WO2014139476A1 - Rsv融合蛋白的表位以及识别其的抗体 - Google Patents

Rsv融合蛋白的表位以及识别其的抗体 Download PDF

Info

Publication number
WO2014139476A1
WO2014139476A1 PCT/CN2014/073505 CN2014073505W WO2014139476A1 WO 2014139476 A1 WO2014139476 A1 WO 2014139476A1 CN 2014073505 W CN2014073505 W CN 2014073505W WO 2014139476 A1 WO2014139476 A1 WO 2014139476A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
antibody
monoclonal antibody
respiratory syncytial
syncytial virus
Prior art date
Application number
PCT/CN2014/073505
Other languages
English (en)
French (fr)
Other versions
WO2014139476A8 (zh
Inventor
郑子峥
贾森·S·麦克莱伦
陈曼
赵敏
黄粱敏
巴尼·S·格雷厄姆
夏宁邵
Original Assignee
厦门大学
(由卫生与公共服务部部长代表的)美利坚合众国
厦门万泰沧海生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学, (由卫生与公共服务部部长代表的)美利坚合众国, 厦门万泰沧海生物技术有限公司 filed Critical 厦门大学
Priority to JP2015561931A priority Critical patent/JP6462599B2/ja
Priority to US14/777,275 priority patent/US9856313B2/en
Priority to AU2014231357A priority patent/AU2014231357B2/en
Priority to CN201480013927.7A priority patent/CN105722856B/zh
Priority to EP14765573.2A priority patent/EP2975052B1/en
Priority to CA2906960A priority patent/CA2906960C/en
Publication of WO2014139476A1 publication Critical patent/WO2014139476A1/zh
Publication of WO2014139476A8 publication Critical patent/WO2014139476A8/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1027Paramyxoviridae, e.g. respiratory syncytial virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7084Compounds having two nucleosides or nucleotides, e.g. nicotinamide-adenine dinucleotide, flavine-adenine dinucleotide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/155Paramyxoviridae, e.g. parainfluenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/51Complete heavy chain or Fd fragment, i.e. VH + CH1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/54F(ab')2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/626Diabody or triabody
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/35Fusion polypeptide containing a fusion for enhanced stability/folding during expression, e.g. fusions with chaperones or thioredoxin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18511Pneumovirus, e.g. human respiratory syncytial virus
    • C12N2760/18522New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18511Pneumovirus, e.g. human respiratory syncytial virus
    • C12N2760/18534Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the present invention relates to the field of molecular virology, in particular respiratory syncytial virus
  • the present invention relates to epitope peptides (or variants thereof) useful for preventing respiratory syncytial virus infection, recombinant proteins comprising such epitope peptides (or variants thereof) and carrier proteins, and such epitopes Use of peptides (or variants thereof) and recombinant proteins.
  • the invention also relates to antibodies against such epitope peptides, nucleic acid molecules encoding the antibodies, cell forests producing the antibodies, and uses thereof.
  • the invention further relates to vaccines or pharmaceutical compositions useful for preventing one or more symptoms associated with respiratory syncytial virus infection, each comprising a recombinant protein or antibody of the invention. Background technique
  • RSV Respiratory syncytial virus
  • the hospitalization time for children infected with RSV can reach 2.5 months, and the related medical expenses incurred in the United States can be as high as 3.6-5.7 billion US dollars per year (EA Simoes. Lancet, 354 (1999) 847 -852) ⁇ elderly are also susceptible to RSV.
  • the number of elderly deaths caused by RSV infection is more than 12,000 per year, which is about 1/3 of the influenza mortality rate in the same population (AR Fal sey, PA Hennessey, et al. N Engl J Med, 352 (2005) 1749-1759; WW Thompson, DK Shay, E. Weintraub, et al.
  • RSV still has no safe and effective vaccine.
  • Only one neutralizing antibody (Pal ivizumab, trade name: Synagi s) that recognizes RSV epitope fusion glycoprotein F can produce passive immune effect in newborns and reduce neonatal morbidity.
  • the antibody drug is approved for use in high-risk young children with premature infants, chronic lung disease, bronchial and pulmonary dysplasia, and congenital heart disease (HW Kim, JG Canchola, CD Brandt, et al. Am J Epidemiol, 89 (1969) 422-434) to prevent severe lower respiratory tract infections caused by RSV.
  • the antibody drug itself has insufficient neutralization titer and the production cost is too high, resulting in high price after listing, and its use is limited to the narrow range of "high infection risk", and cannot be widely used.
  • Syang indicates that a neutralizing monoclonal antibody that binds to RS V-F protein can be used for clinical protection, and an effective neutralizing active site exists on the F protein.
  • the F protein is located on the surface of the virus and is essential for the formation of viral cells and syncytia. Therefore, the F protein is an important target protein for screening for prophylactic and protective antibodies.
  • RSV is a single-stranded, non-segmented RNA virus of the genus Paramyxoviridae, which has 15222 nucleotides and encodes 10 major proteins.
  • the F protein has a full length of 574 acid-type N-glycosylated type I transmembrane glycoproteins, and the major transmembrane protein is an important surface molecule in the process of RSV infection.
  • the mechanism and triggering process of F protein membrane fusion are still completely unclear. It is hypothesized that conformational changes occur after binding of pre-fus ion F (pre-F) to target cells in a high-energy, metastable state.
  • pre-F pre-fus ion F
  • the highly stable post-fus ion F leads to the fusion of the viral membrane with the cell membrane.
  • the difference in the free energy of the metastable pre-F conformation and the stable post-F conformation results in a process in which the membrane fusion is irreversible.
  • McLel Lan et al. J. S. McLel lan, M. Chen, J. S. Chang, et al. J Virol, 84 (2010) 12236-12244.
  • McLel Lan et al. (JS McLel lan, M. Chen, JS Chang, et al. J Virol, 84 (2010) 12236-12244.) used the structure of the known structure of HPIV3 pre-F protein for the structure of the RSV pre-F protein. Simulations and predictions were made, suggesting that the RSV F protein may have a pre-F conformation and proposed the above fusion mechanism hypothesis. For the exact structure of the pre-F conformation, and the allosteric process during the fusion process, a stable pre-F conformational protein is to be obtained and further confirmed.
  • the anti-antibody body against the epitope of the II table has the pre-preventive preventive property of the single-anti-SSyynnaaggiiss, which has been marketed on the market, and its equivalent effects.
  • Derived organism mmoottaavviizz face bb the main main knowledge to identify FF11 sub-base aa.. aa.. 225555-- aa.. aa.. 227755. .
  • MMccLLeell llaann, etc. ((JJ.. SS.. MMccLLeell llaann,, MM.. CChheenn,, JJ.. SS..
  • the crystal structure of the crystal structure shows that the mmoottaavviizzuummaabb mono-anti-resistance combination is combined with the one-to-one structure of the "spiral spiral-rotation angle--spiral spiral" structure, and
  • the hydrogen-hydrogen bond and the ion-ion bond are used to act on the 226688-position AAssnn and the 227722-position LLyyss, and the mutations at these two points are induced to induce anti-antibodies.
  • the body escaped. .
  • junction structure of the anti-regenic epitope epitope AA of the mmoottavviizzuummaabb junction is not very very complete, and the anti-antibody complex is retained in the structure of the porosstt-ffuuss iioonn. Combined with the point of contact, the spot exposure is fully charged. . Mmoottaavviizzuummaabb with and! ! ))
  • the structure of the ooss tt--FF egg protein white reveals that the SSyynnaaggiiss and mmoottaavviizzuummaabb single anti-resistances have a medium neutralizing and active activity. .
  • the anti-antibody body that recognizes the epitope of IIII is 113311-- 22aa, which recognizes the semi-cysteines rich enrichment region of FF11. . These anti-antibody bodies block most of the 5500%% of the RRSSVV disease virus infection,
  • the multi-phase phase, or the anti-antibody effect of these anti-antibody bodies should be neutralized and effective as a result of the accumulation of virus fruit.
  • these antibodies partially block viral adsorption of target cells. It is likely that this epitope is close to the viral cell membrane in the conformation of the pre-F protein, but is at the apex in the conformation of the post-F protein.
  • the recognition region is a. a. 422- a. a. 438, which is the target of monoclonal antibody such as 19 and 101F.
  • This epitope is located in the relatively conserved region of F1.
  • McLel lan et al. J. S. McLel lan, Y. Yang, et al. J Virol, 85 (2011) 7788-7796
  • the core epitope of this region is a. a. 427- a. a. 437, known escape mutations
  • the hydrogen and ionic bonds of Arg429 and Lys433 interact with 101F.
  • the affinity of 101F to the free peptide is several thousand times lower than that of post-F.
  • 101F shows that the 101F epitope is more complex than the linear peptide in the structure of post-F.
  • RSV fusion protein or “F protein” refers to a respiratory syncytial virus (RSV) fusion protein (F protein), which is well known to those skilled in the art (see For example, NCBI GENBANK database accession number: P03420). As used herein, when referring to a column of F protein, its use
  • amino acid residue at positions 196 to 209 of the F protein refers to the acid residue at positions 196 to 209 of the polypeptide represented by SEQ ID NO: 15.
  • mutations or mutations including but not limited to, substitutions, deletions and/or additions, such as F proteins of different genotypes or subtypes
  • F protein shall include all such sequences, including, for example, the sequences set forth in SEQ ID NO: 15 and natural or artificial variants thereof.
  • sequence fragment of the F protein when describing a sequence fragment of the F protein, it includes not only the sequence fragment of SEQ ID NO: 15, but also the corresponding sequence fragment in its natural or artificial variant.
  • the expression “acid residues 196-209 of the F protein” includes the amino acid residues 196-209 of SEQ ID NO: 15, and the corresponding fragments thereof (natural or artificial).
  • the expression “corresponding sequence fragment” or “corresponding fragment” means that when the sequences are optimally aligned, that is, when the sequences are aligned to obtain the highest percentage identity, the sequences to be compared are in the equivalent position. Fragment of.
  • pre-F protein refers to an F protein that exists in a pre-F conformation.
  • post-F protein refers to an F protein that is constructed in a post-F format.
  • antibody refers to, usually consist of, two pairs of polypeptide chains.
  • Each pair has an immunoglobulin molecule consisting of a "light” (L) chain and a "heavy” (H) chain.
  • Antibody light chains can be classified as kappa and lambda light chains.
  • Heavy chains can be classified as ⁇ , ⁇ , ⁇ , ⁇ , or ⁇ , and the isotypes of antibodies are defined as IgM, IgD, IgG, IgA, and IgE, respectively.
  • the variable and constant regions are joined by a "J" region of about 12 or more amino acids, and the heavy chain also contains a "D" region of about 3 or more amino acids.
  • Each heavy chain is comprised of a heavy chain variable region (V H) and a heavy chain constant region (C H) composition.
  • the heavy chain constant region is comprised of three domains (C H 1, C H 2 and C H 3) components.
  • Each light chain consists of a light chain variable region (VL) and a light chain constant region (CJ.
  • the light chain constant region consists of a domain CL.
  • the constant region of the antibody mediates immunoglobulin and host tissues or factors, including immunity Binding of various cells of the system (eg, effector cells) to the first component of the classical complement system (C 1 q).
  • the V H and VL regions can also be subdivided into regions with high denaturation (called complementarity determining regions) (CDR)), interspersed with a more conserved region called the framework region (FR).
  • CDR complementarity determining regions
  • Each VH and VL is in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4 from amino terminus to carboxyl group
  • the three CDRs arranged at the end and the four FRs.
  • the variable regions of each heavy/light chain pair form the antibody binding site, respectively.
  • the assignment of amino acids to each region or domain follows Kabat Sequences of Proteins of Immunological Interes t (Nat ional Ins ti tutes of Health, Bethesda, Md. (1987 and 1991) ) , or Chothia & Lesk (1987) J. Mol. Biol. 196: 901-917; Chothia et al. (1989) Nature 342 : Definition of 878-883.
  • antibody is not subject to any specific production resistance Method limitations, for example, include, in particular, recombinant antibodies, monoclonal antibodies, and polyclonal antibodies.
  • Antibodies can be antibodies of different isotypes, for example, IgG (eg, IgG1, IgG2, IgG3, or IgG4 subtypes), IgAl, IgA2, IgD, IgE or IgM antibodies.
  • an antigen-binding fragment of an antibody refers to a polypeptide comprising a fragment of a full-length antibody that retains the specific binding phase of the full-length antibody.
  • the ability to bind to an antigen, and/or compete with a full-length antibody for specific binding to an antigen which is also referred to as an "antigen-binding portion.” See, generally, Fundamental Immunology, Ch. 7 (Paul, W., ed., 2nd ed., Raven Press, NY (1989), which is incorporated by reference in its entirety for all purposes.
  • an antigen-binding fragment of an antibody is produced by enzymatic or chemical cleavage of an intact antibody.
  • the antigen-binding fragment includes Fab, Fab', F(ab') 2 , Fd, Fv, dAb and complementarity determining regions (CDRs).
  • the term “Fd fragment” means an antibody fragment consisting of V H and C H 1 domains; the term “Fv fragment” means a single arm of an antibody fragment consisting of the VL and VH domains of an antibody,
  • the term “dAb fragment” means an antibody fragment consisting of a VH domain (Ward et al., ature 341: 544-546 (1989));
  • the term “Fab fragment” means by VH , ⁇ and CH1 Antibody fragment consisting of a domain;
  • the term “F(ab') 2 fragment” means an antibody fragment comprising two Fab fragments joined by a disulfide bond on the hinge region.
  • the antigen-binding fragment is a single chain antibody (e.g., the scFv), in which the VL and V H domains by a linker makes it possible to produce a single polypeptide chain pair to form monovalent molecules (see, e.g., Bird et Human, Science 242: 423-426 (1988) and Huston et al, Pro Nat l. Acad. Sci. USA 85: 5879-5883 (1988)).
  • scFv molecules can have the general structure: H 2 -V - linker - VH-C00H or NH 2 - VH-linker - Vi ⁇ C00H.
  • Suitable prior art linkers consist of a repeating GGGGS amino acid sequence or variants thereof.
  • a linker having the amino acid sequence (GGGGS) 4 can be used, but variants thereof can also be used (Hol liger et al. (1993), Proc. Nat. Acad. Sci. USA 90: 6444-6448).
  • Other linkers useful in the present invention are by Alf et al. (1995), Protein Eng. 8: 725-731, Choi et al. (2001), Eur. J. Immunol. 31: 94-106, Hu et al. (1996), Cancer Res. 56: 3055-3061, Kipr iyanov et al. (1999), J. Mol. Biol. 293 : 41-56 and Roovers et al. (2001), Cancer Immunol.
  • the antigen-binding fragment of an antibody is an antibody, ie, a Valuable antibody, wherein the VH and VL domains are expressed on a single polypeptide chain, but too short a linker is used so that two in the same chain are not allowed Pairing between domains forces the domain to pair with the complementary domain of another chain and create two antigen binding sites (see, for example, Holliger P. et al., Proc. Nat. Acad. Sci. USA 90 : 6444-6448 (1993), and Pol jak RJ et al., Structure 2: 1121-1123 (1994)).
  • An antigen-binding fragment of an antibody can be obtained from a given antibody (e.g., monoclonal antibody 5C4 provided herein) using conventional techniques known to those skilled in the art (e.g., recombinant DNA techniques or enzymatic or chemical cleavage methods) (e.g., The above antibody fragment), and specifically screens the antigen-binding fragment of the antibody in the same manner as used for the intact antibody.
  • a given antibody e.g., monoclonal antibody 5C4 provided herein
  • conventional techniques known to those skilled in the art e.g., recombinant DNA techniques or enzymatic or chemical cleavage methods
  • antibody As used herein, unless the context clearly dictates otherwise, when referring to the term “antibody”, it includes not only intact antibodies, but also antigen-binding fragments of antibodies.
  • the terms “monoclonal antibody” and “monoclonal antibody” refer to a fragment of an antibody or antibody from a population of highly homologous antibody molecules, ie, in addition to a natural mutation that may occur spontaneously, A group of identical antibody molecules.
  • Monoclonal antibodies are highly specific for a single epitope on the antigen.
  • Polyclonal antibodies are relative to monoclonal antibodies, which typically comprise at least two or more different antibodies, which typically recognize different epitopes on the antigen.
  • Monoclonal antibodies are typically obtained using hybridoma technology first reported by Kohler et al. (Nature, 256: 495, 1975), but can also be obtained using recombinant DNA techniques (see, for example, US P 4,816,567).
  • monoclonal antibodies can be prepared as follows.
  • the mice or other suitable host animals are first immunized with the immunogen (addition of an adjuvant if necessary).
  • the method of injection of the immunogen or adjuvant is usually subcutaneous injection or intraperitoneal injection.
  • the immunogen can be pre-coupled to certain known proteins, such as serum albumin or soybean trypsin inhibitors, to enhance the immunogenicity of the antigen in the host.
  • the adjuvant may be Freund's adjuvant or MPL-TDM or the like.
  • lymphocytes can also be obtained by in vitro immunization.
  • the lymphocytes of interest are collected and fused with osteosarcoma cells using a suitable fusing agent, such as PEG, to obtain hybridoma cells (Goding, Monoclonal Antibodies: Principles and Practice, pp. 59-103, Academic Press, 1996).
  • a suitable fusing agent such as PEG
  • the hybridoma cells prepared above may be inoculated into a suitable culture medium, and the culture solution preferably contains one or more substances capable of inhibiting the growth of unfused, maternal osteosarcoma cells.
  • osteosarcoma cells lacking hypoxanthine guanine phosphotransferase (HGPRT or HPRT)
  • HGPRT medium hypoxanthine guanine phosphotransferase
  • Preferred osteosarcoma cells should have high fusion rate, stable antibody secretion capacity, and sensitivity to HAT culture medium.
  • osteoblastoma cells are the preferred mouse osteosarcoma, such as MOP-21 or MC-11 mouse tumor-derived forest (THE Salk Insti tute Cel l Distribution Center, San Diego, Cal if.
  • a method for determining the binding specificity of a monoclonal antibody produced by a hybridoma cell Methods include, for example, immunoprecipitation or in vitro binding assays such as radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA).
  • RIA radioimmunoassay
  • ELISA enzyme-linked immunosorbent assay
  • the affinity of the monoclonal antibody can be determined using the Scatchard assay described by Munson et al., Anal. Biochem. 107: 220 (1980).
  • the target cell forest can pass the standard described by (Goding, Monoclonal Antibodies: Principles and Practice, pp. 59-103, Academic Press, 1996).
  • a suitable culture solution may be DMEM or RPMI-1640 or the like.
  • hybridoma cells can also be grown in animals in the form of ascites.
  • traditional immunoglobulin purification methods such as protein A agarose gel, hydroxyapatite chromatography, gel electrophoresis, dialysis or affinity chromatography, the monoclonal antibodies secreted by the subcloned cells can be cultured from the cell culture medium, Separated from ascites or serum.
  • Monoclonal antibodies can also be obtained by genetic engineering recombinant techniques.
  • a DNA molecule encoding a monoclonal antibody heavy chain and a light chain gene can be isolated from a hybridoma cell by PCR amplification using a nucleic acid primer that specifically binds to the monoclonal antibody heavy chain and light chain genes.
  • the obtained DNA molecule is inserted into an expression vector, and then transfected into a host cell (such as E. col i cells, COS cells, CH0 cells, or other osteoblastoma cells that do not produce immunoglobulin), and cultured under appropriate conditions. , the target antibody recombinantly expressed can be obtained.
  • a host cell such as E. col i cells, COS cells, CH0 cells, or other osteoblastoma cells that do not produce immunoglobulin
  • chimeric antibody refers to an antibody whose light chain or/and part of a heavy chain is derived from an antibody (which may be derived from a particular species or belong to a particular antibody class or Subclass), and another portion of the light chain or/and heavy chain is derived from another antibody (which may be derived from the same or different species or belong to the same or different antibody class or subclass), but in any case, it remains Binding activity to a target antigen (US P 4,816,567 to Cabi lly et al.; Morrison et al., Proc. Natl. Acad. Sci. USA, 81: 6851 6855 (1984)).
  • humanized antibody means that all or part of the CDR region of a human immunoglobulin (receptor antibody) is a non-human antibody (donor antibody)
  • the amino acid residues of the framework region (FR) of the acceptor antibody can also be replaced by amino acid residues of the corresponding non-human antibody or by amino acid residues of other antibodies to further refine or optimize the performance of the antibody.
  • neutralizing antibody refers to an antibody or antibody fragment that is capable of clearing or significantly reducing the virulence of a target virus (e.g., the ability to infect a cell).
  • epitope refers to a site on an antigen that is specifically bound by an immunoglobulin or antibody. "Epitope” is also known in the art as an "antigenic determinant”.
  • An epitope or antigenic determinant typically consists of a chemically active surface group of a molecule, such as an amino acid or a carbohydrate or sugar side chain, and typically has specific three dimensional structural characteristics as well as specific charge characteristics.
  • an epitope typically includes at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 consecutive or non-contiguous amino acids in a unique spatial conformation, which may be "linear” "or” conformation of ".
  • epitope peptide refers to a peptide segment on an antigen that can be used as an epitope.
  • a single epitope peptide is capable of being specifically recognized/bound by an antibody directed against the epitope.
  • epitope peptides may be required Fusion with a carrier protein so that the epitope peptide can be recognized by a specific antibody.
  • carrier protein refers to a protein that can serve as a carrier for an epitope peptide, ie, it can insert an epitope peptide at a specific position (eg, inside the protein, N-terminus or C-terminus).
  • Such carrier proteins are well known to those skilled in the art and include, for example, HPV L1 protein (the epitope peptide can be inserted between amino acids 130-131 of the protein or between amino acids 426-427, see Slupitzky Chimeric papi l lomavirus- l ike particles expressing a foreign epitope on caps id surface loops [J] .
  • Antibodies can be screened for competition with the same epitope using conventional techniques known to those skilled in the art. For example, competitive and cross-competition studies can be conducted to obtain An antibody that competes or crosses each other to compete with an antigen (eg, an RSV fusion protein). High throughput methods for obtaining antibodies that bind to the same epitope based on their cross-competition are described in International Patent Application WO 03/48731. Thus, antibodies and antigen-binding fragments thereof that compete with the monoclonal antibodies of the invention (eg, monoclonal antibody 5C4) for binding to the same epitope on the RSV fusion protein can be obtained using conventional techniques known to those of skill in the art (ie, , antigen junction ⁇ ).
  • the terms “isolated” or “isolated” refer to artificially obtained from a natural state. If a certain "separated” substance or ingredient appears in nature, it may be that the natural environment in which it is located has changed, or that the substance has been isolated from the natural environment, or both. For example, a certain living animal has a naturally isolated polynucleotide or polypeptide that is not isolated, and the high purity of the same polynucleotide or polypeptide isolated from this natural state is called separation. of.
  • separation the high purity of the same polynucleotide or polypeptide isolated from this natural state is called separation. of.
  • the terms “separated” or “isolated” do not exclude the mixing of artificial or synthetic substances, nor do they preclude the presence of other impure substances that do not affect the activity of the substance.
  • E. coli expression system refers to an expression system consisting of E. coli (bacteria) and a vector, wherein E. coli (bacteria) is derived from commercially available strains, such as but not Limited to: GI698, ER2566, BL2KDE3), B834 (DE3), BLR (DE3) ⁇
  • the term "vector” refers to a nucleic acid vehicle into which a polynucleotide can be inserted.
  • the vector When the vector enables expression of the protein encoded by the inserted polynucleotide, the vector is referred to as an expression vector.
  • the vector can be introduced into the host cell by transformation, transduction or transfection, and the genetic material element carried thereby can be expressed in the host cell.
  • Vectors are well known to those skilled in the art and include, but are not limited to, plasmids; phagemids; cosmids; artificial chromosomes, such as yeast artificial chromosomes (YAC), bacterial artificial chromosomes (BAC), or P1 derived artificial chromosomes (PACs).
  • Phage such as lambda phage or M13 phage and animal virus.
  • Viruses include, but are not limited to, retroviruses (including lentiviruses), adenoviruses, viruses, vesicular viruses (such as herpes simplex virus), poxviruses, baculoviruses, papillomaviruses, papillomas Bubble virus (such as SV40).
  • a vector may contain a variety of elements that control expression, including, but not limited to, promoter sequences, transcription initiation sequences, enhancer sequences, selection elements, and reporter genes. In addition, the vector may also contain an origin of replication.
  • the term "host cell” refers to a cell that can be used to introduce a vector, including, but not limited to, a prokaryotic cell such as a bacillus or a Bacillus subtilis, a fungal cell such as a yeast cell or an Aspergillus.
  • a prokaryotic cell such as a bacillus or a Bacillus subtilis
  • a fungal cell such as a yeast cell or an Aspergillus.
  • S2 Drosophila cells or insect cells such as Sf9
  • animal cells such as fibroblasts, CH0 cells, COS cells, NS0 cells, HeLa cells, BHK cells, HEK 293 cells or human cells.
  • identity is used to refer to the matching of sequences between two polypeptides or between two nucleic acids.
  • a position in the two sequences being compared is occupied by the same base or amino acid monomer subunit (for example, a position in each of the two DNA molecules is occupied by adenine, or two Each position in each of the polypeptides is occupied by lysine), then each molecule is identical at that position.
  • the "percent identity" between the two sequences is a function of the number of matching positions shared by the two sequences divided by the number of positions x lOO to be compared. For example, if 6 of the 10 positions of the two sequences match, then the two sequences have 60% identity.
  • the DNA sequences CTGACT and CAGGTT share 50% identity (3 out of a total of 6 positions match).
  • the comparison is made when the two sequences are aligned to produce maximum identity.
  • Such alignment can be achieved by, for example, the method of Needleman et al. (1970) J. Mol. Biol. 48: 443-453, which can be conveniently carried out by a computer program such as the Al ign program (DNAstar, Inc.).
  • the algorithms of E. Meyers and W. Mi ller (Comput. Appl Biosci., 4: 11-17 (1988)), which have been integrated into the ALIG program (version 2.0), can also be used.
  • the percent identity between the two amino acid sequences was determined using a PAM120 weight res idue table, a gap length penalty of 12, and a gap penalty of 4.
  • the Needleman and Wunsch (J Mo I Biol. 48: 444-453 (1970)) algorithm in the GAP program integrated into the GCG software package can be used, using the Blossum 62 matrix Or the PAM250 matrix and the gap weight of 16, 14, 12, 10, 8, 6 or 4 and the length weight of 1, 2, 3, 4, 5 or 6 to determine the same percentage between the two amino acid sequences Sex.
  • conservative substitution means an amino acid substitution that does not adversely affect or alter the essential properties of the protein/polypeptide comprising the acid sequence.
  • conservative substitutions can be introduced by standard techniques known in the art, such as site-directed mutagenesis and PCR-mediated mutagenesis.
  • Conservative amino acid substitutions include substitutions in place of amino acid residues with amino acid residues having similar side chains, for example, physically or functionally similar to corresponding amino acid residues (eg, having similar size, shape, charge, chemical properties, including Substitution of residues by formation of a covalent bond or a hydrogen bond, etc.).
  • a family of amino acid residues having similar side chains has been defined in the art.
  • These families include basic side chains (eg, lysine, arginine, and histidine), acidic side chains (eg, aspartic acid, glutamic acid), uncharged polar side chains (eg, glycine) , asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan), non-polar side chains (eg alanine, valine, leucine, isoluminescence) Acid, valine, phenylalanine, methionine), P-branched side chains (eg, threonine, valine, isoleucine) and aromatic side chains (eg, tyrosine, Phenylalanine, tryptophan, histidine) of ⁇ 3 ⁇ 4 ⁇ acid.
  • basic side chains eg, lysine, arginine, and histidine
  • acidic side chains eg, aspartic acid, glutamic acid
  • uncharged polar side chains eg
  • the term “immunogenicity (i with unogenicity)” refers to the ability to stimulate the body to form specific antibodies or sensitize lymphocytes. It refers to the fact that an antigen can stimulate specific immune cells, activate, proliferate, and differentiate immune cells, and ultimately produce immune effector substances such as antibodies and sensitized lymphocytes. It also means that after the antigen stimulates the body, the body's immune system can form antibodies or A specific immune response to sensitized T lymphocytes. Immunogenicity is the most important property of an antigen. Whether an antigen can successfully induce an immune response in a host depends on three factors: the nature of the antigen, the reactivity of the host, and the mode of immunization.
  • the term “specifically binds” refers to a non-random binding reaction between two molecules, such as a reaction between an antibody and the antigen to which it is directed.
  • the antibody that specifically binds to an antigen refers to an antibody of less than about 10-5 M, such as less than about 10- 6 M, 10 7 M, 10 An affinity (K D ) of 8 M, 10 9 M or 10 10 M or less binds to the antigen.
  • K D refers to a particular antibody - antigen interaction dissociation equilibrium constant, which is used to describe the binding affinity between antibody and antigen. The smaller the equilibrium dissociation constant, the tighter the antibody-antigen binding and the higher the affinity between the antibody and the antigen.
  • the antibody e.g., monoclonal antibody 5C4 of the invention
  • the antibody is less than about 10 5 M, such as less than about 10 6 M, 10 7 M, 10 8 M, ⁇ ! ⁇ or ⁇ ) 1 .
  • K D dissociation equilibrium constant of antigen binding
  • SPR surface plasmon resonance technique
  • the terms “monoclonal antibody” and “monoclonal antibody” have the same meaning and are used interchangeably; the terms “polyclonal antibody” and “poly” have the same meaning and are used interchangeably; “Peptide” and “protein” have the same Meaning and interchangeable use.
  • the acid is usually represented by one-letter and three-letter abbreviations well known in the art.
  • alanine can be represented by A or Ala.
  • hybridomas and “hybridoma cell lines” are used interchangeably, and when referring to the terms “hybridomas” and “hybridoma cell lines”, they also include subclones of hybridomas. And progeny cells.
  • hybridoma cell line RSV-Y-5C4- 2 which is also referred to herein simply as hybridoma cell line 5C4
  • progeny cells when referring to the hybridoma cell line RSV-Y-5C4- 2 (which is also referred to herein simply as hybridoma cell line 5C4), it also refers to the subcloning of the hybridoma cell line RSV-Y-5C4-2. And progeny cells.
  • pharmaceutically acceptable carrier and/or excipient refers to a carrier and/or excipient that is pharmacologically and/or physiologically compatible with the subject and the active ingredient, It is well known in the art (see, for example, Remington's Pharmaceutical Sciences. Edi ted by Gennaro AR, 19th ed. Pennsylvania: Mack Publishing Company, 1995) and includes, but is not limited to: pH adjusters, surfactants, adjuvants , ionic strength enhancer.
  • pH adjusting agents include, but are not limited to, phosphate buffers; surfactants include, but are not limited to, cationic, anionic or nonionic surfactants such as Tween-80; ionic strength enhancers include, but are not limited to, sodium chloride.
  • adjuvant refers to a non-specific immunopotentiator that, when brought together with an antigen or pre-delivered into the body, enhances the body's immune response to the antigen or alters the type of immune response.
  • adjuvants include but not limited to aluminum adjuvants (such as aluminum hydroxide), Freund's adjuvant (such as complete Freund's adjuvant and incomplete Freund's adjuvant), Corynebacterium parvum, lipopolysaccharide, cytokines, etc. .
  • Freund's adjuvant is the most commonly used adjuvant in animal testing. Aluminium hydroxide adjuvants are used more in clinical trials.
  • protein vaccine refers to a polypeptide-based vaccine, which optionally further comprises an adjuvant.
  • the polypeptide in the vaccine may be obtained by genetic engineering techniques or may be obtained by chemical synthesis.
  • nucleic acid vaccine refers to a vaccine based on DNA or RNA (e.g., a plasmid, such as a Shield granule), which optionally further comprises an adjuvant.
  • an effective amount refers to an amount sufficient to achieve, or at least partially achieve, a desired effect.
  • an effective amount to prevent a disease eg, RSV infection or a disease associated with RSV infection
  • an amount sufficient to prevent, prevent, or delay the onset of a disease eg, RSV infection or a disease associated with RSV infection
  • the amount effective for therapeutic use will depend on the severity of the condition to be treated, the overall condition of the patient's own immune system, the general condition of the patient such as age, weight and sex, the mode of administration of the drug, and other treatments administered simultaneously. and many more.
  • an epitope peptide of the invention includes, but is not limited to, one or more selected from the group consisting of:
  • the ability to treat a subject with RSV infection or a disease associated with RSV infection, such as pneumonia (optionally, after fusing the epitope peptide to a carrier protein).
  • the inventors have extensively discovered experimentally and unexpectedly found that certain epitopes in the RSV fusion protein (for example, an epitope contained in the 148-216 acid of the RSV fusion protein, or the 62th including the RSV fusion protein) - Epitope at position 69 and position 196-209, and acid recognition of these epitopes promotes F protein Stabilization and maintenance of the pre-F conformation, and the stability and maintenance of these epitopes as well as the pre-F conformation are important for the induction of the immune response of the body, and the antibodies have particularly excellent biological activities (for example, particularly high Neutralizing activity) is thus particularly suitable for the prevention or treatment of RSV infection or diseases associated with RSV infection (eg pneumonia, such as pneumonia in children).
  • RSV infection or diseases associated with RSV infection eg pneumonia, such as pneumonia
  • the invention provides an isolated epitope peptide or variant thereof, wherein the epitope peptide consists of residues 148-216 of the respiratory syncytial virus fusion protein or a fragment thereof And comprising at least amino acid residues 196-209 of the respiratory syncytial virus fusion protein, and the variant differs from the epitope peptide from which it is derived by only one or several (eg, one, two) , 3, 4, 5, 6, 7, 8, or 9) conservative substitutions of amino acid residues, and retaining the biological function of the epitope peptide from which they are derived.
  • the epitope peptide consists of residues 148-216 of the respiratory syncytial virus fusion protein or a fragment thereof And comprising at least amino acid residues 196-209 of the respiratory syncytial virus fusion protein, and the variant differs from the epitope peptide from which it is derived by only one or several (eg, one, two) , 3, 4, 5, 6, 7, 8, or 9) conservative substitutions
  • the epitope peptide of the invention exists in its spatial conformation in the pre-F protein, and the variant retains the spatial conformation of the epitope peptide from which it is derived .
  • the epitope peptide consists of amino acid residues 196 to 209 of the respiratory syncytial virus fusion protein, and the variant differs from the epitope peptide from which it is derived only in one Or a conservative substitution of several (eg, 1, 2, 3 or 4) amino acid residues, and retaining the biological function of the epitope peptide from which it is derived.
  • the epitope peptide consists of amino acid residues 196 to 216 of the respiratory syncytial virus fusion protein, and the variant differs from the epitope J f from which it is derived only in Conservative substitution of one or more (eg, 1, 2, 3, 4, 5, 6, 7, 8, or 9) amino acid residues, and retaining the The biological function of epitope peptides.
  • the epitope peptide consists of amino acid residues 185 to 216 of the respiratory syncytial virus fusion protein, and the variant differs from the epitope J f from which it is derived only in Conservative substitution of one or more (eg, 1, 2, 3, 4, 5, 6, 7, 8, or 9) amino acid residues, and retaining the The biological function of epitope peptides.
  • the epitope peptide consists of amino acid residues 185-216 of the respiratory syncytial virus fusion protein, wherein amino acids 185-194 form a p-fold on the protein-2 structure.
  • the variant differs from the epitope peptide from which it is derived by only one or several (eg, 1, 2, 3, 4, 5, 6, 7, 8, or 9) a conservative substitution of an amino acid residue and retaining the biological function of the epitope peptide from which it is derived.
  • the epitope peptide consists of amino acid residues 176 to 216 of the respiratory syncytial virus fusion protein, and the variant differs from the epitope J f from which it is derived only in Conservative substitution of one or more (eg, 1, 2, 3, 4, 5, 6, 7, 8, 9) amino acid residues, and retaining the The biological function of epitope peptides.
  • the epitope peptide consists of amino acid residues 176-216 of the respiratory syncytial virus fusion protein, wherein amino acids 176-181 and amino acids 185-194 are in protein 2 P-folds are formed on the hierarchical structure, and the variant differs from the epitope peptide from which it is derived by only one or several (for example, 1, 2, 3, 4, 5, 6). Seven, eight, nine) conservative substitutions of amino acid residues, and retaining the biological function of the epitope peptide from which they are derived.
  • the epitope peptide consists of amino acid residues 148 to 216 of the respiratory syncytial virus fusion protein, and the variant differs from the epitope Jf from which it is derived only in Conservative substitution of one or more (eg, 1, 2, 3, 4, 5, 6, 7, 8, 9) amino acid residues, and The biological function of the epitope peptide from which it is derived is retained.
  • the epitope peptide consists of amino acid residues 148-216 of the respiratory syncytial virus fusion protein, wherein amino acids 176-181 and amino acids 185-194 are at protein level 2 P-folds are structurally formed, and the variant differs from the epitope peptide from which it is derived by only one or several (eg, 1, 2, 3, 4, 5, 6, 7) , 8, and 9) conservative substitutions of amino acid residues, and retain the biological function of the epitope peptide from which they are derived.
  • the invention provides an isolated epitope peptide or variant thereof, consisting of a first peptide and a second peptide, wherein the first peptide is from positions 148-216 of the respiratory syncytial virus fusion protein ⁇
  • the acid residue or a fragment thereof comprises at least the amino acid residues 196 to 209 of the respiratory syncytial virus fusion protein
  • the second peptide is from positions 62-69 or 62-76 of the respiratory syncytial virus fusion protein ⁇
  • An acid composition wherein the variant differs from the epitope peptide from which it is derived by only one or several (eg, 1, 2, 3, 4, 5, 6, 7, 8) , 9) conservative substitutions of amino acid residues, and retain the biological function of the epitope peptide from which they are derived.
  • the first peptide and the second peptide are present in their spatial conformation in the pre-F protein, and the variant retains the epitope peptide from which it is derived Spatial conformation.
  • the first peptide and the second peptide together form a spatial structure present in the pre-F conformation of the RSV fusion protein.
  • the first peptide consists of amino acid residues 196 to 209 of the respiratory syncytial virus fusion protein. In another preferred embodiment, the first peptide consists of amino acid residues 196-216 of the respiratory syncytial virus fusion protein. In another preferred embodiment, the first peptide consists of residues 185-216 of the respiratory syncytial virus fusion protein. In another preferred embodiment, the first peptide is derived from respiratory syncytial virus The 185th-216th acid residue of the fusion protein consists of amino acids 185-194 which form a p-fold on the protein-2 structure.
  • the first peptide consists of amino acid residues 176 to 216 of the respiratory syncytial virus fusion protein. In another preferred embodiment, the first peptide consists of amino acid residues 176 to 216 of the respiratory syncytial virus fusion protein, wherein the 176th to the 181th and the 185th to the 194th A P-fold is formed on the protein-2 structure. In another preferred embodiment, the first peptide consists of amino acid residues 148-216 of the respiratory syncytial virus fusion protein.
  • the first peptide consists of amino acid residues 148-216 of the respiratory syncytial virus fusion protein, wherein amino acids 176-181 and 185-194 are in A P-fold is formed on the protein 2-level structure.
  • epitope peptides or variants thereof can be fused to a carrier protein to enhance the immunogenicity of the epitope peptide or variant thereof such that the epitope peptide or variant thereof can be recognized by the body's immune system, And induced effective prevention of viral infection.
  • the invention also provides a recombinant protein comprising an isolated epitope peptide of the invention, or a variant thereof, and a carrier protein, and wherein the recombinant protein is not a naturally occurring protein or a fragment thereof.
  • the peptide or variant thereof may be linked to the N-terminus or C-terminus of the carrier protein, inserted into the interior of the carrier protein, or substituted for a portion of the carrier protein, depending on the particular carrier protein used.
  • the epitope peptide or variant thereof is linked to a carrier protein via a linker (a rigid or flexible linker, such as (GGGGS) 3 ).
  • the recombinant protein of the present invention is not limited by the manner in which it is produced, and for example, it can be produced by a genetic engineering method (recombination technique) or can be produced by a chemical synthesis method.
  • the invention provides an isolated nucleic acid molecule comprising a nucleotide sequence encoding an epitope peptide of the invention or a variant thereof or a recombinant protein of the invention Column.
  • the invention also provides a vector comprising an isolated nucleic acid molecule as described above.
  • the vector of the present invention may be a cloning vector or an expression vector.
  • the vector of the present invention is, for example, a plasmid, a cosmid, a phage, a Cos shield, and the like.
  • the vector is capable of expressing an epitope peptide of the invention or a variant thereof or a recombinant protein of the invention in a subject (e.g., a mammal, such as a human).
  • host cells comprising the isolated nucleic acid molecule or vector of the invention are also provided.
  • host cells include, but are not limited to, prokaryotic cells such as Bacillus megaterium cells, and eukaryotic cells such as yeast cells, insect cells, plant cells, and animal cells (e.g., mammalian cells, such as mouse cells, human cells, etc.).
  • prokaryotic cells such as Bacillus megaterium cells
  • eukaryotic cells such as yeast cells, insect cells, plant cells, and animal cells (e.g., mammalian cells, such as mouse cells, human cells, etc.).
  • mammalian cells such as mouse cells, human cells, etc.
  • the cells of the invention may also be cell lines, such as 293T cells.
  • the invention provides a protein vaccine comprising an epitope peptide (or variant thereof) or recombinant protein of the invention, and a pharmaceutically acceptable carrier and/or excipient (eg, an adjuvant) .
  • the protein vaccine comprises one or more epitope peptides of the invention, and the epitope peptides may be isolated or tandem, modified or unmodified, coupled to other proteins. Or not coupled to other proteins.
  • the invention provides a method for preventing, treating or inhibiting a RSV infection in a subject or a disease associated with RSV infection, such as pneumonia, such as pneumonia in children, comprising: administering to a subject in need thereof A therapeutically effective amount of an epitope peptide (or variant thereof) of the invention or a recombinant protein or protein vaccine is administered.
  • an epitope peptide (or variant thereof) of the invention is provided or recombinant
  • a protein in the manufacture of a vaccine for the prevention, treatment or inhibition of RSV infection or a disease associated with RSV infection in a subject (for example, pneumonia, such as pneumonia in children).
  • an epitope peptide (or variant thereof) or recombinant protein of the invention is provided for use in preventing, treating or inhibiting RSV infection or a disease associated with RSV infection in a subject (eg, pneumonia, such as a child) Pneumonia).
  • a subject eg, pneumonia, such as a child
  • the invention provides a genetic vaccine comprising an isolated nucleic acid molecule or vector of the invention, and a pharmaceutically acceptable carrier and/or excipient (e.g., an adjuvant).
  • the genetic vaccine comprises DNA or RNA.
  • the DNA or RNA may be naked or may be encapsulated within a housing having a delivery or/and protective function.
  • the outer shell may be an outer shell of an adenovirus, an adeno-associated virus, a lentivirus, a retrovirus, or the like, or may be a chemically synthesized other material capable of performing similar functions.
  • the invention provides a method for preventing, treating or inhibiting a RSV infection in a subject or a disease associated with RSV infection, such as pneumonia, such as pneumonia in children, comprising: administering to a subject in need thereof A therapeutically effective amount of a genetic vaccine of the invention or an isolated nucleic acid molecule or vector is administered.
  • an isolated nucleic acid molecule or vector of the invention for the prevention, treatment or inhibition of RSV infection or a disease associated with RSV infection in a subject (eg Pneumonia, such as pneumonia in children).
  • an isolated nucleic acid molecule or vector of the invention for use in preventing, treating or inhibiting RSV infection or a disease associated with RSV infection (e.g., pneumonia, such as pediatric pneumonia) in a subject.
  • a disease associated with RSV infection e.g., pneumonia, such as pediatric pneumonia
  • the invention provides a composition comprising an epitope peptide (or variant thereof) of the invention or a recombinant protein or an isolated nucleic acid molecule or vector, and A pharmaceutically acceptable carrier and/or excipient (e.g., an adjuvant).
  • the pharmaceutical composition comprises one or more epitope peptides of the invention, and the epitope peptides may be isolated or tandem, modified or unmodified, coupled to other proteins Or not coupled to other proteins.
  • the invention provides a method of making an antibody capable of specifically binding to and neutralizing respiratory syncytial virus and stabilizing and maintaining the pre-F conformation of the F protein, comprising:
  • the invention provides an antibody or antigen-binding fragment thereof which is capable of specifically binding to and neutralizing respiratory syncytial virus and which stabilizes and maintains the pre-F conformation of the F protein, which is obtained by the preparation as described above.
  • the invention provides a monoclonal antibody and antigen binding fragment thereof, wherein the monoclonal antibody is capable of specifically binding to an epitope peptide of the invention.
  • the monoclonal antibody is capable of specifically binding to amino acid residues 148 to 216 of the respiratory syncytial virus fusion protein or a fragment thereof (for example, amino acid residues 196 to 209 of the respiratory syncytial virus fusion protein), And/or, respiratory syncytial virus fusion protein at positions 62-69 or 62-76 ⁇ 3 ⁇ 4 ⁇ acid 3 ⁇ 4J ⁇ .
  • the monoclonal antibody or antigen-binding fragment thereof is selected from the group consisting of Fab, Fab', F(ab') 2 , Fd, Fv, dAb, a complementarity determining region fragment, a single chain antibody (eg, scFv) ), mouse antibodies, rabbit antibodies, humanized antibodies, fully human antibodies, chimeric antibodies (eg, human murine chimeric antibodies) or bispecific or multispecific antibodies.
  • the monoclonal antibody comprises a non-CDR region, and the non-CDR region is from a species other than a murine, such as from a human antibody.
  • the monoclonal antibody specifically binds to respiratory syncytial virus and has neutralizing activity against the virus. In a preferred embodiment, the monoclonal antibody binds to and stabilizes the pre-F protein without binding or substantially binding to the pos t-F protein.
  • the monoclonal antibody comprises the following CDRs:
  • the monoclonal antibody comprises:
  • the monoclonal antibody is derived from a monoclonal antibody selected from the group consisting of: or an antibody selected from the group consisting of:
  • the present invention provides a Monoclonal antibodies and antigen-binding fragments thereof capable of blocking the binding of an epitope peptide or pre-F protein of the invention to an antibody produced by hybridoma cell line 5C4 by at least 50%, preferably at least 60%, preferably at least 70 %, preferably at least 80%, preferably at least 90%, preferably at least 95% or preferably at least 99%, wherein, the hybridoma cell line 5C4 is deposited in the China Center for Type Culture Collection (CCTCC) and has the accession number CCTCC NO: C2012147 e
  • the epitope recognized by such a monoclonal antibody is identical to the epitope recognized by the monoclonal antibody 5C4, or there is overlap in space, such that the monoclonal antibody can reduce the binding of the monoclonal antibody 5C4 to the epitope peptide or pre-F protein of the present invention. At least 50%, preferably at least 60%, preferably at least 70%, preferably at least 80%, preferably at least 90%, preferably at least 95% or preferably at least 99%.
  • the invention also provides an isolated nucleic acid molecule encoding a monoclonal antibody of the invention or an antigen binding fragment thereof. Such nucleic acid molecules can be isolated from hybridoma cells, or can be obtained by genetic engineering recombinant techniques or chemical synthesis methods.
  • the invention provides an isolated nucleic acid molecule comprising a nucleic acid sequence capable of encoding a heavy chain variable region of a monoclonal antibody of the invention.
  • the heavy chain variable region is set forth in SEQ ID NO: 17.
  • the nucleic acid molecule has the nucleotide sequence set forth in SEQ ID NO: 16.
  • the invention provides an isolated nucleic acid molecule comprising a nucleic acid sequence capable of encoding a light chain variable region of a monoclonal antibody of the invention.
  • the light chain variable region is set forth in SEQ ID NO: 19.
  • the nucleic acid molecule has the nucleotide sequence set forth in SEQ ID NO: 18.
  • the invention provides a vector comprising the isolated nucleic acid molecule of the invention.
  • the vector of the present invention may be a cloning vector or an expression vector.
  • the vector of the invention is, for example, a plasmid, a cosmid, a bacteriophage, a cosmid, and the like.
  • an isolated nucleic acid molecule comprising the invention or a vector is also provided Host cell.
  • host cells include, but are not limited to, prokaryotic cells such as Daphnia cells, and eukaryotic cells such as yeast cells, insect cells, plant cells, and animal cells (eg, mammalian cells, such as mouse cells, human cells, etc.).
  • the cells of the invention may also be cell lines, such as 293T cells.
  • a method of preparing a monoclonal antibody or antigen-binding fragment thereof of the invention comprising: culturing a host cell of the invention under suitable conditions, and recovering the monoclonal of the invention from the cell culture An antibody or antigen-binding fragment thereof.
  • the invention provides a hybridoma cell line 5C4 deposited with the China Center for Type Culture Collection (CCTCC) and having accession number CCTCC NO: C2012147.
  • amino acid sequence and/or nucleotide of the heavy chain variable region, the light chain variable region, the heavy chain variable region CDR, and the light chain variable region CDR contained in the antibody can be obtained from the monoclonal antibody 5C4 by a conventional method. sequence.
  • amino acid sequences of the heavy chain variable region and the light chain variable region of monoclonal antibody 5C4 are shown in SEQ ID NOS: 17 and 19, respectively; the coding nucleotide sequences are shown in SEQ ID NOS: 16 and 18, respectively.
  • the invention provides a kit comprising a monoclonal antibody of the invention or an antigen binding fragment thereof.
  • the monoclonal antibodies or antigen-binding fragments thereof of the invention further comprise a detectable label.
  • the kit further comprises a second antibody that specifically recognizes a monoclonal antibody or antigen-binding fragment thereof of the invention.
  • the second antibody also includes detectable markers.
  • detectable labels are well known to those skilled in the art and include, but are not limited to, radioisotopes, fluorescent materials, luminescent materials, colored materials and enzymes (e.g., horseradish peroxidase) and the like.
  • the invention provides a method of stabilizing a pre-F protein comprising the use of a monoclonal antibody of the invention or an antigen binding fragment thereof, or a D25 or AM22 monoclonal antibody or antigen-binding fragment thereof.
  • the invention provides a method of detecting the presence or level of a pre-F protein in a sample comprising the use of a monoclonal antibody of the invention or an antigen binding fragment thereof.
  • the monoclonal antibodies or antigen-binding fragments thereof of the invention further comprise a detectable label.
  • the method further comprises detecting a monoclonal antibody or antigen-binding fragment thereof of the present invention using a second antibody carrying a detectable label.
  • the method can be used for diagnostic purposes, or for non-diagnostic purposes (e.g., the sample is a cell sample, not a sample from a patient).
  • the invention provides a method of diagnosing whether a subject is infected with RSV, comprising: detecting the presence of RSV in a sample from the subject using a monoclonal antibody of the invention or an antigen binding fragment thereof.
  • the monoclonal antibodies or antigen-binding fragments thereof of the invention further comprise a detectable label.
  • the method further comprises detecting a monoclonal antibody or antigen-binding fragment thereof of the invention using a second antibody carrying a detectable label.
  • a monoclonal antibody or antigen-binding fragment thereof of the invention or a D25 or AM22 monoclonal antibody or antigen-binding fragment thereof for the preparation of a kit for stabilizing a pre-F protein, Or detecting the presence or level of pre-F protein in the sample, or for diagnosing whether the subject is infected with RSV.
  • the invention provides a pharmaceutical composition comprising a monoclonal antibody of the invention, or an antigen binding fragment thereof, and a pharmaceutically acceptable carrier and/or excipient.
  • the invention provides a method for preventing or treating an RSV infection or a disease associated with RSV infection, such as pneumonia, such as pediatric pneumonia, in a subject, comprising administering to a subject in need thereof A monoclonal antibody or antigen-binding fragment thereof of the invention, or a pharmaceutical composition of the invention, is prevented or treated in an effective amount.
  • a monoclonal antibody or antigen-binding fragment thereof of the invention for the preparation of a pharmaceutical composition for preventing or treating a RSV infection or a disease associated with RSV infection in a subject (eg pneumonia, such as pneumonia in children).
  • a monoclonal antibody or antigen-binding fragment thereof of the invention is provided for use in preventing or treating a RSV infection or a disease associated with RSV infection (e.g., pneumonia, such as pediatric pneumonia) in a subject.
  • the vaccine protein vaccine and gene vaccine
  • drug and pharmaceutical composition provided by the present invention may be used alone or in combination, or may be combined with other pharmaceutically active agents (for example, interferon drugs such as interferon or peginterferon). ) Used in combination.
  • the invention provides a method of expressing a pre-F protein or antigen-antibody complex comprising: co-expressing in a cell a monoclonal antibody or antigen-binding fragment thereof, or a D25 or AM22 monoclonal antibody, or A nucleic acid of the antigen-binding fragment thereof, and a nucleic acid encoding the F protein.
  • the invention provides a kit comprising a nucleic acid encoding a monoclonal antibody or antigen-binding fragment thereof of the invention or a D25 or AM22 monoclonal antibody or antigen-binding fragment thereof, and a nucleic acid encoding the F protein.
  • the present inventors have first discovered a novel epitope of the respiratory syncytial virus fusion protein (F protein), and surprisingly found that the novel epitope and the antibody specifically recognizing the novel epitope are stable to the pre-F conformation of the F protein. And maintenance plays an important role.
  • F protein respiratory syncytial virus fusion protein
  • the inventors have also found that the antibody of the present invention which specifically recognizes the novel epitope has higher neutralizing activity than the antibody known to the prior art for the respiratory syncytial virus fusion protein, indicating that F The pre-F conformation of the protein and the novel epitopes discovered by the present invention play an important role in the induction of an immune response against respiratory syncytial virus.
  • the epitope peptide of the present invention or the recombinant protein containing the epitope peptide can be effectively used as a protein vaccine for preventing respiratory syncytial virus infection or a disease associated with respiratory syncytial virus infection in a subject (for example, pneumonia in children) ).
  • the monoclonal antibody and antigen-binding fragment thereof of the present invention have higher neutralizing activity, thereby being capable of effectively blocking the infection of cells of respiratory syncytial virus at a lower dose, thereby being effective for preventing or treating a test.
  • Respiratory syncytial virus infection or a disease associated with respiratory syncytial virus infection eg, pneumonia in children.
  • Figure 1 shows an ELISA assay for detecting reactivity between 5C4 mAb and post-F. The results showed that the 5C4 antibody had no significant reactivity to ost-F compared to the commercial antibody palizumab ( pal ivizumab, Synagis ) and Moviavimumab ( Motavizumab ).
  • Figure 2 shows the determination of the neutralizing activity of 5C4 mAb.
  • the results showed that the 5C4 monoclonal antibody had strong neutralizing activity against respiratory syncytial virus.
  • palizumab Al ivizumab, Synagis
  • Movivizumab previously reported antibody D
  • AM22 see, U.S. Patent Application Serial No. 12/898, 325
  • 5C4 mAb is more neutralizing activity against respiratory syncytial virus.
  • Figure 3 shows the measurement of the binding inhibitory activity of 5C4 mAb. The results showed that several strains of monoclonal antibodies did not affect the adsorption of cells by the virus.
  • Figure 4 shows the measurement of the fusion inhibitory activity of 5C4 mAb.
  • the results showed that, compared with the commercial antibody palivizumab (al ivizumab, Synagis) and motavizumab (Motavizumab), and Antibody D has been reported previously (see, U.S. Patent Application No. 12/600, 95 0) and) and AM 22 (see, U.S. Patent Application Serial No. 12/898, 325), the 5C4 antibody has a stronger fusion inhibitory activity.
  • Figure 5 shows the detection of the viral capture capacity of 5C4 mAb.
  • the results showed that the binding of 5C4 monoclonal antibody to respiratory syncytial virus was highly specific.
  • the 5C4 antibody has a greater ability to capture respiratory syncytial virus than the commercial antibody palizumab (al ivizumab, Synagis).
  • FIG. 6 shows the Western Blot assay for the reactivity of 5C4 mAb.
  • 5C4 mAb is a mAb recognizing a conformational epitope that recognizes non-denatured RSV-A2 and RSV-GFP without recognizing denatured RSV-A2 and RSV-GFP.
  • 5C4 mAb specifically recognizes RSV-A2, RSV-GFP, but is essentially non-reactive with post-F.
  • Figure 7 shows the detection of immunofluorescence using 5C4 mAb. The results show that 5C4 mAb can be used to detect RSV A2 infection in cells.
  • Figure 8 shows an analysis of the competitive binding of 5C4 mAb to other monoclonal antibodies. The results showed that there was a competitive binding between AM22 monoclonal antibody, D25 monoclonal antibody and 5C4 monoclonal antibody, and the blocking ratio of 5C4 monoclonal antibody to AM22 monoclonal antibody and D25 monoclonal antibody was up to 99%. This indicates that 5C4 mAb shares the same epitope on the AM22 mAb and D25 mAb recognition antigen (F protein).
  • FIG 9 shows the results of electron microscopic observation of the AM22/F protein, 5C4/F protein and D25/F protein antigen-antibody complex. The results showed that the AM22/F protein, 5C4/F protein and D25/F protein antigen-antibody complex have the same structure. This indicates that AM22 mAb, 5C4 mAb binds to the same epitope on the F protein as the D25 mAb, and binds to the same conformation of the F protein (pre-F conformation).
  • Figure 10 shows the electron microscopy results of the palivizumab/F protein and the 5C4/F protein antigen-antibody complex, where the left image shows the electron microscopy results of the complex of pos t-F and palivizumab.
  • the lower left image shows the structure observed by electron microscopy of pos t-F in the white frame area on the upper left image; the electron microscope results of the composite of pre-F and 5C4 on the right, the white frame area is pre-F The structure observed under electron microscopy.
  • Figure 11 shows the crystal structure of the D25/F protein complex.
  • Figure 12 shows the spatial structure of the binding of D25 mAb to epitopes on the F protein.
  • Figure 13 shows the changes in the tertiary structure of the D25-bound epitope in the pre-F protein and the pos t-F protein.
  • Figure 14 shows the monomers and trimers of the pre-F protein and the pos t-F protein. Crystal structure of monomers and trimers. The results show that the pre-F protein has a significantly different spatial structure (conformation) than the post-F protein.
  • Figure 15 shows the spatial structure of the pre-F protein and the post-F protein, the corresponding amino acid sequence constituting the spatial structure, and the epitope sequence recognized by D25.
  • the results show that there is a significant difference in the spatial structure of the pre-F protein and the pos t-F protein.
  • the spatial structure of the pr e-F protein includes ⁇ 1- ⁇ 10 helix and ⁇ 1- ⁇ 23 stack; and the spatial structure of the post-F protein includes ⁇ helix, ⁇ 5- ⁇ 8 helix, 10 helix, PI- ⁇ 2 fold and ⁇ 5 - P21 folding.
  • the results in Figure 15 also show that the core recognition epitope of the D25 monoclonal antibody in the pre-F protein is two peptides that are spatially close to each other, i.e., a. a. 62-69 and a. a. 196-209.
  • the interaction interface of these two peptides indicates that two segments of the F protein (aa62-76 and aa137-216 (or more specifically, aa148-216)) or fragments thereof are for such antibodies (this
  • the inventive antibodies eg 5C4), D25 and AM22
  • their conformation in the pre-F protein is P-folded (P3-P4 fold)
  • the conformation in the post-F protein is alpha-helix (contained in the 5 helix).
  • the hybridoma cell line RSV-Y-5C4-2 of the present invention was deposited with the China Center for Type Culture Collection (CCTCC, Wuhan University, Wuhan, Hubei province, China) on October 22, 2012, and has the accession number CCTCC NO: C2012147 e Detailed ways
  • the RSV A2 virus forest was prepared and presented by the laboratory of IH Dr. Barney S. Graham (Graham et al, 1988).
  • the RSV GFP virus was prepared by IH Dr. Peter Col l ins (Hal lak et al) and presented by the NIH Dr. Barney S. Graham laboratory.
  • Hep2 cells at a confluence rate of 80% were prepared, and after 6 hours of culture for 37 hours, the supernatant was removed, and 1 ml of RSV GFP virus was added thereto, and the mixture was incubated at room temperature for 1 hour. Subsequently, 10% MEM medium was added to 15 ml, and cultured for 37 days at 37 °C. The cells and the supernatant were collected to a pre-cooled 50 ml centrifuge tube, which was disrupted using a hand-held sonicator (50%, 1 second for 3 seconds), placed in a refrigerated centrifuge at 1000 rpm, and centrifuged for 15 minutes at 4 Torr.
  • the sequence of the post-F protein is from the RSV-A2 virus forest.
  • the amino acids 102 ( P102 ), 379 ( 1379 ) and 447 447 ) in the J ⁇ ⁇ column were replaced with alanine (P102A ), proline ( I379V ) and Proline (M447V).
  • the fusion peptide 137-146 was also removed from the post-F protein sequence.
  • the codon-optimized post-F sequence was inserted into the eukaryotic expression vector LEXm (synthesized by Regensburg) to obtain the ost-F expression plasmid pLEXm-postF, and the C-terminus also contained the HRV 3C protease site and the 8xHis tag.
  • pLEXm-postF was transferred to HEK293F cells (purchased from Invitrogen) via a transient transfection system (TrueFect-Max, purchased from Uni ted BioSystems), and placed in a suspension at 120 rpm, 9% C02 shaker for 37 - 5 days. After collecting the cells, they were purified by Ni2+-NTA Resin (purchased from Qiagen), and the elution buffer was 20 fflM Tris-HCl H 7. 5, 200 mM NaCl and 250 mM imidazole, H 8. 0. Further purification was carried out according to the instructions using StrepTactin res in (purchased from Novagen).
  • the protein was digested with HRV 3C protease (Novagen) and the Ni2+-NTA was re-used to remove uncut protein and affinity tags.
  • the protein was purified by Superdex 200 gel filtration column (purchased from GE Healthcare) in 2 mM Tris-HCl pH 7.5, 150 mM NaCl and 0. 02% NaN3, and finally the protein was concentrated to approximately 6 mg/ mL.
  • adenovirus Shield 4ug was digested with Pacl.
  • the plasmid was precipitated with ethanol and resuspended in 20 uL of sterile water.
  • 4 ug of Pa-digested plasmid and 20 uL of Lipofectamine (GIBCO BRL) were mixed into 500 uL of OptiMem I medium (per bottle of cells) and incubated for 15-30 min at room temperature. The cells were washed once with 4 mL of serum-free medium. 2 mL of OptiMem I was added to each vial.
  • the 293 P 5 cells were infected with the above virus suspension, and cultured for 48 hours until the fluorescence was strong.
  • the infected cells were directly blown up with the culture medium, centrifuged at 3000 rpm for 3 min, the pellet was resuspended, and repeatedly frozen and thawed in liquid nitrogen for 6 times. After the cells were lysed, they were centrifuged at 4000 rpm for 30 min, and the supernatant was taken. Carefully add 5ml of 40% Cscl, 4.
  • Monoclonal antibodies were obtained by tail vein injection of DNA immunization and PEG fusion methods.
  • Mouse immunization The first time the immunization of the RSV full-length F gene plasmid, PBS and Freund's complete adjuvant (CFA) are mixed and emulsified in the same volume before immunization, and multiple injections are made through the limb muscles, each injection is 300ul. .
  • the RSV full length F gene plasmid was diluted to 50 ug/ml using PBS, and each mouse was injected with 2 ml via the tail vein.
  • each mouse was injected with 2 ml of adenovirus containing 106 copies of the full-length gene of RSV F protein by tail vein intravenously with the same dose of PBS plus Freund's incomplete adjuvant (IFA).
  • IFA Freund's incomplete adjuvant
  • the inhibitory potency of HI was detected.
  • the mouse spleen was taken for fusion.
  • the immunization was boosted again 72 h before the fusion, and the RSV-A2 forest virus solution was injected once through the spleen, 50 ul/mouse. Prepare 15 fusion plates.
  • the mouse spleen cells with the highest reaction titer of ⁇ k Qingzhong antibody and RSV GFP were fused with mouse osteosarcoma cell SP2/0.
  • the spleen is first ground to obtain a spleen cell suspension, and then mixed with SP2/0 mouse osteosarcoma cells in the logarithmic growth phase ten times lower than the number of cells, and the two cells are fused together by PEG1500 for 1 min, and then the fused cell fluid is fused.
  • 100 ml was dispensed into 10 96-well plates for cultivation.
  • the fusion medium was RPMI 1640 complete screening medium containing HAT and 20% FBS.
  • Antigen-specific clones were screened by indirect ELISA and neutralization assays to screen for monoclonal antibody cell lines with neutralizing activity and no post-F reactivity. After three cloning, a stable monoclonal antibody cell forest was obtained. Screening of hybridomas: After the cells were cultured for 10 days in 96-well cell plates, the supernatants were aspirated for RSV-post F enzyme-linked immunosorbent assay and RSV-A2 neutralization assay. Enzyme-linked immunosorbent assay or RSV-A2 positive wells continued. Cloning until the antibody secreted by the cell line stably blocks RSV-A2 and does not react with post F.
  • Hybridoma culture Stable hybridoma monoclonal antibody cells were first expanded in a carbon dioxide incubator, transferred to a 24-well via 96 wells, and transferred to a 50 ml cell via expanded culture. The cells in the collection cell bottle were then injected into the peritoneal cavity of the mouse, and ascites was aspirated from the abdominal cavity of the mouse 7-10 days later.
  • the post-F was diluted to a concentration of 20 ng of ⁇ with 1XCB, coated in microwells of polystyrene plates, ⁇ per well, 37.
  • the C package was taken for 2 hours and washed once with PBST.
  • C was incubated for 2 hours.
  • the antibody to be tested was diluted to 2 g/ml as the original titer and added to ⁇ and diluted 10-fold, and the horseradish peroxidase-labeled goat anti-mouse 1:5000 dilution was added to ⁇ as the detection secondary antibody, and the ELISA reading value was greater than 0. 5 is positive for detection.
  • the result is shown in Figure 1.
  • the antibody to be tested was diluted to 100 g/ml as the original titer, added to the U-bottom plate, and diluted 4-fold.
  • Add lxl0 6 PFU of 75 ⁇ respiratory syncytial virus suspension, 37. C was incubated for 1 hour.
  • 100 ⁇ l of the mixture was added to a 96-well plate plated with 100 ⁇ l of Hep2 cells, 37. Incubate for 24 hours and Paradim detects the neutralizing activity.
  • the result is shown in Figure 2.
  • the results in Figure 2 show that 5C4 mAb has strong neutralizing activity against respiratory syncytial virus.
  • the 5C4 antibody is more neutralizing to respiratory syncytial virus. Detection of binding inhibitory activity
  • Cell preparation 5 X 10 4 octopus ⁇ p of Hep2 cells were first plated in each well of a 96-well plate and incubated at 37 2 for 2 hours. It was then cooled at 4 Torr for 1 hour.
  • Sample preparation Add 1 mg/ml of the monoclonal antibody sample ⁇ to 90 ⁇ of MEM medium, and then dilute 11 gradients 4 times with MEM medium. A 75 ⁇ virus sample was mixed with 75 L of the diluted monoclonal antibody sample and incubated for 1 hour at 25 °C. It is then cooled to 4 ⁇ . The ⁇ monoclonal antibody-virus mixture was added to Hep2 cells and incubated for 4 hours.
  • Sample detection Remove the supernatant, add pre-cooled PBS ⁇ to wash the cells, and centrifuge at 4 ⁇ 1700G for 5 minutes. Repeat twice. ⁇ Add ⁇ labeled FITC goat anti-RSV antibody (1:1 dilution, purchased at Biodes ign International), incubate for 4 minutes at 4 ,, remove the supernatant, add pre-cooled PBS100 wash cells, and centrifuge at 4 ⁇ 1700G for 5 minutes. After removing the supernatant, add 150 ⁇ 0. 5% per well. Paraformaldehyde fixes cells. Finally, the test was performed using a flow cytometer. The results are shown in the figure
  • Cell preparation 5 X 10 4 octopus ⁇ p of Hep2 cells were first plated in each well of a 96-well plate and incubated at 37 2 for 2 hours. It will then be placed in 4 ⁇ for 1 hour.
  • Sample preparation Add 1 mg/ml of the monoclonal antibody sample ⁇ to 90 ⁇ of MEM medium, then dilute 11 gradients 4 times with MEM medium and place at 4 ⁇ . RSV-GFP was then diluted 8 fold using MEM medium, 50 RSV-GFP was added to the cells, and 4 incubated for 1 hour. Remove the supernatant, add pre-cooled PBS ⁇ to wash the cells, and centrifuge at 4 ⁇ 1700G for 5 minutes. repeat three times. Then, 50 ⁇ L of the pre-cooled MEM medium was added to the cells, and a 5 ⁇ L of the diluted monoclonal antibody sample was added to the cells, and the cells were incubated for 4 hours. The cells were then transferred to 37 ⁇ for 18 hours.
  • the monoclonal antibody was diluted to a concentration of 3 g octamol with 20 mM PB, H 7.4, coated in microwells of polystyrene plates, coated at 300 ⁇ per well, 4 ° C for 10 hours, and then 37.
  • the C package was washed for 1 hour and washed once with PBST.
  • a 200 ⁇ respiratory syncytial virus suspension having a virus amount of lx10 6 PFU was added and incubated at 37 ° C for 2 hours. The plate after incubation was washed 5 times.
  • RNA of respiratory syncytial virus in the sample was extracted and subjected to Real-time PCR quantitative assay.
  • the results are shown in Fig. 5.
  • the results in Figure 5 show that the binding of 5C4 mAb to respiratory syncytial virus is highly specific. Compared to the commercial antibody palizumab (al ivizumab, Synagi s), the 5C4 antibody has a stronger ability to capture respiratory syncytial virus.
  • the boiled and unboiled pos t-F, RSV-A2, and RSV-GFP were loaded onto a 10% SDS-polyacrylamide gel by lOul, and then subjected to electrophoresis, and then transferred for 35 hours at a current of 35 mA. After the transfer was completed, 5% skim milk 4 was added. C is closed overnight. TNT washes the membrane 3 times, each time for 10 minutes.
  • the antibody to be tested diluted 1:2000 to 1XTN was added to the membrane and incubated at room temperature for 1 h. TNT washes the membrane 3 times, each time for 10 minutes.
  • the 5C4 mAb is a mAb that recognizes a conformational epitope that recognizes non-denatured RSV-A2 and RSV-GFP, but does not recognize denatured RSV-A2 and RSV-GFP.
  • 5C4 mAb specifically recognizes RSV-A2, RSV-GFP, but is essentially non-reactive with post-F. Immunofluorescence detection
  • Cell preparation 1 X 10 5 /ml of Hep2 cells were added to a 24-well plate with slides, incubated for 37 hours at 37 °C, and then cooled for 4 hours at 4 Torr. Sample preparation: The cell culture supernatant was removed, and pre-cooled ⁇ RSV-A2 (5-fold diluted with RSV-A2 in MEM medium) was added, and after incubation for 1 hour at 4 ,, the supernatant was removed, and 1 ml of MEM medium was added. Samples were taken at 5 minutes, 1 hour, 6 hours, 16 hours, and 24 hours, respectively.
  • Sample detection Add 1 ml of pre-cooled PBS, place on a shaker for 5 minutes, remove the supernatant, and repeat 2 times. Then add ⁇ 0. 4% paraformaldehyde, incubate at room temperature in the dark for 15 minutes, add 1 ml of PBS, place on a shaker for 5 minutes, remove the supernatant, and repeat 3 times. After adding ⁇ 0. 3% Tri tonX-100, incubate for 10 minutes at room temperature, add 1 ml of PBS, place on a shaker for 5 minutes, remove the supernatant, and repeat 3 times.
  • ⁇ goat serum was added, and after incubation for 30 minutes at room temperature, 1 ml of PBS was added, placed on a shaker for 5 minutes, and the supernatant was removed and repeated 3 times. Then add ⁇ monoclonal antibody sample (10 times diluted with PBS), incubate for 3 hours at room temperature, add 1 ml of PBS, place on a shaker for 5 minutes, remove the supernatant, and repeat 3 times. Then, ⁇ -labeled goat anti-mouse polyclonal antibody (1,600, purchased from Sigma) was added.
  • the hybridoma cell line RSV-Y-5C4-2 secreting 5C4 monoclonal antibody was expanded to 107 ml, and semi-adherent cells were blasted by a blowpipe to suspend it. Take 1 ml of the cell suspension, centrifuge at 1000 rpm for 5 minutes, and remove the supernatant. The cells were resuspended and washed with 1 ml of PBS (pH 7.44), then centrifuged at 1000 rpm for 5 minutes, and the supernatant was removed and repeated 3 times. To the cell pellet Add 800 ⁇ TrizoK Roche Germany), shake vigorously, and then let stand for 10 min to lyse the sample. Then add 200 ⁇ DEPC water to replenish the aqueous phase.
  • MVkR was used as a downstream primer for light chain variable region gene amplification
  • MVhR was used as a downstream primer for heavy chain variable region gene amplification.
  • the PCR template is the two cDNAs synthesized above. PCR ⁇ H was: 94 ⁇ 5min; (94 ⁇ 40s, 53 ⁇ lmin, 72 ⁇ 50s) x35 cycles; IVC 15min.
  • the amplified product was recovered and cloned into the pMD 18-T vector, which was then sent to Shanghai Boya for sequencing.
  • CDR complementary determinant region
  • MVkF-F4 5'-ATgAAgTTgCCTgTTAggCTgTTggTgCT-3'
  • V K refers to the kappa chain variable region, which is a kind of light chain variable region (VL ), and Example 5.
  • VL light chain variable region
  • HEp-2 cells were infected with 3-fold infectious RSV for 18 to 20 hours, and cell-discrete methods were used after infection (cell stripper, Mediatech Inc., Herndon) , VA) was subjected to cell separation, and then the cells were washed with PBS. Finally, the cells are in a 96-well plate at the bottom of the U-shape. The cell volume of well 5 x 10 4 was incubated in PBS for incubation.
  • Monoclonal antibodies 5C4, AM22, D25 and 101F were all added to HEp-2 cells at an initial dilution of 100 g/ml. After half an hour, lOOul Alexa 488 was added to the conjugate at a concentration of 1 g/ml D25 and incubated for 1 hour at 4 °C. The incubated cells were washed with PBS for the first time and then filled with 0.5% polymethylated cheese.
  • the RSV F protein is derived from the viral strain P03420 of the RSV A2 subtype, which contains three naturally occurring amino acid mutations (P102A, I379V and M447V).
  • the mammalian codon-optimized amino acid at position 1-313 of the RSV F protein was fused to the C-terminus of the secondary fibrin Fibri tin of T4 phage and constructed into the mammalian cell expression vector pLEXm, which was simultaneously loaded with thrombin. Site, His tag and streptococcal label.
  • the plasmid expressing the RSV F protein, the light chain of the D25 antibody and the heavy chain (with or without the seed codon in the hinge region) is simultaneously transfected into the suspended HEK293 GnTI cells, or only the plasmid expressing the RSV F protein is transfected first.
  • the Fab of the previously purified D25 antibody was added to the GnTI cells. After 4-5 days of expression, the cell supernatant was collected, centrifuged, filtered and concentrated. The obtained cell supernatant was first purified by a Ni column (Qiagen, Valencia, CA) with an eluent of 20 mM. Tris-HCl pH 7.
  • the sample was absorbed by the grid glow of the newly discharged carbon coating, briefly rinsed with water, and then dyed with a freshly prepared 0.75% uranyl benzoate. Images were taken with a FEI T20 microscope with an Eagle CCD camera. Image analysis and two-dimensional averaging were performed using Bsoft (J. Struct. Biol. 157, 3 (2007)) and EMAN (J. Struct. Biol. 128, 82 (1999)). The results are shown in Figure 9. The results showed that the AM22/F protein, 5C4/F protein and D25/F protein antigen-antibody complex have the same structure. This indicates that AM22 mAb, 5C4 mAb binds to the same epitope on the F protein as the D25 mAb, and binds to the same conformation of the F protein (pre-F conformation).
  • the electron microscopy results of the palivizumab/F protein and the 5C4/F protein antigen-antibody complex were compared.
  • the results are shown in Figure 10, where the left panel shows the electron microscopy results of the complex of post-F and palivizumab; the lower left panel shows the structure observed by electron microscopy of post-F in the white-framed region of the upper left panel.
  • the picture on the right shows the results of electron microscopy of the composite of pre-F and 5C4.
  • the white-framed area in the figure is the structure observed by pre-F under electron microscope.
  • the palivizumab/F protein and the 5C4/F protein antigen-antibody complex have significantly different structures, and the two antigen-antibody complexes
  • the conformation of the F protein in the material is also significantly different, wherein the F protein in the palivizumab/F protein complex is in the post-F conformation, and the F protein in the 5C4/F protein complex is in the pre-F conformation.
  • the starting crystal was cultured by meteorological diffusion method, and the complex was treated with O. lul preservation solution at 20 ( (40% (w/v) PEG 400, 5% (w/v) PEG 3350, and 0.1 M sodium acetate, H 5. 5) Mix (54).
  • the crystals are regrown in hanging droplets, 3. 6A diffracted crystals are grown in 30% (w/v) PEG 400, 3. 75% (w/v) PEG 3350, 0.1 M HEPES pH 7.5, and 1% (v/v) 1, 2-butanediol in the preservation solution.
  • the crystal was directly frozen in liquid nitrogen, and X-ray diffraction data was obtained at SER-CAT beam line ID-22 at a wavelength of 1.00A. Diffraction and Deconstruction of Complex Crystals
  • the active side chain (F residue Met97/Hisl59, Met264/Met274, His317, and Met396; D25 heavy chain residues Metl9/His81 and His 58) was obtained by localization of 6 sites of a NaAuC14 derivative. through It C00T ( Acta Crys tal logr D Biol Crys tal logr, 66, 486 (2010) ) established a manual model, and the secondary structure elements were first established during the establishment process. The determination of single sites, TLS parameters, and individual B factors was performed by PHENIX (Acta Crys tal logr D Biol Crystal logr 66, 213 (2010)), and the extended D25 Fab structure and RSV F pos t- were applied in the precise process.
  • the F structure is used as a reference model. In addition to the residues from the C2 terminus to Met97, all RSV F residues in the mature protein were established. The final data collation and precise statistics are summarized in Table 6. The crystal structure of the composite is shown in Figures 11-13.
  • the CDR3 of the heavy chain binds to the alpha protein alpha helix of the F protein (constituted by the 192-209 acid residue of the F protein), and Ring structure between the second p-fold (consisting of amino acid residues 38-60 of the F protein) and the alpha alpha helix (consisting of amino acid residues 74-96 of the F protein) (by F The amino acid residues 62 to 72 of the protein constitute.)
  • the D25-bound epitope has little change in the secondary structure of the pre-F protein and the pos t-F protein, the change in the tertiary structure is significant: The alpha helix reverses 180° and shifts away from the 2nd p-fold (as shown in Figure 13).
  • the F protein epitope recognized by D25 mAb is composed of the 148-216 acid residues or fragments thereof of the respiratory syncytial virus fusion protein, and at least contains respiratory tract Amino acid residues 196-209 of the cytomegalovirus fusion protein.
  • the amino acid residues 62-69 or 62-76 of the respiratory syncytial virus fusion protein promoted the specific binding of the D25 mAb/F protein.
  • AM22 mAb and 5C4 mAb also recognize the above epitope of the F protein.
  • Figure 15 shows the spatial structure of the pre-F protein and the post-F protein, the corresponding amino acid sequence constituting the spatial structure, and the epitope sequence recognized by D25.
  • the results in Figure 15 show that there is a significant difference in the spatial structure of pre-F protein and post-F protein.
  • the spatial structure of the pre-F protein includes ⁇ - ⁇ helix and PI-P23 fold; and the spatial structure of the post-F protein includes ⁇ helix, ⁇ 5— ⁇ 8 helix, ⁇ helix, ⁇ — ⁇ 2 fold and ⁇ 5—P21 fold .
  • the results of Figure 15 also show that the core recognition epitope of the D25 monoclonal antibody in the pre-F protein is two peptides that are spatially close to each other, i.e., aa 62-69 and aa 196-209.
  • the interaction interface of these two peptides indicates that two segments of the F protein (aa62-76 and aa137-216 (or more specifically, aa148-216)) or fragments thereof are for such antibodies (eg, the invention)
  • Antibodies eg 5C4, D25 and AM22
  • their conformation in the pre-F protein is P-folded (P3-P4 fold), while the conformation in the post-F protein is alpha-helix (contained in the 5 helix).
  • D25 mAb, AM22 mAb and 5C4 mAb recognize the same epitope on the F protein and stabilize and maintain the pre-F conformation of the F protein by interaction with this epitope.
  • the novel epitopes of the F protein found in the present invention, as well as antibodies recognizing the epitope, can be used to stabilize the pre-F conformation of the F protein.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pulmonology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Mycology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明提供了可用于预防呼吸道合胞病毒感染的表位肽或其变体和包含该表位肽或其变体与载体蛋白的重组蛋白,以及它们的用途。本发明还提供了针对这些表位肽的抗体和产生所述抗体的细胞株,以及它们的用途。另外,本发明还提供了包含所述重组蛋白的疫苗或包含所述抗体的药物组合物,其可用于预防呼吸道合胞病毒感染相关的症状。

Description

RSV融合蛋白的表位以及识别其的抗体 技术领域
本发明涉及分子病毒学领域, 特别是呼吸道合胞病毒
( Respiratory syncytial virus , RSV ) 的疫苗预防领域。 具体 而言, 本发明涉及可用于预防呼吸道合胞病毒感染的表位肽(或 其变体) , 包含此类表位肽(或其变体) 以及载体蛋白的重组蛋 白, 以及此类表位肽(或其变体)和重组蛋白的用途。 本发明还 涉及针对此类表位肽的抗体, 编码所述抗体的核酸分子, 产生所 述抗体的细胞林, 以及它们的用途。 本发明还涉及可用于预防呼 吸道合胞病毒感染相关的一种或多种症状的疫苗或药物组合物, 它们分别包含本发明的重组蛋白或抗体。 背景技术
自从 20世纪 50年代被发现以来, 人类呼吸道合胞病毒 ( Respiratory syncytial virus , RSV )一直是耍幼儿下呼吸道 感染最主要的病原。 在美国, RSV是引起 1岁以下耍儿住院的首要 原因 (D. K. Shay, R. C. Hoi man. et al. , JAMA, 282 (1999) 1440-1446) , 5岁以下儿童临床约诊的主要原因之一(C. B. Hal l, G. A. Weinberg, et al., N Engl J Med, 360 (2009) 588—598)。 全球范围内每年有超过 3000万例下呼吸道感染由 RSV引起,其中超 过 300万的人需住院治疗。 RSV是小于 5岁的儿童最常见的住院原因 (H. Nair, W. A. Brooks, et al. , Lancet, 378 (2011) 1917-1930)。 早产儿、 支气管及肺发育不良者、 先天性心脏病及 免疫缺陷的耍幼儿 RSV感染率高达 50- 70% ( A. C. Cooper, N. C. Banasiak, P. J. Al len, Pediatr Nurs, 29 (2003) 452—456)。 每年有 16- 60万儿童死亡病例与 RSV有关(T. S. Howard, L. H. Hoffman, et al. J Pediatr, 137 (2000) 227-232; S. Leader, K. Kohlhase. J Pediatr, 143 (2003) S127- 132)。 耍幼儿感染 RSV所导致的住院治疗时间可达 2. 5个月, 由此引发的相关医疗费 用在美国每年可高达 3. 6—5. 7亿美元(E. A. Simoes. Lancet, 354 (1999) 847-852) β 老年人也是 RSV易感人群, 每年由 RSV感染导致 死亡的老年人数大于 12000位, 约为同一人群中流感死亡率的 1/3 (A. R. Fal sey, P. A. Hennessey, et al. N Engl J Med, 352 (2005) 1749-1759; W. W. Thompson, D. K. Shay, E. Weintraub, et al. JAMA, 289 (2003) 179-186) β 在我国由于缺乏本国研发的 RSV诊 断试剂, RSV检测由于过高的成本而得不到推广, 这导致了 RSV在 我国的流行情况及危害性至今不完全清楚, 但针对部分地区的研 究表明 RSV感染也是中国儿童下呼吸道感染的重要诱因(徐关仁, 孙颂文, 徐旭卿等. 疾病控制杂志, 4 (2000) 37-39; 谢健屏, 谢健屏, 何翠娟,等. 中华儿科杂志, 35 (1997) 402-403; 朱汝 南, 邓洁, 王芳,等. 21 (2003) 25-28) β
至今 RSV依然没有安全有效的疫苗, 只有一林识别 RSV表位融 合糖蛋白 F的中和抗体(Pal ivizumab, 商品名: Synagi s )能在新 生儿身上产生被动免疫效果, 降低新生儿发病率。 该抗体药物被 批准在早产儿、 患有慢性肺部疾病的、 支气管及肺发育异常的、 先天性心脏病的高危耍幼儿患者中应用 (H. W. Kim, J. G. Canchola, C. D. Brandt, et al. Am J Epidemiol, 89 (1969) 422-434) , 以预防由 RSV引起的严重下呼吸道感染。该抗体药物自 身中和效价不足同时生产成本过高导致上市后价格高昂, 其使用 被限制在 "高感染风险耍幼儿" 这一狭窄范围, 而不能得到广泛 应用。 Syang i s的应用表明结合 RS V- F蛋白的中和性单抗可以用于临 床保护, F蛋白上存在有效的中和活性位点。 而且 F蛋白位于病毒 表面对病毒入胞和合胞体形成在是必须的, 因此, F蛋白是筛选预 防和保护性抗体的重要靶标蛋白。
RSV是副粘病毒科肺炎病毒属的单股负链非节段性 RNA病毒, 有 15222个核苷酸, 编码 10种主要蛋白。 其中, F蛋白全长为 574 个 ^酸是 N-糖基化的 I型跨膜糖蛋白, 作为主要跨膜蛋白是 RSV 感染过程中的重要表面分子。 F蛋白膜融合的机制及触发过程仍完 全不清楚, 猜测是从处于高能量、 亚稳定状态的融合前 F构象 ( pre-fus ion F, pre- F )与靶细胞结合后发生构象变化, 形成高 度稳定的融合后 F蛋白 (post- fus ion F, pre-F ), 导致病毒膜与 细胞膜的融合。亚稳定的 pre- F构象和稳定的 post- F构象的自由能 差异很大导致膜融合的过程是不可逆的。 McLel lan等(J. S. McLel lan, M. Chen, J. S. Chang, et al. J Virol, 84 (2010) 12236- 12244. )利用哺乳动物表达系统获得了稳定的 post- F蛋白 结构。
由于 pre- F蛋白的结构不稳定,存在多种中间体,通过制备晶 体研究 pre- F蛋白的结构相当困难。 因此, McLel lan等(J. S. McLel lan, M. Chen, J. S. Chang, et al. J Virol, 84 (2010) 12236- 12244. )利用已知结构的 HPIV3 pre- F蛋白对 RSV pre- F蛋 白的结构进行模拟和预测, 提出 RSV F蛋白可能存在 pre- F构象, 并提出了上述融合机制假说。对于 pre- F构象的准确结构,及其融 合过程中的变构过程都有待获得稳定的 pre- F构象蛋白并进一步 确认。
现阶段用于研究 F蛋白抗原表位的抗体大部分是分离至 BalB/c老鼠, 通过多肽定位, 抗体竟争与逃逸突变等方法对中和 表表位位进进行行鉴鉴定定。。作作为为病病毒毒最最主主要要的的表表面面结结构构蛋蛋白白之之一一,, FF蛋蛋白白表表面面 存存在在大大量量的的中中和和抗抗体体识识别别表表位位。。 目目前前已已知知的的 RRSSVV FF蛋蛋白白的的中中和和抗抗体体 主主要要针针对对以以下下抗抗原原表表位位((JJ.. SS.. MMccLLeell llaann,, YY.. YYaanngg,, eett aall.. JJ VViirrooLL 8855 ((22001111)) 77778888--77779966;; MM.. MMaaggrroo,, DD.. AAnnddrreeuu,, eett aall.. JJ VViirrooll,,
8844 ((22001100)) 77997700——77998822.. ))。。
II表表位位:: 针针对对 II表表位位的的抗抗体体有有已已上上市市的的预预防防性性单单抗抗 SSyynnaaggiiss以以及及 它它的的等等效效衍衍生生物物 mmoottaavviizz麵麵 bb,,主主要要识识别别 FF11亚亚基基 aa.. aa.. 225555-- aa.. aa.. 227755。。 MMccLLeell llaann等等 ((JJ.. SS.. MMccLLeell llaann,, MM.. CChheenn,, JJ.. SS.. CChhaanngg,, eett aall.. JJ VViirrooll,, 8844 ((22001100)) 1122223366—— 1122224444.. ))通通过过解解析析 mmoottaavviizzuummaabb单单抗抗与与 FF 蛋蛋白白 aa.. aa.. 225533-- aa.. aa.. 227777残残基基肽肽的的晶晶体体结结构构证证实实这这个个区区域域形形成成""螺螺旋旋 --转转角角--螺螺旋旋""二二级级结结构构为为的的结结构构。。 晶晶体体结结构构显显示示 mmoottaavviizzuummaabb单单抗抗 结结合合在在 ""螺螺旋旋--转转角角--螺螺旋旋"" 结结构构的的一一头头,, 并并且且使使得得氢氢键键和和离离子子键键 作作用用于于 226688位位 AAssnn与与 227722位位 LLyyss,,在在这这两两个个点点的的突突变变可可引引起起抗抗体体逃逃逸逸。。 mmoottaavviizzuummaabb结结合合的的抗抗原原表表位位 AA的的结结构构在在 ppoosstt-- ffuuss iioonn的的结结构构中中保保 留留的的非非常常完完整整,, 抗抗体体结结合合位位点点暴暴露露充充分分。。 mmoottaavviizzuummaabb与与!!)) ooss tt--FF 蛋蛋白白的的结结构构揭揭示示了了 SSyynnaaggiiss和和 mmoottaavviizzuummaabb单单抗抗具具有有中中和和活活性性的的机机 制制。。 而而 RRSSVV pprree-- FF蛋蛋白白的的模模拟拟结结构构显显示示,, 该该表表位位在在 pprree-- FF蛋蛋白白处处于于 构构象象的的内内部部,, 在在天天然然的的 RRSSVV FF蛋蛋白白上上并并不不能能暴暴露露出出来来。。 GGrraahhaamm等等证证 实实,, SSyynnaaggiiss和和 mmoottaavviizzuummaabb单单抗抗只只能能够够抑抑制制 RRSSVV与与细细胞胞的的融融合合,,却却 不不能能抑抑制制 RRSSVV的的吸吸附附((JJ.. SS.. MMccLLeell llaann,, YY.. YYaanngg,, eett aall.. JJ VVii rrooll,,
8855 ((22001111)) 77778888--77779966;; JJ.. SS.. MMccLLeell llaann,, MM.. CChheenn,, AA.. KKiimm,, eett aall.. NNaatt SSttrruucctt MMooll BBiiooll,, 1177 ((22001100)) 224488--225500))。。 当当然然,, 只只有有通通过过 pprree-- FF蛋蛋白白的的晶晶体体结结构构才才能能对对此此进进行行确确认认。。
IIII表表位位:: 识识别别 IIII表表位位的的抗抗体体有有 113311-- 22aa,, 其其识识别别 FF11的的半半胱胱氨氨酸酸富富 集集区区。。 这这类类抗抗体体最最多多阻阻断断 5500%% RRSSVV病病毒毒感感染染,,
Figure imgf000005_0001
后后的的多多相相性性,, 或或者者这这些些抗抗体体通通过过间间接接效效应应如如病病毒毒的的聚聚沉沉起起中中和和效效 果。 不像识别表位 A和表位 C的抗体, 这些抗体部分地阻断病毒吸 附靶细胞。很可能这个表位在 pre- F蛋白的构象中靠近病毒的细胞 膜, 但是在 post- F蛋白的构象中位于顶点。
IV表位: 识别区域为 a. a. 422- a. a. 438,是 19和 101F等单抗抗 体的靶点。 该表位位于 F1中的构象相对保守的区域。 McLel lan等 (J. S. McLel lan, Y. Yang, et al. J Virol, 85 (2011) 7788-7796) 已经解出了 101F与 F蛋白 (a. a. 422-a. a. 438 )肽段复合物的晶体 结构。 该区域的核心表位为 a. a. 427- a. a. 437, 已知的逃逸突变 Arg429和 Lys433的氢键和离子键与 101F相互作用。 101F与游离肽 的亲和力比与 post- F的亲和力低几千倍, 101F在 post- F的结构上 显示 101F表位比线性肽更复杂。
针对上述三个表位的中和抗体与已上市的 Synagis相比均没 有太大的中和效价提升,且均与 pre- F以及 post- F有反应性。因此, 以 RSV F蛋白为靶标筛选针对 pre- F且具有更高中和活性的单抗, 将为 RSV的预防与治疗奠定基础。 发明内容
在本发明中, 除非另有说明, 否则本文中使用的科学和技术 名词具有本领域技术人员所通常理解的含义。 并且, 本文中所用 的细胞培养、 分子遗传学、 核酸化学、 免疫学实验室操作步骤均 为相应领域内广泛使用的常规步骤。 同时, 为了更好地理解本发 明, 下面提供相关术语的定义和解释。
如本文中所使用的, 术语 "RSV融合蛋白"或 " F蛋白"是指, 呼吸道合胞病毒 (RSV)的融合蛋白 ( Fus ion protein, F protein ), 其是本领域技术人员公知的(参见, 例如 NCBI GENBANK数据库登 录号: P03420 ) 。 如本文中所使用的, 当提及 F蛋白的 列时, 其使用
SEQ ID NO: 15所示的序列来进行描述。 例如, 表述 "F蛋白的第 196-209 位氨基酸残基" 是指, SEQ ID NO: 15 所示的多肽的第 196-209位 ^酸残基。 然而, 本领域技术人员理解, 在 F蛋白 的氨基酸序列中, 可天然产生或人工引入突变或变异(包括但不 限于, 置换, 缺失和 /或添加, 例如不同基因型或基因亚型的 F 蛋白) , 而不影响其生物学功能。 因此, 在本发明中, 术语 "F 蛋白" 应包括所有此类序列, 包括例如 SEQ ID NO: 15所示的序 列以及其天然或人工的变体。并且, 当描述 F蛋白的序列片段时, 其不仅包括 SEQ ID NO: 15的序列片段, 还包括其天然或人工变 体中的相应序列片段。 例如, 表述 "F蛋白的第 196- 209位 ^ 酸残基" 包括, SEQ ID NO: 15的第 196-209位氨基酸残基, 以 及其变体(天然或人工) 中的相应片段。 根据本发明, 表述 "相 应序列片段" 或 "相应片段" 是指, 当对序列进行最优比对时, 即当序列进行比对以获得最高百分数同一性时, 进行比较的序列 中位于等同位置的片段。
之前的研究显示, F 蛋白存在 1 种确定的构象, post-F。 Mc 11 an等结合副流感病毒 ( arainf luenza virus , PIV ) 的 F 蛋白研究结果推测, RSV 的 F 蛋白可能还存在 pre- F 构象 (McLel lan 等(2010), J Vriol , 84: 12236-12244) β 在通常情况 下, pre- F构象是不稳定的,其将自发转变为稳定的 post- F构象。 因此, 从细胞中表达和纯化的 F 蛋白主要以 post- F 构象存在 ( McLel lan等 ( 2010 ) , J Vriol , 84: 12236-12244 ) 。
如本文中所使用的, 术语 "pre- F蛋白" 是指, 以 pre- F构 象存在的 F蛋白。如本文中所使用的, 术语 "post- F蛋白"是指, 以 post- F构^ ^在的 F蛋白。 如本文中所使用的, 术语 "抗体" 是指, 通常由两对多肽链
(每对具有一条 "轻" (L )链和一条 "重" (H )链)组成的免 疫球蛋白分子。抗体轻链可分类为 κ和 λ轻链。重链可分类为 μ、 δ、 γ、 α或 ε,并且分别将抗体的同种型定义为 IgM、 IgD、 IgG、 IgA和 IgE。 在轻链和重链内, 可变区和恒定区通过大约 12或更 多个氨基酸的 "J" 区连接, 重链还包含大约 3个或更多个氨基酸 的 "D" 区。 各重链由重链可变区(VH)和重链恒定区(CH)组成。 重 链恒定区由 3个结构域(CH1、 CH2和 CH3)组成。 各轻链由轻链可变 区(VL)和轻链恒定区(CJ组成。 轻链恒定区由一个结构域 CL组成。 抗体的恒定区可介导免疫球蛋白与宿主组织或因子, 包括免疫系 统的各种细胞(例如,效应细胞)和经典补体系统的第一组分(C 1 q) 的结合。 VH和 VL区还可被细分为具有高变性的区域 (称为互补决定 区(CDR) ), 其间散布有较保守的称为构架区 (FR ) 的区域。 各 VH 和 VL由按下列顺序: FR1、 CDR1、 FR2、 CDR2、 FR3、 CDR 3 , FR4 从氨基末端至羧基末端排列的 3个 CDR和 4个 FR组成。 各重链 / 轻链对的可变区(VH和 V 分别形成抗体结合部位。 氨基酸至各区 域或结构域的分配遵循 Kabat Sequences of Proteins of Immunological Interes t (Nat ional Ins ti tutes of Heal th, Bethesda, Md. (1987 and 1991) ) , 或 Chothia & Lesk (1987) J. Mol. Biol. 196: 901-917; Chothia 等人 (1989) Nature 342: 878-883 的定义。 术语 "抗体" 不受任何特定的产生抗体的 方法限制。 例如, 其包括, 特别地, 重组抗体、 单克隆抗体和多 克隆抗体。抗体可以是不同同种型的抗体,例如, IgG (例如, IgGl , IgG2, IgG3或 IgG4亚型), IgAl , IgA2, IgD, IgE或 IgM抗体。
如本文中所使用的, 术语抗体的 "抗原结合片段" 是指包含 全长抗体的片段的多肽, 其保持特异性结合全长抗体所结合的相 同抗原的能力,和 /或与全长抗体竟争对抗原的特异性结合,其也 被称为 "抗原结合部分" 。 通常参见, Fundamental Immunology, Ch. 7 (Paul, W. , ed. , 第 2版, Raven Press, N. Y. (1989), 其以其全文通过引用合并入本文,用于所有目的。可通过重组 DNA 技术或通过完整抗体的酶促或化学断裂产生抗体的抗原结合片 段。 在一些情况下, 抗原结合片段包括 Fab、 Fab' , F (ab' ) 2、 Fd、 Fv、 dAb 和互补决定区(CDR)片段、 单链抗体(例如, scFv)、 嵌 合抗体、双抗体(diabody)和这样的多肽,其包含足以赋予多肽特 异性抗原结合能力的抗体的至少一部分。
如本文中所使用的, 术语 "Fd片段" 意指由 VH和 CH1结构域 组成的抗体片段; 术语 "Fv 片段" 意指由抗体的单臂的 VL和 VH 结构域组成的抗体片段; 术语 "dAb片段" 意指由 VH结构域组成 的抗体片段 (Ward 等人, ature 341: 544-546 (1989) );术语" Fab 片段"意指由 、 VH、^和 CH1结构域组成的抗体片段;术语" F (ab' ) 2 片段" 意指包含通过铰链区上的二硫键连接的两个 Fab片段的抗 体片段。
在一些情况下, 抗体的抗原结合片段是单链抗体(例如, scFv) , 其中 VL和 VH结构域通过使其能够产生为单个多肽链的连 接体配对形成单价分子(参见, 例如, Bird 等人, Science 242: 423-426 (1988)和 Huston等人, Pro Nat l. Acad. Sci. USA 85: 5879-5883 (1988) )。 此类 scFv分子可具有一般结构: H2-V - 接头- VH- C00H或 NH2- VH-接头- Vi~C00H。 合适的现有技术接头由重 复的 GGGGS氨基酸序列或其变体组成。 例如, 可使用具有氨基酸 序列(GGGGS) 4的接头, 但也可使用其变体(Hol l iger等人(1993), Proc. Nat l. Acad. Sci. USA 90: 6444—6448)。 可用于本发明 的其他接头由 Alf than等人(1995), Protein Eng. 8: 725-731 , Choi等人(2001), Eur. J. Immunol. 31: 94- 106, Hu等人(1996), Cancer Res. 56: 3055-3061 , Kipr iyanov 等人(1999), J. Mol. Biol. 293: 41-56和 Roovers等人(2001), Cancer Immunol.描述。
在一些情况下, 抗体的抗原结合片段是欢抗体, 即, 欢价抗 体, 其中 VH和 VL结构域在单个多肽链上表达, 但使用太短的连接 体以致不允许在相同链的两个结构域之间配对, 从而迫使结构域 与另一条链的互补结构域配对并且产生两个抗原结合部位(参见, 例如, Hol l iger P. 等人, Proc. Nat l. Acad. Sci. USA 90: 6444-6448 (1993) , 和 Pol jak R. J. 等人, Structure 2: 1121-1123 (1994) )。
可使用本领域技术人员已知的常规技术(例如, 重组 DNA技 术或酶促或化学断裂法)从给定的抗体(例如本发明提供的单克 隆抗体 5C4 )获得抗体的抗原结合片段(例如, 上述抗体片段) , 并且以与用于完整抗体的方式相同的方式就特异性筛选抗体的抗 原结合片段。
在本文中, 除非上下文明确指出, 否则当提及术语 "抗体" 时, 其不仅包括完整抗体, 而且包括抗体的抗原结合片段。
如本文中所使用的, 术语 "单抗" 和 "单克隆抗体" 是指, 来自一群高度同源的抗体分子中的一个抗体或抗体的一个片段, 也即除可能自发出现的自然突变外, 一群完全相同的抗体分子。 单抗对抗原上的单一表位具有高特异性。 多克隆抗体是相对于单 克隆抗体而言的, 其通常包含至少 2种或更多种的不同抗体, 这 些不同的抗体通常识别抗原上的不同表位。 单克隆抗体通常可采 用 Kohler 等首次报道的杂交瘤技术获得 ( Nature, 256: 495 , 1975 ) , 但也可采用重组 DNA技术获得(如参见 U. S. P 4, 816, 567)。 例如, 可以如下来制备单克隆抗体。 首先用免疫原 (必要时 候添加佐剂)免疫注射小鼠或其它合适的宿主动物。 免疫原或佐 剂的注射方式通常为皮下多点注射或腹腔注射。 可将免疫原预先 偶联到某些已知蛋白, 如血清白蛋白或大豆胰酶抑制剂上, 以增 强抗原在宿主内的免疫原性。佐剂可以是弗氏佐剂或 MPL- TDM等。 动物在接受免疫后, 体内将产生分泌特异性结合免疫原的抗体的 淋巴细胞。 另外, 淋巴细胞也可以利用体外免疫获得。 收集目的 淋巴细胞, 并用合适的融合剂, 如 PEG, 使其与骨髄瘤细胞融合 以 获得杂 交瘤 细 胞 (Goding, Monoclonal Antibodies: Principles and Practice, pp. 59-103, Academic Press, 1996)。 上述制备的杂交瘤细胞可以接种到合适的培养液中生长, 培养液 中优选含有一种或多种能够抑制未融合的、 母体骨髄瘤细胞生长 的物质。 例如, 对于缺乏次黄嘌呤鸟嘌呤磷酸转移酶( HGPRT 或 HPRT ) 的母体骨髄瘤细胞, 在培养液中添加次黄嘌呤、 氨基喋呤 和胸腺嘧啶(HAT培养基)等物质将可以抑制 HGPRT^fe:陷细胞的 生长。优选的骨髄瘤细胞应该具有融合率高,抗体分泌能力稳定, 对 HAT培养液敏感等特征。 其中, 骨髄瘤细胞首选鼠源骨髄瘤, 如 MOP- 21或 MC- 11小鼠肿瘤衍生林(THE Salk Insti tute Cel l Distribution Center, San Diego, Cal if. USA ) , 和 SP-2/0 或 X63-Ag8-653 细胞林 ( American Type Culture Collection, Rockvi l le, Md. USA ) 。 另外也有研究报道, 利用人骨髄瘤和人 鼠异源骨髄瘤细胞林制备人单抗(Kozbor, J. Immunol. , 133: 3001 (1984); Brodeur et al. , Monoclonal Antibody Production Techniques and Appl ications, pp. 51-63, Marcel Dekker, Inc. New York, 1987)。 生长杂交瘤细胞的培养液用于检测针对特异抗 原的单抗的产生。 测定杂交瘤细胞产生的单抗的结合特异性的方 法包括例如,免疫沉淀或体外结合试验,如放射免疫试验(RIA )、 酶联免疫吸附试验 ( ELISA ) 。 例如, 可利用 Munson等在 Anal. Biochem. 107: 220 (1980)描述的 Scatchard分析法来测定单抗 的亲和力。 当确定了杂交瘤产生的抗体的特异性、 亲和力和反应 性之后, 目的细胞林可以通过 (Goding, Monoclonal Antibodies: Principles and Practice, pp. 59-103, Academic Press, 1996) 所描述的标准的有限稀释法进行亚克隆化。 合适的培养液可以是 DMEM或 RPMI- 1640等。 另外, 杂交瘤细胞还可以腹水瘤的形式在 动物体内生长。 利用传统的免疫球蛋白纯化方法, 如蛋白 A琼脂 糖凝胶、 羟基磷灰石层析、 凝胶电泳、 透析或亲和层析等, 可以 将亚克隆细胞分泌的单抗从细胞培养液、腹水或血清中分离出来。
还可以通过基因工程重组技术获得单克隆抗体。 利用特异性 结合单抗重链和轻链基因的核酸引物进行 PCR扩增, 可以从杂交 瘤细胞中分离得到编码单抗重链和轻链基因的 DNA分子。 将所得 的 DNA分子插入表达载体内, 然后转染宿主细胞(如 E. col i细 胞、 COS细胞、 CH0细胞、或其它不产生免疫球蛋白的骨髄瘤细胞), 并在合适的条件下进行培养, 可以获得重组表达的目标抗体。
如本文中所使用的, 术语 "嵌合抗体" 是指这样的抗体, 其 轻链或 /和重链的一部分源自一个抗体(其可以源自某一特定物种 或属于某一特定抗体类或亚类),且轻链或 /和重链的另一部分源 自另一个抗体(其可以源自相同或不同的物种或属于相同或不同 的抗体类或亚类) , 但无论如何, 其仍保留对目标抗原的结合活 性(U. S. P 4, 816, 567 to Cabi l ly et al.; Morrison et al. , Proc. Natl. Acad. Sci. USA, 81: 6851 6855 (1984) )。
如本文中所使用的, 术语 "人源化抗体" 是指, 人源免疫球 蛋白 (受体抗体) 的全部或部分 CDR区被一非人源抗体(供体抗 体) 的 CDR区替换后得到的抗体或抗体片段, 其中的供体抗体可 以是具有预期特异性、 亲和性或反应性的非人源 (例如, 小鼠、 大鼠或兔)抗体。 此外, 受体抗体的构架区 (FR ) 的一些氨基酸 残基也可被相应的非人源抗体的氨基酸残基替换, 或被其他抗体 的氨基酸残基替换, 以进一步完善或优化抗体的性能。 关于人源 化抗体的更多详细内容, 可参见例如, Jones et al., Nature, 321: 522 525 (1986) ; Reichmann et al. , Nature, 332: 323 329 (1988) ; Presta, Curr. Op. Struct. Biol. , 2: 593 596 (1992) ; 和 Clark, Immunol. Today 21: 397 402 (2000)。
如本文中所使用的, "中和抗体" 是指, 能清除或显著降低 目标病毒的毒力 (例如, 感染细胞的能力) 的抗体或抗体片段。
如本文中所使用的, 术语 "表位" 是指, 抗原上被免疫球蛋 白或抗体特异性结合的部位。 "表位" 在本领域内也称为 "抗原 决定簇" 。 表位或抗原决定簇通常由分子的化学活性表面基团例 如氨基酸或碳水化合物或糖侧链组成并且通常具有特定的三维结 构特征以及特定的电荷特征。 例如, 表位通常以独特的空间构象 包括至少 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14或 15个连 续或非连续的氨基酸, 其可以是 "线性的"或 "构象的" 。 参见, 例如, Epi tope Mapping Protocols in Methods in Molecular Biology, 第 66卷, G. E. Morris , Ed. (1996)。 在线性表位中, 蛋白质与相互作用分子(例如抗体)之间的所有相互作用的点沿 着蛋白质的一级氨基酸序列线性存在。 在构象表位中, 相互作用 的点跨越彼此分开的蛋白质 ^酸残基而存在。
如本文中所使用的, 术语 "表位肽" 是指, 抗原上能够用作 表位的肽段。 在一些情况下, 单独的表位肽即能够被针对所述表 位的抗体特异性识别 /结合。在另一些情况下,可能需要将表位肽 与载体蛋白融合, 以便表位肽能够被特异性抗体识别。 如本文中 所使用的, 术语 "载体蛋白" 是指这样的蛋白, 其可以充当表位 肽的载体, 即, 其可以在特定位置处(例如蛋白内部, N 端或 C 端)插入表位肽, 以便该表位肽能够呈现出来, 从而该表位肽能 够被抗体或免疫系统识别。 此类载体蛋白是本领域技术人员熟知 的, 包括例如, HPV L1蛋白 (可以将表位肽插入在所述蛋白的第 130-131 位氨基酸之间或在第 426-427 位氨基酸之间, 参见 Slupetzky, K.等 Chimeric papi l lomavirus- l ike particles expressing a foreign epi tope on caps id surface loops [J] . J Gen Virol, 2001, 82: 2799-2804 ; Varsani, A.等 Chimeric human papi l lomavirus type 16 (HPV-16) LI particles presenting the common neutral izing epi tope for the L2 minor caps id protein of HPV-6 and HPV-16 [J] . J Virol, 2003, 77: 8386-8393 ) , HBV 核心抗原 (可以用表位肽替换所述蛋白的第 79-81位 ^酸, 参见 Koletzki, D. , et al. HBV core particles al low the insertion and surface exposure of the entire potential ly protective region of Puumala hantavirus nucleocaps id protein [J] . Biol Chem, 1999, 380: 325-333 ) , 土拨鼠肝炎病毒核心蛋白 (可以用表位肽替换所述蛋白的第 79-81 位氨基酸, 参见 Sabine Konig, Gertrud Beterams and Michael Nassal , J. Virol. 1998, 72 (6) : 4997 ) , CRM197蛋白 (可以将表位肽连接至该蛋白或其片段的 N末端或 C末端) 。 任 选地, 可以在表位肽与载体蛋白之间使用连接体(例如柔性或刚 性连接体) , 以促进二者各自的折叠。
可使用本领域技术人员已知的常规技术, 就与相同表位的结 合竟争性筛选抗体。 例如, 可进行竟争和交叉竟争研究, 以获得 彼此竟争或交叉竟争与抗原 (例如, RSV 融合蛋白) 的结合的抗 体。 基于它们的交叉竟争来获得结合相同表位的抗体的高通量方 法描述于国际专利申请 W0 03/48731中。 因此, 可使用本领域技 术人员已知的常规技术,获得与本发明的单克隆抗体 (例如,单克 隆抗体 5C4)竟争结合 RSV融合蛋白上的相同表位的抗体及其抗原 结合片段(即, 抗原结^分) 。
如本文中所使用的, 术语 "分离的" 或 "被分离的"指的是, 从天然状态下经人工手段获得的。 如果自然界中出现某一种 "分 离" 的物质或成分, 那么可能是其所处的天然环境发生了改变, 或从天然环境下分离出该物质, 或二者情况均有发生。 例如, 某 一活体动物体内天然存在某种未被分离的多聚核苷酸或多肽, 而 从这种天然状态下分离出来的高纯度的相同的多聚核苷酸或多肽 即称之为分离的。 术语 "分离的" 或 "被分离的" 不排除混有人 工或合成的物质,也不排除存在不影响物质活性的其它不纯物质。
如本文中所使用的, 术语 "大肠杆菌表达系统" 是指由大肠 杆菌(菌林)与载体组成的表达系统, 其中大肠杆菌 (菌林)来源 于市场上可得到的菌林, 例如但不限于: GI698, ER2566, BL2KDE3) , B834 (DE3) , BLR (DE3) β
如本文中所使用的, 术语 "载体(vector ) " 是指, 可将多 聚核苷酸插入其中的一种核酸运载工具。 当载体能使插入的多核 苷酸编码的蛋白获得表达时, 载体称为表达载体。 载体可以通过 转化, 转导或者转染导入宿主细胞, 使其携带的遗传物质元件在 宿主细胞中获得表达。 载体是本领域技术人员公知的, 包括但不 限于: 质粒; 噬菌粒; 柯斯质粒; 人工染色体, 例如酵母人工染 色体 ( YAC )、细菌人工染色体 ( BAC )或 P1来源的人工染色体 ( PAC ); 噬菌体如 λ噬菌体或 M13噬菌体及动物病毒等。 可用作载体的动 物病毒包括但不限于, 逆转录酶病毒(包括慢病毒) 、 腺病毒、 目关病毒、 疱渗病毒(如单纯疱渗病毒)、 痘病毒、 杆状病毒、 乳头瘤病毒、 乳头多瘤空泡病毒(如 SV40 )。 一种载体可以含有 多种控制表达的元件, 包括但不限于, 启动子序列、 转录起始序 列、 增强子序列、 选择元件及报告基因。 另外, 载体还可含有复 制起始位点。
如本文中所使用的, 术语 "宿主细胞" 是指, 可用于导入载 体的细胞,其包括但不限于,如大脉杆菌或枯草菌等的原核细胞, 如酵母细胞或曲霉菌等的真菌细胞,如 S2果蝇细胞或 Sf9等的昆 虫细胞,或者如纤维原细胞, CH0细胞, COS细胞, NS0细胞, HeLa 细胞, BHK细胞, HEK 293细胞或人细胞等的动物细胞。
如本文中所使用的, 术语 "同一性" 用于指两个多肽之间或 两个核酸之间序列的匹配情况。 当两个进行比较的序列中的某个 位置都被相同的碱基或氨基酸单体亚单元占据时(例如,两个 DNA 分子的每一个中的某个位置都被腺嘌呤占据, 或两个多肽的每一 个中的某个位置都被赖氨酸占据) , 那么各分子在该位置上是同 一的。 两个序列之间的 "百分数同一性" 是由这两个序列共有的 匹配位置数目除以进行比较的位置数目 x lOO 的函数。 例如, 如 果两个序列的 10个位置中有 6个匹配,那么这两个序列具有 60% 的同一性。例如, DNA序列 CTGACT和 CAGGTT共有 50%的同一性(总 共 6个位置中有 3个位置匹配)。通常,在将两个序列比对以产生 最大同一性时进行比较。 这样的比对可通过使用, 例如, 可通过 计算机程序例如 Al ign 程序 (DNAstar, Inc. ) 方便地进行的 Needleman等人( 1970 ) J. Mol. Biol. 48: 443-453 的方法来 实现。 还可使用已整合入 ALIG 程序(版本 2. 0)的 E. Meyers和 W. Mi l ler (Comput. Appl Biosci. , 4: 11-17 (1988) )的算法, 使用 PAM120权重残基表 ( weight res idue table ) 、 12的缺口 长度罚分和 4的缺口罚分来测定两个氨基酸序列之间的百分数同 一性。此外,可使用已整合入 GCG软件包(可在 www. gcg. com上获 得)的 GAP 程序中的 Needleman 和 Wunsch (J Mo I Biol. 48: 444-453 (1970) )算法, 使用 Blossum 62矩阵或 PAM250矩阵 以及 16、 14、 12、 10、 8、 6或 4的缺口权重(gap weight )和 1、 2、 3、 4、 5或 6的长度权重来测定两个氨基酸序列之间的百分数 同一性。
如本文中使用的, 术语 "保守置换" 意指不会不利地影响或 改变包含 ^酸序列的蛋白 /多肽的必要特性的氨基酸置换。 例 如, 可通过本领域内已知的标准技术例如定点诱变和 PCR介导的 诱变引入保守置换。 保守氨基酸置换包括用具有相似侧链的氨基 酸残基替代氨基酸残基的置换, 例如用在物理学上或功能上与相 应的氨基酸残基相似 (例如具有相似大小、 形状、 电荷、 化学性 质, 包括形成共价键或氢键的能力等) 的残基进行的置换。 已在 本领域内定义了具有相似侧链的氨基酸残基的家族。 这些家族包 括具有碱性侧链(例如, 赖氨酸、 精氨酸和组氨酸) 、 酸性侧链 (例如天冬氨酸、 谷氨酸)、 不带电荷的极性侧链(例如甘氨酸、 天冬酰胺、 谷氨酰胺、 丝氨酸、 苏氨酸、 酪氨酸、 半胱氨酸、 色 氨酸)、 非极性侧链(例如丙氨酸、 缬氨酸、 亮氨酸、 异亮氨酸、 脯氨酸、 苯丙氨酸、 甲硫氨酸) 、 P分支侧链(例如, 苏氨酸、 缬氨酸、 异亮氨酸)和芳香族侧链(例如, 酪氨酸、 苯丙氨酸、 色氨酸、 组氨酸) 的 ^¾ ^酸。 因此, 优选用来自相同侧链家族的 另一个氨基酸残基替代相应的氨基酸残基。 鉴定氨基酸保守置换 的方法在本领域内是熟知的(参见,例如, Br u隨 el l等人, Biochem. 32: 1180-1187 (1993) ; Kobayashi 等 人 Protein Eng. 12 (10) : 879-884 (1999) ; 和 Burks等人 Pro Natl Acad. Set USA 94: 412-417 (1997), 其通过引用并入本文)。
如本文中使用的, 术语 "免疫原性( i隨 unogenici ty ) " 是 指, 能够刺激机体形成特异抗体或致敏淋巴细胞的能力。其既指, 抗原能刺激特定的免疫细胞, 使免疫细胞活化、 增殖、 分化, 最 终产生免疫效应物质如抗体和致敏淋巴细胞的特性, 也指抗原刺 激机体后, 机体免疫系统能形成抗体或致敏 T淋巴细胞的特异性 免疫应答。 免疫原性是抗原最重要的性质, 一种抗原能否成功地 诱导宿主产生免疫应答取决于三方面的因素: 抗原的性质、 宿主 的反应性和免疫方式。
如本文中使用的, 术语 "特异性结合" 是指, 两分子间的非 随机的结合反应, 如抗体和其所针对的抗原之间的反应。 在某些 实施方式中, 特异性结合某抗原的抗体(或对某抗原具有特异性 的抗体)是指, 抗体以小于大约 10—5 M, 例如小于大约 10— 6 M、 10 7 M、 10 8 M、 10 9 M或 10 10 M或更小的亲和力 ( KD )结合该抗 原。
如本文中所使用的, 术语 "KD" 是指特定抗体-抗原相互作用 的解离平衡常数, 其用于描述抗体与抗原之间的结合亲和力。 平 衡解离常数越小,抗体-抗原结合越紧密,抗体与抗原之间的亲和 力越高。 通常, 抗体(例如, 本发明的单克隆抗体 5C4 ) 以小于 大约 10 5 M, 例如小于大约 10 6 M、 10 7 M、 10 8 M、 ^^!^或 ^) 1
M或更小的解离平衡常数(KD )结合抗原(例如, RSV融合蛋白 ), 例如, 如使用表面等离子体共振术(SPR)在 BIAC0RE仪中测定的。
如本文中所使用的, 术语 "单克隆抗体" 和 "单抗" 具有相 同的含义且可互换使用; 术语 "多克隆抗体" 和 "多抗" 具有相 同的含义且可互换使用; 术语 "多肽" 和 "蛋白质" 具有相同的 含义且可互换使用。 并且在本发明中, ^酸通常用本领域公知 的单字母和三字母缩写来表示。例如, 丙氨酸可用 A或 Ala表示。
如本文中所使用的, 术语 "杂交瘤" 和 "杂交瘤细胞林" 可 互换使用, 并且当提及术语 "杂交瘤" 和 "杂交瘤细胞林" 时, 其还包括杂交瘤的亚克隆和后代细胞。 例如, 当提及杂交瘤细胞 林 RSV- Y- 5C4- 2 (其在本文中也简称为, 杂交瘤细胞林 5C4 ) 时, 其还指杂交瘤细胞林 RSV-Y-5C4-2的亚克隆和后代细胞。
如本文中所使用的,术语"药学上可接受的载体和 /或赋形剂 " 是指在药理学和 /或生理学上与受试者和活性成分相容的载体和 / 或赋形剂, 其是本领域公知的 ( 参见例如 Remington' s Pharmaceutical Sciences. Edi ted by Gennaro AR, 19th ed. Pennsylvania: Mack Publ ishing Company, 1995 ) , 并且包括 但不限于: pH调节剂, 表面活性剂, 佐剂, 离子强度增强剂。 例 如, pH调节剂包括但不限于磷酸盐緩冲液; 表面活性剂包括但不 限于阳离子, 阴离子或者非离子型表面活性剂, 例如 Tween-80; 离子强度增强剂包括但不限于氯化钠。
如本文中所使用的, 术语 "佐剂"是指非特异性免疫增强剂, 当其与抗原一起或预先递送入机体时, 其可增强机体对抗原的免 疫应答或改变免疫应答类型。 佐剂有很多种, 包括但不限于铝佐 剂 (例如氢氧化铝) 、 弗氏佐剂 (例如完全弗氏佐剂和不完全弗 氏佐剂) 、 短小棒状杆菌、 脂多糖、 细胞因子等。 弗氏佐剂是目 前动物试验中最常用的佐剂。 氢氧化铝佐剂则在临床实验中使用 较多。
如本文中所使用的, 术语 "蛋白疫苗" 是指, 基于多肽的疫 苗, 其任选地还包含佐剂。 疫苗中的多肽可以是通过基因工程技 术获得的, 也可以是通过化学合成方法获得的。 如本文中所使用 的, 术语 "核酸疫苗" 是指, 基于 DNA或 RNA (例如质粒, 如表 达盾粒) 的疫苗, 其任选地还包含佐剂。
如本文中所使用的, 术语 "有效量" 是指足以获得或至少部 分获得期望的效果的量。例如,预防疾病(例如 RSV感染或与 RSV 感染相关的疾病)有效量是指,足以预防, 阻止,或延迟疾病(例 如 RSV感染或与 RSV感染相关的疾病) 的发生的量; 治疗疾病有 效量是指, 足以治愈或至少部分阻止已患有疾病的患者的疾病和 其并发症的量。 测定这样的有效量完全在本领域技术人员的能力 范围之内。 例如, 对于治疗用途有效的量将取决于待治疗的疾病 的严重度、 患者自己的免疫系统的总体状态、 患者的一般情况例 如年龄, 体重和性别, 药物的施用方式, 以及同时施用的其他治 疗等等。
如本文中所使用的, 本发明的表位肽的生物学功能包括但不 限于选自下列的一种或多种:
1 )与抗体 5C4的特异性结合;
2 )在受试者体内降低 RSV融合蛋白的血清水平的能力(任选 地, 在将所述表位肽与载体蛋白融合后) ;
3 )诱发有效清除体内的 RSV和被 RSV感染的细胞的抗体应答 的能力 (任选地, 在将所述表位肽与载体蛋白融合后) ; 和
4 )治疗受试者的 RSV感染或与 RSV感染相关的疾病(例如肺 炎) 的能力 (任选地, 在将所述表位肽与载体蛋白融合后) 。 本发明人经过大量的实验研究, 出人意料地发现: RSV 融合 蛋白中的某些表位(例如, RSV融合蛋白的第 148- 216位 基酸 中包含的表位,或者包含 RSV融合蛋白的第 62- 69位和第 196-209 位 ^酸 ¾ ^的表位) 以及识别这些表位的抗体促进了 F蛋白的 pre- F构象的稳定和维持, 并且这些表位以及 pre- F构象的稳定 和维持对于机体免疫应答的诱导具有重要意义, 并且所述的抗体 具有特别优良的生物学活性(例如, 特别高的中和活性) , 从而 特别适合用于预防或治疗 RSV感染或与 RSV感染相关的疾病 (例 如肺炎, 如小儿肺炎) 。 因此, 在一个方面, 本发明提供了一种分离的表位肽或其变 体, 其中, 所述表位肽由呼吸道合胞病毒融合蛋白的第 148-216 位 ^酸 ¾ ^或其片段组成, 且至少包含呼吸道合胞病毒融合蛋 白的第 196-209位氨基酸残基, 并且所述变体与其所源自的表位 肽相异仅在于 1个或几个(例如, 1个, 2个, 3个, 4个, 5个, 6个, 7个, 8个或 9个)氨基酸残基的保守置换, 且保留了其所 源自的表位肽的生物学功能。
在本发明的各种实施方案中, 优选地, 本发明的表位肽以其 在 pre- F蛋白中的空间构象存在, 并且所述变体保留了其所源自 的表位肽的空间构象。
在一个优选的实施方案中, 所述表位肽由呼吸道合胞病毒融 合蛋白的第 196- 209位氨基酸残基组成, 并且所述变体与其所源 自的表位肽相异仅在于 1个或几个(例如, 1个, 2个, 3个或 4 个)氨基酸残基的保守置换, 且保留了其所源自的表位肽的生物 学功能。
在另一个优选的实施方案中, 所述表位肽由呼吸道合胞病毒 融合蛋白的第 196- 216位氨基酸残基组成, 且所述变体与其所源 自的表位 J f目异仅在于 1个或几个(例如, 1个, 2个, 3个, 4 个, 5个, 6个, 7个, 8个或 9个)氨基酸残基的保守置换, 且 保留了其所源自的表位肽的生物学功能。 在另一个优选的实施方案中, 所述表位肽由呼吸道合胞病毒 融合蛋白的第 185- 216位氨基酸残基组成, 且所述变体与其所源 自的表位 J f目异仅在于 1个或几个(例如, 1个, 2个, 3个, 4 个, 5个, 6个, 7个, 8个或 9个)氨基酸残基的保守置换, 且 保留了其所源自的表位肽的生物学功能。
在另一个优选的实施方案中, 所述表位肽由呼吸道合胞病毒 融合蛋白的第 185- 216位 ^酸残基组成, 其中第 185- 194位氨 基酸在蛋白质 2级结构上形成 p折叠, 且所述变体与其所源自的 表位肽相异仅在于 1个或几个(例如, 1个, 2个, 3个, 4个, 5 个, 6个, 7个, 8个或 9个)氨基酸残基的保守置换, 且保留了 其所源自的表位肽的生物学功能。
在另一个优选的实施方案中, 所述表位肽由呼吸道合胞病毒 融合蛋白的第 176- 216位氨基酸残基组成, 且所述变体与其所源 自的表位 J f目异仅在于 1个或几个(例如, 1个, 2个, 3个, 4 个, 5个, 6个, 7个, 8个, 9个)氨基酸残基的保守置换, 且 保留了其所源自的表位肽的生物学功能。
在另一个优选的实施方案中, 所述表位肽由呼吸道合胞病毒 融合蛋白的第 176- 216位 ^酸残基组成, 其中第 176- 181位氨 基酸与第 185-194位氨基酸在蛋白质 2级结构上形成 P折叠, 且 所述变体与其所源自的表位肽相异仅在于 1 个或几个(例如, 1 个, 2个, 3个, 4个, 5个, 6个, 7个, 8个, 9个)氨基酸残 基的保守置换, 且保留了其所源自的表位肽的生物学功能。
在另一个优选的实施方案中, 所述表位肽由呼吸道合胞病毒 融合蛋白的第 148- 216位氨基酸残基组成, 且所述变体与其所源 自的表位 J f目异仅在于 1个或几个(例如, 1个, 2个, 3个, 4 个, 5个, 6个, 7个, 8个, 9个)氨基酸残基的保守置换, 且 保留了其所源自的表位肽的生物学功能。
在另一个优选的实施方案中, 所述表位肽由呼吸道合胞病毒 融合蛋白的第 148- 216位氨基酸残基组成, 其中第 176- 181位氨 基酸与第 185-194位氨基酸在蛋白质 2级结构上形成 P折叠, 且 所述变体与其所源自的表位肽相异仅在于 1 个或几个(例如, 1 个, 2个, 3个, 4个, 5个, 6个, 7个, 8个, 9个)氨基酸残 基的保守置换, 且保留了其所源自的表位肽的生物学功能。
在另一个方面, 本发明提供了一种分离的表位肽或其变体, 其由第一肽和第二肽构成, 其中第一肽由呼吸道合胞病毒融合蛋 白的第 148- 216位 ^酸残基或其片段组成且至少包含呼吸道合 胞病毒融合蛋白的第 196- 209位氨基酸残基, 并且第二肽由呼吸 道合胞病毒融合蛋白的第 62- 69位或第 62- 76位 ^酸组成, 其 中所述变体与其所源自的表位肽相异仅在于 1个或几个(例如, 1 个, 2个, 3个, 4个, 5个, 6个, 7个, 8个, 9个)氨基酸残 基的保守置换, 且保留了其所源自的表位肽的生物学功能。
在本发明的各种实施方案中, 优选地, 所述第一肽和第二肽 以其在 pre- F蛋白中的空间构象存在, 并且所述变体保留了其所 源自的表位肽的空间构象。
在一个优选的实施方案中, 所述第一肽与第二肽共同构成了 存在于 RSV融合蛋白的 pre- F构象中的空间结构。
在一个进一步优选的实施方案中, 所述第一肽由呼吸道合胞 病毒融合蛋白的第 196- 209位氨基酸残基组成。 在另一个优选的 实施方案中, 所述第一肽由呼吸道合胞病毒融合蛋白的第 196-216 位氨基酸残基组成。 在另一个优选的实施方案中, 所述 第一肽由呼吸道合胞病毒融合蛋白的第 185- 216位 ^¾ ^酸残基组 成。 在另一个优选的实施方案中, 所述第一肽由呼吸道合胞病毒 融合蛋白的第 185- 216位 ^酸残基组成, 其中第 185- 194位氨 基酸在蛋白质 2级结构上形成 p折叠。 在另一个优选的实施方案 中, 所述第一肽由呼吸道合胞病毒融合蛋白的第 176- 216位氨基 酸残基组成。 在另一个优选的实施方案中, 所述第一肽由呼吸道 合胞病毒融合蛋白的第 176-216 位氨基酸残基组成, 其中第 176-181位 ^酸与第 185-194位 ^¾ ^酸在蛋白质 2级结构上形 成 P折叠。 在另一个优选的实施方案中, 所述第一肽由呼吸道合 胞病毒融合蛋白的第 148- 216位氨基酸残基组成。 在另一个优选 的实施方案中, 所述第一肽由呼吸道合胞病毒融合蛋白的第 148-216 位氨基酸残基组成, 其中第 176-181 位氨基酸与第 185-194位 ^¾ ^酸在蛋白质 2级结构上形成 P折叠。 本领域技术人员知晓, 可以将表位肽或其变体与载体蛋白融 合, 以增强表位肽或其变体的免疫原性, 使得表位肽或其变体能 够被机体的免疫系统识别, 并诱发有效预防病毒感染。
因此, 在一个方面, 本发明还提供了一种重组蛋白, 其包含 本发明的分离的表位肽或其变体以及载体蛋白, 并且所述重组蛋 白不是天然存在的蛋白或其片段。 在所述重组蛋白中, 所 位 肽或其变体可以连接至载体蛋白的 N末端或 C末端, 插入载体蛋 白的内部, 或替换载体蛋白的部分 ^ 列, 视所使用的具体 载体蛋白而定。 此外, 任选地, 所述表位肽或其变体通过连接体 (刚性或柔性连接体, 例如(GGGGS) 3 ) 与载体蛋白相连接。 本发 明的重组蛋白不受其产生方式的限定, 例如, 其可以通过基因工 程方法(重组技术)产生, 也可以通过化学合成方法产生。
在另一个方面, 本发明还提供了一种分离的核酸分子, 其包 含编码本发明的表位肽或其变体或本发明的重组蛋白的核苷酸序 列。 在另一个方面, 本发明还提供了一种载体, 其包含如上所述 的分离的核酸分子。 本发明的载体可以是克隆载体, 也可以是表 达载体。 在一个优选实施方案中, 本发明的载体是例如质粒, 粘 粒, 噬菌体, 柯斯盾粒等等。 在一个优选实施方案中, 所述载体 能够在受试者 (例如哺乳动物, 例如人)体内表达本发明的表位 肽或其变体或本发明的重组蛋白。
在另一个方面, 还提供了包含本发明的分离的核酸分子或载 体的宿主细胞。 此类宿主细胞包括但不限于, 原核细胞例如大脉 杆菌细胞, 以及真核细胞例如酵母细胞, 昆虫细胞, 植物细胞和 动物细胞(如哺乳动物细胞, 例如小鼠细胞、 人细胞等) 。 本发 明的细胞还可以是细胞系, 例如 293T细胞。
在另一个方面, 还提供了制备本发明的重组蛋白的方法, 其 包括, 在合适的条件下培养本发明的宿主细胞, 和从细胞培养物 中回收本发明的重组蛋白。 在另一个方面, 本发明提供了一种蛋白疫苗, 其包含本发明 的表位肽(或其变体)或重组蛋白, 以及药学上可接受的载体和 / 或赋形剂 (例如佐剂) 。 在一个优选实施方案中, 所述蛋白疫苗 包含一个或多个本发明的表位肽, 且这些表位肽可以是单独的或 串联的、 修饰的或未经修饰的、 偶联至其他蛋白的或不偶联至其 他蛋白的。
在另一个方面, 本发明提供了用于预防、 治疗或抑制受试者 的 RSV感染或与 RSV感染相关的疾病 (例如肺炎, 如小儿肺炎) 的方法, 其包括, 给有此需要的受试者施用治疗有效量的本发明 的表位肽(或其变体)或重组蛋白或蛋白疫苗。
在另一个方面, 提供了本发明的表位肽(或其变体)或重组 蛋白在制^ ^白疫苗中的用途, 所述蛋白疫苗用于预防、 治疗或 抑制受试者的 RSV感染或与 RSV感染相关的疾病 (例如肺炎, 如 小儿肺炎) 。
在另一个方面, 提供了本发明的表位肽(或其变体)或重组 蛋白, 其用于预防、 治疗或抑制受试者的 RSV感染或与 RSV感染 相关的疾病 (例如肺炎, 如小儿肺炎) 。
在另一个方面, 本发明提供了一种基因疫苗, 其包含本发明 的分离的核酸分子或载体,以及药学上可接受的载体和 /或赋形剂 (例如佐剂) 。 在一个优选实施方案中, 所述基因疫苗包含 DNA 或 RNA。 在此类实施方案中, 所述 DNA或 RNA可以是裸露的或可 以包裹于具有传递或 /和保护功能的外壳内。在一个进一步优选的 实施方案中, 所述外壳可以是腺病毒、 腺相关病毒、 慢病毒、 逆 转录病毒等的外壳, 也可以是采用化学方法合成的能行使相似功 能的其他材料。
在另一个方面, 本发明提供了用于预防、 治疗或抑制受试者 的 RSV感染或与 RSV感染相关的疾病 (例如肺炎, 如小儿肺炎) 的方法, 其包括, 给有此需要的受试者施用治疗有效量的本发明 的基因疫苗或分离的核酸分子或载体。
在另一个方面, 提供了本发明的分离的核酸分子或载体在制 备基因疫苗中的用途, 所述基因疫苗用于预防、 治疗或抑制受试 者的 RSV感染或与 RSV感染相关的疾病(例如肺炎,如小儿肺炎)。
在另一个方面, 提供了本发明的分离的核酸分子或载体, 其 用于预防、 治疗或抑制受试者的 RSV感染或与 RSV感染相关的疾 病 (例如肺炎, 如小儿肺炎) 。
在另一个方面, 本发明提供了一种组合物, 其包含本发明的 表位肽(或其变体)或重组蛋白或分离的核酸分子或载体, 以及 药学上可接受的载体和 /或赋形剂(例如佐剂)。在一个优选实施 方案中, 所述药物组合物包含一个或多个本发明的表位肽, 且这 些表位肽可以是单独的或串联的、 修饰的或未经修饰的、 偶联至 其他蛋白的或不偶联至其他蛋白的。 在另一个方面, 本发明提供了制备能够特异性结合并中和呼 吸道合胞病毒并且稳定和维持 F蛋白的 pre- F构象的抗体的方法, 其包括:
1 )用本发明的表位肽(或其变体 )或重组蛋白免疫非人动物 (例如小鼠) , 以使所述动物产生抗体; 和
2 ) 筛选对呼吸道合胞病毒具有中和活性且与 post- F蛋白不 具有反应性(即, 不结合或基本上不结合 pos t- F蛋白) 的抗体。
在另一个方面, 本发明提供了能够特异性结合并中和呼吸道 合胞病毒并且稳定和维持 F蛋白的 pre- F构象的抗体或其抗原结 合片段, 其通过如上所述的方法制备获得。 在一个方面, 本发明提供了一种单克隆抗体及其抗原结合片 段, 其中, 所述单克隆抗体能够特异性结合本发明的表位肽。 优 选地, 所述单克隆抗体能够特异性结合呼吸道合胞病毒融合蛋白 的第 148- 216位氨基酸残基或其片段(例如呼吸道合胞病毒融合 蛋白的第 196- 209位 ^酸残基), 和 /或, 呼吸道合胞病毒融合 蛋白的第 62- 69位或第 62- 76位 ^¾ ^酸 ¾J^。
在一个优选的实施方案中, 所述单克隆抗体或其抗原结合片 段选自 Fab、 Fab'、 F (ab' ) 2、 Fd、 Fv、 dAb、 互补决定区片段、 单 链抗体(例如, scFv)、 小鼠抗体、 兔抗体、 人源化抗体、 全人抗 体、 嵌合抗体(例如, 人鼠嵌合抗体)或双特异或多特异抗体。 在一个优选的实施方案中,所述的单克隆抗体包括非- CDR区, 且所述非- CDR区来自不是鼠类的物种, 例如来自人抗体。
在一个优选的实施方案中, 所述的单克隆抗体特异性结合呼 吸道合胞病毒, 且对所述病毒具有中和活性。 在一个优选的实施 方案中, 所述的单克隆抗体不结合或基本上不结合 pos t- F蛋白, 而是结合并稳定 pre- F蛋白。
在一个优选的实施方案中, 所述的单克隆抗体包含下列 CDR:
1 )如 SEQ ID 1«): 20所示的重链00111;
2 )如 SEQ ID :21所示的重链00112;
3 )如 SEQ ID :22所示的重链00113;
4 )如 SEQ ID :23所示的轻链00111;
5 )如 SEQ ID :24所示的轻链00112; 和
6 )如 SEQ ID :25所示的轻链00113。
在一个优选的实施方案中, 所述的单克隆抗体包含:
a )如 SEQ ID NO: 17所示的重链可变区; 和
b )如 SEQ ID NO: 19所示的轻链可变区。
在一个优选的实施方案中, 所述的单克隆抗体衍生自选自下 列的单克隆抗体, 或是选自下列的抗体:
杂交瘤细胞林 5C4所产生的单克隆抗体, 其中, 杂交瘤细胞 林 5C4 保藏于中国典型培养物保藏中心(CCTCC) , 且具有保藏号 CCTCC NO: C2012147 e 在另一个方面, 本发明提供了一种单克隆抗体及其抗原结合 片段, 其能够阻断本发明的表位肽或 pre- F蛋白与由杂交瘤细胞 林 5C4所产生的抗体的结合至少 50%, 优选至少 60%, 优选至少 70%,优选至少 80%,优选至少 90%,优选至少 95%或优选至少 99%, 其中, 所述杂交瘤细胞林 5C4 保藏于中国典型培养物保藏中心 (CCTCC) , 且具有保藏号 CCTCC NO: C2012147 e
此类单抗所识别的表位与单抗 5C4识别的表位相同, 或者在 空间上存在重叠, 从而此类单抗能够降低单抗 5C4与本发明的表 位肽或 pre- F蛋白的结合至少 50%,优选至少 60%,优选至少 70%, 优选至少 80%, 优选至少 90%, 优选至少 95%或优选至少 99%。 本发明还提供了分离的核酸分子, 其编码本发明的单克隆抗 体或其抗原结合片段。 此类核酸分子可以从杂交瘤细胞中分离得 到, 也可以利用基因工程重组技术或化学合成方法获得。
在一个方面, 本发明提供了分离的核酸分子, 其包含能够编 码本发明的单克隆抗体的重链可变区的核酸序列。
在一个优选的实施方案中, 所述重链可变区如 SEQ ID NO: 17 所示。 在另一个优选的实施方案中, 所述核酸分子具有 SEQ ID NO: 16所示的核苷酸序列。
在另一个方面, 本发明提供了分离的核酸分子, 其包含能够 编码本发明的单克隆抗体的轻链可变区的核酸序列。
在一个优选的实施方案中, 所述轻链可变区如 SEQ ID NO: 19 所示。 在另一个优选的实施方案中, 所述核酸分子具有 SEQ ID NO: 18所示的核苷酸序列。
在另一个方面, 本发明提供了一种载体, 其包含本发明的分 离的核酸分子。 本发明的载体可以是克隆载体, 也可以是表达载 体。
在一个优选实施方案中, 本发明的载体是例如质粒, 粘粒, 噬菌体, 柯斯质粒等等。
在另一个方面, 还提供了包含本发明的分离的核酸分子或载 体的宿主细胞。 此类宿主细胞包括但不限于, 原核细胞例如大脉 杆菌细胞, 以及真核细胞例如酵母细胞, 昆虫细胞, 植物细胞和 动物细胞(如哺乳动物细胞, 例如小鼠细胞、 人细胞等) 。 本发 明的细胞还可以是细胞系, 例如 293T细胞。
在另一个方面, 还提供了制备本发明的单克隆抗体或其抗原 结合片段的方法, 其包括, 在合适的条件下培养本发明的宿主细 胞, 和从细胞培养物中回收本发明的单克隆抗体或其抗原结合片 段。 在另一个方面, 本发明提供了一种杂交瘤细胞林 5C4, 其保 藏于中国典型培养物保藏中心(CCTCC), 且具有保藏号 CCTCC NO: C2012147。
可通过常规方法, 从单克隆抗体 5C4中获得抗体所包含的重 链可变区、 轻链可变区、 重链可变区 CDR和轻链可变区 CDR的氨 基酸序列和 /或核苷酸序列。
单克隆抗体 5C4的重链可变区和轻链可变区的氨基酸序列分 别如 SEQ ID NO: 17和 19所示;编码核苷酸序列分别如 SEQ ID NO: 16和 18所示。
单克隆抗体 5C4的重链可变区 CDR和轻链可变区 CDR的氨基 酸序列分别如 SEQ ID NO: 20- 25所示。 在另一个方面, 本发明提供了一种试剂盒, 其包括本发明的 单克隆抗体或其抗原结合片段。 在一个优选的实施方案中, 本发 明的单克隆抗体或其抗原结合片段还包括可检测的标记。 在一个 优选的实施方案中, 所述试剂盒还包括第二抗体, 其特异性识别 本发明的单克隆抗体或其抗原结合片段。 优选地, 所述第二抗体 还包括可检测的标记。 此类可检测的标记是本领域技术人员熟知 的, 包括但不限于, 放射性同位素, 荧光物质, 发光物质, 有色 物质和酶(例如辣根过氧化物酶)等。
在另一个方面, 本发明提供了稳定 pre- F蛋白的方法, 其包 括使用本发明的单克隆抗体或其抗原结合片段,或者 D25或 AM22 单克隆抗体或其抗原结合片段。
在另一个方面, 本发明提供了检测 pre- F蛋白在样品中的存 在或或其水平的方法, 其包括使用本发明的单克隆抗体或其抗原 结合片段。 在一个优选的实施方案中, 本发明的单克隆抗体或其 抗原结合片段还包括可检测的标记。在另一个优选的实施方案中, 所述方法还包括, 使用携带可检测的标记的第二抗体来检测本发 明的单克隆抗体或其抗原结合片段。所述方法可以用于诊断目的, 或者非诊断目的 (例如, 所述样品是细胞样品, 而非来自患者的 样品) 。
在另一个方面, 本发明提供了诊断受试者是否感染了 RSV的 方法, 其包括: 使用本发明的单克隆抗体或其抗原结合片段检测 RSV在来自所述受试者的样品中的存在。 在一个优选的实施方案 中,本发明的单克隆抗体或其抗原结合片段还包括可检测的标记。 在另一个优选的实施方案中, 所述方法还包括, 使用携带可检测 的标记的第二抗体来检测本发明的单克隆抗体或其抗原结合片 段。
在另一个方面, 提供了本发明的单克隆抗体或其抗原结合片 段或者 D25或 AM22单克隆抗体或其抗原结合片段在制备试剂盒中 的用途, 所述试剂盒用于稳定 pre- F蛋白, 或检测 pre- F蛋白在 样品中的存在或其水平, 或用于诊断受试者是否感染了 RSV。 在另一个方面, 本发明提供了一种药物组合物, 其包含本发 明的单克隆抗体或其抗原结合片段,以及药学上可接受的载体和 / 或赋形剂。
在另一个方面, 本发明提供了用于预防或治疗受试者的 RSV 感染或与 RSV感染相关的疾病(例如肺炎, 如小儿肺炎)的方法, 其包括, 给有此需要的受试者施用预防或治疗有效量的本发明的 单克隆抗体或其抗原结合片段, 或者本发明的药物组合物。
在另一个方面, 提供了本发明的单克隆抗体或其抗原结合片 段在制备药物组合物中的用途, 所述药物组合物用于预防或治疗 受试者的 RSV感染或与 RSV感染相关的疾病 (例如肺炎, 如小儿 肺炎) 。
在另一个方面, 提供了本发明的单克隆抗体或其抗原结合片 段, 用于预防或治疗受试者的 RSV感染或与 RSV感染相关的疾病 (例如肺炎, 如小儿肺炎) 。 本发明所提供的疫苗 (蛋白疫苗和基因疫苗) 、 药物和药物 组合物可以单独使用或联合使用, 也可以与其他药学活性剂 (例 如干扰素类药物, 如干扰素或聚乙二醇干扰素)联合使用。 在另一个方面,本发明提供了表达 pre- F蛋白或抗原-抗体复 合物的方法, 其包括, 在细胞中共表达编码本发明的单克隆抗体 或其抗原结合片段或者 D25或 AM22单克隆抗体或其抗原结合片段 的核酸, 以及编码 F蛋白的核酸。
在另一个方面, 本发明提供了试剂盒, 其包含编码本发明的 单克隆抗体或其抗原结合片段或者 D25或 AM22单克隆抗体或其抗 原结合片段的核酸, 以及编码 F蛋白的核酸。 发明的有益效果
本发明人首次发现了呼吸道合胞病毒融合蛋白(F 蛋白)的新 表位, 并且出人意料地发现, 该新表位以及特异性识别该新表位 的抗体对于 F蛋白的 pre- F构象的稳定和维持具有重要作用。
此外, 本发明人还发现, 与现有技术已知的针对呼吸道合胞 病毒融合蛋白的抗体相比,本发明的特异性识别该新表位的抗体 具有更高的中和活性, 这表明 F蛋白的 pre- F构象以及本发明所 发现的新表位对于抗呼吸道合胞病毒的免疫应答的诱导具有重要 作用。
因此, 本发明的表位肽或含有该表位肽的重组蛋白能有效用 作蛋白疫苗,用于预防受试者的呼吸道合胞病毒感染或与呼吸道 合胞病毒感染相关的疾病 (例如小儿肺炎) 。
此外, 本发明的单克隆抗体及其抗原结合片段具有更高的中 和活性, 从而能够以更低的剂量有效阻断呼吸道合胞病毒对细胞 的感染, 进而可有效用于预防或治疗受试者的呼吸道合胞病毒感 染或与呼吸道合胞病毒感染相关的疾病 (例如小儿肺炎) 。 下面将结合附图和实施例对本发明的实施方案进行详细描 述, 但是本领域技术人员将理解, 下列附图和实施例仅用于说明 本发明, 而不是对本发明的范围的限定。 根据附图和优选实施方 案的下列详细描述, 本发明的各种目的和有利方面对于本领域技 术人员来说将变得显然。 附图说明
图 1显示了检测 5C4单抗与 post- F之间的反应性的 ELISA 测定法。结果显示,相比于商业化抗体帕利珠单抗( pal ivizumab, Synagis )和莫维珠单抗 ( Motavizumab ) , 5C4抗体对 ost-F无 明显的反应性。
图 2显示了 5C4单抗的中和活性的测定。 结果显示, 5C4单 抗对呼吸道合胞病毒具有强中和活性。 特别地, 相比于商业化抗 体帕利珠单抗 ( al ivizumab , Synagis ) 和莫维珠单抗 ( Motavizumab ) , 以及之前已报道的抗体 D (参见, 美国专利 申请 12/600, 950 )及)及 AM22(参见,美国专利申请 12/898, 325 ), 5C4单抗对呼吸道合胞病毒的中和活性更强。
图 3显示了 5C4单抗的结合抑制活性的测定。 结果显示, 几 株检测单抗均不影响病毒对细胞的吸附。
图 4显示了 5C4单抗的融合抑制活性的测定。 结果显示, 相 比于商业化抗体帕利珠单抗 ( al ivizumab, Synagis )和莫维珠 单抗(Motavizumab ) , 以及之前已报道的抗体 D (参见, 美国 专利申请 12/600, 950 ) 及) 及 AM22 (参见, 美国专利申请 12/898, 325 ) , 5C4抗体的融合抑制活性更强。
图 5显示了 5C4单抗的病毒捕获能力的检测。 结果显示, 5C4 单抗与呼吸道合胞病毒的结合具有很强的特异性。 特别地, 相比 于商业化抗体帕利珠单抗 ( al ivizumab, Synagis ) , 5C4 抗体 对呼吸道合胞病毒的捕获能力更强。
图 6显示了 5C4单抗的反应性的 Western Blot检测。 结果显 示, 5C4单抗为识别构象表位的单抗, 其识别非变性的 RSV- A2和 RSV-GFP, 而不识别变性的 RSV- A2和 RSV- GFP。 此外, 5C4单抗能 特异性识别 RSV- A2、 RSV-GFP, 但与 post- F基本上无反应性。 图 7显示了使用 5C4单抗的免疫荧光的检测。 结果显示, 5C4 单抗可用于检测 RSV A2对细胞的感染。
图 8显示了 5C4单抗与其他单抗的竟争性结合的分析。 结果 显示, AM22单抗、 D25单抗与 5C4单抗之间存在竟争结合, 5C4 单抗对 AM22单抗、 D25单抗结合的阻断率最高可达 99%。 这表明 5C4单抗与 AM22单抗、 D25单抗识别抗原 ( F蛋白)上的相同表 位。
图 9显示了 AM22/F蛋白、 5C4/F蛋白与 D25/F蛋白抗原-抗 体复合物的电子显微镜观察结果。结果显示, AM22/F蛋白、 5C4/F 蛋白与 D25/F 蛋白抗原-抗体复合物具有相同的结构。 这表明, AM22单抗、 5C4单抗与 D25单抗结合 F蛋白上的相同表位, 并且 结合相同构象的 F蛋白 (pre- F构象) 。
图 10显示了帕利珠单抗 /F蛋白与 5C4/F蛋白抗原-抗体复合 物的电子显微镜结果的比较,其中左图为 pos t- F与帕利珠单抗的 复合物的电子显微镜结果; 左下图显示, 左上图的白框区域中的 pos t- F在电镜下观察到的结构;右图为 pre- F与 5C4的复合物的 电子显微镜结果,图中白框区域为 pre- F在电镜下观察到的结构。 结果显示, 帕利珠单抗 /F蛋白与 5C4/F蛋白抗原-抗体复合物具 有显著不同的结构, 并且这 2种抗原抗体复合物中的 F蛋白的构 象也显著不同, 其中帕利珠单抗 /F 蛋白复合物中的 F 蛋白为 pos t- F构象, 而 5C4/F蛋白复合物中的 F蛋白为 pre- F构象。
图 11显示了 D25/F蛋白复合物的晶体结构。
图 12显示了 D25单抗与 F蛋白上的表位的结合的空间结构。 图 13显示了 D25结合的表位在 pre- F蛋白与 pos t- F蛋白中 的三级结构的变化。
图 14显示了 pre- F蛋白的单体和三聚体以及 pos t- F蛋白的 单体和三聚体的晶体结构。 结果显示, pre- F蛋白与 post- F蛋白 具有显著不同的空间结构 (构象) 。
图 15显示了 pre- F蛋白和 post- F蛋白的空间结构, 构成所 述空间结构的对应氨基酸序列, 以及 D25所识别的表位序列。 结 果显示, pre- F蛋白和 pos t- F蛋白的空间结构存在着显著的差异。 特别地, pr e- F蛋白的空间结构包括 α 1- α 10螺旋和 β1-β23 叠; 而 post- F蛋白的空间结构包括 αΐ螺旋, α5- α8螺旋, 10螺旋, PI- Ρ2折叠和 Ρ5- P21折叠。
此外, 图 15的结果还显示, D25单克隆抗体在 pre- F蛋白中 的核心识别表位为两个空间上相互接近的肽段, 即, a. a. 62-69 与 a.a. 196-209。 这两个肽段的相互作用界面表明, F蛋白中的 两个区段 ( a. a.62- 76 与 a. a.137- 216 (或更具体地, a. a.148-216) )或其片段对于这类抗体(本发明的抗体(例如 5C4 ), D25和 AM22 )识别并稳定 pre- F蛋白具有重要的作用, 其 中 a. a.176-181与 a. a.185- 194这两个区域在 F蛋白的 pre- F构 象及 post- F构象之间存在显著的转变:它们在 pre- F蛋白中的构 象为 P折叠( P3- P4折叠), 而在 post- F蛋白中的构象为 α螺 旋(包含在 5螺旋中) 。
本发明涉及的序列的信息提供于下面的表 1中。
表 1: 序列的说明
Figure imgf000036_0001
OOVOVVIVIOVOOOOVVOOOOVOOIIOVVOOOOVOIVIVVVIO
VIVOIOOIVOOOOIOOIVOIIVOOVVOOIIVOOIOVOOIOOOO
91 IVOVVOIIOOOIOIIOOVOVOOIOOIOIIOVVOIOVOIOOOOO OVOOOVVOIOIIOOVOVOOOOOIOIOVOOVOOIOOVOIIOOVO
NSdVINNIOSlbaSS
11 AdIS¾V30AmO A V HSU I A I IAII IIIIWINIIS30VN
ANHnHaS3¾ I dVlS0N 13HNA0S I SVadHaSddAldaAdN 11
dH03AAlS30H0MAAAlIN0ASAiaW0INSAAa00NSdIIII
OiNSNSVIOSISOAOSAlVOlSIlASSSAaiSSIWnOaASdN
diaAN01NIHSdinSNWiaOdA¾NS0AIOIHV0dddSASOVN
aoAAOiaimoiNSOHSiNiioidsimMOdiaiAOAidii)
ST
AAAV1AHH3 IISWI SAS00¾A 1 I dWdW HS " t ^* d
nHSNnWAISAdIlAOVNASdH¾I I Hn¾NN300dH IAIHIN
SIS0S0MAldni)iaiANnaiAISnASA0NSlSAAV3NIS
nVS3IMAH0mmAISAVA0SVIVS0A0nd01dI¾I¾IIS
HANI3IVNNlIANWd¾dlH¾¾VINNIddIS0Wn01HlAVN3
ASaiHbsnSASVaiONOHHSINSlHIIlASIAAOIinVSIA
03SAVS0IS0AdHHI I N00SVdOdlAvn I II I 1 Ύ\ΈΆ
^ 9L-Z9 ^ 蚤 d
A3Vai0N0MH3INS £1
^ 9L-19 ^ 蚤 d
Zl
^ 69-Z9 ^ d
0MH3INS 11
69-Z9 ^ 蚤 d
MS I ¾OS00NA I dTli)M I A ίΟΈΠΑ!
01 SnASA0NSlSAAV3NISnVN3IMAH0mmAISAVI0SVI ^^蚤 d
WS I S3Si)MA I dTl a I A
6 SnASA0NSlSAAV3NISnVS3I MAHOHIHIASSAV IOSVI ^^蚤 d
NSI¾0S00NAldn0NNIANnaiAISnASA0NSlSAAV3 8
9U-9" ^^蚤 d
NSIS0S0MAldni)iaiANnaiAISnASA0NSlSAAV3 L
9U-9" ^^蚤 d
NSI¾OS00NAldn0NNIANnaiAISnASA 9
9TZ-S8T ^^蚤 d
MS I SOS0MA I A l I ANSiaiASSnASA 9
9TZ-S8T ^^蚤 d
S0SC.0/M0ZN3/X3d 9^6£I/ 0Z OAV
Figure imgf000038_0001
39 MVhF-F3 5' -ATggATTTTgggCTgATTTTTTTTATTg-3'
40 MVhR 5' -CCAgggRCCARKggATARCANgRTgg-3'
41 MVkF-A 5' -ATgRAg CACAK CYCAggTCTTT- 3'
42 MVkF-B 5' -ATggAgACAgACACACTCCTgCTAT-3'
43 MVkF-C 5' -ATggAgWCAgACACACTSCTgYTATgggT-3'
44 MVkF-Dl 5' -ATgAggRCCCCTgCTCAgWTTYTTggWTCTT-3'
45 MVkF-D2 S' -ATgggC TCAAgATgRAgTCACAK YYC gg-S'
46 MVkF-D3 5' -ATgAgTgTgCYCACTCAggTCCTggSgTT-3'
47 MVkF-El 5' -ATgTggggAYCgKTTTYAMMCTTTTCAATTg-3'
48 MVkF-E2 5' -ATggAAgCCCCAgCTCAgCTTCTCTTCC-3'
49 MVkF-E3 5' -ATgAgMMKTCMTTCATTCYTggg-3'
50 MVkF-Fl 5' -ATgAKgTHCYCgCTCAg YTYCTRg- 3'
51 MVkF-F2 5' -ATggTRTCC CASCTCAgTTCCTTg-3'
52 MVkF-F3 5' -ATgTATATATgTTTgTTgTCTATTTCT-3'
53 MVkF-F4 5' -ATgAAgTTgCCTgTTAggCTgTTggTgCT-3'
54 MVkF-Gl 5' -ATggATTT CARgTgCAgATT TCAgCTT-3'
55 MVkF-G2 5' -ATggTYCTYATVTCCTTgCTgTTCTgg-3'
56 MVkF-G3 5' -ATggTYCTYATVTTRCTgCTgCTATgg-3'
57 MVkR 5' -ACTggATggTgggAAgATggA-3' 生物材料保藏的说明
本发明的杂交瘤细胞林 RSV-Y-5C4-2于 2012年 10月 22日保 藏于中国典型培养物保藏中心(CCTCC, 中国湖北省武汉市武汉大 学), 其具有保藏号 CCTCC NO: C2012147e 具体实施方式
现参照下列意在举例说明本发明 (而非限定本发明) 的实施 例来描述本发明。
除非特别指明, 本发明中所使用的分子生物学实验方法和免 疫检测法, 基本上参照 J. Sambrook等人, 分子克隆: 实验室手 册, 第 2版, 冷泉港实验室出版社, 1989, 以及 F. M. Ausubel 等人, 精编分子生物学实验指南, 第 3版, John Wi ley & Sons, Inc. , 1995中所述的方法进行; 限制性内切酶的使用依照产品制 造商推荐的条件。 实施例中未注明具体条件者, 按照常规条件或 制造商建议的条件进行。 所用试剂或仪器未注明生产厂商者, 均 为可以通过市购获得的常规产品。 本领域技术人员知晓, 实施例 以举例方式描述本发明,且不意欲限制本发明所要求保护的范围。 实施例 1. RSV病毒的制备
RSV A2病毒林的制备和扩增
RSV A2病毒林由 IH Dr. Barney S. Graham ( Graham et al, 1988 ) 实验室制备并馈赠。
准备汇合率为 80%的 Hep2细胞, 37Ό培养 6小时后, 去除上 清, 加入 1ml RSV A2病毒林, 室温孵育 1小时。 随后加入 10% MEM 培养基至 15ml, 37Ό培养 4天。 收集细胞以及细胞上清至预冷的 50ml离心管, 使用手握式超声破碎仪破碎 ( 50%, 破 1秒停 3秒 ) 后, 置于冷冻离心机 lOOOrpm, 4Ό离心 15分钟。 将上清转移至 预冷的 50ml离心管中, 随后分装为 1ml/管, 置于干水-酒精混合 液中速冻。 最后置于- 80Ό保存。
RSV GFP病毒的制备和扩增
RSV GFP病毒由 IH Dr. Peter Col l ins制备( Hal lak et al ) , 且由 NIH Dr. Barney S. Graham实验室馈赠。
准备汇合率为 80%的 Hep2细胞, 37Ό培养 6小时后, 去除上 清, 加入 lml RSV GFP病毒, 室温孵育 1小时。 随后加入 10% MEM 培养基至 15ml, 37Ό培养 4天。 收集细胞以及细胞上清至预冷的 50ml离心管, 使用手握式超声破碎仪破碎 ( 50%, 破 1秒停 3秒 ) 后, 置于冷冻离心机 lOOOrpm, 4Ό离心 15分钟。 将上清转移至 预冷的 50ml离心管中, 随后分装为 lml/管, 置于干水-酒精混合 液中速冻。 最后置于- 80Ό保存。 实施例 2. post-F蛋白的表达和 DNA-F载体的构建
post-F蛋白的表达
post- F蛋白的序列来自 RSV- A2病毒林。为了增强 post- F蛋 白的表达, 将其 J ^^列中的第 102 ( P102 ) 、 379 ( 1379 )和 447 447 )位氨基酸分别替换成丙氨酸(P102A )、缬氨酸( I379V ) 以及缬氨酸(M447V ) 。 此外, 还从 post- F蛋白序列中去除了融 合肽段 137-146。将经密码子优化的 post- F序列插入真核表达载 体 LEXm中 (由 Regensburg公司合成 ) , 从而获得 ost-F表达 质粒 pLEXm- postF, 并且其 C末端还包含 HRV 3C蛋白酶位点以及 8xHis标签。
pLEXm-postF经瞬时转染系统( TrueFect-Max,购买于 Uni ted BioSystems公司)转入 HEK293F细胞(购买于 Invitrogen公司) 中, 置于 120rpm、 9% C02摇床上 37 Ό悬浮培养 4- 5天。 收集细 胞后, 先用 Ni2+-NTA Resin (购买于 Qiagen公司)纯化, 洗脱緩 冲液为 20 fflM Tris-HCl H 7. 5, 200 mM NaCl和 250 mM咪唑, H 8. 0。 再才艮据说明书, 用 StrepTactin res in (购买于 Novagen 公司)进一步纯化。 用 HRV 3C protease (Novagen)酶切蛋白, 再 重新过 Ni2+- NTA, 除去未切干净的蛋白和亲和标签。 蛋白再经过 Superdex 200凝胶过滤柱(购买于 GE Healthcare公司)纯化, 緩 冲液为 2 mM Tris-HCl pH 7. 5, 150 mM NaCl和 0· 02% NaN3, 最 后将蛋白浓缩至约 6mg/mL。
DNA-F的构建
将目的片段( RSV的全长 F蛋白)构建到穿 M粒 ptrack- CMV 中, 获得质粒 pAdTrack- CMV- RSV F。 Pmel单酶切线性化 37Ό 7h 以上, 酶切体系为 50uL。 在上述管中加 buffer和去磷酸化酶, 37度反应 7h以上。 而后乙醇沉淀, 离心后用无菌水重悬。 转化 BJAdEasy感受态细菌, 使 AdTrack-CMV-RSV F与 pAdEasy- 1在 E. col i BJ5183 中重组, 再涂布至卡那霉素抗性的 LB平板上, 37Ό选择培养,挑取 6 - 8个小菌落,提取盾粒,鉴定质粒大小(腺 病毒盾粒 pAdEasy-l为 33414 bp ) 。 用 Pac I酶切鉴定: 可切出 两个片段, 一个是 30kb左右, 另一个是 3. Okb 或 4. 5kb的片段, 将鉴定正确后的阳性重组子转入 E. col i DH5 c 中, 保菌, 提取 质粒, 获高拷贝数的质粒备用。 准备 1-2瓶 293 P 5细胞, 每瓶 2*106个细胞, 培养 24h。 用 Pacl消化重组腺病毒盾粒 4ug。 乙醇 沉淀质粒,用 20uL无菌水重悬。将 4ug经 Pa 消化的质粒和 20uL Lipofectamine ( GIBCO BRL ) 混合到 500uL OptiMem I培养基中 (每瓶细胞), 室温孵育 15- 30min。 用 4mL无血清培养基洗一遍 细胞。 每瓶加入 2. 5mL OptiMem I。 置 37Ό孵育约 10min。 加入 Lipofectamine- DNA混合液至细胞瓶, 置 37Ό孵育。 4h后吸掉含 Lipofectamine- DNA混合液的上清,加入 6mL新鲜的完全培养基, 37Ό培养过夜。 转染后 7-10天, 用橡胶刮棒将细胞刮下(不是胰 酶), 转至 50mL锥底管。 离心后用 2mLHBSS或无菌 PBS重悬。 用 干水 /甲醇水浴冷冻细胞, 再用 37Ό水浴化冻。 剧烈震荡。 重复 上述 "冻 /融 /震"过程 3次, 置- 20Ό保存。 使用上述病毒悬液感 染 293 P 5细胞, 37Ό培养 48h至荧光 强时,将感染后的细胞用 培养基直接吹起, 3000转离心 3min, 沉淀重悬, 在液氮中反复冻 融 6次至细胞裂解后, 4000转离心 30min, 取上清。 在超离管中 小心加入 5ml40%Cscl, 4. 5mll5% Cscl , 再加入上清, 使其分层, 平衡后, 上超离, 4Ό下 32000转离心 16h, 出现两条条带。 而后 小心吸出位于下层的较粗的条带, 在含 5%蔗糖、 MgCl2的 20mM TB8. 0中透析后, 即可得到纯化好的重组腺病毒。 实施例 3. 单克隆抗体的制备
杂交瘤的制备:
使用尾静脉注射 DNA免疫方式和 PEG融合方法获得单克隆抗 体, 详细方法参见 Ed Harlow et al., "Antibodies A Laboratory Manual", Cold Spring Harbor Laboratory 1988。 简要过程如下: 小鼠免疫: 首次免疫使用 RSV全长 F基因的质粒, 免疫前将 PBS与弗氏完全佐剂 (CFA )等体积混合乳化, 经四肢肌肉多点注 射, 每只每次注射 300ul。 使用 PBS将 RSV全长 F基因的质粒稀 释至 50ug/ml, 每只小鼠经尾静脉高压注射 2ml。 首次免疫后 10d 和 17d, 分别用同样剂量 PBS加弗氏不完全佐剂 (IFA )进行加强 免疫后每只小鼠经尾静脉注射 2ml含 106拷贝量 RSV F蛋白全长 基因的腺病毒。第二加强后^ 检测 HI的抑制效价, 当效价达到 1: 640后, 取小鼠脾脏做融合。 融合前 72hr再次加强免疫, 经脾 脏注射 RSV- A2林病毒液 1次, 50ul/只。 制备 15块融合板。
融合: ^ k清中抗体中和 RSV GFP的反应滴度最高的小鼠脾 脏细胞与小鼠骨髄瘤细胞 SP2/0相融合。 先把脾脏研磨得到脾细 胞悬液, 然后与细胞数低十倍的处于对数生长期的 SP2/0小鼠骨 髄瘤细胞混合,经 PEG1500作用 lmin将两种细胞融合一起, 然后 把融合细胞液 100ml分装到 10块 96孔板中培养。 融合培养基为 含 HAT和 20 % FBS的 RPMI1640完全筛选培养基。抗原特异性克隆 通过间接 ELISA法和中和试验筛选, 筛选有中和活性且无 post-F 反应性的单克隆抗体细胞林。 经 3次克隆化后, 得到稳定的单克 隆抗体细胞林。 杂交瘤的筛选: 融合后细胞在 96孔细胞板上培养 10天后, 吸取细胞上清做 RSV- post F酶联免疫法及 RSV- A2中和检测, 酶 联免疫法或 RSV- A2阳性孔继续克隆化,直至细胞林所分泌的抗体 能够稳定阻断 RSV- A2且不与 post F反应为止。
筛选结果: 获得一林杂交瘤细胞林 RSV-Y-5C4-2, 其所分泌 的单克隆抗体 5C4与 post- F无反应性, 且有较高的中和活性。
杂交瘤的培养: 稳定的杂交瘤单克隆抗体细胞林先在二氧化 碳培养箱中扩增培养,经 96孔转移至 24孔,再转移至 50ml细胞 瓶经扩增培养。然后收集细胞瓶内的细胞注射到小鼠腹腔内, 7-10 天后从小鼠腹腔中吸取腹水。
单克隆抗体的纯化: 腹水先用 50 %的硫酸铵沉淀处理, 然后 对 PB, pH7. 4透析, 之后用 DEAE柱在 HPLC下纯化, 得到纯化后 的单克隆抗体, 经 SDS- PAGE鉴定纯化后的单克隆抗体纯度。 实施例 4. 单克隆抗体 5C4的表征
对 post- F的反应性的 ELISA检测
用 1XCB将 post- F稀释至 20ng八 ΟΟμί的浓度, 包被于聚苯 乙烯板的微孔中, ΙΟΟμί每孔, 37。C包被 2小时, PBST洗 1次。 加入含 2% (质量 /体积比) 的 BSA的 PBS 180μί封闭, 37。C孵育 2小时。 将待检抗体稀释至 ^g/ml作为原始滴度加入 ΙΟΟμΙ 并 且 10倍梯度稀释, 用辣根过氧化物酶标记的羊抗鼠 1: 5000稀释 加入 ΙΟΟμί作为检测二抗, ELISA读值大于 0. 5为检测阳性。 结 果如图 1所示。图 1的结果显示, 5C4单抗与 post- F几乎无结合。 相比于商业化抗体帕利珠单抗 ( al ivizumab, Synagis )和莫维 珠单抗(Motavizumab ) , 5C4抗体对 post- F无明显的反应性。 中和活性的测定
将待检抗体稀释至 lOO g/ml作为原始滴度,加入 ΙΟΟμί于 U 底板中, 并且 4倍梯度稀释。 加入 lxl06PFU的 75μί呼吸道合胞 病毒悬液, 37。C孵育 1小时。 而后将孵育后混合液 lOOul加入铺 有 lOOul Hep2细胞的 96孔板上, 37。C孵育 24小时, Paradim检 测其中和活性。 结果如图 2所示。 图 2的结果显示, 5C4单抗对 呼吸道合胞病毒具有强中和活性。 特别地, 相比于商业化抗体帕 利珠单抗( al ivizumab, Synagis )和莫维珠单抗 ( Motavizumab ), 以及之前已报道的抗体 D25 (参见, 美国专利申请 12/600, 950 ) 及)及 AM22 (参见, 美国专利申请 12/898, 325 ), 5C4抗体对呼 吸道合胞病毒的中和活性更强。 结合抑制活性的检测
细胞准备: 首先将 5 X 104个八 ΟΟμί的 Hep2细胞铺在 96孔 板的每个孔中, 置于 37Ό孵育 2小时。 随后将其置于 4Ό冷却 1 小时。
样品准备: 将 lmg/ml的单抗样品 ΙΟμί加入到 90μί的 MEM 培养基中, 随后使用 MEM培养基 4倍稀释 11个梯度。 将 75μί病 毒样品与 75 L稀释单抗样品混合, 25Ό孵育 1小时。 随后冷却 至 4Ό。 将 ΙΟΟμί单抗-病毒混合物加入 Hep2细胞中, 4Ό共孵育 1小时。
样品检测: 去除上清, 加入预冷的 PBS ΙΟΟμΙ^ 洗细胞, 4Ό 1700G离心 5分钟。 重复两次。 ^加入 ΙΟΟμί标记了 FITC的羊 抗 RSV抗体 ( 1: 1000稀释, 购买于 Biodes ign International公 司) , 4Ό孵育 45分钟, 去除上清, 加入预冷的 PBSlOO L洗细 胞, 4Ό 1700G离心 5分钟。 去除上清后, 每孔加入 150μί 0. 5% 多聚甲醛固定细胞。 最后使用流式细胞仪进行检测。 结果示于图
3中。 融合抑制活性的检测
细胞准备: 首先将 5 X 104个八 ΟΟμί的 Hep2细胞铺在 96孔 板的每个孔中, 置于 37Ό孵育 2小时。 随后将搬置于 4Ό冷却 1 小时。
样品准备: 将 lmg/ml的单抗样品 ΙΟμί加入到 90μί的 MEM 培养基中, 随后使用 MEM培养基 4倍稀释 11个梯度, 置于 4Ό备 用。 随后使用 MEM培养基将 RSV-GFP稀释 8倍, 将 50 RSV-GFP 加入到细胞中, 4Ό孵育 1小时。去除上清,加入预冷的 PBS ΙΟΟμί 洗细胞, 4Ό 1700G离心 5分钟。 重复三次。 然后将 50μί预冷的 MEM培养基加入细胞中, 再将 5 Ομί稀释单抗样品加入细胞中, 置 于 4Ό孵育 lhr。 随后将细胞转移至 37Ό孵育 18小时。
样品检测: 去除上清, 加入预冷的 PBS ΙΟΟμΙ^ 洗细胞, 4Ό 1700G离心 5分钟。 重复两次。 每孔加入 150μί 0. 5%多聚甲醛固 定细胞。 最后使用流式细胞仪进行检测。 结果示于图 4中。 结果 显示, 相比于商业化抗体帕利珠单抗( pal ivizumab, Synagis ) 和莫维珠单抗(Motavizumab ) , 以及之前已报道的抗体 D25 (参 见, 美国专利申请 12/600, 950 )及)及 AM22 (参见, 美国专利申 请 12/898, 325 ) , 5C4抗体的融合抑制活性更强。 病毒捕获能力的检测
用 20mM PB, H 7. 4把单克隆抗体稀释至 3 g八 ΟΟμί的浓度, 包被于聚苯乙烯板的微孔中, 300μί每孔, 4°C包被 10小时, 而 后 37。C包被 1小时, PBST洗 1次。 加入含 2% ( w/v ) BSA的 PBS 350μί封闭, 37。C孵育 2 小时。 而后加入病毒量为 lxl06PFU的 200μί呼吸道合胞病毒悬液, 37°C孵育 2小时。 孵育完的板洗板 5遍。 洗完板后, 每孔加入 200μί Tr izol 裂解, 4。C裂解 lOmin 后, 提取样品中的呼吸道合胞病毒的 RNA, 进行 Real-t ime PCR 定量实验, 结果如图 5所示。 图 5的结果显示, 5C4单抗与呼吸 道合胞病毒的结合具有很强的特异性。 相比于商业化抗体帕利珠 单抗 ( al ivizumab, Synagi s ) , 5C4 抗体对呼吸道合胞病毒的 捕获能力更强。
5C4单抗的反应性的 Western Blot检测
将煮沸和未煮沸的 pos t- F、 RSV-A2, RSV- GFP分别 lOul上样 于 10% SDS-聚丙烯酰胺凝胶, 进行电泳, 而后 35mA电流进行转 膜 lh。 转膜完毕后, 加入 5%脱脂奶 4。C封闭过夜。 TNT洗膜 3次, 每次 10min。 再将 1: 2000稀释至 1XTN的待检抗体加入膜中, 室 温下摇床孵育 lh。 TNT洗膜 3次, 每次 10min。 加入 1: 5000稀释 的用辣根过氧化物酶标记的羊抗鼠抗体作为检测 5C4的二抗, 加 入 1: 2000 稀释的用辣根过氧化物酶标记的鼠抗人抗体作为检测 莫维珠单抗的二抗, 室温下摇床孵育 lh。 TNT 洗膜 3 次, 每次 10min。 显色, 拍照。 结果如图 6所示。 图 6的结果显示, 5C4单 抗为识别构象表位的单抗, 其识别非变性的 RSV- A2和 RSV- GFP, 而不识别变性的 RSV- A2和 RSV- GFP。 此外, 5C4单抗能特异性识 别 RSV- A2、 RSV- GFP, 但与 post- F基本上无反应性。 免疫荧光的检测
细胞准备: 将 1 X 105个 /ml的 Hep2细胞加入铺有玻片的 24 孔板中, 37 Ό孵育 4小时, 随后置于 4 Ό冷却 1小时。 样品准备: 去除细胞培养上清, 加入预冷的 ΙΟΟμί RSV-A2 (使用 MEM培养基将 RSV-A2稀释 5倍),置于 4 Ό孵育 1小时后, 去除上清, 加入 lml MEM培养基。 随后分别在 5分钟、 1小时、 6 小时、 16小时以及 24小时取样品进行检测。
样品检测: 加入 lml预冷的 PBS, 置于摇床 5分钟, 去上清, 重复 2次。 随后加入 ΙΟΟμί 0. 4%多聚甲醛, 室温避光孵育 15分 钟后, 加入 lml PBS, 置于摇床 5分钟, 去上清, 重复 3次。 再 加入 ΙΟΟμί 0. 3% Tri tonX- 100,室温孵育 10分钟后,加入 lml PBS, 置于摇床 5分钟,去上清, 重复 3次。 随后加入 ΙΟΟμί山羊血清, 室温孵育 30分钟后, 加入 lml PBS, 置于摇床 5分钟, 去上清, 重复 3次。 再加入 ΙΟΟμί单抗样品 (使用 PBS稀幹 10倍) , 室 温孵育 3小时后, 加入 lml PBS, 置于摇床 5分钟, 去上清, 重 复 3次。 然后加入 ΙΟΟμί标记有 FITC的羊抗鼠多抗( 1: 600, 购 买于 Sigma公司) , 室温避光孵育 30分钟后, 加入 lml PBS, 置 于摇床 5分钟, 去上清, 重复 3次。 再然后, 加入 ΙΟΟμί DAPI ( 1: 2000, 购买于 Invi trogen公司), 室温避光孵育 5分钟后, 加入 lml PBS, 置于摇床 5分钟, 去上清, 重复 3次。 最后将玻 片取出, 置于加有封片剂的载玻片上, 指甲油封片, 使用激光扫 描共聚焦显微镜进行观察。 结果如图 7所示。 图 7的结果显示, 5C4单抗可用于检测 RSV A2对细胞的感染。
5C4单抗重链和轻链的可变区 /CDR序列的确定
将分泌 5C4单抗的杂交瘤细胞林 RSV-Y-5C4-2扩增至 107ml, 用吹管吹起半贴壁细胞使之悬浮。取 lml细胞悬浮液,以 1000 rpm 离心 5分钟, 去上清。 加入 lml PBS ( PH7. 44 )重悬并洗涤细胞, 然后以 1000 rpm离心 5分钟, 去上清, 重复 3次。 向细胞沉淀中 加入 800μί TrizoK Roche Germany),剧烈震荡,然后静置 lOmin, 以裂解样品。 然后加入 200μί DEPC 水, 以补充水相。 向样品中 加入 250μί CHC13, 剧烈震荡 lOsec, 然后以 12000rpm, 4°C, 离 心 5 min。 吸取上清水相 500- 600μί至新的 1.5ml EP管中, 加入 600μί预冷异丙醇(异丙醇:上清体积比约为 1:1) , 轻柔颠倒混 匀, 4。C 静置 lOmin, 然后以 4O12000rpm, 离心 10min。 吸去上 清, 留白色沉淀。 向沉淀物中加入 700μί 75%乙醇, 并以 4。C 12000rpm, 离心 5min。 吸去上清, 使用抽干仪抽干或烘干, 直至 白色沉淀变为透明状。向沉淀物中加入 20μί DEPC水以溶解 mR A, 将其分装成两管。 每管加入 lul反转录引物, 其中一管加入的反 转录引物为 MVkR (5'- ACT ggA Tgg Tgg gAA gAT ggA-3' ) , 用 于扩增轻链可变区基因; 另一管加入的反转录引物为 MVhR (5'-CCA ggg RCC ARK ggA TAR CAN gRT gg-3' ) , 用于扩增重 链可变区基因。 然后, 向每管中再加入 luldNTP, 置于 72Ό水浴 lOmin, 然后立即放到水浴中置 5 min, 然后加入 10ul 5x反转录 緩 冲 液 , lul AMV (10u/ul, Pormega) , lul Rnasin (40u/ul,Promega)e 将混合物混匀后于 42 Ό进行逆转录反应, 以 将 RNA反转录成 cDNA。 抗体基因可变区的分离采用聚合 ϋ¼式反应 (PCR) 法。 合成 重链可变区上游引物组合(表 2) , 轻链可变区上游引物组合(表 3)。 另外, 将 MVkR用作轻链可变区基因扩增的下游引物, 将 MVhR 用作重链可变区基因扩增的下游引物。 PCR模板即为以上合成的两 种 cDNA。 PCR^H 为: 94Ό 5min; (94Ό 40s, 53Ό lmin, 72Ό 50s)x35个循环; IVC 15min。 回收扩增产物, 并克隆至 pMD 18-T 载体中,然后送至上海博亚公司进行测序。抗体的可变区序列和 CDR 序列如表 4-5所示,其中互补决定区 ( complementary determinant region, CDR )序列通过 Kabat方法来确定 (Kabat EA, Wu TT, Perry HM, Gottesman KS, Coel ler K. Sequences of proteins of immunological interest, U. S Department of Health and Human Services, PHS, NIH, Bethesda, 1991)。
表 2: 扩增单抗重链可变区基因的上游引物序列
Figure imgf000050_0001
表 3: 扩增单抗轻链可变区基因的上游引物序列
Figure imgf000050_0002
MVkF-Fl 5 '-ATgAKgTHCYCgCTCAgYTYCTRg- 3 '
MVkF-F2 5 '-ATggTRTCC CASCTCAgTTCCTTg- 3,
MVkF-F3 5 '-ATgTATATATgTTTgTTgTCTATTTCT- 3 '
MVkF-F4 5'-ATgAAgTTgCCTgTTAggCTgTTggTgCT-3'
MVkF-Gl 5 '-ATggATTT CARgTgCAgATT TCAgCTT-3 '
MVkF-G2 5 '-ATggTYCTYATVTCCTTgCTgTTCTgg- 3'
MVkF-G3 5 '-ATggTYCTYATVTTRCTgCTgCTATgg- 3' 表 4: 单克隆抗体的重链和轻链可变区的核苷酸和 ^ 列
Figure imgf000051_0001
表 5: 通过 Kabat方法确定的单克隆抗体 CDR序列
J ^列 序列号
CDR1 GFNIKDTF SEQ ID NO: 20 重链 (Vh) CDR2 IDPADGHT SEQ ID NO: 21
CDR3 ATTITAVVPTPYNAMDY SEQ ID NO: 22
CDR1 ESVDSFDNSF SEQ ID NO: 23 轻链 ( Vk ) CDR2 LAS SEQ ID NO: 24
CDR3 QQSNEDPFT SEQ ID NO: 25
V K是指 kappa链可变区, 其是轻链可变区 (VL ) 的一种, 实施例 5. 5C4单抗与其他单抗的竟争性结合分析
在 RSV感染的 HEp- 2细胞上进行抗体的竟争性结合, HEp-2 细胞用 3倍感染量的 RSV感染 18到 20小时, 感染后采用细胞离 散方法(细胞剥离器、 Mediatech Inc. , Herndon, VA )进行细胞 分离,然后用 PBS洗细胞。最后细胞在 U型底部的 96孔板中以每 孔 5 x 104的细胞量溶于 PBS中进行孵育。单克隆抗体 5C4、 AM22, D25和 101F (参见 McLel lan等( 2010 ), J Vriol , 84: 12236-12244) 均以起始的稀释浓度为 lOO g/ml 的量加入 HEp- 2细胞中。 半个 小时后, 加入 lOOul Alexa 488与浓度为 1 g/ml D25的结合物, 在 4°C孵育 1小时。 孵育完的细胞第一遍用 PBS洗, 然后用 0. 5% 的多聚甲酪进行填充, D25与 Alexa 488在细胞上结合后产物通 过流式细胞仪检测 ( LSR II instrument, Becton Dickinson, San Jose, CA ),检测的数据采用 FlowJo软件8· 5版本(Tree Star, San Carlos, CA)进行分析。结果如图 8所示。 图 8的结果显示, AM22、 D25与 5C4之间存在竟争结合, 5C4对 AM22、 D25结合的阻断率最 高可达 99%。这表明 5C4单抗与 AM22、 D25单抗识别抗原( F蛋白 ) 上的相同表位。 实施例 6. 抗原-抗体复合物的分析
抗原-抗体复合物的制备
RSV F蛋白来源于 RSV A2亚型的病毒林 P03420, 它包含了 3 个自然发生的氨基酸突变(P102A, I379V和 M447V)。 将经过哺乳 动物密码子优化的 RSV F蛋白 1-513位氨基酸与 T4噬菌体的次要 纤维蛋白 Fibri tin的 C末端融合,并构建到哺乳动物细胞表达载 体 pLEXm上, 该质粒同时带上了凝血酶位点、 His标签与链球菌 素标签。 将表达 RSV F蛋白、 D25抗体的轻链和重链(在铰链区 含有或不含有种子密码子) 的质粒同时转染悬浮的 HEK293 GnTI 细胞, 或者先只转染表达 RSV F蛋白的质粒, 在转染后 3小时, 将之前纯化好的 D25抗体的 Fab加入 GnTI细胞。经过 4-5天的表 达, 收集细胞上清、 离心分离, 过滤并浓缩。 所获得的细胞上清 首先通过 Ni柱(Qiagen, Valencia, CA)纯化, 洗脱液为 20mM的 Tris-HCl pH7. 5, 200mM NaCl , 250 mM咪唑, pH 8. 0。 之后, 产 物经过浓缩后, 再按照制造商的说明书(Novagen, Darmstadt, Germany)用亲和素树脂柱进行纯化。 经过凝血酶蛋白酶的过夜处 理以去除 His和链霉素标签后, 加入过量的 D25抗体 Fab与复合 物混合, 然后经过 Superose6 凝胶过滤柱(GE Healthcare) , 穿 透液为 2 mM Tris-HCl H 7. 5, 350 mM NaCl, and 0. 02% NaN 3。 洗脱下来的复合物用等体积的水稀释后浓缩至大约 5mg/ml。 同样 的方法用来表达和纯化 AM22/F蛋白或者 5C4/F蛋白的抗原 -抗体 复合物。 复合物的电子显微镜检测
样品被新排出的碳涂层的网格辉光吸收, 短暂地用水冲洗, 然后用新配制的 0. 75%的铀酰甲酸盐染色。 图像通过带有 Eagle CCD相机的 FEI T20显微镜采集。 图像分析及二维平均采用 Bsoft ( J. Struct. Biol. 157, 3 (2007) )及 EMAN (J. Struct. Biol. 128, 82 (1999) )来进行。 结果示于图 9中。 结果显示, AM22/F蛋 白、 5C4/F蛋白与 D25/F蛋白抗原-抗体复合物具有相同的结构。 这表明, AM22单抗、 5C4单抗与 D25单抗结合 F蛋白上的相同表 位, 并且结合相同构象的 F蛋白 (pre- F构象) 。
进一步, 比较了帕利珠单抗 /F蛋白与 5C4/F蛋白抗原-抗体 复合物的电子显微镜结果。结果示于图 10中,其中左图为 post-F 与帕利珠单抗的复合物的电子显微镜结果; 左下图显示, 左上图 的白框区域中的 post- F 在电镜下观察到的结构; 右图为 pre-F 与 5C4的复合物的电子显微镜结果, 图中白框区域为 pre- F在电 镜下观察到的结构。 结果显示, 帕利珠单抗 /F蛋白与 5C4/F蛋白 抗原-抗体复合物具有显著不同的结构,并且这 2种抗原抗体复合 物中的 F蛋白的构象也显著不同,其中帕利珠单抗 /F蛋白复合物 中的 F蛋白为 post- F构象, 而 5C4/F蛋白复合物中的 F蛋白为 pre-F构象。
图 9和 10的结果表明, F蛋白中的该表位以及识别该表位的 抗体对于稳定和维持 F蛋白的 pre- F构象具有重要作用。 复合物的结晶
起始晶体通过气象扩散法培养, 20Ό下将复合物与 O. lul保 存溶液(40% (w/v) PEG 400, 5% (w/v) PEG 3350, 和 0· 1 M醋 酸钠, H 5. 5)混合(54 ) 。 晶体在悬滴中再生长, 3. 6A衍射的 晶体生长于含有 30% (w/v) PEG 400, 3. 75% (w/v) PEG 3350, 0. 1 M HEPES pH 7. 5, 和 1% (v/v) 1, 2-丁二醇的保存液中。 在液氮 中将晶体直接冻住, 在 SER- CAT光束线 ID- 22, 波长 1. 00A下得 到 X射线衍射数据。 复合物晶体的衍射及解构
通过 HKL200 ( Z. Otwinowski, W. Minor, in Methods Enzymol. (Academic Press, 1997), vol. 276, pp. 307—326 )整合、 梳理 X 射线衍射数据, 通过 PHASER ( A. J. McCoy et al. , Phaser crystal lographic sof tware. J. Appl. Crystallogr. 40, 658 (2007) )解决分子替换问题, 使用伸展的 D25 Fab结构和来源 于 RSV F蛋白的 post- F结构(PDB ID: 3RRR, ( J. Virol. , 85, 7788 (2011) ) )的 29—42, 49-60, 78-98, 219-306, 313-322, 333-343 和 376-459片段作为探究模型。 通过一个 NaAuC14衍生物的 6个 位点定位得到活性侧链(F 残基 Met97/Hisl59, Met264/Met274, His317, 和 Met396; D25重链残基 Metl9/His81和 His 58)。 通 it C00T( Acta Crys tal logr D Biol Crys tal logr, 66, 486 (2010) ) 建立了手工模型, 建立过程中首先建立了二级结构元素。 通过 PHENIX ( Acta Crys tal logr D Biol Crys tal logr 66, 213 (2010) ) 进行了单个位点、 TLS参数以及单个 B因素的确定, 在精确过程 中应用伸展的 D25 Fab 结构以及 RSV F pos t- F结构作为参照模 型。 除了 F2 C端至 Met97的残基外, 建立了成熟蛋白中的所有 RSV F残基。 最后的数据整理和精确统计概括于表 6 中。 复合物 的晶体结构示于图 11-13中。
表 6. 晶体结构相关数据
D25 Fab D25 Fab + RSV F
PDB ID 4JHA 4JHW
Data collection
Space group P6122 P213
Cell constants
108.7, 108.7, 152.3, 152.3, a, b, c (A)
139.9 152.3
α, β, γ(。) 90.0, 90.0, 120.0 90.0, 90.0, 90.0
Wavelength (A) 1.00 1.00
50.0-1.6 50.0-3.6
Resolution (A)
(1.63-1.60) (3.73-3.60)
Rmerge 11.2 (68.0) 12.7 (81.4)
I/SI 27.3 (2.1) 16.4 (2.0)
Completeness (%) 98.3 (86.1) 99.6 (99.3)
Redundancy 11.0 (5.3) 6.5 (5.2)
Refinement
35.4-1.6 42.2-3.6
Resolution (A)
(1.62-1.60) (3.88-3.60)
No. reflections 63,360 (2,241) 13,877 (2,742)
Rwork/Rfree (%) 24.1/25.5 21.3/26.7
No. atoms
Protein 3,305 6,778
Ligand/ion 0 0
Water 270 0 β-factors
Protein 53.0 128.1
Ligand/ion
Water 44.1
R.m.s. deviations
Bond lengths (A) 0.007 0.003
Bond angles (°) 1.20 0.91
Ramachandran
Favored (%) 96.5 92.0
Allowed (%) 3.0 7.3
Outliers (%) 0.5 0.7 另外, 还使用相同方法分析了 pre- F蛋白的单体和三聚体以 及 pos t- F蛋白的单体和三聚体的晶体结构。 结果示于图 14中。 结果显示, pre- F蛋白与 pos t- F蛋白具有显著不同的空间结构(构 象) 。 复合物晶体的衍射及解构的结果显示, D25 单抗识别的表位 位于 RSV F蛋白的远膜端的头部, 其中, D25的重链结合一个单 体, 轻链结合与该单体相邻的另一个单体(如图 11- 12所示) 。
D25抗体自身 6个 CDR区中的 5个与 RSV F蛋白相结合, 其中重 链的 CDR3与 F蛋白第 4号 α螺旋(由 F蛋白的第 196-209位 ^ 酸残基构成缃结合,并且结合第 2号 p折叠(由 F蛋白的第 38-60 位氨基酸残基构成)与第 1号 α螺旋(由 F蛋白的第 74-96位氨 基酸残基构成)之间的环形结构 (由 F蛋白的第 62- 72位氨基酸 残基构成)。 虽然 D25结合的表位在 pre- F蛋白与 pos t- F蛋白中 的二级结构变化不大, 但在三级结构上变化显著: 第 4号 α螺旋 反生 180° 转向并且远离第 2号 p折叠 (如图 13所示) 。 D25结 合的表位的三级结构的变化揭示了,为什么 D25抗体仅结合 pre-F 蛋白, 而不结合 post- F蛋白, 并且解释了, D25抗体为什么能稳 定 pre- F蛋白的结构并由此中和 RSV。
根据图 11-13以及表 2的结果可以确定, D25单抗所识别的 F 蛋白表位由呼吸道合胞病毒融合蛋白的第 148- 216位 ^酸残基 或其片段组成, 且至少包含呼吸道合胞病毒融合蛋白的第 196-209 位氨基酸残基。 此外, 还发现, 呼吸道合胞病毒融合蛋 白的第 62-69位或第 62-76位氨基酸残基对 D25单抗 /F蛋白的特 异性结合具有促进作用。 通过类似的方法可以确定, AM22单抗和 5C4单抗同样识别 F蛋白的上述表位。
上述结果还显示于图 15中。图 15显示了 pre- F蛋白和 post-F 蛋白的空间结构,构成所述空间结构的对应氨基酸序列,以及 D25 所识别的表位序列。 图 15的结果显示, pre- F蛋白和 post- F蛋 白的空间结构存在着显著的差异。 特别地, pre- F蛋白的空间结 构包括 αΐ- αΐθ螺旋和 PI- P23折叠; 而 post- F蛋白的空间结 构包括 αΐ螺旋, α5— α8螺旋, αΐθ螺旋, βΐ— β2折叠和 β5— P21折叠。
此外, 图 15的结果还显示, D25单克隆抗体在 pre- F蛋白中 的核心识别表位为两个空间上相互接近的肽段, 即, a. a. 62-69 与 a.a. 196-209。 这两个肽段的相互作用界面表明, F蛋白中的 两个区段 ( a. a.62- 76 与 a. a.137- 216 (或更具体地, a. a.148-216 ) )或其片段对于这类抗体 (例如,本发明的抗体(例 如 5C4 ), D25和 AM22 )识别并稳定 pre- F蛋白具有重要的作用, 其中 a. a.176-181与 a. a.185-194这两个区域在 F蛋白的 pre-F 构象及 ost-F构象之间存在显著的转变:它们在 pre- F蛋白中的 构象为 P折叠( P3- P4折叠), 而在 post- F蛋白中的构象为 α 螺旋(包含在 5螺旋中 )。 这些结果表明, D25单抗、 AM22单抗和 5C4单抗识别 F蛋白 上的相同表位, 并且通过与该表位的相互作用, 稳定和维持了 F 蛋白的 pre- F构象。 本发明所发现的 F蛋白的新表位, 以及识别 该表位的抗体可用于稳定 F蛋白的 pre- F构象。
此外, 上文的结果显示, 识别该表位的抗体均具有强中和活 性。 这表明, F蛋白的 pre- F构象和该新表位对于诱导强机体免 疫应答具有重要作用; 并且, 识别该新表位的抗体可用于有效预 防和治疗 RSV感染和与 RSV感染相关的疾病。 尽管本发明的具体实施方式已经得到详细的描述, 但本领域 技术人员将理解: 根据已经公开的所有教导, 可以对细节进行各 种修改和变动, 并且这些改变均在本发明的保护范围之内。 本发 明的全部范围由所附权利要求及其任何等同物给出。

Claims

权 利 要 求
1. 一种单克隆抗体及其抗原结合片段, 其中, 所述单克隆抗 体能够特异性结合呼吸道合胞病毒融合蛋白的第 148- 216位氨基 酸残基或其片段(例如呼吸道合胞病毒融合蛋白的第 196- 209位 氨基酸残基), 和 /或, 呼吸道合胞病毒融合蛋白的第 62- 69位或 第 62-76位氨基酸残基,
优选地,所述的单克隆抗体包含下列 CDR: 1 )如 SEQ ID NO: 20 所示的重链 CDR1; 2 )如 SEQ ID NO: 21所示的重链 CDR2; 3 )如 SEQ ID NO: 22所示的重链 CDR3; 4 )如 SEQ ID NO: 23所示的轻链 CDR1; 5 )如 SEQ ID NO: 24所示的轻链 CDR2;和, 6 )如 SEQ ID NO: 25 所示的轻链 CDR3;
优选地, 所述的单克隆抗体包含 a )如 SEQ ID NO: 17所示的 重链可变区; 和, b )如 SEQ ID NO: 19所示的轻链可变区;
优选地, 所述单克隆抗体或其抗原结合片段选自 Fab、 Fab' , F (ab, ) 2、 Fd、 Fv、 dAb、互补决定区片段、单链抗体(例如, scFv)、 小鼠抗体、 兔抗体、 人源化抗体、 全人抗体、 嵌合抗体(例如, 人鼠嵌合抗体 )或欢特异或多特异抗体;
优选地, 所述的单克隆抗体包括非- CDR 区, 且所述非- CDR 区来自不是鼠类的物种, 例如来自人抗体;
优选地, 所述的单克隆抗体特异性结合呼吸道合胞病毒, 且 对所述病毒具有中和活性;
优选地, 所述的单克隆抗体不结合或基本上不结合 post-F 蛋白, 而是结合并稳定 pre- F蛋白;
优选地, 所述的单克隆抗体衍生自下述单克隆抗体, 或是下 述单克隆抗体: 杂交瘤细胞林 5C4所产生的单克隆抗体, 其中, 杂交瘤细胞林 5C4保藏于中国典型培养物保藏中心(CCTCC),且具 有保藏号 CCTCC NO: C2012147o
2. 一种分离的核酸分子, 其编码权利要求 1的单克隆抗体或 其抗原结合片段。
3. 一种分离的核酸分子, 其包含能够编码权利要求 1的单克 隆抗体的重链可变区的核酸序列。
4. 一种分离的核酸分子, 其包含能够编码权利要求 1的单克 隆抗体的轻链可变区的核酸序列。
5. 一种载体,其包含权利要求 2-4任一项的分离的核酸分子。
6. 一种宿主细胞, 其包含权利要求 2-4任一项的分离的核酸 分子或权利要求 5的载体。
7. 一种杂交瘤细胞林 5C4, 其保藏于中国典型培养物保藏中 心(CCTCC) , 且具有保藏号 CCTCC NO: C2012147e
8. 稳定 pre- F蛋白的方法, 其包括使用权利要求 1的单克隆 抗体或其抗原结合片段,或者 D25或 AM22单克隆抗体或其抗原结 合片段。
9. 权利要求 1 的单克隆抗体或其抗原结合片段或者 D25 或 AM22单克隆抗体或其抗原结合片段在制备试剂盒中的用途, 所述 试剂盒用于稳定 pre- F蛋白, 或检测 pre- F蛋白在样品中的存在 或其水平, 或用于诊断受试者是否感染了 RSV。
10. 一种试剂盒, 其包括权利要求 1的单克隆抗体或其抗原结 合片段。
11. 一种药物组合物, 其包含权利要求 1的单克隆抗体或其抗 原结合片段, 以及药学上可接受的载体和 /或赋形剂。
12. 权利要求 1的单克隆抗体或其抗原结合片段在制备药物组 合物中的用途, 所述药物组合物用于预防或治疗受试者的 RSV感 染或与 RSV感染相关的疾病 (例如肺炎, 如小儿肺炎) 。
13. 表达 pre- F蛋白或抗原-抗体复合物的方法, 其包括, 在 细胞中共表达编码权利要求 1的单克隆抗体或其抗原结合片段或 者 D25或 AM22单克隆抗体或其抗原结合片段的核酸, 以及编码 F 蛋白的核酸。
14. 一种试剂盒, 其包含编码权利要求 1的单克隆抗体或其抗 原结合片段或者 D25或 AM22单克隆抗体或其抗原结合片段的核 酸, 以及编码 F蛋白的核酸。
15. 一种分离的表位肽或其变体, 其中, 所述表位肽由呼吸道 合胞病毒融合蛋白的第 148- 216位 ^酸残基或其片段组成, 且 至少包含呼吸道合胞病毒融合蛋白的第 196-209位 ^酸残基, 并且所述变体与其所源自的表位肽相异仅在于 1个或几个(例如, 1个, 2个, 3个, 4个, 5个, 6个, 7个, 8个或 9个)氨基酸 残基的保守置换, 且保留了其所源自的表位肽的生物学功能; 例如, 所述表位肽由呼吸道合胞病毒融合蛋白的第 196-209 位氨基酸残基组成, 并且所述变体与其所源自的表位肽相异仅在 于 1个或几个(例如, 1个, 2个, 3个或 4个)氨基酸残基的保 守置换, 且保留了其所源自的表位肽的生物学功能;
例如, 所述表位肽由呼吸道合胞病毒融合蛋白的第 196-216 位氨基酸残基组成, 且所述变体与其所源自的表位肽相异仅在于 1个或几个(例如, 1个, 2个, 3个, 4个, 5个, 6个, 7个, 8 个或 9个)氨基酸残基的保守置换, 且保留了其所源自的表位肽 的生物学功能;
例如, 所述表位肽由呼吸道合胞病毒融合蛋白的第 185-216 位氨基酸残基组成, 且所述变体与其所源自的表位肽相异仅在于 1个或几个(例如, 1个, 2个, 3个, 4个, 5个, 6个, 7个, 8 个或 9个)氨基酸残基的保守置换, 且保留了其所源自的表位肽 的生物学功能;
例如, 所述表位肽由呼吸道合胞病毒融合蛋白的第 185-216 位 ^酸 组成, 其中第 185-194位 ^酸在蛋白质 2级结构 上形成 P折叠, 且所述变体与其所源自的表位肽相异仅在于 1个 或几个(例如, 1个, 2个, 3个, 4个, 5个, 6个, 7个, 8个 或 9个)氨基酸残基的保守置换, 且保留了其所源自的表位肽的 生物学功能;
例如, 所述表位肽由呼吸道合胞病毒融合蛋白的第 176-216 位氨基酸残基组成, 且所述变体与其所源自的表位肽相异仅在于 1个或几个(例如, 1个, 2个, 3个, 4个, 5个, 6个, 7个, 8 个, 9 个)氨基酸残基的保守置换, 且保留了其所源自的表位肽 的生物学功能;
例如, 所述表位肽由呼吸道合胞病毒融合蛋白的第 176-216 位氨基酸残基组成, 其中第 176- 181位氨基酸与第 185- 194位氨 基酸在蛋白质 2级结构上形成 p折叠, 且所述变体与其所源自的 表位肽相异仅在于 1个或几个(例如, 1个, 2个, 3个, 4个, 5 个, 6个, 7个, 8个, 9个)氨基酸残基的保守置换, 且保留了 其所源自的表位肽的生物学功能;
例如, 所述表位肽由呼吸道合胞病毒融合蛋白的第 148-216 位氨基酸残基组成, 且所述变体与其所源自的表位肽相异仅在于 1个或几个(例如, 1个, 2个, 3个, 4个, 5个, 6个, 7个, 8 个, 9 个)氨基酸残基的保守置换, 且保留了其所源自的表位肽 的生物学功能;
例如, 所述表位肽由呼吸道合胞病毒融合蛋白的第 148-216 位氨基酸残基组成, 其中第 176- 181位氨基酸与第 185- 194位氨 基酸在蛋白质 2级结构上形成 p折叠, 且所述变体与其所源自的 表位肽相异仅在于 1个或几个(例如, 1个, 2个, 3个, 4个, 5 个, 6个, 7个, 8个, 9个)氨基酸残基的保守置换, 且保留了 其所源自的表位肽的生物学功能。
16. 一种分离的表位肽或其变体, 其由第一肽和第二肽构成, 其中第一肽由呼吸道合胞病毒融合蛋白的第 148- 216位氨基酸残 基或其片段组成且至少包含呼吸道合胞病毒融合蛋白的第 196-209 位氨基酸残基, 并且第二肽由呼吸道合胞病毒融合蛋白 的第 62- 69位或第 62- 76位氨基酸组成, 其中所述变体与其所源 自的表位 J f目异仅在于 1个或几个(例如, 1个, 2个, 3个, 4 个, 5个, 6个, 7个, 8个, 9个)氨基酸残基的保守置换, 且 保留了其所源自的表位肽的生物学功能;
优选地, 所述第一肽与第二肽共同构成了存在于 RSV融合蛋 白的 pre- F构象中的空间结构;
例如, 所述第一肽由呼吸道合胞病毒融合蛋白的第 196-209 位 ^酸 组成;
例如, 所述第一肽由呼吸道合胞病毒融合蛋白的第 196-216 位 ^酸 组成;
例如, 所述第一肽由呼吸道合胞病毒融合蛋白的第 185-216 位 ^酸 组成;
例如, 所述第一肽由呼吸道合胞病毒融合蛋白的第 185-216 位 ^酸 组成, 其中第 185-194位 ^酸在蛋白质 2级结构 上形成 P折叠;
例如, 所述第一肽由呼吸道合胞病毒融合蛋白的第 176-216 位 ^酸 组成;
例如, 所述第一肽由呼吸道合胞病毒融合蛋白的第 176-216 位氨基酸残基组成, 其中第 176- 181位氨基酸与第 185- 194位氨 基酸在蛋白质 2级结构上形成 p折叠;
例如, 所述第一肽由呼吸道合胞病毒融合蛋白的第 148-216 位 ^酸 组成;
例如, 所述第一肽由呼吸道合胞病毒融合蛋白的第 148-216 位氨基酸残基组成, 其中第 176- 181位氨基酸与第 185- 194位氨 基酸在蛋白质 2级结构上形成 p折叠。
17. 一种重组蛋白, 其包含权利要求 15或 16的分离的表位肽 或其变体以及载体蛋白, 并且所述重组蛋白不是天然存在的蛋白 或其片段.
18. 一种分离的核酸分子, 其包含编码权利要求 15或 16的表 位肽或其变体或权利要求 17的重组蛋白的核苷酸序列。
19. 一种载体, 其包含权利要求 18的分离的核酸分子。
20. 一种宿主细胞, 其包含权利要求 18 的分离的核酸分子或 权利要求 19的载体。
21. 一种蛋白疫苗, 其包含权利要求 15或 16的表位肽或其变 体或权利要求 17的重组蛋白, 以及药学上可接受的载体和 /或赋 形剂 (例如佐剂) 。
22. 一种基因疫苗, 其包含权利要求 18 的分离的核酸分子或 权利要求 19的载体, 以及药学上可接受的载体和 /或赋形剂 (例 如佐剂) 。
23. 制备能够特异性结合并中和呼吸道合胞病毒并且稳定和 维持 F蛋白的 pre- F构象的抗体的方法, 其包括:
1 )用权利要求 15或 16的表位肽或其变体或权利要求 17的 重组蛋白免疫非人动物 (例如小鼠) , 以使所述动物产生抗体; 和
2 ) 筛选对呼吸道合胞病毒具有中和活性且与 pos t- F蛋白不 具有反应性的抗体。
24. 能够特异性结合并中和呼吸道合胞病毒并且稳定和维持 F 蛋白的 pre- F构象的抗体或其抗原结合片段,其通过权利要求 23 的方法制备获得。
25. 权利要求 15或 16的表位肽或其变体或权利要求 17的重 组蛋白在制备蛋白疫苗中的用途, 所述蛋白疫苗用于预防、 治疗 或抑制受试者的 RSV感染或与 RSV感染相关的疾病 (例如肺炎, 如小儿肺炎) 。
26. 权利要求 18的分离的核酸分子或权利要求 19的载体在制 备基因疫苗中的用途, 所述基因疫苗用于预防、 治疗或抑制受试 者的 RSV感染或与 RSV感染相关的疾病(例如肺炎,如小儿肺炎)。
PCT/CN2014/073505 2013-03-15 2014-03-17 Rsv融合蛋白的表位以及识别其的抗体 WO2014139476A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015561931A JP6462599B2 (ja) 2013-03-15 2014-03-17 Rsv融合タンパク質のエピトープ及びそのエピトープを認識する抗体
US14/777,275 US9856313B2 (en) 2013-03-15 2014-03-17 Epitope of RSV fusion protein and antibody recognizing the same
AU2014231357A AU2014231357B2 (en) 2013-03-15 2014-03-17 Epitope of RSV fusion protein and antibody identifying same
CN201480013927.7A CN105722856B (zh) 2013-03-15 2014-03-17 Rsv融合蛋白的表位以及识别其的抗体
EP14765573.2A EP2975052B1 (en) 2013-03-15 2014-03-17 Epitope of rsv fusion protein and antibody identifying same
CA2906960A CA2906960C (en) 2013-03-15 2014-03-17 Epitope of rsv fusion protein and antibody recognizing the epitope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310082338.1 2013-03-15
CN201310082338 2013-03-15

Publications (2)

Publication Number Publication Date
WO2014139476A1 true WO2014139476A1 (zh) 2014-09-18
WO2014139476A8 WO2014139476A8 (zh) 2015-06-25

Family

ID=51535878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073505 WO2014139476A1 (zh) 2013-03-15 2014-03-17 Rsv融合蛋白的表位以及识别其的抗体

Country Status (7)

Country Link
US (1) US9856313B2 (zh)
EP (1) EP2975052B1 (zh)
JP (1) JP6462599B2 (zh)
CN (1) CN105722856B (zh)
AU (1) AU2014231357B2 (zh)
CA (1) CA2906960C (zh)
WO (1) WO2014139476A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9738689B2 (en) 2013-03-13 2017-08-22 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Prefusion RSV F proteins and their use
US10017543B2 (en) 2013-03-13 2018-07-10 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Prefusion RSV F proteins and their use
JP2019507103A (ja) * 2015-11-30 2019-03-14 天津昊免生物技術有限公司Eliteimmune Inc. 抗呼吸器合胞体ウイルスの完全ヒト抗体
WO2023103440A1 (zh) * 2021-12-06 2023-06-15 厦门大学 识别RSV pre-F蛋白的抗体以及应用

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9630994B2 (en) 2014-11-03 2017-04-25 University Of Washington Polypeptides for use in self-assembling protein nanostructures
AU2017248021B2 (en) * 2016-04-05 2021-08-12 Janssen Vaccines & Prevention B.V. Stabilized soluble pre-fusion RSV F proteins
BR112019008063A2 (pt) * 2016-10-21 2019-07-02 Adimab Llc anticorpos contra o vírus sincicial anti-respiratório e métodos de sua geração e uso
SG11201903737PA (en) * 2016-10-26 2019-05-30 Cedars Sinai Medical Center Neutralizing anti-tl1a monoclonal antibodies
WO2018118754A1 (en) * 2016-12-19 2018-06-28 Vanderbilt University Antibodies to human respiratory syncytial virus protein pre-fusion conformation and methods of use therefor
CN108265079A (zh) * 2017-01-02 2018-07-10 刘昕 一种新型呼吸道合胞体病毒pre-F融合蛋白载体的制备方法
WO2018130072A1 (zh) * 2017-01-12 2018-07-19 厦门大学 稳定呼吸道合胞病毒融合蛋白的方法
BR112019020661A2 (pt) 2017-04-04 2020-05-05 University Of Washington nanoestruturas de proteína de auto-montagem que exibem proteínas f de paramixovírus e/ou pneumovírus e seu uso
AU2019228551A1 (en) 2018-02-28 2020-10-15 University Of Washington Self-assembling nanostructure vaccines
CN110684747B (zh) * 2018-07-06 2024-05-24 厦门大学 灭活及保存呼吸道合胞病毒的方法
CN111057718A (zh) * 2018-10-17 2020-04-24 南京大学 一种稳定表达绿色荧光蛋白的egfp-sp2/0细胞株及其构建方法
US20220111035A1 (en) * 2019-02-28 2022-04-14 Km Biologics Co., Ltd. Rsv f/g chimeric vaccine
EP4157341A1 (en) * 2020-05-28 2023-04-05 Sotira Covid, LLC Peptides for covid-19 prevention and treatment
WO2022268120A1 (en) * 2021-06-22 2022-12-29 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Anti-rsv antibodies and uses thereof
CN116478296B (zh) * 2022-10-17 2024-02-23 厦门大学 截短的呼吸道合胞病毒f蛋白及其用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
WO2003048731A2 (en) 2001-12-03 2003-06-12 Abgenix, Inc. Antibody categorization based on binding characteristics
CN101778866A (zh) * 2007-06-01 2010-07-14 米迪缪尼有限公司 Rsv特异性结合分子和产生它们的方法
CN102210860A (zh) * 2011-05-31 2011-10-12 昆明理工大学 一种结核分枝杆菌tb10.4-f1融合蛋白疫苗及制备方法
US20120070446A1 (en) * 2009-10-06 2012-03-22 Aimm Therapeutics B.V. Rsv specific binding molecule
CN102712692A (zh) * 2009-10-06 2012-10-03 医学免疫有限公司 Rsv-特异性结合分子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811524A (en) 1995-06-07 1998-09-22 Idec Pharmaceuticals Corporation Neutralizing high affinity human monoclonal antibodies specific to RSV F-protein and methods for their manufacture and therapeutic use thereof
CA3062786C (en) * 2010-07-09 2022-04-19 Janssen Vaccines & Prevention B.V. Anti-human respiratory syncytial virus (rsv) antibodies and methods of use

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
WO2003048731A2 (en) 2001-12-03 2003-06-12 Abgenix, Inc. Antibody categorization based on binding characteristics
CN101778866A (zh) * 2007-06-01 2010-07-14 米迪缪尼有限公司 Rsv特异性结合分子和产生它们的方法
US20120070446A1 (en) * 2009-10-06 2012-03-22 Aimm Therapeutics B.V. Rsv specific binding molecule
CN102712692A (zh) * 2009-10-06 2012-10-03 医学免疫有限公司 Rsv-特异性结合分子
CN102210860A (zh) * 2011-05-31 2011-10-12 昆明理工大学 一种结核分枝杆菌tb10.4-f1融合蛋白疫苗及制备方法

Non-Patent Citations (65)

* Cited by examiner, † Cited by third party
Title
"Fundamental Immunology", 1989, RAVEN PRESS
A. J. MCCOY ET AL.: "Phaser crystallographic software", J. APPL. CRYSTALLOGR, vol. 40, 2007, pages 658
A.C. COOPER; N.C. BANASIAK; P.J. ALLEN, PEDIATR NURS, vol. 29, 2003, pages 452 - 456
A.R. FALSEY; P.A. HENNESSEY ET AL., N ENGL J MED, vol. 352, 2005, pages 1749 - 1759
ACTA CRYSTALLOGR D BIOL CRYSTALLOGR, vol. 66, 2010, pages 213
ACTA CRYSTALLOGR D BIOL CRYSTALLOGR, vol. 66, 2010, pages 486
ALFTHAN ET AL., PROTEIN ENG., vol. 8, 1995, pages 725 - 731
BIRD ET AL., SCIENCE, vol. 242, 1988, pages 423 - 426
BRODEUR ET AL.: "Monoclonal Antibody Production Techniques and Applications", 1987, MARCEL DEKKER, INC., pages: 51 - 63
BRUMMELL ET AL., BIOCHEM., vol. 32, 1993, pages 1180 - 1187
BURKS ET AL., PROC. NATL. ACAD. SCI. USA, vol. 94, 1997, pages 412 - 417
C.B. HALL; G.A. WEINBERG ET AL., N ENGL J MED, vol. 360, 2009, pages 588 - 598
CHOI ET AL., EUR. J. IMMUNOL., vol. 31, 2001, pages 94 - 106
CHOTHIA ET AL., NATURE, vol. 342, 1989, pages 878 - 883
CHOTHIA; LESK, J. MOL. BIOL., vol. 196, 1987, pages 901 - 917
CLARK, IMMUNOL. TODAY, vol. 21, 2000, pages 397 - 402
D.K. SHAY; R.C. HOLMAN ET AL., JAMA, vol. 282, 1999, pages 1440 - 1446
E. MEYERS; W. MILLER, COMPUT. APPL. BIOSCI., vol. 4, 1988, pages 11 - 17
E.A. SIMOES, LANCET, vol. 354, 1999, pages 847 - 852
ED HARLOW: "Antibodies A Laboratory Manual", 1988, COLD SPRING HARBOR LABORATORY
F. M. AUSUBEL: "Short Protocols in Molecular Biology, 3rd Edition,", 1995, JOHN WILEY & SONS, INC.
G. E. MORRIS,: "Epitope Mapping Protocols in Methods in Molecular Biology", vol. 66, 1996
GENNARO AR,: "Remington's Pharmaceutical Sciences, 19th ed.", 1995, MACK PUBLISHING COMPANY
GODING: "Monoclonal Antibodies: Principles and Practice", 1996, ACADEMIC PRESS, pages: 59 - 103
H. NAIR; W.A. BROOKS ET AL., LANCET, vol. 378, 2011, pages 1917 - 1930
H.W. KIM; J.G. CANCHOLA; C.D. BRANDT ET AL., AM J EPIDEMIOL, vol. 89, 1969, pages 422 - 434
HOLLIGER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 6444 - 6448
HOLLIGER P. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 6444 - 6448
HU ET AL., CANCER RES., vol. 56, 1996, pages 3055 - 3061
HUSTON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 5879 - 5883
J GEN VIROL, vol. 82, 2001, pages 2799 - 2804
J. STRUCT. BIOL, vol. 157, 2007, pages 3
J. STRUCT. BIOL., vol. 128, 1999, pages 82
J. VIROL., vol. 85, 2011, pages 7788
J.S. MCLELLAN; M. CHEN; A. KIM ET AL., NAT STRUCT MOL BIOL, vol. 17, 2010, pages 248 - 250
J.S. MCLELLAN; M. CHEN; J.S. CHANG ET AL., J VIROL, vol. 84, 2010, pages 12236 - 12244
J.S. MCLELLAN; Y. YANG ET AL., J VIROL, vol. 85, 2011, pages 7788 - 7796
J.S. MCLELLAN; Y. YANG, J VIROL, vol. 85, 2011, pages 7788 - 7796
JONES ET AL., NATURE, vol. 321, 1986, pages 522 - 525
KABAT: "Sequences of Proteins of Immunological Interest", 1987, NATIONAL INSTITUTES OF HEALTH
KIPRIYANOV ET AL., J. MOL. BIOL., vol. 293, 1999, pages 41 - 56
KOBAYASHI ET AL., PROTEIN ENG., vol. 12, no. 10, 1999, pages 879 - 884
KOLETZKI, D. ET AL.: "HBV core particles allow the insertion and surface exposure of the entire potentially protective region of Puumala hantavirus nucleocapsid protein", BIOL CHEM, vol. 380, 1999, pages 325 - 333, XP009057203, DOI: doi:10.1515/BC.1999.044
KOZBOR, J. IMMUNOL., vol. 133, 1984, pages 3001
M. MAGRO; D. ANDREU ET AL., J VIROL, vol. 84, 2010, pages 7970 - 7982
MCLELLAN, J VRIOL, vol. 84, 2010, pages 12236 - 12244
MORRISON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 6851 - 6855
MUNSON ET AL., ANAL. BIOCHEM., vol. 107, 1980, pages 220
NATURE, vol. 256, 1975, pages 495
NEEDLEMAN ET AL., J. MOL. BIOL., vol. 48, 1970, pages 443 - 453
NEEDLEMAN; WUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 444 - 453
POLJAK R. J. ET AL., STRUCTURE, vol. 2, 1994, pages 1121 - 1123
PRESTA, CURR. OP. STRUCT. BIOL., vol. 2, 1992, pages 593 - 596
REICHMANN ET AL., NATURE, vol. 332, 1988, pages 323 - 329
ROOVERS ET AL., CANCER IMMUNOL., 2001
S. LEADER; K. KOHLHASE, J PEDIATR, vol. 143, 2003, pages 127 - 132
SABINE KONIG; GERTRUD BETERAMS; MICHAEL NASSAL, J. VIROL., vol. 72, no. 6, 1998, pages 4997
SAMBROOK J: "Molecular Cloning: A Laboratory Manual(Second Edition)", 1989, COLD SPRING HARBOR LABORATORY PRESS
T.S. HOWARD; L.H. HOFFMAN ET AL., J PEDIATR, vol. 137, 2000, pages 227 - 232
VARSANI, A. ET AL.: "Chimeric human papillomavirus type 16 (HPV-16) L1 particles presenting the common neutralizing epitope for the L2 minor capsid protein of HPV-6 and HPV-16 [J", J VIROL, vol. 77, 2003, pages 8386 - 8393, XP009017129, DOI: doi:10.1128/JVI.77.15.8386-8393.2003
W.W. THOMPSON; D.K. SHAY; E. WEINTRAUB ET AL., JAMA, vol. 289, 2003, pages 179 - 186
WARD ET AL., NATURE, vol. 341, 1989, pages 544 - 546
XIE JIANPING; HE CUIJUAN ET AL., CHINESE JOURNAL OF PEDIATRICS, vol. 35, 1997, pages 402 - 403
XU GUANREN; SUN SONGWEN; XU XUQING ET AL., JOURNAL OF DISEASE CONTROL & PREVENTION, vol. 4, 2000, pages 37 - 39
Z. OTWINOWSKI; W. MINOR: "Methods Enzymol.", vol. 276, 1997, ACADEMIC PRESS, pages: 307 - 326

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9738689B2 (en) 2013-03-13 2017-08-22 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Prefusion RSV F proteins and their use
US10017543B2 (en) 2013-03-13 2018-07-10 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Prefusion RSV F proteins and their use
US10858400B2 (en) 2013-03-13 2020-12-08 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Prefusion RSV F proteins and their use
US11130785B2 (en) 2013-03-13 2021-09-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Prefusion RSV F proteins and their use
US11981707B2 (en) 2013-03-13 2024-05-14 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Prefusion RSV F proteins and their use
JP2019507103A (ja) * 2015-11-30 2019-03-14 天津昊免生物技術有限公司Eliteimmune Inc. 抗呼吸器合胞体ウイルスの完全ヒト抗体
WO2023103440A1 (zh) * 2021-12-06 2023-06-15 厦门大学 识别RSV pre-F蛋白的抗体以及应用

Also Published As

Publication number Publication date
CN105722856B (zh) 2019-04-16
EP2975052B1 (en) 2020-09-23
WO2014139476A8 (zh) 2015-06-25
AU2014231357B2 (en) 2018-06-14
EP2975052A1 (en) 2016-01-20
AU2014231357A1 (en) 2015-10-22
CA2906960C (en) 2021-07-20
CA2906960A1 (en) 2014-09-18
CN105722856A (zh) 2016-06-29
JP6462599B2 (ja) 2019-01-30
US9856313B2 (en) 2018-01-02
EP2975052A4 (en) 2017-04-05
US20160031972A1 (en) 2016-02-04
JP2016516400A (ja) 2016-06-09

Similar Documents

Publication Publication Date Title
WO2014139476A1 (zh) Rsv融合蛋白的表位以及识别其的抗体
KR101732056B1 (ko) 중화 항-인플루엔자 a 바이러스 항체 및 이의 용도
DK2734545T3 (en) NEUTRALIZING ANTI-INFLUENZA A VIRUS ANTIBODIES AND APPLICATIONS THEREOF
CN112390879B (zh) 靶向SARS-CoV-2的抗体及其制备方法和应用
CN108026166B (zh) 多瘤病毒中和抗体
KR101671452B1 (ko) 항rsv g 단백질 항체
CN110016079B (zh) 抗呼吸道合胞病毒的中和抗体及其应用
WO2021174595A1 (zh) 一种抗新型冠状病毒的单克隆抗体及其应用
JP2013506431A (ja) Rsv特異的結合分子
SG188890A1 (en) Monoclonal antibodies capable of reacting with a plurality of influenza virus a subtypes
BRPI0914012B1 (pt) Composição farmacêutica e uso da composição farmacêutica
JP2019516348A (ja) 重症熱性血小板減少症候群ウイルスの外膜糖タンパク質に結合する抗体及びその用途
EP2982691B1 (en) Broad spectrum monoclonal antibody identifying ha1 structural domain of influenza virus hemagglutinin proteins
WO2023019724A1 (zh) 单克隆抗体35b5及其制备方法和用途
WO2016192652A1 (zh) 抗Flu B的广谱单克隆抗体及其用途
WO2021174594A1 (zh) 一种抗新型冠状病毒的单克隆抗体及其应用
CN111417651A (zh) 多瘤病毒中和抗体
CN115043938A (zh) SARS-CoV-2及其突变株的抗体及应用
TWI730954B (zh) 抗硬骨素抗體、其抗原結合片段及其醫藥用途
KR101450955B1 (ko) Hcv 감염의 치료적 처리 및 예방을 위한 의약으로서 항 hcv 모노클로날 항체
CN107674123B (zh) 一种抗独特型抗体及其应用
WO2021190553A1 (zh) 抗IL-1β的抗体、其药物组合物及其用途
JP5996707B2 (ja) Rsv特異的結合分子
RU2769223C1 (ru) Средство и способ терапии и экстренной профилактики заболеваний, вызываемых вирусом SARS-CoV-2 на основе рекомбинантного антитела и гуманизированного моноклонального антитела
WO2022148374A1 (zh) 抗冠状病毒的全人广谱中和抗体76e1及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14765573

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015561931

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2906960

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14777275

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014765573

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014231357

Country of ref document: AU

Date of ref document: 20140317

Kind code of ref document: A