - Google Patents

Method for minimally invasive measurement of a beam intensity Download PDF

Info

Publication number
WO2014139493A1
WO2014139493A1 PCT/DE2014/000059 DE2014000059W WO2014139493A1 WO 2014139493 A1 WO2014139493 A1 WO 2014139493A1 DE 2014000059 W DE2014000059 W DE 2014000059W WO 2014139493 A1 WO2014139493 A1 WO 2014139493A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary beam
detector
radiation
target material
primary
Prior art date
Application number
PCT/DE2014/000059
Other languages
German (de)
French (fr)
Inventor
Michael MONKENBUSCH
Olaf HOLDERER
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Publication of WO2014139493A1 publication Critical patent/WO2014139493A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation

Definitions

  • the invention relates to a method for measuring the intensity of a beam with little influence thereof.
  • Radiation sources in particular sources of particle beams or other non-optical radiation, may vary in intensity. However, when measurements are taken with the radiation, it is usually necessary to know the intensity used in order to obtain a correct result. Therefore, the intensity of the radiation is continuously monitored.
  • a part of the radiation can be coupled out of the beam path with a beam splitter and directed onto a detector.
  • beam splitters with division ratios of up to 99: 1 are available on the market. This can be monitored with only slight influence of the primary beam whose intensity.
  • monitoring the intensity with a beam splitter is impractical because too much intensity is lost.
  • neutron monitors are usually used in which a part of the passing neutrons ionized either directly by capture reactions a counting gas or nuclei, such as uranium nuclei, cleaves, so that the cleavage products in turn ionize the counting gas. The ionization is measured electrically.
  • such neutron monitors require too much space in the beam path; This space is regularly scarce on neutron radiation measuring structures.
  • the primary neutron beam is influenced by absorption, scattering and production of gamma quanta. Task and solution
  • a detector arranged outside the beam path of the primary beam the intensity of this secondary radiation is measured.
  • the spatial separation of target material and detector means that high accuracy and efficiency of the measurement on the one hand and little influence on the primary beam on the other hand are no contradictory objectives. Any material that is additionally introduced into the beam path of the primary beam, affects the primary beam and may affect its usability for the actual application.
  • the detector no longer needs to be arranged in this beam path, the influence of the primary beam is advantageously minimized.
  • the freedom in the placement of the detector is the greater, the more undirected the secondary radiation is emitted.
  • the target material is excited to emit an isotropic secondary radiation.
  • neutron monitors consisted of a target material that either ionized directly upon neutron bombardment or ionized a counting gas after a nuclear reaction, and an ionization electrical detector.
  • Target material and detector could not be separated here, so that a good efficiency inevitably went hand in hand with a larger size and thus a greater influence on the neutron beam.
  • the sensitivity of the measurement ie the measuring range, can advantageously also be adapted without intervention in the beam path of the primary beam.
  • only the detector for the secondary radiation must be made less sensitive, for example, by introducing an absorber for the secondary radiation between the target material and the detector.
  • Neutron monitors according to the prior art were essentially factory-set in their sensitivity, for example by the pressure of the counting gas, and could only be slightly adjusted by varying the detection thresholds for the signal evaluation or the supply high voltage.
  • the influence of the primary beam and thus the downstream devices (such as feelingssauf buildings) that use this primary beam can be advantageously further reduced by the target material for emitting a secondary radiation is excited with a different radiation than the radiation of the primary beam.
  • the target material for example aluminum, can be excited to emit gamma radiation. Since neutrons interact with matter differently than gamma quanta, a downstream device designed for the use of neutrons will as a rule only be much less sensitive to gamma quanta.
  • the gamma radiation in particular prompt gamma radiation, is emitted by the target material isotropically in all directions.
  • the intensity of the secondary radiation in the direction of the primary beam is negligible compared to the intensity of the primary beam.
  • a primary beam is selected, which is capable of causing ionization and / or nuclear reaction in the target material.
  • Ionization in this context means that the beam of atoms or molecules can remove one or more electrons, leaving a positive residue.
  • the primary beam may in particular be an x-ray beam, a gamma ray or a particle beam.
  • the higher the beam energy the more difficult it is both the generation of a high beam intensity and the production of beam splitters.
  • decoupling a portion of the primary beam with a beam splitter becomes an increasingly poorer alternative.
  • even higher-energy radiation can excite the target material well to secondary radiation of another type of radiation.
  • the ionization and / or nuclear reaction effected in the target material can excite the target material for the emission of the secondary radiation.
  • radiation which is of the same type of radiation as the secondary radiation but does not originate from the action of the primary beam on the target material is kept away from the detector by an energy filter.
  • sources of interference which emit gamma radiation and could falsify the measurement result.
  • the prompt gamma radiation produced by the neutron bombardment of aluminum has significantly greater energy than the gamma radiation from the sources of interference, the latter can be masked out by filtering and shielding the detector, for example with lead.
  • Lead is characterized by the fact that its cross-section for the absorption of gamma radiation decreases with increasing energy of the gamma quanta. It is therefore an energy filter in the sense that it reads through the high-energy prompt gamma radiation much better than the low-energy gamma radiation from the sources of interference.
  • the measurement is carried out without intervention in the beam path of the primary beam by selecting a material already located in this beam path for other reasons as the target material. Then, the measurement can be performed even if no additional installation space for an additional measuring instrument is free in the beam path of the primary beam.
  • the beam paths of experimental setups, which are operated with a neutron beam as a primary beam often extremely cramped, so that a
  • Neutron monitor according to the prior art can not be used.
  • In the beam path are often components that are excited by neutron bombardment to emit gamma radiation, such as aluminum windows.
  • gamma radiation emanating from these components are used as secondary radiation, nothing has to be changed in the beam path of the primary beam. He does not even have to be readjusted.
  • the beam path contains no aluminum windows, alternatively, a thin aluminum plate, for example, from a few 0.1 mm to a few mm thick, can be pushed as a target material in the beam path. Although this is an influence on the primary beam, it is minimal.
  • a background signal is measured with a second detector for the secondary radiation, which is spaced from the first detector and the beam path of the primary beam, and the measurement result of the first detector is corrected for this background signal.
  • a background of gamma Radiation present, which could falsify the measurement result.
  • a special design of the measuring device comprises a trolley on which the entire measuring structure (1-2 scintillation monitors with associated lead shielding against background gamma radiation and variable lead shielding as energy filter for the prompt gamma radiation with which the beam intensity is monitored) is accommodated.
  • the variable lead shield can consist of several 2 cm thick lead plates, which can be pushed individually in front of the entrance window of the scintillation detector. With a 10 cm shielding thickness, the measuring device weighs approx. 200-300 kg in total.
  • FIG. 1 shows an exemplary embodiment of the method according to the invention.
  • the neutron intensity flowing through the neutron guide 1 is to be monitored.
  • the neutron guide contains an aluminum window 2. This is excited by the neutron beam as a primary beam for the emission of secondary gamma radiation, which is emitted isotropically in all directions, thus also in the direction of the detector 3.
  • the gamma radiation can be directed in other directions through one in FIG not drawn additional shielding be absorbed so that it is not emitted uncontrolled in the laboratory.
  • the detector 3 includes a first sodium iodide (Nal) crystal 31 76 mm in diameter and 102 mm in height. This converts incoming gamma quanta into flashes of light, which in turn are converted by a photomultiplier into electrical signals.
  • the photomultiplier, its high voltage supply and the measuring amplifier for the signals of the photomultiplier are not shown for the sake of clarity.
  • the Nal scintillator 31 is surrounded by a lead shield. In the region 32 directly facing the aluminum window 2, the latter is 5 cm thick, so that it can essentially pass only high-energy, prompt gamma radiation which has been excited by the neutron bombardment of the aluminum. The beam path for the prompt gamma radiation between the
  • the detector 3 also includes a second Nal crystal 34 which is identical in construction to the first Nal crystal 31 and is separated therefrom by a lead wall 35 having a thickness of preferably 10 cm or more.
  • the crystals 31 and 34 are surrounded all around except for the region of the thin shield 32 and the collimator structure 33 with a thicker shield (conveniently 10 cm or more) 36, which serves as protection against interference. Through this shield, the signal lines are led by the crystals 31 and 34 to the counter 37.
  • Each event registered by the crystal 31 increments its count by one.
  • Each event registered by the crystal 34 reduces the count by one, since it can only result from gamma radiation from sources of interference.
  • This embodiment of the detector was tested on the J-NSE instrument at the research reactor FRM-II in Garching and reached a counting statistic without fluctuations in the beam path, which corresponded to that of a conventional neutron monitor with BF 3 as counting gas.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

The invention relates to a method for measuring the intensity of a beam with little influencing thereof. In this case, a target material situated in the beam path of the primary beam is exerted by the primary beam to emit secondary radiation. The intensity of said secondary radiation is measured by a detector arranged outside the beam path of the primary beam. It has been recognized that, as a result of the spatial separation of target material and detector, firstly a high accuracy and efficiency of the measurement and secondly little influencing of the primary beam are no longer conflicting aims. Any material that is additionally introduced into the beam path of the primary beam influences the primary beam and possibly impairs the usability thereof for the actual application. By virtue of the fact that the detector now no longer need to be arranged in said beam path, the influencing of the primary beam is advantageously minimized. The freedom in the positioning of the detector is all the greater, the less directionally the secondary radiation is emitted. As a result of the arrangement of the detector outside the beam path of the primary beam, it is advantageously also possible to adapt the sensitivity of the measurement, that is to say the measurement range, without intervention in the beam path of the primary beam. For this purpose, it is merely necessary to make the detector less sensitive to the secondary radiation.

Description

B e s c h r e i b u n g Verfahren zur minimalinvasiven Messung einer Strahlintensität  S e c tio n A method for the minimally invasive measurement of a beam intensity
Die Erfindung betrifft ein Verfahren zur Messung der Intensität eines Strahls unter geringer Beeinflussung desselben. The invention relates to a method for measuring the intensity of a beam with little influence thereof.
Stand der Technik State of the art
Strahlungsquellen, insbesondere Quellen für Teilchenstrahlen oder andere nicht-optische Strahlen, können in ihrer Intensität schwanken. Wenn mit der Strahlung Messungen durchgeführt werden, muss jedoch in der Regel die verwendete Intensität genau bekannt sein, um ein korrektes Ergebnis zu erzielen. Daher wird die Intensität der Strahlung kontinuierlich überwacht. Radiation sources, in particular sources of particle beams or other non-optical radiation, may vary in intensity. However, when measurements are taken with the radiation, it is usually necessary to know the intensity used in order to obtain a correct result. Therefore, the intensity of the radiation is continuously monitored.
Hierzu kann beispielsweise mit einem Strahlteiler ein Teil der Strahlung aus dem Strahlen- gang ausgekoppelt und auf einen Detektor geleitet werden. Für optische Strahlung sind derartige Strahlteiler mit Teilungsverhältnissen bis zu 99:1 am Markt verfügbar. Damit lässt sich unter nur geringfügiger Beeinflussung des Primärstrahls dessen Intensität überwachen. Für Neutronenstrahlung ist die Überwachung der Intensität mit einem Strahlteiler nicht praktikabel, da viel zu viel Intensität verlorengeht. Für die Überwachung der Intensität eines Neutronenstrahls werden daher üblicherweise Neutronenmonitore verwendet, in denen ein Teil der durchlaufenden Neutronen entweder direkt durch Einfangreaktionen ein Zählgas ionisiert oder Kerne, etwa Urankerne, spaltet, so dass die Spaltprodukte wiederum das Zählgas ionisieren. Die Ionisation wird elektrisch gemessen. Nachteilig beanspruchen derartige Neutronenmonitore zuviel Platz im Strahlengang; dieser Platz ist an Messaufbauten für Neutronenstrahlung regelmäßig knapp. Zudem wird der primäre Neutronenstrahl durch Absorption, Streuung und Produktion von Gammaquanten beeinflusst. Aufgabe und Lösung For this purpose, for example, a part of the radiation can be coupled out of the beam path with a beam splitter and directed onto a detector. For optical radiation, such beam splitters with division ratios of up to 99: 1 are available on the market. This can be monitored with only slight influence of the primary beam whose intensity. For neutron radiation, monitoring the intensity with a beam splitter is impractical because too much intensity is lost. For the monitoring of the intensity of a neutron beam therefore neutron monitors are usually used in which a part of the passing neutrons ionized either directly by capture reactions a counting gas or nuclei, such as uranium nuclei, cleaves, so that the cleavage products in turn ionize the counting gas. The ionization is measured electrically. Disadvantageously, such neutron monitors require too much space in the beam path; This space is regularly scarce on neutron radiation measuring structures. In addition, the primary neutron beam is influenced by absorption, scattering and production of gamma quanta. Task and solution
Es ist daher die Aufgabe der Erfindung, ein Verfahren zur Verfügung zu stellen, mit dem die Intensität des Primärstrahls unter geringerer Beeinflussung des Primärstrahls und mit geringerem Platzverbrauch im Strahlengang des Primärstrahls gemessen werden kann als nach dem bisherigen Stand der Technik. It is therefore an object of the invention to provide a method with which the intensity of the primary beam can be measured with less influence of the primary beam and with less space in the beam path of the primary beam than in the prior art.
Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren gemäß Hauptanspruch. Weitere vorteilhafte Ausgestaltungen ergeben sich aus den darauf rückbezogenen Unteransprüchen. This object is achieved by a method according to the main claim. Further advantageous embodiments will be apparent from the dependent claims.
Gegenstand der Erfindung Im Rahmen der Erfindung wurde ein Verfahren zur Messung der Intensität eines Primärstrahls abseits der Strahlrichtung dieses Primärstrahls entwickelt. Dabei wird ein im In the context of the invention, a method for measuring the intensity of a primary beam apart from the beam direction of this primary beam has been developed. This is an im
Strahlengang des Primärstrahls befindliches Targetmaterial durch den Primärstrahl zur Emission einer Sekundärstrahlung angeregt. Mit einem außerhalb des Strahlengangs des Primärstrahls angeordneten Detektor wird die Intensität dieser Sekundärstrahlung gemes- sen. Beam path of the primary beam located target material excited by the primary beam to emit secondary radiation. With a detector arranged outside the beam path of the primary beam, the intensity of this secondary radiation is measured.
Es wurde erkannt, dass durch die räumliche Trennung von Targetmaterial und Detektor eine hohe Genauigkeit und Effizienz der Messung einerseits und eine geringe Beeinflussung des Primärstrahls andererseits keine gegenläufigen Ziele mehr sind. Jedes Material, das zusätzlich in den Strahlengang des Primärstrahls eingebracht wird, beeinflusst den Primärstrahl und beeinträchtigt möglicherweise seine Verwendbarkeit für die eigentliche Anwendung. Indem nun der Detektor nicht mehr in diesem Strahlengang angeordnet sein muss, ist die Beeinflussung des Primärstrahls vorteilhaft minimiert. Die Freiheit bei der Platzierung des Detektors ist umso größer, je ungerichteter die Sekundärstrahlung emittiert wird. Vorteilhaft wird daher das Targetmaterial zur Emission einer isotropen Sekundärstrahlung angeregt. Nach dem bisherigen Stand der Technik bestanden beispielsweise Neutronenmonitore aus einem Targetmaterial, das bei Neutronenbeschuss entweder direkt ionisiert wurde oder nach einer Kernreaktion ein Zählgas ionisierte, und einem elektrischen Detektor für die Ionisation. Targetmaterial und Detektor ließen sich hier nicht trennen, so dass eine gute Effizienz zwangsläufig mit einer größeren Baugröße und damit einer größeren Beeinflussung des Neutronenstrahls einherging. Durch die Anordnung des Detektors außerhalb des Strahlengangs des Primärstrahls kann vorteilhaft auch die Sensitivität der Messung, also der Messbereich, ohne Eingriff in den Strahlengang des Primärstrahls angepasst werden. Dazu muss lediglich der Detektor für die Sekundärstrahlung unempfindlicher gemacht werden, beispielsweise indem zwischen das Targetmaterial und den Detektor ein Absorber für die Sekundärstrahlung eingebracht wird. Neutronenmonitore nach dem bisherigen Stand der Technik waren in ihrer Empfindlichkeit, beispielsweise durch den Druck des Zählgases, im Wesentlichen werksseitig festgelegt und konnten nur noch geringfügig angepasst werden, indem die Detektionsschwellen für die Signalauswertung oder die Versorgungshochspannung variiert wurden. Die Beeinflussung des Primärstrahls und damit der nachgeschalteten Einrichtungen (etwa Versuchsauf bauten), die diesen Primärstrahl nutzen, kann vorteilhaft weiter verringert werden, indem das Targetmaterial zur Emission einer Sekundärstrahlung mit einer anderen Strahlungsart als die Strahlungsart des Primärstrahls angeregt wird. Wird etwa ein Neutronenstrahl als Primärstrahl gewählt, kann das Targetmaterial, beispielsweise Aluminium, zur Emission von Gammastrahlung angeregt werden. Indem Neutronen mit Materie anders wechselwirken als Gammaquanten, wird eine nachgeschaltete Einrichtung, die auf die Nutzung von Neutronen ausgelegt ist, in aller Regel nur sehr viel schwächer auf Gammaquanten sensitiv sein. Zudem wird die Gammastrahlung, insbesondere prompte Gammastrahlung, vom Targetmaterial isotrop in alle Richtungen emittiert. Damit ist die Intensität der Sekundär- Strahlung in Richtung des Primärstrahls verschwindend gering gegenüber der Intensität des Primärstrahls. It has been recognized that the spatial separation of target material and detector means that high accuracy and efficiency of the measurement on the one hand and little influence on the primary beam on the other hand are no contradictory objectives. Any material that is additionally introduced into the beam path of the primary beam, affects the primary beam and may affect its usability for the actual application. By now the detector no longer needs to be arranged in this beam path, the influence of the primary beam is advantageously minimized. The freedom in the placement of the detector is the greater, the more undirected the secondary radiation is emitted. Advantageously, therefore, the target material is excited to emit an isotropic secondary radiation. For example, in the prior art, neutron monitors consisted of a target material that either ionized directly upon neutron bombardment or ionized a counting gas after a nuclear reaction, and an ionization electrical detector. Target material and detector could not be separated here, so that a good efficiency inevitably went hand in hand with a larger size and thus a greater influence on the neutron beam. Due to the arrangement of the detector outside the beam path of the primary beam, the sensitivity of the measurement, ie the measuring range, can advantageously also be adapted without intervention in the beam path of the primary beam. For this purpose, only the detector for the secondary radiation must be made less sensitive, for example, by introducing an absorber for the secondary radiation between the target material and the detector. Neutron monitors according to the prior art were essentially factory-set in their sensitivity, for example by the pressure of the counting gas, and could only be slightly adjusted by varying the detection thresholds for the signal evaluation or the supply high voltage. The influence of the primary beam and thus the downstream devices (such as Versuchsauf buildings) that use this primary beam can be advantageously further reduced by the target material for emitting a secondary radiation is excited with a different radiation than the radiation of the primary beam. If, for example, a neutron beam is selected as the primary beam, the target material, for example aluminum, can be excited to emit gamma radiation. Since neutrons interact with matter differently than gamma quanta, a downstream device designed for the use of neutrons will as a rule only be much less sensitive to gamma quanta. In addition, the gamma radiation, in particular prompt gamma radiation, is emitted by the target material isotropically in all directions. Thus, the intensity of the secondary radiation in the direction of the primary beam is negligible compared to the intensity of the primary beam.
In einer besonders vorteilhaften Ausgestaltung der Erfindung wird ein Primärstrahl gewählt, der im Targetmaterial eine Ionisation und/oder eine Kernreaktion zu bewirken vermag. Ionisation bedeutet in diesem Zusammenhang, dass der Strahl aus Atomen oder Molekülen ein oder mehrere Elektronen entfernen kann, so dass ein positiver Rest zurückbleibt. Der Primärstrahl kann insbesondere ein Röntgenstrahl, ein Gammastrahl oder ein Teilchenstrahl sein. Je höher die Strahlenergie, desto schwieriger sind sowohl die Erzeugung einer hohen Strahlintensität als auch die Fertigung von Strahlteilern. Somit wird mit zunehmender Strahlenergie das Auskoppeln eines Teils des Primärstrahls mit einem Strahlteiler zu einer immer schlechteren Alternative. Gleichzeitig kann gerade höherenergetische Strahlung das Targetmaterial gut zu einer Sekundärstrahlung einer anderen Strahlungsart anregen. Insbesondere kann gerade die im Targetmaterial bewirkte Ionisation und/oder Kernreaktion das Targetmaterial zur Emission der Sekundärstrahlung anregen. In einer besonders vorteilhaften Ausgestaltung der Erfindung wird Strahlung, die von der gleichen Strahlungsart ist wie die Sekundärstrahlung, aber nicht von der Einwirkung des Primärstrahls auf das Targetmaterial herrührt, durch ein Energiefilter vom Detektor ferngehalten. Insbesondere an einem mit Neutronenstrahlung betriebenen Versuchsaufbau gibt es viele Störquellen, die Gammastrahlung emittieren und das Messergebnis verfälschen könnten. Indem jedoch etwa die prompte Gammastrahlung, die beim Neutronenbeschuss von Aluminium entsteht, eine deutlich größere Energie aufweist als die Gammastrahlung aus den Störquellen, kann Letztere durch eine Filterung und Abschirmung des Detektors, etwa mit Blei, ausgeblendet werden. Blei zeichnet sich dadurch aus, dass sein Wirkungsquerschnitt für die Absorption von Gammastrahlung mit zunehmender Energie der Gammaquanten abnimmt. Es ist daher ein Energiefilter in dem Sinne, dass es die hochenergetische prompte Gammastrahlung deutlich besser durchläset als die niederenergetische Gammastrahlung aus den Störquellen. In a particularly advantageous embodiment of the invention, a primary beam is selected, which is capable of causing ionization and / or nuclear reaction in the target material. Ionization in this context means that the beam of atoms or molecules can remove one or more electrons, leaving a positive residue. The primary beam may in particular be an x-ray beam, a gamma ray or a particle beam. The higher the beam energy, the more difficult it is both the generation of a high beam intensity and the production of beam splitters. Thus, with increasing beam energy, decoupling a portion of the primary beam with a beam splitter becomes an increasingly poorer alternative. At the same time, even higher-energy radiation can excite the target material well to secondary radiation of another type of radiation. In particular, just the ionization and / or nuclear reaction effected in the target material can excite the target material for the emission of the secondary radiation. In a particularly advantageous embodiment of the invention, radiation which is of the same type of radiation as the secondary radiation but does not originate from the action of the primary beam on the target material is kept away from the detector by an energy filter. Especially on a test setup operated with neutron radiation, there are many sources of interference which emit gamma radiation and could falsify the measurement result. However, if, for example, the prompt gamma radiation produced by the neutron bombardment of aluminum has significantly greater energy than the gamma radiation from the sources of interference, the latter can be masked out by filtering and shielding the detector, for example with lead. Lead is characterized by the fact that its cross-section for the absorption of gamma radiation decreases with increasing energy of the gamma quanta. It is therefore an energy filter in the sense that it reads through the high-energy prompt gamma radiation much better than the low-energy gamma radiation from the sources of interference.
In einer weiteren besonders vorteilhaften Ausgestaltung der Erfindung wird die Messung ohne Eingriff in den Strahlengang des Primärstrahls durchgeführt, indem ein bereits aus anderen Gründen in diesem Strahlengang befindliches Material als Targetmaterial gewählt wird. Dann kann die Messung auch dann durchgeführt werden, wenn im Strahlengang des Primärstrahls überhaupt kein zusätzlicher Einbauraum für ein zusätzliches Messinstrument mehr frei ist. Beispielsweise sind die Strahlengänge von Versuchsaufbauten, die mit einem Neutronenstrahl als Primärstrahl betrieben werden, häufig extrem beengt, so dass einIn a further particularly advantageous embodiment of the invention, the measurement is carried out without intervention in the beam path of the primary beam by selecting a material already located in this beam path for other reasons as the target material. Then, the measurement can be performed even if no additional installation space for an additional measuring instrument is free in the beam path of the primary beam. For example, the beam paths of experimental setups, which are operated with a neutron beam as a primary beam, often extremely cramped, so that a
Neutronenmonitor nach dem bisherigen Stand der Technik nicht verwendet werden kann. Im Strahlengang befinden sich jedoch häufig Komponenten, die unter Neutronenbeschuss zur Emission von Gammastrahlung angeregt werden, beispielsweise Aluminiumfenster. Indem die von diesen Komponenten ausgehende Gammastrahlung als Sekundärstrahlung verwen- det wird, muss am Strahlengang des Primärstrahls nichts geändert werden. Er muss nicht einmal neu justiert werden. Neutron monitor according to the prior art can not be used. In the beam path, however, are often components that are excited by neutron bombardment to emit gamma radiation, such as aluminum windows. By using the gamma radiation emanating from these components as secondary radiation, nothing has to be changed in the beam path of the primary beam. He does not even have to be readjusted.
Falls der Strahlengang keine Aluminiumfenster enthält, kann alternativ eine dünne Aluminium-Platte, beispielsweise von einigen 0,1 mm bis zu einigen mm Dicke, als Targetmaterial in den Strahlengang geschoben werden. Das ist dann zwar eine Beeinflussung des Primär- Strahls, aber diese ist minimal. If the beam path contains no aluminum windows, alternatively, a thin aluminum plate, for example, from a few 0.1 mm to a few mm thick, can be pushed as a target material in the beam path. Although this is an influence on the primary beam, it is minimal.
Vorteilhaft wird mit einem zweiten Detektor für die Sekundärstrahlung, der von dem ersten Detektor und vom Strahlengang des Primärstrahls beabstandet ist, ein Untergrundsignal gemessen und das Messergebnis des ersten Detektors um dieses Untergrundsignal korrigiert. Insbesondere in Messhallen für Neutronenexperimente ist ein Untergrund an Gamma- Strahlung vorhanden, der das Messergebnis verfälschen könnte. Indem dieser Untergrund herauskorrigiert wird, beispielsweise indem das Signal des zweiten Detektors vom Signal des ersten Detektors abgezogen wird, wird die Genauigkeit verbessert. Advantageously, a background signal is measured with a second detector for the secondary radiation, which is spaced from the first detector and the beam path of the primary beam, and the measurement result of the first detector is corrected for this background signal. In particular, in measuring halls for neutron experiments, a background of gamma Radiation present, which could falsify the measurement result. By correcting this background, for example by subtracting the signal of the second detector from the signal of the first detector, the accuracy is improved.
Eine spezielle Ausführung der Messvorrichtung umfasst einen Rollwagen, auf dem der ge- samte Messaufbau (1-2 Szintillationsmonitore mit zugehöriger Bleiabschirmung gegen Untergrund-Gammastrahlung sowie variabler Bleiabschirmung als Energiefilter für die prompte Gammastrahlung, mit der die Strahlintensität überwacht wird) untergebracht ist. Die variable Bleiabschirmung kann aus mehreren 2 cm dicken Bleiplatten bestehen, die einzeln vor das Eintrittsfenster des Szintillationsdetektors geschoben werden können. Bei 10 cm Abschir- mungsdicke wiegt die Messvorrichtung insgesamt ca. 200-300 kg. A special design of the measuring device comprises a trolley on which the entire measuring structure (1-2 scintillation monitors with associated lead shielding against background gamma radiation and variable lead shielding as energy filter for the prompt gamma radiation with which the beam intensity is monitored) is accommodated. The variable lead shield can consist of several 2 cm thick lead plates, which can be pushed individually in front of the entrance window of the scintillation detector. With a 10 cm shielding thickness, the measuring device weighs approx. 200-300 kg in total.
Spezieller Beschreibungsteil Special description part
Nachfolgend wird der Gegenstand der Erfindung an Hand einer Figur erläutert, ohne dass der Gegenstand der Erfindung hierdurch beschränkt wird. Es ist gezeigt: Hereinafter, the object of the invention will be explained with reference to a figure, without the subject matter of the invention being limited thereby. It is shown:
Figur 1 : Ausführungsbeispiel des erfindungsgemäßen Verfahrens. Figur 1 zeigt ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens. Die durch den Neutronenleiter 1 fließende Neutronenintensität ist zu überwachen. Der Neutronenleiter enthält ein Aluminiumfenster 2. Dieses wird durch den Neutronenstrahl als Primärstrahl zur Emission sekundärer Gammastrahlung angeregt, die isotrop in alle Richtungen emittiert wird, so auch in Richtung des Detektors 3. Optional kann die Gammastrahlung in andere Richtun- gen durch eine in Figur 1 nicht eingezeichnete zusätzliche Abschirmung absorbiert werden, damit sie nicht unkontrolliert ins Labor emittiert wird. Figure 1: embodiment of the method according to the invention. FIG. 1 shows an exemplary embodiment of the method according to the invention. The neutron intensity flowing through the neutron guide 1 is to be monitored. The neutron guide contains an aluminum window 2. This is excited by the neutron beam as a primary beam for the emission of secondary gamma radiation, which is emitted isotropically in all directions, thus also in the direction of the detector 3. Optionally, the gamma radiation can be directed in other directions through one in FIG not drawn additional shielding be absorbed so that it is not emitted uncontrolled in the laboratory.
Der Detektor 3 enthält einen ersten Natrium-Iodid (Nal)-Kristall 31 mit 76 mm Durchmesser und 102 mm Höhe. Dieser wandelt eintreffende Gammaquanten in Lichtblitze um, die wiederum von einem Photomultiplier in elektrische Signale umgewandelt werden. Der Photomulti- plier, dessen Hochspannungsversorgung und der Messverstärker für die Signale des Photomultipliers sind der Übersichtlichkeit halber nicht eingezeichnet. Der Nal-Szintillator 31 ist von einer Bleiabschirmung umgeben. Im dem Aluminiumfenster 2 unmittelbar zugewandten Bereich 32 ist diese 5 cm dick, so dass sie im Wesentlichen nur hochenergetische prompte Gammastrahlung, die durch den Neutronenbeschuss des Aluminiums angeregt wurde, pas- sieren lässt. Dabei ist der Strahlengang für die prompte Gammastrahlung zwischen demThe detector 3 includes a first sodium iodide (Nal) crystal 31 76 mm in diameter and 102 mm in height. This converts incoming gamma quanta into flashes of light, which in turn are converted by a photomultiplier into electrical signals. The photomultiplier, its high voltage supply and the measuring amplifier for the signals of the photomultiplier are not shown for the sake of clarity. The Nal scintillator 31 is surrounded by a lead shield. In the region 32 directly facing the aluminum window 2, the latter is 5 cm thick, so that it can essentially pass only high-energy, prompt gamma radiation which has been excited by the neutron bombardment of the aluminum. The beam path for the prompt gamma radiation between the
Aluminiumfenster 2 und dem Bereich 32 durch eine Kollimatorstruktur 33 aus Blei mit einer Dicke von günstigerweise 10 cm oder mehr eingefasst, damit keine Gammastrahlung aus Störquellen durch den vergleichsweise dünn abgeschirmten Bereich 32 zum Nal-Detektor 31 gelangt. Aluminum window 2 and the area 32 bordered by a lead collimator structure 33 having a thickness of favorably 10 cm or more, so that no gamma radiation from Sources of interference passes through the comparatively thinly shielded region 32 to the Nal detector 31.
Der Detektor 3 enthält noch einen zweiten Nal-Kristall 34, der mit dem ersten Nal-Kristall 31 baugleich ist und von diesem durch eine Bleiwand 35 mit einer Dicke von günstigerweise 10 cm oder mehr getrennt ist. Die Kristalle 31 und 34 sind ringsum bis auf den Bereich der dünnen Abschirmung 32 und der Kollimatorstruktur 33 mit einer dickeren Abschirmung (günstigerweise 10 cm oder mehr) 36 umgeben, die als Schutz gegen Störstrahlung dient. Durch diese Abschirmung hindurch sind die Signalleitungen von den Kristallen 31 und 34 zum Zähler 37 geführt. Jedes vom Kristall 31 registrierte Ereignis erhöht dessen Zählerstand um 1. Jedes vom Kristall 34 registrierte Ereignis vermindert dagegen den Zählerstand um 1 , da es nur von Gammastrahlung aus Störquellen herrühren kann. The detector 3 also includes a second Nal crystal 34 which is identical in construction to the first Nal crystal 31 and is separated therefrom by a lead wall 35 having a thickness of preferably 10 cm or more. The crystals 31 and 34 are surrounded all around except for the region of the thin shield 32 and the collimator structure 33 with a thicker shield (conveniently 10 cm or more) 36, which serves as protection against interference. Through this shield, the signal lines are led by the crystals 31 and 34 to the counter 37. Each event registered by the crystal 31 increments its count by one. Each event registered by the crystal 34, on the other hand, reduces the count by one, since it can only result from gamma radiation from sources of interference.
Diese Ausführungsform des Detektors wurde am J-NSE-Instrument am Forschungsreaktor FRM-II in Garching getestet und erreichte ohne Eingriff in den Strahlengang eine Zählstatistik einschließlich Schwankungen, die der eines konventionellen Neutronenmonitors mit BF3 als Zählgas entsprach. This embodiment of the detector was tested on the J-NSE instrument at the research reactor FRM-II in Garching and reached a counting statistic without fluctuations in the beam path, which corresponded to that of a conventional neutron monitor with BF 3 as counting gas.

Claims

P a t e n t a n s p r ü c h e Patent claims
1. Verfahren zur Messung der Intensität eines Primärstrahls abseits der Strahlrichtung dieses Primärstrahls, dadurch gekennzeichnet, dass ein im Strahlengang des Primärstrahls befindliches Targetmaterial durch den Primärstrahl zur Emission einer Sekundärstrahlung angeregt wird und die Intensität dieser Sekundärstrahlung mit einem außerhalb des Strahlengangs des Primärstrahls angeordneten Detektor gemessen wird. 1. A method of measuring the intensity of a primary beam away from the beam direction of this primary beam, characterized in that a target material located in the beam path of the primary beam is excited by the primary beam to emit a secondary radiation and the intensity of this secondary radiation is measured with a detector arranged outside the beam path of the primary beam becomes.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Targetmaterial zur Emission prompter Gammastrahlung angeregt wird. 2. The method according to claim 1, characterized in that the target material for the emission of prompt gamma radiation is excited.
3. Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass ein Primärstrahl gewählt wird, der im Targetmaterial eine Ionisation und/oder eine Kernreaktion zu bewirken vermag. 3. The method according to any one of claims 1 to 2, characterized in that a primary beam is selected, which is capable of causing an ionization and / or a nuclear reaction in the target material.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das 4. The method according to any one of claims 1 to 3, characterized in that the
Targetmaterial zur Emission einer isotropen Sekundärstrahlung angeregt wird.  Target material for the emission of an isotropic secondary radiation is excited.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein Neutronenstrahl als Primärstrahl gewählt wird. 5. The method according to any one of claims 1 to 4, characterized in that a neutron beam is selected as the primary beam.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass Aluminium als Targetmaterial gewählt wird. 6. The method according to claim 5, characterized in that aluminum is selected as the target material.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass Strahlung, die von der gleichen Strahlungsart ist wie die Sekundärstrahlung, aber nicht von der Einwirkung des Primärstrahls auf das Targetmaterial herrührt, durch ein Energiefilter vom Detektor ferngehalten wird. 7. The method according to any one of claims 1 to 6, characterized in that radiation which is of the same kind of radiation as the secondary radiation, but does not originate from the action of the primary beam on the target material is kept away from the detector by an energy filter.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Messung ohne Eingriff in den Strahlengang des Primärstrahls durchgeführt wird, indem ein bereits aus anderen Gründen in diesem Strahlengang befindliches Material als Targetmaterial gewählt wird. 8. The method according to any one of claims 1 to 7, characterized in that the measurement is carried out without intervention in the beam path of the primary beam by selecting a material already located in this beam path for other reasons as the target material.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass mit einem zweiten Detektor für die Sekundärstrahlung, der von dem ersten Detektor und vom Strahlengang des Primärstrahls beabstandet ist, ein Untergrundsignal gemessen und das Messergebnis des ersten Detektors um dieses Untergrundsignal korrigiert wird. 9. The method according to any one of claims 1 to 8, characterized in that with a second detector for the secondary radiation from the first detector and from Beam path of the primary beam is spaced, a background signal is measured and the measurement result of the first detector is corrected by this background signal.
PCT/DE2014/000059 2013-03-15 2014-02-12 Method for minimally invasive measurement of a beam intensity WO2014139493A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013004616.5 2013-03-15
DE102013004616.5A DE102013004616B4 (en) 2013-03-15 2013-03-15 Method for minimally invasive measurement of a beam intensity

Publications (1)

Publication Number Publication Date
WO2014139493A1 true WO2014139493A1 (en) 2014-09-18

Family

ID=50396822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2014/000059 WO2014139493A1 (en) 2013-03-15 2014-02-12 Method for minimally invasive measurement of a beam intensity

Country Status (2)

Country Link
DE (1) DE102013004616B4 (en)
WO (1) WO2014139493A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019016326A1 (en) * 2017-07-21 2019-01-24 Varian Medical Systems Particle Therapy Gmbh Particle beam monitoring systems and methods
US10609806B2 (en) 2017-07-21 2020-03-31 Varian Medical Systems Particle Therapy Gmbh Energy modulation of a cyclotron beam
US10843011B2 (en) 2017-07-21 2020-11-24 Varian Medical Systems, Inc. Particle beam gun control systems and methods
US10898730B2 (en) 2017-07-21 2021-01-26 Varian Medical Systems International Ag Triggered treatment systems and methods
US11090508B2 (en) 2019-03-08 2021-08-17 Varian Medical Systems Particle Therapy Gmbh & Co. Kg System and method for biological treatment planning and decision support
US11103727B2 (en) 2019-03-08 2021-08-31 Varian Medical Systems International Ag Model based PBS optimization for flash therapy treatment planning and oncology information system
US11116995B2 (en) 2019-03-06 2021-09-14 Varian Medical Systems, Inc. Radiation treatment planning based on dose rate
US11291859B2 (en) 2019-10-03 2022-04-05 Varian Medical Systems, Inc. Radiation treatment planning for delivering high dose rates to spots in a target
US11348755B2 (en) 2018-07-25 2022-05-31 Varian Medical Systems, Inc. Radiation anode target systems and methods
US11529532B2 (en) 2016-04-01 2022-12-20 Varian Medical Systems, Inc. Radiation therapy systems and methods
US11534625B2 (en) 2019-03-06 2022-12-27 Varian Medical Systems, Inc. Radiation treatment based on dose rate
US11541252B2 (en) 2020-06-23 2023-01-03 Varian Medical Systems, Inc. Defining dose rate for pencil beam scanning
US11554271B2 (en) 2019-06-10 2023-01-17 Varian Medical Systems, Inc Flash therapy treatment planning and oncology information system having dose rate prescription and dose rate mapping
US11590364B2 (en) 2017-07-21 2023-02-28 Varian Medical Systems International Ag Material inserts for radiation therapy
US11673003B2 (en) 2017-07-21 2023-06-13 Varian Medical Systems, Inc. Dose aspects of radiation therapy planning and treatment
US11712579B2 (en) 2017-07-21 2023-08-01 Varian Medical Systems, Inc. Range compensators for radiation therapy
US11766574B2 (en) 2017-07-21 2023-09-26 Varian Medical Systems, Inc. Geometric aspects of radiation therapy planning and treatment
US11857805B2 (en) 2017-11-16 2024-01-02 Varian Medical Systems, Inc. Increased beam output and dynamic field shaping for radiotherapy system
US11865361B2 (en) 2020-04-03 2024-01-09 Varian Medical Systems, Inc. System and method for scanning pattern optimization for flash therapy treatment planning
US11957934B2 (en) 2020-07-01 2024-04-16 Siemens Healthineers International Ag Methods and systems using modeling of crystalline materials for spot placement for radiation therapy
US12023519B2 (en) 2022-02-25 2024-07-02 Siemens Healthineers International Ag Radiation treatment planning for delivering high dose rates to spots in a target

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2343260A1 (en) * 1976-03-02 1977-09-30 Ca Atomic Energy Ltd APPARATUS FOR THE CONTROL OF ELECTRON BEAMS, ESPECIALLY ELECTRON ACCELERATORS
WO2006005059A2 (en) * 2004-06-30 2006-01-12 Lexitek, Inc. High resolution proton beam monitor
EP2006349A1 (en) * 2006-03-02 2008-12-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Beam detecting member and beam detector using it
FR2930995A1 (en) * 2008-05-07 2009-11-13 Centre Nat Rech Scient METHOD AND DEVICE FOR REAL-TIME MEASUREMENT OF LOCAL DOSE DURING TARGET BOMBING WITH HADRONS USING GAMMA PROMPTS

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1139587B (en) 1960-04-15 1962-11-15 Atomic Energy Of Canada Ltd Device for measuring the thermal neutron flux of a nuclear reactor
DE19900878C2 (en) 1999-01-12 2003-08-28 Forschungszentrum Juelich Gmbh Method for analyzing a primary neutron beam from a neutron source and beam monitor for examining a primary neutron beam generated in a neutron source
DE102008050731A1 (en) * 2008-10-08 2010-04-15 Bundesrepublik Deutschland, vertr.d.d. Bundesministerium für Wirtschaft und Technologie, d.vertr.d.d. Präsidenten der Physikalisch-Technischen Bundesanstalt neutron dosimeter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2343260A1 (en) * 1976-03-02 1977-09-30 Ca Atomic Energy Ltd APPARATUS FOR THE CONTROL OF ELECTRON BEAMS, ESPECIALLY ELECTRON ACCELERATORS
WO2006005059A2 (en) * 2004-06-30 2006-01-12 Lexitek, Inc. High resolution proton beam monitor
EP2006349A1 (en) * 2006-03-02 2008-12-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Beam detecting member and beam detector using it
FR2930995A1 (en) * 2008-05-07 2009-11-13 Centre Nat Rech Scient METHOD AND DEVICE FOR REAL-TIME MEASUREMENT OF LOCAL DOSE DURING TARGET BOMBING WITH HADRONS USING GAMMA PROMPTS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EMBER P P ET AL: "Coincidence measurement setup for PGAA and nuclear structure studies", APPLIED RADIATION AND ISOTOPES, ELSEVIER, OXFORD, GB, vol. 57, no. 4, 1 October 2002 (2002-10-01), pages 573 - 577, XP004376029, ISSN: 0969-8043, DOI: 10.1016/S0969-8043(02)00137-9 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11529532B2 (en) 2016-04-01 2022-12-20 Varian Medical Systems, Inc. Radiation therapy systems and methods
US11478664B2 (en) 2017-07-21 2022-10-25 Varian Medical Systems, Inc. Particle beam gun control systems and methods
US11673003B2 (en) 2017-07-21 2023-06-13 Varian Medical Systems, Inc. Dose aspects of radiation therapy planning and treatment
US10609806B2 (en) 2017-07-21 2020-03-31 Varian Medical Systems Particle Therapy Gmbh Energy modulation of a cyclotron beam
US10702716B2 (en) 2017-07-21 2020-07-07 Varian Medical Systems Particle Therapy Gmbh Particle beam monitoring systems and methods
WO2019016326A1 (en) * 2017-07-21 2019-01-24 Varian Medical Systems Particle Therapy Gmbh Particle beam monitoring systems and methods
US10898730B2 (en) 2017-07-21 2021-01-26 Varian Medical Systems International Ag Triggered treatment systems and methods
CN110709133A (en) * 2017-07-21 2020-01-17 瓦里安医疗系统粒子疗法有限责任公司 Particle beam monitoring system and method
US11986677B2 (en) 2017-07-21 2024-05-21 Siemens Healthineers International Ag Triggered treatment systems and methods
US10843011B2 (en) 2017-07-21 2020-11-24 Varian Medical Systems, Inc. Particle beam gun control systems and methods
US11766574B2 (en) 2017-07-21 2023-09-26 Varian Medical Systems, Inc. Geometric aspects of radiation therapy planning and treatment
US11712579B2 (en) 2017-07-21 2023-08-01 Varian Medical Systems, Inc. Range compensators for radiation therapy
US11590364B2 (en) 2017-07-21 2023-02-28 Varian Medical Systems International Ag Material inserts for radiation therapy
US10245448B2 (en) 2017-07-21 2019-04-02 Varian Medical Systems Particle Therapy Gmbh Particle beam monitoring systems and methods
US11857805B2 (en) 2017-11-16 2024-01-02 Varian Medical Systems, Inc. Increased beam output and dynamic field shaping for radiotherapy system
US11854761B2 (en) 2018-07-25 2023-12-26 Varian Medical Systems, Inc. Radiation anode target systems and methods
US11348755B2 (en) 2018-07-25 2022-05-31 Varian Medical Systems, Inc. Radiation anode target systems and methods
US11534625B2 (en) 2019-03-06 2022-12-27 Varian Medical Systems, Inc. Radiation treatment based on dose rate
US11116995B2 (en) 2019-03-06 2021-09-14 Varian Medical Systems, Inc. Radiation treatment planning based on dose rate
US11103727B2 (en) 2019-03-08 2021-08-31 Varian Medical Systems International Ag Model based PBS optimization for flash therapy treatment planning and oncology information system
US11090508B2 (en) 2019-03-08 2021-08-17 Varian Medical Systems Particle Therapy Gmbh & Co. Kg System and method for biological treatment planning and decision support
US11554271B2 (en) 2019-06-10 2023-01-17 Varian Medical Systems, Inc Flash therapy treatment planning and oncology information system having dose rate prescription and dose rate mapping
US11865364B2 (en) 2019-06-10 2024-01-09 Varian Medical Systems, Inc. Flash therapy treatment planning and oncology information system having dose rate prescription and dose rate mapping
US11291859B2 (en) 2019-10-03 2022-04-05 Varian Medical Systems, Inc. Radiation treatment planning for delivering high dose rates to spots in a target
US11986672B2 (en) 2019-10-03 2024-05-21 Siemens Healthineers International Ag Radiation treatment planning for delivering high dose rates to spots in a target
US11865361B2 (en) 2020-04-03 2024-01-09 Varian Medical Systems, Inc. System and method for scanning pattern optimization for flash therapy treatment planning
US11541252B2 (en) 2020-06-23 2023-01-03 Varian Medical Systems, Inc. Defining dose rate for pencil beam scanning
US11957934B2 (en) 2020-07-01 2024-04-16 Siemens Healthineers International Ag Methods and systems using modeling of crystalline materials for spot placement for radiation therapy
US12023519B2 (en) 2022-02-25 2024-07-02 Siemens Healthineers International Ag Radiation treatment planning for delivering high dose rates to spots in a target

Also Published As

Publication number Publication date
DE102013004616B4 (en) 2020-04-23
DE102013004616A1 (en) 2014-09-18

Similar Documents

Publication Publication Date Title
DE102013004616B4 (en) Method for minimally invasive measurement of a beam intensity
EP1889094B1 (en) Method for the spectrometric photon dosimetry for x-ray and gamma radiation
EP1569012B1 (en) Method for the detection of ionizing radiation
DE102012204350B4 (en) Method for energy calibration of quantum-counting X-ray detectors in a dual-source computer tomograph
DE102011083729A1 (en) Method and device for determining the wear of an X-ray anode
DE69009354T2 (en) Method and device for gamma spectroscopy.
CN104990946A (en) K-fluorescent X-ray radiation appliance
DE102011051365B4 (en) Detection device and system for measuring the thickness of a zinc layer on steel and measuring the iron content of a zinc layer
DE102016009643A1 (en) Improvement of the dynamic range for the isotope ratio mass spectrometry
DE112012005517T5 (en) Methods and apparatus for measuring the effective atomic number of an object
DE19900878C2 (en) Method for analyzing a primary neutron beam from a neutron source and beam monitor for examining a primary neutron beam generated in a neutron source
EP3509074A1 (en) Method for calibrating a high voltage generator of an x-ray tube in a tube detector system
EP1903355B1 (en) Method and system for measuring the number of high energy neutrons
EP3561459B1 (en) Device and method for measuring a medium fill level or density by the help of muons
EP1859300B1 (en) Method and system for determining the flow of high-energy neutrons
CN204789416U (en) K fluorescent x -rays radiation appliance
CH416388A (en) Ionization fire alarm
DE3516696A1 (en) Arrangement for measuring the most probable energy of directional electron radiation
EP3662306B1 (en) Neutron detector
DE10020582C2 (en) Procedure for determining the absolute intensity of high-energy ion radiation
DE102008054676B4 (en) Arrangement and use of the arrangement for generating individual relativistic electrons
EP3922962A1 (en) Method for calibrating a device for measuring a process value of at least one substance, method for measuring a process value of at least one substance by means of a device and system
EP3922961A1 (en) Method for calibrating a device for measuring a process value of at least one substance, method for measuring a process value of at least one substance by means of a device and system
DE3050716C2 (en) Method for operating a position-sensitive proportional counter tube
DE102011122930B3 (en) Device for determining thickness of zinc layer on iron layer of test object and iron content in zinc layer on iron layer of test object, has X-ray source for determining X-ray radiation on test object with zinc layer on iron layer

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14714154

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14714154

Country of ref document: EP

Kind code of ref document: A1