WO2014137094A1 - Outdoor temperature sensitive heating and cooling apparatus - Google Patents

Outdoor temperature sensitive heating and cooling apparatus Download PDF

Info

Publication number
WO2014137094A1
WO2014137094A1 PCT/KR2014/001550 KR2014001550W WO2014137094A1 WO 2014137094 A1 WO2014137094 A1 WO 2014137094A1 KR 2014001550 W KR2014001550 W KR 2014001550W WO 2014137094 A1 WO2014137094 A1 WO 2014137094A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
water tank
tank
heat
Prior art date
Application number
PCT/KR2014/001550
Other languages
French (fr)
Korean (ko)
Inventor
전종길
김영철
백이
이동건
Original Assignee
대한민국(농촌진흥청장)
주식회사 티알엑서지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(농촌진흥청장), 주식회사 티알엑서지 filed Critical 대한민국(농촌진흥청장)
Priority to JP2015561263A priority Critical patent/JP6161735B2/en
Publication of WO2014137094A1 publication Critical patent/WO2014137094A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/004Outdoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to an outside air temperature-sensitive air-conditioning apparatus, and more particularly, a load-side heat exchanger for directly maintaining a refrigerant flow passage and performing heat exchange directly to an object space requiring cooling or heating.
  • the heat source is supplied and the heat source can be stably obtained to ensure that the heat source is responsive to the weather forecast and outside temperature. It relates to an outdoor temperature-sensitive air-conditioning device capable of cooling or heating an object.
  • Heat pump system that performs cooling and heating using geothermal heat as a heat source.
  • Heat pump system using geothermal heat is a technology that uses heat exchanger to install heat exchanger to recover heat in the ground of 10 ⁇ 20 °C or discharge heat into the ground.
  • an air heat source method of obtaining or discharging heat in the air such as an air conditioner, and a water heat source method of discharging heat through a cooling tower are used.
  • geothermal sources has the advantage that the energy efficiency is very high compared to air heat sources.
  • the air heat source temperature is consumed a lot of power to discharge the cooling heat to 30 °C or more, while the geothermal heat source is smoothly discharged to 10 ⁇ 20 °C shows a high efficiency.
  • the air heat source is difficult to supply the heat necessary for heating at the lowest temperature of -20 ° C, while the underground heat source is 10 to 20 ° C, which can stably supply the heating heat to the heat pump.
  • the geothermal heat pump system is known to have the highest energy efficiency among all air-conditioning technologies. Therefore, it is an essential technology in a situation where energy resources are scarce and energy costs are high.
  • the heat pump system using the geothermal heat not only has to have a constant water temperature and geological characteristics but not a soft layer, and also requires a long construction time and high cost during installation, and requires a separate site space.
  • the prior art is a system that is operated directly regardless of the outside temperature, and also consists of two cycles of air conditioning and heating, and the basic system performs the process of cooling and heating according to the season, so that the energy efficiency is rapidly changed according to the outside temperature. It has a problem that is falling.
  • the present invention is to solve the problems of the prior art as described above, even in the state without using a coil-shaped heat exchanger and a four-way valve that can be used for both cooling and heating due to seasonal differences in summer and winter in the tank, Cooling and heating can be performed by a single flow, so it can be easily installed in a relatively small space, and installation cost can be reduced, and the remaining heat on the load side can be recovered and regenerated to increase efficiency according to system operation. It is intended to provide an improved new outside air temperature sensitive heating and cooling system.
  • the present invention provides an outdoor air temperature-sensitive air-conditioning apparatus having a load side heat exchanger connected to a compressor 110 for compressing and discharging a refrigerant, the compressor 110, and a first refrigerant main pipe 210.
  • a receiver 140 connected to the load-side heat exchanger 120 and the second refrigerant main pipe 220 to store the liquefied refrigerant, a tank 130 in which the receiver 140 is accommodated, and the tank ( 130 is disposed, and connected to the water tank heat exchanger 150 and the water tank heat exchanger 150 and the fourth refrigerant main pipe 240 connected to the receiver 140 and the third refrigerant main pipe 230.
  • the latent heat exchanger 160 is characterized in that to selectively control the heat storage or heat storage function.
  • the controller may control one or more on / off valves disposed in the refrigerant pipe including the first to fourth refrigerant main pipes.
  • the latent heat exchanger 160 may be a heat storage cooler 161, a solar heat plate, or a heat storage cooler 165 of a combination of solar panels.
  • the air conditioning apparatus may further include an expansion valve 190 disposed on the third refrigerant main pipe 230 connecting the receiver 140 and the water tank heat exchanger 150.
  • the tank 130 includes a first tank 131 embedded in the ground and a second tank 132 accommodated in the first tank 131, wherein the first tank 131 and the second tank ( 132 may be preferably spaced a predetermined distance apart.
  • the cooling and heating device may be provided with pumping means for supplying or discharging water in the space between the first tank 131 and the second tank 132.
  • the air-conditioning device the water tank 130 includes an underground coil 133 is embedded in the ground so as to receive the heat of the ground, the space in which water flows inside the underground coil 133 It may be desirable to form this.
  • the refrigerant flows into the compressor 110 through the compressor 110, the latent heat exchanger 160, the receiver 140, the load side heat exchanger 120, and the liquid separator 180. It may be desirable.
  • the flow of the refrigerant to the latent heat exchanger 160 is blocked.
  • the refrigerant passes through the compressor 110, the load side heat exchanger 120, the receiver 140, the water tank heat exchanger 150, and the liquid separator 180 to the compressor 110. It may be desirable to enter.
  • the refrigerant may be introduced into the compressor 110 through the compressor 110, the water tank heat exchanger 150, the latent heat exchanger 160, and the liquid separator 180. have.
  • the auxiliary condensation heat exchange part 145 disposed on the second refrigerant main pipe 220 may further include, and the auxiliary condensation heat exchange part 145 may be disposed in the water tank 130.
  • the present invention provides a relatively small space by allowing the cooling and heating to be performed by a single flow of refrigerant without using a coil-type heat exchanger and a four-way valve that can be used for both cooling and heating in a single reservoir.
  • it can be easily installed and the installation cost can be reduced, and the remaining heat on the load side can be recovered and regenerated to reduce energy consumption due to system operation.
  • the present invention provides a heating and cooling device with efficiency and practicality by enabling the complete condensation of the refrigerant by the auxiliary heat exchanger to allow the overall efficiency to be increased.
  • FIG. 1 is a schematic diagram of an outside air temperature-sensitive air conditioning device according to an embodiment of the present invention
  • FIG. 5 is a system diagram showing a case where the water tank is installed in the ground in the air temperature-sensitive air-conditioning device according to another embodiment of the present invention.
  • the air temperature-sensing air-conditioning device of the present invention may be manufactured integrally or separately separated as needed. In addition, some components may be omitted depending on the form of use.
  • the refrigerant main pipe and the refrigerant auxiliary pipe disposed in the present invention are referred to collectively as the refrigerant pipe.
  • the outside temperature-sensitive air-conditioning and heating device 100 is a compressor 110 for compressing and discharging a refrigerant, a load side heat exchanger 120 and a load side heat exchanger 120 connected to the compressor 110 and the first refrigerant main pipe 210.
  • a compressor 110 for compressing and discharging a refrigerant
  • a load side heat exchanger 120 for compressing and discharging a refrigerant
  • a load side heat exchanger 120 and a load side heat exchanger 120 connected to the compressor 110 and the first refrigerant main pipe 210.
  • the tank 130 in which the receiver 140 is accommodated the receiver 140 and the third refrigerant main pipe 230.
  • An expansion valve 190 connected to the third heat exchanger unit 150 connected to the water tank 130, the receiver 140, and the third refrigerant main pipe 230 connecting the water tank heat exchanger 150,
  • the sixth refrigerant main pipe while communicating with the fourth refrigerant main pipe 240 through the latent heat exchanger 160 connected to the water tank heat exchanger 150 and the fourth refrigerant main pipe 240 and the fifth refrigerant main pipe 250.
  • the load side heat exchanger 120 is provided such that the refrigerant flow passage and the water flow passage exchange heat with each other.
  • the load side heat exchanger 120 may adopt a plate heat exchanger as an embodiment.
  • the load-side heat exchanger 120 of the present invention may constitute a collection evaporator and a cooling condenser so as to easily evaporate and condense.
  • Water is stored in the tank (130).
  • the tank 130 may be buried underground or installed on the ground. Meanwhile, rainwater storage tanks, living water tanks, digestive water tanks, sewage tanks, water purification tanks, and other various types of water tanks provided for energy use can be used as a combination.
  • the receiver 140 stores the liquefied refrigerant.
  • the receiver 140 is provided in the tank 130 as an embodiment.
  • the water tank 130 is provided with a heat exchange unit 150 for the water tank.
  • the tank heat exchanger 150 uses a coil heat exchanger.
  • the latent heat exchanger 160 includes a heat storage cooler 161 that can be used as a condenser, a solar heat plate, and a heat storage cooler 165 of a combination of solar panels.
  • the heat storage cooler 161 may be used for cooling in summer, and the heat storage cooler 165 may be used for heating in winter.
  • first to sixth refrigerant main pipes 210, 220, 230, 240, 250, and 260 may represent a movement path of the refrigerant when the external temperature sensitive air conditioning apparatus 100 of the present invention is driven in a heating mode.
  • the refrigerant auxiliary pipes connecting the components and the refrigerant main pipes 210, 220, 230, 240, 250, 260 constituting the air temperature-sensitive air-conditioning device 100 of the present invention can be used.
  • One end of the first refrigerant auxiliary pipe 310 is connected to the first refrigerant main pipe 210, and the other end thereof is connected to the latent heat exchanger 160.
  • One end of the second refrigerant auxiliary pipe 320 is connected to the latent heat exchanger 160, and the other end thereof is connected to the inlet of the receiver 140.
  • One end of the third refrigerant auxiliary pipe 330 is connected to the third refrigerant main pipe 230 and the other end thereof is connected to the first refrigerant main pipe 210.
  • One end of the fourth refrigerant auxiliary pipe 340 is connected to the load side heat exchanger 120, and the other end thereof is connected to the fourth refrigerant main pipe 240.
  • One end of the fifth refrigerant auxiliary pipe 350 is connected to the water tank heat exchanger 150, and the other end thereof is connected to the latent heat exchanger 160.
  • the circulation flow and the heat storage flow of the refrigerant for cooling in summer are possible.
  • the first to sixth refrigerant main pipes 210, 220, 230, 240, 250 and 260 and the first to fifth refrigerant auxiliary pipes 310, 320, 330, 340 and 350 may be provided with an on / off valve electrically connected to a control unit, a flow meter, a pressure gauge, a thermometer, and the like. The number, interval, etc. can be changed.
  • the outside temperature sensing unit 170 is electrically connected to the latent heat exchanger 160 and the plurality of open / close valves disposed in the refrigerant main pipe and the refrigerant auxiliary pipe through the control unit. That is, the controller selectively operates the driving mode of any one of the heating mode, the cooling mode, and the heat storage mode by selectively providing the opening / closing signal to the plurality of opening / closing valves according to the temperature result measured from the outside temperature sensing unit 170.
  • the control unit causes the latent heat exchanger 160 to perform heat storage or heat storage according to the result of the outside temperature. Specifically, in the case of heating in winter, it is easier to acquire a heat source during the day than at night, and thus, a heat storage cooler having a solar panel or a solar panel composite using a temperature sensed by the outside temperature sensing unit 170. After the evaporation of the flowing refrigerant to store the heat stored in the coolant in the water tank 130 and to use for heating at night.
  • a water tank 130' is installed in the ground.
  • the tank 130 ′ includes a first tank 131 embedded in the ground and a second tank 132 disposed inside the first tank 131 spaced apart from the first tank 131 by a predetermined interval. do.
  • the space between the first tank 131 and the second tank 132 is defined as the heat conduction opening and closing part 131a.
  • the water tank 130 ′ has a double tank structure having first and second water tanks 131 and 132.
  • the heat conductive material accommodated in the second water tank 132 may have a structure surrounding both the outer wall and the bottom of the first water tank 131.
  • the water of the second tank 132 may be formed to surround only the outer wall of the first tank 131.
  • the first tank 131 receives geothermal heat directly from the ground.
  • the second tank 132 receives ground heat through the first tank 131.
  • the thermally conductive material accommodated in the thermally conductive opening and closing portion 131a may be filled with different materials according to seasons.
  • the thermally conductive material may be a material having excellent thermal insulation, such as air, in order to block the direct transfer of geothermal heat from the ground to the second tank 132 in summer, and the second tank 132 in the winter in the ground. It may be a relatively conductive material, such as water, so that it can be delivered to.
  • pumping means for emptying or filling water in the first water tank 131 may be provided. That is, the first tank 131 and the second tank 132 is capable of heat transfer through the water filled through the pumping means.
  • the second tank 132 receives geothermal heat through the water in the first tank 131, but when the water in the first tank 131 is empty, the second tank 132 is filled. 132 becomes a state insulated from geothermal heat.
  • the first tank 131 may be emptied using a pumping means, and the second tank 132 may block the geothermal heat so as not to receive the geothermal heat.
  • the water in the second tank 132 may be preferably cooled by blocking the water of the second tank 132 from receiving relatively high temperature geothermal heat.
  • the water in the first tank 131 may be filled in winter using a pumping means, and the second tank 132 may receive geothermal heat through the first tank 131.
  • the water of the second tank 130 may be heated by receiving geothermal heat of relatively high temperature.
  • the water tank (130, 130 ') is provided with an underground coil 133 in a form buried in the ground to receive the heat of the ground better.
  • the interior of the underground coil 133 has a space in which water in the tanks 130 and 130 'can flow. Accordingly, the water in the water tanks 130 and 130 'can effectively absorb the geothermal heat through the underground coil 133.
  • the underground coil 133 is provided with an underground coil pump 132a so that water in the water tanks 130 and 130 'circulates through the underground coil 133.
  • the underground coil pump 132a is mainly operated only in winter to allow the water of the tanks 130 and 130 'to receive geothermal heat. In summer, the water of the tanks 130 and 130 'is preferably not subjected to geothermal heat.
  • the underground coil pump 132a may be operated to mix the water in the water tanks 130 and 130 'by mixing the water in the water tanks 130 and 130'.
  • the heating mode of the outside air temperature sensitive air-conditioning apparatus 100 of the present invention will be described.
  • the change of refrigerant forms a circulation system of compression-> first condensation-> second condensation-> expansion-> evaporation-> compression.
  • the refrigerant gas of the high temperature and high pressure compressed by the compressor 110 flows into the refrigerant flow path of the load-side heat exchanger 120 after passing through the first refrigerant main pipe 210 and condenses first (first condensation). That is, the load side heat exchanger 120 functions as a condenser, and the refrigerant passing through the refrigerant flow path of the load side heat exchanger 120 discharges heat to water passing through the water flow path of the load side heat exchanger 120.
  • the refrigerant passing through the refrigerant flow path of the load-side heat exchanger 120 passes through the second refrigerant main pipe 220.
  • the refrigerant flows into the auxiliary heat exchange unit 145.
  • the auxiliary condensation heat exchanger 145 completely condenses the remaining refrigerant that is not condensed in the refrigerant flow path of the load-side heat exchanger 120 (second condensation).
  • the auxiliary condensation heat exchanger 145 releases heat to the water in the water tank 130.
  • the refrigerant passing through the auxiliary condensation heat exchanger 145 is stored in the receiver 140.
  • the air temperature-sensitive air-conditioning and heating device 100 is capable of fully condensing the refrigerant by the heat exchange unit 145 for auxiliary condensation, thereby increasing the overall efficiency.
  • the water of the water tank 130 may increase its constant temperature by the interaction between the water tank heat exchanger 150 and the auxiliary condensation heat exchanger 145.
  • the refrigerant of the receiver 140 is expanded by the expansion valve 190 on the third refrigerant main pipe 230 and then flows into the water tank heat exchange unit 150.
  • the refrigerant introduced into the tank heat exchanger 150 absorbs heat from the water of the tank 130 while evaporating. That is, the water of the tank 130 is cooled.
  • the refrigerant passing through the water tank heat exchanger 150 flows into the liquid separator 180 through the fourth and fifth refrigerant main pipes 240 and 250 and then flows into the compressor 110 through the sixth refrigerant main pipe 260.
  • the cooling mode of the outside air temperature-sensitive air-conditioning device 100 of the present invention will be described.
  • the change of refrigerant forms the circulation system of compression-> first condensation-> second condensation-> expansion-> evaporation-> compression.
  • the function at the load side heat exchanger 120 proceeds in the opposite manner to the heating mode. That is, the load-side heat exchanger 120 performs the condensation function in the heating mode but the evaporation function in the cooling mode.
  • the high temperature and high pressure refrigerant gas compressed by the compressor 110 is transferred to the latent heat exchanger 160 via the first refrigerant main pipe 210 and the first refrigerant auxiliary pipe 310.
  • the refrigerant condensed in the latent heat exchanger 160 is stored in the receiver 140 via the second refrigerant auxiliary pipe 320 and the second refrigerant main pipe 220.
  • evaporation is performed in the load-side heat exchanger 120 via the third refrigerant auxiliary pipe 330 and the third refrigerant main pipe 230.
  • the compressor 110 through the sixth refrigerant main pipe 260. Flows into).
  • the refrigerant gas of the high temperature and high pressure compressed by the compressor 110 is transferred to the water tank heat exchange part 150 through the first refrigerant main pipe 210 and the third refrigerant main pipe 230.
  • the refrigerant condensed in the water tank heat exchanger 150 is transferred to the latent heat exchanger 160 via the fifth refrigerant auxiliary pipe 350.
  • the refrigerant evaporated in the latent heat exchanger 160 flows into the liquid separator 180 through the fourth refrigerant main pipe 240 and the fifth refrigerant main pipe 250, and then passes through the sixth refrigerant main pipe 260 to the compressor 110. Flows into.
  • a heat storage cooler 165 having a solar plate or a combination of the solar plates may be preferable.
  • the heat condensation pressure is low because the water tank temperature on the heat source side is particularly low, so that the temperature of the heat source can be easily increased with little compression power.
  • the refrigerant gas compressed by the compressor 110 is transferred to the water tank heat exchange part 150 through the first refrigerant main pipe 210 and the third refrigerant main pipe 230.
  • the refrigerant evaporated in the water tank heat exchanger 150 is transferred to the latent heat exchanger 160 via the fifth refrigerant auxiliary pipe 350.
  • the refrigerant condensed in the latent heat exchanger 160 flows into the liquid separator 180 through the fourth refrigerant main pipe 240 and the fifth refrigerant main pipe 250, and then passes through the sixth refrigerant main pipe 260 to the compressor 110. Flows into.
  • the latent heat exchanger 160 may be a cool storage cooler 161.
  • the outside air temperature-sensitive air-conditioning apparatus 100 of the present invention may implement three cycles of heating, cooling, and heat storage (heat storage) cycles by implementing the heat storage and heat storage latent heat cycles with the same refrigerant without using a separate secondary refrigerant.
  • the change of the refrigerant in the heat storage and refrigerating cycle modes constitutes a circulation system of compression-> condensation-> expansion-> evaporation-> compression.
  • the temperature difference between the outside air temperature during winter and summer during the cooling and heating cycles is about 20 ° C. on average, but the natural energy of the temperature difference is not sufficiently utilized.
  • the refrigerant is stored in a water tank after compression, Make the best use of natural energy by using it as an evaporative heat source. This can increase your grade factor and efficiency.
  • Heating load heat of condensation (100%)
  • heat of compression (30%)
  • heat of evaporation 70%)
  • Heating load in the heating mode can be made by the above equation, wherein the heat of evaporation (70%) is the natural energy obtained by evaporation of the refrigerant itself through the water of the tank 130, the heat of compression (30%) is actually Since the energy used, if the refrigerant can continuously evaporate during heating, energy can be saved by 70%. Therefore, it can be said that securing a stable evaporation heat source is the most important, and if the securing of the evaporation heat source is secured above a certain condition, energy saving can be more than 70%.
  • a heat exchanger is installed to condense the refrigerant in a water tank at a location where the outside temperature is low at night, the energy density of light is low, or the waste cooling heat source is large. After cooling, by using it as a cooling heat source during the load-side operating time, the same effect as in heating can be obtained.
  • Cooling load heat of condensation (100%)-heat of compression (30%)
  • the cooling load may be achieved by the above equation.
  • the condensation heat source may be the most important since lowering the condensation temperature (100%) of the refrigerant in the latent heat exchanger 160 makes efficient use of energy. Can be.
  • the temperature difference is well sensed so that the latent heat exchanger 160 performs the evaporation or condensation process and then accumulates or accumulates in the water tank 130.
  • the load-side heat exchanger 120 By supplying heat during the use time of the load-side heat exchanger 120, it is possible to implement a cooling and heating system that effectively utilizes natural energy.
  • the present invention can be characterized in that it can be operated at any time in response to the outside temperature and various thermal properties without being greatly influenced by solar light energy.
  • the load-side heat exchanger 120 of the present invention may constitute a collection evaporator and a cooling condenser so as to easily evaporate and condense.
  • the heat condensation pressure is low because the water tank temperature on the heat source side is particularly low, so that the temperature of the heat source can be easily increased with little compression power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

An outdoor temperature sensitive heating and cooling apparatus according to the present invention comprises: a compressor (110) for compressing and exhausting a refrigerant; a load-side heat exchanger (120) connected to the compressor (110) by a first refrigerant main pipe (210); a liquid receiver (140) for storing a liquefied refrigerant, the liquid receiver being connected to the load-side heat exchanger (120) by a second refrigerant main pipe (220); a water tank (130) for housing the liquid receiver (140); a heat exchanger (150) for the water tank disposed in the water tank (130) and connected to the liquid receiver (140) by a third refrigerant main pipe (230); a latent heat exchanger (160) connected to the heat exchanger (150) for the water tank by a fourth refrigerant main pipe (240); a controller electrically connected to the latent heat exchanger (160); and an outdoor temperature sensing unit (170) connected to the controller, wherein the controller selectively controls a heat storage function or a cold storage function of the latent heat exchanger (160) by sensing the outdoor temperature measured by the outdoor temperature sensing unit (170).

Description

외기 온도 감응식 냉난방 장치Outside temperature sensitive air conditioning unit
본 발명은 외기 온도 감응식 냉난방 장치에 관한 것으로서, 보다 상세하게는 냉매 유동 유로를 일정하게 유지하고, 냉방 또는 난방이 요구되는 목적 대상 공간에 직접적으로 열교환을 수행하는 부하측 열교환부가 상기 냉매 유동 유로와 열교환을 하도록 하고, 열원측에서도 안정적으로 열원을 취득할 수 있도록 일기예보와 외기온도를 감응하여 일일 24시간 중 자연에너지 밀도가 가장 높을 때 열원을 확보하여 열원측 수조에 축열 또는 축냉하여 부하 측의 목적 대상물에 냉방 또는 난방을 수행할 수 있는 외기온도 감응식 냉난방 장치에 관한 것이다.The present invention relates to an outside air temperature-sensitive air-conditioning apparatus, and more particularly, a load-side heat exchanger for directly maintaining a refrigerant flow passage and performing heat exchange directly to an object space requiring cooling or heating. The heat source is supplied and the heat source can be stably obtained to ensure that the heat source is responsive to the weather forecast and outside temperature. It relates to an outdoor temperature-sensitive air-conditioning device capable of cooling or heating an object.
일반적으로 사용되는 에너지원으로서 석탄, 석유, 천연가스 등과 같은 화석 연료를 이용하거나, 또는 핵연료를 이용하는 경우가 대부분이다. 그러나, 화석 연료는 연소과정에서 발생하는 각종 공해물질로 인하여 환경을 오염시키고, 핵연료는 수질오염 및 방사능과 같은 유해물질을 발생시키는 단점과 함께 이들 에너지원은 매장량의 한계가 있다.Most commonly used energy sources are fossil fuels such as coal, petroleum, natural gas, or nuclear fuels. However, fossil fuels pollute the environment due to various pollutants generated during the combustion process, and nuclear fuels generate harmful substances such as water pollution and radioactivity, and these energy sources have a limited amount of reserves.
따라서, 근래에는 이를 대신할 수 있는 대체 에너지 개발이 활발하게 진행되고 있다. 이러한 대체에너지 중에서도 풍력, 태양열 또는 태양광, 지열 등과 같은 자연에너지에 관한 연구가 오래 전부터 진행되어 실질적으로 이를 이용한 냉,난방장치가 설치되어 사용되고 있는데, 이들 자연에너지는 환경오염과 기후변화에 거의 영향을 미치지 않으면서 무한한 에너지를 얻을 수 있는 장점이 있는 반면, 에너지 밀도가 대단히 낮은 결점으로 인하여 그 밀도를 높여 이용 가능한 형태로 변환하는 것이 자연에너지 기술개발의 핵심관건이라 할 수 있다.Therefore, in recent years, the development of alternative energy to replace this has been actively progressed. Among these alternative energies, research on natural energy such as wind, solar heat, solar light, geothermal heat, etc. has been conducted for a long time and practically installed cooling and heating devices using them. These natural energy have little effect on environmental pollution and climate change. While there is a merit that infinite energy can be obtained without a high energy density, it is a key factor in the development of natural energy technology to increase the density and convert it into a usable form due to the drawback of the extremely low energy density.
이러한 자연에너지 기술 중의 하나로 각광받고 있는 것이 지열을 열원으로 이용하여 냉난방을 행하는 히트펌프 시스템이 알려져 있다. 지열을 이용한 히트펌프 시스템은 온도가 10~20℃의 지중의 열을 회수하거나 지중으로 열을 배출할 수 있도록 열교환기를 설치하여 히트펌프의 열원으로 사용하는 기술이다.One of such natural energy technologies is known as a heat pump system that performs cooling and heating using geothermal heat as a heat source. Heat pump system using geothermal heat is a technology that uses heat exchanger to install heat exchanger to recover heat in the ground of 10 ~ 20 ℃ or discharge heat into the ground.
일반적으로 히트펌프의 열원으로는 에어컨과 같이 대기중에서 열을 얻거나 배출하는 공기열원방식, 냉각탑을 통해 열을 배출하는 수열원방식 등이 사용된다. 지열원을 이용하면 공기열원과 비교할 때 에너지 효율이 매우 높아지는 장점이 있다.In general, as a heat source of a heat pump, an air heat source method of obtaining or discharging heat in the air, such as an air conditioner, and a water heat source method of discharging heat through a cooling tower are used. The use of geothermal sources has the advantage that the energy efficiency is very high compared to air heat sources.
특히 사계절의 변화가 뚜렷한 지역의 연중 대기온도는 -20~40℃까지 큰 폭으로 변화하는데 반해, 지중온도는 지하 5m 이하의 경우 연중 10~20℃로 거의 일정하게 유지된다.In particular, the year-round air temperature in the areas where the four seasons are obviously changed greatly varies from -20 to 40 ℃, while the underground temperature is almost constant at 10-20 ℃ during the year below 5m underground.
따라서, 여름철에 냉방을 하는 경우 공기열원의 온도는 30℃이상으로 냉방열을 배출하기 위해 많은 전력이 소모되는 반면, 지열원은 10~20℃로 원활하게 열을 배출하므로 높은 효율을 나타낸다. 반대로 겨울철에 난방을 하는 경우 공기열원은 최하 -20℃의 온도로 난방에 필요한 열을 공급하기 어려운 반면 지중열원은 10~20℃로 높아 안정적으로 난방열을 히트펌프에 공급할 수 있다.Therefore, in the case of cooling in summer, the air heat source temperature is consumed a lot of power to discharge the cooling heat to 30 ℃ or more, while the geothermal heat source is smoothly discharged to 10 ~ 20 ℃ shows a high efficiency. On the contrary, in the case of heating in winter, the air heat source is difficult to supply the heat necessary for heating at the lowest temperature of -20 ° C, while the underground heat source is 10 to 20 ° C, which can stably supply the heating heat to the heat pump.
이와 같은 지열을 이용한 히트펌프 시스템은 모든 냉난방기술 중에서 에너지효율이 가장 높은 것으로 알려져 있다. 따라서 에너지 자원이 부족하고 에너지 비용이 높은 상황에서 반드시 필요한 기술이라 할 수 있다.The geothermal heat pump system is known to have the highest energy efficiency among all air-conditioning technologies. Therefore, it is an essential technology in a situation where energy resources are scarce and energy costs are high.
일반적으로 지열을 이용한 히트펌프 시스템은 설치시 일정한 수온과 연약지층이 아닌 지질특성을 갖추어야 할 뿐만 아니라 설치시 공사기간이 오래 소요되고 비용이 많이 들며, 별도의 부지공간을 확보해야 하는 문제점이 있다. In general, the heat pump system using the geothermal heat not only has to have a constant water temperature and geological characteristics but not a soft layer, and also requires a long construction time and high cost during installation, and requires a separate site space.
한편 지열을 이용한 히트펌프 시스템으로 국내 특허등록 제10-0999400호(2010.12.2. 등록), 국내 특허등록 제10-1053825호(2011. 7.28. 등록) , 국내 특허등록 제 10-1190260호(2012.10.05)에 제안된 바 있다. On the other hand, as a heat pump system using geothermal heat, domestic patent registration No. 10-0999400 (registered on December 2, 2010), domestic patent registration No. 10-1053825 (registered on July 28, 2011), and domestic patent registration No. 10-1190260 (2012.10) .05).
상기 종래 기술들은 직접적으로 외기 온도에 무관하게 운전되고 있는 시스템들이고 또한 냉난방 2가지 사이클로 구성되어 있으며, 기본적인 시스템은 계절에 따라서 냉방, 난방을 수행하는 과정을 수행함으로써 에너지의 효율이 외기 온도에 따라서 급격히 떨어지고 있는 문제점을 갖는다. The prior art is a system that is operated directly regardless of the outside temperature, and also consists of two cycles of air conditioning and heating, and the basic system performs the process of cooling and heating according to the season, so that the energy efficiency is rapidly changed according to the outside temperature. It has a problem that is falling.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로서, 수조 내에 여름철과 겨울철의 계절적 차이에 의하여 냉방 및 난방 겸용으로 사용할 수 있는 코일 형태의 열교환부와 사방밸브를 사용하지 않은 상태에서도, 냉매의 단일 흐름에 의하여도 냉방 및 난방을 수행할 수 있도록 하여 비교적 좁은 공간에도 용이하게 설치 가능하고, 설치비도 줄일 수 있도록 할 뿐 아니라 부하 측의 남은 열을 회수하여 축열함으로써 시스템 가동에 따른 효율을 보다 향상시킨 새로운 외기 온도 감응식 냉난방 장치를 제공하고자 한다.The present invention is to solve the problems of the prior art as described above, even in the state without using a coil-shaped heat exchanger and a four-way valve that can be used for both cooling and heating due to seasonal differences in summer and winter in the tank, Cooling and heating can be performed by a single flow, so it can be easily installed in a relatively small space, and installation cost can be reduced, and the remaining heat on the load side can be recovered and regenerated to increase efficiency according to system operation. It is intended to provide an improved new outside air temperature sensitive heating and cooling system.
상기와 같은 목적을 달성하기 위해 제공되는 본 발명인 외기 온도 감응식 냉난방 장치는 냉매를 압축하여 배출하는 압축기(110), 상기 압축기(110)와 제 1 냉매주배관(210)으로 연결되는 부하측 열교환기(120), 상기 부하측 열교환기(120)와 제 2 냉매주배관(220)으로 연결되어 액화된 냉매가 저장되는 수액기(140), 상기 수액기(140)가 수용되는 수조(130), 상기 수조(130)에 배치되며, 상기 수액기(140)와 제 3 냉매주배관(230)으로 연결되는 수조용 열교환부(150), 상기 수조용 열교환부(150)와 제 4 냉매주배관(240)으로 연결되는 잠열 열교환기(160), 상기 잠열 열교환기(160)에 전기적으로 연결되는 제어부, 및 상기 제어부에 연결되는 외기 온도 감지 유닛(170)을 포함하며, 상기 제어부는 상기 외기 온도 감지 유닛(170)에서 측정되는 외기 온도 센싱을 통해 상기 잠열 열교환기(160)의 축열 또는 축냉 기능을 선택적으로 조절하는 것을 특징으로 한다.In order to achieve the above object, the present invention provides an outdoor air temperature-sensitive air-conditioning apparatus having a load side heat exchanger connected to a compressor 110 for compressing and discharging a refrigerant, the compressor 110, and a first refrigerant main pipe 210. 120, a receiver 140 connected to the load-side heat exchanger 120 and the second refrigerant main pipe 220 to store the liquefied refrigerant, a tank 130 in which the receiver 140 is accommodated, and the tank ( 130 is disposed, and connected to the water tank heat exchanger 150 and the water tank heat exchanger 150 and the fourth refrigerant main pipe 240 connected to the receiver 140 and the third refrigerant main pipe 230. And a latent heat exchanger 160, a control unit electrically connected to the latent heat exchanger 160, and an outside temperature sensing unit 170 connected to the control unit, wherein the control unit is configured at the outside temperature sensing unit 170. The latent heat exchanger (1 60) is characterized in that to selectively control the heat storage or heat storage function.
상기 제어부는 상기 제 1 내지 제 4 냉매주배관을 포함하는 냉매배관에 배치되는 하나 이상의 개폐밸브를 제어하는 것이 바람직할 수 있다.The controller may control one or more on / off valves disposed in the refrigerant pipe including the first to fourth refrigerant main pipes.
상기 잠열 열교환기(160)는 축냉용 쿨러(161), 태양열판, 또는 태양광판을 복합한 형태의 축열용 쿨러(165)인 것이 바람직할 수 있다.The latent heat exchanger 160 may be a heat storage cooler 161, a solar heat plate, or a heat storage cooler 165 of a combination of solar panels.
상기 냉난방 장치는, 상기 수액기(140)와 상기 수조용 열교환부(150)를 연결하는 상기 제 3 냉매주배관(230) 상에 배치되는 팽창밸브(190)를 더 포함하는 것이 바람직할 수 있다.The air conditioning apparatus may further include an expansion valve 190 disposed on the third refrigerant main pipe 230 connecting the receiver 140 and the water tank heat exchanger 150.
상기 수조(130)는 지중에 매설되는 제 1 수조(131) 및 상기 제 1 수조(131) 내에 수용되는 제 2 수조(132)를 포함하고, 상기 제 1 수조(131)와 상기 제 2 수조(132)는 소정 거리 이격되는 것이 바람직할 수 있다.The tank 130 includes a first tank 131 embedded in the ground and a second tank 132 accommodated in the first tank 131, wherein the first tank 131 and the second tank ( 132 may be preferably spaced a predetermined distance apart.
상기 냉난방 장치는, 상기 제 1 수조(131)와 상기 2 수조(132) 사이의 공간 내에 물을 공급 또는 배출할 수 있는 펌핑 수단이 마련되는 것이 바람직할 수 있다.The cooling and heating device may be provided with pumping means for supplying or discharging water in the space between the first tank 131 and the second tank 132.
상기 냉난방 장치는, 상기 수조(130)는 지중의 열을 받을 수 있도록 상기 지중에 매립되는 형태의 지중 코일(133)을 포함하며, 상기 지중 코일(133)의 내부에 물이 유동할 수 있는 공간이 형성되는 것이 바람직할 수 있다.The air-conditioning device, the water tank 130 includes an underground coil 133 is embedded in the ground so as to receive the heat of the ground, the space in which water flows inside the underground coil 133 It may be desirable to form this.
여름철 냉방 모드는, 상기 수조용 열교환부(150)로의 냉매의 유동이 차단되는 것이 바람직할 수 있다.In the summer cooling mode, it may be preferable that the flow of the refrigerant to the tank heat exchanger 150 is blocked.
상기 냉방 모드에서 냉매는 상기 압축기(110), 상기 잠열 열교환기(160), 상기 수액기(140), 상기 부하측 열교환기(120) 및 액분리기(180)를 거쳐 상기 압축기(110)로 유입되는 것이 바람직할 수 있다.In the cooling mode, the refrigerant flows into the compressor 110 through the compressor 110, the latent heat exchanger 160, the receiver 140, the load side heat exchanger 120, and the liquid separator 180. It may be desirable.
겨울철 난방 모드는, 상기 잠열 열교환기(160)로의 냉매의 유동이 차단되는 것이 바람직할 수 있다.In the winter heating mode, it may be preferable that the flow of the refrigerant to the latent heat exchanger 160 is blocked.
상기 난방 모드에서 냉매는 상기 압축기(110), 상기 부하측 열교환기(120), 상기 수액기(140), 상기 수조용 열교환부(150) 및 상기 액분리기(180)를 거쳐 상기 압축기(110)로 유입되는 것이 바람직할 수 있다.In the heating mode, the refrigerant passes through the compressor 110, the load side heat exchanger 120, the receiver 140, the water tank heat exchanger 150, and the liquid separator 180 to the compressor 110. It may be desirable to enter.
축열 또는 축냉 모드를 수행하는 경우에, 상기 부하측 열교환기(120) 및 상기 수액기(140)로의 냉매의 유동이 차단되는 것이 바람직할 수 있다.When performing the heat storage or heat storage mode, it may be preferable that the flow of the refrigerant to the load side heat exchanger 120 and the receiver 140 is blocked.
상기 축열 또는 축냉 모드에서 냉매는 상기 압축기(110), 상기 수조용 열교환부(150), 상기 잠열 열교환기(160) 및 액분리기(180)를 거쳐 상기 압축기(110)로 유입되는 것이 바람직할 수 있다.In the heat storage or heat storage mode, the refrigerant may be introduced into the compressor 110 through the compressor 110, the water tank heat exchanger 150, the latent heat exchanger 160, and the liquid separator 180. have.
상기 제 2 냉매주배관(220) 상에 배치되는 보조 응축용 열교환부(145);를 더 포함하며, 상기 보조 응축용 열교환부(145)는 상기 수조(130) 내에 배치되는 것이 바람직할 수 있다.The auxiliary condensation heat exchange part 145 disposed on the second refrigerant main pipe 220 may further include, and the auxiliary condensation heat exchange part 145 may be disposed in the water tank 130.
상기와 같이 본 발명은 단일 저수조 내에 냉방 및 난방 겸용으로 사용할 수 있는 코일 형태의 열교환부와 사방밸브를 사용하지 않고도, 즉 냉매의 단일 흐름에 의하여도 냉방 및 난방을 수행할 수 있도록 하여 비교적 좁은 공간에도 용이하게 설치 가능하고, 설치비도 줄일 수 있도록 할 뿐만 아니라 부하 측의 남은 열을 회수하여 축열함으로써 시스템 가동에 따른 에너지 소모량을 줄일 수 있도록 한다.As described above, the present invention provides a relatively small space by allowing the cooling and heating to be performed by a single flow of refrigerant without using a coil-type heat exchanger and a four-way valve that can be used for both cooling and heating in a single reservoir. In addition, it can be easily installed and the installation cost can be reduced, and the remaining heat on the load side can be recovered and regenerated to reduce energy consumption due to system operation.
더불어, 본 발명은 보조 응축용 열교환부에 의하여 냉매의 완전 응축이 가능하여 전체적인 효율이 상승되도록 함으로써 효율성과 실용성을 갖춘 냉난방 장치를 제공한다.In addition, the present invention provides a heating and cooling device with efficiency and practicality by enabling the complete condensation of the refrigerant by the auxiliary heat exchanger to allow the overall efficiency to be increased.
도 1은 본 발명의 일 실시예에 따른 외기 온도 감응식 냉난방 장치의 계통도, 1 is a schematic diagram of an outside air temperature-sensitive air conditioning device according to an embodiment of the present invention;
도 2는 겨울철 난방을 수행하는 경우의 작동도,2 is an operation diagram when performing winter heating,
도 3은 여름철 냉방을 수행하는 경우의 작동도,3 is an operation diagram when performing summer cooling,
도 4는 난방을 위한 축열 또는 냉방을 위한 축냉 모드일 때의 작동도, 및4 is an operation diagram when in the heat storage mode for the heat storage or cooling for heating, and
도 5는 본 발명의 다른 실시예에 따른 외기 온도 감응식 냉난방 장치에서 수조가 지중에 설치된 경우를 보이는 계통도이다.5 is a system diagram showing a case where the water tank is installed in the ground in the air temperature-sensitive air-conditioning device according to another embodiment of the present invention.
본 발명의 상기와 같은 목적, 특징 및 다른 장점들은 첨부도면을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명함으로써 더욱 명백해질 것이다. 기술되는 실시예는 발명의 설명을 위해 예시적으로 제공되는 것이며, 본 발명의 기술적 범위를 한정하는 것은 아니다.The above objects, features and other advantages of the present invention will become more apparent by describing the preferred embodiments of the present invention in detail with reference to the accompanying drawings. The described embodiments are provided by way of example for purposes of illustration, and do not limit the technical scope of the present invention.
본 발명인 외기 온도 감응식 냉난방 장치는 필요에 따라 일체형으로 제조되거나 각각 분리되어 제조될 수 있다. 또한, 사용 형태에 따라 일부 구성요소를 생략하여 사용이 가능하다.The air temperature-sensing air-conditioning device of the present invention may be manufactured integrally or separately separated as needed. In addition, some components may be omitted depending on the form of use.
본 발명에 배치되는 냉매주배관 및 냉매보조배관은 냉매배관으로 통칭한다.The refrigerant main pipe and the refrigerant auxiliary pipe disposed in the present invention are referred to collectively as the refrigerant pipe.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예에 따른 외기 온도 감응식 냉난방 장치를 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail the air temperature-sensitive air-conditioning device according to an embodiment of the present invention.
외기 온도 감응식 냉난방 장치의 제 1 실시예(100) First Embodiment 100 of an Outside Temperature Sensing and Heating Device
상기 외기 온도 감응식 냉난방 장치(100)는 냉매를 압축하여 배출하는 압축기(110), 압축기(110)와 제 1 냉매주배관(210)으로 연결되는 부하측 열교환기(120), 부하측 열교환기(120)와 제 2 냉매 주배관(220)으로 연결되어 액화된 냉매가 저장되는 수액기(140), 수액기(140)가 수용되는 수조(130), 수액기(140)와 제 3 냉매주배관(230)으로 연결되어 수조(130)에 배치되는 수조용 열교환부(150), 수액기(140)와 수조용 열교환부(150)를 연결하는 제 3 냉매주배관(230) 상에 배치되는 팽창밸브(190), 수조용 열교환부(150)와 제 4 냉매주배관(240)으로 연결되는 잠열 열교환기(160), 제 5 냉매주배관(250)을 통해 제 4 냉매주배관(240)에 연통하는 동시에 제 6 냉매주배관(260)을 통해 압축기(110)에 연통하는 액분리기(180) 및 온도감지관로(270)를 통해 본 발명의 제 6 냉매주배관(260)에 연결되는 외기 온도 감지 유닛(170)을 포함한다.The outside temperature-sensitive air-conditioning and heating device 100 is a compressor 110 for compressing and discharging a refrigerant, a load side heat exchanger 120 and a load side heat exchanger 120 connected to the compressor 110 and the first refrigerant main pipe 210. To the second refrigerant main pipe 220 and to the receiver 140 storing the liquefied refrigerant, the tank 130 in which the receiver 140 is accommodated, the receiver 140 and the third refrigerant main pipe 230. An expansion valve 190 connected to the third heat exchanger unit 150 connected to the water tank 130, the receiver 140, and the third refrigerant main pipe 230 connecting the water tank heat exchanger 150, The sixth refrigerant main pipe while communicating with the fourth refrigerant main pipe 240 through the latent heat exchanger 160 connected to the water tank heat exchanger 150 and the fourth refrigerant main pipe 240 and the fifth refrigerant main pipe 250. Outside connected to the sixth refrigerant main pipe 260 of the present invention through the liquid separator 180 and the temperature sensing pipe 270 in communication with the compressor 110 through the 260. It includes a temperature sensing unit (170).
부하측 열교환기(120)는 냉매유동로와 물유동로가 서로 열교환하도록 마련된다. 부하측 열교환기(120)는 일 실시예로서 판형 열교환기가 채택될 수 있다. 본 발명의 부하측 열교환기(120)는 증발 및 응축이 쉽게 가능하도록 집열 증발기와 집냉 응축기를 구성할 수 있다.The load side heat exchanger 120 is provided such that the refrigerant flow passage and the water flow passage exchange heat with each other. The load side heat exchanger 120 may adopt a plate heat exchanger as an embodiment. The load-side heat exchanger 120 of the present invention may constitute a collection evaporator and a cooling condenser so as to easily evaporate and condense.
수조(130)에는 물이 저장되어 있다. 상기 수조(130)는 지중에 매설할 수도 있고 지상에 설치할 수도 있다. 한편, 빗물저류조, 생활수조, 소화수조, 하수조, 정수조 및 기타 에너지사용처에 구비되어 있는 여러가지 수조를 겸용으로 활용할 수 있다.Water is stored in the tank (130). The tank 130 may be buried underground or installed on the ground. Meanwhile, rainwater storage tanks, living water tanks, digestive water tanks, sewage tanks, water purification tanks, and other various types of water tanks provided for energy use can be used as a combination.
수액기(140)에는 액화된 냉매가 저장된다. 수액기(140)는 일 실시예로서 수조(130) 내부에 마련된다.The receiver 140 stores the liquefied refrigerant. The receiver 140 is provided in the tank 130 as an embodiment.
아울러, 수조(130)에는 수조용 열교환부(150)가 마련된다. 수조용 열교환부(150)는 코일 형태의 열교환기가 이용된다.In addition, the water tank 130 is provided with a heat exchange unit 150 for the water tank. The tank heat exchanger 150 uses a coil heat exchanger.
잠열 열교환기(160)는 응축기로 사용 가능한 축냉용 쿨러(161), 태양열판, 및 태양광판을 복합한 형태의 축열용 쿨러(165)를 포함한다. 본 발명에서 축냉용 쿨러(161)는여름철에 냉방을 위주로 하는 경우로 사용하고, 축열용 쿨러(165)는 겨울철에 난방을 위주로 하는 경우에 사용할 수 있다.The latent heat exchanger 160 includes a heat storage cooler 161 that can be used as a condenser, a solar heat plate, and a heat storage cooler 165 of a combination of solar panels. In the present invention, the heat storage cooler 161 may be used for cooling in summer, and the heat storage cooler 165 may be used for heating in winter.
여기에서, 제 1 내지 제 6 냉매주배관(210,220,230,240,250,260)은 본 발명의 외기 온도 감응식 냉난방 장치(100)를 난방 모드로 구동하는 경우에 냉매의 이동 경로를 나타낼 수 있다.Herein, the first to sixth refrigerant main pipes 210, 220, 230, 240, 250, and 260 may represent a movement path of the refrigerant when the external temperature sensitive air conditioning apparatus 100 of the present invention is driven in a heating mode.
한편, 본 발명인 외기 온도 감응식 냉난방 장치(100)를 구성하는 각 구성요소들 및 냉매주배관들(210,220,230,240,250,260)을 연결하는 냉매보조배관들이 사용될 수 있다.On the other hand, the refrigerant auxiliary pipes connecting the components and the refrigerant main pipes 210, 220, 230, 240, 250, 260 constituting the air temperature-sensitive air-conditioning device 100 of the present invention can be used.
제 1 냉매보조배관(310)은 그 일단부가 제 1 냉매주배관(210)과 연결되며, 그 타단부가 잠열 열교환기(160)와 연결된다.One end of the first refrigerant auxiliary pipe 310 is connected to the first refrigerant main pipe 210, and the other end thereof is connected to the latent heat exchanger 160.
제 2 냉매보조배관(320)은 그 일단부가 잠열 열교환기(160)와 연결되고 그 타단부는 수액기(140)의 입구와 연결된다.One end of the second refrigerant auxiliary pipe 320 is connected to the latent heat exchanger 160, and the other end thereof is connected to the inlet of the receiver 140.
제 3 냉매보조배관(330)은 그 일단부가 제 3 냉매주배관(230)에 연결되고 그 타단부는 제 1 냉매주배관(210)에 연결된다.One end of the third refrigerant auxiliary pipe 330 is connected to the third refrigerant main pipe 230 and the other end thereof is connected to the first refrigerant main pipe 210.
제 4 냉매보조배관(340)은 그 일단부가 부하측 열교환기(120)에 연결되고 타단부는 제 4 냉매주배관(240)에 연결된다.One end of the fourth refrigerant auxiliary pipe 340 is connected to the load side heat exchanger 120, and the other end thereof is connected to the fourth refrigerant main pipe 240.
제 5 냉매보조배관(350)은 그 일단부가 수조용 열교환부(150)에 연결되고 그 타단부는 잠열 열교환기(160)에 연결된다.One end of the fifth refrigerant auxiliary pipe 350 is connected to the water tank heat exchanger 150, and the other end thereof is connected to the latent heat exchanger 160.
상기와 같은 제 1 내지 제 5 냉매보조배관(310,320,330,340,350)이 이루는 냉매 순환유로에 의하여 여름철 냉방을 위한 냉매의 순환 유동 및 축열 유동이 가능하게 된다.By the refrigerant circulation passage formed by the first to fifth refrigerant auxiliary pipes 310, 320, 330, 340, and 350 as described above, the circulation flow and the heat storage flow of the refrigerant for cooling in summer are possible.
상술한 제 1 내지 제 6 냉매주배관(210,220,230,240,250,260) 및 제 1 내지 제 5 냉매보조배관(310,320,330,340,350) 에는 제어부에 전기적으로 연결되는 개폐밸브, 유량계, 압력계, 및 온도계 등이 설치될 수 있고, 설치 장소, 개수, 간격 등은 변경이 가능하다.The first to sixth refrigerant main pipes 210, 220, 230, 240, 250 and 260 and the first to fifth refrigerant auxiliary pipes 310, 320, 330, 340 and 350 may be provided with an on / off valve electrically connected to a control unit, a flow meter, a pressure gauge, a thermometer, and the like. The number, interval, etc. can be changed.
외기 온도 감지 유닛(170)은 제어부를 통해 잠열 열교환기(160) 및 냉매주배관 및 냉매보조배관에 배치되는 복수의 개폐밸브에 전기적으로 연결된다. 즉, 제어부는 외기 온도 감지 유닛(170)으로부터 측정되는 온도 결과에 따라 복수의 개폐밸브에 선택적으로 개폐 신호를 제공함으로써 난방 모드, 냉방 모드 및 축열 모드 중 어느 하나의 구동 모드로 작동가능하게 한다. The outside temperature sensing unit 170 is electrically connected to the latent heat exchanger 160 and the plurality of open / close valves disposed in the refrigerant main pipe and the refrigerant auxiliary pipe through the control unit. That is, the controller selectively operates the driving mode of any one of the heating mode, the cooling mode, and the heat storage mode by selectively providing the opening / closing signal to the plurality of opening / closing valves according to the temperature result measured from the outside temperature sensing unit 170.
제어부는 외기 온도 결과에 따라 잠열 열교환기(160)에 축열 내지 축냉을 실시하도록 한다. 구체적으로, 겨울철에 난방을 실시하는 경우 야간보다는 주간에 열원을 취득하기가 용이하므로 외기 온도 감지 유닛(170)에서 센싱되는 온도를 이용하여 태양열판 또는 태양광판을 복합한 형태의 축열용 쿨러(165)를 채용함으로써 유동하는 냉매를 증발한 후에 상기 냉매에 저장된 열을 수조(130)에 저장한 후 야간에 난방용으로 사용하게 한다.The control unit causes the latent heat exchanger 160 to perform heat storage or heat storage according to the result of the outside temperature. Specifically, in the case of heating in winter, it is easier to acquire a heat source during the day than at night, and thus, a heat storage cooler having a solar panel or a solar panel composite using a temperature sensed by the outside temperature sensing unit 170. After the evaporation of the flowing refrigerant to store the heat stored in the coolant in the water tank 130 and to use for heating at night.
외기 온도 감응식 냉난방 장치의 제 2 실시예(100')Second Embodiment 100 'of an Outside Temperature Sensing Air Conditioning Unit
한편, 도 5를 참조하여 다른 실시예에 따른 외기 온도 감응식 냉난방 장치(100')를 설명한다.On the other hand, with reference to Figure 5 will be described in the air temperature-sensitive air-conditioning device 100 'according to another embodiment.
외기 온도 감응식 냉난방 장치(100')은 수조(130')가 지중에 설치된다.In the air temperature-sensitive air-conditioning apparatus 100 ', a water tank 130' is installed in the ground.
수조(130')는 지중에 매설되는 제 1 수조(131) 및 상기 제 1 수조(131)와 소정 간격 이격된 상태로 제 1 수조(131)의 내부에 배치되는 제 2 수조(132)를 포함한다. 여기에서 제 1 수조(131)와 제 2 수조(132) 사이의 이격공간을 열전도개폐부(131a)로 정의한다. 이와 같은 구조로 수조(130')는 제 1,2 수조(131, 132)를 갖는 이중 탱크 구조이다. 일 실시예로서 제 2 수조(132)에 수용되는 열전도물질은 제 1 수조(131)의 외벽과 바닥을 모두 감싸는 구조일 수 있다. 다른 실시예로서 제 2 수조(132)의 물이 제 1 수조(131)의 외벽 만을 감싸도록 형성할 수 있다.The tank 130 ′ includes a first tank 131 embedded in the ground and a second tank 132 disposed inside the first tank 131 spaced apart from the first tank 131 by a predetermined interval. do. Here, the space between the first tank 131 and the second tank 132 is defined as the heat conduction opening and closing part 131a. In such a structure, the water tank 130 ′ has a double tank structure having first and second water tanks 131 and 132. In one embodiment, the heat conductive material accommodated in the second water tank 132 may have a structure surrounding both the outer wall and the bottom of the first water tank 131. In another embodiment, the water of the second tank 132 may be formed to surround only the outer wall of the first tank 131.
제 1 수조(131)는 지중으로부터 직접적으로 지열을 받는다. 제 2 수조(132)는 제 1 수조(131)를 매개하여 지중의 지열을 받게 된다.The first tank 131 receives geothermal heat directly from the ground. The second tank 132 receives ground heat through the first tank 131.
열전도개폐부(131a)에 수용되는 열전도물질은 계절에 따라 다른 물질로 채워질 수 있다. 열전도물질은 여름철에는 지중으로부터의 지열이 직접적으로 제 2 수조(132)로 전달되는 것을 차단하기 위해서 공기와 같이 단열성이 우수한 물질일 수 있고, 겨울철에는 지중으로부터의 지열이 효과적으로 제 2 수조(132)로 전달될 수 있도록 물과 같이 상대적으로 전도성이 높은 물질일 수 있다.The thermally conductive material accommodated in the thermally conductive opening and closing portion 131a may be filled with different materials according to seasons. The thermally conductive material may be a material having excellent thermal insulation, such as air, in order to block the direct transfer of geothermal heat from the ground to the second tank 132 in summer, and the second tank 132 in the winter in the ground. It may be a relatively conductive material, such as water, so that it can be delivered to.
열전도개폐부(131a)에 수용되는 열전도물질이 물인 경우에는, 제 1 수조(131) 내의 물을 비우거나 채울 수 있는 펌핑 수단이 마련될 수 있다. 즉, 제 1 수조(131)와 제 2 수조(132)는 상기 펌핑 수단을 통해 채워지는 물을 매개로 하여 열전달이 가능하게 된다.When the heat conductive material accommodated in the heat conduction opening and closing part 131a is water, pumping means for emptying or filling water in the first water tank 131 may be provided. That is, the first tank 131 and the second tank 132 is capable of heat transfer through the water filled through the pumping means.
구체적으로는, 제 1 수조(131)의 물이 채워지면 제 2 수조(132)는 제 1 수조(131)내의 물을 통하여 지열을 받지만, 제 1 수조(131)의 물이 비워지면 제 2 수조(132)는 지열로부터 단열되는 상태가 된다.Specifically, when the water in the first tank 131 is filled, the second tank 132 receives geothermal heat through the water in the first tank 131, but when the water in the first tank 131 is empty, the second tank 132 is filled. 132 becomes a state insulated from geothermal heat.
펌핑 수단을 이용하여 여름철에는 제 1 수조(131)의 물을 비워, 제 2 수조(132)가 지열을 받지 않도록 지열을 차단할 수 있다. 이와 같이, 여름철에는 제 2 수조(132)의 물이 상대적으로 고온인 지열을 받는 것을 차단함으로써 제 2 수조(132)의 물은 가급적 냉각되는 것이 바람직할 수 있다. 같은 원리로, 펌핑 수단을 이용하여 겨울철에는 제 1 수조(131)의 물을 채워, 제 2 수조(132)가 제 1 수조(131)를 매개하여 지열을 받을 수 있다. 이와 같이, 겨울철에는 제 2 수조(132)의 물이 상대적으로 고온인 지열을 받게 함으로써 제 2 수조(130)의 물은 가열되는 것이 바람직할 수 있다.In the summer, the first tank 131 may be emptied using a pumping means, and the second tank 132 may block the geothermal heat so as not to receive the geothermal heat. As such, in summer, the water in the second tank 132 may be preferably cooled by blocking the water of the second tank 132 from receiving relatively high temperature geothermal heat. In the same principle, the water in the first tank 131 may be filled in winter using a pumping means, and the second tank 132 may receive geothermal heat through the first tank 131. As such, in winter, the water of the second tank 130 may be heated by receiving geothermal heat of relatively high temperature.
한편, 수조(130, 130')에는 지중의 열을 더욱 잘 받을 수 있도록 지중에 매립되는 형태로 지중 코일(133)이 마련된다. 지중 코일(133)의 내부는 수조(130, 130')의 물이 유동할 수 있는 공간이 형성된다. 따라서, 수조(130, 130')의 물은 지중 코일(133)을 통하여 지열을 효과적으로 흡수할 수 있게 된다. 또한, 수조(130, 130')의 물이 지중 코일(133)을 순환하도록 지중 코일(133)에는 지중 코일용 펌프(132a)가 마련된다.On the other hand, the water tank (130, 130 ') is provided with an underground coil 133 in a form buried in the ground to receive the heat of the ground better. The interior of the underground coil 133 has a space in which water in the tanks 130 and 130 'can flow. Accordingly, the water in the water tanks 130 and 130 'can effectively absorb the geothermal heat through the underground coil 133. In addition, the underground coil 133 is provided with an underground coil pump 132a so that water in the water tanks 130 and 130 'circulates through the underground coil 133.
지중 코일용 펌프(132a)는 주로 겨울철에만 작동되어 수조(130, 130')의 물이 지열을 받을 수 있도록 한다. 여름철의 경우에는 수조(130, 130')의 물은 지열을 받지 않는 것이 바람직하다.The underground coil pump 132a is mainly operated only in winter to allow the water of the tanks 130 and 130 'to receive geothermal heat. In summer, the water of the tanks 130 and 130 'is preferably not subjected to geothermal heat.
한편, 지중 코일용 펌프(132a)는 수조(130, 130')의 물을 혼합함으로써 상기 수조(130, 130')의 물이 골고루 혼합되도록 가동될 수 있다.Meanwhile, the underground coil pump 132a may be operated to mix the water in the water tanks 130 and 130 'by mixing the water in the water tanks 130 and 130'.
외기 온도 감응식 냉난방 장치(100)의 난방 모드Heating mode of outside temperature sensitive air-conditioning device 100
이하, 본 발명인 외기 온도 감응식 냉난방 장치(100)의 난방 모드를 설명하면 다음과 같다. 난방 모드에서 냉매의 변화는 압축 -> 제 1 응축 -> 제 2 응축 -> 팽창 -> 증발 -> 압축의 순환 시스템을 이루게 된다.Hereinafter, the heating mode of the outside air temperature sensitive air-conditioning apparatus 100 of the present invention will be described. In the heating mode, the change of refrigerant forms a circulation system of compression-> first condensation-> second condensation-> expansion-> evaporation-> compression.
압축기(110)에서 압축된 고온 고압의 냉매 가스는 제 1 냉매주배관(210)을 지나 부하측 열교환기(120)의 냉매 유동로로 유입되어 먼저 응축된다(제 1 응축). 즉, 부하측 열교환기(120)는 응축기로서 기능하며, 부하측 열교환기(120)의 냉매 유동로를 지나는 냉매는 부하측 열교환기(120)의 물 유동로를 지나는 물에 열을 방출한다.The refrigerant gas of the high temperature and high pressure compressed by the compressor 110 flows into the refrigerant flow path of the load-side heat exchanger 120 after passing through the first refrigerant main pipe 210 and condenses first (first condensation). That is, the load side heat exchanger 120 functions as a condenser, and the refrigerant passing through the refrigerant flow path of the load side heat exchanger 120 discharges heat to water passing through the water flow path of the load side heat exchanger 120.
부하측 열교환기(120)의 냉매 유동로를 지난 냉매는 제 2 냉매주배관(220)을 지나며, 특히 냉매는 보조 응축용 열교환부(145)로 유입된다. 이때, 보조 응축용 열교환부(145)는 부하측 열교환기(120)의 냉매 유동로에서 응축되지 않은 잔여 냉매를 완전히 응축시키게 된다(제 2 응축). 즉, 보조 응축용 열교환부(145)는 수조(130)의 물에 열을 방출하게 된다. 보조 응축용 열교환부(145)를 지난 냉매는 수액기(140)에 저장된다.The refrigerant passing through the refrigerant flow path of the load-side heat exchanger 120 passes through the second refrigerant main pipe 220. In particular, the refrigerant flows into the auxiliary heat exchange unit 145. At this time, the auxiliary condensation heat exchanger 145 completely condenses the remaining refrigerant that is not condensed in the refrigerant flow path of the load-side heat exchanger 120 (second condensation). In other words, the auxiliary condensation heat exchanger 145 releases heat to the water in the water tank 130. The refrigerant passing through the auxiliary condensation heat exchanger 145 is stored in the receiver 140.
상기와 같이 본 발명에 따른 외기 온도 감응식 냉난방 장치(100)는 보조 응축용 열교환부(145)에 의하여 냉매의 완전 응축이 가능하여 전체적인 효율이 상승한다. 또한, 수조(130)의 물은 수조용 열교환부(150)와 보조 응축용 열교환부(145)의 상호 작용에 의하여 그 항온성을 높일 수 있다.As described above, the air temperature-sensitive air-conditioning and heating device 100 according to the present invention is capable of fully condensing the refrigerant by the heat exchange unit 145 for auxiliary condensation, thereby increasing the overall efficiency. In addition, the water of the water tank 130 may increase its constant temperature by the interaction between the water tank heat exchanger 150 and the auxiliary condensation heat exchanger 145.
수액기(140)의 냉매는 제 3 냉매주배관(230) 상의 팽창밸브(190)에서 팽창된 후 수조용 열교환부(150)로 유입된다. 수조용 열교환부(150)로 유입된 냉매는 증발하면서 수조(130)의 물로부터 열을 흡수하게 된다. 즉, 수조(130)의 물을 냉각하게 된다.The refrigerant of the receiver 140 is expanded by the expansion valve 190 on the third refrigerant main pipe 230 and then flows into the water tank heat exchange unit 150. The refrigerant introduced into the tank heat exchanger 150 absorbs heat from the water of the tank 130 while evaporating. That is, the water of the tank 130 is cooled.
수조용 열교환부(150)를 지난 냉매는 제 4,5 냉매주배관(240,250)을 거쳐 액분리기(180)로 유입된 후 제 6 냉매주배관(260)을 거쳐 압축기(110)로 유입된다.The refrigerant passing through the water tank heat exchanger 150 flows into the liquid separator 180 through the fourth and fifth refrigerant main pipes 240 and 250 and then flows into the compressor 110 through the sixth refrigerant main pipe 260.
외기 온도 감응식 냉난방 장치(100)의 냉방 모드Cooling mode of the outside air temperature sensitive air conditioning unit 100
다음, 본 발명인 외기 온도 감응식 냉난방 장치(100)의 냉방 모드를 설명하면 다음과 같다. 냉방 모드에서 냉매의 변화는 난방 모드와 마찬가지로 압축 -> 제 1 응축 -> 제 2 응축 -> 팽창 -> 증발 -> 압축의 순환 시스템을 이루게 된다. 다만, 부하측 열교환기(120)에서의 기능이 난방 모드와는 반대로 진행된다. 즉, 부하측 열교환기(120)는 난방 모드에서 응축 기능을 수행하지만 냉방 모드에서는 증발 기능을 수행한다.Next, the cooling mode of the outside air temperature-sensitive air-conditioning device 100 of the present invention will be described. In the cooling mode, the change of refrigerant forms the circulation system of compression-> first condensation-> second condensation-> expansion-> evaporation-> compression. However, the function at the load side heat exchanger 120 proceeds in the opposite manner to the heating mode. That is, the load-side heat exchanger 120 performs the condensation function in the heating mode but the evaporation function in the cooling mode.
냉방 모드는, 압축기(110)에서 압축된 고온 고압의 냉매 가스가 제 1 냉매주배관(210) 및 제 1 냉매보조배관(310)을 거쳐 잠열 열교환기(160)로 이송된다. 잠열 열교환기(160)에서 응축이 이루어진 냉매는 제 2 냉매보조배관(320) 및 제 2 냉매주배관(220)을 거쳐 수액기(140)에 저장된다. 이후, 제 3 냉매보조배관(330) 및 제 3 냉매주배관(230)을 거쳐 부하측 열교환기(120)에서 증발이 이루어진다. 다음으로, 제 4 냉매보조배관(340), 제 4 냉매주배관(240) 및 제 5 냉매주배관(250)을 거쳐 액분리기(180)로 유입된 후 제 6 냉매주배관(260)을 거쳐 압축기(110)로 유입된다.In the cooling mode, the high temperature and high pressure refrigerant gas compressed by the compressor 110 is transferred to the latent heat exchanger 160 via the first refrigerant main pipe 210 and the first refrigerant auxiliary pipe 310. The refrigerant condensed in the latent heat exchanger 160 is stored in the receiver 140 via the second refrigerant auxiliary pipe 320 and the second refrigerant main pipe 220. Thereafter, evaporation is performed in the load-side heat exchanger 120 via the third refrigerant auxiliary pipe 330 and the third refrigerant main pipe 230. Next, after entering the liquid separator 180 through the fourth refrigerant auxiliary pipe 340, the fourth refrigerant main pipe 240 and the fifth refrigerant main pipe 250, the compressor 110 through the sixth refrigerant main pipe 260. Flows into).
외기 온도 감응식 냉난방 장치(100)의 축열 및 축냉 모드Heat storage and cold storage mode of the outside air temperature-sensitive air conditioning unit 100
다음, 본 발명인 외기 온도 감응식 냉난방 장치(100)의 축열 및 축냉 모드를 설명하면 다음과 같다.Next, the heat storage and the heat storage mode of the outside air temperature-sensitive air-conditioning device 100 of the present invention will be described.
축열 모드는 압축기(110)에서 압축된 고온 고압의 냉매 가스가 제 1 냉매주배관(210) 및 제 3 냉매주배관(230)을 거쳐 수조용 열교환부(150)로 이송된다. 수조용 열교환부(150)에서 응축된 냉매는 제 5 냉매보조배관(350)을 거쳐 잠열 열교환기(160)로 이송된다. 잠열 열교환기(160)에서 증발된 냉매는 제 4 냉매주배관(240) 및 제 5 냉매주배관(250)을 거쳐 액분리기(180)로 유입된 후 제 6 냉매주배관(260)을 거쳐 압축기(110)로 유입된다. 상기 축열 모드에서 잠열 열교환기(160)로는 태양열판 또는 태양광판을 복합한 형태의 축열용 쿨러(165)가 바람직할 수 있다.In the heat storage mode, the refrigerant gas of the high temperature and high pressure compressed by the compressor 110 is transferred to the water tank heat exchange part 150 through the first refrigerant main pipe 210 and the third refrigerant main pipe 230. The refrigerant condensed in the water tank heat exchanger 150 is transferred to the latent heat exchanger 160 via the fifth refrigerant auxiliary pipe 350. The refrigerant evaporated in the latent heat exchanger 160 flows into the liquid separator 180 through the fourth refrigerant main pipe 240 and the fifth refrigerant main pipe 250, and then passes through the sixth refrigerant main pipe 260 to the compressor 110. Flows into. In the heat storage mode, as the latent heat exchanger 160, a heat storage cooler 165 having a solar plate or a combination of the solar plates may be preferable.
본 발명은 축열시 특히 열원 측의 수조온도가 낮기 때문에 응축 압력이 낮아져 적은 압축 동력으로 열원의 온도를 쉽게 올릴 수 있다.In the present invention, the heat condensation pressure is low because the water tank temperature on the heat source side is particularly low, so that the temperature of the heat source can be easily increased with little compression power.
한편, 축냉 모드는 압축기(110)에서 압축된 냉매 가스가 제 1 냉매주배관(210) 및 제 3 냉매주배관(230)을 거쳐 수조용 열교환부(150)로 이송된다. 수조용 열교환부(150)에서 증발된 냉매는 제 5 냉매보조배관(350)을 거쳐 잠열 열교환기(160)로 이송된다. 잠열 열교환기(160)에서 응축된 냉매는 제 4 냉매주배관(240) 및 제 5 냉매주배관(250)을 거쳐 액분리기(180)로 유입된 후 제 6 냉매주배관(260)을 거쳐 압축기(110)로 유입된다. 상기 축냉 모드에서 잠열 열교환기(160)로는 축냉용 쿨러(161)가 바람직할 수 있다.Meanwhile, in the cold storage mode, the refrigerant gas compressed by the compressor 110 is transferred to the water tank heat exchange part 150 through the first refrigerant main pipe 210 and the third refrigerant main pipe 230. The refrigerant evaporated in the water tank heat exchanger 150 is transferred to the latent heat exchanger 160 via the fifth refrigerant auxiliary pipe 350. The refrigerant condensed in the latent heat exchanger 160 flows into the liquid separator 180 through the fourth refrigerant main pipe 240 and the fifth refrigerant main pipe 250, and then passes through the sixth refrigerant main pipe 260 to the compressor 110. Flows into. In the cold storage mode, the latent heat exchanger 160 may be a cool storage cooler 161.
본 발명인 외기 온도 감응식 냉난방 장치(100)는 별도의 2차 냉매를 사용하지 않고 동일 냉매로 축열 및 축냉 잠열 사이클을 구현하므로서, 3가지 사이클인 난방, 냉방 및 축열(축냉) 사이클을 구현할 수 있다. 여기서 축열 및 축냉 사이클 모드의 냉매 변화는 압축 -> 응축 -> 팽창 -> 증발 -> 압축의 순환 시스템을 이루게 된다.The outside air temperature-sensitive air-conditioning apparatus 100 of the present invention may implement three cycles of heating, cooling, and heat storage (heat storage) cycles by implementing the heat storage and heat storage latent heat cycles with the same refrigerant without using a separate secondary refrigerant. . Here, the change of the refrigerant in the heat storage and refrigerating cycle modes constitutes a circulation system of compression-> condensation-> expansion-> evaporation-> compression.
일반적으로 종래의 경우에는 냉방 및 난방 사이클에서 겨울철 및 여름철의 주야간의 외기 온도 차가 평균 약 20℃ 내외로 이 온도차의 자연에너지를 충분히 활용하지 못하고 있는 반면, 본 발명은 겨울철에는 야간에 난방 열원을 확보하기 위하여 주로 주간에 외기온도가 높거나, 빛의 에너지가 많거나, 폐열원이 많은 위치에 냉매가 잘 증발되도록 열교환기를 설치하여 냉매를 증발하게 하고, 압축 후 수조에 축열한 후 부하측 사용시간에 증발 열원으로 활용함으로써 자연 에너지를 최대한 이용하게 한다. 이를 통해 성적 계수와 효율성을 높일 수 있다. In general, in the conventional case, the temperature difference between the outside air temperature during winter and summer during the cooling and heating cycles is about 20 ° C. on average, but the natural energy of the temperature difference is not sufficiently utilized. In order to maintain the evaporation of the refrigerant by installing a heat exchanger so that the refrigerant evaporates well at a place where the outside temperature is high, the energy of the light, or the waste heat source is high during the daytime, the refrigerant is stored in a water tank after compression, Make the best use of natural energy by using it as an evaporative heat source. This can increase your grade factor and efficiency.
난방부하(응축열량(100%))= 압축열량(30%) + 증발열량(70%)Heating load (heat of condensation (100%)) = heat of compression (30%) + heat of evaporation (70%)
난방 모드에서 난방부하는 상기의 식으로 이루어질 수 있는데, 여기에서 증발열량(70%)은 수조(130)의 물을 통해 냉매 스스로가 증발하여 취득하는 자연 에너지이고, 압축열량(30%)은 실제 사용 에너지이므로 난방시에는 냉매가 지속적으로 증발할수만 있으면 에너지를 70%를 절감할 수 있다. 그렇기 때문에 안정적인 증발열원 확보가 가장 중요하다고 할 수 있고, 증발열원의 확보가 일정조건 이상으로 확보되면 70% 이상으로 에너지를 절감할 수 있다.Heating load in the heating mode can be made by the above equation, wherein the heat of evaporation (70%) is the natural energy obtained by evaporation of the refrigerant itself through the water of the tank 130, the heat of compression (30%) is actually Since the energy used, if the refrigerant can continuously evaporate during heating, energy can be saved by 70%. Therefore, it can be said that securing a stable evaporation heat source is the most important, and if the securing of the evaporation heat source is secured above a certain condition, energy saving can be more than 70%.
한편, 여름철에는 반대로 냉방 열원을 확보하기 위하여 주로 야간에 외기온도가 낮거나, 빛의 에너지 밀도가 적거나, 폐 냉열원이 많은 위치에 냉매가 잘 응축되도록 열교환기를 설치하여 냉매를 응축하여 수조에 축냉한 후 부하측 사용시간에 냉방열원으로 활용함으로써 난방시와 같은 동일한 효과를 얻을 수 있다.On the other hand, in summer, in order to secure a cooling heat source, a heat exchanger is installed to condense the refrigerant in a water tank at a location where the outside temperature is low at night, the energy density of light is low, or the waste cooling heat source is large. After cooling, by using it as a cooling heat source during the load-side operating time, the same effect as in heating can be obtained.
냉방부하(증발열량(70%))= 응축열량(100%) - 압축열량(30%)Cooling load (evaporation heat (70%)) = heat of condensation (100%)-heat of compression (30%)
냉방 모드에서 냉방부하는 상기의 식으로 이루어질 수 있는데, 냉방시에는 잠열 열교환기(160)에서 냉매의 응축온도(100%)를 낮추는 것이 에너지를 효과적으로 이용할 수 있게 하므로, 응축열원확보가 가장 중요할 수 있다. In the cooling mode, the cooling load may be achieved by the above equation. In cooling, the condensation heat source may be the most important since lowering the condensation temperature (100%) of the refrigerant in the latent heat exchanger 160 makes efficient use of energy. Can be.
이상과 같이, 동절기와 하절기에서 일일 평균온도차가 약 20℃ 내외로 유지되므로 상기 온도차를 잘 감응하여 잠열 열교환기(160)에서 증발 또는 응축 과정을 수행하게 하여 수조(130)에 축열 또는 축냉 후 이를 부하측 열교환기(120)의 사용 시간대에 열량을 공급하게 함으로써 자연 에너지를 효과적으로 활용하는 냉방 및 난방 시스템을 구현할 수 있다.As described above, since the daily average temperature difference is maintained at about 20 ° C in winter and summer, the temperature difference is well sensed so that the latent heat exchanger 160 performs the evaporation or condensation process and then accumulates or accumulates in the water tank 130. By supplying heat during the use time of the load-side heat exchanger 120, it is possible to implement a cooling and heating system that effectively utilizes natural energy.
본 발명은 특히 태양 빛에너지에 크게 좌우되지 않고 언제든지 외기 온도 및 여러가지 열물성치를 감응하여 운전가능하다는 것이 특징일 수 있다.The present invention can be characterized in that it can be operated at any time in response to the outside temperature and various thermal properties without being greatly influenced by solar light energy.
본 발명의 부하측 열교환기(120)는 증발 및 응축이 쉽게 가능하도록 집열 증발기와 집냉 응축기를 구성할 수 있다.The load-side heat exchanger 120 of the present invention may constitute a collection evaporator and a cooling condenser so as to easily evaporate and condense.
본 발명은 축열시 특히 열원 측의 수조온도가 낮기 때문에 응축 압력이 낮아져 적은 압축 동력으로 열원의 온도를 쉽게 올릴 수 있다.In the present invention, the heat condensation pressure is low because the water tank temperature on the heat source side is particularly low, so that the temperature of the heat source can be easily increased with little compression power.
이상에서 본 발명의 바람직한 실시 예에 대하여 설명하였으나, 본 발명은 상술한 특정의 실시 예에 한정되지 아니한다. 즉, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 첨부된 특허청구범위의 사상 및 범주를 일탈함이 없이 본 발명에 대한 다수의 변경 및 수정이 가능하며, 그러한 모든 적절한 변경 및 수정의 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다.While preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described specific embodiments. That is, those skilled in the art to which the present invention pertains can make many changes and modifications to the present invention without departing from the spirit and scope of the appended claims, and all such appropriate changes and modifications are possible. Equivalents should be considered to be within the scope of the present invention.

Claims (9)

  1. 냉매를 압축하여 배출하는 압축기(110);A compressor 110 for compressing and discharging the refrigerant;
    상기 압축기(110)와 제 1 냉매주배관(210)으로 연결되는 부하측 열교환기(120);A load side heat exchanger (120) connected to the compressor (110) and the first refrigerant main pipe (210);
    상기 부하측 열교환기(120)와 제 2 냉매주배관(220)으로 연결되어 액화된 냉매가 저장되는 수액기(140);A receiver 140 connected to the load-side heat exchanger 120 and the second refrigerant main pipe 220 to store a liquefied refrigerant;
    상기 수액기(140)가 수용되는 수조(130);A water tank 130 in which the receiver 140 is accommodated;
    상기 수조(130)에 배치되며, 상기 수액기(140)와 제 3 냉매주배관(230)으로 연결되는 수조용 열교환부(150);A water tank heat exchanger (150) disposed in the water tank (130) and connected to the fluid receiver (140) and the third refrigerant main pipe (230);
    상기 수조용 열교환부(150)와 제 4 냉매주배관(240)으로 연결되는 잠열 열교환기(160);A latent heat exchanger (160) connected to the water tank heat exchanger (150) and the fourth refrigerant main pipe (240);
    상기 잠열 열교환기(160)에 전기적으로 연결되는 제어부; 및A controller electrically connected to the latent heat exchanger (160); And
    상기 제어부에 연결되는 외기 온도 감지 유닛(170);An outside temperature sensing unit 170 connected to the control unit;
    을 포함하며,Including;
    상기 제어부는 상기 외기 온도 감지 유닛(170)에서 측정되는 외기 온도 센싱을 통해 상기 잠열 열교환기(160)의 축열 또는 축냉 기능을 선택적으로 조절하는 것을 특징으로 하는,The controller is characterized in that for selectively controlling the heat storage or heat storage function of the latent heat exchanger 160 through the outside air temperature sensing measured by the outside air temperature sensing unit 170,
    외기 온도 감응식 냉난방 장치.Air temperature-sensitive air conditioning unit.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제어부는 상기 제 1 내지 제 4 냉매주배관을 포함하는 냉매배관에 배치되는 하나 이상의 개폐밸브를 제어하는 것을 특징으로 하는,The control unit is characterized in that for controlling the at least one valve opening disposed in the refrigerant pipe including the first to fourth refrigerant main pipe,
    외기 온도 감응식 냉난방 장치.Air temperature-sensitive air conditioning unit.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 잠열 열교환기(160)는 축냉용 쿨러(161), 태양열판, 또는 태양광판을 복합한 형태의 축열용 쿨러(165)인 것을 특징으로 하는,The latent heat exchanger 160 is a heat storage cooler 161, a solar heat plate, or a heat storage cooler 165 of the combination of the solar plate, characterized in that,
    외기 온도 감응식 냉난방 장치.Air temperature-sensitive air conditioning unit.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 냉난방 장치는,The air conditioning unit,
    상기 수액기(140)와 상기 수조용 열교환부(150)를 연결하는 상기 제 3 냉매주배관(230) 상에 배치되는 팽창밸브(190);를 더 포함하는,Further comprising; expansion valve 190 is disposed on the third refrigerant main pipe 230 for connecting the receiver 140 and the heat exchange unit 150 for the water tank;
    외기 온도 감응식 냉난방 장치.Air temperature-sensitive air conditioning unit.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 수조(130)는 지중에 매설되는 제 1 수조(131), 상기 제 1 수조(131) 내에 수용되는 제 2 수조(132), 상기 제 1 수조(131)와 상기 2 수조(132) 사이의 공간 내에 물을 공급 또는 배출할 수 있는 펌핑 수단, 및 지중의 열을 받을 수 있도록 상기 지중에 매립되는 형태의 지중 코일(133)을 포함하고,The tank 130 may include a first tank 131 embedded in the ground, a second tank 132 accommodated in the first tank 131, and a space between the first tank 131 and the second tank 132. Pumping means for supplying or discharging water in the space, and underground coils 133 embedded in the ground to receive heat from the ground,
    상기 제 1 수조(131)와 상기 제 2 수조(132)는 소정 거리 이격되고, 상기 지중 코일(133)의 내부에 물이 유동할 수 있는 공간이 형성되는 것을 특징으로 하는,The first water tank 131 and the second water tank 132 are spaced apart a predetermined distance, characterized in that a space in which water flows inside the underground coil 133 is formed,
    외기 온도 감응식 냉난방 장치.Air temperature-sensitive air conditioning unit.
  6. 제 2 항에 있어서,The method of claim 2,
    여름철 냉방 모드는, 상기 수조용 열교환부(150)로의 냉매의 유동이 차단되고, 상기 냉방 모드에서 냉매는 상기 압축기(110), 상기 잠열 열교환기(160), 상기 수액기(140), 상기 부하측 열교환기(120) 및 액분리기(180)를 거쳐 상기 압축기(110)로 유입되는 것을 특징으로 하는,In the summer cooling mode, the flow of the coolant to the water tank heat exchanger 150 is blocked, and in the cooling mode, the coolant is the compressor 110, the latent heat exchanger 160, the receiver 140, and the load side. Characterized in that introduced into the compressor 110 through the heat exchanger 120 and the liquid separator 180,
    외기 온도 감응식 냉난방 장치.Air temperature-sensitive air conditioning unit.
  7. 제 2 항에 있어서,The method of claim 2,
    겨울철 난방 모드는, 상기 잠열 열교환기(160)로의 냉매의 유동이 차단되고, 상기 난방 모드에서 냉매는 상기 압축기(110), 상기 부하측 열교환기(120), 상기 수액기(140), 상기 수조용 열교환부(150) 및 상기 액분리기(180)를 거쳐 상기 압축기(110)로 유입되는 것을 특징으로 하는,In the winter heating mode, the flow of the refrigerant to the latent heat exchanger 160 is blocked, the refrigerant in the heating mode is the compressor 110, the load side heat exchanger 120, the receiver 140, the water tank Characterized in that introduced into the compressor 110 through the heat exchange unit 150 and the liquid separator 180,
    외기 온도 감응식 냉난방 장치.Air temperature-sensitive air conditioning unit.
  8. 제 2 항에 있어서,The method of claim 2,
    축열 또는 축냉 모드를 수행하는 경우에, 상기 부하측 열교환기(120) 및 상기 수액기(140)로의 냉매의 유동이 차단되고, 상기 축열 또는 축냉 모드에서 냉매는 상기 압축기(110), 상기 수조용 열교환부(150), 상기 잠열 열교환기(160) 및 액분리기(180)를 거쳐 상기 압축기(110)로 유입되는 것을 특징으로 하는,When performing the heat storage or heat storage mode, the flow of the refrigerant to the load-side heat exchanger 120 and the receiver 140 is blocked, and in the heat storage or heat storage mode, the refrigerant flows through the compressor 110 and the water tank heat exchanger. The unit 150, characterized in that flowing into the compressor 110 through the latent heat exchanger 160 and the liquid separator 180,
    외기 온도 감응식 냉난방 장치.Air temperature-sensitive air conditioning unit.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 제 2 냉매주배관(220) 상에 배치되는 보조 응축용 열교환부(145);를 더 포함하며,Further comprising: a secondary heat exchanger for condensation 145 disposed on the second refrigerant main pipe (220),
    상기 보조 응축용 열교환부(145)는 상기 수조(130) 내에 배치되는 것을 특징으로 하는,The auxiliary condensation heat exchanger 145 is characterized in that disposed in the water tank 130,
    외기 온도 감응식 냉난방 장치.Air temperature-sensitive air conditioning unit.
PCT/KR2014/001550 2013-03-06 2014-02-26 Outdoor temperature sensitive heating and cooling apparatus WO2014137094A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015561263A JP6161735B2 (en) 2013-03-06 2014-02-26 Outside air temperature sensitive air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130024183A KR101465689B1 (en) 2013-03-06 2013-03-06 Apparatus for cooling and heating for sensing the temperature of outside
KR10-2013-0024183 2013-03-06

Publications (1)

Publication Number Publication Date
WO2014137094A1 true WO2014137094A1 (en) 2014-09-12

Family

ID=51491565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001550 WO2014137094A1 (en) 2013-03-06 2014-02-26 Outdoor temperature sensitive heating and cooling apparatus

Country Status (3)

Country Link
JP (1) JP6161735B2 (en)
KR (1) KR101465689B1 (en)
WO (1) WO2014137094A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107014111A (en) * 2017-05-22 2017-08-04 天津城建大学 A kind of phase-transition heat-storage solar air source double heat source heat pump hot water electricity generation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110017941A (en) * 2009-08-15 2011-02-23 손봉운 A heat pump to produce a high efficiency energy by adjusting the inspination pressure in the severe cold
KR101041745B1 (en) * 2011-05-04 2011-06-16 장한기술 주식회사 Solar sync geothermal heatpump system and the control method thereof
KR101046540B1 (en) * 2011-01-06 2011-07-05 주식회사 선이앤씨 Cooling and heating system using geothermal
KR101190260B1 (en) * 2012-06-08 2012-10-17 대한민국 Hybrid type cooling and heating system using ground source

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182655U (en) * 1984-05-14 1985-12-04 松下電工株式会社 Underground heat collection device
JPH0229807U (en) * 1988-08-18 1990-02-26
JPH0794931B2 (en) * 1989-05-19 1995-10-11 ダイキン工業株式会社 Operation control device for heat storage type air conditioner
KR0146330B1 (en) * 1993-06-07 1998-08-17 김광호 Compound numbers of regenerative system
JP3377846B2 (en) * 1993-12-27 2003-02-17 東北電力株式会社 Thermal storage type air conditioner
JP2002327968A (en) * 2001-04-27 2002-11-15 Hitachi Ltd Cold storage type refrigerating system
JP2003336883A (en) * 2002-05-16 2003-11-28 Sanyo Electric Co Ltd Air conditioner with heat storage unit and its heat storage operation method
KR20060117775A (en) * 2005-05-13 2006-11-17 엘지전자 주식회사 Air conditioner with cooler and ice-storage, and method of controlling it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110017941A (en) * 2009-08-15 2011-02-23 손봉운 A heat pump to produce a high efficiency energy by adjusting the inspination pressure in the severe cold
KR101046540B1 (en) * 2011-01-06 2011-07-05 주식회사 선이앤씨 Cooling and heating system using geothermal
KR101041745B1 (en) * 2011-05-04 2011-06-16 장한기술 주식회사 Solar sync geothermal heatpump system and the control method thereof
KR101190260B1 (en) * 2012-06-08 2012-10-17 대한민국 Hybrid type cooling and heating system using ground source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107014111A (en) * 2017-05-22 2017-08-04 天津城建大学 A kind of phase-transition heat-storage solar air source double heat source heat pump hot water electricity generation system

Also Published As

Publication number Publication date
JP6161735B2 (en) 2017-07-12
KR101465689B1 (en) 2014-12-01
KR20140109762A (en) 2014-09-16
JP2016509196A (en) 2016-03-24

Similar Documents

Publication Publication Date Title
WO2012036361A1 (en) Heat pump system using heat from the earth
Pardiñas et al. State-of-the-art for the use of phase-change materials in tanks coupled with heat pumps
WO2012091266A2 (en) Geothermal exchanger including a capillary-type heat pipe, apparatus for preventing icing on a road/bridge, and geothermal cooling and heating apparatus
WO2014051188A1 (en) Regenerative cooling/heating device
KR101526821B1 (en) Heating·cooling system that used geothermal and that operation control method
CN104315751A (en) Heating and refrigerating system with solar heat collector and ultralow-temperature air source heat pump
Hu et al. Development of a novel vapor compression refrigeration system (VCRS) for permafrost cooling
Zhai et al. Experimental investigation and performance analysis of a ground-coupled heat pump system
WO2018182084A1 (en) Heat pump system for simultaneous heating and cooling
WO2014137094A1 (en) Outdoor temperature sensitive heating and cooling apparatus
CN106152334A (en) A kind of for subway tunnel inner capillary tube wall heat exchanger
SK96096A3 (en) A thermal energy distribution system
CN103148636A (en) Air-powered and solar-powered heat-accumulating heat pump system
CN201382506Y (en) Central air-conditioning system
KR101190260B1 (en) Hybrid type cooling and heating system using ground source
KR20040049212A (en) Heat pump system using a mixed heat source
KR101846291B1 (en) cold water and hot water combined thermal storage system
CN202131681U (en) Multifunctional thermal insulation system for integrating heat pipes and outer wall decorative finish
KR200465485Y1 (en) Hybrid heat pump system
CN108613360A (en) Air conditioner afterheat energy thermoelectricity retracting device
KR100507921B1 (en) Cooling and heating system utilized underground water and terrestrial heat
KR200357888Y1 (en) A cooling and heating apparatus using the geathermy
CN112360585A (en) System for comprehensively utilizing coal mine waste heat
WO2019177209A1 (en) Heat exchange device and heat pump sequential control apparatus having same
JP2003004336A (en) Air conditioning system utilizing ground heat and zeolite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760749

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015561263

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14760749

Country of ref document: EP

Kind code of ref document: A1