WO2014139265A1 - 加热器及芯片 - Google Patents

加热器及芯片 Download PDF

Info

Publication number
WO2014139265A1
WO2014139265A1 PCT/CN2013/081472 CN2013081472W WO2014139265A1 WO 2014139265 A1 WO2014139265 A1 WO 2014139265A1 CN 2013081472 W CN2013081472 W CN 2013081472W WO 2014139265 A1 WO2014139265 A1 WO 2014139265A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
resistor
output
temperature coefficient
heating
Prior art date
Application number
PCT/CN2013/081472
Other languages
English (en)
French (fr)
Inventor
何祥宇
孙维菊
袁杰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014139265A1 publication Critical patent/WO2014139265A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/345Arrangements for heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to the field of communications, and in particular to a heater and a chip.
  • LGA Land Grid Array
  • Industrial grade electronics typically have a temperature range of -40 to 85 °C to accommodate the harsh operating temperature requirements of different regions.
  • the temperature range of the 3G chip platform used in mainstream module products in the market mostly supports only -30 °C. If such a platform is used without any treatment, performance degradation and loss of function will occur especially when the temperature is lower than -30 °C.
  • the present invention provides a heater and a chip to solve at least the problem that the electronic product has a low temperature due to low temperature.
  • a heater including: a detecting unit configured to output a first voltage corresponding to a negative temperature coefficient thermistor when a temperature changes; a heating unit connected to the detecting The unit is configured to perform heating when the voltage value of the first voltage is greater than a preset voltage, wherein the preset voltage is a partial pressure of the negative temperature coefficient thermistor and a preset resistor at a temperature requiring heating value.
  • the detecting unit comprises: a first resistor, a negative temperature coefficient thermistor and an interface; wherein one end of the two ends of the first resistor is connected to an analog voltage, and the other end of the two ends is connected to The negative temperature coefficient thermistor; One end of the negative temperature coefficient thermistor is connected to the first resistor, and the other end of the two ends is connected to a ground point (Ground, abbreviated as GND); the interface is connected to the same
  • GND ground point
  • the first resistor and the negative temperature coefficient thermistor are arranged to output the first voltage divided by the negative temperature coefficient thermistor from the analog voltage.
  • the heater further includes: a determining unit connected to the detecting unit, configured to output a logic high level when the first voltage output by the detecting unit is greater than the preset voltage; When the voltage outputted by the detecting unit is less than the preset voltage, a logic low level is output; the heating unit is further connected to the determining unit, and is configured to perform heating when the determining unit outputs the logic high level. Or when the determining unit outputs the logic low level, the heating is stopped.
  • a determining unit connected to the detecting unit, configured to output a logic high level when the first voltage output by the detecting unit is greater than the preset voltage; When the voltage outputted by the detecting unit is less than the preset voltage, a logic low level is output; the heating unit is further connected to the determining unit, and is configured to perform heating when the determining unit outputs the logic high level. Or when the determining unit outputs the logic low level, the heating is stopped.
  • the determining unit comprises: a voltage comparator, a second resistor and a third resistor; the voltage comparator is arranged to have a voltage at a first input of the two input terminals of the voltage comparator greater than a voltage of the second input terminal Outputting a logic high level; or outputting a logic low level when the voltage of the first input terminal is less than the voltage of the second input terminal; wherein the first input end is connected to the interface, The two input ends are respectively connected to the second resistor and the third resistor; one end of the two ends of the second resistor is connected to the analog voltage, and the other end of the two ends of the second resistor Connected to the third resistor; one end of the third resistor is connected to the second resistor, and one of the two ends of the third resistor is connected to a ground point.
  • the resistance of the first resistor and the resistance of the second resistor are the same.
  • the resistance of the third voltage is a transient resistance value of the negative temperature coefficient thermistor at a preset temperature.
  • the heating unit comprises: a triode, one or more thermal power resistors; the triode being arranged to conduct the collector and the emitter of the triode when the input of the base of the triode is a positive voltage Circuitry, or when the input to the base stage is a negative voltage, turning off the circuit; wherein the base is coupled to an output port of the voltage determiner, the collector being coupled to the one or more heats Power resistor; the one or more thermal power resistors being connected in series or in parallel between the collector or system voltage.
  • a chip comprising: the heater described above.
  • a heater including a detecting unit and a heating unit is disposed, and the detecting unit is configured to output a first voltage corresponding to the negative temperature coefficient thermistor when the temperature changes; a heating unit connected to the The detecting unit is configured to perform heating when the voltage value of the first voltage is greater than a preset voltage, wherein the preset voltage is a voltage value corresponding to the negative temperature coefficient thermistor at a temperature required to be heated, and the related technology is solved. Due to the low temperature, the electronic products cause the performance degradation, and thus the effect of improving the working efficiency of the electronic products.
  • FIG. 1 is a structural block diagram of a heater according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing a preferred structure of a detecting unit according to an embodiment of the present invention
  • FIG. 3 is a heating according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing a preferred structure of a heating unit according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a temperature detecting circuit according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a heating control circuit in accordance with an embodiment of the present invention.
  • FIG. 1 is a structural block diagram of a heater according to an embodiment of the present invention, including: a detecting unit 12 and a heating unit 14. The above structure will be described in detail below.
  • the detecting unit 12 is configured to output a first voltage corresponding to the negative temperature coefficient thermistor when the temperature changes; the heating unit 14 is connected to the detecting unit 12, and is set to be when the voltage value of the first voltage is greater than a preset voltage, Heating is performed, wherein the preset voltage is a partial pressure value of the negative temperature coefficient thermistor and the preset resistor at a temperature requiring heating.
  • the detecting unit 12 when the temperature changes, the detecting unit 12 outputs a first voltage, and when the first voltage is greater than the preset voltage, the heating is performed by the heating unit 12, thereby solving the related art that the electronic product has low performance due to low temperature. The problem of falling, and thus the effect of improving the efficiency of electronic products.
  • the detecting unit 12 includes: a first resistor 122, a negative temperature coefficient thermistor 124, and an interface 126, wherein One end of the resistor 122 is connected to an analog voltage, and the other end of the two ends is connected to the negative temperature coefficient thermistor 124; one of the two ends of the negative temperature coefficient thermistor 124 is connected to the first resistor 122, two The other end of the terminal is connected to the grounding point (GND); the interface 126 is simultaneously connected to the first resistor 122 and the negative temperature coefficient thermistor 124, and is set to output the negative temperature coefficient thermistor 124 from the analog voltage.
  • GND grounding point
  • a voltage. 3 is a block diagram of a preferred structure of a heater according to an embodiment of the present invention.
  • the heater further includes: a determining unit 32 connected to the detecting unit 12, and configured to be outputted by the detecting unit 12 When a voltage is greater than the preset voltage, outputting a logic high level; or when the first voltage is less than a preset voltage, outputting a logic low level; the heating unit is further connected to the determining unit 32, and is configured as the determining unit When 32 outputs the logic high level, heating is performed, or when the judgment unit outputs a logic low level, the heating is stopped.
  • the determining unit 32 includes: a voltage comparator 322, a second resistor 324 and a third resistor 326.
  • the voltage comparator 322 is configured to output a logic high level when the voltage of the first input terminal of the two input terminals of the voltage comparator is greater than the voltage of the second input terminal; or the voltage at the first input terminal is less than the second input a logic low level, wherein the first input is connected to the interface, and the second input is connected to the second resistor and the third resistor respectively; One end of the second resistor 324 is connected to the third resistor 326; one end of the third resistor is connected to the second resistor 324, the third resistor One of the two ends is connected to the grounding point.
  • the resistance of the first resistor is the same as the resistance of the second resistor.
  • the resistance of the third voltage is a transient resistance value of the negative temperature coefficient thermistor at a preset temperature.
  • 4 is a block diagram of a preferred structure of a heating unit including a transistor 142, one or more thermal power resistors 144, in accordance with an embodiment of the present invention.
  • the transistor 142 is configured to turn on the circuit of the collector and the emitter of the transistor when the input of the base of the transistor is a positive voltage, or to cut off the circuit when the input of the base is a negative voltage;
  • the base is connected to an output port of the voltage determiner, the collector is connected to the one or more thermal power resistors 144; one end of the two ends of the thermal power resistor is connected to the collector, and two of the thermal power resistors
  • the other end of the terminal is connected to the system voltage.
  • a chip is provided, comprising: the heater described above.
  • Embodiments of the present invention provide a heater including: a temperature detecting circuit, a temperature comparing circuit, and a heating control circuit, as shown in FIGS. 5 to 7, respectively.
  • a temperature detecting circuit as shown in FIG. 5 is placed around the 3G processor chip to be processed for detecting the operating temperature of the chip in real time; the operating temperature change causes the negative temperature coefficient of FIG. 5 to be thermally sensitive.
  • the resistance of the resistor RT1 changes, so that the TEMP_DET changes with the R1 divided VCC_ANALOG.
  • R2 and R3 divide VCC_ANALOG to obtain the analog voltage value TEMP, where R2 has the same resistance as R1, and the value of R3 is lower than the operating temperature of the 3G chip we use.
  • the instantaneous resistance is the same. This resistance can be obtained according to the calculation formula provided in the data sheet of the selected negative temperature coefficient thermistor RT1. If the value is fixed, then TEMP will be a fixed value. In this embodiment, the value of TEMP_DET and the value of TEMP are compared by voltage comparator Z1.
  • HEAT CONTROL When the value of TEMP DET is greater than the value of TEMP, the output of HEAT CONTROL is high, and when the value of TEMP_DET is less than the value of TEMP, HEAT The CONTROL output is low. According to the characteristics of the negative temperature coefficient thermistor, the value of RT1 will become larger when the temperature rises, and the value of RT1 will become smaller when the temperature is lowered.
  • the PIN2 and PIN3 of VT1 in Figure 7 are in an on state, and the thermal power resistor RP1 is at a potential difference between the two ends and the potential difference.
  • the heating of PR1 will cause the ambient temperature of the 3G chip to rise.
  • the value of TEMP_DET will decrease.
  • PR1 stops heating when the temperature exceeds the operating temperature negative threshold of the 3G chip.
  • RT1 and PR1 and 3G chips are placed in a shielded sub-cavity (not too large), which can ensure the real-time performance and accuracy of the preheating effect; RT1 and PR1 are as close as possible to the 3G chip. Placement; RT1 and PR1 should not be too close.
  • the thermal paste is filled in the sub-cavity of the preheating chip to improve the heating efficiency;
  • PR1 may be a plurality of parallel thermal power resistors, which are distributed around the chip to be preheated according to requirements.
  • PR1 can be replaced by a heating film.
  • R1 chip resistor 1;
  • RT1 negative temperature coefficient thermistor
  • VCC ANALOG stable analog voltage
  • TEMP DET RT1 and R1 voltage VCC_ANALOG voltage;
  • R2 chip resistor 2;
  • R3 chip resistor 3;
  • Z1 voltage comparator
  • TEMP R2 and R3 divide the voltage obtained by VCC_ANALOG
  • VDD system voltage
  • HEAT CONTROL The logic level output by TEMP DET and TEMP after Zl comparison
  • VT1 Controlled heating gate (triode used in the example); PR1: Thermal power resistor (may be multiple parallel).
  • Preferred Embodiment 2 The embodiment of the present invention provides a heater comprising: a temperature detecting circuit and a heating control circuit, the two circuits being respectively shown in Figures 5 and 7. In this embodiment, the switching characteristics of the triode can be applied, the circuit of FIG. 6 in the second embodiment is omitted, the value of R1 is adjusted, and the voltage dividing value of R1 and RT1 at the critical temperature is adjusted to the switch of VT1 in FIG. The voltage is the same. Connect TEMP_DET to HEAT CONTROL so that the transistor is turned on and the heating operation is performed when the temperature is lowered to the critical temperature.
  • This preferred embodiment can be applied in a small space environment.
  • a heater and a chip are provided, and the low temperature automatic detection and preheating circuit can solve the working problem of the module at a low temperature, and can effectively guarantee the normal operation of the module product in a low temperature environment, and can Dynamically adjusts the temperature in the small environment in which the chip is located.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

一种加热器,该加热器包括:检测单元(12),用于在温度变化时,输出负温度系数热敏电阻(124)对应的第一电压;加热单元(14),连接至检测单元(12),用于在第一电压的电压值大于预设电压时,进行加热,其中,预设电压为需要加热的温度下负温度系数热敏电阻(124)对应的电压值。一种包括上述加热器的芯片。上述加热器实现了动态调节芯片所处的小环境里的温度。

Description

加热器及芯片 技术领域 本实用新型涉及通信领域, 具体而言, 涉及一种加热器及芯片。 背景技术 随着 3G无线通信技术的飞速发展和物联网产业的不断壮大,行业用户对于 3G功 能的需求也日趋增多。 以接点栅格封装 (Land Grid Array, 简称为 LGA) 为代表的新 封装形式模块以其稳定的结构特性及良好的环境适应性受到了越来越多行业用户设计 厂家的青睐。 工业级电子产品的温度范围一般为 -40至 85°C, 以适应不同区域的恶劣工作温度 需求。 市面主流模块产品所用的 3G芯片平台温度范围低温大多只支持到 -30°C, 如使 用此类平台不加任何处理的话在低于 -30°C的情况下会出现性能下降, 功能丧失, 尤其 是对于 3G芯片而言, 由于温度低, 芯片无法正常工作, 导致无法正常开机。 针对相关技术中电子产品由于温度低, 导致性能下降的问题, 目前尚未提出有效 的解决方案。 发明内容 针对电子产品由于温度低, 导致性能下降的问题, 本实用新型提供了一种加热器 及芯片, 以至少解决该问题。 根据本实用新型实施例的一个方面, 提供了一种加热器, 包括: 检测单元, 设置 为在温度变化时, 输出负温度系数热敏电阻对应的第一电压; 加热单元, 连接至所述 检测单元, 设置为在所述第一电压的电压值大于预设电压时, 进行加热, 其中, 所述 预设电压为需要加热的温度下所述负温度系数热敏电阻和预设电阻的分压值。 优选地, 所述检测单元包括: 第一电阻、 负温度系数热敏电阻和接口; 其中, 所述第一电阻的两端中的一端连接至模拟电压, 所述两端中的另一端连接 至所述负温度系数热敏电阻; 所述负温度系数热敏电阻的两端中的一端连接至所述第一电阻, 所述两端中的另 一端连接至接地点 (Ground, 简称为 GND); 所述接口, 同时连接至所述第一电阻和所述负温度系数热敏电阻, 设置为输出所 述负温度系数热敏电阻从所述模拟电压分得的所述第一电压。 优选地, 上述加热器还包括: 判断单元, 连接至所述检测单元, 设置为当所述检 测单元输出的所述第一电压大于所述预设电压时, 输出逻辑高电平; 或者当所述检测 单元输出的电压小于所述预设电压时, 输出逻辑低电平; 所述加热单元, 还连接至所 述判断单元, 设置为所述判断单元输出所述逻辑高电平时, 进行加热, 或所述判断单 元输出所述逻辑低电平时, 停止加热。 优选地, 所述判断单元包括: 电压比较器, 第二电阻和第三电阻; 所述电压比较器, 设置为在该电压比较器的两个输入端的第一输入端的电压大于 第二输入端的电压时, 输出逻辑高电平; 或在所述第一输入端的电压小于所述第二输 入端的电压时, 输出逻辑低电平; 其中, 所述第一输入端连接至所述接口, 所述第二 输入端分别于所述第二电阻和所述第三电阻相连; 所述第二电阻的两端中的一端连接 至所述模拟电压, 所述第二电阻的所述两端中的另一端连接至所述第三电阻; 所述第 三电阻的两端中的一端连接至所述第二电阻, 所述第三电阻的两端中的一端连接至接 地点。 优选地, 所述第一电阻的阻值和所述第二电阻的阻值相同。 优选地, 所述第三电压的阻值为所述负温度系数热敏电阻在预设温度下的瞬时电 阻值。 优选地, 所述加热单元包括: 三极管、 一个或多个热功率电阻; 所述三极管, 设置为在所述三极管的基极的输入为正电压时, 导通该三极管的集 电极和发射极的电路, 或在所述基级的输入为负电压时, 截止所述电路; 其中, 所述 基极连接至所述电压判断器的输出端口, 所述集电极连接至所述一个或多个热功率电 阻; 所述一个或多个热功率电阻串联或并联在集电极或系统电压之间。 根据本实用新型实施例的另一方面, 提供了一种芯片, 包括: 上述的加热器。 通过本实用新型实施例, 采用包括检测单元和加热单元的加热器, 该检测单元设 置为在温度变化时, 输出负温度系数热敏电阻对应的第一电压; 加热单元, 连接至该 检测单元, 设置为在该第一电压的电压值大于预设电压时, 进行加热, 其中, 该预设 电压为需要加热的温度下该负温度系数热敏电阻对应的电压值, 解决了相关技术中电 子产品由于温度低, 导致性能下降的问题, 进而达到了提高电子产品的工作效率的效 果。 附图说明 此处所说明的附图用来提供对本实用新型的进一步理解, 构成本申请的一部分, 本实用新型的示意性实施例及其说明用于解释本实用新型, 并不构成对本实用新型的 不当限定。 在附图中: 图 1是根据本实用新型实施例的加热器的结构框图; 图 2是根据本实用新型实施例的检测单元的优选的结构框图; 图 3是根据本实用新型实施例的加热器的优选的结构框图一; 图 4是根据本实用新型实施例的加热单元的优选的结构框图; 图 5是根据本实用新型实施例的温度检测电路的示意图; 图 6是根据本实用新型实施例的温度比较电路的示意图; 以及 图 7是根据本实用新型实施例的加热控制电路的示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本实用新型。 需要说明的是, 在不冲 突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 在相关技术中, 环境温度低于 -30°C时, 已经到了多数可选的芯片 (例如: 3G 芯 片) 平台温度的下限, 如不加任何处理的话, 出问题的概率会很大。 解决恶劣环境下工作问题的常用作法是堵, 即用刷三防漆之类的防护材料, 这种 方式对短时间内的低温冲击有一定的效果, 但长时间低温环境下达到温度平衡后就不 起任何作用了。而且,这类材料对于正常工作情况下的散热等方面都会有一定的影响。 在下述实施例中, 当低温下模块产品不能正常工作的话, 在温度较低下的情况下 对模块内部进行预热处理。 本实用新型实施例提供了一种加热器, 图 1是根据本实用新型实施例的加热器的 结构框图, 包括: 检测单元 12, 加热单元 14, 下面对上述结构进行详细描述。 检测单元 12, 设置为在温度变化时, 输出负温度系数热敏电阻对应的第一电压; 加热单元 14, 连接至检测单元 12, 设置为在该第一电压的电压值大于预设电压时, 进 行加热, 其中, 所述预设电压为需要加热的温度下该负温度系数热敏电阻和预设电阻 的分压值。 通过该优选实施例, 在温度变化时, 检测单元 12输出第一电压, 当该第一电压大 于预设电压时, 通过加热单元 12进行加热, 解决了相关技术中电子产品由于温度低, 导致性能下降的问题, 进而达到了提高电子产品的工作效率的效果。 图 2是根据本实用新型实施例的检测单元的优选的结构框图, 如图 2所示, 该检 测单元 12包括: 第一电阻 122、 负温度系数热敏电阻 124和接口 126, 其中, 第一电 阻 122的两端中的一端连接至模拟电压, 两端中的另一端连接至负温度系数热敏电阻 124; 负温度系数热敏电阻 124的两端中的一端连接至第一电阻 122, 两端中的另一端 连接至接地点 (GND); 接口 126, 同时连接至第一电阻 122和负温度系数热敏电阻 124, 设置为输出负温度系数热敏电阻 124从该模拟电压分得的第一电压。 图 3是根据本实用新型实施例的加热器的优选的结构框图一, 如图 3所示, 该加 热器还包括: 判断单元 32, 连接至检测单元 12, 设置为当检测单元 12输出的第一电 压大于该预设电压时, 输出逻辑高电平; 或者当该第一电压小于预设电压时, 输出逻 辑低电平; 该加热单元, 还连接至该判断单元 32, 设置为该判断单元 32输出该逻辑 高电平时, 进行加热, 或该判断单元输出逻辑低电平时, 停止加热。 优选地, 该判断单元 32包括: 电压比较器 322, 第二电阻 324和第三电阻 326。 该电压比较器 322, 设置为在该电压比较器的两个输入端的第一输入端的电压大 于第二输入端的电压时, 输出逻辑高电平; 或在该第一输入端的电压小于该第二输入 端的电压时, 输出逻辑低电平; 其中, 该第一输入端连接至该接口, 该第二输入端分 别与该第二电阻和该第三电阻相连; 该第二电阻 324的两端中的一端连接至该模拟电 压, 该第二电阻 324的该两端中的另一端连接至该第三电阻 326; 该第三电阻的两端 中的一端连接至该第二电阻 324, 该第三电阻的两端中的一端连接至接地点。 优选地, 该第一电阻的阻值和该第二电阻的阻值相同。 优选地,该第三电压的阻值为该负温度系数热敏电阻在预设温度下的瞬时电阻值。 图 4是根据本实用新型实施例的加热单元的优选的结构框图, 加热单元 14包括: 三极管 142、 一个或多个热功率电阻 144。 该三极管 142, 设置为在该三极管的基极的输入为正电压时, 导通该三极管的集 电极和发射极的电路, 或在该基级的输入为负电压时, 截止该电路; 其中, 该基极连 接至该电压判断器的输出端口, 该集电极连接至该一个或多个热功率电阻 144; 该热 功率电阻的两端中的一端连接至该集电极, 该热功率电阻的两端中的另一端连接至系 统电压。 根据本实用新型实施例的另一方面, 提供了一种芯片, 包括: 上述的加热器。 下面将结合优选实施例进行说明, 以下优选实施例结合了上述实施例及优选实施 方式。 优选实施例一 本实用新型实施例提供了一种加热器, 该加热器包括: 温度检测电路、 温度比较 电路、 加热控制电路, 该三个电路分别如图 5至 7所示。 在本实施例中, 在需要处理的 3G处理器芯片的周边放置如图 5所示的温度检测 电路, 用于实时检测芯片的工作温度; 工作温度变化会使图 5 中的负温度系数热敏电阻 RT1 的阻值发生变化, 从而与 R1分压 VCC_ANALOG得到 TEMP_DET发生变化。 如图 6中的温度比较电路所示, R2和 R3对 VCC_ANALOG进行分压得到模拟电 压值 TEMP, 这里 R2的阻值和 R1相同, R3的值与我们所用 3G芯片的工作温度负门 限下 RT1的瞬时阻值相同,这个阻值可以根据选用的负温度系数热敏电阻 RT1的数据 手册上提供的计算公式得到, 这个值是固定的, 那么 TEMP将是一个固定值。 在本实施例中, TEMP_DET的值和 TEMP的值会由电压比较器 Z1进行比较, 当 TEMP DET的值大于 TEMP的值时 HEAT CONTROL输出为高电平, 当 TEMP_DET 的值小于 TEMP的值时 HEAT CONTROL输出为低电平。 由负温度系数热敏电阻的特性得知, 当温度升高时 RT1的值会变大, 相反当温度 降低时 RT1的值会变小。 那么, 当温度高于 3G芯片的工作温度负门限时 TEMP_DET 的值就会小于 TEMP的值, 从而 HEAT CONTROL输出为低电平; 而当温度低于 3G 芯片的工作温度负门限时 TEMP_DET 的值就会大于 TEMP 的值, 从而 HEAT CONTROL输出为高电平。 如图 7中的加热控制电路所示,当 HEAT CONTROL输出为低电平时图 7中的 VT1 的 PIN2和 PIN3之间处于断开状态, 热功率电阻 RP1不会有电流流过, 也不会发热。 当 HEAT CONTROL输出为高电平时图 7中的 VT1的 PIN2和 PIN3之间处于导通状态, 热功率电阻 RP1两端和电势差, 会持续发热。 当温度低于 3G芯片的工作温度负门限时, PR1发热, 会引起 3G芯片周边环境温 度的升高, 这个过程中 TEMP_DET的值会降低, 当温度等于 3G芯片的工作温度负门 限, TEMP_DET的值与 TEMP刚好相等, 当温度超过 3G芯片的工作温度负门限后, PR1停止发热。 通过本优选实施例的电路, 可以保证 3G芯片周边环境温度不低于其工作温度的 负门限。 以保证 3G芯片的正常工作。 为了更好的实现上述功能, RT1和 PR1的所有电路和 3G芯片放在一个屏蔽分腔 内 (不要太大), 这样可以保证预热效果的实时性和准确性; RT1和 PR1尽量靠近 3G 芯片放置; RT1和 PR1之间不宜离得太近。 优选地, 在需预热芯片所在分腔内注满导热胶以提高加热的效率; PR1可以是多 个并联的热功率电阻, 按需求分布放置在需预热的芯片周围。 比较优的, 为了提升加 热效果, 可以把 PR1用加热膜进行代替。 下面对图 5-7中的标识进行说明: R1 : 贴片电阻器 1 ;
RT1 : 负温度系数热敏电阻;
VCC ANALOG: 稳定的模拟电压;
TEMP DET: RT1与 R1分压 VCC_ANALOG得到的电压; R2: 贴片电阻器 2; R3: 贴片电阻器 3;
Z1 : 电压比较器; TEMP: R2与 R3分压 VCC_ANALOG得到的电压; VDD: 系统电压;
HEAT CONTROL: TEMP DET与 TEMP经 Zl比较后输出的逻辑电平;
VT1 : 控制加热的门电路 (举例中使用的三极管); PR1 : 热功率电阻 (可以是多个并联)。 优选实施例二 本实用新型实施例提供了一种加热器, 该加热器包括: 温度检测电路、 加热控制 电路, 该两个电路分别如图 5和 7所示。 在本实施例中,可以应用三极管的开关特性, 省去了优选实施例二中图 6的电路, 调整 R1的值,把 R1和临界温度下 RT1的分压值调整到图 3中 VT1的开关电压相同。 把 TEMP_DET连接到 HEAT CONTROL, 这样在温度降低到临界温度时三极管打开, 进行加热操作。 该优选实施方式可以应用在空间较小环境。 通过上述实施例, 提供了一种加热器及芯片, 通过低温自动检测及预热电路可以 解决模块在低温下的工作问题, 对模块产品低温环境下正常工作可起到很好的保证作 用, 可以动态调节芯片所处的小环境里的温度。 为模块产品 (例如: 3G模块)更好地 适应低温度环境提供有效的解决方案。 需要说明的是, 这些技术效果并不是上述所有 的实施方式所具有的, 有些技术效果是某些优选实施方式才能取得的。 以上所述仅为本实用新型的优选实施例而已, 并不用于限制本实用新型, 对于本 领域的技术人员来说, 本实用新型可以有各种更改和变化。 凡在本实用新型的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本实用新型的保护范围 之内。

Claims

权 利 要 求 书
1. 一种加热器, 包括:
检测单元, 设置为在温度变化时, 输出负温度系数热敏电阻对应的第一电 压;
加热单元, 连接至所述检测单元, 设置为在所述第一电压的电压值大于预 设电压时, 进行加热, 其中, 所述预设电压为需要加热的温度下所述负温度系 数热敏电阻和预设电阻的分压值。
2. 根据权利要求 1所述的加热器, 其中,
所述检测单元包括: 第一电阻、 负温度系数热敏电阻和接口; 其中, 所述第一电阻的两端中的一端连接至模拟电压, 所述两端中的另一 端连接至所述负温度系数热敏电阻;
所述负温度系数热敏电阻的两端中的一端连接至所述第一电阻, 所述两端 中的另一端连接至接地点 GND;
所述接口, 同时连接至所述第一电阻和所述负温度系数热敏电阻, 设置为 输出所述负温度系数热敏电阻从所述模拟电压分得的所述第一电压。
3. 根据权利要求 1或 2所述的加热器, 其中, 还包括:
判断单元, 连接至所述检测单元, 设置为当所述检测单元输出的所述第一 电压大于所述预设电压时, 输出逻辑高电平; 或者当所述第一电压小于所述预 设电压时, 输出逻辑低电平;
所述加热单元, 还连接至所述判断单元, 设置为所述判断单元输出所述逻 辑高电平时, 进行加热, 或所述判断单元输出所述逻辑低电平时, 停止加热。
4. 根据权利要求 3所述的加热器, 其中,
所述判断单元包括: 电压比较器, 第二电阻和第三电阻;
所述电压比较器, 设置为在该电压比较器的两个输入端的第一输入端的电 压大于第二输入端的电压时, 输出逻辑高电平; 或在所述第一输入端的电压小 于所述第二输入端的电压时, 输出逻辑低电平; 其中, 所述第一输入端连接至所述接口, 所述第二输入端分别于所述第二 电阻和所述第三电阻相连;
所述第二电阻的两端中的 端连接至所述模拟电压, 所述第二电阻的所述 两端中的另一端连接至所述第 电阻;
所述第三电阻的两端中的 端连接至所述第二电阻, 所述第三电阻的两端 中的一端连接至接地点。 根据权利要求 4所述的加热器, 其中, 所述第一电阻的阻值和所述第二电阻的阻值相同。 根据权利要求 4所述的加热器, 其中, 所述第三电压的阻值为所述负温度系数热敏电阻在预设温度下的瞬时电阻 值。 根据权利要求 1、 2、 4至 6中任一项所述的加热器, 其中,
所述加热单元包括: 三极管、 一个或多个热功率电阻;
所述三极管, 设置为在所述三极管的基极的输入为正电压时, 导通该三极 管的集电极和发射极的电路, 或在所述三级管的基极的输入为负电压时, 截止 所述电路;
其中, 所述基极连接至所述电压判断器的输出端口, 所述集电极连接至所 述一个或多个热功率电阻;
所述一个或多个热功率电阻串联或并联在所述集电极或所述系统电压之 间。 一种芯片, 包括: 权利要求 1至 7中任一项所述的加热器。
PCT/CN2013/081472 2013-03-13 2013-08-14 加热器及芯片 WO2014139265A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013201141224U CN203149425U (zh) 2013-03-13 2013-03-13 加热器及芯片
CN201320114122.4 2013-03-13

Publications (1)

Publication Number Publication Date
WO2014139265A1 true WO2014139265A1 (zh) 2014-09-18

Family

ID=48976940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081472 WO2014139265A1 (zh) 2013-03-13 2013-08-14 加热器及芯片

Country Status (2)

Country Link
CN (1) CN203149425U (zh)
WO (1) WO2014139265A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106595913A (zh) * 2016-10-26 2017-04-26 中国电子科技集团公司第四十八研究所 一种带温度控制的硅压阻压力传感器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110267369B (zh) * 2019-05-28 2021-09-14 华为技术有限公司 加热电路
CN112153247B (zh) * 2019-06-27 2022-02-01 杭州海康威视数字技术股份有限公司 摄像机
CN112711283A (zh) * 2019-10-24 2021-04-27 恒为科技(上海)股份有限公司 一种芯片加热电路

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2440027A1 (fr) * 1978-10-26 1980-05-23 Fonderie Soc Gen De Thermostat d'appareil de chauffage electrique
JPS6432317A (en) * 1987-07-28 1989-02-02 Canon Kk Temperature compensating device
US5966938A (en) * 1994-04-19 1999-10-19 Fujitsu Limited Peltier control circuit and a peltier device structure
US5981918A (en) * 1997-03-05 1999-11-09 Robert Bosch Gmbh Circuit for temperature-dependent regulation of the heating current of seat heaters
CN2909762Y (zh) * 2006-03-22 2007-06-06 李和发 恒温电热控制电路
CN201440191U (zh) * 2009-08-04 2010-04-21 深圳和而泰智能控制股份有限公司 一种保持液晶显示模组温度的发热装置及设备
CN201464938U (zh) * 2009-06-15 2010-05-12 武汉华工新高理电子有限公司 一种基站用自动加热恒温控制系统
CN201936209U (zh) * 2010-12-24 2011-08-17 程小莉 一种水温自动加热控制器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2440027A1 (fr) * 1978-10-26 1980-05-23 Fonderie Soc Gen De Thermostat d'appareil de chauffage electrique
JPS6432317A (en) * 1987-07-28 1989-02-02 Canon Kk Temperature compensating device
US5966938A (en) * 1994-04-19 1999-10-19 Fujitsu Limited Peltier control circuit and a peltier device structure
US5981918A (en) * 1997-03-05 1999-11-09 Robert Bosch Gmbh Circuit for temperature-dependent regulation of the heating current of seat heaters
CN2909762Y (zh) * 2006-03-22 2007-06-06 李和发 恒温电热控制电路
CN201464938U (zh) * 2009-06-15 2010-05-12 武汉华工新高理电子有限公司 一种基站用自动加热恒温控制系统
CN201440191U (zh) * 2009-08-04 2010-04-21 深圳和而泰智能控制股份有限公司 一种保持液晶显示模组温度的发热装置及设备
CN201936209U (zh) * 2010-12-24 2011-08-17 程小莉 一种水温自动加热控制器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENG JINZHOU ET AL.: "A Temperature Control Circuit with Small Size and Low Power Consumption for CPT Atomic Frequency Standard", JOURNAL OF TIME AND FREQUENCY, vol. 32, no. 2, December 2009 (2009-12-01), pages 103 - 107 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106595913A (zh) * 2016-10-26 2017-04-26 中国电子科技集团公司第四十八研究所 一种带温度控制的硅压阻压力传感器

Also Published As

Publication number Publication date
CN203149425U (zh) 2013-08-21

Similar Documents

Publication Publication Date Title
CN103821747B (zh) 风扇控制系统、计算机系统及其风扇控制的方法
CN103036203A (zh) 保护电路
WO2014139265A1 (zh) 加热器及芯片
US20110160931A1 (en) Temperature control circuit
US20120329377A1 (en) Fan control system, computer system, and method for controlling fan speed thereof
US20130088832A1 (en) Thermal protection circuit and electronic device
US9791173B2 (en) Heating device having heating transistor unit
US20110155717A1 (en) Temperature control circuit
US20110089880A1 (en) Fan control system
JP2016163512A (ja) インテリジェントパワーモジュールおよびインテリジェントパワーモジュールの評価方法
CN112670962B (zh) 一种igbt过温保护方法、系统、装置及存储介质
US10355497B2 (en) Protection of parallel connected cells in battery packs
CN101557092A (zh) 一种保护电路和电路保护方法
TW201306414A (zh) 保護電路
CN105824344A (zh) 一种电流的调节方法及终端
CN101727116A (zh) 可设置温度的恒温芯片
Wojtkowski et al. Parallel RF power amplifiers temperature monitoring system based on FPGA device
CN102109862B (zh) 温度控制电路及具有该温度控制电路的电子设备
US9798365B2 (en) Apparatus for preventing deformation of communication card
CN202817726U (zh) 一种晶体管过温保护装置
US8767365B2 (en) Protection circuit
US20060061339A1 (en) Temperature regulator for a multiphase voltage regulator
CN213602845U (zh) 一种温控电路和电子设备
TWI702534B (zh) 功率金屬氧化物半導體電晶體的模擬方法
TW201929434A (zh) 用於控制開關的裝置、方法及系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877447

Country of ref document: EP

Kind code of ref document: A1