WO2014137193A1 - 이종 dna 바코딩 방법 - Google Patents

이종 dna 바코딩 방법 Download PDF

Info

Publication number
WO2014137193A1
WO2014137193A1 PCT/KR2014/001907 KR2014001907W WO2014137193A1 WO 2014137193 A1 WO2014137193 A1 WO 2014137193A1 KR 2014001907 W KR2014001907 W KR 2014001907W WO 2014137193 A1 WO2014137193 A1 WO 2014137193A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
sample
microarray
spot
microwell
Prior art date
Application number
PCT/KR2014/001907
Other languages
English (en)
French (fr)
Inventor
권성훈
김준회
류태훈
오동윤
고재경
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to US14/772,914 priority Critical patent/US9850482B2/en
Publication of WO2014137193A1 publication Critical patent/WO2014137193A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1065Preparation or screening of tagged libraries, e.g. tagged microorganisms by STM-mutagenesis, tagged polynucleotides, gene tags
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips

Definitions

  • the technology disclosed herein relates to a heterologous DNA barcoding method, and more particularly, to a heterologous DNA barcoding method capable of simultaneously analyzing a large amount of gene samples in parallel.
  • DNA barcoding technology aims to read many DNA sequences in parallel using this next generation technology. For example, Matthias Meyer and colleagues reported on how to analyze two or more samples simultaneously by attaching DNA barcodes to samples using a ligation reaction, respectively, in the 2007 Nucleic acid Research and 2008 Nature Protocols.
  • Each barcode has its own unique sequence that can be attached to the DNA to be analyzed and add additional information to the DNA to be analyzed. Therefore, when analyzing a large amount of DNA, even DNA-specific information with a barcode can be read. For example, barcodes can be used to determine which cells are extracted from a particular DNA.
  • each DNA must be barcoded.
  • Conventional barcoding method requires the production of each DNA oligo (DNA oilgo) having a unique barcode nucleotide sequence, and then a different oligo (ligation) for each DNA.
  • the conventional oligo synthesis method is expensive to produce a variety of DNA oligos respectively.
  • attaching oligos to each DNA must be carried out sequentially, which requires a lot of time and labor, and requires a large amount of materials to react, resulting in a large cost. Therefore, improvement thereof is required.
  • the method comprising the steps of: (a) providing a DNA microarray having DNA spots distinguished from each other by a barcode sequence; (b) providing a microwell array with microwells corresponding to the spatial placement of the DNA spots on the DNA microarray; (c) loading the microwells with a solution of a sample containing the desired base sequences; (d) combining the DNA microarray with the microwell array to form microreaction spaces in which the DNA spots are spatially separated by the microwells; (e) combining the base sequence information of the DNA spot with the base sequence information of the sample by reacting the base sequence of the DNA spot with the target sequence of the sample in the micro reaction space; (f) separating the DNA microarray and the microwell array to obtain a result having the barcode base sequence; (g) sequencing the result; And (h) selectively amplifying DNA of a specific spot in the DNA microarray by using barcode information of a desired sample as a primer in the resultant to obtain the desired sample.
  • a DNA microarray having DNA spots distinguished from each other by a barcode base sequence; And a microwell array coupled with the DNA microarray and having microwells corresponding to the spatial arrangement of the DNA spots, wherein the DNA spots have microreaction spaces spatially separated from each other by the microwells.
  • a platform for heterologous DNA barcoding in which a solution of a sample containing target sequences in the microreaction space is loaded into the microwells is provided.
  • FIG. 1 is a process flow diagram showing an embodiment of a heterologous DNA barcoding method of the present invention.
  • 3 shows an actual image of a 12k microarray product from CustomArray.
  • FIG. 4 illustrates a fabrication process of a coupled microwell array using a microhole array.
  • FIG. 5 is a schematic diagram illustrating a process of connecting and amplifying sample DNA information and barcode information in a micro reaction space.
  • FIG. 6 shows an embodiment of a heterologous DNA barcoding method in which a sample is obtained on a DNA microarray and subjected to barcoding over steps (a) to (f).
  • Figure 7 shows one embodiment of a microwell array (top) and a DNA microarray (bottom) used in the heterologous DNA barcoding method.
  • FIG. 9 is a cross-sectional view showing an embodiment of a platform for heterologous DNA barcoding.
  • step S1 a DNA microarray having DNA spots distinguished from each other by a barcode base sequence is provided.
  • DNA microarray refers to a DNA having a specific base sequence attached to each part on a solid substrate. Microarrays are commonly used to measure the expression of genes in cells. When some sequences of genes that already know the nucleotide sequence are synthesized and placed on a substrate and reacted with the mRNA expressed from the cells, hybridization occurs between complementary nucleotide sequences. The amount of gene expression can be known by measuring fluorescence.
  • the DNA microarray provided in one embodiment of the present invention may be a conventional DNA microarray generally used for molecular diagnosis or bioinformatics analysis of diseases.
  • the DNA microarray may be a chip in which DNA molecules of short length (for example, less than about 300 bases) having different base sequences are arranged at regular intervals on a flat substrate made of glass or silicon.
  • the DNA molecules on the DNA microarray will participate in the DNA amplification reaction with the sample DNAs to be loaded later, it is preferable to prepare the solid-phase PCR.
  • the solid phase amplification reaction since the amplification of DNA molecules is performed near the surface of the substrate rather than the liquid environment, the enzymatic efficiency may be lowered or the interference may be inhibited by the influence of the substrate surface.
  • the substrate is coated with a polymer material in advance to create an environment where DNA amplification reactions can occur, or the part of the DNA molecules prepared to be bonded to the substrate is used as a free space that does not participate in the amplification reaction. do.
  • the remaining portion of the length of the ready-to-use DNA molecule except the length required for the barcode amplification reaction may be used to provide a space on the substrate side.
  • the DNA molecules constituting the DNA microarray may have different orientations depending on the preparation method.
  • a DNA microarray is fabricated using a constituent material having photodegradation properties and their photolysis reaction
  • the 3 'end of the DNA molecule is aligned on the substrate side.
  • the 5 'end of the DNA molecule can be bound to the substrate and the 3' end can be left free.
  • DNA molecules that have been prepared can be bonded to the substrate in the desired alignment direction.
  • DNA sequence information constituting each spot of the DNA microarray includes (1) a connection portion that recognizes and binds to a sample DNA molecule to be amplified, (2) a barcode portion that specifies each spot, and (3) a DNA amplification reaction.
  • the primer portion (4) may include a spacer portion, which is used to secure a space between the above portions and the surface of the microarray, so that a DNA amplification reaction occurs well.
  • the DNA sequence information is more specifically configured as follows.
  • connection part-The same nucleotide sequence information is applied to all spots, and it is determined according to the nucleotide sequence of the sample DNA because it must recognize a specific specific position of the sample DNA molecule to be obtained.
  • the barcodes have different constituent sequences for each spot so that each spot can be identified from the configuration information.
  • the DNA amplification reaction and the sequence analysis after all the amplified DNA is collected are preferably designed so that the reaction specificity according to the configuration of the barcode sequencing information does not appear.
  • DNA amplification requires two primers in opposite directions, one on the sample DNA.
  • the primer portion has the same base sequence information for all spots, and if necessary, additional base sequence information may be additionally inserted into each spot for selective amplification of a specific spot.
  • step S2 a microwell array is provided with microwells corresponding to the spatial placement of the DNA spots on the DNA microarray.
  • the volume of the reaction can be drastically reduced unlike a conventional tube-based reaction. Through this, it is possible to obtain an effect of reducing the amount of samples and reagents required for the reaction, and has an advantage of improving sensitivity to confirm the reaction.
  • each microwells and their arrangement of the microwell arrays is determined by the size of each spot and their arrangement of the corresponding DNA microarray.
  • DNA spots and microwells can be placed in a 1: 1 correspondence with each other, but in addition, 1: N (multiple microwells correspond to one DNA spot) or N: 1 (one microwell to several DNA spots) This correspondence) can also be arranged.
  • N is an integer of 2 or more.
  • CustomArray's 12k microarray product circular DNA spots of about 45 um in diameter are located every 75 um in width and length, and a microwell array with a diameter of about 40 um is used.
  • the wells can be made to be placed every 75um horizontally and vertically. 3 shows an actual image of a 12k microarray product from CustomArray.
  • the relative sizes of the microwells and DNA spots can vary at levels where the correspondence is preserved, and the height of the microwells can be determined in the range of 10% to 1000% of the microwell diameter, depending on the type of reaction to be achieved.
  • the microwell array may have a conventional simple microwell array structure having a well grooved shape on a flat substrate, but is a more expanded microwell array structure and another flat substrate and microhole array. It may have a bonded microwell array structure of the combined form.
  • the flat substrate may be another DNA microarray, a protein microarray, or a substrate coated with a biochemical material for obtaining specific molecules.
  • 4 illustrates a fabrication process of a coupled microwell array using a microhole array.
  • step S3 a solution of the sample containing the desired base sequences is loaded into the microwells.
  • the sample to which the barcode information derived from the DNA spot is to be bound may be at least one selected from the following (1) to (6).
  • DNA microarrays with other sequence information e.g., a combined microwell array in which a microhole array is located between two DNA microarrays
  • the loading solution may include reagent conditions for DNA binding or amplification reactions, such as enzymes and primers, as well as samples.
  • Each sample is contained in a solution and loaded into a microwell, and the number of samples entering each microwell may be variously determined according to the purpose of the study to be amplified and analyzed. For example, for the purpose of single cell gene barcoding for single cell gene quantitative studies, it is prepared and loaded at an appropriate concentration to adjust to one level on average. For example, suppose that the number of samples in a microwell follows a simple Poisson distribution, when the sample solution is prepared at a concentration that will contain one sample per volume of microwell, approximately 37%, 37%, 18% of the microwells will contain 0, 1 and 2 samples. In addition, if a sample solution is prepared at a concentration of 0.1 samples per volume of microwell, about 90%, 9%, and 0.5% of the microwells will contain 0, 1, and 2 samples.
  • the loading of the sample solution may be done by spraying the solution onto the microwell array chip to induce the solution to naturally flow along the hydrophilic surface of the microwell, and may be used for precision instruments such as inkjet printers or spotters. It can also be loaded only inside the microwell.
  • step S4 the DNA microarray and the microwell array are combined to form micro reaction spaces in which the DNA spots are spatially separated by the microwells.
  • the loaded sample solution and samples are assembled with a microwell array utilizing a DNA microarray as a substrate to spatially separate and isolate each microwell environment.
  • DNA microarrays and microwell arrays can be designed and manufactured to be aligned automatically when an assembly is attempted by using a microscope and a stage or by separately implementing a frame structure for alignment.
  • the chip in which the DNA microarray and the microwell array are assembled has an array of a plurality of micro reaction spaces.
  • the micro reaction spaces are formed by spatially separating the DNA microarray spots by microwells, and different biochemical reactions may occur in each micro reaction space.
  • the assembled chip By assembling or amplifying the DNA in different DNA microarray spot environments in each micro reaction space, the assembled chip can serve as a platform for heterologous DNA barcoding.
  • step S5 the base sequence of the DNA spot and the target sequence of the sample are reacted in the microreaction space to combine the base sequence information of the DNA spot with the base sequence information of the sample. .
  • a polymer chain reaction and binding and amplification of the DNA molecules constituting the spot of the sample DNA and the DNA microarray occur.
  • the DNA amplification reaction occurs near the surface of the DNA microarray because the primer part for DNA amplification is included in the spot of the DNA microarray (Solid-phase PCR).
  • the DNA amplification reaction may be performed only by solid-phase PCR, or may be performed in combination with general PCR.
  • the combination of the DNA information of the sample and the barcode information of the DNA microarray spot can be made in two ways.
  • DNA binding and amplification are in separate microwells. That is, in a microwell environment, each sample DNA is preferentially bound and obtained by a DNA microarray spot, and after the microwell is separated, another microwell containing reagents for DNA amplification reaction is assembled and then subjected to DNA amplification reaction. How to accomplish
  • FIG. 5 is a schematic diagram illustrating a process of connecting and amplifying sample DNA information and barcode information in a micro reaction space. Referring to FIG. 5, a case where both ligation and amplification occurs in one microwell environment is illustrated.
  • the DNA amplification result of the combination of the sample DNA information and the barcode information may be obtained in an extended form by adding the sample DNA information to the microarray spot DNA.
  • the DNA amplification result of the combined form of the sample DNA information and the barcode information may be obtained in the form that the barcode information is attached to the sample DNA freely floating inside the microwell. Since DNA has a double helix structure that specifically binds to complementary sequences, both forms can be easily obtained.
  • step S6 the DNA microarray and the microwell array are separated to obtain a result having the barcode base sequence.
  • the DNA amplification reaction product formed by combining barcode information of each DNA microarray spot and DNA information of a sample separated for each microwell can be easily obtained by separating the assembled chip and collecting it as one solution.
  • the result of the DNA amplification reaction is composed of different DNA molecules, but each DNA molecule is combined with different barcodes with different sample DNA information. Therefore, after sequencing using next-generation sequencing technology, each sample DNA sequencing information can be separated based on barcode information.
  • a parallel DNA analysis method using the heterologous DNA bar coding described above First sequencing the result obtained in step S6.
  • Superparallel sequencing techniques can be utilized for sequencing.
  • Hyperparallel sequencing techniques may include techniques such as pyrosequencing chemistry, bridge amplification, next generation sequencing, third generation sequencing, next generation sequencing or semiconductor sequencing.
  • the desired sample may be obtained by selectively amplifying DNA of a specific spot in the DNA microarray by using barcode information of a desired sample as a primer.
  • DNA can be selectively amplified based on the barcode information of the resultant. For example, if there is sample DNA to be selectively obtained after sequencing, barcode information included in the sample DNA may be used as a primer to selectively amplify DNA of a specific spot in a DNA microarray.
  • FIG. Figure 7 also shows one embodiment of a microwell array (top) and a DNA microarray (bottom) used in the heterologous DNA barcoding method.
  • FIG. 6 shows an embodiment of a heterologous DNA barcoding method in which a sample is obtained on a DNA microarray and subjected to barcoding over steps (a) to (f).
  • a DNA microarray 110 having a DNA spot 115 having a barcode encoding sequence is prepared (FIG. 6A).
  • a microwell array 120 having a microwell 125 corresponding to the DNA spot 115 is prepared (FIG. 6B).
  • each microwell 125 of the microwell array 120 is loaded with a solution 128 containing the gene sample 126 to be analyzed (FIG. 6C).
  • the available gene sample 126 may include a biological material such as an animal cell or bacteria itself or a genome in the form of purified DNA or RNA, and may also include solid particles to which the gene is attached.
  • the area of the microwell 125 and the DNA spot 115 may be adjusted from several micrometers to several hundred micrometers in size. In particular, it is essential that the position of the microwells 125 constituting the microwell array 120 coincide with the position of each DNA spot 115 on the DNA microarray 110.
  • the solution 128 may be applied onto the microwell array 120 to allow a certain amount to enter the microwell 125 for the loading of the gene sample 126, and the gene sample 126 may be evenly distributed in each of the wells 125. Can be dispensed and introduced. At this time, the microwell 125 is preferably manufactured in a size suitable for loading the genetic sample 126.
  • each micro reaction space 130 includes a result 150 having a bar code information (Fig. 6 (e)).
  • the assembled chip 140 is separated to obtain a result 150.
  • a barcode for distinguishing cells may be attached to genetic information of each cell using a heterogeneous bar coding method.
  • genetic information of different cells may be distinguished using code information after sequencing.
  • a platform for heterologous DNA barcoding is provided.
  • FIG. 9 is a cross-sectional view showing an embodiment of a platform for heterologous DNA barcoding.
  • the heterogeneous DNA barcoding platform 200 is coupled to a DNA microarray 110 having DNA spots 115 distinguished from each other by a barcode sequence, and a DNA microarray 110.
  • the heterogeneous DNA barcoding platform 200 includes micro reaction spaces 130 in which DNA spots 115 are spatially separated from each other by microwells 125, and a target in the micro reaction space 130 is provided.
  • a solution 128 of sample 126 containing base sequences is loaded into microwells 125.
  • the solution 128 may further contain one or more selected from the group consisting of enzymes, primers, dNTPs, surfactants for cell dissociation, compositions for DNA hybridization, and buffer compositions for PCR reactions. .
  • the barcode base sequence is generated by combining the nucleotide sequence information of the DNA spot 115 and the nucleotide sequence information of the sample 126. Produce the result.
  • the sequence information of each genetic material to be analyzed is isolated in different microwell spaces and then combined with specific barcode information at a corresponding location for amplification. Therefore, even after being gathered into one and analyzed at once, the sequence information of the samples included in each microwell can be distinguished by analyzing the results by referring to the barcode information.
  • the heterologous DNA barcoding method combines a DNA microarray and a microwell structure so that each base sequence spot on the DNA microarray corresponds to each microwell. It is characterized in that to obtain an independent DNA amplification reaction in each separated micro reaction space obtained through this.
  • the sequence information of each spot of the DNA microarray is used as barcode information for specifying the corresponding micro reaction space.
  • the sequence information of DNA microarray spots included in each microwell is inserted into the amplification result in the form of barcode information.
  • microwell array can be used to physically separate each bar code portion on the microarray, parallel bar code can be attached between the samples, thereby greatly increasing the number of analysable dielectric samples.
  • the size and location of the microwell arrays and microarrays can be tailored to suit any scale, ranging from parallel single-cell genome analysis to tissue sample genome analysis. In particular, when analyzing single cell genomes, it is expected that cell diversity, which was not easily observed in conventional tissue or cell mass genome analysis, can be observed by analyzing a large number of samples in parallel.
  • the technology disclosed herein is applicable to all types of antibodies, protein arrays, chemical arrays, etc., attached to a solid substrate, and can be used to quantify protein, ChIP-seq, and drug screening. It can be used for fields such as drug screening.

Abstract

(a) 바코드 염기서열에 의해 서로 구분되는 DNA 스팟(spot)들을 구비한 DNA 마이크로어레이를 제공하는 단계; (b) 상기 DNA 마이크로어레이 상의 상기 DNA 스팟들의 공간적 배치와 대응되는 마이크로웰들을 구비한 마이크로웰 어레이를 제공하는 단계; (c) 목적 염기서열들을 함유한 샘플의 용액을 상기 마이크로웰들에 로딩하는 단계; (d) 상기 DNA 마이크로어레이와 상기 마이크로웰 어레이를 결합시켜 상기 DNA 스팟들이 상기 마이크로웰들에 의해 공간적으로 분리된 미세 반응공간들을 형성하는 단계; (e) 상기 미세 반응공간 내에서 상기 DNA 스팟의 염기서열과 상기 샘플의 상기 목적 염기서열을 반응시켜 상기 DNA 스팟의 염기서열 정보와 상기 샘플의 염기서열 정보를 결합시키는 단계; 및 (f) 상기 DNA 마이크로어레이와 상기 마이크로웰 어레이를 분리하여 상기 바코드 염기서열을 구비한 결과물을 얻는 단계를 포함하는 이종 DNA 바코딩 방법이 제공된다.

Description

이종 DNA 바코딩 방법
본 명세서에 개시된 기술은 이종 DNA 바코딩 방법에 관한 것으로, 보다 상세하게는 다량의 유전자 샘플을 동시에 병렬적으로 분석이 가능한 이종 DNA 바코딩 방법에 관한 것이다.
차세대 염기 서열 결정(Next-generation DNA sequencing) 기술의 등장으로 한번에 읽을 수 있는 염기서열의 양이 획기적으로 증가하였다. DNA 바코딩(DNA barcoding) 기술은 이 차세대 기술을 사용하여 수많은 DNA의 염기서열을 한번에 병렬적으로 읽는 것을 목표로 한다. 예를 들면, Matthias Meyer와 동료 연구자들은 DNA 바코드를 라이게이션 반응을 이용하여 샘플에 부착함으로써 두 개 이상의 샘플을 동시에 분석하는 방법을 2007년 Nucleic acid research 지와 2008년 Nature Protocols 지에 각각 보고하였다.(Matthias Meyer et al., Targeted high-throughpuut sequencing of tagged nucleic acid samples, Nucleic Acids Research 35, e97(2007). , Matthias Meyer et al., Parallel tagged sequencing on the 454 platform, Nature Protocols 3, 267-278(2008).) 각 바코드는 고유의 염기서열을 가지고 있어 분석할 DNA에 붙어 분석할 DNA에 추가적인 정보를 넣어줄 수 있다. 따라서 대량으로 DNA를 분석할 때에 바코드가 붙어있는 DNA 고유의 정보까지 읽을 수 있다. 예를 들면, 특정 DNA가 어떤 세포로부터 추출된 것인지 바코딩을 통해 알아낼 수 있는 것이다.
한편 각각 다른 DNA를 구분하여 병렬적으로 분석하기 위해서는 각 DNA마다 바코딩을 해주어야 한다. 기존의 바코딩 방식은 고유의 바코드 염기 서열을 가지는 DNA 올리고(DNA oilgo)를 각각 제작한 후에 각 DNA마다 서로 다른 올리고를 붙여주는(ligation) 작업이 필요하다. 하지만 기존의 올리고 합성법으로는 다양한 DNA 올리고를 각각 제작하는 데 비용이 많이 들어간다. 또 올리고를 각 DNA에 붙이는 작업은 순차적으로 진행해야 하므로 시간과 노동력이 많이 소요되며, 반응에 많은 양의 물질이 요구되어 큰 비용이 발생한다. 따라서 이의 개선이 요구된다.
본 발명의 일 측면에 의하면, (a) 바코드 염기서열에 의해 서로 구분되는 DNA 스팟(spot)들을 구비한 DNA 마이크로어레이를 제공하는 단계; (b) 상기 DNA 마이크로어레이 상의 상기 DNA 스팟들의 공간적 배치와 대응되는 마이크로웰들을 구비한 마이크로웰 어레이를 제공하는 단계; (c) 목적 염기서열들을 함유한 샘플의 용액을 상기 마이크로웰들에 로딩하는 단계; (d) 상기 DNA 마이크로어레이와 상기 마이크로웰 어레이를 결합시켜 상기 DNA 스팟들이 상기 마이크로웰들에 의해 공간적으로 분리된 미세 반응공간들을 형성하는 단계; (e) 상기 미세 반응공간 내에서 상기 DNA 스팟의 염기서열과 상기 샘플의 상기 목적 염기서열을 반응시켜 상기 DNA 스팟의 염기서열 정보와 상기 샘플의 염기서열 정보를 결합시키는 단계; 및 (f) 상기 DNA 마이크로어레이와 상기 마이크로웰 어레이를 분리하여 상기 바코드 염기서열을 구비한 결과물을 얻는 단계를 포함하는 이종 DNA 바코딩 방법이 제공된다.
본 발명의 다른 측면에 의하면, (a) 바코드 염기서열에 의해 서로 구분되는 DNA 스팟(spot)들을 구비한 DNA 마이크로어레이를 제공하는 단계; (b) 상기 DNA 마이크로어레이 상의 상기 DNA 스팟들의 공간적 배치와 대응되는 마이크로웰들을 구비한 마이크로웰 어레이를 제공하는 단계; (c) 목적 염기서열들을 함유한 샘플의 용액을 상기 마이크로웰들에 로딩하는 단계; (d) 상기 DNA 마이크로어레이와 상기 마이크로웰 어레이를 결합시켜 상기 DNA 스팟들이 상기 마이크로웰들에 의해 공간적으로 분리된 미세 반응공간들을 형성하는 단계; (e) 상기 미세 반응공간 내에서 상기 DNA 스팟의 염기서열과 상기 샘플의 상기 목적 염기서열을 반응시켜 상기 DNA 스팟의 염기서열 정보와 상기 샘플의 염기서열 정보를 결합시키는 단계; (f) 상기 DNA 마이크로어레이와 상기 마이크로웰 어레이를 분리하여 상기 바코드 염기서열을 구비한 결과물을 얻는 단계; (g) 상기 결과물을 염기서열분석하는 단계; 및 (h) 상기 결과물 중 원하는 샘플의 바코드 정보를 프라이머로 활용하여 상기 DNA 마이크로어레이에서 특정 스팟의 DNA를 선택적으로 증폭하여 상기 원하는 샘플을 획득하는 단계를 포함하는 병렬적 DNA 분석 방법이 제공된다.
본 발명의 또 다른 측면에 의하면, 바코드 염기서열에 의해 서로 구분되는 DNA 스팟(spot)들을 구비한 DNA 마이크로어레이; 및 상기 DNA 마이크로어레이와 결합되며 상기 DNA 스팟들의 공간적 배치와 대응되는 마이크로웰들을 구비한 마이크로웰 어레이를 포함하되, 상기 DNA 스팟들이 상기 마이크로웰들에 의해 공간적으로 서로 분리된 미세 반응공간들을 구비하며, 상기 미세 반응공간 내에 목적 염기서열들을 함유한 샘플의 용액이 상기 마이크로웰들에 로딩된 이종 DNA 바코딩용 플랫폼이 제공된다.
도 1은 본 발명의 이종 DNA 바코딩 방법의 일 구현예를 나타내는 공정흐름도이다.
도 2는 DNA 마이크로어레이의 각 스팟 내에서의 DNA 염기서열 정보의 배치를 예로 든 것이다.
도 3은 CustomArray 사의 12k microarray 제품의 실제 이미지를 나타낸다.
도 4는 마이크로홀 어레이(microhole array)를 이용한 결합형 마이크로웰 어레이의 제조과정을 예시한 것이다.
도 5는 미세 반응공간에서 샘플 DNA 정보와 바코드 정보가 연결 및 증폭되는 과정을 나타낸 개략도이다.
도 6은 이종 DNA 바코딩 방법의 일 구현예로서 (a) 내지 (f) 단계에 걸쳐 샘플이 DNA 마이크로어레이 상에 획득되어 바코딩이 이루어지는 방식을 나타낸다.
도 7은 이종 DNA 바코딩 방법에 사용되는 마이크로웰 어레이(위쪽)와 DNA 마이크로어레이(아래쪽)의 일 구현예를 나타낸다.
도 8은 본 발명의 일 구현예에 따른 이종 바코딩 방법을 활용한 예이다.
도 9는 이종 DNA 바코딩용 플랫폼의 일 구현예를 나타낸 단면도이다.
이하 도면을 참조하여 본 발명의 구현예들에 대해 더욱 상세히 설명하고자 한다. 다음에 소개되는 구현예들은 당업자에게 개시된 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되어지는 것이다. 따라서 본 발명은 이하 설명된 구현예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다. 전체적으로 도면 설명시 관찰자 시점에서 설명하였고, 일 구성요소가 다른 구성요소 "위에" 또는 "상에" 있다고 할 때, 이는 다른 구성요소 "바로 위에" 있는 경우 뿐 아니라, 그 중간에 또 다른 구성요소가 있는 경우도 포함한다.
도 1은 본 발명의 이종 DNA 바코딩 방법의 일 구현예를 나타내는 공정흐름도이다. 도 1을 참조하면, 단계 S1에서 바코드 염기서열에 의해 서로 구분되는 DNA 스팟(spot)들을 구비한 DNA 마이크로어레이를 제공한다. DNA 마이크로어레이(DNA microarray)는 고체 기판 위의 각 부분에 특정한 염기 서열을 가지는 DNA를 붙여준 것을 말한다. 일반적으로 마이크로어레이는 세포에서 나오는 유전자의 발현을 측정하는데 많이 사용된다. 이미 염기 서열을 알고 있는 유전자의 일부 서열을 합성하여 기판 위에 붙여 두고 세포로부터 발현된 mRNA와 반응을 시키면 염기 서열이 상보적인 것들끼리 결합(hybridization)이 일어난다. 이때 나오는 형광을 측정함으로써 유전자 발현 양을 알 수 있다.
본 발명의 일 구현예에서 제공되는 상기 DNA 마이크로어레이는 일반적으로 질병의 분자진단이나 생물정보학적 분석에 많이 활용되는 통상의 DNA 마이크로어레이일 수 있다. 상기 DNA 마이크로어레이는 유리나 실리콘 등의 재질로 된 평판 기판에 각기 다른 염기서열을 가지는 짧은 길이 (예를 들어 약 300 bases 미만)의 DNA 분자들이 일정한 간격을 가지고 배치되어 있는 형태의 칩일 수 있다.
DNA 마이크로어레이 상의 DNA 분자들은 이후 로딩될 샘플 DNA 들과 함께 DNA증폭반응에 참여하게 되기 때문에 고체상증폭반응 (solid-phase PCR)이 가능한 형태로 준비되는 것이 바람직하다. 고체상증폭반응은 DNA 분자의 증폭이 액체 환경이 아닌 기판 표면 가까이에서 이루어지기 때문에 기판 표면의 영향에 의한 효소효율 저하나 반응방해 효과가 나타날 수 있다. 이러한 표면효과를 억제하기 위하여 기판을 고분자 물질 등으로 미리 코팅하여 DNA 증폭반응이 일어날 수 있는 환경을 만들어 주거나 준비되는 DNA 분자 중 기판과 접합하는 쪽의 일부분을 증폭반응에 참여하지 않는 여유공간으로 활용한다. 준비가능한 DNA 분자의 길이 중에 바코드 증폭 반응에 필요한 길이를 제외한 나머지 부분을 기판 쪽의 여유공간을 제공하기 위한 용도로 활용할 수 있다.
DNA 마이크로어레이를 구성하는 DNA 분자는 준비 방법에 따라 방향성이 달리 결정될 수 있다. 광분해특성을 가지는 구성 물질과 이들의 광분해반응을 이용하여 DNA 마이크로어레이를 제작하는 경우에는 기판쪽에 DNA 분자의 3' 말단이 정렬하게 된다. 여러가지 생화학적 방법 또는 DNA 마이크로어레이 복제 기술등을 활용하면 DNA 분자의 5' 말단이 기판 쪽에 결합되고 3' 말단은 자유롭게 남겨질 수 있다. 프린팅(printing) 기술이나 스팟팅(spotting) 기술을 활용할 경우에는 이미 준비된 DNA 분자들을 원하는 정렬 방향 대로 기판에 접합시킬 수 있다.
DNA 마이크로어레이의 각 스팟을 구성하는 DNA 염기서열정보는 (1) 증폭할 샘플 DNA 분자를 인식하여 이에 결합되는 연결부, (2) 각 스팟을 특정 짓는 바코드부, (3) DNA 증폭 반응을 위해 필요한 프라이머부, (4) DNA 증폭반응이 잘 일어나게끔 위 부분들과 마이크로어레이 표면 사이의 공간을 확보하는 데에 쓰이는 스페이서부를 필수 구성 요소로 포함할 수 있다.
도 2는 DNA 마이크로어레이의 각 스팟 내에서의 DNA 염기서열 정보의 배치를 예로 든 것이다.
상기 DNA 염기서열 정보는 좀더 구체적으로 아래와 같이 구성된다.
(1) 연결부 - 모든 스팟에 동일한 염기서열 정보가 적용되며 획득하고자 하는 샘플 DNA 분자의 공통적인 특정 위치를 인식해야 하므로 샘플 DNA의 염기서열에 따라 정해진다.
(2) 바코드부 - 염기서열분석 이후 해당 스팟을 역추적할 수 있도록 모든 스팟이 서로 다른 염기서열 정보로 구성되게끔 한다. 바코드부는 구성 정보로 부터 각 스팟을 특정지을수 있게끔 스팟마다 그 구성 염기서열이 달라지는 것이 바람직하다. 또한 스팟을 구성하는 다른 부분, 프라이머 염기서열정보, 그리고 DNA 마이크로어레이에 노출될 샘플의 DNA의 어떤 부분과도 결합력을 지니지 않아 이들과 결합될 가능성이 없도록 설계되는 것이 바람직하다. 또한 이후 단계인 DNA 증폭반응 및 증폭된 모든 DNA가 한데 모아진 후의 염기서열 분석 단계에서도 바코드 염기서열정보의 구성에 따른 반응특이성이 나타나지 않도록 설계되는 것이 바람직하다.
(3) 프라이머부 - DNA 증폭 반응의 수행을 위해 필요한 부분으로, 연결부분 및 바코드 부분, 그리고 분석하고자 하는 샘플의 염기서열 정보부분이 모두 연결된 형태의 DNA 결과물을 증폭하여 획득하는 데에 필요한 부분이다. DNA 증폭을 위해서는 서로 반대방향의 두가지 프라이머가 요구되는데 나머지 한쪽은 샘플 DNA에 위치한다. 프라이머부는 모든 스팟에 대해 염기서열 정보가 동일하게 구성되며, 필요에 따라 특정 스팟의 선택적 증폭을 위해 각 스팟마다 서로 다른 염기서열 정보를 추가적으로 삽입해 넣을수도 있다.
(4) 스페이서부 - DNA 마이크로어레이를 이용한 DNA 증폭의 경우 DNA 증폭 반응이 마이크로어레이 표면 부분에서 일어나게 된다. DNA 분자 및 관련 효소 등의 접근을 용이하게 하기 위해 위 (1)-(3)에 해당하는 부분들을 마이크로어레이 표면으로부터 떨어뜨릴 필요가 있는데 이를 위해 스페이서 부분을 삽입한다. 이 부분은 DNA 증폭반응에는 직접적으로 참여하지 않는다.
도 1을 재참조하면, 단계 S2에서 상기 DNA 마이크로어레이 상의 상기 DNA 스팟들의 공간적 배치와 대응되는 마이크로웰들을 구비한 마이크로웰 어레이를 제공한다.
반도체 공정을 통해 만들어진 미세 구조로 이루어진 마이크로웰 어레이(microwell array)를 이용한 반응의 경우 기존의 튜브 기반의 반응과 달리 반응이 이루어지는 부피를 획기적으로 줄일 수 있다. 이를 통해 반응에 필요한 샘플과 시약의 양이 줄어드는 효과를 얻을 수 있으며 반응을 확인할 수 있는 감도가 좋아지는 장점이 있다.
본 발명의 일 구현예에서 제공되는 마이크로웰 어레이를 구성하는 각 마이크로웰(microwells)의 크기 및 이들의 배치는 대응되는 DNA 마이크로어레이를 구성하는 각 스팟의 크기 및 이들의 배치에 의해 결정된다. 기본적으로 DNA 스팟들과 마이크로웰들은 서로 1:1 대응 배치가 가능하나, 이외에도 1:N (DNA 스팟 하나에 여러 개의 마이크로웰들이 대응) 혹은 N:1 (여러 개의 DNA 스팟들에 하나의 마이크로웰이 대응)의 배치도 가능하다. 여기서 N은 2 이상의 정수이다. 예를 들어, CustomArray사의 12k microarray 제품의 경우 지름이 약 45um인 원형의 DNA 스팟들이 가로 및 세로로 매 75um마다 위치하게 되는데 이에 1:1로 대응하는 마이크로웰 어레이를 지름과 높이가 약 40um인 마이크로웰들이 가로 및 세로로 매 75um마다 배치되도록 제작할 수 있다. 도 3은 CustomArray 사의 12k microarray 제품의 실제 이미지를 나타낸다.
마이크로웰과 DNA 스팟의 상대적인 크기는 대응관계가 보존되는 수준에서 변할 수 있으며 마이크로웰의 높이는 이루고자 하는 반응의 종류에 따라 마이크로웰 지름의 10% ~ 1000% 범위에서 결정될 수 있다.
상기 마이크로웰 어레이는 평판 기판에 우물모양의 홈이 파여진 형태를 갖는 통상의 단순형 마이크로웰 어레이 구조를 가질 수 있지만, 보다 확장된 마이크로웰 어레이 구조로서 또다른 평판 기판과 마이크로홀 어레이 (microhole array)가 결합된 형태의 결합형 마이크로웰 어레이 구조를 가질 수 있다.
상기 평판 기판의 경우 또 다른 DNA 마이크로어레이, 단백질 마이크로어레이, 또는 특정분자 획득을 위해 생화학적 물질이 도포된 기판일 수도 있다. 도 4는 마이크로홀 어레이(microhole array)를 이용한 결합형 마이크로웰 어레이의 제조과정을 예시한 것이다.
도 1을 재참조하면, 단계 S3에서 목적 염기서열들을 함유한 샘플의 용액을 상기 마이크로웰들에 로딩(loading)한다. DNA 스팟으로부터 유래된 바코드 정보가 결합될 상기 샘플은 하기 (1) 내지 (6)으로부터 선택되는 1종 이상일 수 있다.
(1) 하나 혹은 여러가지의 염기서열을 가지는 DNA 혹은 RNA 분자
(2) 또 다른 염기서열 정보를 가지는 DNA 마이크로어레이 (예: 두개의 DNA microarray 사이에 microhole array가 위치하는 형태의 결합형 microwell array)
(3) DNA 혹은 RNA분자가 표면이나 내부에 포함되는 형태의 마이크로/나노 입자
(4) DNA 혹은 RNA분자를 포함하는 세포 또는 박테리아
(5) DNA 혹은 RNA분자를 포함하는 바이러스 분자
(6) 단백질과 결합된 형태의 DNA 혹은 RNA 분자
로딩하는 용액은 샘플 뿐 아니라 효소, 프라이머 등 DNA 결합반응 혹은 증폭반응이 이루어지기 위한 시약조건을 포함할 수 있다. 각 샘플은 용액에 담겨서 마이크로웰에 로딩되는데, 각 마이크로웰에 들어가는 샘플의 개수는 증폭 및 분석하고자 하는 연구의 목적에 따라 다양하게 결정될 수 있다. 예를들어, 단일세포의 유전자 정량분석 연구를 위한 단일세포 유전자 바코딩을 목적으로 할때는 평균적으로 1개 수준으로 조절되도록 적절한 농도로 준비되어 로딩된다. 예를 들어 마이크로웰에 들어가는 샘플의 개수가 단순한 프와송 분포(Poisson distribution)를 따른다고 가정하면, 마이크로웰 한 개의 부피당 1개의 샘플이 들어갈 농도로 샘플 용액이 준비되었을 때 약 37%, 37%, 18%의 마이크로웰이 0개, 1개, 2개의 샘플을 포함하게 된다. 또한, 마이크로웰 한 개의 부피당 0.1개의 샘플이 들어가는 농도로 샘플 용액이 준비되면 약 90%, 9%, 0.5%의 마이크로웰이 0개, 1개, 2개의 샘플을 포함하게 된다.
샘플 용액의 로딩은 마이크로웰 어레이 칩 위에 용액를 뿌려서 마이크로웰의 친수성 표면을 따라 내부에 용액이 자연히 들어가도록 유도하는 방식으로 행해질 수도 있고 잉크젯 프린터(inkjet printer)이나 스포터(spotter)와 같은 정밀 기기를 이용하여 마이크로웰 내부에만 로딩되도록 할수도 있다.
도 1을 재참조하면, 단계 S4에서 상기 DNA 마이크로어레이와 상기 마이크로웰 어레이를 결합시켜 상기 DNA 스팟들이 상기 마이크로웰들에 의해 공간적으로 분리된 미세 반응공간들을 형성한다. 로딩된 샘플 용액 및 샘플들을 각 마이크로웰 환경에 공간적으로 분리 및 격리시키기 위하여 DNA 마이크로어레이를 기판으로 활용하여 마이크로웰 어레이와 조립시킨다. DNA 마이크로어레이와 마이크로웰 어레이은 현미경과 스테이지를 이용하여 정렬되거나 정렬을 위한 틀 구조등을 별도로 구현하여 조립을 시도하였을 때 자동적으로 정렬이 이루어지도록 설계 및 제작될 수 있다. 상기 DNA 마이크로어레이와 상기 마이크로웰 어레이가 조립된 칩은 다수의 미세 반응공간의 배열을 구비하게 된다. 상기 미세 반응공간들은 각각의 DNA 마이크로어레이 스팟들이 마이크로웰에 의해 공간적으로 분리되어 형성된 것으로서 각 미세 반응공간에서 서로 다른 생화학적 반응이 일어날 수 있다.
각각의 미세 반응 공간에서 서로 다른 DNA 마이크로어레이 스팟 환경에서 DNA 결합 혹은 증폭 반응이 이루어짐으로써 조립된 칩은 이종 DNA 바코딩용 플랫폼의 역할을 할 수 있다.
도 1을 재참조하면, 단계 S5에서 상기 미세 반응공간 내에서 상기 DNA 스팟의 염기서열과 상기 샘플의 상기 목적 염기서열을 반응시켜 상기 DNA 스팟의 염기서열 정보와 상기 샘플의 염기서열 정보를 결합시킨다. 미세 반응공간에서는 샘플 DNA와 DNA 마이크로어레이의 스팟을 구성하는 DNA 분자들의 결합 및 증폭 반응 (Polymer chain reaction)이 일어난다. 특히, 반응 초반에는 DNA 증폭을 위한 프라이머부가 DNA 마이크로어레이의 스팟에 포함되어 있기 때문에 DNA 증폭 반응이 DNA 마이크로어레이 표면 가까이에서 일어나게 된다(Solid-phase PCR). DNA 증폭 반응은 고체상증폭반응(Solid-phase PCR)에 의해서만 이루어질 수도 있고, 일반적인 PCR과 병용되어 이루어질 수도 있다.
샘플의 DNA 정보와 DNA 마이크로어레이 스팟의 바코드 정보의 결합은 크게 하기 두 가지 방법으로 이루어질 수 있다.
(1) 샘플 DNA 정보와 바코드 정보의 결합 및 증폭이 하나의 마이크로웰 환경에서 이루어지는 방법
(2) DNA의 결합 및 증폭이 별도의 마이크로웰에서 이루어지는 방법. 즉, 마이크로웰 환경내에서 각 샘플 DNA가 DNA 마이크로어레이 스팟에 의해 우선적으로 결합 및 획득되고, 마이크로웰이 분리된 후에 DNA 증폭반응을 위한 시약이 담긴 또다른 마이크로웰이 조립된 후 DNA 증폭반응을 이루어내는 방법
도 5는 미세 반응공간에서 샘플 DNA 정보와 바코드 정보가 연결 및 증폭되는 과정을 나타낸 개략도이다. 도 5를 참조하면, 하나의 마이크로웰 환경에서 연결 및 증폭이 모두 일어나는 경우를 예시하고 있다.
일 구현예에서, 샘플 DNA 정보와 바코드 정보가 결합된 형태의 DNA 증폭 결과물은 마이크로어레이 스팟 DNA에 샘플 DNA 정보가 덧붙여져서 연장된 형태로 얻어질 수도 있다. 다른 구현예에서, 샘플 DNA 정보와 바코드 정보가 결합된 형태의 DNA 증폭 결과물은 샘플 DNA에 바코드정보가 붙어서 마이크로웰 내부에 자유로이 부유하는 형태로 얻어질 수도 있다. DNA는 상보적인 염기서열에 특이적으로 결합하는 이중나선구조를 가지고 있기 때문에 두 가지 형태 모두 쉽게 얻어낼 수 있다.
도 1을 재참조하면, 단계 S6에서 상기 DNA 마이크로어레이와 상기 마이크로웰 어레이를 분리하여 상기 바코드 염기서열을 구비한 결과물을 얻는다.
각 DNA 마이크로어레이 스팟의 바코드 정보와 해당 마이크로웰 별로 분리된 샘플의 DNA 정보가 결합되어 형성된 DNA 증폭반응 결과물은 조립된 칩을 분리한 후 하나의 용액으로 수거함으로써 쉽게 얻어낼 수 있다. 이렇게 얻어진 DNA 증폭반응의 결과물은 서로 다른 DNA 분자들로 구성되어 있지만 각각의 DNA 분자들에는 각각 다른 샘플 DNA의 정보가 서로 다른 바코드와 결합되어 있다. 그러므로 차세대 염기서열 분석 기술을 이용한 염기서열 분석 후에 바코드 정보를 기반으로 하여 각 샘플 DNA 염기서열 정보를 구분해 낼 수 있다.
본 발명의 다른 측면에 의하면, 상술한 이종 DNA바코딩을 이용한 병렬적 DNA 분석 방법이 제공된다. 먼저 상기 단계 S6에서 얻은 결과물을 염기서열분석한다. 염기서열분석을 위해 초병렬적 시퀀싱 기술이 활용될 수 있다. 초병렬적 시퀀싱 기술에는 피로시퀀싱 케미스트리(Pyrosequencing chemistry), 브릿지 증폭(Bridge amplification), 차세대 시퀀싱, 제3세대 시퀀싱, 차차세대 시퀀싱 또는 반도체 시퀀싱 등의 기술이 포함될 수 있다.
그리고 상기 결과물 중 원하는 샘플의 바코드 정보를 프라이머로 활용하여 상기 DNA 마이크로어레이에서 특정 스팟의 DNA를 선택적으로 증폭함으로써 상기 원하는 샘플을 획득할 수 있다.
본 발명의 일 구현예에 있어서, 상기 결과물의 바코드 정보를 기반으로 하여 선택적으로 DNA를 증폭할 수 있다. 예를 들어 염기서열분석 후 선택적으로 얻어내고자 하는 샘플 DNA가 있을 경우에 샘플 DNA에 포함된 바코드 정보를 프라이머로 활용하여 DNA 마이크로어레이에서 특정 스팟의 DNA를 선택적으로 증폭할 수 있다.
상술한 단계 S1 내지 S6에 나타낸 이종 DNA 바코딩 방법을 구현하는 과정의 일 구현예를 도 6에 개략적으로 나타내었다. 또한 도 7은 이종 DNA 바코딩 방법에 사용되는 마이크로웰 어레이(위쪽)와 DNA 마이크로어레이(아래쪽)의 일 구현예를 나타낸다.
도 6은 이종 DNA 바코딩 방법의 일 구현예로서 (a) 내지 (f) 단계에 걸쳐 샘플이 DNA 마이크로어레이 상에 획득되어 바코딩이 이루어지는 방식을 나타낸다. 도 6을 참조하면, 먼저 바코딩 염기서열을 구비한 DNA 스팟(115)이 배치된 DNA 마이크로어레이(DNA microarray, 110)를 준비한다(도 6의 (a)). 또한 DNA 스팟(115)에 대응되는 마이크로웰(125)을 갖는 마이크로웰 어레이(microwell array, 120)를 준비한다(도 6의 (b)).
이어 마이크로웰 어레이(120)의 각 마이크로웰(125)에 분석하고자 하는 유전자 샘플(126)을 함유한 용액(128)을 로딩한다(도 6의 (c)). 이용 가능한 유전자 샘플(126)에는 동물세포 또는 박테리아 자체나 정제된 DNA 또는 RNA 형태의 유전체와 같은 생체 물질이 포함될 수 있으며 유전자가 붙어 있는 고체 입자도 포함될 수 있다. 유전자 샘플(126)의 크기에 따라 마이크로웰(125)과 DNA 스팟(115)의 면적은 수 마이크로 미터에서 수백 마이크로 미터 크기로 조절 가능하다. 특히 마이크로웰 어레이(120)를 구성하고 있는 마이크로웰(125)의 위치는 DNA 마이크로어레이(110) 상의 각 DNA 스팟(115)의 위치와 일치하는 것이 필수적이다. 유전자 샘플(126)의 로딩을 위해 용액(128)을 마이크로웰 어레이(120) 위에 도포하여 마이크로웰(125)에 일정한 양이 들어가게 할 수 있으며, 유전자 샘플(126)이 각 웰들(125)에 골고루 분배되어 도입될 수 있다. 이때 마이크로웰(125)은 유전자 샘플(126)의 로딩에 적합한 크기로 제작되는 것이 바람직하다.
마이크로웰 어레이(120)에 유전자 샘플(126)이 인가된 후에는 DNA 마이크로어레이(110)와 마이크로웰 어레이(120)를 면대면으로 결합시켜 독립적인 미세 반응공간(130)의 배열을 얻도록 한다(도 6의 (d)). 각 미세 반응공간(130)에는 서로 다른 바코드 서열을 갖는 DNA 스팟(115)이 위치하고 있기 때문에 조립된 칩(140)을 특정 반응 조건, 예를 들어, 상온에서의 DNA hybridization 후 PCR 반응이 일어나는 조건하에 둠으로써 (예; 95℃, 30초, 60℃, 60초, 상기 조건 40회 반복) 유전자 샘플(126)에 병렬적으로 바코드의 부착이 이루어지면서 증폭이 이루어지게끔 할 수 있다. 그리하여 각 미세 반응공간(130)은 바코드 정보를 갖는 결과물(150)을 포함하게 된다(도 6의 (e)). 다음 조립된 칩(140)을 분리하여 결과물(150)을 획득한다.
도 8은 본 발명의 일 구현예에 따른 이종 바코딩 방법을 활용한 예이다. 도 8을 참조하면 각 마이크로웰에 세포를 넣은 후, 이종 바코딩 방법을 이용하여 각 세포의 유전 정보에 세포를 구분할 수 있는 바코드를 붙이는 예이다. 도 8을 참조하면, 염기서열 분석 후에 코드 정보를 이용하여 서로 다른 세포의 유전 정보를 구분해낼 수 있다.
본 발명의 또 다른 측면에 의하면, 이종 DNA 바코딩용 플랫폼이 제공된다.
도 9는 이종 DNA 바코딩용 플랫폼의 일 구현예를 나타낸 단면도이다. 도 9를 참조하면, 이종 DNA 바코딩용 플랫폼(200)은 바코드 염기서열에 의해 서로 구분되는 DNA 스팟들(115)을 구비한 DNA 마이크로어레이(110), 및 DNA 마이크로어레이(110)와 결합되며 DNA 스팟들(115)의 공간적 배치와 대응되는 마이크로웰들(125)을 구비한 마이크로웰 어레이(120)를 포함한다.
여기서 이종 DNA 바코딩용 플랫폼(200)은 DNA 스팟들(115)이 마이크로웰들(125)에 의해 공간적으로 서로 분리된 미세 반응공간들(130)을 구비하며, 미세 반응공간(130) 내에 목적 염기서열들을 함유한 샘플(126)의 용액(128)이 마이크로웰들(125)에 로딩된다. 용액(128)은 효소, 프라이머, dNTP, 세포 해리를 위한 계면활성제, DNA 혼성화(hybridization)용 조성물, 및 PCR반응이 이루어지기 위한 버퍼 조성물로 이루어진 군 중에서 선택되는 1종 이상을 더 함유할 수 있다.
이종 DNA 바코딩용 플랫폼(200)을 예를 들어 PCR 반응 조건과 같은 특정 반응 조건 하에 두면 DNA 스팟(115)의 염기서열 정보와 샘플(126)의 염기서열 정보의 결합에 의해 상기 바코드 염기서열을 구비한 결과물을 만들어 낸다.
본 발명의 일 구현예에 따른 이종 DNA 바코딩용 플랫폼을 이용하면 분석 대상이 되는 각각의 유전물질 샘플들의 염기서열 정보가 각기 다른 마이크로웰 공간에 격리된 후에 해당 위치의 특정 바코드 정보와 결합되면서 증폭되기 때문에 이후에 하나로 모아져 한번에 분석되더라도 바코드 정보를 참조하여 결과를 분석함으로써면 각 마이크로웰에 포함되어 있던 샘플의 염기서열정보를 구분해 낼 수 있다.
상술한 바와 같이 본 발명의 일 구현예에 따른 이종 DNA 바코딩 방법은 DNA 마이크로어레이와 마이크로웰(microwell) 구조를 결합하여 DNA 마이크로어레이 상의 각 염기서열 스팟이 각 마이크로웰(microwell)에 대응되도록 배치시키고, 이를 통해 얻어진 각각의 분리된 미세 반응공간에서 독립적인 DNA 증폭반응을 얻어내는 것을 특징으로 한다. 여기서 DNA 마이크로어레이의 각 스팟의 염기서열 정보를 해당 미세 반응공간을 특정짓는 바코드 정보로써 활용한다. 즉, 수많은 마이크로웰 내부에서 독립적인 DNA 증폭반응이 일어날 때 각 마이크로웰이 포함하고 있는 DNA 마이크로어레이 스팟의 염기서열 정보가 증폭결과물에 바코드 정보 형태로 삽입된다.
본 명세서에 개시된 기술에 의하면, 마이크로웰 어레이를 이용하여 마이크로어레이 상의 각 바코드 부분을 물리적으로 독립시킬 수 있기 때문에 각 샘플 간의 병렬적인 바코드 부착이 가능해져 분석 가능한 유전체 샘플의 수를 크게 증가시킬 수 있다. 마이크로웰 어레이 및 마이크로어레이의 크기와 위치를 원하는 대로 제작할 수 있기 때문에 병렬적인 단세포 유전체 분석에서 조직샘플의 유전체 분석까지 다양한 스케일에 대해 적용 가능하다. 특히 단일세포 유전체를 분석하는 경우 종래의 조직이나 세포 덩어리 수준의 유전체 분석에서는 쉽게 관찰할 수 없었던 세포 간 다양성을 많은 수의 샘플을 동시에 병렬적으로 분석함으로써 관찰 가능하게 할 것으로 기대된다.
본 명세서에 개시된 기술은 고체 기판에 부착되어 있는 형태의 항체(antibody), 단백질 어레이(protein array), 화학 어레이(chemical array) 등에 모두 적용 가능하며, 이를 이용해 단백질의 정량, ChIP-seq, 약물 스크리닝(drug screening) 등의 분야에 활용 가능하다.

Claims (13)

  1. (a) 바코드 염기서열에 의해 서로 구분되는 DNA 스팟(spot)들을 구비한 DNA 마이크로어레이를 제공하는 단계;
    (b) 상기 DNA 마이크로어레이 상의 상기 DNA 스팟들의 공간적 배치와 대응되는 마이크로웰들을 구비한 마이크로웰 어레이를 제공하는 단계;
    (c) 목적 염기서열들을 함유한 샘플의 용액을 상기 마이크로웰들에 로딩하는 단계;
    (d) 상기 DNA 마이크로어레이와 상기 마이크로웰 어레이를 결합시켜 상기 DNA 스팟들이 상기 마이크로웰들에 의해 공간적으로 분리된 미세 반응공간들을 형성하는 단계;
    (e) 상기 미세 반응공간 내에서 상기 DNA 스팟의 염기서열과 상기 샘플의 상기 목적 염기서열을 반응시켜 상기 DNA 스팟의 염기서열 정보와 상기 샘플의 염기서열 정보를 결합시키는 단계; 및
    (f) 상기 DNA 마이크로어레이와 상기 마이크로웰 어레이를 분리하여 상기 바코드 염기서열을 구비한 결과물을 얻는 단계를 포함하는 이종 DNA 바코딩 방법.
  2. 제1 항에 있어서,
    상기 DNA 스팟을 구성하는 염기서열 정보는 i) 상기 목적 염기서열과 결합되는 연결부, ii) 각 스팟을 특정하는 바코드부, iii) DNA 증폭반응을 위한 프라이머부, 및 iv) 스페이서부를 포함하는 이종 DNA 바코딩 방법.
  3. 제1 항에 있어서,
    상기 DNA 스팟과 상기 마이크로웰은 각각 서로 1:1 대응, 1:N 또는 N:1로 대응되도록 배치되는 이종 DNA 바코딩 방법(여기서 N은 2 이상의 정수이다.).
  4. 제1 항에 있어서,
    상기 마이크로웰 어레이는 평판 기판에 우물모양의 홈이 파여진 형태를 갖는 통상의 단순형 마이크로웰 어레이 구조이거나, 평판 기판과 마이크로홀 어레이 (microhole array)가 결합된 형태의 결합형 마이크로웰 어레이 구조를 갖는 이종 DNA 바코딩 방법.
  5. 제1 항에 있어서,
    상기 샘플은 하기 (1) 내지 (6) 중에서 선택되는 1종 이상인 이종 DNA 바코딩 방법:
    (1) 하나 혹은 여러가지의 염기서열을 가지는 DNA 혹은 RNA 분자
    (2) 또 다른 염기서열 정보를 가지는 DNA 마이크로어레이
    (3) DNA 혹은 RNA분자가 표면이나 내부에 포함되는 형태의 마이크로/나노 입자
    (4) DNA 혹은 RNA분자를 포함하는 세포 또는 박테리아
    (5) DNA 혹은 RNA분자를 포함하는 바이러스 분자
    (6) 단백질과 결합된 형태의 DNA 혹은 RNA 분자.
  6. 제1 항에 있어서,
    상기 샘플의 용액은 DNA 결합반응 혹은 증폭반응이 이루어지기 위한 시약조건을 포함하는 이종 DNA 바코딩 방법.
  7. 제1 항에 있어서,
    상기 (e) 단계에서 DNA 증폭반응이 고체상증폭반응(Solid-phase PCR)에 의해서 이루어지는 이종 DNA 바코딩 방법.
  8. 제1 항에 있어서,
    상기 DNA 스팟의 염기서열 정보와 상기 샘플의 염기서열 정보의 결합 및 증폭이 하나의 마이크로웰 환경에서 이루어지는 이종 DNA 바코딩 방법.
  9. 제1 항에 있어서,
    상기 DNA 스팟의 염기서열 정보와 상기 샘플의 염기서열 정보의 결합 및 증폭이 별도의 마이크로웰에서 이루어지되,
    상기 증폭이 상기 (f) 단계 이후 DNA 증폭반응을 위한 시약이 담긴 또다른 마이크로웰에서 이루어지는 이종 DNA 바코딩 방법.
  10. (a) 바코드 염기서열에 의해 서로 구분되는 DNA 스팟(spot)들을 구비한 DNA 마이크로어레이를 제공하는 단계;
    (b) 상기 DNA 마이크로어레이 상의 상기 DNA 스팟들의 공간적 배치와 대응되는 마이크로웰들을 구비한 마이크로웰 어레이를 제공하는 단계;
    (c) 목적 염기서열들을 함유한 샘플의 용액을 상기 마이크로웰들에 로딩하는 단계;
    (d) 상기 DNA 마이크로어레이와 상기 마이크로웰 어레이를 결합시켜 상기 DNA 스팟들이 상기 마이크로웰들에 의해 공간적으로 분리된 미세 반응공간들을 형성하는 단계;
    (e) 상기 미세 반응공간 내에서 상기 DNA 스팟의 염기서열과 상기 샘플의 상기 목적 염기서열을 반응시켜 상기 DNA 스팟의 염기서열 정보와 상기 샘플의 염기서열 정보를 결합시키는 단계;
    (f) 상기 DNA 마이크로어레이와 상기 마이크로웰 어레이를 분리하여 상기 바코드 염기서열을 구비한 결과물을 얻는 단계;
    (g) 상기 결과물을 염기서열분석하는 단계; 및
    (h) 상기 결과물 중 원하는 샘플의 바코드 정보를 프라이머로 활용하여 상기 DNA 마이크로어레이에서 특정 스팟의 DNA를 선택적으로 증폭하여 상기 원하는 샘플을 획득하는 단계를 포함하는 병렬적 DNA 분석 방법.
  11. 바코드 염기서열에 의해 서로 구분되는 DNA 스팟(spot)들을 구비한 DNA 마이크로어레이; 및
    상기 DNA 마이크로어레이와 결합되며 상기 DNA 스팟들의 공간적 배치와 대응되는 마이크로웰들을 구비한 마이크로웰 어레이를 포함하되,
    상기 DNA 스팟들이 상기 마이크로웰들에 의해 공간적으로 서로 분리된 미세 반응공간들을 구비하며,
    상기 미세 반응공간 내에 목적 염기서열들을 함유한 샘플의 용액이 상기 마이크로웰들에 로딩된 이종 DNA 바코딩용 플랫폼.
  12. 제11 항에 있어서,
    상기 마이크로웰 어레이는 DNA 마이크로어레이, 단백질 마이크로어레이, 또는 특정분자 획득을 위해 생화학적 물질이 도포된 기판 중에서 선택되는 평판기판과 마이크로홀 어레이(microhole array)가 결합된 형태의 결합형 마이크로웰 어레이인 이종 DNA 바코딩용 플랫폼.
  13. 제11 항에 있어서,
    상기 용액은 효소, 프라이머, dNTP, 세포 해리를 위한 계면활성제, DNA 혼성화(hybridization)용 조성물, 및 PCR반응이 이루어지기 위한 버퍼 조성물로 이루어진 군 중에서 선택되는 1종 이상을 더 함유하는 이종 DNA 바코딩용 플랫폼.
PCT/KR2014/001907 2013-03-07 2014-03-07 이종 dna 바코딩 방법 WO2014137193A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/772,914 US9850482B2 (en) 2013-03-07 2014-03-07 Heterologous DNA barcoding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0024355 2013-03-07
KR20130024355 2013-03-07

Publications (1)

Publication Number Publication Date
WO2014137193A1 true WO2014137193A1 (ko) 2014-09-12

Family

ID=51491635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001907 WO2014137193A1 (ko) 2013-03-07 2014-03-07 이종 dna 바코딩 방법

Country Status (3)

Country Link
US (1) US9850482B2 (ko)
KR (1) KR101575457B1 (ko)
WO (1) WO2014137193A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125106A1 (en) 2015-02-05 2016-08-11 Technion Research & Development Foundation Limited System and method for single cell genetic analysis
US10370630B2 (en) 2014-02-10 2019-08-06 Technion Research & Development Foundation Limited Method and apparatus for cell isolation, growth, replication, manipulation, and analysis
US10900065B2 (en) 2014-11-14 2021-01-26 University Of Washington Methods and kits for labeling cellular molecules
US11680283B2 (en) 2017-09-22 2023-06-20 University Of Washington In situ combinatorial labeling of cellular molecules

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10788452B2 (en) 2015-04-21 2020-09-29 General Automation Lab Technologies Inc. High resolution systems, kits, apparatus, and methods for bacterial community relationship determination and other high throughput microbiology applications
EP3363899B1 (en) * 2015-11-04 2021-03-17 Celemics, Inc. Molecular clone extracting and verifying method
JP2019531730A (ja) * 2016-09-28 2019-11-07 ジェネラル オートメーション ラボ テクノロジーズ インコーポレイテッド 細菌群の関係決定及び他のハイスループット微生物学適用高分解能システム、キット、装置、並びに方法
US11667951B2 (en) 2016-10-24 2023-06-06 Geneinfosec, Inc. Concealing information present within nucleic acids
WO2018208133A1 (ko) * 2017-05-12 2018-11-15 서울대학교산학협력단 고순도 뉴클레오타이드 획득 방법 및 장치
WO2018208135A2 (ko) * 2017-05-12 2018-11-15 서울대학교산학협력단 미세구조물을 이용한 세포 및 세포 생성물의 분리, 획득, 분석 및 회수 방법
CN111041077A (zh) * 2018-10-15 2020-04-21 深圳华大生命科学研究院 用于高通量测序中的样品加载方法、测序方法和测序系统
WO2021066465A1 (ko) * 2019-10-01 2021-04-08 (주)컨투어젠 핵산을 포함하는 시료의 핵산을 2차원의 위치 정보를 유지한 채 추출하는 방법 및 장치, 이를 이용한 위치정보를 포함하는 유전체 분석 방법
US20240124920A1 (en) * 2020-11-23 2024-04-18 Pleno, Inc. Encoded assays
WO2022181858A1 (ko) * 2021-02-26 2022-09-01 지니너스 주식회사 분자 바코딩 효율을 향상시키기 위한 조성물 및 이의 용도
KR20220122095A (ko) 2021-02-26 2022-09-02 지니너스 주식회사 분자 바코딩 효율을 향상시키기 위한 조성물 및 이의 용도

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030232384A1 (en) * 2002-06-13 2003-12-18 Eastman Kodak Company Microarray system utilizing microtiter plates
US6974669B2 (en) * 2000-03-28 2005-12-13 Nanosphere, Inc. Bio-barcodes based on oligonucleotide-modified nanoparticles
WO2006078289A2 (en) * 2004-05-12 2006-07-27 Nanosphere, Inc. Bio-barcode based detection of target analytes
KR20080009960A (ko) * 2006-07-25 2008-01-30 삼성전자주식회사 광 촉매를 이용한 패터닝된 스팟 마이크로어레이의 제조방법 및 상기 방법에 의해 제조된 마이크로어레이

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6974669B2 (en) * 2000-03-28 2005-12-13 Nanosphere, Inc. Bio-barcodes based on oligonucleotide-modified nanoparticles
US20030232384A1 (en) * 2002-06-13 2003-12-18 Eastman Kodak Company Microarray system utilizing microtiter plates
WO2006078289A2 (en) * 2004-05-12 2006-07-27 Nanosphere, Inc. Bio-barcode based detection of target analytes
KR20080009960A (ko) * 2006-07-25 2008-01-30 삼성전자주식회사 광 촉매를 이용한 패터닝된 스팟 마이크로어레이의 제조방법 및 상기 방법에 의해 제조된 마이크로어레이

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SMITH ET AL.: "Highly-multiplexed barcode sequencing: an efficient method for parallel analysis of pooled samples", NUCLEIC ACIDS RESEARCH, vol. 38, no. 13, pages 1 - 7 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10370630B2 (en) 2014-02-10 2019-08-06 Technion Research & Development Foundation Limited Method and apparatus for cell isolation, growth, replication, manipulation, and analysis
US10900065B2 (en) 2014-11-14 2021-01-26 University Of Washington Methods and kits for labeling cellular molecules
US11168355B2 (en) 2014-11-14 2021-11-09 University Of Washington Methods and kits for labeling cellular molecules
US11427856B2 (en) 2014-11-14 2022-08-30 University Of Washington Methods and kits for labeling cellular molecules
US11555216B2 (en) 2014-11-14 2023-01-17 University Of Washington Methods and kits for labeling cellular molecules
US11634751B2 (en) 2014-11-14 2023-04-25 University Of Washington Methods and kits for labeling cellular molecules
US11639519B1 (en) 2014-11-14 2023-05-02 University Of Washington Methods and kits for labeling cellular molecules
WO2016125106A1 (en) 2015-02-05 2016-08-11 Technion Research & Development Foundation Limited System and method for single cell genetic analysis
CN107405620A (zh) * 2015-02-05 2017-11-28 技术研究及发展基金有限公司 用于单细胞遗传分析的系统和方法
EP3253491A4 (en) * 2015-02-05 2018-08-08 Technion Research & Development Foundation Limited System and method for single cell genetic analysis
US10400273B2 (en) 2015-02-05 2019-09-03 Technion Research & Development Foundation Limited System and method for single cell genetic analysis
US11680283B2 (en) 2017-09-22 2023-06-20 University Of Washington In situ combinatorial labeling of cellular molecules

Also Published As

Publication number Publication date
KR20140111224A (ko) 2014-09-18
US9850482B2 (en) 2017-12-26
US20160010085A1 (en) 2016-01-14
KR101575457B1 (ko) 2015-12-11

Similar Documents

Publication Publication Date Title
WO2014137193A1 (ko) 이종 dna 바코딩 방법
JP6404714B2 (ja) 多変量診断アッセイ及びこれを用いるための方法
US20110008775A1 (en) Sequencing of nucleic acids
US11753743B2 (en) High-throughput single-cell polyomics
CN101610847A (zh) 样品分析仪
EP2619333B1 (en) Native-extension parallel sequencing
US10337066B2 (en) Methods for PCR and HLA typing using unpurified samples
US20060099626A1 (en) DNA-templated combinatorial library device and method for use
WO2016190585A1 (ko) 표적핵산 검출방법 및 키트
US20170101665A1 (en) Nucleic Acid Amplification With Integrated Multiplex Detection
US20100029492A1 (en) Nucleic acid chip for obtaining binding profile of single strand nucleic acid and unknown biomolecule, manufacturing method thereof and analysis method of unknown biomolecule using nucleic acid chip
US20240033727A1 (en) Reagent exchange methods, devices, and systems
JP4189929B2 (ja) ジップコード方式を用いたpnaチップ及びその製作方法
EP3447154A1 (en) Method for detection of mutations, polymorphisms and specific dna sequences on dna matrices with dna imaging techniques for the use in medical diagnostics and forensic genetics
Murtaza et al. DNA microrray: A miniaturized high throughput technology
Luque González CHEM-NAT: a unique chemical approach for nucleic acids testing
POPA et al. MODERN APPLICATION OF NEXT-GENERATION SEQUENCING (NGS)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14759444

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14772914

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14759444

Country of ref document: EP

Kind code of ref document: A1