WO2012091266A2 - Geothermal exchanger including a capillary-type heat pipe, apparatus for preventing icing on a road/bridge, and geothermal cooling and heating apparatus - Google Patents

Geothermal exchanger including a capillary-type heat pipe, apparatus for preventing icing on a road/bridge, and geothermal cooling and heating apparatus Download PDF

Info

Publication number
WO2012091266A2
WO2012091266A2 PCT/KR2011/007920 KR2011007920W WO2012091266A2 WO 2012091266 A2 WO2012091266 A2 WO 2012091266A2 KR 2011007920 W KR2011007920 W KR 2011007920W WO 2012091266 A2 WO2012091266 A2 WO 2012091266A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat
ground
heat pipe
pipe
geothermal
Prior art date
Application number
PCT/KR2011/007920
Other languages
French (fr)
Korean (ko)
Other versions
WO2012091266A3 (en
Inventor
이상철
Original Assignee
주식회사 자온지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 자온지 filed Critical 주식회사 자온지
Priority to CA2802077A priority Critical patent/CA2802077A1/en
Publication of WO2012091266A2 publication Critical patent/WO2012091266A2/en
Publication of WO2012091266A3 publication Critical patent/WO2012091266A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/24Methods or arrangements for preventing slipperiness or protecting against influences of the weather
    • E01C11/26Permanently installed heating or blowing devices ; Mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/40Geothermal collectors operated without external energy sources, e.g. using thermosiphonic circulation or heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/006Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the present invention relates to a geothermal heat exchanger using a tubular heat pipe, a road-bridge freezing prevention device and a geothermal heating and cooling device using the same.
  • Renewable energy can be obtained indefinitely from nature such as wind, solar, geothermal and air, and from waste water discarded in factories.
  • geothermal heat is relatively unaffected by external conditions compared to using air, wind and solar heat as heat sources, and thus, geothermal heat is relatively stable and useful by using geothermal heat that changes little during the year.
  • the conventional geothermal devices using only the temperature difference between the ground and the ground due to temperature changes, the efficiency is low and there is a limit to the amount of energy that can be obtained.
  • hot water pipes and the like are embedded deep in the basement, but additionally, a device such as a high-performance pump is required, which causes complicated equipment and difficult maintenance. There is also the difficulty of installing pipes and devices deep underground.
  • the present invention provides a geothermal heat exchanger using a tubular heat pipe that can increase the amount of geothermal heat and energy efficiency that can be used as an energy source, a road-bridge freezing prevention device, and a geothermal heating and cooling device using the same.
  • the present invention also provides a geothermal heat exchanger using a tubular heat pipe, which is simple to install and maintain, a road-bridge freezing prevention device and a geothermal air conditioning system using the same.
  • the heat exchanger for absorbing the heat of the ground or to release the heat to the ground, formed in a tubular shape, the working fluid is injected, one side is the heat exchanger
  • the heat transfer heat pipe is disposed adjacent to each other, and the other side includes a heat transfer heat pipe embedded in the ground.
  • the heat transfer heat pipe transfers and stores the heat of the heat exchanger to the ground.
  • the heat transfer heat pipe is provided with a geothermal heat exchanger having a tubular heat pipe, characterized in that for transferring the heat of the ground to the heat exchange unit.
  • the heat exchange part may be formed in a tubular shape, the working fluid is injected, and may include a heat exchange heat pipe coupled with the heat transfer heat pipe.
  • the heat exchange heat pipe and the heat transfer heat pipe may be formed of an integrated tubular heat pipe, and the integrated tubular heat pipe may be formed to alternately reciprocate the ground and the ground.
  • It may further include an auxiliary heat source for transferring heat to the heat transfer pipe.
  • a geothermal heat exchanger having the tubular heat pipe, wherein the heat exchange unit is coupled to the heat transfer to the road, to absorb the heat of the road into the ground or Provided is a road freezing prevention device characterized in that heat is radiated to the road.
  • the heat exchanger may include a tubular heat pipe embedded in the road.
  • thermoelectric unit comprising a geothermal heat exchanger having the tubular heat pipe, wherein the heat exchange unit is coupled to the heat transfer to the bridge, to absorb the heat of the bridge into the ground or the underground
  • a bridge frost preventing device is provided by heat dissipating heat into the bridge.
  • the heat exchange part may include a tubular heat pipe embedded in the bridge upper plate.
  • the bridge may further include a heat transfer member extending from the bridge to the ground for supporting the bridge and disposed adjacent to the heat exchange unit and the heat transfer heat pipe to transfer heat between the heat exchange unit and the heat transfer heat pipe.
  • the heat exchange unit is coupled to the heat transfer to the inside of the ground structure, so as to absorb the heat inside the ground structure to the ground Geothermal air-conditioning and heating device is provided by heat dissipating the ground heat into the ground structure.
  • the above ground structure may be mined into the inside, and the heat exchange part may include a tubular heat pipe embedded in the mined surface.
  • 1 and 2 is a view for explaining a geothermal heat exchanger having a tubular heat pipe according to an embodiment of the present invention and a road freezing prevention device using the same.
  • FIG. 3 is a view for explaining a bridge ice preventing device using a geothermal heat exchanger having a tubular heat pipe according to an embodiment of the present invention.
  • FIG. 4 is a view for explaining a geothermal heating and cooling device using a geothermal heat exchanger having a tubular heat pipe according to an embodiment of the present invention.
  • FIG. 5 is a view illustrating a geothermal heating and cooling device using a geothermal heat exchanger having a tubular heat pipe according to another embodiment of the present invention.
  • FIG 1 and 2 are views illustrating a geothermal heat exchanger having a tubular heat pipe and a road freezing prevention device using the same according to an embodiment of the present invention.
  • Geothermal heat exchanger having a capillary heat pipe includes a heat exchanger (12, 14) and heat transfer heat pipe 20, the ground natural force in the form of thermal energy (ground, 1 ) And reused thermal energy accumulated in the ground (1).
  • the road freezing prevention device of the present embodiment includes a geothermal heat exchanger having a tubular heat pipe, characterized in that it is possible to prevent the freezing of the road 5 in the winter season without additional equipment.
  • the heat exchange part is a portion that connects the heat transfer heat pipe 20 embedded in the ground 1 to the ground so as to be capable of heat transfer, and serves to transfer heat energy at a high temperature to a low temperature.
  • the heat exchanger of the present embodiment is installed adjacent to the ground, and when the ground is heated, absorbs the thermal energy of the ground and transfers it to the heat transfer heat pipe 20, and when the ground is cooled, absorbs the thermal energy from the heat transfer heat pipe 20 to the ground To emit.
  • the heat exchange part is coupled to the road 5 to enable heat transfer.
  • the heat exchange part includes a heat exchange heat pipe 12 made of a tubular heat pipe capable of rapidly transferring a large amount of heat, and the heat exchange heat pipe 12 is embedded in the road 5 so that the road 5 and The heat exchange unit may be coupled to the heat transfer (a detailed description of the tubular heat pipe will be described later). Accordingly, when the temperature of the road 5 is higher than the ground 1 as in the summer, the ground heat energy is transmitted to the heat transfer heat pipe 20. On the contrary, the temperature of the road 5 as in the winter is 1 When lowered, the heat energy may be received from the heat transfer heat pipe 20 and discharged to the road 5.
  • the heat transfer heat pipe 20 is a part that transfers the heat energy transferred to the heat exchanger to the ground 1 or transfers the heat energy stored in the ground 1 back to the heat exchanger.
  • one side of the heat transfer heat pipe 20 of the present embodiment is disposed adjacent to the heat exchanger to enable heat transfer with the heat exchanger, and the other side extends to the ground 1 to store thermal energy.
  • the heat transfer heat pipe 20 of the present embodiment consists of a tubular heat pipe into which the working fluid 23 is injected so as to quickly transfer a large amount of heat energy while minimizing heat loss.
  • vibrating tubular heat pipes can be used.
  • the vibrating tubular heat pipe has a structure in which the inside of the tubule 22 is sealed from the outside after the working fluid 23 and the bubble 24 are injected into the tubule 22 at a predetermined ratio. Accordingly, the vibrating tubular heat pipe has a heat transfer cycle for transporting a large amount of heat in latent form by volume expansion and condensation of the bubble 24 and the working fluid 23.
  • the vibrating capillary heat pipe may include a capillary tube made of a metal material such as copper and aluminum having high thermal conductivity. Accordingly, while conducting heat at a high speed, the volume change of the bubbles 24 injected therein can be caused quickly.
  • the heat pipe formed of the tubule 22 may have a large heat transfer area to volume, and thus may rapidly absorb or release a large amount of heat.
  • heat transfer is excellent in any direction, and there is an advantage in that the arrangement is free.
  • the communication structure of the vibrating tubular heat pipe can be both an open loop (close loop) and (close loop).
  • all or part of the vibrating tubular heat pipe may be in communication with a neighboring vibrating tubular heat pipe.
  • the plurality of vibrating capillary heat pipes may have an open loop or closed loop shape as a design necessity.
  • the heat exchange heat pipe 12 and the heat transfer heat pipe 20 of the present embodiment may be formed of an integrated tubular heat pipe.
  • the integrated tubular heat pipe may be formed to alternately reciprocate the ground and the ground (1). At this time, the portion buried adjacent to the ground in the tubular heat pipe becomes the heat exchange heat pipe 12, and the portion deeply buried in the ground 1 becomes the heat transfer heat pipe 20.
  • the temperature of the roadway 5 becomes much higher than the air temperature in the summer so that much heat energy is accumulated in the roadway 5.
  • the heat exchange heat pipe 12 made of a tubular heat pipe absorbs a large amount of heat energy of the road 5 by using a large heat transfer area, and the heat transfer heat pipe 20 connected to the heat exchange heat pipe 12. Can quickly transfer the absorbed thermal energy to the ground (1). Accordingly, heat energy is continuously accumulated in the ground 1 during the summer. In other words, by using the land as a heat storage to store the heat energy, the amount of available geothermal heat can be increased.
  • the present embodiment may further include an auxiliary heat source for transferring heat to the heat transfer pipe in order to increase the thermal energy stored in the ground (1).
  • the natural force may be changed into thermal energy and used as the auxiliary heat source 30. That is, the solar cell can be used as an auxiliary heat source by converting sunlight into thermal energy or converting natural force into thermal energy by various known methods for converting kinetic energy such as wind into thermal energy.
  • heat energy is transferred to a heat transfer heat pipe 20 by using a heat pipe 32 or the like that transfers heat energy.
  • the heat exchange heat pipe 12 releases heat energy supplied from the heat transfer heat pipe 20 to the road 5 to raise the temperature of the road 5 to freeze. You can prevent it.
  • the heat transfer heat pipe 20 is stored during the summer and serves to continuously raise the heat energy accumulated in the ground (1).
  • the tubular heat pipe has high heat transfer efficiency due to rapid heat transfer as described above, thereby minimizing heat lost to the surroundings in the heat transfer process, thereby increasing the energy efficiency of geothermal heat transferred to the ground.
  • the geothermal heat exchanger of the present embodiment can be used when necessary to store the thermal energy in the ground (1) by using a tubular heat pipe excellent in heat transfer performance in both directions.
  • the ground as a heat storage device that stores the thermal energy by using the heat resistance of the ground, the amount of ground heat available compared to the conventional geothermal heat exchanger using only the temperature difference between the ground and the ground (1) due to the temperature change innovatively Can be increased.
  • geothermal heat exchanger of this embodiment can also be used as a bridge freezing prevention device.
  • FIG. 3 is a view for explaining a bridge ice preventing device using a geothermal heat exchanger having a tubular heat pipe according to an embodiment of the present invention.
  • the heat exchange unit is coupled to the bridge so as to be capable of heat transfer, thereby absorbing the heat of the bridge into the ground (1) or radiating heat from the ground (1) to the bridge. Can be.
  • the heat exchange part includes a heat exchange heat pipe 12 made of a tubular heat pipe capable of rapidly transferring a large amount of heat, and the heat exchange heat pipe 12 is embedded in the upper plate 6 of the bridge to exchange heat with the bridge. Additional heat transfer can be combined. Under the ground supporting the bridge, a heat transfer heat pipe 20 made of a tubular heat pipe is embedded in the ground 1.
  • the heat exchange heat pipe 12 receives the thermal energy stored during the summer in the ground 1 and releases it to the bridge to prevent freezing of the bridge.
  • the bridge from the bridge may further include a heat transfer member 15 extending to the ground to support the heat exchanger and disposed adjacent to the heat transfer heat pipe 20.
  • a weak heat pipe may be used as the heat transfer member 15 to rapidly transfer a large amount of heat between the heat exchange heat pipe 12 and the heat transfer heat pipe 20.
  • the wick type heat pipe includes a sealed pipe into which a working fluid is injected, a wick in which the working fluid moves on the inner wall of the pipe, and a vapor moving space in which the vaporized working fluid moves in the pipe.
  • the working fluid vaporized in the heat transfer portion is moved to the heat transfer unit for transferring heat to the outside through the steam moving space.
  • the vaporized working fluid moved to the heat transfer unit is condensed to transfer the heat of vaporization to the heat transfer unit.
  • the condensed working fluid is returned to its original position via the wick.
  • a heat transfer cycle for transferring heat to the heat transfer unit is made.
  • the wick type heat pipe having the heat transfer structure described above has a relatively large diameter tube and a large amount of working fluid is injected therein as compared with the tubular heat pipe. Accordingly, a large amount of heat can be quickly transferred through a process in which a large number of working fluids are vaporized and condensed at a time. Therefore, the heat energy can be quickly transmitted to minimize heat loss so that the heat of the bridge or the ground 1 is not accumulated.
  • the heat transfer member 16 of the present embodiment is made of a tubular heat pipe, it may be formed integrally with the heat transfer heat pipe 20.
  • the tubular heat pipe is connected to the ground across the bridge, the end of the tubular heat pipe may be installed to be deeply buried underground.
  • the portion of the tubular heat pipe that crosses the bridge and is adjacent to the heat exchange heat pipe 12 becomes the heat transfer member 16, and the end of the tubular heat pipe embedded in the ground becomes the heat transfer heat pipe 20.
  • the heat transfer member 16 and the heat transfer heat pipe 20 can be easily integrated by constructing the tubular heat pipe integrally.
  • geothermal heat exchanger of this embodiment can also be used as a geothermal heating and cooling device.
  • FIG. 4 is a view illustrating a geothermal heating and cooling device using a geothermal heat exchanger having a capillary heat pipe according to an embodiment of the present invention.
  • the heat exchange unit is coupled to the inside of the ground structure so as to be capable of heat transfer, thereby absorbing the heat inside the ground structure to the ground (1) or the heat of the ground (1). Can dissipate into the ground structure.
  • the geothermal heat exchanger is used as a geothermal air conditioning system for controlling the temperature of the greenhouse 40.
  • the heat exchange part composed of the heat exchange heat pipe 12 is buried in the bottom 7 of the greenhouse 40 to allow heat transfer to the inside of the greenhouse 40, and the heat transfer heat pipe 20 connected to the heat exchange heat pipe 12 is underground. It is buried in (1).
  • the heat energy may be absorbed by the heat exchange heat pipe 12 and stored in the ground 1 through the heat transfer heat pipe 20 in the greenhouse 40 having a high temperature. That is, in summer, the heat energy may be taken away from the greenhouse 40 to lower the temperature inside the greenhouse 40.
  • the heat exchange heat pipe 12 may be disposed to be embedded in the mined surface so as to further increase the thermal energy stored in the ground (1).
  • the heat exchange heat pipe 12 may perform the heating of the greenhouse 40 by receiving heat energy stored during summer in the ground 1 from the heat transfer heat pipe 20 and releasing it into the greenhouse 40.
  • FIG. 5 is a view illustrating a geothermal air conditioning system using a geothermal heat exchanger having a tubular heat pipe according to another embodiment of the present invention.
  • the geothermal heat exchanger is used as a geothermal air conditioning system for controlling the temperature of the house 50.
  • the heat exchange part of the present embodiment includes a geothermal boiler 14 for cooling and heating the house 50.
  • the geothermal boiler 14 includes a heat pump that discharges heat into the housing 50 or absorbs heat inside the housing 50, and a heat storage tank that accumulates heat.
  • the geothermal boiler 14 is configured to be capable of heat transfer with the heat transfer heat pipe 20 embedded in the ground 1.
  • a water pipe 17 connected to the geothermal boiler 14 may be disposed adjacent to the heat transfer heat pipe 20 to transfer thermal energy between the geothermal boiler 14 and the heat transfer heat pipe 20.
  • the above-described weak heat pipe may be disposed adjacent to the geothermal boiler 14 and the heat transfer heat pipe 20.
  • the geothermal boiler 14 absorbs heat energy inside the house 50 and stores it in the ground 1 to lower the temperature of the inside of the house 50 to perform cooling, and to store it in the ground 1 in winter.
  • the heat energy may be discharged into the house 50 to perform heating.
  • the amount of geothermal heat that can be used can be increased by accumulating the natural forces on the ground in the form of thermal energy.

Abstract

Provided are a geothermal exchanger including a capillary-type heat pipe, an apparatus for preventing icing on a road/bridge, and a geothermal cooling and heating apparatus. The geothermal exchanger includes: a heat exchange part disposed adjacent to the ground so as to absorb heat from the ground or discharge heat to the ground; and a capillary-type heat pipe for transferring heat, in which a working fluid is injected, one side of the heat pipe for transferring heat being disposed adjacent to the heat exchange part so as to transfer heat, and the other side thereof being buried underground. When the surface of the ground is warmer than below the ground, the heat pipe for transferring heat transfers heat from the heat exchange part to below the ground, thereby storing the heat. When the ground surface is cooler than below the ground, the heat pipe for transferring heat transfers the heat from below the ground to the heat exchange part. Thus, natural energy from the ground may be accumulated underground in the form of thermal energy so as to increase the available heat in the earth. Further, providing the capillary-type heat pipe, which has a wide heat-transfer area and high heat-transfer efficiency, enables a loss of energy to be minimized and the thermal energy efficiency of the earth to be improved. In addition, the capillary-type heat pipe may be used alone without an additional operational device, such as a pump, so as to easily store the thermal energy and enable the easy installation and repair/maintenance of the geothermal exchanger.

Description

세관형 히트파이프를 구비한 지열교환장치, 이를 이용한 도로-교량결빙 방지장치 및 지열 냉난방장치Geothermal heat exchanger with tubular heat pipe, road-bridge freezing prevention device and geothermal air conditioning system
본 발명은 세관형 히트파이프를 이용한 지열교환장치, 이를 이용한 도로-교량결빙 방지장치 및 지열 냉난방장치에 관한 것이다.The present invention relates to a geothermal heat exchanger using a tubular heat pipe, a road-bridge freezing prevention device and a geothermal heating and cooling device using the same.
현재, 일반적으로 사용되는 에너지원으로서 석탄, 석유, 천연가스 등과 같은 화석 연료 및 핵연료를 이용하는 경우가 대부분이다. 그러나 화석 연료는 연소과정에서 발생하는 각종 공해물질로 인하여 환경을 오염시키고, 핵연료는 수질오염 및 방사능과 같은 유해물질을 발생시키는 단점과 함께 이들 에너지원은 매장량의 한계로 근래에는 이를 대체할 수 있는 신재생 에너지의 개발이 활발하게 진행되고 있다.Currently, fossil fuels such as coal, petroleum, natural gas, and nuclear fuels are commonly used as a commonly used energy source. However, fossil fuels pollute the environment due to various pollutants generated during the combustion process, and nuclear fuel generates harmful substances such as water pollution and radioactivity, and these energy sources have limited reserves. The development of renewable energy is actively progressing.
신재생 에너지는 풍력, 태양열, 지열, 공기 등 자연에서 무한하게 얻을 수 있으며, 공장에서 버려지는 폐수로부터도 얻을 수가 있다. Renewable energy can be obtained indefinitely from nature such as wind, solar, geothermal and air, and from waste water discarded in factories.
이러한 신재생 에너지 중에서도 지열은 공기나 풍력 그리고 태양열을 열원으로 이용하는 것에 비해 외부상황에 영향을 크게 받지 않아 연중 변화폭이 작은 지열을 이용함으로써 상대적으로 안정성과 효용성이 크다고 할 것이다.Among these renewable energy, geothermal heat is relatively unaffected by external conditions compared to using air, wind and solar heat as heat sources, and thus, geothermal heat is relatively stable and useful by using geothermal heat that changes little during the year.
그런데, 종래의 지열을 이용한 장치들은 단순히 기온변화에 따른 지상과 지중의 온도 차이 만을 이용하므로, 그 효율이 낮으며 얻을 수 있는 에너지 양에는 한계가 있었다. By the way, the conventional geothermal devices using only the temperature difference between the ground and the ground due to temperature changes, the efficiency is low and there is a limit to the amount of energy that can be obtained.
이에 따라, 얻을 수 있는 에너지 양을 늘리기 위하여 지하 깊은 곳에 온수파이프 등을 매설하였으나, 부가적으로 고성능 펌프 등의 장치가 필요하게 되어 설비가 복잡해지고 유지가 어려운 문제가 있다. 또한, 지하 깊은 곳에 파이프 및 장치를 설치해야 하는 어려움도 있다. Accordingly, in order to increase the amount of energy obtainable, hot water pipes and the like are embedded deep in the basement, but additionally, a device such as a high-performance pump is required, which causes complicated equipment and difficult maintenance. There is also the difficulty of installing pipes and devices deep underground.
더불어, 지하 깊은 곳의 지열을 지상으로 전달하는 과정에서 열손실이 발생하여 열전달 효율이 떨어지는 문제도 있다.In addition, there is a problem that heat loss occurs in the process of transferring the geothermal heat of the deep underground to the ground, the heat transfer efficiency is lowered.
본 발명은 에너지원으로 이용할 수 있는 지열의 양 및 에너지 효율을 증가시킬 수 있는 세관형 히트파이프를 이용한 지열교환장치, 이를 이용한 도로-교량결빙 방지장치 및 지열 냉난방장치를 제공하는 것이다.The present invention provides a geothermal heat exchanger using a tubular heat pipe that can increase the amount of geothermal heat and energy efficiency that can be used as an energy source, a road-bridge freezing prevention device, and a geothermal heating and cooling device using the same.
또한, 본 발명은 설치 및 유지보수가 간단한 세관형 히트파이프를 이용한 지열교환장치, 이를 이용한 도로-교량결빙 방지장치 및 지열 냉난방장치를 제공하는 것이다.The present invention also provides a geothermal heat exchanger using a tubular heat pipe, which is simple to install and maintain, a road-bridge freezing prevention device and a geothermal air conditioning system using the same.
본 발명의 일 측면에 따르면, 지상에 인접하여 설치되어 있으며, 상기 지상의 열을 흡수하거나 상기 지상으로 열을 방출하는 열교환부, 세관형으로 형성되어 작동유체가 주입되며, 일측이 상기 열교환부에 인접하게 배치되어 열전달이 가능하고 타측은 지중에 매설된 열전달 히트파이프를 포함하고, 상기 지상이 상기 지중보다 가열될 때에 상기 열전달 히트파이프는 상기 열교환부의 열을 상기 지중으로 이송하여 저장시키고, 상기 지상이 상기 지중보다 냉각될 때에는 상기 열전달 히트파이프는 상기 지중의 열을 상기 열교환부로 이송하는 것을 특징으로 하는 세관형 히트파이프를 구비한 지열교환장치가 제공된다.According to an aspect of the present invention, provided adjacent to the ground, the heat exchanger for absorbing the heat of the ground or to release the heat to the ground, formed in a tubular shape, the working fluid is injected, one side is the heat exchanger The heat transfer heat pipe is disposed adjacent to each other, and the other side includes a heat transfer heat pipe embedded in the ground. When the ground is heated than the ground, the heat transfer heat pipe transfers and stores the heat of the heat exchanger to the ground. When the heat is cooled than the ground, the heat transfer heat pipe is provided with a geothermal heat exchanger having a tubular heat pipe, characterized in that for transferring the heat of the ground to the heat exchange unit.
상기 열교환부는, 세관형으로 형성되어 작동유체가 주입되며, 상기 열전달 히트파이프와 결합되는 열교환 히트파이프를 포함할 수 있다.The heat exchange part may be formed in a tubular shape, the working fluid is injected, and may include a heat exchange heat pipe coupled with the heat transfer heat pipe.
상기 열교환 히트파이프 및 상기 열전달 히트파이프는 일체형의 세관형 히트파이프로 형성되며, 상기 일체형의 세관형 히트파이프는, 상기 지상과 상기 지중을 교대로 왕복하는 형태로 형성될 수 있다.The heat exchange heat pipe and the heat transfer heat pipe may be formed of an integrated tubular heat pipe, and the integrated tubular heat pipe may be formed to alternately reciprocate the ground and the ground.
상기 열전달 파이프에 열을 전달하는 보조 열원을 더 포함할 수 있다.It may further include an auxiliary heat source for transferring heat to the heat transfer pipe.
또한, 본 발명의 다른 측면에 따르면, 상기의 세관형 히트파이프를 구비한 지열교환장치를 포함하고, 상기 열교환부는 도로와 열전달 가능하게 결합되어서, 상기 도로의 열을 지중으로 흡수시키거나 상기 지중의 열을 상기 도로로 방열하여 것을 특징으로 하는 도로결빙 방지장치가 제공된다.In addition, according to another aspect of the present invention, comprising a geothermal heat exchanger having the tubular heat pipe, wherein the heat exchange unit is coupled to the heat transfer to the road, to absorb the heat of the road into the ground or Provided is a road freezing prevention device characterized in that heat is radiated to the road.
상기 열교환부는, 상기 도로에 매설된 세관형 히트파이프를 포함할 수 있다.The heat exchanger may include a tubular heat pipe embedded in the road.
또한, 본 발명의 또 다른 측면에 따르면, 상기의 세관형 히트파이프를 구비한 지열교환장치를 포함하고, 상기 열교환부는 교량과 열전달 가능하게 결합되어서, 상기 교량의 열을 지중으로 흡수시키거나 상기 지중의 열을 상기 교량으로 방열하여 것을 특징으로 하는 교량결빙 방지장치가 제공된다.In addition, according to another aspect of the present invention, comprising a geothermal heat exchanger having the tubular heat pipe, wherein the heat exchange unit is coupled to the heat transfer to the bridge, to absorb the heat of the bridge into the ground or the underground A bridge frost preventing device is provided by heat dissipating heat into the bridge.
상기 열교환부는, 상기 교량 상판에 매설된 세관형 히트파이프를 포함할 수 있다.The heat exchange part may include a tubular heat pipe embedded in the bridge upper plate.
상기 교량에서 상기 교량을 지지하는 지상으로 연장되어 있으며, 상기 열교환부 및 상기 열전달 히트파이프에 인접하게 배치되어서 상기 열교환부와 상기 열전달 히트파이프 사이에 열을 전달하는 열전달부재를 더 포함할 수 있다.The bridge may further include a heat transfer member extending from the bridge to the ground for supporting the bridge and disposed adjacent to the heat exchange unit and the heat transfer heat pipe to transfer heat between the heat exchange unit and the heat transfer heat pipe.
또한, 본 발명의 다른 측면에 따르면, 세관형 히트파이프를 구비한 지열교환장치를 포함하고, 상기 열교환부는 지상구조물의 내부와 열전달 가능하게 결합되어서, 상기 지상구조물 내부의 열을 지중으로 흡수시키거나 상기 지중의 열을 상기 지상구조물의 내부로 방열하여 것을 특징으로 하는 지열 냉난방장치가 제공된다.In addition, according to another aspect of the present invention, comprising a geothermal heat exchanger having a tubular heat pipe, the heat exchange unit is coupled to the heat transfer to the inside of the ground structure, so as to absorb the heat inside the ground structure to the ground Geothermal air-conditioning and heating device is provided by heat dissipating the ground heat into the ground structure.
상기 지상구조물은 내부로 채광이 가능하며, 상기 열교환부는 채광되는 면에 매설된 세관형 히트파이프를 포함할 수 있다.The above ground structure may be mined into the inside, and the heat exchange part may include a tubular heat pipe embedded in the mined surface.
도 1 및 도 2는 본 발명의 일 실시예에 따른 세관형 히트파이프를 구비한 지열교환장치 및 이를 이용한 도로결빙 방지장치를 설명하는 도면.1 and 2 is a view for explaining a geothermal heat exchanger having a tubular heat pipe according to an embodiment of the present invention and a road freezing prevention device using the same.
도 3은 본 발명의 일 실시예에 따른 세관형 히트파이프를 구비한 지열교환장치를 이용한 교량결빙 방지장치를 설명하는 도면.3 is a view for explaining a bridge ice preventing device using a geothermal heat exchanger having a tubular heat pipe according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 세관형 히트파이프를 구비한 지열교환장치를 이용한 지열 냉난방장치를 설명하는 도면.4 is a view for explaining a geothermal heating and cooling device using a geothermal heat exchanger having a tubular heat pipe according to an embodiment of the present invention.
도 5는 본 발명의 다른 실시예에 따른 세관형 히트파이프를 구비한 지열교환장치를 이용한 지열 냉난방장치를 설명하는 도면.5 is a view illustrating a geothermal heating and cooling device using a geothermal heat exchanger having a tubular heat pipe according to another embodiment of the present invention.
이하에서 본 발명의 실시예를 첨부도면을 참조하여 상세하게 설명한다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1 및 도 2는 본 발명의 일 실시예에 따른 세관형 히트파이프를 구비한 지열교환장치 및 이를 이용한 도로결빙 방지장치를 설명하는 도면이다.1 and 2 are views illustrating a geothermal heat exchanger having a tubular heat pipe and a road freezing prevention device using the same according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 세관형 히트파이프를 구비한 지열교환장치는 열교환부(12, 14) 및 열전달 히트파이프(20)를 포함하여, 지상의 자연력을 열에너지 형태로 지중(地中, 1)에 축적하고 지중(1)에 축적된 열에너지를 다시 사용하는 것을 특징으로 한다.Geothermal heat exchanger having a capillary heat pipe according to an embodiment of the present invention includes a heat exchanger (12, 14) and heat transfer heat pipe 20, the ground natural force in the form of thermal energy (ground, 1 ) And reused thermal energy accumulated in the ground (1).
그리고, 본 실시예의 도로결빙 방지장치는 세관형 히트파이프를 구비한 지열교환장치를 포함하여, 별도의 추가적 장비 없이도 동계시즌에 도로(5)의 결빙을 방지할 수 있는 것을 특징으로 한다.In addition, the road freezing prevention device of the present embodiment includes a geothermal heat exchanger having a tubular heat pipe, characterized in that it is possible to prevent the freezing of the road 5 in the winter season without additional equipment.
열교환부는 지중(1)에 매설된 열전달 히트파이프(20)를 지상과 열전달 가능하게 연결하는 부분으로, 온도가 높은 곳의 열에너지를 온도가 낮은 곳을 전달하는 역할을 한다. 이를 위해, 본 실시예의 열교환부는 지상에 인접하여 설치되어서 지상이 가열되면 지상의 열에너지를 흡수하여 열전달 히트파이프(20)로 전달하며, 지상이 냉각되면 열전달 히트파이프(20)로부터 열에너지를 흡수하여 지상에 방출한다.The heat exchange part is a portion that connects the heat transfer heat pipe 20 embedded in the ground 1 to the ground so as to be capable of heat transfer, and serves to transfer heat energy at a high temperature to a low temperature. To this end, the heat exchanger of the present embodiment is installed adjacent to the ground, and when the ground is heated, absorbs the thermal energy of the ground and transfers it to the heat transfer heat pipe 20, and when the ground is cooled, absorbs the thermal energy from the heat transfer heat pipe 20 to the ground To emit.
도 1 및 도 2에 나타난 바와 같이, 본 실시예에서 열교환부는 도로(5)와 열전달이 가능하게 결합되어 있다. 구체적으로, 열교환부는 대량의 열을 신속하게 열전달할 수 있는 세관형 히트파이프로 이루어진 열교환 히트파이프(12)를 포함하며, 열교환 히트파이프(12)를 도로(5)에 매설하여 도로(5)와 열교환부가 열전달 가능하게 결합될 수 있다(세관형 히트파이프에 대한 구체적 설명은 후술한다). 이에 따라, 여름과 같이 도로(5)의 온도가 지중(1)보다 높아질 경우에 지상의 열에너지를 열전달 히트파이프(20)에 전달하며, 반대로 겨울과 같이 도로(5)의 온도가 지중(1)보다 낮아질 경우에는 열전달 히트파이프(20)로부터 열에너지를 전달받아 도로(5)에 방출할 수 있다.1 and 2, in the present embodiment, the heat exchange part is coupled to the road 5 to enable heat transfer. Specifically, the heat exchange part includes a heat exchange heat pipe 12 made of a tubular heat pipe capable of rapidly transferring a large amount of heat, and the heat exchange heat pipe 12 is embedded in the road 5 so that the road 5 and The heat exchange unit may be coupled to the heat transfer (a detailed description of the tubular heat pipe will be described later). Accordingly, when the temperature of the road 5 is higher than the ground 1 as in the summer, the ground heat energy is transmitted to the heat transfer heat pipe 20. On the contrary, the temperature of the road 5 as in the winter is 1 When lowered, the heat energy may be received from the heat transfer heat pipe 20 and discharged to the road 5.
열전달 히트파이프(20)는 열교환부로 전달된 열에너지를 지중(1)으로 이송하거나 지중(1)에 저장된 열에너지를 다시 열교환부로 전달하는 역할을 하는 부분이다. 이를 위해, 본 실시예의 열전달 히트파이프(20)의 일측은 열교환부와 열전달이 가능하도록 열교환부에 인접하게 배치되어 있으며, 타측은 열에너지를 저장할 지중(1)으로 연장되어 매설되어 있다.The heat transfer heat pipe 20 is a part that transfers the heat energy transferred to the heat exchanger to the ground 1 or transfers the heat energy stored in the ground 1 back to the heat exchanger. To this end, one side of the heat transfer heat pipe 20 of the present embodiment is disposed adjacent to the heat exchanger to enable heat transfer with the heat exchanger, and the other side extends to the ground 1 to store thermal energy.
또한, 본 실시예의 열전달 히트파이프(20)는 열손실을 최소화면서 대량의 열에너지를 신속하게 전달하도록 작동유체(23)가 주입되는 세관형의 히트파이프로 이루어진다. 대표적으로, 진동세관형 히트파이프가 사용될 수 있다.In addition, the heat transfer heat pipe 20 of the present embodiment consists of a tubular heat pipe into which the working fluid 23 is injected so as to quickly transfer a large amount of heat energy while minimizing heat loss. Typically, vibrating tubular heat pipes can be used.
진동세관형 히트파이프는 세관(22) 내부에 작동유체(23)와 기포(24)가 소정 비율로 주입된 후 세관(22) 내부가 외부로부터 밀폐되는 구조를 가진다. 이에 따라, 진동세관형 히트파이프는 기포(24) 및 작동유체(23)의 부피팽창 및 응축에 의하여 열을 잠열 형태로 대량으로 수송하는 열전달 사이클을 가진다. The vibrating tubular heat pipe has a structure in which the inside of the tubule 22 is sealed from the outside after the working fluid 23 and the bubble 24 are injected into the tubule 22 at a predetermined ratio. Accordingly, the vibrating tubular heat pipe has a heat transfer cycle for transporting a large amount of heat in latent form by volume expansion and condensation of the bubble 24 and the working fluid 23.
열전달 메카니즘을 살펴보면, 열을 흡수한 흡열부에서는 흡수된 열량만큼 핵비등(Nucleate Boiling)이 일어나면서 흡열부에 위치된 기포(24)들이 부피 팽창을 하게 된다. 이때 세관(22)은 일정한 내부 체적을 유지하므로, 흡열부에 위치된 기포(24)들이 부피 팽창을 한 만큼 열을 발산하는 방열부에 위치된 기포(24)들은 수축하게 된다. 따라서 세관(22) 내의 압력 평형상태가 붕괴되면서, 세관(22) 내에서 작동유체(23) 및 기포(24)의 진동을 포함한 유동이 수반되고, 이에 따라 기포(24)의 체적 변화에 의한 온도의 승강에 의하여 잠열 수송이 이루어짐으로써 방열이 수행된다.Looking at the heat transfer mechanism, as the heat absorbing heat absorbing portion occurs Nucleate Boiling (Nucleate Boiling) by the amount of heat absorbed bubbles 24 are located in the heat absorbing portion is to expand the volume. At this time, since the tubule 22 maintains a constant internal volume, the bubbles 24 located in the heat dissipating part which dissipate heat as much as the bubbles 24 located in the heat absorbing part have a volume expansion are contracted. Accordingly, as the pressure equilibrium in the tubule 22 collapses, a flow including vibrations of the working fluid 23 and the bubbles 24 in the tubule 22 is accompanied, and accordingly, the temperature due to the volume change of the foam 24 is caused. The heat dissipation is carried out by the latent heat transportation by lifting and lowering.
여기서, 진동세관형 히트파이프는 열전도도가 높은 구리, 알루미늄 등의 금속 소재로 이루어진 세관을 포함할 수 있다. 이에 따라, 열을 빠른 속도로 전도 받음과 아울러 그 내부에 주입된 기포(24)의 체적변화를 빠르게 유발할 수 있다.Here, the vibrating capillary heat pipe may include a capillary tube made of a metal material such as copper and aluminum having high thermal conductivity. Accordingly, while conducting heat at a high speed, the volume change of the bubbles 24 injected therein can be caused quickly.
또한, 세관(22)으로 형성된 히트파이프는 부피 대비 넓은 열전달면적을 가질 수 있으므로, 대량의 열을 빠르게 흡수 또는 방출할 수 있다. 그리고, 열전달의 방향성에 대한 제약이 없어서 어떠한 방향으로든 열전달이 우수하며 배치가 자유로운 장점도 있다.In addition, the heat pipe formed of the tubule 22 may have a large heat transfer area to volume, and thus may rapidly absorb or release a large amount of heat. In addition, since there is no restriction on the direction of heat transfer, heat transfer is excellent in any direction, and there is an advantage in that the arrangement is free.
한편, 진동세관형 히트파이프의 연통구조는 개루프(open loop)와 폐루프(close loop) 모두 가능하다. 또한, 진동세관형 히트파이프가 복수 일 때, 진동세관형 히트파이프의 전부 또는 일부는 이웃하는 진동세관형 히트파이프와 연통될 수 있다. 이에 따라, 복수의 진동세관형 히트파이프는 설계상 필요에 따라 전체적으로 개루프 또는 폐루프 형상을 가질 수도 있다.On the other hand, the communication structure of the vibrating tubular heat pipe can be both an open loop (close loop) and (close loop). In addition, when there are a plurality of vibrating tubular heat pipes, all or part of the vibrating tubular heat pipe may be in communication with a neighboring vibrating tubular heat pipe. Accordingly, the plurality of vibrating capillary heat pipes may have an open loop or closed loop shape as a design necessity.
도 1 및 도 2에 나타난 바와 같이, 본 실시예의 열교환 히트파이프(12) 및 열전달 히트파이프(20)는 일체형의 세관형 히트파이프로 형성될 수 있다. 구체적으로, 일체형의 세관형 히트파이프는 지상과 지중(1)을 교대로 왕복하는 형태로 형성될 수 있다. 이 때, 세관형 히트파이프에서 지상에 인접하게 매설된 부분이 열교환 히트파이프(12)가 되며, 지중(1)에 깊게 매설된 부분이 열전달 히트파이프(20)가 된다.1 and 2, the heat exchange heat pipe 12 and the heat transfer heat pipe 20 of the present embodiment may be formed of an integrated tubular heat pipe. Specifically, the integrated tubular heat pipe may be formed to alternately reciprocate the ground and the ground (1). At this time, the portion buried adjacent to the ground in the tubular heat pipe becomes the heat exchange heat pipe 12, and the portion deeply buried in the ground 1 becomes the heat transfer heat pipe 20.
이에 따라, 지상의 온도가 상승될 때는 세관형 히트파이프 중 도로(5)와 매설된 부분이 흡열부가 되고 지중(1)에 매설된 부분이 방열부가 되어서, 도로(5)의 열을 지중(1)으로 방열하여 지중(1)으로 도로(5)의 열에너지를 이송하고 저장할 수 있다.Accordingly, when the temperature of the ground rises, the road 5 and the embedded portion of the tubular heat pipe become the heat absorbing portion, and the portion embedded in the ground 1 becomes the heat dissipation portion, so that the heat of the road 5 is ground (1). Heat can be transferred to and stored in the ground (1) the thermal energy of the road (5).
다시 설명하면, 여름에 도로(5)의 온도는 기온보다도 훨씬 높아지게 되어서 도로(5)에는 많은 열에너지가 축적된다. 이 때, 세관형 히트파이프로 이루어진 열교환 히트파이프(12)는 넓은 열전달면적을 이용하여 도로(5)가 가지고 있는 대량의 열에너지를 흡수하고, 열교환 히트파이프(12)와 연결된 열전달 히트파이프(20)가 흡수된 열에너지를 신속하게 지중(1)으로 전달할 수 있다. 이에 따라, 여름 동안에 지중(1)에는 열에너지가 지속적으로 축적되게 된다. 즉, 땅을 열에너지 저장하는 축열기로 이용함으로써, 사용이 가능한 지열의 양을 증가시킬 수 있는 것이다.In other words, the temperature of the roadway 5 becomes much higher than the air temperature in the summer so that much heat energy is accumulated in the roadway 5. At this time, the heat exchange heat pipe 12 made of a tubular heat pipe absorbs a large amount of heat energy of the road 5 by using a large heat transfer area, and the heat transfer heat pipe 20 connected to the heat exchange heat pipe 12. Can quickly transfer the absorbed thermal energy to the ground (1). Accordingly, heat energy is continuously accumulated in the ground 1 during the summer. In other words, by using the land as a heat storage to store the heat energy, the amount of available geothermal heat can be increased.
이 때, 본 실시예에서는 지중(1)에 저장하는 열에너지를 증가시키기 위하여, 열전달 파이프에 열을 전달하는 보조 열원을 더 포함할 수 있다. 그리고, 자연력을 열에너지로 변화시켜 보조열원(30)으로 사용할 수도 있다. 즉, 태양전지를 이용하여 태양광을 열에너지로 바꾸거나, 풍력 등의 운동에너지를 열에너지로 바꾸는 공지의 다양한 방법으로 자연력을 열에너지로 변환시켜 보조 열원으로 이용할 수 있다.At this time, the present embodiment may further include an auxiliary heat source for transferring heat to the heat transfer pipe in order to increase the thermal energy stored in the ground (1). The natural force may be changed into thermal energy and used as the auxiliary heat source 30. That is, the solar cell can be used as an auxiliary heat source by converting sunlight into thermal energy or converting natural force into thermal energy by various known methods for converting kinetic energy such as wind into thermal energy.
도 2에 나타난 바와 같이, 본 실시예에서는 태양전지를 이용하여 태양광을 열에너지로 변환한 후에, 열에너지를 이송하는 히트파이프(32) 등을 이용하여 열에너지를 열전달 히트파이프(20)에 인접한 곳으로 전달하고 저장한다.As shown in FIG. 2, in this embodiment, after converting sunlight into heat energy using a solar cell, heat energy is transferred to a heat transfer heat pipe 20 by using a heat pipe 32 or the like that transfers heat energy. Deliver and save
한편, 지상의 온도가 하강될 때에는 세관형 히트파이프 중 도로(5)와 매설된 부분이 방열부가 되고 지중(1)에 매설된 부분이 흡열부가 되어서, 지중(1)에 저장된 열을 도로(5)로 방열하여 지중(1)의 열에너지를 이용할 수 있다.On the other hand, when the ground temperature decreases, the road 5 and the buried portion of the tubular heat pipe become the heat dissipation portion, and the portion buried in the ground 1 becomes the heat absorbing portion, so that the heat stored in the ground 1 is transferred to the road 5 Heat radiation can be used to heat the ground (1).
다시 설명하면, 겨울에 도로(5)가 냉각될 경우에 열교환 히트파이프(12)는 열전달 히트파이프(20)로부터 공급받은 열에너지를 도로(5)에 방출하여 도로(5)의 온도를 높여서 결빙을 방지할 수 있다. 이 때, 열전달 히트파이프(20)는 여름 동안에 저장되어 지중(1)에 축적된 열에너지를 지속적으로 끌어올리는 역할을 한다. 여기서, 세관형 히트파이프는 상술한 바와 같이 신속한 열전달로 인하여 높은 열전달 효율을 가지므로, 열전달 과정에서 주변으로 손실되는 열을 최소화하여 지상으로 전달되는 지열의 에너지 효율을 높일 수 있다.In other words, when the road 5 is cooled in winter, the heat exchange heat pipe 12 releases heat energy supplied from the heat transfer heat pipe 20 to the road 5 to raise the temperature of the road 5 to freeze. You can prevent it. At this time, the heat transfer heat pipe 20 is stored during the summer and serves to continuously raise the heat energy accumulated in the ground (1). Here, the tubular heat pipe has high heat transfer efficiency due to rapid heat transfer as described above, thereby minimizing heat lost to the surroundings in the heat transfer process, thereby increasing the energy efficiency of geothermal heat transferred to the ground.
정리하면, 본 실시예의 지열교환장치는 양방향으로 열전달 성능이 우수한 세관형 히트파이프를 이용하여 지중(1)에 열에너지를 보관하며 필요할 때 이용할 수 있다. In summary, the geothermal heat exchanger of the present embodiment can be used when necessary to store the thermal energy in the ground (1) by using a tubular heat pipe excellent in heat transfer performance in both directions.
특히, 열에너지의 저장 및 방출이 자연법칙인 열평형 성질을 이용한 것이므로, 펌프 등의 부가적인 작동장치를 필요로 하지 않는다. 이에 따라, 지열교환장치의 설치 및 유지보수를 용이하게 된다.In particular, since the storage and release of thermal energy uses the thermal equilibrium property, which is a natural law, no additional operation device such as a pump is required. This facilitates installation and maintenance of the geothermal heat exchanger.
또한, 땅의 열저항을 이용하여 땅을 열에너지를 저장하는 축열기로 사용함으로써, 단순히 기온변화에 따른 지상과 지중(1)의 온도 차이 만을 이용하는 종래의 지열교환장치 비하여 사용 가능한 지열의 양을 혁신적으로 증가시킬 수 있다.In addition, by using the ground as a heat storage device that stores the thermal energy by using the heat resistance of the ground, the amount of ground heat available compared to the conventional geothermal heat exchanger using only the temperature difference between the ground and the ground (1) due to the temperature change innovatively Can be increased.
한편, 본 실시예의 지열교환장치는 교량결빙 방지장치로도 사용될 수 있다.On the other hand, the geothermal heat exchanger of this embodiment can also be used as a bridge freezing prevention device.
도 3은 본 발명의 일 실시예에 따른 세관형 히트파이프를 구비한 지열교환장치를 이용한 교량결빙 방지장치를 설명하는 도면이다.3 is a view for explaining a bridge ice preventing device using a geothermal heat exchanger having a tubular heat pipe according to an embodiment of the present invention.
도 3에 나타난 바와 같이, 본 실시예에 따른 교량결빙 방지장치는 열교환부가 교량과 열전달 가능하게 결합되어서, 교량의 열을 지중(1)으로 흡수시키거나 지중(1)의 열을 교량으로 방열할 수 있다.As shown in FIG. 3, in the bridge anti-icing device according to the present embodiment, the heat exchange unit is coupled to the bridge so as to be capable of heat transfer, thereby absorbing the heat of the bridge into the ground (1) or radiating heat from the ground (1) to the bridge. Can be.
구체적으로, 열교환부는 대량의 열을 신속하게 열전달할 수 있는 세관형 히트파이프로 이루어진 열교환 히트파이프(12)를 포함하며, 열교환 히트파이프(12)를 교량의 상판(6)에 매설하여 교량과 열교환부가 열전달 가능하게 결합될 수 있다. 그리고, 교량을 지지하는 지상의 아래에는 세관형 히트파이프로 이루어진 열전달 히트파이프(20)가 지중(1)으로 매설되어 있다.Specifically, the heat exchange part includes a heat exchange heat pipe 12 made of a tubular heat pipe capable of rapidly transferring a large amount of heat, and the heat exchange heat pipe 12 is embedded in the upper plate 6 of the bridge to exchange heat with the bridge. Additional heat transfer can be combined. Under the ground supporting the bridge, a heat transfer heat pipe 20 made of a tubular heat pipe is embedded in the ground 1.
이에 따라, 여름과 같이 교량의 온도가 지중(1)보다 높아질 경우에 교량의 열에너지를 열교환 히트파이프(12)로 흡수 한 후에 열전달 히트파이프(20)에 전달하여 지중(1)에 저장하고, 반대로 겨울과 같이 교량의 온도가 지중(1)보다 낮아질 경우에는 지중(1)으로부터 열에너지를 전달받아 교량에 방출할 수 있다. 따라서, 겨울에 열교환 히트파이프(12)는 지중(1)에 여름 동안 저장된 열에너지를 공급받아 교량으로 방출함으로써 교량의 결빙을 방지할 수 있다.Accordingly, when the temperature of the bridge becomes higher than the ground (1) as in summer, after absorbing the heat energy of the bridge into the heat exchange heat pipe (12), it is transferred to the heat transfer heat pipe (20) and stored in the ground (1), on the contrary When the temperature of the bridge is lower than the ground (1), such as winter, the thermal energy can be received from the ground (1) and released to the bridge. Therefore, in the winter, the heat exchange heat pipe 12 receives the thermal energy stored during the summer in the ground 1 and releases it to the bridge to prevent freezing of the bridge.
이 때, 도 3 의 (a)에 나타난 바와 같이, 지중(1)에 매설된 열전달 히트파이프(20)와 교량에 매설된 열교환 히트파이프(12) 간의 열전달을 효율을 향상시키기 위하여, 교량에서부터 교량을 지지하는 지상으로 연장되며 열교환부 및 열전달 히트파이프(20)에 인접하게 배치된 열전달부재(15)를 더 포함할 수 있다.At this time, as shown in (a) of FIG. 3, in order to improve the efficiency of heat transfer between the heat transfer heat pipe 20 embedded in the ground 1 and the heat exchange heat pipe 12 embedded in the bridge, the bridge from the bridge It may further include a heat transfer member 15 extending to the ground to support the heat exchanger and disposed adjacent to the heat transfer heat pipe 20.
본 실시예에서는 열전달부재(15)로 위크형 히트파이프를 이용하여, 열교환 히트파이프(12) 와 열전달 히트파이프(20) 사이에서 대량의 열을 빠르게 전달할 수 있다.In this embodiment, a weak heat pipe may be used as the heat transfer member 15 to rapidly transfer a large amount of heat between the heat exchange heat pipe 12 and the heat transfer heat pipe 20.
위크형의 히트파이프는, 작동유체가 주입되는 밀폐된 파이프와, 파이프 내벽에 작동유체가 이동하는 위크(wick) 및 파이프 내부에서 기화된 작동유체가 이동하는 증기이동공간으로 이루어진다. 구체적인 기능을 살펴보면, 열이 전달된 부분에서 기화된 작동유체가 증기이동공간을 통하여, 외부로 열을 전달하는 전열부로 이동한다. 그리고, 전열부로 이동한 기화된 작동유체는 응축되어 기화열을 전열부로 전달한다. 응축된 작동유체는 위크를 통하여 원위치로 환류된다. 이에 따라, 전열부로 열을 전달하는 열전달 사이클이 이루어진다. The wick type heat pipe includes a sealed pipe into which a working fluid is injected, a wick in which the working fluid moves on the inner wall of the pipe, and a vapor moving space in which the vaporized working fluid moves in the pipe. Looking at the specific function, the working fluid vaporized in the heat transfer portion is moved to the heat transfer unit for transferring heat to the outside through the steam moving space. Then, the vaporized working fluid moved to the heat transfer unit is condensed to transfer the heat of vaporization to the heat transfer unit. The condensed working fluid is returned to its original position via the wick. As a result, a heat transfer cycle for transferring heat to the heat transfer unit is made.
상술한 열전달 구조를 가지는 위크형 히트파이프는, 세관형 히트파이프에 비하여 상대적으로 큰 직경의 관을 가지며 내부에 많은 작동유체가 주입된다. 이에 따라, 한번에 많은 작동유체가 기화 및 응축되는 과정을 통하여, 대량의 열이 신속하게 전달될 수 있는 특징을 가진다. 따라서, 교량 또는 지중(1)의 열이 적체되지 않도록, 열에너지를 신속하게 전달하여 열손실을 최소화할 수 있다.The wick type heat pipe having the heat transfer structure described above has a relatively large diameter tube and a large amount of working fluid is injected therein as compared with the tubular heat pipe. Accordingly, a large amount of heat can be quickly transferred through a process in which a large number of working fluids are vaporized and condensed at a time. Therefore, the heat energy can be quickly transmitted to minimize heat loss so that the heat of the bridge or the ground 1 is not accumulated.
또한, 도 3의 (b)에 나타난 바와 같이, 본 실시예의 열전달부재(16)는 세관형 히트파이프로 이루어지며, 열전달 히트파이프(20)와 일체로 형성될 수도 있다. In addition, as shown in Figure 3 (b), the heat transfer member 16 of the present embodiment is made of a tubular heat pipe, it may be formed integrally with the heat transfer heat pipe 20.
구체적으로, 세관형의 히트파이프가 교량을 가로질러 지상으로 연결되고, 세관형 히트파이프의 단부는 지중으로 깊게 매설되게 설치될 수 있다. 이 때, 세관형의 히트파이프 중 교량을 가로지르며 열교환 히트파이프(12)에 인접한 부분이 열전달부재(16)가 되며, 지중에 매설된 세관형 히트파이프의 단부가 열전달 히트파이프(20)가 된다. 이에 따라, 열전달부재(16) 및 열전달 히트파이프(20)를 세관형 히트파이프로 일체로 구성함으로써 설치가 용이해질 수 있다.Specifically, the tubular heat pipe is connected to the ground across the bridge, the end of the tubular heat pipe may be installed to be deeply buried underground. At this time, the portion of the tubular heat pipe that crosses the bridge and is adjacent to the heat exchange heat pipe 12 becomes the heat transfer member 16, and the end of the tubular heat pipe embedded in the ground becomes the heat transfer heat pipe 20. . Accordingly, the heat transfer member 16 and the heat transfer heat pipe 20 can be easily integrated by constructing the tubular heat pipe integrally.
한편, 본 실시예의 지열교환장치는 지열 냉난방장치로도 사용될 수 있다.On the other hand, the geothermal heat exchanger of this embodiment can also be used as a geothermal heating and cooling device.
도 4는 본 발명의 일 실시예에 따른 세관형 히트파이프를 구비한 지열교환장치를 이용한 지열 냉난방장치를 설명하는 도면이다.4 is a view illustrating a geothermal heating and cooling device using a geothermal heat exchanger having a capillary heat pipe according to an embodiment of the present invention.
도 4에 나타난 바와 같이, 본 실시예에 따른 지열 냉난방장치는 열교환부가 지상구조물의 내부와 열전달 가능하게 결합되어서, 지상구조물의 내부의 열을 지중(1)으로 흡수시키거나 지중(1)의 열을 지상구조물의 내부로 방열할 수 있다.As shown in FIG. 4, in the geothermal air conditioning system according to the present embodiment, the heat exchange unit is coupled to the inside of the ground structure so as to be capable of heat transfer, thereby absorbing the heat inside the ground structure to the ground (1) or the heat of the ground (1). Can dissipate into the ground structure.
구체적으로, 본 실시예에서는 지열교환장치가 온실(40)의 온도를 조절하는 지열 냉난방장치로 이용된다. 열교환 히트파이프(12)로 구성된 열교환부는 온실(40)의 바닥(7)에 매설되어 온실(40)의 내부와 열전달이 가능하며, 열교환 히트파이프(12)와 연결된 열전달 히트파이프(20)는 지중(1)에 매설되어 있다.Specifically, in the present embodiment, the geothermal heat exchanger is used as a geothermal air conditioning system for controlling the temperature of the greenhouse 40. The heat exchange part composed of the heat exchange heat pipe 12 is buried in the bottom 7 of the greenhouse 40 to allow heat transfer to the inside of the greenhouse 40, and the heat transfer heat pipe 20 connected to the heat exchange heat pipe 12 is underground. It is buried in (1).
이에 따라, 여름에는 온도가 높아진 온실(40) 내부에서 열에너지를 열교환 히트파이프(12)가 흡수한 후에 열전달 히트파이프(20)를 통하여 지중(1)에 저장할 수 있다. 즉, 여름에는 온실(40) 내부에서 열에너지를 빼앗아 온실(40) 내부의 온도를 낮출 수 있다. 이 때, 지상구조물 내부로 채광이 가능할 경우에, 지중(1)에 저장되는 열에너지를 더욱 증가시킬 수 있도록 열교환 히트파이프(12)는 채광되는 면에 매설되게 배치될 수 있다.Accordingly, in the summer, the heat energy may be absorbed by the heat exchange heat pipe 12 and stored in the ground 1 through the heat transfer heat pipe 20 in the greenhouse 40 having a high temperature. That is, in summer, the heat energy may be taken away from the greenhouse 40 to lower the temperature inside the greenhouse 40. At this time, when mining is possible inside the ground structure, the heat exchange heat pipe 12 may be disposed to be embedded in the mined surface so as to further increase the thermal energy stored in the ground (1).
또한, 겨울에는 열교환 히트파이프(12)는 지중(1)에 여름 동안 저장된 열에너지를 열전달 히트파이프(20)로부터 공급받아 온실(40)내부로 방출함으로써 온실(40) 난방을 수행할 수 있다.In addition, in winter, the heat exchange heat pipe 12 may perform the heating of the greenhouse 40 by receiving heat energy stored during summer in the ground 1 from the heat transfer heat pipe 20 and releasing it into the greenhouse 40.
도 5는 본 발명의 다른 실시예에 따른 세관형 히트파이프를 구비한 지열교환장치를 이용한 지열 냉난방장치를 설명하는 도면이다.FIG. 5 is a view illustrating a geothermal air conditioning system using a geothermal heat exchanger having a tubular heat pipe according to another embodiment of the present invention.
본 실시예에서는 지열교환장치가 주택(50)의 온도를 조절하는 지열 냉난방장치로 이용된다.In the present embodiment, the geothermal heat exchanger is used as a geothermal air conditioning system for controlling the temperature of the house 50.
도 5에 나타난 바와 같이, 본 실시예의 열교환부는 주택(50)의 냉방 및 난방을 수행하는 지열보일러(14)를 포함한다. 지열보일러(14)는 주택(50) 내부로 열을 방출하거나 주택(50) 내부의 열을 흡수하는 히트펌프 및 열을 축적하는 축열조 등을 포함한다.As shown in FIG. 5, the heat exchange part of the present embodiment includes a geothermal boiler 14 for cooling and heating the house 50. The geothermal boiler 14 includes a heat pump that discharges heat into the housing 50 or absorbs heat inside the housing 50, and a heat storage tank that accumulates heat.
그리고, 지열보일러(14)는 지중(1)에 매설된 열전달 히트파이프(20)와 열전달이 가능하게 구성된다. 구체적으로, 지열보일러(14)와 연결된 수관(水管, 17)이 열전달 히트파이프(20)와 인접하여 배치되어 지열보일러(14)와 열전달 히트파이프(20) 사이에서 열에너지를 전달할 수 있다. 또는, 상술한 위크형 히트파이프가 지열보일러(14) 및 열전달 히트파이프(20) 사이에는 인접하여 배치될 수 있다.The geothermal boiler 14 is configured to be capable of heat transfer with the heat transfer heat pipe 20 embedded in the ground 1. Specifically, a water pipe 17 connected to the geothermal boiler 14 may be disposed adjacent to the heat transfer heat pipe 20 to transfer thermal energy between the geothermal boiler 14 and the heat transfer heat pipe 20. Alternatively, the above-described weak heat pipe may be disposed adjacent to the geothermal boiler 14 and the heat transfer heat pipe 20.
이에 따라, 여름에는 지열보일러(14)가 주택(50) 내부의 열에너지를 흡수하여 지중(1)에 저장함으로써 주택(50) 내부의 온도를 낮추어 냉방을 수행하며, 겨울에는 지중(1)에 저장된 열에너지를 주택(50) 내부로 방출하여 난방을 수행할 수 있다.Accordingly, in the summer, the geothermal boiler 14 absorbs heat energy inside the house 50 and stores it in the ground 1 to lower the temperature of the inside of the house 50 to perform cooling, and to store it in the ground 1 in winter. The heat energy may be discharged into the house 50 to perform heating.
상기에서는 본 발명의 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to embodiments of the present invention, those skilled in the art may variously modify the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. And can be changed.
전술한 실시예 외의 많은 실시예들이 본 발명의 특허청구범위 내에 존재한다.Many embodiments other than the above-described embodiments are within the scope of the claims of the present invention.
[부호의 설명][Description of the code]
1: 지중1: underground
5: 도로5: road
6: 교량 상판6: bridge tops
12: 열교환 히트파이프12: heat exchange heat pipe
14: 지열보일러14: geothermal boiler
15, 16: 열전달부재15, 16: heat transfer member
20: 열전달 히트파이프20: heat transfer heat pipe
22: 세관22: customs
23: 작동유체23: working fluid
30: 보조열원30: auxiliary heat source
40: 온실40: greenhouse
50: 주택 50: housing
본 발명에 따르면, 지상의 자연력을 열에너지 형태로 지중에 축적함으로써 사용이 가능한 지열의 양을 증가시킬 수 있다.According to the present invention, the amount of geothermal heat that can be used can be increased by accumulating the natural forces on the ground in the form of thermal energy.
또한, 넓은 열전달면적을 가지며 높은 열전달 효율을 가진 세관형 히트파이프를 이용함으로써, 에너지 손실을 최소화하여 지열의 에너지 효율을 높일 수 있다.In addition, by using a tubular heat pipe having a large heat transfer area and high heat transfer efficiency, it is possible to minimize energy loss and increase geothermal energy efficiency.
또한, 펌프 등의 부가적인 작동장치 없이도 세관형 히트파이프만을 사용하여 열에너지를 저장하고 이용함으로써, 지열교환장치의 설치 및 유지보수를 용이하게 할 수 있다.In addition, it is possible to facilitate the installation and maintenance of the geothermal heat exchanger by storing and using thermal energy using only the tubular heat pipe without additional operation devices such as a pump.

Claims (11)

  1. 지상에 인접하여 설치되어 있으며, 상기 지상의 열을 흡수하거나 상기 지상으로 열을 방출하는 열교환부; 및A heat exchanger disposed adjacent to the ground and absorbing the ground heat or emitting heat to the ground; And
    세관형으로 형성되어 작동유체가 주입되며, 일측이 상기 열교환부에 인접하게 배치되어 열전달이 가능하고 타측은 지중에 매설된 열전달 히트파이프를 포함하고,It is formed in a tubular shape and a working fluid is injected, one side is disposed adjacent to the heat exchanger to enable heat transfer, and the other side includes a heat transfer heat pipe embedded in the ground.
    상기 지상이 상기 지중보다 가열될 때에 상기 열전달 히트파이프는 상기 열교환부의 열을 상기 지중으로 이송하여 저장시키고, 상기 지상이 상기 지중보다 냉각될 때에는 상기 열전달 히트파이프는 상기 지중의 열을 상기 열교환부로 이송하는 것을 특징으로 하는 세관형 히트파이프를 구비한 지열교환장치.The heat transfer heat pipe transfers and stores the heat of the heat exchanger to the ground when the ground is heated above the ground, and the heat transfer heat pipe transfers heat of the ground to the heat exchanger when the ground is cooled than the ground. Geothermal heat exchanger having a tubular heat pipe, characterized in that.
  2. 제1항에 있어서,The method of claim 1,
    상기 열교환부는,The heat exchange unit,
    세관형으로 형성되어 작동유체가 주입되며, 상기 열전달 히트파이프와 결합되는 열교환 히트파이프를 포함하는 것을 특징으로 하는 세관형 히트파이프를 구비한 지열교환장치.A geothermal heat exchanger having a tubular heat pipe, characterized in that it is formed in a tubular shape, a working fluid is injected, and includes a heat exchange heat pipe coupled with the heat transfer heat pipe.
  3. 제2항에 있어서,The method of claim 2,
    상기 열교환 히트파이프 및 상기 열전달 히트파이프는 일체형의 세관형 히트파이프로 형성되며, The heat exchange heat pipe and the heat transfer heat pipe are formed of an integrated tubular heat pipe,
    상기 일체형의 세관형 히트파이프는, 상기 지상과 상기 지중을 교대로 왕복하는 형태로 형성되는 것을 특징으로 하는 세관형 히트파이프를 구비한 지열교환장치.The integrated tubular heat pipe is a geothermal heat exchanger having a tubular heat pipe, characterized in that formed in the form of reciprocating the ground and the ground alternately.
  4. 제1항에 있어서,The method of claim 1,
    상기 열전달 파이프에 열을 전달하는 보조 열원을 더 포함하는 것을 특징으로 하는 세관형 히트파이프를 구비한 지열교환장치.Geothermal heat exchanger having a capillary heat pipe further comprises an auxiliary heat source for transferring heat to the heat transfer pipe.
  5. 제1항 내지 제4항 중 어느 한 항에 따른 세관형 히트파이프를 구비한 지열교환장치를 포함하고,A geothermal heat exchanger having a tubular heat pipe according to any one of claims 1 to 4,
    상기 열교환부는 도로와 열전달 가능하게 결합되어서, 상기 도로의 열을 지중으로 흡수시키거나 상기 지중의 열을 상기 도로로 방열하여 것을 특징으로 하는 도로결빙 방지장치.The heat exchange unit is coupled to the heat transfer to the road, the road ice prevention device, characterized in that to absorb the heat of the road into the ground or to heat the underground heat to the road.
  6. 제5항에 있어서,The method of claim 5,
    상기 열교환부는, The heat exchange unit,
    상기 도로에 매설된 세관형 히트파이프를 포함하는 것을 특징으로 하는 도로결빙 방지장치.Road anti-freezing apparatus comprising a capillary heat pipe embedded in the road.
  7. 제1항 내지 제4항 중 어느 한 항에 따른 세관형 히트파이프를 구비한 지열교환장치를 포함하고,A geothermal heat exchanger having a tubular heat pipe according to any one of claims 1 to 4,
    상기 열교환부는 교량과 열전달 가능하게 결합되어서, 상기 교량의 열을 지중으로 흡수시키거나 상기 지중의 열을 상기 교량으로 방열하여 것을 특징으로 하는 교량결빙 방지장치.The heat exchanger is coupled to the bridge and the heat transfer, the bridge ice preventing device, characterized in that to absorb the heat of the bridge into the ground or to heat the ground heat to the bridge.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 열교환부는,The heat exchange unit,
    상기 교량 상판에 매설된 세관형 히트파이프를 포함하는 것을 특징으로 하는 교량결빙 방지장치.Bridge anti-icing device comprising a tubular heat pipe embedded in the bridge top plate.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 교량에서 상기 교량을 지지하는 지상으로 연장되어 있으며, 상기 열교환부 및 상기 열전달 히트파이프에 인접하게 배치되어서 상기 열교환부와 상기 열전달 히트파이프 사이에 열을 전달하는 열전달부재를 더 포함하는 교량결빙 방지장치.The bridge extends from the bridge to the ground for supporting the bridge, and is disposed adjacent to the heat exchanger and the heat transfer heat pipe, further comprising a heat transfer member for transferring heat between the heat exchanger and the heat transfer heat pipe. Device.
  10. 제1항 내지 제4항 중 어느 한 항에 따른 세관형 히트파이프를 구비한 지열교환장치를 포함하고,A geothermal heat exchanger having a tubular heat pipe according to any one of claims 1 to 4,
    상기 열교환부는 지상구조물의 내부와 열전달 가능하게 결합되어서, 상기 지상구조물 내부의 열을 지중으로 흡수시키거나 상기 지중의 열을 상기 지상구조물의 내부로 방열하여 것을 특징으로 하는 지열 냉난방장치.The heat exchange part is coupled to the inside of the ground structure so as to transfer heat, geothermal air conditioning device, characterized in that to absorb the heat inside the ground structure to the ground or to heat the ground heat to the inside of the ground structure.
  11. 제10항에 있어서,The method of claim 10,
    상기 지상구조물은 내부로 채광이 가능하며,The ground structure can be mined into the inside,
    상기 열교환부는 채광되는 면에 매설된 세관형 히트파이프를 포함하는 것을 특징으로 하는 지열 냉난방장치.The heat exchanger is a geothermal air-conditioning device, characterized in that it comprises a tubular heat pipe embedded in the mined surface.
PCT/KR2011/007920 2010-12-30 2011-10-24 Geothermal exchanger including a capillary-type heat pipe, apparatus for preventing icing on a road/bridge, and geothermal cooling and heating apparatus WO2012091266A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2802077A CA2802077A1 (en) 2010-12-30 2011-10-24 Geothermal exchanger including a capillary-type heat pipe, apparatus for preventing icing on a road/bridge, and geothermal cooling and heating apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0139222 2010-12-30
KR1020100139222A KR101220521B1 (en) 2010-12-30 2010-12-30 Apparatus for earth heat exchange using capillary-type heat pipe, apparatus for preventing road-freezing and bridge-freezing, and apparatus for heating and cooling using earth heat exchange

Publications (2)

Publication Number Publication Date
WO2012091266A2 true WO2012091266A2 (en) 2012-07-05
WO2012091266A3 WO2012091266A3 (en) 2012-08-23

Family

ID=46383593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007920 WO2012091266A2 (en) 2010-12-30 2011-10-24 Geothermal exchanger including a capillary-type heat pipe, apparatus for preventing icing on a road/bridge, and geothermal cooling and heating apparatus

Country Status (3)

Country Link
KR (1) KR101220521B1 (en)
CA (1) CA2802077A1 (en)
WO (1) WO2012091266A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103604253A (en) * 2013-11-28 2014-02-26 青岛理工大学 Capillary tube seawater source heat pump system used for seawater breeding
CN104596122A (en) * 2015-01-27 2015-05-06 江苏中圣压力容器装备制造有限公司 Method for preventing and controlling freeze-expanded damage to water-containing subgrade in cold region and bunched low-temperature heat pipe
CN108286840A (en) * 2018-03-08 2018-07-17 北京交通大学 Geothermal heat pump for preventing Frozen Area roadbed frost damage and implementation

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9188086B2 (en) 2008-01-07 2015-11-17 Mcalister Technologies, Llc Coupled thermochemical reactors and engines, and associated systems and methods
US8441361B2 (en) 2010-02-13 2013-05-14 Mcallister Technologies, Llc Methods and apparatuses for detection of properties of fluid conveyance systems
KR20130036001A (en) 2010-02-13 2013-04-09 맥알리스터 테크놀로지즈 엘엘씨 Reactor vessel with transmissive surfaces for producing hydrogen-based fuels and structural elements, and associated systems and methods
US9039327B2 (en) 2011-08-12 2015-05-26 Mcalister Technologies, Llc Systems and methods for collecting and processing permafrost gases, and for cooling permafrost
US8734546B2 (en) 2011-08-12 2014-05-27 Mcalister Technologies, Llc Geothermal energization of a non-combustion chemical reactor and associated systems and methods
WO2013025650A1 (en) 2011-08-12 2013-02-21 Mcalister Technologies, Llc Mobile transport platforms for producing hydrogen and structural materials and associated systems and methods
WO2013025655A2 (en) 2011-08-12 2013-02-21 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
CN103857873A (en) 2011-08-12 2014-06-11 麦卡利斯特技术有限责任公司 Systems and methods for extracting and processing gases from submerged sources
US8911703B2 (en) 2011-08-12 2014-12-16 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
US9522379B2 (en) 2011-08-12 2016-12-20 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
WO2014124463A1 (en) * 2013-02-11 2014-08-14 Mcalister Technologies, Llc Geothermal energization of a non-combustion chemical reactor and associated systems and methods
WO2014160301A1 (en) 2013-03-14 2014-10-02 Mcalister Technologies, Llc Method and apparatus for generating hydrogen from metal
CN105485963A (en) * 2016-01-11 2016-04-13 万建红 Waste water heat energy recycling system
KR102622913B1 (en) 2022-12-23 2024-01-10 한국건설기술연구원 Seasonal underground heat storage and heat dissipation device for road pavement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07279114A (en) * 1994-04-11 1995-10-24 Kensetsusho Hokurikuchihou Kensetsukyoku Solar heat regerative snow-melting device
JP2008025984A (en) * 2006-04-28 2008-02-07 Misawa Kankyo Gijutsu Kk Facility for storing and supplying solar/geothermal heat and method for supplying the same
KR20090113088A (en) * 2008-04-25 2009-10-29 조용성 Temperature control system of road surface using convection of heat transfer medium in dual pipe by subterranean heat
JP2010255963A (en) * 2009-04-06 2010-11-11 Nippon Shizen Energy Kaihatsu:Kk System using natural energy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07279114A (en) * 1994-04-11 1995-10-24 Kensetsusho Hokurikuchihou Kensetsukyoku Solar heat regerative snow-melting device
JP2008025984A (en) * 2006-04-28 2008-02-07 Misawa Kankyo Gijutsu Kk Facility for storing and supplying solar/geothermal heat and method for supplying the same
KR20090113088A (en) * 2008-04-25 2009-10-29 조용성 Temperature control system of road surface using convection of heat transfer medium in dual pipe by subterranean heat
JP2010255963A (en) * 2009-04-06 2010-11-11 Nippon Shizen Energy Kaihatsu:Kk System using natural energy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103604253A (en) * 2013-11-28 2014-02-26 青岛理工大学 Capillary tube seawater source heat pump system used for seawater breeding
CN104596122A (en) * 2015-01-27 2015-05-06 江苏中圣压力容器装备制造有限公司 Method for preventing and controlling freeze-expanded damage to water-containing subgrade in cold region and bunched low-temperature heat pipe
CN108286840A (en) * 2018-03-08 2018-07-17 北京交通大学 Geothermal heat pump for preventing Frozen Area roadbed frost damage and implementation

Also Published As

Publication number Publication date
WO2012091266A3 (en) 2012-08-23
CA2802077A1 (en) 2012-07-05
KR101220521B1 (en) 2013-01-10
KR20120077307A (en) 2012-07-10

Similar Documents

Publication Publication Date Title
WO2012091266A2 (en) Geothermal exchanger including a capillary-type heat pipe, apparatus for preventing icing on a road/bridge, and geothermal cooling and heating apparatus
CA1120029A (en) Heat pipe bag system
US8567482B2 (en) Heat tube device utilizing cold energy and application thereof
EP2630852B1 (en) Air-based geothermal cooling maintenance system
TWI519741B (en) A carefully driven liquid self-circulation method, a device, and a liquid self-circulation system for applying these devices
WO2015060490A1 (en) Solar power generation system using single high-temperature molten salt heat storage tank
CN102425968B (en) Compact type loop heat pipe device
CA3106059C (en) Method and arrangement in connection with a building
WO2012108555A1 (en) Power generator
JP5183948B2 (en) Heat exchanger
CN114709052B (en) High-efficient heat abstractor of oil-immersed transformer
US20150114598A1 (en) Device of Downward Heat-Transfer Using Reverse Thermosiphon Loop
KR101233786B1 (en) Apparatus for overheating and freezing of facilities
CN103138647A (en) Power generation device by using subterranean heat
WO2012144739A2 (en) Insulation structure for building
KR102118986B1 (en) Soil Heat Exchanger
KR102597648B1 (en) Ice and snow prevention system
CN104582419A (en) Heat exchanger for communication cabinet
WO2014137094A1 (en) Outdoor temperature sensitive heating and cooling apparatus
CN202770288U (en) Heat pipe exchanger
US20230053884A1 (en) Systems and methods for district heating and cooling
CN114791239A (en) One-way air-cooled formula pipe foundation heat radiation structure of perennial frozen soil district self-suction
Vasiliev et al. Heat pipes and heat pipe exchangers for heat recovery systems
KR20030042096A (en) Recycling and fall teperature system for power plant's waste water using seperate heat pipe type heat exchanger
CN108981231A (en) A kind of heat reclaim unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852298

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2802077

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 201291383

Country of ref document: EA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11852298

Country of ref document: EP

Kind code of ref document: A2