CN103152540B - 分辨率转换方法及装置、超高清电视机 - Google Patents

分辨率转换方法及装置、超高清电视机 Download PDF

Info

Publication number
CN103152540B
CN103152540B CN201310076759.3A CN201310076759A CN103152540B CN 103152540 B CN103152540 B CN 103152540B CN 201310076759 A CN201310076759 A CN 201310076759A CN 103152540 B CN103152540 B CN 103152540B
Authority
CN
China
Prior art keywords
signal
resolution
vertical direction
interpolation parameter
horizontal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310076759.3A
Other languages
English (en)
Other versions
CN103152540A (zh
Inventor
徐遥令
侯志龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Skyworth RGB Electronics Co Ltd
Original Assignee
Shenzhen Skyworth RGB Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Skyworth RGB Electronics Co Ltd filed Critical Shenzhen Skyworth RGB Electronics Co Ltd
Priority to CN201310076759.3A priority Critical patent/CN103152540B/zh
Publication of CN103152540A publication Critical patent/CN103152540A/zh
Priority to HK13110568.6A priority patent/HK1184297A1/zh
Priority to US14/411,397 priority patent/US9706161B2/en
Priority to AU2013382526A priority patent/AU2013382526B2/en
Priority to PCT/CN2013/085806 priority patent/WO2014139289A1/zh
Priority to RU2015118239A priority patent/RU2636934C2/ru
Application granted granted Critical
Publication of CN103152540B publication Critical patent/CN103152540B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0117Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving conversion of the spatial resolution of the incoming video signal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4007Interpolation-based scaling, e.g. bilinear interpolation

Abstract

本发明提供了一种分辨率转换方法及装置、超高清电视机,其中分辨率转换方法包括以下步骤:获取垂直方向对角插值参数矩阵及水平方向对角插值参数矩阵;根据所述垂直方向对角插值参数矩阵及所述水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行对角插值处理以获取目标分辨率信号。通过根据垂直方向对角插值参数矩阵及水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行对角插值处理以获取目标分辨率信号,一方面可有效减少图像失真,另一方面可有效防止图像模糊及图像锯齿的出现,达到了提高图像清晰度和画质的目的。<!--1-->

Description

分辨率转换方法及装置、超高清电视机
技术领域
本发明涉及显示技术领域,特别涉及到一种分辨率转换方法及装置、超高清电视机。
背景技术
超高清电视(UHDTV)即像素数目达3840×2160(4K×2K)或7680×4320(8K×4K)的电视,相比全高清电视(FHDTV)1920×1080(2K×1K)的像素数目,其像素数目提高了4倍或16倍,因此其图像表现非常清晰、细腻。在ITU-R制定的超高清电视标准中包括4K×2K标准和8K×4K标准,而4K×2KUHDTV较8K×4KUHDTV更容易实现和普及,是目前电视行业关注和发展的热点和方向。
由于2K×1K信号丰富、片源充足,而4K×2K的信号非常少、片源严重缺乏,且直接拍摄4K×2K片源的成本非常高,所以目前的UHDTV产品接收2K×1K信号进行超高清显示时,一般均存在图像失真、锯齿、模糊等缺陷,即将2K×1K信号格式转换成4K×2K信号格式是当前急需解决的技术问题。
发明内容
本发明的主要目的是提供一种分辨率转换方法,旨在提升超高清显示的清晰度。
本发明实施例公开了一种分辨率转换方法,包括以下步骤:
获取垂直方向对角插值参数矩阵及水平方向对角插值参数矩阵;
根据所述垂直方向对角插值参数矩阵及所述水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行对角插值处理以获取目标分辨率信号。
优选地,所述获取所述垂直方向对角插值参数矩阵的具体步骤包括:
对所述待转换分辨率的信号进行垂直方向的对角抽样处理,获取第一分辨率信号;
根据所述待转换分辨率的信号及所述第一分辨率信号,按照插值算法进行垂直方向的对角插值参数演算,获取垂直方向对角插值参数矩阵。
优选地,所述获取所述水平方向对角插值参数矩阵的具体步骤包括:
对所述第一分辨率信号进行水平方向的对角抽样处理,获取第二分辨率信号;
根据所述第一分辨率信号及所述第二分辨率信号,按照插值算法进行水平方向的对角插值参数演算,获取水平方向对角插值参数矩阵。
优选地,所述根据所述垂直方向对角插值参数矩阵及所述水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行对角插值处理以获取目标分辨率信号的具体步骤包括:
根据水平方向对角插值参数矩阵,对所述待转换分辨率的信号进行水平方向对角插值处理,获取第三分辨率信号;
根据垂直方向对角插值参数矩阵,对所述第三分辨率信号进行垂直方向对角插值处理,获取目标分辨率信号。
优选地,所述根据水平方向对角插值参数矩阵,对所述待转换分辨率的信号进行水平方向对角插值处理,获取第三分辨率信号的具体步骤包括:
用所述待转换分辨率的信号的像素矩阵中的像素进行水平对角填充以得到第一矩阵;
对所述第一矩阵进行分块;
用所述第一矩阵中已填充的像素以及水平方向对角插值参数矩阵进行水平对角插值计算,并将计算出的像素值填充在所述第一矩阵对应的空位中以得到所述第三分辨率信号;
所述根据垂直方向对角插值参数矩阵,对所述第三分辨率信号进行垂直方向对角插值处理,获取目标分辨率信号的具体步骤包括:
用所述第三分辨率信号的像素矩阵中的像素进行垂直对角填充以得到第二矩阵;
对所述第二矩阵进行分块;
用所述第二矩阵中已填充的像素以及垂直方向对角插值参数矩阵进行垂直对角插值计算,并将计算出的像素值填充在所述第二矩阵对应的空位中以得到所述目标分辨率信号。
本发明实施例还公开了一种分辨率的转换装置,包括:
垂直方向对角插值参数矩阵获取模块,用于获取垂直方向对角插值参数矩阵;
水平方向对角插值参数矩阵获取模块,用于获取水平方向对角插值参数矩阵;
以及目标分辨率信号获取模块,用于根据所述垂直方向对角插值参数矩阵及所述水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行对角插值处理以获取目标分辨率信号。
优选地,所述垂直方向对角插值参数矩阵获取模块包括:
垂直方向对角抽样单元,用于对所述待转换分辨率的信号进行垂直方向的对角抽样处理,以获取第一分辨率信号;
以及垂直方向对角插值参数获取单元,用于根据所述待转换分辨率的信号及所述第一分辨率信号,按照插值算法进行垂直方向的对角插值参数演算,获取垂直方向对角插值参数矩阵。
优选地,所述水平方向对角插值参数矩阵获取模块包括:
水平方向对角抽样单元,用于对所述第一分辨率信号进行水平方向的对角抽样处理,以获取第二分辨率信号;
以及水平方向对角插值参数获取单元,用于根据所述第一分辨率信号及所述第二分辨率信号,按照插值算法进行水平方向的对角插值参数演算,获取水平方向对角插值参数矩阵。
优选地,所述目标分辨率信号获取模块包括:
水平方向对角插值单元,用于根据水平方向对角插值参数矩阵,对所述待转换分辨率的信号进行水平方向对角插值处理,获取第三分辨率信号;
以及垂直方向对角插值单元,用于根据垂直方向对角插值参数矩阵,对所述第三分辨率信号进行垂直方向对角插值处理,获取目标分辨率信号。
优选地,所述目标分辨率信号获取模块还包括:帧缓冲单元,用于对输入至所述水平方向对角插值单元中的所述待转换分辨率的信号进行延时缓冲处理。
优选地,所述目标分辨率信号获取模块还包括:边沿识别与增强单元,用于对所述垂直方向对角插值单元获取的所述目标分辨率信号进行边沿识别和边沿增强处理。
本发明实施例还公开了一种超高清电视机,包括:
解码装置,用于对接收的输入信号进行解码和转换,向所述分辨率转换装置输出YUV格式的2K×1K逐行信号;
分辨率转换装置,为上述任一技术方案中的所述的分辨率转换装置,用于将YUV格式的2K×1K逐行信号转换成YUV格式的4K×2K逐行信号;
驱动装置,用于对所述YUV格式的4K×2K逐行信号进行色温调节、GAMMA矫正、色彩空间逆转转换和倍频插帧处理,并向所述超高清屏输出RGB格式的4K×2K倍频逐行信号;
以及存储及控制装置,用于控制所述解码装置、所述分辨率转换装置和所述驱动装置,并存储所述解码装置、所述分辨率转换装置和所述驱动装置的数据。
本发明所公开的分辨率转换方法,通过根据垂直方向对角插值参数矩阵及水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行对角插值处理以获取目标分辨率信号,一方面可有效减少图像失真,另一方面可有效防止图像模糊及图像锯齿的出现,达到了提高图像清晰度和画质的目的。
附图说明
图1为本发明优选实施方式中分辨率转换方法的流程示意图;
图2为本发明分辨率转换方法的优选实施例中的获取垂直方向对角插值参数矩阵的流程示意图;
图2-1为输入的待转换分辨率的信号是YUV格式的2K×1K逐行信号的示意图;
图2-2为图2-1所示信号经垂直方向对角抽样处理后的YUV格式的2K×0.5K垂直方向对角插值样本信号的示意图;
图2-3为图2-1及图2-2所示信号经垂直方向对角插值参数演算后得出的垂直方向对角插值参数矩阵V的示意图;
图3为本发明分辨率转换方法的优选实施例中的获取水平方向对角插值参数矩阵的流程示意图;
图3-1为图2-2所示信号经水平方向对角抽样处理后的YUV格式的1K×0.5K水平方向对角插值样本信号的示意图;
图3-2为图2-2及图3-1所示信号经水平方向对角插值参数演算后得出的水平方向对角插值参数矩阵H的示意图;
图4为本发明分辨率转换方法的优选实施例中的获取目标分辨率信号的流程示意图;
图4-1为对图2-1所示像素矩阵进行水平对角填充后的矩阵示意图;
图4-2为将图4-1所示矩阵进行进行划分后的像素块矩阵示意图;
图4-3为将图4-2所示矩阵进行插值填充后的矩阵示意图;
图4-4为对图4-3所示像素矩阵进行垂直对角填充后的矩阵示意图;
图4-5为将图4-4所示矩阵进行进行划分后的像素块矩阵示意图;
图4-6为将图4-5所示矩阵进行插值填充后的矩阵示意图;
图5为本发明优选实施方式中分辨率转换装置的结构示意图;
图6为本发明优选实施方式中超高清电视机的结构示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明公开了一种分辨率转换方法,参照图1,在该实施方式中分辨率转换方法包括以下步骤:
步骤S01,获取垂直方向对角插值参数矩阵及水平方向对角插值参数矩阵。
步骤S02,根据所述垂直方向对角插值参数矩阵及所述水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行对角插值处理以获取目标分辨率信号。
为获取垂直方向对角插值参数矩阵及水平方向对角插值参数矩阵,在具体实施例中,参照图2,获取垂直方向对角插值参数矩阵的具体步骤包括:
步骤S11,对输入的待转换分辨率的信号进行垂直方向的对角抽样处理,获取第一分辨率信号。
步骤S12,根据输入的待转换分辨率的信号及第一分辨率信号,按照插值算法进行垂直方向的对角插值参数演算,获取垂直方向对角插值参数矩阵。
如图2-1所示,当输入的待转换分辨率的信号为YUV格式的2K×1K逐行信号时,在垂直方向上,对该YUV格式的2K×1K逐行信号进行对角抽样处理,将其处理成YUV格式的2K×0.5K垂直方向对角插值样本信号,处理后的YUV格式的2K×0.5K垂直方向对角插值样本信号可参照图2-2所示。再依照插值算法对输入的待转换分辨率的信号为YUV格式的2K×1K逐行信号和处理后的YUV格式的2K×0.5K垂直方向对角插值样本信号进行垂直方向的对角插值参数演算,演算后得出垂直方向对角插值参数矩阵V,演算后得出的垂直方向对角插值参数矩阵V可参照图2-3所示。
参照图3,获取水平方向对角插值参数矩阵的具体步骤包括:
步骤S21,对第一分辨率信号进行水平方向的对角抽样处理,获取第二分辨率信号;
步骤S22,根据第一分辨率信号及第二分辨率信号,按照插值算法进行水平方向的对角插值参数演算,获取水平方向对角插值参数矩阵。
第一分辨率信号如图2-2所示,在水平方向上,对该YUV格式的2K×0.5K垂直方向对角插值样本信号进行对角抽样处理,将其处理成YUV格式的1K×0.5K水平方向对角插值样本信号,处理后的YUV格式的1K×0.5K水平方向对角插值样本信号可参照图3-1所示。再依照插值算法对YUV格式的2K×0.5K垂直方向对角插值样本信号和处理后的YUV格式的1K×0.5K水平方向对角插值样本信号进行水平方向的对角插值参数演算,演算后得出水平方向对角插值参数矩阵H,演算后得出的水平方向对角插值参数矩阵H可参照图3-2所示。
当然在其他变形实施例中,获取垂直方向对角插值参数矩阵及水平方向对角插值参数矩阵不限于上述方式,如获取水平方向对角插值参数矩阵的具体步骤可以是:
对输入的待转换分辨率的信号进行水平方向的对角抽样处理,获取第四分辨率信号。
根据输入的待转换分辨率的信号及第四分辨率信号,按照插值算法进行水平方向的对角插值参数演算,获取水平方向对角插值参数矩阵。
相应地,获取垂直方向对角插值参数矩阵的具体步骤可以是:
对第四分辨率信号进行垂直方向的对角抽样处理,获取第五分辨率信号;
根据第四分辨率信号及第五分辨率信号,按照插值算法进行垂直方向的对角插值参数演算,获取垂直方向对角插值参数矩阵。
参照图4,获取目标分辨率信号的具体步骤包括:
步骤S31,根据水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行水平方向对角插值处理,获取第三分辨率信号。
步骤S32,根据垂直方向对角插值参数矩阵,对所述第三分辨率信号进行垂直方向对角插值处理,获取目标分辨率信号。
具体为:如图2-1所示,当输入的待转换分辨率的信号为YUV格式的2K×1K逐行信号时,
1、用2K×1K像素矩阵的像素进行水平对角填充以得到矩阵PH,2K×1K像素矩阵的像素进行水平对角填充后的矩阵PH可参照图4-1所示。
2、对矩阵PH进行分块,即将4K×1K矩阵分成4个1K×0.5K像素块矩阵,每一个像素块具有4×2个像素,将4K×1K矩阵分成4个1K×0.5K像素块矩阵后的示意图可参照图4-2所示,图4-2中的32个像素按照虚线进行划分成A11、A12、A21、A22四个像素块。
3、用矩阵PH中已填充的像素以及水平方向对角插值参数矩阵H,来进行水平对角插值计算,并将计算出的像素值填充在PH矩阵对应的空位中以得到第三分辨率信号,水平方向对角插值处理后的矩阵示意图可参照图4-3所示。
4、用4K×1K像素矩阵PH的像素进行垂直对角填充以得到矩阵PV,4K×1K像素矩阵PH的像素进行垂直对角填充后的矩阵PV可参照图4-4所示。
5、对矩阵PV进行分块,将4K×2K矩阵分成8个2K×0.5K像素块矩阵,每一个像素块具有4×2个像素,将4K×2K矩阵分成8个2K×0.5K像素块矩阵后的示意图可参照图4-5所示,图4-5中的64个像素按照虚线进行划分成B11、B12、B13、B14、B21、B22、B23、B24八个像素块。
6、用矩阵PV中已填充的像素以及垂直方向对角插值参数矩阵V,来进行垂直对角插值计算,并将计算出的像素值填充在矩阵PV对应的空位中以得到目标分辨率信号,垂直方向对角插值处理后的矩阵示意图可参照图4-6所示。
当然在其他变形实施例中,获取目标分辨率信号的方式不限于上述方式,如获取目标分辨率信号的具体步骤可以是:
根据垂直方向对角插值参数矩阵,对输入的待转换分辨率的信号进行垂直方向对角插值处理,获取第六分辨率信号。
根据水平方向对角插值参数矩阵,对所述第六分辨率信号进行水平方向对角插值处理,获取目标分辨率信号。
在优选实施例中,在输入的待转换分辨率的信号进行水平对角填充以得到矩阵PH以前还包括对输入的待转换分辨率的信号进行延时缓冲处理的步骤。
进一步地,在得到目标分辨率信号以后还包括对该目标分辨率信号进行边沿识别和边沿增强处理的步骤。
本发明所公开的分辨率转换方法能够将2K×1K信号转换成4K×2K信号,但不限于仅将2K×1K信号转换成4K×2K信号,如还可以将4K×2K信号转换成8K×4K信号。
综上所述可知,本发明所公开的分辨率转换方法,能够将2K×1K信号转换成4K×2K信号,通过采用依次在水平方向和垂直方向上进行对角插值的方法,能够有效防止图像模糊及图像锯齿的出现,以及有效提高了图像的清晰度;插值算法的参数通过输入的2K×1K信号演算得出,使插值像素与相邻原像素的关联性高,有效减少图像失真,且插值效率高;同时本发明简单可靠,具有广泛应用价值。
本发明还公开了一种分辨率转换装置,该分辨率转换装置与上述任一实施例中的分辨率转换方法均可对应,具体地,可参照图5,在该实施方式中分辨率转换装置包括垂直方向对角插值参数矩阵获取模块1、水平方向对角插值参数矩阵获取模块2和目标分辨率信号获取模块3;其中,垂直方向对角插值参数矩阵获取模块1用于获取垂直方向对角插值参数矩阵;水平方向对角插值参数矩阵获取模块2用于获取水平方向对角插值参数矩阵;目标分辨率信号获取模块3用于根据所述垂直方向对角插值参数矩阵及所述水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行对角插值处理以获取目标分辨率信号。
再次参照图5,在具体实施例中,垂直方向对角插值参数矩阵获取模块1包括垂直方向对角抽样单元11和垂直方向对角插值参数获取单元12,其中垂直方向对角抽样单元11,用于对所述待转换分辨率的信号进行垂直方向的对角抽样处理,以获取第一分辨率信号;垂直方向对角插值参数获取单元12,用于根据所述待转换分辨率的信号及所述第一分辨率信号,按照插值算法进行垂直方向的对角插值参数演算,获取垂直方向对角插值参数矩阵。相应地,水平方向对角插值参数矩阵获取模块2包括水平方向对角抽样单元21和水平方向对角插值参数获取单元22,其中水平方向对角抽样单元21用于对所述第一分辨率信号进行水平方向的对角抽样处理,以获取第二分辨率信号;水平方向对角插值参数获取单元22用于根据所述第一分辨率信号及所述第二分辨率信号,按照插值算法进行水平方向的对角插值参数演算,获取水平方向对角插值参数矩阵。
再次参照图5,在具体实施例中,目标分辨率信号获取模块3包括水平方向对角插值单元31和垂直方向对角插值单元32;其中水平方向对角插值单元31,用于根据水平方向对角插值参数矩阵,对所述待转换分辨率的信号进行水平方向对角插值处理,获取第三分辨率信号;垂直方向对角插值单元32,用于根据垂直方向对角插值参数矩阵,对所述第三分辨率信号进行垂直方向对角插值处理,获取目标分辨率信号。优选地,目标分辨率信号获取模块3还包括帧缓冲单元33,用于对输入至所述水平方向对角插值单元中的所述待转换分辨率的信号进行延时缓冲处理。进一步地,目标分辨率信号获取模块3还包括边沿识别与增强单元34,用于对所述垂直方向对角插值单元获取的所述目标分辨率信号进行边沿识别和边沿增强处理。
上述垂直方向对角插值参数获取单元12、水平方向对角插值参数获取单元22、水平方向对角插值单元31和垂直方向对角插值单元32中所提的插值算法为同一插值算法,例如双线性插值算法。
本发明所公开的分辨率转换装置能够将2K×1K信号转换成4K×2K信号,但不限于仅将2K×1K信号转换成4K×2K信号,如还可以将4K×2K信号转换成8K×4K信号,即将低分辨率信号转换成高分辨率信号。
综上所述可知,本发明所公开的分辨率转换装置,能够将2K×1K信号转换成4K×2K信号,通过采用依次在水平方向和垂直方向上进行对角插值的方法,能够有效防止图像模糊及图像锯齿的出现,以及有效提高了图像的清晰度;插值算法的参数通过输入的2K×1K信号演算得出,使插值像素与相邻原像素的关联性高,有效减少图像失真,且插值效率高;同时本发明简单可靠,具有广泛应用价值。
为了使本发明的目的、技术方案及优点更加清楚明白,以下以2K1K转4K2K对本发明中分辨率转换方法及装置进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
(一)、输入的待转换分辨率的信号为YUV格式的2K×1K逐行信号,设其像素矩阵为PA、PA的每一个像素为PAmn,m为1~1080、n为1~1920;以4×4像素为例其像素矩阵示意图如图2-1所示。
再次参照图5所示,YUV格式的2K×1K逐行信号分别输入给垂直方向对角抽样单元11、垂直方向对角插值参数获取单元12以及帧缓冲单元33。
(二)、垂直方向对角抽样单元11对YUV格式的2K×1K逐行信号在垂直方向进行对角抽样,得到2K×0.5K垂直方向对角插值样本信号,设其像素矩阵为PB、PB的每一个像素为PBab,其中a为1~540、b为1~1920。则:
PBab=PAmn,且n=b;当b为奇数时,m=2a;b为偶数时,m=2a-1。
对图2-1抽样得到的垂直方向对角插值样本信号如图2-2所示。
再次参照图5,垂直方向对角抽样单元11将2K×0.5K垂直方向对角插值样本信号分别输出给水平方向对角抽样单元21、垂直方向对角插值参数获取单元12以及水平方向对角插值参数获取单元22。
(三)、水平方向对角抽样单元21对2K×0.5K信号在水平方向进行对角抽样,得到1K×0.5K水平方向对角插值样本信号,设其像素矩阵为PC、PC的每一个像素为PCpq,其中p为1~540、q为1~960。则:
PCpq=PBab,且p=a;当p为奇数时,b=2q;p为偶数时,b=2q-1。
对图2-2抽样得到的水平方向对角插值样本信号如图2-3所示。
再次参照图5,水平方向对角抽样单元21将1K×0.5K水平方向对角插值样本信号输出给水平方向对角插值参数获取单元22。
(四)、垂直方向对角插值参数获取单元12接收2K×1K信号和2K×0.5K垂直方向对角插值样本信号后,依照插值算法、在垂直方向上进行对角插值参数演算,演算后得出垂直方向对角插值参数矩阵V。V为2K×0.5K矩阵,设V的每一个单元为Vcd,其中c为1~540、d为1~1920。
设插值算法函数为f,则:
PAmn=f(Vcd,Y);
m+n为偶数,且d=n;当d为奇数时,m=2c-1;d为偶数时,m=2c;
Y表示2K×0.5K像素矩阵PB的多个像素,例如插值算法为双线性插值时,Y代表相邻的上下左右四个像素。
由于PAmn和Y表示的像素值已知,可以推算出参数Vcd。
按图2-1和图2-2像素矩阵演算出的参数矩阵V如图2-3所示。
再次参照图5,垂直方向对角插值参数获取单元12将演算出的参数矩阵V传递给垂直方向对角插值单元32。
(五)、水平方向对角插值参数获取单元22接收2K×0.5K垂直方向对角插值样本信号和1K×0.5K水平方向对角插值样本信号后,依照插值算法、在水平方向上进行对角插值参数演算,演算后得出水平方向对角插值参数矩阵H。H为1K×0.5K矩阵,设H的每一个单元为Hef,其中e为1~540、f为1~960。
插值算法函数为f,则:
PBab=f(Hef,X);
a+b为偶数,且a=e;当e为奇数时,b=2f-1;e为偶数时,b=2f;
X表示1K×0.5K像素矩阵PC的多个像素,例如插值算法为双线性插值时,X代表相邻的上下左右四个像素。
由于PBab和X表示的像素值已知,可以推算出参数Hef。
按图2-2和图3-1像素矩阵演算出的参数矩阵H如图3-2所示。
再次参照图5,水平方向对角插值参数获取单元22将演算出的参数矩阵H传递给水平方向对角插值单元31。
(五)、帧缓冲单元33接收到2K×1K信号对其进行延时缓冲后,将其输出给水平方向对角插值单元31。
(六)、水平方向对角插值单元31对2K×1K信号在水平方向进行对角插值,得到4K×1K信号,设其像素矩阵为PH、PH的每一个像素为PHkg,其中K为1~1080、g为1~3840。则:
1)首先用2K×1K像素矩阵PA的像素PAmn直接进行水平对角填充PH矩阵,即:
PHkg=PAmn,且k=m;当m为奇数时,g=2n;m为偶数时,g=2n-1。
对图2-1所示像素矩阵进行水平对角填充后的PH矩阵如图4-1所示,图4-1空白像素表示待插值像素。
2)其次对PH矩阵进行分块,将4K×1K矩阵分成1K×0.5K像素块矩阵,每一个像素块具有4×2个像素。将图4-1所示矩阵进行进行划分后的像素块矩阵示意图如图4-2所示。图4-2的32个像素按照虚线进行划分成A11、A12、A21、A22四个像素块。
3)最后用PH矩阵中已填充的像素以及水平方向对角插值参数矩阵H,来进行水平对角插值计算,并将计算出的像素值填充在PH矩阵对应的位置,即:
插值算法函数为f,插值计算出的像素值为:
PHkg=f(Hef,L);其中:
k+g为偶数;
参数Hef与每一个像素块对应,例如图4-2中:计算像素块A11中的像素值时Hef为H11、计算像素块A12中的像素值时Hef为H12、计算像素块A21中的像素值时Hef为H21、计算像素块A22中的像素值时Hef为H22;
L表示PH矩阵中用来进行计算的多个像素,例如插值算法为双线性插值、计算PH22像素值时,L为PH12、PH21、PH32、PH23,则PH22=f(H11,PH12,PH21,PH32,PH23)。
将图4-2插值填充完毕后的PH矩阵如图4-3所示,图4-3中的X11、X12等为经过水平对角插值计算后填充的像素。
再次参照图5,水平方向对角插值单元31将插值完毕后的4K×1K像素矩阵PH传输给垂直方向对角插值单元32。
(七)、垂直方向对角插值单元32对4K×1K信号在垂直方向进行对角插值,得到4K×2K信号,设其像素矩阵为PV、PV的每一个像素为PHst,其中s为1~2160、t为1~3840。则:
1)首先用4K×1K像素矩阵PH的像素PHkg直接进行垂直对角填充PV矩阵,即:
PVst=PHkg,且t=g;当g为奇数时,s=2k;g为偶数时,s=2k-1。
对图4-3所示像素矩阵进行垂直对角填充后的PV矩阵如图4-4所示,图4-4空白像素表示待插值像素。
2)其此对PV矩阵进行分块,将4K×2K矩阵分成2K×0.5K像素块矩阵,每一个像素块具有4×2个像素。将图4-4所示矩阵进行进行划分后的像素块矩阵示意图如图4-5所示。图4-5的64个像素按照虚线进行划分成B11、B12、B13、B14、B21、B22、B23、B24八个像素块。
3)最后用PV矩阵中已填充的像素、以及参数矩阵V,来进行垂直对角插值计算,并将计算出的像素值填充在PV矩阵对应的位置,即:
插值算法函数为f,插值计算出的像素值为:
PVst=f(Vcd,W);其中:
s+t为偶数;
参数Vcd与每一个像素块对应,例如图4-5中:计算像素块B11中的像素值时Vcd为V11、计算像素块B12中的像素值时Vcd为V12、计算像素块B13中的像素值时Vcd为V13、…;
W表示PV矩阵中用来进行计算的多个像素,例如插值算法为双线性插值、计算PV22像素值时,W为PV12、PV21、PV32、PV23,则PV22=f(V11,PV12,PV21,PV32,PV23)。
将图4-5插值填充完毕后的PV矩阵如图4-6所示。图4-6中的Y11、Y12等为经过垂直对角插值计算后填充的像素。
(八)、垂直方向对角插值单元32插值完毕后输出4K×2K像素矩阵,边沿识别与增强单元34对4K×2K像素矩阵进行边沿识别和边沿增强处理,以提升图像对象的边沿轮廓,进一步提高图像的清晰度。然后将4K×2K输出,完成2K×1K信号转4K×2K信号过程。
上述2K×1K为1920×1080即1080行、每行1920个像素,2K×0.5K为1920×540即540行、每行1920个像素,1K×0.5K为960×540即540行、每行960个像素,4K×1K为3840×1080即1080行、每行3840个像素,4K×2K为3840×2160即2160行、每行3840个像素。
本发明还公开了一种超高清电视机,参照图6,在该实施方式中电视机包括解码装置4、分辨率转换装置5、驱动装置6、存储及控制装置7和UHD(超高清)屏8,其中,解码装置4,用于对接收的输入信号进行解码和转换,向所述分辨率转换装置输出YUV格式的2K×1K逐行信号;分辨率转换装置5,用于将YUV格式的2K×1K逐行信号转换成YUV格式的4K×2K逐行信号,为上述任一实施例中的分辨率转换装置,具体可参照上述任一实施例对分辨率转换装置的描述,在此不再赘述;驱动装置6,用于对所述YUV格式的4K×2K逐行信号进行色温调节、GAMMA矫正、色彩空间逆转转换和倍频插帧处理,并向所述超高清屏输出RGB格式的4K×2K倍频逐行信号;存储及控制装置7,用于控制所述解码装置、所述分辨率转换装置和所述驱动装置,并存储所述解码装置、所述分辨率转换装置和所述驱动装置的数据;UHD(超高清)屏8,用于接收驱动装置6输出的RGB格式的4K×2K倍频逐行信号,并驱动UHD(超高清)屏实现超高清显示。
具体地,解码装置4包括信号接口模块41、信号解码及格式转换模块42、色彩空间转换模块43和去隔行及降噪模块44;其中,信号接口模块41,用于接收外部输入信号,对其进行信号幅度限制、格式识别等处理,进一步将处理后的信号输出给信号解码及格式转换模块42;信号解码及格式转换模块42,用于接收上述信号接口模块41输出的信号,对其进行解码、格式转换等处理后,将其处理成2K×1K信号,进一步将处理后的2K×1K信号输出给色彩空间转换模块43;色彩空间转换模块43,用于接收上述信号解码及格式转换模块42输出的2K×1K信号,对其进行色域转换处理,将其处理成YUV4:2:2的2K×1K信号,进一步将处理后的YUV4:2:22K×1K信号输出给去隔行及降噪模块44;去隔行及降噪模块44,用于接收上述色彩空间转换模块43输出的YUV4:2:22K×1K信号,对其进行去隔行及降噪处理,将其处理成YUV4:2:2的2K×1K逐行信号,进一步将处理后的2K×1K逐行信号输出给分辨率转换装置5。
具体地,驱动装置6包括色温调节及GAMMA校正模块61、色彩空间逆转换模块62及倍频插帧模块63;其中,色温调节及GAMMA校正模块61接收上述2K1K转4K2K装置5中边沿识别与增强单元34输出的YUV格式的4K×2K逐行信号,按照UHD(超高清)屏的特性在YUV色彩空间进行色温调节及GAMMA校正;如色温调节时保持Y基本不变而调整UV,GAMMA校正时仅仅调整Y,然后综合对YUV进行微调;进一步将调整后的YUV4K×2K逐行信号输出给色彩空间逆转换模块62;色彩空间逆转换模块62接收上述经过色温调节及GAMMA校正模块61处理后输出的YUV格式的4K×2K逐行信号,对其进行色彩空间逆转换处理,将其转换成4K×2K逐行RGB信号,进一步将4K×2K逐行RGB信号输出给倍频插帧模块63;倍频插帧模块63接收上述色彩空间逆转换模块62输出的4K×2K逐行RGB信号,对其进行插帧、倍频处理,将其帧频提升一倍或多倍后,进一步4K×2K倍频逐行RGB信号输出至电视机的UHD屏8。
具体地,存储及控制装置7,主要发送和接收控制信号以控制解码装置4的各个模块、分辨率转换装置5的各个模块、驱动装置6的各个模块,以及存储解码装置4的各个模块、分辨率转换装置5的各个模块、驱动装置6的各个模块的各种帧和数据,实现各种图像处理、信号转换等。
本发明所公开的超高清电视机能够将2K×1K信号转换成4K×2K信号,但不限于仅将2K×1K信号转换成4K×2K信号,如还可以将4K×2K信号转换成8K×4K信号。
综上所述可知,本发明所公开的超高清电视机,能够将2K×1K信号转换成4K×2K信号,以及能够驱动UHD屏实现超高清显示;采用依次在水平方向和垂直方向上进行对角插值的方法,能够有效防止图像模糊及图像锯齿的出现,以及有效提高了图像的清晰度;插值算法的参数通过输入的2K×1K信号演算得出,使插值像素与相邻原像素的关联性高,有效减少图像失真,且插值效率高;同时本发明简单可靠,具有广泛应用价值。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (13)

1.一种分辨率转换方法,其特征在于,包括以下步骤:
获取垂直方向对角插值参数矩阵及水平方向对角插值参数矩阵;
根据所述垂直方向对角插值参数矩阵及所述水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行对角插值处理以获取目标分辨率信号;
所述获取所述垂直方向对角插值参数矩阵的具体步骤包括:
对所述待转换分辨率的信号进行垂直方向的对角抽样处理,获取第一分辨率信号;
根据所述待转换分辨率的信号及所述第一分辨率信号,按照插值算法进行垂直方向的对角插值参数演算,获取垂直方向对角插值参数矩阵;
所述获取所述水平方向对角插值参数矩阵的具体步骤包括:
对所述第一分辨率信号进行水平方向的对角抽样处理,获取第二分辨率信号;
根据所述第一分辨率信号及所述第二分辨率信号,按照插值算法进行水平方向的对角插值参数演算,获取水平方向对角插值参数矩阵。
2.根据权利要求1所述的分辨率转换方法,其特征在于,所述根据所述垂直方向对角插值参数矩阵及所述水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行对角插值处理以获取目标分辨率信号的具体步骤包括:
根据水平方向对角插值参数矩阵,对所述待转换分辨率的信号进行水平方向对角插值处理,获取第三分辨率信号;
根据垂直方向对角插值参数矩阵,对所述第三分辨率信号进行垂直方向对角插值处理,获取目标分辨率信号。
3.根据权利要求2所述的分辨率转换方法,其特征在于,
所述根据水平方向对角插值参数矩阵,对所述待转换分辨率的信号进行水平方向对角插值处理,获取第三分辨率信号的具体步骤包括:
用所述待转换分辨率的信号的像素矩阵中的像素进行水平对角填充以得到第一矩阵;
对所述第一矩阵进行分块;
用所述第一矩阵中已填充的像素以及水平方向对角插值参数矩阵进行水平对角插值计算,并将计算出的像素值填充在所述第一矩阵对应的空位中以得到所述第三分辨率信号;
所述根据垂直方向对角插值参数矩阵,对所述第三分辨率信号进行垂直方向对角插值处理,获取目标分辨率信号的具体步骤包括:
用所述第三分辨率信号的像素矩阵中的像素进行垂直对角填充以得到第二矩阵;
对所述第二矩阵进行分块;
用所述第二矩阵中已填充的像素以及垂直方向对角插值参数矩阵进行垂直对角插值计算,并将计算出的像素值填充在所述第二矩阵对应的空位中以得到所述目标分辨率信号。
4.一种分辨率转换方法,其特征在于,包括以下步骤:
获取垂直方向对角插值参数矩阵及水平方向对角插值参数矩阵;
根据所述垂直方向对角插值参数矩阵及所述水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行对角插值处理以获取目标分辨率信号;
所述获取所述水平方向对角插值参数矩阵的具体步骤包括:
对输入的待转换分辨率的信号进行水平方向的对角抽样处理,获取第四分辨率信号;
根据输入的待转换分辨率的信号及第四分辨率信号,按照插值算法进行水平方向的对角插值参数演算,获取水平方向对角插值参数矩阵;
所述获取所述垂直方向对角插值参数矩阵的具体步骤包括:
对第四分辨率信号进行垂直方向的对角抽样处理,获取第五分辨率信号;
根据第四分辨率信号及第五分辨率信号,按照插值算法进行垂直方向的对角插值参数演算,获取垂直方向对角插值参数矩阵。
5.根据权利要求4所述的分辨率转换方法,其特征在于,所述根据所述垂直方向对角插值参数矩阵及所述水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行对角插值处理以获取目标分辨率信号的具体步骤包括:
根据水平方向对角插值参数矩阵,对所述待转换分辨率的信号进行水平方向对角插值处理,获取第三分辨率信号;
根据垂直方向对角插值参数矩阵,对所述第三分辨率信号进行垂直方向对角插值处理,获取目标分辨率信号。
6.根据权利要求4所述的分辨率转换方法,其特征在于,
所述根据水平方向对角插值参数矩阵,对所述待转换分辨率的信号进行水平方向对角插值处理,获取第三分辨率信号的具体步骤包括:
用所述待转换分辨率的信号的像素矩阵中的像素进行水平对角填充以得到第一矩阵;
对所述第一矩阵进行分块;
用所述第一矩阵中已填充的像素以及水平方向对角插值参数矩阵进行水平对角插值计算,并将计算出的像素值填充在所述第一矩阵对应的空位中以得到所述第三分辨率信号;
所述根据垂直方向对角插值参数矩阵,对所述第三分辨率信号进行垂直方向对角插值处理,获取目标分辨率信号的具体步骤包括:
用所述第三分辨率信号的像素矩阵中的像素进行垂直对角填充以得到第二矩阵;
对所述第二矩阵进行分块;
用所述第二矩阵中已填充的像素以及垂直方向对角插值参数矩阵进行垂直对角插值计算,并将计算出的像素值填充在所述第二矩阵对应的空位中以得到所述目标分辨率信号。
7.一种分辨率的转换装置,其特征在于,包括:
垂直方向对角插值参数矩阵获取模块,用于获取垂直方向对角插值参数矩阵;
水平方向对角插值参数矩阵获取模块,用于获取水平方向对角插值参数矩阵;
以及目标分辨率信号获取模块,用于根据所述垂直方向对角插值参数矩阵及所述水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行对角插值处理以获取目标分辨率信号;
所述垂直方向对角插值参数矩阵获取模块包括:
垂直方向对角抽样单元,用于对所述待转换分辨率的信号进行垂直方向的对角抽样处理,以获取第一分辨率信号;
以及垂直方向对角插值参数获取单元,用于根据所述待转换分辨率的信号及所述第一分辨率信号,按照插值算法进行垂直方向的对角插值参数演算,获取垂直方向对角插值参数矩阵;
所述水平方向对角插值参数矩阵获取模块包括:
水平方向对角抽样单元,用于对所述第一分辨率信号进行水平方向的对角抽样处理,以获取第二分辨率信号;
以及水平方向对角插值参数获取单元,用于根据所述第一分辨率信号及所述第二分辨率信号,按照插值算法进行水平方向的对角插值参数演算,获取水平方向对角插值参数矩阵。
8.根据权利要求7所述的分辨率的转换装置,其特征在于,所述目标分辨率信号获取模块包括:
水平方向对角插值单元,用于根据水平方向对角插值参数矩阵,对所述待转换分辨率的信号进行水平方向对角插值处理,获取第三分辨率信号;
以及垂直方向对角插值单元,用于根据垂直方向对角插值参数矩阵,对所述第三分辨率信号进行垂直方向对角插值处理,获取目标分辨率信号。
9.根据权利要求8所述的分辨率转换装置,其特征在于,所述目标分辨率信号获取模块还包括:帧缓冲单元,用于对输入至所述水平方向对角插值单元中的所述待转换分辨率的信号进行延时缓冲处理。
10.根据权利要求9所述的分辨率转换装置,其特征在于,所述目标分辨率信号获取模块还包括:边沿识别与增强单元,用于对所述垂直方向对角插值单元获取的所述目标分辨率信号进行边沿识别和边沿增强处理。
11.一种分辨率的转换装置,其特征在于,包括:
垂直方向对角插值参数矩阵获取模块,用于获取垂直方向对角插值参数矩阵;
水平方向对角插值参数矩阵获取模块,用于获取水平方向对角插值参数矩阵;
以及目标分辨率信号获取模块,用于根据所述垂直方向对角插值参数矩阵及所述水平方向对角插值参数矩阵,对输入的待转换分辨率的信号进行对角插值处理以获取目标分辨率信号;
所述水平方向对角插值参数矩阵获取模块包括:
水平方向对角抽样单元,用于对输入的待转换分辨率的信号进行水平方向的对角抽样处理,获取第四分辨率信号;
以及水平方向对角插值参数获取单元,用于根据输入的待转换分辨率的信号及第四分辨率信号,按照插值算法进行水平方向的对角插值参数演算,获取水平方向对角插值参数矩阵;
所述垂直方向对角插值参数矩阵获取模块包括:
垂直方向对角抽样单元,用于对第四分辨率信号进行垂直方向的对角抽样处理,获取第五分辨率信号;
以及垂直方向对角插值参数获取单元,用于根据第四分辨率信号及第五分辨率信号,按照插值算法进行垂直方向的对角插值参数演算,获取垂直方向对角插值参数矩阵。
12.根据权利要求11所述的分辨率的转换装置,其特征在于,所述目标分辨率信号获取模块包括:
水平方向对角插值单元,用于根据水平方向对角插值参数矩阵,对所述待转换分辨率的信号进行水平方向对角插值处理,获取第三分辨率信号;
以及垂直方向对角插值单元,用于根据垂直方向对角插值参数矩阵,对所述第三分辨率信号进行垂直方向对角插值处理,获取目标分辨率信号。
13.一种超高清电视机,其特征在于,包括:
解码装置,用于对接收的输入信号进行解码和转换,向分辨率转换装置输出YUV格式的2K×1K逐行信号;
分辨率转换装置,为权利要求7至10任一项所述的分辨率转换装置,用于将YUV格式的2K×1K逐行信号转换成YUV格式的4K×2K逐行信号;
驱动装置,用于对所述YUV格式的4K×2K逐行信号进行色温调节、GAMMA矫正、色彩空间逆转转换和倍频插帧处理,并向所述超高清屏输出RGB格式的4K×2K倍频逐行信号;
以及存储及控制装置,用于控制所述解码装置、所述分辨率转换装置和所述驱动装置,并存储所述解码装置、所述分辨率转换装置和所述驱动装置的数据。
CN201310076759.3A 2013-03-11 2013-03-11 分辨率转换方法及装置、超高清电视机 Active CN103152540B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201310076759.3A CN103152540B (zh) 2013-03-11 2013-03-11 分辨率转换方法及装置、超高清电视机
HK13110568.6A HK1184297A1 (zh) 2013-03-11 2013-09-13 分辨率轉換方法及裝置、超高清電視機
US14/411,397 US9706161B2 (en) 2013-03-11 2013-10-23 Resolution conversion method and device, UHDTV
AU2013382526A AU2013382526B2 (en) 2013-03-11 2013-10-23 Resolution conversion method and device, and ultra-high definition television
PCT/CN2013/085806 WO2014139289A1 (zh) 2013-03-11 2013-10-23 分辨率转换方法及装置、超高清电视机
RU2015118239A RU2636934C2 (ru) 2013-03-11 2013-10-23 Способ и устройство для преобразования разрешающей способности, телевизор сверхвысокой четкости

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310076759.3A CN103152540B (zh) 2013-03-11 2013-03-11 分辨率转换方法及装置、超高清电视机

Publications (2)

Publication Number Publication Date
CN103152540A CN103152540A (zh) 2013-06-12
CN103152540B true CN103152540B (zh) 2016-01-20

Family

ID=48550386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310076759.3A Active CN103152540B (zh) 2013-03-11 2013-03-11 分辨率转换方法及装置、超高清电视机

Country Status (6)

Country Link
US (1) US9706161B2 (zh)
CN (1) CN103152540B (zh)
AU (1) AU2013382526B2 (zh)
HK (1) HK1184297A1 (zh)
RU (1) RU2636934C2 (zh)
WO (1) WO2014139289A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103152540B (zh) * 2013-03-11 2016-01-20 深圳创维-Rgb电子有限公司 分辨率转换方法及装置、超高清电视机
CN103702060B (zh) * 2013-12-31 2016-03-09 京东方科技集团股份有限公司 超高清显示装置及视频信号转换方法
CN105120187B (zh) * 2015-08-20 2018-06-19 深圳创维-Rgb电子有限公司 一种激光电视的图像处理方法、系统及激光电视
CN107293255B (zh) * 2016-04-05 2019-07-26 上海和辉光电有限公司 显示装置及其驱动方法
US10489967B2 (en) 2017-02-22 2019-11-26 Microsoft Technology Licensing, Llc Indexed value blending for use in image rendering
CN107205176B (zh) * 2017-07-17 2020-12-29 深圳创维-Rgb电子有限公司 一种信号转换装置及转换方法
CN107277475A (zh) * 2017-07-17 2017-10-20 深圳创维-Rgb电子有限公司 激光电视图像处理方法、激光电视及计算机可读存储介质
CN113302913A (zh) * 2020-03-31 2021-08-24 西安诺瓦星云科技股份有限公司 图像处理的方法、装置和系统
CN111667789B (zh) * 2020-06-16 2022-09-27 Tcl华星光电技术有限公司 商业显示面板的驱动方法及装置、商业显示器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101055713A (zh) * 2007-04-29 2007-10-17 友达光电股份有限公司 影像调整电路及其内插电路与内插方法
CN102164285A (zh) * 2010-02-22 2011-08-24 索尼公司 发送装置、发送方法、接收装置、接收方法和信号传输系统
EP2495963A2 (en) * 2011-03-01 2012-09-05 Kabushiki Kaisha Toshiba Video display apparatus and video processing method
WO2012157999A2 (ko) * 2011-05-19 2012-11-22 엘지전자 주식회사 비디오 스트림 전송 장치, 비디오 스트림 수신 장치, 비디오 스트림 전송 방법 및 비디오 스트림 수신 방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6760489B1 (en) * 1998-04-06 2004-07-06 Seiko Epson Corporation Apparatus and method for image data interpolation and medium on which image data interpolation program is recorded
JP4150947B2 (ja) * 2000-08-23 2008-09-17 ソニー株式会社 画像処理装置および方法、並びに記録媒体
US20060274976A1 (en) * 2002-12-19 2006-12-07 Koninklijke Philips Electronics N.V. Image scaling
US7502505B2 (en) * 2004-03-15 2009-03-10 Microsoft Corporation High-quality gradient-corrected linear interpolation for demosaicing of color images
US20060291750A1 (en) * 2004-12-16 2006-12-28 Peyman Milanfar Dynamic reconstruction of high resolution video from low-resolution color-filtered video (video-to-video super-resolution)
RU2308817C1 (ru) * 2006-02-16 2007-10-20 Самсунг Электроникс Ко., Лтд. Способ и устройство масштабирования динамического видеоизображения
KR101389562B1 (ko) * 2007-11-15 2014-04-25 삼성전자주식회사 이미지 처리 장치 및 방법
CN101453646B (zh) * 2007-12-04 2012-02-22 华为技术有限公司 图像插值方法、装置及插值系数的获取方法
JP5169978B2 (ja) * 2009-04-24 2013-03-27 ソニー株式会社 画像処理装置および方法
CN101976435B (zh) * 2010-10-07 2012-10-24 西安电子科技大学 基于对偶约束的联合学习超分辨方法
US9462220B2 (en) * 2010-12-17 2016-10-04 Microsoft Technology Licensing, Llc Auto-regressive edge-directed interpolation with backward projection constraint
SI2658263T1 (sl) * 2010-12-22 2023-03-31 Lg Electronics Inc. Postopek notranjega napovedovanja in naprava, ki uporablja ta postopek
CN102163329A (zh) * 2011-03-15 2011-08-24 河海大学常州校区 基于尺度类推的单幅红外图像的超分辨率重建方法
US9078021B2 (en) * 2013-01-16 2015-07-07 Kabushiki Kaisha Toshiba Information processing apparatus, content transmission method and storage medium
CN103152540B (zh) * 2013-03-11 2016-01-20 深圳创维-Rgb电子有限公司 分辨率转换方法及装置、超高清电视机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101055713A (zh) * 2007-04-29 2007-10-17 友达光电股份有限公司 影像调整电路及其内插电路与内插方法
CN102164285A (zh) * 2010-02-22 2011-08-24 索尼公司 发送装置、发送方法、接收装置、接收方法和信号传输系统
EP2495963A2 (en) * 2011-03-01 2012-09-05 Kabushiki Kaisha Toshiba Video display apparatus and video processing method
WO2012157999A2 (ko) * 2011-05-19 2012-11-22 엘지전자 주식회사 비디오 스트림 전송 장치, 비디오 스트림 수신 장치, 비디오 스트림 전송 방법 및 비디오 스트림 수신 방법

Also Published As

Publication number Publication date
AU2013382526A1 (en) 2015-01-22
US20150181158A1 (en) 2015-06-25
CN103152540A (zh) 2013-06-12
HK1184297A1 (zh) 2014-01-17
US9706161B2 (en) 2017-07-11
AU2013382526B2 (en) 2016-05-05
RU2636934C2 (ru) 2017-11-29
RU2015118239A (ru) 2016-12-10
WO2014139289A1 (zh) 2014-09-18

Similar Documents

Publication Publication Date Title
CN103152540B (zh) 分辨率转换方法及装置、超高清电视机
US11025927B2 (en) Pixel pre-processing and encoding
US8139081B1 (en) Method for conversion between YUV 4:4:4 and YUV 4:2:0
CN107210026B (zh) 像素预处理和编码
US6717622B2 (en) System and method for scalable resolution enhancement of a video image
US8385422B2 (en) Image processing apparatus and image processing method
US9743073B2 (en) Image processing device with image compensation function and image processing method thereof
WO2015026864A1 (en) Conversion between aspect ratios in camera
US9161030B1 (en) Graphics overlay system for multiple displays using compressed video
CN105230033A (zh) 利用自适应频率强度受控变换来创建图像中的细节
US9053752B1 (en) Architecture for multiple graphics planes
US8483389B1 (en) Graphics overlay system for multiple displays using compressed video
US8897569B2 (en) Image enlargement device, image enlargement program, memory medium on which an image enlargement program is stored, and display device
KR20050109625A (ko) 공간 이미지 변환
US20130271650A1 (en) Video display apparatus and video processing method
US20140294368A1 (en) Moving-image playback device
US8547481B2 (en) Apparatus and method for black bar detection in digital TVs and set-top boxes
US20120147051A1 (en) Image enlargement device, image enlargement program and display apparatus
US20020126761A1 (en) Video data processing method
CA2886992A1 (en) Methods and apparatuses for adaptively filtering video signals
US7590302B1 (en) Image edge enhancement system and method
US8270773B2 (en) Image processing apparatus and image processing method
US8284307B1 (en) Method for processing digital video fields
JP2014090365A (ja) 画像データの変換装置、変換方法、変換プログラム及び送信装置
CN1901616A (zh) 处理视频数据的双缩放器结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1184297

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant