WO2014139289A1 - 分辨率转换方法及装置、超高清电视机 - Google Patents

分辨率转换方法及装置、超高清电视机 Download PDF

Info

Publication number
WO2014139289A1
WO2014139289A1 PCT/CN2013/085806 CN2013085806W WO2014139289A1 WO 2014139289 A1 WO2014139289 A1 WO 2014139289A1 CN 2013085806 W CN2013085806 W CN 2013085806W WO 2014139289 A1 WO2014139289 A1 WO 2014139289A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
resolution
diagonal interpolation
diagonal
matrix
Prior art date
Application number
PCT/CN2013/085806
Other languages
English (en)
French (fr)
Inventor
徐遥令
侯志龙
Original Assignee
深圳创维-Rgb电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳创维-Rgb电子有限公司 filed Critical 深圳创维-Rgb电子有限公司
Priority to RU2015118239A priority Critical patent/RU2636934C2/ru
Priority to AU2013382526A priority patent/AU2013382526B2/en
Priority to US14/411,397 priority patent/US9706161B2/en
Publication of WO2014139289A1 publication Critical patent/WO2014139289A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0117Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving conversion of the spatial resolution of the incoming video signal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4007Scaling of whole images or parts thereof, e.g. expanding or contracting based on interpolation, e.g. bilinear interpolation

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a resolution conversion method and apparatus, and an ultra high definition television set.
  • Ultra High Definition Television is a TV with a pixel count of 3840 ⁇ 2160 (4K ⁇ 2K) or 7680 ⁇ 4320 (8K ⁇ 4K), compared to 1920 ⁇ 1080 (2K ⁇ 1K) pixels of Full HD TV (FHDTV). The number of pixels is increased by 4 or 16 times, so the image performance is very clear and delicate.
  • the 4K ⁇ 2K standard and the 8K ⁇ 4K standard are included in the ultra-high definition television standard developed by ITU-R, and 4K ⁇ 2K Compared with 8K ⁇ 4K UHDTV, UHDTV is easier to implement and popularize. It is the hotspot and direction of TV industry attention and development.
  • the main object of the present invention is to provide a resolution conversion method aimed at improving the definition of an ultra high definition display.
  • the embodiment of the invention discloses a resolution conversion method, which comprises the following steps:
  • the specific step of acquiring the vertical direction diagonal interpolation parameter matrix comprises:
  • the specific step of acquiring the horizontal direction diagonal interpolation parameter matrix comprises:
  • the diagonal interpolation parameter calculation in the horizontal direction is performed according to the interpolation algorithm, and the horizontal direction diagonal interpolation parameter matrix is obtained.
  • the specific steps of performing diagonal interpolation processing on the input signal to be converted resolution to obtain the target resolution signal include: :
  • the third resolution signal is subjected to vertical diagonal interpolation processing according to a diagonal interpolation parameter matrix in the vertical direction to obtain a target resolution signal.
  • the step of diagonally interpolating the parameter matrix according to the horizontal direction, performing horizontal diagonal interpolation processing on the signal of the resolution to be converted, and the specific steps of acquiring the third resolution signal includes:
  • the embodiment of the invention further discloses a resolution conversion device, comprising:
  • a vertical diagonal interpolation parameter matrix obtaining module configured to obtain a vertical diagonal interpolation parameter matrix
  • a horizontal direction diagonal interpolation parameter matrix obtaining module configured to obtain a horizontal direction diagonal interpolation parameter matrix
  • a target resolution signal acquisition module configured to diagonally interpolate the input signal of the resolution to be converted according to the vertical diagonal interpolation parameter matrix and the horizontal diagonal interpolation parameter matrix to obtain a target resolution signal.
  • the vertical diagonal interpolation parameter matrix obtaining module comprises:
  • a vertical diagonal sampling unit configured to perform vertical diagonal sampling processing on the signal of the resolution to be converted to obtain a first resolution signal
  • a vertical direction diagonal interpolation parameter obtaining unit configured to perform diagonal interpolation parameter calculation in a vertical direction according to the signal to be converted and the first resolution signal according to the interpolation algorithm, and obtain a vertical diagonal interpolation parameter matrix.
  • the horizontal direction diagonal interpolation parameter matrix obtaining module comprises:
  • a horizontal direction diagonal sampling unit configured to perform diagonal sampling processing on the first resolution signal in a horizontal direction to obtain a second resolution signal
  • a horizontal direction diagonal interpolation parameter obtaining unit configured to perform a diagonal interpolation parameter calculation in a horizontal direction according to the first resolution signal and the second resolution signal according to the interpolation algorithm, and obtain a horizontal direction diagonal interpolation parameter matrix .
  • the target resolution signal acquisition module includes:
  • a horizontal direction diagonal interpolation unit configured to diagonally interpolate a parameter matrix according to a horizontal direction, perform horizontal diagonal interpolation processing on the signal to be converted resolution, and acquire a third resolution signal;
  • a vertical direction diagonal interpolation unit configured to diagonally interpolate the parameter matrix according to the vertical direction, perform vertical diagonal interpolation processing on the third resolution signal, and acquire a target resolution signal.
  • the target resolution signal acquisition module further includes: a frame buffer unit configured to perform a delay buffering process on the signal input to the resolution to be converted in the horizontal direction diagonal interpolation unit.
  • the target resolution signal acquisition module further includes: an edge recognition and enhancement unit configured to perform edge recognition and edge enhancement processing on the target resolution signal acquired by the vertical diagonal interpolation unit.
  • the embodiment of the invention also discloses an ultra high definition television set, comprising:
  • a decoding device configured to decode and convert the received input signal, and output a 2K ⁇ 1K progressive signal in a YUV format to the resolution conversion device;
  • the resolution conversion device is the resolution conversion device according to any one of the above aspects, for converting a 2K ⁇ 1K progressive signal of the YUV format into a 4K ⁇ 2K progressive signal of the YUV format;
  • a driving device configured to perform color temperature adjustment, GAMMA correction, color space reversal conversion, and multiplication frame interpolation processing on the 4K ⁇ 2K progressive signal of the YUV format, and output 4K ⁇ 2K times of the RGB format to the ultra high definition screen Frequency progressive signal;
  • a storage and control device for controlling the decoding device, the resolution conversion device, and the drive device, and storing data of the decoding device, the resolution conversion device, and the drive device.
  • the resolution conversion method disclosed in the present invention performs diagonal interpolation processing on a signal of a resolution to be converted to obtain a target resolution signal by diagonally interpolating a parameter matrix and a horizontal diagonal interpolation parameter matrix according to a vertical direction.
  • the aspect can effectively reduce image distortion, and on the other hand, can effectively prevent image blur and image sawtooth, and achieve the purpose of improving image clarity and image quality.
  • FIG. 1 is a schematic flow chart of a resolution conversion method in a preferred embodiment of the present invention
  • FIG. 2 is a schematic flow chart of obtaining a vertical direction diagonal interpolation parameter matrix in a preferred embodiment of the resolution conversion method of the present invention
  • Figure 2-1 is a schematic diagram of the input signal to be converted resolution is a 2K x 1K progressive signal in YUV format;
  • FIG. 2-2 is a schematic diagram of a 2K ⁇ 0.5K vertical diagonal interpolation sample signal of the YUV format after the signal of FIG. 2-1 is diagonally sampled in the vertical direction;
  • Figure 2-3 is a schematic diagram of the vertical diagonal interpolation parameter matrix V obtained by calculating the diagonal interpolation parameters of the signals shown in Figure 2-1 and Figure 2-2;
  • FIG. 3 is a schematic flow chart of obtaining a horizontal direction diagonal interpolation parameter matrix in a preferred embodiment of the resolution conversion method of the present invention
  • 3-1 is a schematic diagram of a 1K ⁇ 0.5K horizontal diagonal interpolation sample signal of the YUV format after the signal of FIG. 2-2 is sampled in the horizontal direction diagonally;
  • FIG. 3-2 is a schematic diagram of the horizontal diagonal interpolation parameter matrix H obtained by calculating the diagonal interpolation parameters of the signals shown in FIG. 2-2 and FIG. 3-1;
  • FIG. 4 is a schematic flowchart of acquiring a target resolution signal in a preferred embodiment of a resolution conversion method according to the present invention
  • Figure 4-1 is a schematic diagram of a matrix after horizontally diagonally filling the pixel matrix shown in Figure 2-1;
  • 4-2 is a schematic diagram of a matrix of pixel blocks after dividing the matrix shown in FIG. 4-1;
  • 4-3 is a schematic diagram of a matrix after interpolating and filling the matrix shown in FIG. 4-2;
  • 4-4 is a schematic diagram of a matrix after vertical diagonal filling of the pixel matrix shown in FIG. 4-3;
  • FIG. 4-5 is a schematic diagram of a matrix of pixel blocks after dividing the matrix shown in FIG. 4-4;
  • FIG. 4-6 is a schematic diagram of a matrix after interpolating and filling the matrix shown in FIG. 4-5;
  • FIG. 5 is a schematic structural diagram of a resolution conversion apparatus according to a preferred embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an ultra high definition television set according to a preferred embodiment of the present invention.
  • the present invention discloses a resolution conversion method.
  • the resolution conversion method in the embodiment includes the following steps:
  • Step S01 obtaining a vertical direction diagonal interpolation parameter matrix and a horizontal direction diagonal interpolation parameter matrix.
  • Step S02 Perform diagonal interpolation processing on the input signal to be converted resolution to obtain a target resolution signal according to the vertical direction diagonal interpolation parameter matrix and the horizontal direction diagonal interpolation parameter matrix.
  • the specific steps of obtaining the vertical direction diagonal interpolation parameter matrix include:
  • Step S11 performing vertical diagonal sampling processing on the input signal of the resolution to be converted to obtain a first resolution signal.
  • Step S12 according to the input signal to be converted and the first resolution signal, perform diagonal interpolation parameter calculation in the vertical direction according to the interpolation algorithm, and obtain a vertical direction diagonal interpolation parameter matrix.
  • the input signal of the resolution to be converted is a 2K ⁇ 1K progressive signal of the YUV format
  • the diagonal sampling of the 2K ⁇ 1K progressive signal of the YUV format is performed in the vertical direction. It is processed into a 2K ⁇ 0.5K vertical diagonal interpolation sample signal of YUV format, and the 2K ⁇ 0.5K vertical diagonal interpolation sample signal of the processed YUV format can be referred to as shown in FIG. 2-2.
  • the input resolution of the resolution to be converted is the 2K ⁇ 1K progressive signal of the YUV format and the 2K ⁇ 0.5K vertical diagonal interpolation sample signal of the processed YUV format is subjected to the diagonal interpolation parameter calculation in the vertical direction. After the calculation, the vertical direction diagonal interpolation parameter matrix V is obtained, and the vertical diagonal interpolation parameter matrix V obtained after the calculation can be referred to as shown in FIG. 2-3.
  • Step S21 performing diagonal sampling processing in the horizontal direction on the first resolution signal to obtain a second resolution signal
  • Step S22 Perform a diagonal interpolation parameter calculation in the horizontal direction according to the first resolution signal and the second resolution signal according to the interpolation algorithm, and obtain a horizontal direction diagonal interpolation parameter matrix.
  • the first resolution signal is shown in Figure 2-2.
  • the 2K ⁇ 0.5K vertical diagonal interpolation sample signal of the YUV format is diagonally sampled and processed into 1K ⁇ 0.5 of YUV format.
  • the K horizontally diagonally interpolated sample signal, and the processed YUV format 1K ⁇ 0.5K horizontal diagonal interpolation sample signal can be referred to as shown in Figure 3-1.
  • the 2K ⁇ 0.5K vertical diagonal interpolation sample signal of the YUV format and the 1K ⁇ 0.5K horizontal diagonal interpolation sample signal of the processed YUV format are subjected to the diagonal interpolation parameter calculation in the horizontal direction, and the calculation is performed after the calculation.
  • the horizontal direction diagonal interpolation parameter matrix H is obtained, and the horizontal direction diagonal interpolation parameter matrix H obtained after the calculation can be referred to as shown in FIG. 3-2.
  • the obtaining the vertical direction diagonal interpolation parameter matrix and the horizontal direction diagonal interpolation parameter matrix are not limited to the above manner, and the specific steps of obtaining the horizontal direction diagonal interpolation parameter matrix may be:
  • the signal of the input resolution to be converted is subjected to diagonal sampling processing in the horizontal direction to obtain a fourth resolution signal.
  • the diagonal interpolation parameter calculation in the horizontal direction is performed according to the interpolation algorithm, and the horizontal direction diagonal interpolation parameter matrix is obtained.
  • the specific steps of obtaining the vertical direction diagonal interpolation parameter matrix may be:
  • the diagonal interpolation parameter calculation in the vertical direction is performed according to the interpolation algorithm, and the vertical direction diagonal interpolation parameter matrix is obtained.
  • specific steps of obtaining a target resolution signal include:
  • Step S31 according to the horizontal direction diagonal interpolation parameter matrix, performing horizontal diagonal interpolation processing on the input signal to be converted resolution, and acquiring the third resolution signal.
  • Step S32 diagonally interpolating the parameter matrix according to the vertical direction, performing vertical diagonal interpolation processing on the third resolution signal, and acquiring the target resolution signal.
  • FIG. 4-1 Horizontally diagonally filling the pixels of the 2K ⁇ 1K pixel matrix to obtain the matrix PH.
  • the matrix PH after the pixels of the 2K ⁇ 1K pixel matrix are horizontally diagonally filled can be referred to FIG. 4-1.
  • Blocking the matrix PH that is, dividing the 4K ⁇ 1K matrix into four 1K ⁇ 0.5K pixel block matrices, each pixel block having 4 ⁇ 2 pixels, and dividing the 4K ⁇ 1K matrix into four 1K ⁇ 0.5K pixel blocks.
  • the schematic diagram after the matrix can be referred to FIG. 4-2.
  • the 32 pixels in FIG. 4-2 are divided into four pixel blocks A11, A12, A21, and A22 according to the broken line.
  • Block the matrix PV divide the 4K ⁇ 2K matrix into 8 2K ⁇ 0.5K pixel block matrices, each pixel block has 4 ⁇ 2 pixels, and divide the 4K ⁇ 2K matrix into 8 2K ⁇ 0.5K pixel blocks.
  • the schematic diagram after the matrix can be referred to FIG. 4-5.
  • the 64 pixels in FIG. 4-5 are divided into eight pixel blocks B11, B12, B13, B14, B21, B22, B23, B24 according to the broken line.
  • the manner of acquiring the target resolution signal is not limited to the foregoing manner.
  • the specific steps of acquiring the target resolution signal may be:
  • the input resolution to be converted is subjected to vertical diagonal interpolation processing to obtain a sixth resolution signal.
  • the horizontal resolution diagonal interpolation process is performed on the sixth resolution signal according to the horizontal direction diagonal interpolation parameter matrix, and the target resolution signal is acquired.
  • the step of delay buffering the input signal of the resolution to be converted is further included before the horizontally diagonally filling the input signal of the resolution to be converted to obtain the matrix PH.
  • the step of performing edge recognition and edge enhancement processing on the target resolution signal is further included.
  • the resolution conversion method disclosed by the present invention can convert a 2K ⁇ 1K signal into a 4K ⁇ 2K signal, but is not limited to converting only a 2K ⁇ 1K signal into a 4K ⁇ 2K signal, and can also convert a 4K ⁇ 2K signal into 8K ⁇ . 4K signal.
  • the resolution conversion method disclosed in the present invention can convert a 2K ⁇ 1K signal into a 4K ⁇ 2K signal, and can effectively prevent an image by adopting a method of diagonally interpolating in the horizontal direction and the vertical direction in sequence.
  • the parameters of the interpolation algorithm are calculated by the input 2K ⁇ 1K signal, which makes the interpolated pixel have high correlation with adjacent original pixels, effectively reducing image distortion, and
  • the interpolation efficiency is high; at the same time, the invention is simple and reliable, and has wide application value.
  • the present invention also discloses a resolution conversion device, which can be corresponding to the resolution conversion method in any of the above embodiments.
  • the resolution conversion device is The method includes a vertical direction diagonal interpolation parameter matrix acquisition module 1, a horizontal direction diagonal interpolation parameter matrix acquisition module 2, and a target resolution signal acquisition module 3; wherein the vertical diagonal interpolation parameter matrix acquisition module 1 is configured to acquire a vertical direction diagonal The interpolation parameter matrix; the horizontal direction diagonal interpolation parameter matrix acquisition module 2 is configured to obtain a horizontal direction diagonal interpolation parameter matrix; the target resolution signal acquisition module 3 is configured to diagonally interpolate the parameter matrix and the horizontal direction pair according to the vertical direction The angular interpolation parameter matrix performs diagonal interpolation processing on the input signal to be converted to obtain a target resolution signal.
  • the vertical diagonal interpolation parameter matrix obtaining module 1 includes a vertical diagonal sampling unit 11 and a vertical diagonal interpolation parameter acquiring unit 12, wherein the vertical diagonal sampling unit 11 is used. And performing vertical diagonal diagonal sampling processing on the signal to be converted to obtain a first resolution signal; and a vertical diagonal interpolation parameter acquiring unit 12, configured to use the signal and the resolution according to the resolution to be converted The first resolution signal is described, and the diagonal interpolation parameter calculation in the vertical direction is performed according to the interpolation algorithm, and the vertical direction diagonal interpolation parameter matrix is obtained.
  • the horizontal direction diagonal interpolation parameter matrix obtaining module 2 includes a horizontal direction diagonal sampling unit 21 and a horizontal direction diagonal interpolation parameter acquiring unit 22, wherein the horizontal direction diagonal sampling unit 21 is configured to use the first resolution signal Performing a diagonal sampling process in the horizontal direction to obtain a second resolution signal; the horizontal direction diagonal interpolation parameter obtaining unit 22 is configured to perform the level according to the interpolation algorithm according to the first resolution signal and the second resolution signal The diagonal interpolation parameter calculus of the direction is obtained, and the horizontal direction diagonal interpolation parameter matrix is obtained.
  • the target resolution signal acquisition module 3 includes a horizontal direction diagonal interpolation unit 31 and a vertical direction diagonal interpolation unit 32; wherein the horizontal direction diagonal interpolation unit 31 is configured to be in accordance with the horizontal direction An angular interpolation parameter matrix, performing horizontal diagonal interpolation processing on the signal to be converted to obtain a third resolution signal; and a vertical diagonal interpolation unit 32 for diagonally interpolating the parameter matrix according to the vertical direction
  • the third resolution signal is subjected to vertical diagonal interpolation processing to acquire a target resolution signal.
  • the target resolution signal acquisition module 3 further includes a frame buffer unit 33 for performing a delay buffering process on the signal input to the resolution to be converted in the horizontal direction diagonal interpolation unit.
  • the target resolution signal acquisition module 3 further includes an edge recognition and enhancement unit 34 for performing edge recognition and edge enhancement processing on the target resolution signal acquired by the vertical direction diagonal interpolation unit.
  • the interpolation algorithms proposed in the vertical diagonal interpolation parameter acquisition unit 12, the horizontal diagonal interpolation parameter acquisition unit 22, the horizontal diagonal interpolation unit 31, and the vertical diagonal interpolation unit 32 are the same interpolation algorithm, for example, a double line. Sexual interpolation algorithm.
  • the resolution conversion apparatus disclosed by the present invention is capable of converting a 2K ⁇ 1K signal into a 4K ⁇ 2K signal, but is not limited to converting only a 2K ⁇ 1K signal into a 4K ⁇ 2K signal, and can also convert a 4K ⁇ 2K signal into 8K ⁇ .
  • the 4K signal converts the low resolution signal into a high resolution signal.
  • the resolution conversion device disclosed in the present invention can convert a 2K ⁇ 1K signal into a 4K ⁇ 2K signal, and can effectively prevent an image by adopting a method of diagonally interpolating in the horizontal direction and the vertical direction in sequence.
  • the parameters of the interpolation algorithm are calculated by the input 2K ⁇ 1K signal, which makes the interpolated pixel have high correlation with adjacent original pixels, effectively reducing image distortion, and
  • the interpolation efficiency is high; at the same time, the invention is simple and reliable, and has wide application value.
  • the input resolution of the resolution to be converted is a 2K ⁇ 1K progressive signal of YUV format, and each pixel of the pixel matrix is PA, PA is PAmn, m is 1 to 1080, and n is 1 to 1920; Taking a 4 ⁇ 4 pixel as an example, a schematic diagram of the pixel matrix is shown in Figure 2-1.
  • the 2K ⁇ 1K progressive signals of the YUV format are input to the vertical diagonal sampling unit 11, the vertical diagonal interpolation parameter acquiring unit 12, and the frame buffer unit 33, respectively.
  • the vertical direction diagonal sampling unit 11 diagonally samples the 2K ⁇ 1K progressive signal of the YUV format in the vertical direction to obtain a 2K ⁇ 0.5K vertical diagonal interpolation sample signal, and sets the pixel matrix to be PB, PB.
  • Each pixel is PBab, where a is 1 to 540 and b is 1 to 1920. then:
  • the vertical direction diagonal sampling unit 11 outputs 2K ⁇ 0.5K vertical direction diagonal interpolation sample signals to the horizontal direction diagonal sampling unit 21, the vertical diagonal interpolation parameter acquisition unit 12, and the horizontal diagonal interpolation, respectively.
  • Parameter acquisition unit 22 outputs 2K ⁇ 0.5K vertical direction diagonal interpolation sample signals to the horizontal direction diagonal sampling unit 21, the vertical diagonal interpolation parameter acquisition unit 12, and the horizontal diagonal interpolation, respectively.
  • the horizontal direction diagonal sampling unit 21 diagonally samples the 2K ⁇ 0.5K signal in the horizontal direction to obtain a 1K ⁇ 0.5K horizontal direction diagonal interpolation sample signal, and sets the pixel matrix to be each pixel of the PC and the PC. It is PCpq, where p is 1 to 540 and q is 1 to 960. then:
  • Figure 2-3 shows the horizontal diagonal interpolation sample signal obtained by sampling in Figure 2-2.
  • the horizontal direction diagonal sampling unit 21 outputs a 1K ⁇ 0.5K horizontal direction diagonal interpolation sample signal to the horizontal direction diagonal interpolation parameter acquisition unit 22.
  • the diagonal interpolation parameter acquisition unit 12 receives the 2K ⁇ 1K signal and the 2K ⁇ 0.5K vertical diagonal interpolation sample signal, the diagonal interpolation parameter calculation is performed in the vertical direction according to the interpolation algorithm, and the calculation is performed after the calculation.
  • the parameter matrix V is interpolated diagonally in the vertical direction.
  • V is a 2K ⁇ 0.5K matrix, and each unit of V is Vcd, where c is 1 to 540 and d is 1 to 1920.
  • PAmn (Vcd, Y);
  • Y represents a plurality of pixels of the 2K ⁇ 0.5K pixel matrix PB.
  • Y represents adjacent upper, lower, left, and right pixels.
  • the parameter Vcd can be derived.
  • the vertical direction diagonal interpolation parameter acquisition unit 12 passes the calculated parameter matrix V to the vertical direction diagonal interpolation unit 32.
  • the horizontal direction diagonal interpolation parameter obtaining unit 22 receives the 2K ⁇ 0.5K vertical diagonal interpolation sample signal and the 1K ⁇ 0.5K horizontal direction diagonal interpolation sample signal, and then performs diagonal direction in the horizontal direction according to the interpolation algorithm.
  • Interpolation parameter calculus after calculation, the horizontal direction diagonal interpolation parameter matrix H is obtained.
  • H is a 1K ⁇ 0.5K matrix, and each unit of H is Hef, where e is 1 to 540 and f is 1 to 960.
  • the interpolation algorithm function is , then:
  • PBab (Hef, X);
  • X represents a plurality of pixels of a 1K ⁇ 0.5K pixel matrix PC.
  • X represents four adjacent pixels of up, down, left, and right.
  • the parameter Hef can be derived.
  • the horizontal direction diagonal interpolation parameter acquisition unit 22 passes the calculated parameter matrix H to the horizontal direction diagonal interpolation unit 31.
  • the frame buffer unit 33 After receiving the 2K ⁇ 1K signal, the frame buffer unit 33 delays buffering it, and outputs it to the horizontal direction diagonal interpolation unit 31.
  • the horizontal diagonal interpolation unit 31 diagonally interpolates the 2K ⁇ 1K signal in the horizontal direction to obtain a 4K ⁇ 1K signal, and sets each pixel of the pixel matrix to PH and PH to be PHkg, where K is 1 ⁇ 1080, g is 1 to 3840. then:
  • FIG. 4-1 The PH matrix after horizontally diagonally filling the pixel matrix shown in Figure 2-1 is shown in Figure 4-1.
  • the blank pixels in Figure 4-1 represent the pixels to be interpolated.
  • FIG. 4-2 A schematic diagram of a matrix of pixel blocks after dividing the matrix shown in Figure 4-1 is shown in Figure 4-2.
  • the 32 pixels of FIG. 4-2 are divided into four pixel blocks of A11, A12, A21, and A22 according to a broken line.
  • the interpolation algorithm function is, and the pixel value calculated by interpolation is:
  • the parameter Hef corresponds to each pixel block.
  • Hef is H11 when calculating the pixel value in the pixel block A11
  • Hef is H12 when calculating the pixel value in the pixel block A12
  • the pixel value in the pixel block A21 is calculated.
  • Hef is H21, when calculating the pixel value in the pixel block A22, Hef is H22;
  • Fig. 4-3 The PH matrix after the interpolation and filling of Fig. 4-2 is shown in Fig. 4-3, and X11 and X12 in Fig. 4-3 are pixels filled after horizontal diagonal interpolation calculation.
  • the horizontal direction diagonal interpolation unit 31 transmits the interpolated 4K ⁇ 1K pixel matrix PH to the vertical direction diagonal interpolation unit 32.
  • the vertical diagonal interpolation unit 32 diagonally interpolates the 4K ⁇ 1K signal in the vertical direction to obtain a 4K ⁇ 2K signal, and sets each pixel of the pixel matrix PV and PV to PHst, where s is 1 ⁇ 2160, t is 1 to 3840. then:
  • FIG. 4-4 The PV matrix after vertical diagonal filling of the pixel matrix shown in Figure 4-3 is shown in Figure 4-4.
  • the blank pixels in Figure 4-4 represent the pixels to be interpolated.
  • FIG. 4-5 shows the matrix of the pixel block after dividing the matrix shown in Figure 4-4.
  • the 64 pixels of FIG. 4-5 are divided into eight pixel blocks of B11, B12, B13, B14, B21, B22, B23, and B24 according to a broken line.
  • the interpolation algorithm function is, and the pixel value calculated by interpolation is:
  • PVst (Vcd, W); where:
  • Vcd corresponds to each pixel block.
  • Vcd is V11 when calculating the pixel value in the pixel block B11
  • Vcd is V12 when calculating the pixel value in the pixel block B12
  • the pixel value in the pixel block B13 is calculated.
  • Vcd is V13,...;
  • W represents a plurality of pixels used in the calculation of the PV matrix.
  • Figure 4-6 shows the PV matrix after the interpolation and filling of Figure 4-5.
  • Y11, Y12, etc. in Fig. 4-6 are pixels filled after vertical diagonal interpolation calculation.
  • the 4K ⁇ 2K pixel matrix is output, and the edge recognition and enhancement unit 34 performs edge recognition and edge enhancement processing on the 4K ⁇ 2K pixel matrix to enhance the edge contour of the image object, and further Improve the sharpness of the image.
  • 4K ⁇ 2K output complete the 2K ⁇ 1K signal to 4K ⁇ 2K signal process.
  • the above 2K ⁇ 1K is 1920 ⁇ 1080 or 1080 lines, 1920 pixels per line, 2K ⁇ 0.5K is 1920 ⁇ 540, ie 540 lines, 1920 pixels per line, 1K ⁇ 0.5K is 960 ⁇ 540, ie 540 lines, each line 960 pixels, 4K ⁇ 1K is 3840 ⁇ 1080, that is, 1080 lines, 3840 pixels per line, 4K ⁇ 2K is 3840 ⁇ 2160, that is, 2160 lines, 3840 pixels per line.
  • the television set includes a decoding device 4, a resolution conversion device 5, a driving device 6, and a storage and control device 7. And a UHD (Ultra High Definition) screen 8, wherein the decoding device 4 is configured to decode and convert the received input signal, and output a 2K ⁇ 1K progressive signal in the YUV format to the resolution conversion device; the resolution conversion device 5 For converting the 2K ⁇ 1K progressive signal of the YUV format into a 4K ⁇ 2K progressive signal of the YUV format, the resolution conversion apparatus in any of the above embodiments may refer to any of the above embodiments for resolution conversion.
  • the driving device 6 is configured to perform color temperature adjustment, GAMMA correction, color space reversal conversion, and multiplication frame interpolation processing on the 4K ⁇ 2K progressive signal of the YUV format, and The ultra high definition screen outputs a 4K ⁇ 2K frequency doubling progressive signal in RGB format;
  • the storage and control device 7 is configured to control the decoding device, the resolution conversion device and the driving device, and store the decoding device and the The resolution conversion device and the data of the driving device;
  • UHD (Ultra High Definition) screen 8 for receiving the 4K ⁇ 2K frequency-multiplying progressive signal of the RGB format output by the driving device 6, and driving the UHD (Ultra High Definition) screen to realize Ultra high definition display.
  • the decoding device 4 includes a signal interface module 41, a signal decoding and format conversion module 42, a color space conversion module 43 and a deinterlacing and noise reduction module 44.
  • the signal interface module 41 is configured to receive an external input signal.
  • the signal amplitude limitation, the format recognition and the like are processed, and the processed signal is further output to the signal decoding and format conversion module 42.
  • the signal decoding and format conversion module 42 is configured to receive the signal output by the signal interface module 41 and decode the signal. After processing, format conversion, etc., it is processed into a 2K ⁇ 1K signal, and the processed 2K ⁇ 1K signal is further output to the color space conversion module 43.
  • the color space conversion module 43 is configured to receive the signal decoding and format conversion module 42.
  • the output 2K ⁇ 1K signal is subjected to color gamut conversion processing, which is processed into a 2K ⁇ 1K signal of YUV4:2:2, and further processed YUV4:2:2
  • the 2K ⁇ 1K signal is output to the deinterlacing and noise reduction module 44; the deinterlacing and noise reduction module 44 is configured to receive the YUV4:2:2 output by the color space conversion module 43.
  • the 2K ⁇ 1K signal is deinterlaced and noise-reduced, processed into a 2K ⁇ 1K progressive signal of YUV4:2:2, and the processed 2K ⁇ 1K progressive signal is further output to the resolution conversion device 5 .
  • the driving device 6 includes a color temperature adjustment and GAMMA correction module 61, a color space inverse conversion module 62, and a frequency multiplication interpolation module 63.
  • the color temperature adjustment and GAMMA correction module 61 receives the edge recognition and enhancement in the 2K1K to 4K2K device 5 described above.
  • the 4K ⁇ 2K progressive signal of the YUV format output by the unit 34 performs color temperature adjustment and GAMMA correction in the YUV color space according to the characteristics of the UHD (Ultra High Definition) screen; if the Y is kept substantially unchanged during the color temperature adjustment, the UV is adjusted, and the GAMMA is corrected.
  • UHD Ultra High Definition
  • the color space inverse conversion module 62 receives the above-mentioned color temperature adjustment and GAMMA correction module 61 processing and output.
  • the 4K ⁇ 2K progressive signal of the YUV format is subjected to color space inverse conversion processing, converted into a 4K ⁇ 2K progressive RGB signal, and further the 4K ⁇ 2K progressive RGB signal is output to the double frequency interpolation frame module 63;
  • the multi-frequency interpolation frame module 63 receives the 4K ⁇ 2K progressive RGB signal output by the color space inverse conversion module 62, performs frame interpolation and multiplication processing, and doubles or doubles its frame rate. After that, a further 4K ⁇ 2K frequency-doubling progressive RGB signal is output to the UHD screen 8 of the television.
  • the storage and control device 7 mainly transmits and receives control signals to control the respective modules of the decoding device 4, the respective modules of the resolution conversion device 5, the respective modules of the drive device 6, and the respective modules of the storage decoding device 4, and the resolution Various modules of the rate conversion device 5 and various frames and data of the respective modules of the drive device 6 realize various image processing, signal conversion, and the like.
  • the ultra-high definition television set disclosed by the present invention can convert a 2K ⁇ 1K signal into a 4K ⁇ 2K signal, but is not limited to converting only a 2K ⁇ 1K signal into a 4K ⁇ 2K signal, and can also convert a 4K ⁇ 2K signal into 8K ⁇ . 4K signal.
  • the ultra-high definition television disclosed in the present invention can convert a 2K ⁇ 1K signal into a 4K ⁇ 2K signal, and can drive the UHD screen to realize ultra-high definition display; and adopts the pair in the horizontal direction and the vertical direction in turn.
  • the method of angular interpolation can effectively prevent image blurring and image aliasing, and effectively improve the sharpness of the image.
  • the parameters of the interpolation algorithm are calculated by the input 2K ⁇ 1K signal, so that the interpolation pixel is associated with the adjacent original pixel. It has high performance, effectively reduces image distortion, and has high interpolation efficiency.
  • the invention is simple and reliable, and has wide application value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Television Systems (AREA)
  • Image Processing (AREA)
  • Editing Of Facsimile Originals (AREA)

Abstract

本发明提供了一种分辨率转换方法及装置、超高清电视机,其中分辨率转换方法包括以下步骤:获取垂直方向对角插值参数矩阵及水平方向对角插值参数矩阵;根据所述垂直方向对角插值参数矩阵及所述水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行对角插值处理以获取目标分辨率信号。通过根据垂直方向对角插值参数矩阵及水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行对角插值处理以获取目标分辨率信号,一方面可有效减少图像失真,另一方面可有效防止图像模糊及图像锯齿的出现,达到了提高图像清晰度和画质的目的。

Description

分辨率转换方法及装置、超高清电视机
技术领域
本发明涉及显示技术领域,特别涉及到一种分辨率转换方法及装置、超高清电视机。
背景技术
超高清电视(UHDTV)即像素数目达3840×2160(4K×2K)或7680×4320(8K×4K)的电视,相比全高清电视(FHDTV)1920×1080(2K×1K)的像素数目,其像素数目提高了4倍或16倍,因此其图像表现非常清晰、细腻。在ITU-R制定的超高清电视标准中包括4K×2K标准和8K×4K标准,而4K×2K UHDTV较8K×4K UHDTV更容易实现和普及,是目前电视行业关注和发展的热点和方向。
由于2K×1K信号丰富、片源充足,而4K×2K的信号非常少、片源严重缺乏,且直接拍摄4K×2K片源的成本非常高,所以目前的UHDTV产品接收2K×1K信号进行超高清显示时,一般均存在图像失真、锯齿、模糊等缺陷,即将2K×1K信号格式转换成4K×2K信号格式是当前急需解决的技术问题。
发明内容
本发明的主要目的是提供一种分辨率转换方法,旨在提升超高清显示的清晰度。
本发明实施例公开了一种分辨率转换方法,包括以下步骤:
获取垂直方向对角插值参数矩阵及水平方向对角插值参数矩阵;
根据所述垂直方向对角插值参数矩阵及所述水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行对角插值处理以获取目标分辨率信号。
优选地,所述获取所述垂直方向对角插值参数矩阵的具体步骤包括:
对所述待转换分辨率的信号进行垂直方向的对角抽样处理,获取第一分辨率信号;
根据所述待转换分辨率的信号及所述第一分辨率信号,按照插值算法进行垂直方向的对角插值参数演算,获取垂直方向对角插值参数矩阵。
优选地,所述获取所述水平方向对角插值参数矩阵的具体步骤包括:
对所述第一分辨率信号进行水平方向的对角抽样处理,获取第二分辨率信号;
根据所述第一分辨率信号及所述第二分辨率信号,按照插值算法进行水平方向的对角插值参数演算,获取水平方向对角插值参数矩阵。
优选地,所述根据所述垂直方向对角插值参数矩阵及所述水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行对角插值处理以获取目标分辨率信号的具体步骤包括:
根据水平方向对角插值参数矩阵,对所述待转换分辨率的信号进行水平方向对角插值处理,获取第三分辨率信号;
根据垂直方向对角插值参数矩阵,对所述第三分辨率信号进行垂直方向对角插值处理,获取目标分辨率信号。
优选地,所述根据水平方向对角插值参数矩阵,对所述待转换分辨率的信号进行水平方向对角插值处理,获取第三分辨率信号的具体步骤包括:
用所述待转换分辨率的信号的像素矩阵中的像素进行水平对角填充以得到第一矩阵;
对所述第一矩阵进行分块;
用所述第一矩阵中已填充的像素以及水平方向对角插值参数矩阵进行水平对角插值计算,并将计算出的像素值填充在所述第一矩阵对应的空位中以得到所述第三分辨率信号;
所述根据垂直方向对角插值参数矩阵,对所述第三分辨率信号进行垂直方向对角插值处理,获取目标分辨率信号的具体步骤包括:
用所述第三分辨率信号的像素矩阵中的像素进行垂直对角填充以得到第二矩阵;
对所述第二矩阵进行分块;
用所述第二矩阵中已填充的像素以及垂直方向对角插值参数矩阵进行垂直对角插值计算,并将计算出的像素值填充在所述第二矩阵对应的空位中以得到所述目标分辨率信号。
本发明实施例还公开了一种分辨率的转换装置,包括:
垂直方向对角插值参数矩阵获取模块,用于获取垂直方向对角插值参数矩阵;
水平方向对角插值参数矩阵获取模块,用于获取水平方向对角插值参数矩阵;
以及目标分辨率信号获取模块,用于根据所述垂直方向对角插值参数矩阵及所述水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行对角插值处理以获取目标分辨率信号。
优选地,所述垂直方向对角插值参数矩阵获取模块包括:
垂直方向对角抽样单元,用于对所述待转换分辨率的信号进行垂直方向的对角抽样处理,以获取第一分辨率信号;
以及垂直方向对角插值参数获取单元,用于根据所述待转换分辨率的信号及所述第一分辨率信号,按照插值算法进行垂直方向的对角插值参数演算,获取垂直方向对角插值参数矩阵。
优选地,所述水平方向对角插值参数矩阵获取模块包括:
水平方向对角抽样单元,用于对所述第一分辨率信号进行水平方向的对角抽样处理,以获取第二分辨率信号;
以及水平方向对角插值参数获取单元,用于根据所述第一分辨率信号及所述第二分辨率信号,按照插值算法进行水平方向的对角插值参数演算,获取水平方向对角插值参数矩阵。
优选地,所述目标分辨率信号获取模块包括:
水平方向对角插值单元,用于根据水平方向对角插值参数矩阵,对所述待转换分辨率的信号进行水平方向对角插值处理,获取第三分辨率信号;
以及垂直方向对角插值单元,用于根据垂直方向对角插值参数矩阵,对所述第三分辨率信号进行垂直方向对角插值处理,获取目标分辨率信号。
优选地,所述目标分辨率信号获取模块还包括:帧缓冲单元,用于对输入至所述水平方向对角插值单元中的所述待转换分辨率的信号进行延时缓冲处理。
优选地,所述目标分辨率信号获取模块还包括:边沿识别与增强单元,用于对所述垂直方向对角插值单元获取的所述目标分辨率信号进行边沿识别和边沿增强处理。
本发明实施例还公开了一种超高清电视机,包括:
解码装置,用于对接收的输入信号进行解码和转换,向所述分辨率转换装置输出YUV格式的2K×1K逐行信号;
分辨率转换装置,为上述任一技术方案中的所述的分辨率转换装置,用于将YUV格式的2K×1K逐行信号转换成YUV格式的4K×2K逐行信号;
驱动装置,用于对所述YUV格式的4K×2K逐行信号进行色温调节、GAMMA矫正、色彩空间逆转转换和倍频插帧处理,并向所述超高清屏输出RGB格式的4K×2K倍频逐行信号;
以及存储及控制装置,用于控制所述解码装置、所述分辨率转换装置和所述驱动装置,并存储所述解码装置、所述分辨率转换装置和所述驱动装置的数据。
本发明所公开的分辨率转换方法,通过根据垂直方向对角插值参数矩阵及水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行对角插值处理以获取目标分辨率信号,一方面可有效减少图像失真,另一方面可有效防止图像模糊及图像锯齿的出现,达到了提高图像清晰度和画质的目的。
附图说明
图1为本发明优选实施方式中分辨率转换方法的流程示意图;
图2为本发明分辨率转换方法的优选实施例中的获取垂直方向对角插值参数矩阵的流程示意图;
图2-1为输入的待转换分辨率的信号是YUV格式的2K×1K逐行信号的示意图;
图2-2为图2-1所示信号经垂直方向对角抽样处理后的YUV格式的2K×0.5K垂直方向对角插值样本信号的示意图;
图2-3为图2-1及图2-2所示信号经垂直方向对角插值参数演算后得出的垂直方向对角插值参数矩阵V的示意图;
图3为本发明分辨率转换方法的优选实施例中的获取水平方向对角插值参数矩阵的流程示意图;
图3-1为图2-2所示信号经水平方向对角抽样处理后的YUV格式的1K×0.5K水平方向对角插值样本信号的示意图;
图3-2为图2-2及图3-1所示信号经水平方向对角插值参数演算后得出的水平方向对角插值参数矩阵H的示意图;
图4为本发明分辨率转换方法的优选实施例中的获取目标分辨率信号的流程示意图;
图4-1为对图2-1所示像素矩阵进行水平对角填充后的矩阵示意图;
图4-2为将图4-1所示矩阵进行进行划分后的像素块矩阵示意图;
图4-3为将图4-2所示矩阵进行插值填充后的矩阵示意图;
图4-4为对图4-3所示像素矩阵进行垂直对角填充后的矩阵示意图;
图4-5为将图4-4所示矩阵进行进行划分后的像素块矩阵示意图;
图4-6为将图4-5所示矩阵进行插值填充后的矩阵示意图;
图5为本发明优选实施方式中分辨率转换装置的结构示意图;
图6为本发明优选实施方式中超高清电视机的结构示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明公开了一种分辨率转换方法,参照图1,在该实施方式中分辨率转换方法包括以下步骤:
步骤S01,获取垂直方向对角插值参数矩阵及水平方向对角插值参数矩阵。
步骤S02,根据所述垂直方向对角插值参数矩阵及所述水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行对角插值处理以获取目标分辨率信号。
为获取垂直方向对角插值参数矩阵及水平方向对角插值参数矩阵,在具体实施例中,参照图2,获取垂直方向对角插值参数矩阵的具体步骤包括:
步骤S11,对输入的待转换分辨率的信号进行垂直方向的对角抽样处理,获取第一分辨率信号。
步骤S12,根据输入的待转换分辨率的信号及第一分辨率信号,按照插值算法进行垂直方向的对角插值参数演算,获取垂直方向对角插值参数矩阵。
如图2-1所示,当输入的待转换分辨率的信号为YUV格式的2K×1K逐行信号时,在垂直方向上,对该YUV格式的2K×1K逐行信号进行对角抽样处理,将其处理成YUV格式的2K×0.5K垂直方向对角插值样本信号,处理后的YUV格式的2K×0.5K垂直方向对角插值样本信号可参照图2-2所示。再依照插值算法对输入的待转换分辨率的信号为YUV格式的2K×1K逐行信号和处理后的YUV格式的2K×0.5K垂直方向对角插值样本信号进行垂直方向的对角插值参数演算,演算后得出垂直方向对角插值参数矩阵V,演算后得出的垂直方向对角插值参数矩阵V可参照图2-3所示。
参照图3,获取水平方向对角插值参数矩阵的具体步骤包括:
步骤S21,对第一分辨率信号进行水平方向的对角抽样处理,获取第二分辨率信号;
步骤S22,根据第一分辨率信号及第二分辨率信号,按照插值算法进行水平方向的对角插值参数演算,获取水平方向对角插值参数矩阵。
第一分辨率信号如图2-2所示,在水平方向上,对该YUV格式的2K×0.5K垂直方向对角插值样本信号进行对角抽样处理,将其处理成YUV格式的1K×0.5K水平方向对角插值样本信号,处理后的YUV格式的1K×0.5K水平方向对角插值样本信号可参照图3-1所示。再依照插值算法对YUV格式的2K×0.5K垂直方向对角插值样本信号和处理后的YUV格式的1K×0.5K水平方向对角插值样本信号进行水平方向的对角插值参数演算,演算后得出水平方向对角插值参数矩阵H,演算后得出的水平方向对角插值参数矩阵H可参照图3-2所示。
当然在其他变形实施例中,获取垂直方向对角插值参数矩阵及水平方向对角插值参数矩阵不限于上述方式,如获取水平方向对角插值参数矩阵的具体步骤可以是:
对输入的待转换分辨率的信号进行水平方向的对角抽样处理,获取第四分辨率信号。
根据输入的待转换分辨率的信号及第四分辨率信号,按照插值算法进行水平方向的对角插值参数演算,获取水平方向对角插值参数矩阵。
相应地,获取垂直方向对角插值参数矩阵的具体步骤可以是:
对第四分辨率信号进行垂直方向的对角抽样处理,获取第五分辨率信号;
根据第四分辨率信号及第五分辨率信号,按照插值算法进行垂直方向的对角插值参数演算,获取垂直方向对角插值参数矩阵。
参照图4,获取目标分辨率信号的具体步骤包括:
步骤S31,根据水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行水平方向对角插值处理,获取第三分辨率信号。
步骤S32,根据垂直方向对角插值参数矩阵,对所述第三分辨率信号进行垂直方向对角插值处理,获取目标分辨率信号。
具体为:如图2-1所示,当输入的待转换分辨率的信号为YUV格式的2K×1K逐行信号时,
1、用2K×1K像素矩阵的像素进行水平对角填充以得到矩阵PH,2K×1K像素矩阵的像素进行水平对角填充后的矩阵PH可参照图4-1所示。
2、对矩阵PH进行分块,即将4K×1K矩阵分成4个1K×0.5K像素块矩阵,每一个像素块具有4×2个像素,将4K×1K矩阵分成4个1K×0.5K像素块矩阵后的示意图可参照图4-2所示,图4-2中的32个像素按照虚线进行划分成A11、A12、A21、A22四个像素块。
3、用矩阵PH中已填充的像素以及水平方向对角插值参数矩阵H,来进行水平对角插值计算,并将计算出的像素值填充在PH矩阵对应的空位中以得到第三分辨率信号,水平方向对角插值处理后的矩阵示意图可参照图4-3所示。
4、用4K×1K像素矩阵PH的像素进行垂直对角填充以得到矩阵PV,4K×1K像素矩阵PH的像素进行垂直对角填充后的矩阵PV可参照图4-4所示。
5、对矩阵PV进行分块,将4K×2K矩阵分成8个2K×0.5K像素块矩阵,每一个像素块具有4×2个像素,将4K×2K矩阵分成8个2K×0.5K像素块矩阵后的示意图可参照图4-5所示,图4-5中的64个像素按照虚线进行划分成B11、B12、B13、B14、B21、B22、B23、B24八个像素块。
6、用矩阵PV中已填充的像素以及垂直方向对角插值参数矩阵V,来进行垂直对角插值计算,并将计算出的像素值填充在矩阵PV对应的空位中以得到目标分辨率信号,垂直方向对角插值处理后的矩阵示意图可参照图4-6所示。
当然在其他变形实施例中,获取目标分辨率信号的方式不限于上述方式,如获取目标分辨率信号的具体步骤可以是:
根据垂直方向对角插值参数矩阵,对输入的待转换分辨率的信号进行垂直方向对角插值处理,获取第六分辨率信号。
根据水平方向对角插值参数矩阵,对所述第六分辨率信号进行水平方向对角插值处理,获取目标分辨率信号。
在优选实施例中,在输入的待转换分辨率的信号进行水平对角填充以得到矩阵PH以前还包括对输入的待转换分辨率的信号进行延时缓冲处理的步骤。
进一步地,在得到目标分辨率信号以后还包括对该目标分辨率信号进行边沿识别和边沿增强处理的步骤。
本发明所公开的分辨率转换方法能够将2K×1K信号转换成4K×2K信号,但不限于仅将2K×1K信号转换成4K×2K信号,如还可以将4K×2K信号转换成8K×4K信号。
综上所述可知,本发明所公开的分辨率转换方法,能够将2K×1K信号转换成4K×2K信号,通过采用依次在水平方向和垂直方向上进行对角插值的方法,能够有效防止图像模糊及图像锯齿的出现,以及有效提高了图像的清晰度;插值算法的参数通过输入的2K×1K信号演算得出,使插值像素与相邻原像素的关联性高,有效减少图像失真,且插值效率高;同时本发明简单可靠,具有广泛应用价值。
本发明还公开了一种分辨率转换装置,该分辨率转换装置与上述任一实施例中的分辨率转换方法均可对应,具体地,可参照图5,在该实施方式中分辨率转换装置包括垂直方向对角插值参数矩阵获取模块1、水平方向对角插值参数矩阵获取模块2和目标分辨率信号获取模块3;其中,垂直方向对角插值参数矩阵获取模块1用于获取垂直方向对角插值参数矩阵;水平方向对角插值参数矩阵获取模块2用于获取水平方向对角插值参数矩阵;目标分辨率信号获取模块3用于根据所述垂直方向对角插值参数矩阵及所述水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行对角插值处理以获取目标分辨率信号。
再次参照图5,在具体实施例中,垂直方向对角插值参数矩阵获取模块1包括垂直方向对角抽样单元11和垂直方向对角插值参数获取单元12,其中垂直方向对角抽样单元11,用于对所述待转换分辨率的信号进行垂直方向的对角抽样处理,以获取第一分辨率信号;垂直方向对角插值参数获取单元12,用于根据所述待转换分辨率的信号及所述第一分辨率信号,按照插值算法进行垂直方向的对角插值参数演算,获取垂直方向对角插值参数矩阵。相应地,水平方向对角插值参数矩阵获取模块2包括水平方向对角抽样单元21和水平方向对角插值参数获取单元22,其中水平方向对角抽样单元21用于对所述第一分辨率信号进行水平方向的对角抽样处理,以获取第二分辨率信号;水平方向对角插值参数获取单元22用于根据所述第一分辨率信号及所述第二分辨率信号,按照插值算法进行水平方向的对角插值参数演算,获取水平方向对角插值参数矩阵。
再次参照图5,在具体实施例中,目标分辨率信号获取模块3包括水平方向对角插值单元31和垂直方向对角插值单元32;其中水平方向对角插值单元31,用于根据水平方向对角插值参数矩阵,对所述待转换分辨率的信号进行水平方向对角插值处理,获取第三分辨率信号;垂直方向对角插值单元32,用于根据垂直方向对角插值参数矩阵,对所述第三分辨率信号进行垂直方向对角插值处理,获取目标分辨率信号。优选地,目标分辨率信号获取模块3还包括帧缓冲单元33,用于对输入至所述水平方向对角插值单元中的所述待转换分辨率的信号进行延时缓冲处理。进一步地,目标分辨率信号获取模块3还包括边沿识别与增强单元34,用于对所述垂直方向对角插值单元获取的所述目标分辨率信号进行边沿识别和边沿增强处理。
上述垂直方向对角插值参数获取单元12、水平方向对角插值参数获取单元22、水平方向对角插值单元31和垂直方向对角插值单元32中所提的插值算法为同一插值算法,例如双线性插值算法。
本发明所公开的分辨率转换装置能够将2K×1K信号转换成4K×2K信号,但不限于仅将2K×1K信号转换成4K×2K信号,如还可以将4K×2K信号转换成8K×4K信号,即将低分辨率信号转换成高分辨率信号。
综上所述可知,本发明所公开的分辨率转换装置,能够将2K×1K信号转换成4K×2K信号,通过采用依次在水平方向和垂直方向上进行对角插值的方法,能够有效防止图像模糊及图像锯齿的出现,以及有效提高了图像的清晰度;插值算法的参数通过输入的2K×1K信号演算得出,使插值像素与相邻原像素的关联性高,有效减少图像失真,且插值效率高;同时本发明简单可靠,具有广泛应用价值。
为了使本发明的目的、技术方案及优点更加清楚明白,以下以2K1K转4K2K对本发明中分辨率转换方法及装置进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
(一)、输入的待转换分辨率的信号为YUV格式的2K×1K逐行信号,设其像素矩阵为PA、PA的每一个像素为PAmn,m为1~1080、n为1~1920;以4×4像素为例其像素矩阵示意图如图2-1所示。
再次参照图5所示,YUV格式的2K×1K逐行信号分别输入给垂直方向对角抽样单元11、垂直方向对角插值参数获取单元12以及帧缓冲单元33。
(二)、垂直方向对角抽样单元11对YUV格式的2K×1K逐行信号在垂直方向进行对角抽样,得到2K×0.5K垂直方向对角插值样本信号,设其像素矩阵为PB、PB的每一个像素为PBab,其中a为1~540、b为1~1920。则:
PBab = PAmn,且n=b;当b为奇数时,m=2a;b为偶数时,m=2a-1。
对图2-1抽样得到的垂直方向对角插值样本信号如图2-2所示。
再次参照图5,垂直方向对角抽样单元11将2K×0.5K垂直方向对角插值样本信号分别输出给水平方向对角抽样单元21、垂直方向对角插值参数获取单元12以及水平方向对角插值参数获取单元22。
(三)、水平方向对角抽样单元21对2K×0.5K信号在水平方向进行对角抽样,得到1K×0.5K水平方向对角插值样本信号,设其像素矩阵为PC、PC的每一个像素为PCpq,其中p为1~540、q为1~960。则:
PCpq=PBab,且p=a;当p为奇数时,b=2q;p为偶数时,b=2q-1。
对图2-2抽样得到的水平方向对角插值样本信号如图2-3所示。
再次参照图5,水平方向对角抽样单元21将1K×0.5K水平方向对角插值样本信号输出给水平方向对角插值参数获取单元22。
(四)、垂直方向对角插值参数获取单元12接收2K×1K信号和2K×0.5K垂直方向对角插值样本信号后,依照插值算法、在垂直方向上进行对角插值参数演算,演算后得出垂直方向对角插值参数矩阵V。V为2K×0.5K矩阵,设V的每一个单元为Vcd,其中c为1~540、d为1~1920。
设插值算法函数为 ,则:
PAmn= (Vcd,Y);
m+n为偶数,且d=n;当d为奇数时,m=2c-1;d为偶数时,m=2c;
Y表示2K×0.5K像素矩阵PB的多个像素,例如插值算法为双线性插值时,Y代表相邻的上下左右四个像素。
由于PAmn和Y表示的像素值已知,可以推算出参数Vcd。
按图2-1和图2-2像素矩阵演算出的参数矩阵V如图2-3所示。
再次参照图5,垂直方向对角插值参数获取单元12将演算出的参数矩阵V传递给垂直方向对角插值单元32。
(五)、水平方向对角插值参数获取单元22接收2K×0.5K垂直方向对角插值样本信号和1K×0.5K水平方向对角插值样本信号后,依照插值算法、在水平方向上进行对角插值参数演算,演算后得出水平方向对角插值参数矩阵H。H为1K×0.5K矩阵,设H的每一个单元为Hef,其中e为1~540、f为1~960。
插值算法函数为 ,则:
PBab= (Hef,X);
a+b为偶数,且a=e;当e为奇数时,b=2f-1;e为偶数时,b=2f;
X表示1K×0.5K像素矩阵PC的多个像素,例如插值算法为双线性插值时,X代表相邻的上下左右四个像素。
由于PBab和X表示的像素值已知,可以推算出参数Hef。
按图2-2和图3-1像素矩阵演算出的参数矩阵H如图3-2所示。
再次参照图5,水平方向对角插值参数获取单元22将演算出的参数矩阵H传递给水平方向对角插值单元31。
(六)、帧缓冲单元33接收到2K×1K信号对其进行延时缓冲后,将其输出给水平方向对角插值单元31。
(七)、水平方向对角插值单元31对2K×1K信号在水平方向进行对角插值,得到4K×1K信号,设其像素矩阵为PH、PH的每一个像素为PHkg,其中K为1~1080、g为1~3840。则:
1)首先用2K×1K像素矩阵PA的像素PAmn直接进行水平对角填充PH矩阵,即:
PHkg=PAmn,且k=m;当m为奇数时,g=2n;m为偶数时,g=2n-1。
对图2-1所示像素矩阵进行水平对角填充后的PH矩阵如图4-1所示,图4-1空白像素表示待插值像素。
2)其次对PH矩阵进行分块,将4K×1K矩阵分成1K×0.5K像素块矩阵,每一个像素块具有4×2个像素。将图4-1所示矩阵进行进行划分后的像素块矩阵示意图如图4-2所示。图4-2的32个像素按照虚线进行划分成A11、A12、A21、A22四个像素块。
3)最后用PH矩阵中已填充的像素以及水平方向对角插值参数矩阵H,来进行水平对角插值计算,并将计算出的像素值填充在PH矩阵对应的位置,即:
插值算法函数为 ,插值计算出的像素值为:
PHkg= (Hef,L);其中:
k+g为偶数;
参数Hef与每一个像素块对应,例如图4-2中:计算像素块A11中的像素值时Hef为H11、计算像素块A12中的像素值时Hef为H12、计算像素块A21中的像素值时Hef为H21、计算像素块A22中的像素值时Hef为H22;
L表示PH矩阵中用来进行计算的多个像素,例如插值算法为双线性插值、计算PH22像素值时,L为PH12、PH21、PH32、PH23,则PH22= (H11,PH12,PH21,PH32,PH23)。
将图4-2插值填充完毕后的PH矩阵如图4-3所示,图4-3中的X11、X12等为经过水平对角插值计算后填充的像素。
再次参照图5,水平方向对角插值单元31将插值完毕后的4K×1K像素矩阵PH传输给垂直方向对角插值单元32。
(八)、垂直方向对角插值单元32对4K×1K信号在垂直方向进行对角插值,得到4K×2K信号,设其像素矩阵为PV、PV的每一个像素为PHst,其中s为1~2160、t为1~3840。则:
1)首先用4K×1K像素矩阵PH的像素PHkg直接进行垂直对角填充PV矩阵,即:
PVst=PHkg,且t=g;当g为奇数时,s=2k;g为偶数时,s=2k-1。
对图4-3所示像素矩阵进行垂直对角填充后的PV矩阵如图4-4所示,图4-4空白像素表示待插值像素。
2)其此对PV矩阵进行分块,将4K×2K矩阵分成2K×0.5K像素块矩阵,每一个像素块具有4×2个像素。将图4-4所示矩阵进行进行划分后的像素块矩阵示意图如图4-5所示。图4-5的64个像素按照虚线进行划分成B11、B12、B13、B14、B21、B22、B23、B24八个像素块。
3)最后用PV矩阵中已填充的像素、以及参数矩阵V,来进行垂直对角插值计算,并将计算出的像素值填充在PV矩阵对应的位置,即:
插值算法函数为 ,插值计算出的像素值为:
PVst= (Vcd,W);其中:
s+t为偶数;
参数Vcd与每一个像素块对应,例如图4-5中:计算像素块B11中的像素值时Vcd为V11、计算像素块B12中的像素值时Vcd为V12、计算像素块B13中的像素值时Vcd为V13、…;
W表示PV矩阵中用来进行计算的多个像素,例如插值算法为双线性插值、计算PV22像素值时,W为PV12、PV21、PV32、PV23,则PV22= (V11,PV12,PV21,PV32,PV23)。
将图4-5插值填充完毕后的PV矩阵如图4-6所示。图4-6中的Y11、Y12等为经过垂直对角插值计算后填充的像素。
(九)、垂直方向对角插值单元32插值完毕后输出4K×2K像素矩阵,边沿识别与增强单元34对4K×2K像素矩阵进行边沿识别和边沿增强处理,以提升图像对象的边沿轮廓,进一步提高图像的清晰度。然后将4K×2K输出,完成2K×1K信号转4K×2K信号过程。
上述2K×1K为1920×1080即1080行、每行1920个像素,2K×0.5K为1920×540即540行、每行1920个像素,1K×0.5K为960×540即540行、每行960个像素,4K×1K为3840×1080即1080行、每行3840个像素,4K×2K为3840×2160即2160行、每行3840个像素。
本发明还公开了一种超高清电视机,参照图6,在该实施方式中电视机包括解码装置4、分辨率转换装置5、驱动装置6、存储及控制装置7 和UHD(超高清)屏8,其中,解码装置4,用于对接收的输入信号进行解码和转换,向所述分辨率转换装置输出YUV格式的2K×1K逐行信号;分辨率转换装置5,用于将YUV格式的2K×1K逐行信号转换成YUV格式的4K×2K逐行信号,为上述任一实施例中的分辨率转换装置,具体可参照上述任一实施例对分辨率转换装置的描述,在此不再赘述;驱动装置6,用于对所述YUV格式的4K×2K逐行信号进行色温调节、GAMMA矫正、色彩空间逆转转换和倍频插帧处理,并向所述超高清屏输出RGB格式的4K×2K倍频逐行信号;存储及控制装置7,用于控制所述解码装置、所述分辨率转换装置和所述驱动装置,并存储所述解码装置、所述分辨率转换装置和所述驱动装置的数据;UHD(超高清)屏8,用于接收驱动装置6输出的RGB格式的4K×2K倍频逐行信号,并驱动UHD(超高清)屏实现超高清显示。
具体地,解码装置4包括信号接口模块41、信号解码及格式转换模块42、色彩空间转换模块43和去隔行及降噪模块44;其中,信号接口模块41,用于接收外部输入信号,对其进行信号幅度限制、格式识别等处理,进一步将处理后的信号输出给信号解码及格式转换模块42;信号解码及格式转换模块42,用于接收上述信号接口模块41输出的信号,对其进行解码、格式转换等处理后,将其处理成2K×1K信号,进一步将处理后的2K×1K信号输出给色彩空间转换模块43;色彩空间转换模块43,用于接收上述信号解码及格式转换模块42输出的2K×1K信号,对其进行色域转换处理,将其处理成YUV4:2:2的2K×1K信号,进一步将处理后的YUV4:2:2 2K×1K信号输出给去隔行及降噪模块44;去隔行及降噪模块44,用于接收上述色彩空间转换模块43输出的YUV4:2:2 2K×1K信号,对其进行去隔行及降噪处理,将其处理成YUV4:2:2的2K×1K逐行信号,进一步将处理后的2K×1K逐行信号输出给分辨率转换装置5。
具体地,驱动装置6包括色温调节及GAMMA校正模块61、色彩空间逆转换模块62及倍频插帧模块63;其中,色温调节及GAMMA校正模块61接收上述2K1K转4K2K装置5中边沿识别与增强单元34输出的YUV格式的4K×2K逐行信号,按照UHD(超高清)屏的特性在YUV色彩空间进行色温调节及GAMMA校正;如色温调节时保持Y基本不变而调整UV,GAMMA校正时仅仅调整Y,然后综合对YUV进行微调;进一步将调整后的YUV4K×2K逐行信号输出给色彩空间逆转换模块62;色彩空间逆转换模块62接收上述经过色温调节及GAMMA校正模块61处理后输出的YUV格式的4K×2K逐行信号,对其进行色彩空间逆转换处理,将其转换成4K×2K逐行RGB信号,进一步将4K×2K逐行RGB信号输出给倍频插帧模块63;倍频插帧模块63接收上述色彩空间逆转换模块62输出的4K×2K逐行RGB信号,对其进行插帧、倍频处理,将其帧频提升一倍或多倍后,进一步4K×2K倍频逐行RGB信号输出至电视机的UHD屏8。
具体地,存储及控制装置7,主要发送和接收控制信号以控制解码装置4的各个模块、分辨率转换装置5的各个模块、驱动装置6的各个模块,以及存储解码装置4的各个模块、分辨率转换装置5的各个模块、驱动装置6的各个模块的各种帧和数据,实现各种图像处理、信号转换等。
本发明所公开的超高清电视机能够将2K×1K信号转换成4K×2K信号,但不限于仅将2K×1K信号转换成4K×2K信号,如还可以将4K×2K信号转换成8K×4K信号。
综上所述可知,本发明所公开的超高清电视机,能够将2K×1K信号转换成4K×2K信号,以及能够驱动UHD屏实现超高清显示;采用依次在水平方向和垂直方向上进行对角插值的方法,能够有效防止图像模糊及图像锯齿的出现,以及有效提高了图像的清晰度;插值算法的参数通过输入的2K×1K信号演算得出,使插值像素与相邻原像素的关联性高,有效减少图像失真,且插值效率高;同时本发明简单可靠,具有广泛应用价值。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (12)

  1. 一种分辨率转换方法,其特征在于,包括以下步骤:
    获取垂直方向对角插值参数矩阵及水平方向对角插值参数矩阵;
    根据所述垂直方向对角插值参数矩阵及所述水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行对角插值处理以获取目标分辨率信号。
  2. 根据权利要求1所述的分辨率转换方法,其特征在于,获取所述垂直方向对角插值参数矩阵的具体步骤包括:
    对所述待转换分辨率的信号进行垂直方向的对角抽样处理,获取第一分辨率信号;
    根据所述待转换分辨率的信号及所述第一分辨率信号,按照插值算法进行垂直方向的对角插值参数演算,获取垂直方向对角插值参数矩阵。
  3. 根据权利要求2所述的分辨率转换方法,其特征在于,获取所述水平方向对角插值参数矩阵的具体步骤包括:
    对所述第一分辨率信号进行水平方向的对角抽样处理,获取第二分辨率信号;
    根据所述第一分辨率信号及所述第二分辨率信号,按照插值算法进行水平方向的对角插值参数演算,获取水平方向对角插值参数矩阵。
  4. 根据权利要求1至3任一项所述的分辨率转换方法,其特征在于,所述根据所述垂直方向对角插值参数矩阵及所述水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行对角插值处理以获取目标分辨率信号的具体步骤包括:
    根据水平方向对角插值参数矩阵,对所述待转换分辨率的信号进行水平方向对角插值处理,获取第三分辨率信号;
    根据垂直方向对角插值参数矩阵,对所述第三分辨率信号进行垂直方向对角插值处理,获取目标分辨率信号。
  5. 根据权利要求4所述的分辨率转换方法,其特征在于,
    所述根据水平方向对角插值参数矩阵,对所述待转换分辨率的信号进行水平方向对角插值处理,获取第三分辨率信号的具体步骤包括:
    用所述待转换分辨率的信号的像素矩阵中的像素进行水平对角填充以得到第一矩阵;
    对所述第一矩阵进行分块;
    用所述第一矩阵中已填充的像素以及水平方向对角插值参数矩阵进行水平对角插值计算,并将计算出的像素值填充在所述第一矩阵对应的空位中以得到所述第三分辨率信号;
    所述根据垂直方向对角插值参数矩阵,对所述第三分辨率信号进行垂直方向对角插值处理,获取目标分辨率信号的具体步骤包括:
    用所述第三分辨率信号的像素矩阵中的像素进行垂直对角填充以得到第二矩阵;
    对所述第二矩阵进行分块;
    用所述第二矩阵中已填充的像素以及垂直方向对角插值参数矩阵进行垂直对角插值计算,并将计算出的像素值填充在所述第二矩阵对应的空位中以得到所述目标分辨率信号。
  6. 一种分辨率的转换装置,其特征在于,包括:
    垂直方向对角插值参数矩阵获取模块,用于获取垂直方向对角插值参数矩阵;
    水平方向对角插值参数矩阵获取模块,用于获取水平方向对角插值参数矩阵;
    以及目标分辨率信号获取模块,用于根据所述垂直方向对角插值参数矩阵及所述水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行对角插值处理以获取目标分辨率信号。
  7. 根据权利要求6所述的分辨率的转换装置,其特征在于,所述垂直方向对角插值参数矩阵获取模块包括:
    垂直方向对角抽样单元,用于对所述待转换分辨率的信号进行垂直方向的对角抽样处理,以获取第一分辨率信号;
    以及垂直方向对角插值参数获取单元,用于根据所述待转换分辨率的信号及所述第一分辨率信号,按照插值算法进行垂直方向的对角插值参数演算,获取垂直方向对角插值参数矩阵。
  8. 根据权利要求7所述的分辨率的转换装置,其特征在于,所述水平方向对角插值参数矩阵获取模块包括:
    水平方向对角抽样单元,用于对所述第一分辨率信号进行水平方向的对角抽样处理,以获取第二分辨率信号;
    以及水平方向对角插值参数获取单元,用于根据所述第一分辨率信号及所述第二分辨率信号,按照插值算法进行水平方向的对角插值参数演算,获取水平方向对角插值参数矩阵。
  9. 根据权利要求6至8任一项所述的分辨率的转换装置,其特征在于,所述目标分辨率信号获取模块包括:
    水平方向对角插值单元,用于根据水平方向对角插值参数矩阵,对所述待转换分辨率的信号进行水平方向对角插值处理,获取第三分辨率信号;
    以及垂直方向对角插值单元,用于根据垂直方向对角插值参数矩阵,对所述第三分辨率信号进行垂直方向对角插值处理,获取目标分辨率信号。
  10. 根据权利要求9所述的分辨率转换装置,其特征在于,所述目标分辨率信号获取模块还包括:帧缓冲单元,用于对输入至所述水平方向对角插值单元中的所述待转换分辨率的信号进行延时缓冲处理。
  11. 根据权利要求10所述的分辨率转换装置,其特征在于,所述目标分辨率信号获取模块还包括:边沿识别与增强单元,用于对所述垂直方向对角插值单元获取的所述目标分辨率信号进行边沿识别和边沿增强处理。
  12. 一种超高清电视机,其特征在于,包括:
    解码装置,用于对接收的输入信号进行解码和转换,向所述分辨率转换装置输出YUV格式的2K×1K逐行信号;
    分辨率转换装置,为权利要求6至11任一项所述的分辨率转换装置,用于将YUV格式的2K×1K逐行信号转换成YUV格式的4K×2K逐行信号;
    驱动装置,用于对所述YUV格式的4K×2K逐行信号进行色温调节、GAMMA矫正、色彩空间逆转转换和倍频插帧处理,并向所述超高清屏输出RGB格式的4K×2K倍频逐行信号;
    以及存储及控制装置,用于控制所述解码装置、所述分辨率转换装置和所述驱动装置,并存储所述解码装置、所述分辨率转换装置和所述驱动装置的数据。
PCT/CN2013/085806 2013-03-11 2013-10-23 分辨率转换方法及装置、超高清电视机 WO2014139289A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2015118239A RU2636934C2 (ru) 2013-03-11 2013-10-23 Способ и устройство для преобразования разрешающей способности, телевизор сверхвысокой четкости
AU2013382526A AU2013382526B2 (en) 2013-03-11 2013-10-23 Resolution conversion method and device, and ultra-high definition television
US14/411,397 US9706161B2 (en) 2013-03-11 2013-10-23 Resolution conversion method and device, UHDTV

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310076759.3 2013-03-11
CN201310076759.3A CN103152540B (zh) 2013-03-11 2013-03-11 分辨率转换方法及装置、超高清电视机

Publications (1)

Publication Number Publication Date
WO2014139289A1 true WO2014139289A1 (zh) 2014-09-18

Family

ID=48550386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085806 WO2014139289A1 (zh) 2013-03-11 2013-10-23 分辨率转换方法及装置、超高清电视机

Country Status (6)

Country Link
US (1) US9706161B2 (zh)
CN (1) CN103152540B (zh)
AU (1) AU2013382526B2 (zh)
HK (1) HK1184297A1 (zh)
RU (1) RU2636934C2 (zh)
WO (1) WO2014139289A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103152540B (zh) * 2013-03-11 2016-01-20 深圳创维-Rgb电子有限公司 分辨率转换方法及装置、超高清电视机
CN103702060B (zh) * 2013-12-31 2016-03-09 京东方科技集团股份有限公司 超高清显示装置及视频信号转换方法
CN105120187B (zh) 2015-08-20 2018-06-19 深圳创维-Rgb电子有限公司 一种激光电视的图像处理方法、系统及激光电视
CN107293255B (zh) * 2016-04-05 2019-07-26 上海和辉光电有限公司 显示装置及其驱动方法
US10489967B2 (en) 2017-02-22 2019-11-26 Microsoft Technology Licensing, Llc Indexed value blending for use in image rendering
CN107277475A (zh) * 2017-07-17 2017-10-20 深圳创维-Rgb电子有限公司 激光电视图像处理方法、激光电视及计算机可读存储介质
CN107205176B (zh) * 2017-07-17 2020-12-29 深圳创维-Rgb电子有限公司 一种信号转换装置及转换方法
WO2021196037A1 (zh) * 2020-03-31 2021-10-07 西安诺瓦星云科技股份有限公司 图像处理的方法、装置和系统
CN111667789B (zh) * 2020-06-16 2022-09-27 Tcl华星光电技术有限公司 商业显示面板的驱动方法及装置、商业显示器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101055713A (zh) * 2007-04-29 2007-10-17 友达光电股份有限公司 影像调整电路及其内插电路与内插方法
CN101976435A (zh) * 2010-10-07 2011-02-16 西安电子科技大学 基于对偶约束的联合学习超分辨方法
CN102163329A (zh) * 2011-03-15 2011-08-24 河海大学常州校区 基于尺度类推的单幅红外图像的超分辨率重建方法
EP2495963A2 (en) * 2011-03-01 2012-09-05 Kabushiki Kaisha Toshiba Video display apparatus and video processing method
CN103152540A (zh) * 2013-03-11 2013-06-12 深圳创维-Rgb电子有限公司 分辨率转换方法及装置、超高清电视机

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6760489B1 (en) * 1998-04-06 2004-07-06 Seiko Epson Corporation Apparatus and method for image data interpolation and medium on which image data interpolation program is recorded
JP4150947B2 (ja) * 2000-08-23 2008-09-17 ソニー株式会社 画像処理装置および方法、並びに記録媒体
JP2006510977A (ja) * 2002-12-19 2006-03-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 画像スケーリング
US7502505B2 (en) * 2004-03-15 2009-03-10 Microsoft Corporation High-quality gradient-corrected linear interpolation for demosaicing of color images
US20060291750A1 (en) * 2004-12-16 2006-12-28 Peyman Milanfar Dynamic reconstruction of high resolution video from low-resolution color-filtered video (video-to-video super-resolution)
RU2308817C1 (ru) * 2006-02-16 2007-10-20 Самсунг Электроникс Ко., Лтд. Способ и устройство масштабирования динамического видеоизображения
KR101389562B1 (ko) * 2007-11-15 2014-04-25 삼성전자주식회사 이미지 처리 장치 및 방법
CN101453646B (zh) * 2007-12-04 2012-02-22 华为技术有限公司 图像插值方法、装置及插值系数的获取方法
JP5169978B2 (ja) * 2009-04-24 2013-03-27 ソニー株式会社 画像処理装置および方法
JP5454215B2 (ja) * 2010-02-22 2014-03-26 ソニー株式会社 送信装置、送信方法、受信装置、受信方法及び信号伝送システム
US9462220B2 (en) * 2010-12-17 2016-10-04 Microsoft Technology Licensing, Llc Auto-regressive edge-directed interpolation with backward projection constraint
HUE063154T2 (hu) * 2010-12-22 2023-12-28 Lg Electronics Inc Intra predikció video kódolásban
WO2012157999A2 (ko) * 2011-05-19 2012-11-22 엘지전자 주식회사 비디오 스트림 전송 장치, 비디오 스트림 수신 장치, 비디오 스트림 전송 방법 및 비디오 스트림 수신 방법
US9078021B2 (en) * 2013-01-16 2015-07-07 Kabushiki Kaisha Toshiba Information processing apparatus, content transmission method and storage medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101055713A (zh) * 2007-04-29 2007-10-17 友达光电股份有限公司 影像调整电路及其内插电路与内插方法
CN101976435A (zh) * 2010-10-07 2011-02-16 西安电子科技大学 基于对偶约束的联合学习超分辨方法
EP2495963A2 (en) * 2011-03-01 2012-09-05 Kabushiki Kaisha Toshiba Video display apparatus and video processing method
CN102163329A (zh) * 2011-03-15 2011-08-24 河海大学常州校区 基于尺度类推的单幅红外图像的超分辨率重建方法
CN103152540A (zh) * 2013-03-11 2013-06-12 深圳创维-Rgb电子有限公司 分辨率转换方法及装置、超高清电视机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GU, YUANTING ET AL.: "Image-Analogies Based Super Resolution", JOURNAL OF SOFTWARE, vol. 19, no. 4, April 2008 (2008-04-01), pages 851 - 860 *

Also Published As

Publication number Publication date
US9706161B2 (en) 2017-07-11
US20150181158A1 (en) 2015-06-25
RU2015118239A (ru) 2016-12-10
HK1184297A1 (zh) 2014-01-17
AU2013382526A1 (en) 2015-01-22
AU2013382526B2 (en) 2016-05-05
CN103152540A (zh) 2013-06-12
RU2636934C2 (ru) 2017-11-29
CN103152540B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
WO2014139289A1 (zh) 分辨率转换方法及装置、超高清电视机
WO2013147488A1 (en) Image processing apparatus and method of camera device
WO2015076634A1 (en) Method and apparatus for encoding and decoding video signal using adaptive sampling
WO2015009107A1 (en) Method and apparatus for generating 3k-resolution display image for mobile terminal screen
WO2021029505A1 (en) Electronic apparatus and control method thereof
US20180270429A1 (en) Method and system for output of dual video stream via a single parallel digital video interface
WO2014079189A1 (zh) 图像处理方法、装置以及成像设备
EP3095109A1 (en) Display device, driver of the display device, electronic device including the display device and the driver, and display system
WO2021096057A1 (ko) 비디오 또는 영상 코딩 시스템에서의 엔트리 포인트 관련 정보에 기반한 영상 코딩 방법
WO2021034115A1 (ko) 크로마 양자화 파라미터 오프셋 관련 정보를 코딩하는 영상 디코딩 방법 및 그 장치
WO2016072693A1 (ko) 컨텐츠의 색 범위 조정을 위한 방송 신호를 송수신하는 방법 및 장치
AU2018323576B2 (en) Display apparatus and image processing method thereof
WO2015122604A1 (en) Solid-state image sensor, electronic device, and auto focusing method
WO2011037391A2 (en) Video signal generation apparatus and method minimizing crosstalk between luminance signal and color difference signal
WO2016085047A1 (ko) 영상 신호 전송 방법 및 장치
WO2021091214A1 (ko) 크로마 양자화 파라미터 오프셋 관련 정보를 코딩하는 영상 디코딩 방법 및 그 장치
WO2015152485A1 (ko) 영상 신호 전송 방법 및 장치
WO2020075952A1 (ko) 전자 장치 및 전자 장치의 제어 방법
WO2021107293A1 (en) Electronic apparatus and control method thereof
WO2020171657A1 (en) Display device and image display method of the same
WO2017126904A1 (ko) 화질 열화 감소를 위한 영상 신호 변환 방법 및 장치
WO2021137626A1 (en) Display apparatus and method of controlling the same
WO2020135022A1 (zh) 显示面板的画面优化方法、装置及计算机可读存储介质
WO2020135051A1 (zh) 显示面板的画面优化方法、装置及计算机可读存储介质
WO2021246791A1 (ko) 영상/비디오 코딩 시스템에서 상위 레벨 신택스를 처리하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878515

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14411397

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013382526

Country of ref document: AU

Date of ref document: 20131023

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015118239

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05.02.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13878515

Country of ref document: EP

Kind code of ref document: A1