WO2014136861A1 - Composite member provided with decorative film having metallic shine - Google Patents

Composite member provided with decorative film having metallic shine Download PDF

Info

Publication number
WO2014136861A1
WO2014136861A1 PCT/JP2014/055723 JP2014055723W WO2014136861A1 WO 2014136861 A1 WO2014136861 A1 WO 2014136861A1 JP 2014055723 W JP2014055723 W JP 2014055723W WO 2014136861 A1 WO2014136861 A1 WO 2014136861A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
composite member
decorative film
layer
base material
Prior art date
Application number
PCT/JP2014/055723
Other languages
French (fr)
Japanese (ja)
Inventor
瀧 優介
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2014136861A1 publication Critical patent/WO2014136861A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/584Scratch resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/702Amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • the present invention relates to a composite member in which a decorative film having a metallic luster is formed as an uppermost layer, and an optical component and an electronic component including the composite member.
  • Metals such as aluminum alloys and resins are used as base materials for composite members that make up the body of digital cameras and mobile phones.
  • Design elements such as the shape and appearance of such composite members are important factors that greatly influence the commercial value of digital cameras, mobile phones, and the like.
  • the appearance of the base material formed from the resin is poor in quality, and may be insufficient in terms of adding commercial value. Therefore, conventionally, a composite member in which a metal film is formed as a decorative film on a lightweight and inexpensive resin base material molded by a method such as injection molding has been used. As a result, the composite member could be given a metallic luster, and an attempt was made to ensure high-quality design.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a composite member having a metallic luster and a metallic material feeling and having high wear resistance. Furthermore, an object of this invention is to provide an optical component and an electronic component provided with such a composite member.
  • a composite member comprising: A substrate; A decorative film as the uppermost layer covering the substrate; A composite member in which the decorative film is amorphous carbon doped with metal and has a thickness of 10 nm or more is provided.
  • the decorative film may have a thickness of 300 nm or less.
  • the decorative film may have an electrical resistivity in a range of 1 ⁇ 10 ⁇ 5 ⁇ cm to 8 ⁇ 10 ⁇ 3 ⁇ cm.
  • the decorative film may have a hardness of 10 GPa to 20 GPa.
  • an underlayer may be provided between the base material and the decorative film.
  • the foundation layer may include a resin layer.
  • the underlayer may be a transparent layer and / or a colored layer.
  • a colored layer may be provided between the base material and the decorative film, and a transparent layer may be further provided between the colored layer and the base material.
  • the decorative film may be provided directly on the base material.
  • the base material may be a colored base material.
  • the decorative layer may have a thickness of 10 to 20 nm.
  • the base material may be plastic.
  • the metal may be titanium or aluminum.
  • the base material may be a camera housing part.
  • an optical apparatus provided with the composite member of the first aspect is provided.
  • an electronic apparatus including the composite member of the first aspect is provided.
  • the composite member 100 of 1st Embodiment has the base material 60 and the decoration film
  • the “uppermost layer” means a layer that appears on the outermost surface of the composite member, and no other layer exists on the layer.
  • the “decorative film” is a film formed to enhance the design of the product on all or part of the part appearing on the appearance of the product, and does not appear on the product appearance due to connection with other members.
  • the decorative film does not include a film formed on the part, for example, a film that is formed on a part that is in sliding contact with another member and is not exposed to the outside in a use state.
  • the base material 60 of the composite member 100 is formed of, for example, a metal such as aluminum or stainless steel, an inorganic material such as ceramic, an organic material such as resin, or the like, and has an arbitrary shape. It is possible to use a camera housing component having the same. Since the resin is inexpensive and has a small specific gravity, it is possible to reduce the weight of the composite member and to mass-produce it at low cost by using the base material 60 formed by injection molding of the resin. As the resin, a resin (plastic) suitable for mass production processes such as injection molding is preferable.
  • polycarbonate polyethylene, polyvinyl chloride, polystyrene, ABS resin, polypropylene, polyvinyl acetate, acrylic resin (PMMA), polyethylene terephthalate (PET), fluororesin such as polytetrafluoroethylene (PTFE), polyetheretherketone (PEEK), polyamideimide (PAI), polyphenylene sulfide (PPS), polyester resin, and glass fiber and carbon in these resins
  • PTFE polytetrafluoroethylene
  • PEEK polyetheretherketone
  • PAI polyamideimide
  • PPS polyphenylene sulfide
  • polyester resin glass fiber and carbon in these resins
  • glass fiber and carbon in these resins Various thermoplastic resins such as a resin to which fibers are added can be used.
  • the base material 60 may be colored by, for example, kneading a pigment or a dye into the base material.
  • the decorative film 80 is made of amorphous carbon doped with metal.
  • the amorphous carbon, sp 3 bonded carbon sp 3 -C, carbon composition carbon sp 2 -C of sp 2 bonded corresponding to graphite is a mixture randomly corresponding to the diamond (hereinafter, as "a-C ”).
  • Amorphous carbon is a material that has the characteristics of both diamond and graphite, and has high hardness and excellent wear resistance.
  • Ti, Ni, Cr, Al, Mg can be used from the viewpoint of wear resistance of the decorative film 80, metallic appearance (metallic luster) and material feeling, particularly metallic appearance. Cu, Fe, Ag, Au, Pt and the like. Of these, Ti, Al, Cr, Ni, and Fe are preferable, and Ti and Al are particularly preferable.
  • the metal content (dope amount) in the decorative film 80 is 1 to 33 at%, particularly 1 to 20 at%, in order to maintain the wear resistance and the metallic appearance and texture of the decorative film 80 appropriately. desirable. When the content is less than 1 at%, the metallic appearance (metallic luster) and the material feeling are insufficient. If the content exceeds 20 at%, the hardness of the decorative film 80 decreases and the wear resistance tends to deteriorate.
  • the amorphous carbon layer doped with metal of the decorative film 80 has a thickness of 10 nm or more. If the thickness of the decorative film 80 is less than 10 nm, it is difficult to recognize the metallic luster of the decorative film 80. Furthermore, the amorphous carbon layer doped with metal of the decorative film 80 preferably has a film thickness of 300 nm or less. When the film thickness of the decorative film 80 exceeds 300 nm, a lot of film formation time and material for the decorative film 80 are required, and the productivity of the manufacturing process of the composite member 100 is reduced. In this respect, the upper limit of the thickness of the decorative film 80 is particularly preferably 100 nm.
  • the thickness of the decorative film 80 is 20 nm or less, the light transmittance of the decorative film 80 increases, and the hue of the substrate 60 can be seen through the decorative film 80. Therefore, when the base material 60 colored in a desired color or a colored layer on the base material 60 is provided, the composite member 100 having a desired color metallic luster can be obtained, so that the film of the decorative film 80 is used. More preferably, the thickness is 10 nm to 20 nm.
  • the amorphous carbon layer doped with metal of the decorative film 80 preferably has an electrical resistivity in the range of 1 ⁇ 10 ⁇ 5 ⁇ cm to 8 ⁇ 10 ⁇ 3 ⁇ cm.
  • Low electrical resistivity is a property unique to metal binding materials having free electrons.
  • a metallic texture due to metallic luster and high heat transfer is also a property that can be obtained by the presence of free electrons. Therefore, when the electrical resistivity of the decorative film 80 is equal to or lower than the above upper limit, the decorative film 80 has free electrons. Therefore, the composite member 100 including the decorative film 80 may have a desired metallic luster and metallic feel. it can.
  • the electrical resistivity of the decorative film 80 is less than the lower limit, the film is extremely soft like a noble metal, and the wear resistance of the composite member 100 including the decorative film 80 becomes insufficient. Is appropriate.
  • the amorphous carbon doped with metal of the decorative film 80 preferably has a hardness of 10 GPa to 20 GPa.
  • the hardness of the decorative film 80 is less than the lower limit, the wear resistance of the composite member 100 including the decorative film 80 becomes insufficient, and the composite member 100 may be damaged or the decorative film 80 may be peeled off.
  • the hardness of the decorative film 80 exceeds the above upper limit, it becomes a transparent film having almost no free electrons and does not exhibit a metallic luster.
  • the composite member 200 of this embodiment includes a base layer between the base material 60 and the decorative film 80 as shown in FIG.
  • the foundation layer in the second embodiment is the transparent layer 120.
  • the transparent layer 120 can be formed by spray coating a resin called a clear coat.
  • the base layer transparent layer 120
  • the composite member 200 including the transparent layer 120 between the base material 60 and the decorative film 80 can have high quality appearance quality with small roughness and few defects.
  • the composite member 300 of this embodiment includes an underlayer between the base material 60 and the decorative film 80.
  • the ground layer in the third embodiment is a colored layer 140.
  • the thickness of the decorative film 80 is preferably 10 to 20 nm.
  • the colored layer 80 can be formed by spray-coating a clear coat resin containing a pigment or dye that absorbs light in a specific wavelength band.
  • the composite member 400 of this embodiment includes a base layer between the base material 60 and the decorative film 80 as shown in FIG.
  • the foundation layer in the fourth embodiment includes a colored layer 140 and a transparent layer 120 between the colored layer 140 and the substrate 60.
  • the thickness of the decorative film 80 is preferably 10 to 20 nm.
  • the transparent layer 120 can be formed by spray coating a resin called a clear coat. By forming the transparent layer 120, when the surface of the substrate 60 has irregularities or defects, the irregularities and defects of the substrate 60 can be filled. Therefore, the composite member 400 including the transparent layer 120 between the base material 60 and the decorative film 80 can have high quality appearance quality with small roughness and few defects.
  • the FCVA film forming apparatus 1 mainly includes an arc plasma generating unit 10, a filter unit 20, and a film forming chamber unit 30.
  • the arc plasma generation unit 10 and the film forming chamber unit 30 are connected by the filter unit 20, and the pressure of the film forming chamber unit 30 is set to a vacuum degree of about 10 ⁇ 5 [Torr] by a vacuum device (not shown).
  • the arc plasma generator 10 is provided with a target 11 which is a cathode and an anode (striker), and an arc discharge is generated by bringing the striker into contact with the target 11 and separating immediately after the striker.
  • a target 11 which is a cathode and an anode (striker)
  • arc plasma carbon plasma
  • the neutral carbon particles and carbon ions generated by the arc plasma fly through the filter unit 20 toward the film forming chamber unit 30.
  • a graphite target containing a metal and not containing hydrogen is used.
  • the metal species include Ti, Ni, Cr, Al, Mg, Cu, Fe, Ag, Au, and Pt as described above.
  • the filter unit 20 is provided with a duct 23 around which an electromagnetic coil 21 is wound and an ion scanning coil 25.
  • the duct 23 is bent twice in two orthogonal directions between the arc plasma generating unit 10 and the film forming chamber unit 30, and an electromagnet coil 21 is wound around the outer periphery thereof. Since the duct 23 has such a bent structure (double bend structure), neutral particles in the duct 23 are removed by colliding with the inner wall surface and being deposited.
  • Lorentz force acts on the charged particles inside the duct 23, and is concentrated in the central region of the duct cross section, flies along the duct bend, and enters the film forming chamber 30.
  • Can lead That is, the electromagnetic coil 21 and the duct 23 constitute a narrow-band electromagnetic spatial filter that allows only charged particles to pass with high efficiency.
  • the ion scanning coil 25 scans the beam of charged particles that passes through the duct 23 and enters the film forming chamber 30 as described above, and is uniformly aC: on the surface of the substrate 32 held by the holder 31.
  • An M film is formed.
  • the base material may be an arbitrary material made of an organic material such as a resin or an inorganic material such as a metal or ceramic.
  • a plastic such as a resin, or a metal such as aluminum or stainless steel is used.
  • the film forming chamber section 30 is provided with a plate-shaped holder 31 facing the outlet of the filter section 20, and a base material 32 is set on the surface of the holder 31.
  • the holder 31 can be rotated around its rotation axis by a motor 35.
  • An arbitrary bias can be set to the holder 31 by a power source 37.
  • a component having a composite member as described above is also provided.
  • the composite member of the above embodiment can be used for parts of various applications from the viewpoint of the high wear resistance, the metallic appearance (metallic luster) and the metallic material feeling of the composite member. Suitable for parts such as digital cameras, optical devices such as binoculars, glasses, etc., electronic devices such as mobile phones, smartphones, portable music devices, portable video devices, etc. .
  • Examples 1-7 Using an FCVA film forming apparatus 1 as shown in FIG. 5, an aC: Ti film (titanium-doped amorphous carbon film) was produced as an amorphous carbon layer on the substrate by the FCVA method.
  • a target 11 containing a metal element a sintered graphite target containing 2.15 [at%] of Ti was used. The sintered graphite target used was dehydrated. A polycarbonate substrate was used as the base material.
  • aC As the operating condition of the FCVA film forming apparatus 1 when forming the Ti film, the current of the arc power source (cathode side power source) in the arc plasma generation unit 10 is 60 A, and the current of the electromagnetic coil 21 in the filter unit 20 (filter Current) was 13 A, the anode-side power source current (anode current) in the arc plasma generator 10 was 8 A, and the voltage (duct voltage) of the ion scanning coil 25 was 0.2 V. The bias power supply voltage was floating.
  • the aC Ti film was adjusted to various film thicknesses as shown in the table of FIG. 6 by controlling the film formation time.
  • Examples 8 and 9 Using the FCVA film forming apparatus 1 used in Examples 1 to 7, an aC: Al film (aluminum-doped amorphous carbon film) was formed as an amorphous carbon layer on the substrate by the FCVA method.
  • aC: Al film aluminum-doped amorphous carbon film
  • the target 11 containing a metal element a sintered graphite target containing 8.5 [at%] of Al was used. The sintered graphite target used was dehydrated. A polycarbonate substrate was used as the base material.
  • the arc current of the arc power source (cathode side power source) in the arc plasma generation unit 10 is 70 A
  • the current of the electromagnetic coil 21 in the filter unit 20 The filter current was 13 A
  • the anode-side power source current (anode current) in the arc plasma generator 10 was 8 A
  • the voltage (duct voltage) of the ion scanning coil 25 was 0.2 V.
  • the bias power supply voltage was floating.
  • the film thickness of the aC: Al film was adjusted to 15 nm and 300 nm, respectively, by controlling the film formation time.
  • Comparative Example 1 A Ti film was produced on the substrate by the FCVA method using the FCVA film forming apparatus 1 used in the examples.
  • a Ti target was used as the target 11.
  • a polycarbonate substrate was used as the substrate.
  • the arc current of the arc power source (cathode side power source) in the arc plasma generation unit 10 is 140 A
  • the current (filter current) of the electromagnet coil 21 in the filter unit 20 is
  • the current (anode current) of the anode side power source in the arc plasma generator 10 was 10.5 A
  • the voltage (duct voltage) of the ion scanning coil 25 was 0.5 V.
  • the bias power supply voltage was floating.
  • the thickness of the Ti film was set to 200 nm by controlling the film formation time.
  • Comparative Example 2 An aC: Ti film was prepared in the same manner as in Example 1 except that the film thickness of the aC: Ti film was changed to 5 nm.
  • the reflectance and transmittance at a wavelength of 500 nm were measured with a visible spectrophotometer. Further, the chromaticity of the sample was measured with a color computer SM-4 type manufactured by Suga Test Instruments Co., Ltd. The results are shown in the table of FIG.
  • the samples of Examples 1 to 9 had a reflectance of 29.7 to 34.1%.
  • the sample of Comparative Example 1 had a reflectance of 53.2%.
  • the sample of Comparative Example 2 had a reflectance of 10.7%.
  • the wear resistance of the samples of Examples 1 to 9 and Comparative Examples 1 and 2 was evaluated by a steel wool test.
  • the steel wool test is performed by a rubbing tester (manufactured by Kei Este Co., Ltd.) attached with steel wool (steel wool No. 0000), and the steel wool is pressed against the sample with a load of 200 gf and reciprocated 80 times with an amplitude of 30 mm.
  • the case where no scratch was visually confirmed was accepted (denoted as “ ⁇ ” in the table), and the case where a scratch was visually confirmed was regarded as unacceptable (denoted as “x” in the table).
  • the results are shown in the table of FIG. All of the samples of Examples 1 to 9 passed, but the samples of Comparative Examples 1 and 2 failed because they were scratched by steel wool.
  • Example 10 A sample was prepared in the same manner as in Example 2 except that an ultraviolet curable coating layer was formed between the substrate and the aC: Ti film.
  • the UV-curing coat layer was prepared by manually spray-coating a commercially available UV lacquer acrylic lacquer paint on a polycarbonate substrate.
  • the film thickness of the ultraviolet curable coating layer was 8 ⁇ m.
  • Example 11 A sample was prepared in the same manner as in Example 8 except that an ultraviolet curable coating layer was formed between the substrate and the aC: Al film.
  • the ultraviolet curable coating layer was produced by the spray coating method in the same manner as in Example 10.
  • the film thickness of the ultraviolet curable coating layer was 8 ⁇ m.
  • Example 12 A sample was prepared in the same manner as in Example 10 except that a pigmented ultraviolet curable coating layer was formed between the ultraviolet curable coating layer and the aC: Ti film.
  • the UV-cured coat layer containing the pigment was prepared by manually spray-coating a commercially available UV-curable clear coating composition with a blue pigment blended onto the UV-cured coat layer.
  • the film thickness of the ultraviolet curable coating layer containing the pigment was 8 ⁇ m.
  • Example 13 A sample was prepared in the same manner as in Example 11 except that an ultraviolet curable coating layer containing a pigment was formed between the ultraviolet curable coating layer and the aC: Al film.
  • the pigmented UV curable coating layer was prepared in the same manner as in Example 12.
  • the film thickness of the ultraviolet curable coating layer containing the pigment was 8 ⁇ m.
  • Comparative Example 3 A sample was prepared in the same manner as in Example 11 except that an Al film was formed instead of the aC: Al film.
  • the Al film was produced by the FCVA film forming apparatus 1 used in the examples.
  • the arc current of the arc power source (cathode side power source) in the arc plasma generation unit 10 is 160 A
  • the current (filter current) of the electromagnetic coil 21 in the filter unit 20 is
  • the current (anode current) of the anode side power source in the arc plasma generator 10 was 10.5 A
  • the voltage (duct voltage) of the ion scanning coil 25 was 0.5 V.
  • the bias power supply voltage was floating.
  • the thickness of the Al film was set to 200 nm by controlling the film formation time.
  • Comparative Example 4 A sample was prepared in the same manner as in Comparative Example 3 except that an ultraviolet curable coating layer was formed on an Al film having a thickness of 20 nm.
  • the ultraviolet curable coating layer was prepared by the spray coating method in the same manner as in Example 10.
  • the film thickness of the ultraviolet curable coating layer was 8 ⁇ m.
  • the thickness of the Al film was set to 20 nm by controlling the film formation time.
  • Comparative Example 5 A sample was prepared in the same manner as in Example 13 except that an Al film was formed instead of the aC: Al film.
  • the Al film was produced in the same manner as in Comparative Example 3.
  • the thickness of the Al film was set to 20 nm by controlling the film formation time.
  • Comparative Example 6 A sample was prepared in the same manner as in Comparative Example 5 except that an ultraviolet curable coating layer was formed on an Al film having a thickness of 20 nm.
  • the ultraviolet curable coating layer was prepared by the spray coating method in the same manner as in Example 10.
  • the film thickness of the ultraviolet curable coating layer was 8 ⁇ m.
  • the thickness of the Al film was set to 20 nm by controlling the film formation time.
  • Example 10 to 13 and Comparative Examples 3 to 6 For the samples of Examples 10 to 13 and Comparative Examples 3 to 6 produced as described above, the presence or absence of metallic luster was measured in the same manner as in Example 1. The results are shown in the table of FIG.
  • the samples of Comparative Examples 4 and 6 on which the UV-cured coating layer was not formed did not have a metallic luster (metallic material feeling).
  • the samples of Comparative Examples 4 and 6 seem to have a metallic texture at first glance, but because of the gloss from the metal film seen through the UV cured coating layer, It feels different from the metallic luster that can be felt when viewing. Thus, it can be seen that in order to obtain a metallic feel, it is necessary to dispose a layer having metallic luster on the outermost layer.
  • the aC: M film used in the examples has wear resistance and metallic luster (metallic material feeling).
  • a member having such an aC: M film formed on the surface has high appearance quality due to metallic luster and can maintain appearance quality for a long time due to high wear resistance.
  • the amorphous carbon film doped with metal is a tetrahedral amorphous carbon film doped with metal (ta-C: M film). Met.
  • the ta-C: M film can be formed by the FCVA method using a carbon target containing a metal element.
  • the present invention is not limited to these embodiments and examples.
  • titanium and aluminum are shown as an example of the metal doping element M of aC: M.
  • the metal doping element is a film based on aC. Any other metal element such as Ni, Cr, Mg, Cu, Fe, Ag, Au, or Pt may be used.
  • the part having the composite member of this embodiment can be applied to a wide range of uses.
  • Electronic devices for example, digital cameras, optical devices such as binoculars and glasses, mobile phones, smartphones, portable music devices, portable video devices, etc., whose design elements such as shape and appearance are important factors that greatly influence the product value.
  • Electronic devices are important factors that greatly influence the product value.

Abstract

This composite member (100) comprises a substrate (60), and a decorative film (80) that covers said substrate, wherein said decorative film (80) is a metal-doped amorphous carbon, and has a thickness of 10 nm or greater. The present invention provides: a composite member that has excellent wear resistance and that has formed thereon a decorative film having a metallic shine and a metallic texture; and an optical component and an electronic component provided with said composite member.

Description

金属光沢を有する装飾膜を備えた複合部材Composite member provided with decorative film having metallic luster
 本発明は、最上層として金属光沢を有する装飾膜が形成された複合部材、並びにこの複合部材を備える光学部品及び電子部品に関する。 The present invention relates to a composite member in which a decorative film having a metallic luster is formed as an uppermost layer, and an optical component and an electronic component including the composite member.
 デジタルカメラ、携帯電話等のボディを構成する複合部材の基材の材料として、アルミニウム合金等の金属や、樹脂が用いられている。そのような複合部材の形状や外観などのデザイン要素は、デジタルカメラ、携帯電話等の商品価値を大きく左右する重要な因子となる。この点において、樹脂から形成された基材の外観は高級感に乏しく、商品価値の付加という点では不十分である場合がある。そのため、従来は、射出成型などの方法により成型した軽量で安価な樹脂基材上に、装飾膜として、金属膜を形成した複合部材が用いられていた。それにより複合部材に金属光沢を持たせることができ、高品位なデザイン性を確保しようとしていた。 Metals such as aluminum alloys and resins are used as base materials for composite members that make up the body of digital cameras and mobile phones. Design elements such as the shape and appearance of such composite members are important factors that greatly influence the commercial value of digital cameras, mobile phones, and the like. In this respect, the appearance of the base material formed from the resin is poor in quality, and may be insufficient in terms of adding commercial value. Therefore, conventionally, a composite member in which a metal film is formed as a decorative film on a lightweight and inexpensive resin base material molded by a method such as injection molding has been used. As a result, the composite member could be given a metallic luster, and an attempt was made to ensure high-quality design.
 さらに、金属膜からなる装飾膜の損傷や剥離を防止するために、例えば特許文献1の図4に示されているように、金属膜上に透光性膜を形成した複合部材も提案されている。 Furthermore, in order to prevent the decorative film made of a metal film from being damaged or peeled off, a composite member in which a translucent film is formed on the metal film has been proposed as shown in FIG. 4 of Patent Document 1, for example. Yes.
特開2009-172904号公報JP 2009-172904 A
 本発明はこのような事情に鑑みてなされたものであり、金属光沢および金属的な素材感を有し、且つ耐摩耗性の高い複合部材を提供することを目的とする。さらには、本発明は、そのような複合部材を備える光学部品及び電子部品を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a composite member having a metallic luster and a metallic material feeling and having high wear resistance. Furthermore, an object of this invention is to provide an optical component and an electronic component provided with such a composite member.
 第1の態様に従えば、複合部材であって、
 基材と、
 前記基材を被覆する最上層としての装飾膜とを備え、
 前記装飾膜が、金属がドープされたアモルファスカーボンであり、且つ10nm以上の厚さを有する複合部材が提供される。
According to a first aspect, a composite member comprising:
A substrate;
A decorative film as the uppermost layer covering the substrate;
A composite member in which the decorative film is amorphous carbon doped with metal and has a thickness of 10 nm or more is provided.
 前記複合部材において、前記装飾膜が、300nm以下の厚さを有してもよい。 In the composite member, the decorative film may have a thickness of 300 nm or less.
 前記複合部材において、前記装飾膜が、1×10-5Ωcm~8×10-3Ωcmの範囲の電気抵抗率を有してもよい。 In the composite member, the decorative film may have an electrical resistivity in a range of 1 × 10 −5 Ωcm to 8 × 10 −3 Ωcm.
 前記複合部材において、前記装飾膜が、10GPa~20GPaの硬度を有してもよい。 In the composite member, the decorative film may have a hardness of 10 GPa to 20 GPa.
 前記複合部材において、前記基材と前記装飾膜の間に下地層を備えてもよい。前記下地層は樹脂層を含んでも良い。前記下地層は透明層および/又は着色層であっても良い。 In the composite member, an underlayer may be provided between the base material and the decorative film. The foundation layer may include a resin layer. The underlayer may be a transparent layer and / or a colored layer.
 前記複合部材において、前記基材と前記装飾膜の間に着色層を備えてもよく、さらに前記着色層と前記基材との間に透明層を備えてもよい。 In the composite member, a colored layer may be provided between the base material and the decorative film, and a transparent layer may be further provided between the colored layer and the base material.
前記複合部材において、前記装飾膜が前記基材に直接設けられていてもよい。さらに、前記基材は、着色された基材であってもよい。 In the composite member, the decorative film may be provided directly on the base material. Furthermore, the base material may be a colored base material.
 前記複合部材において、前記装飾層の膜厚が10~20nmであってもよい。 In the composite member, the decorative layer may have a thickness of 10 to 20 nm.
 前記複合部材において、前記基材がプラスチックであってもよい。 In the composite member, the base material may be plastic.
 前記複合部材において、前記金属がチタンまたはアルミニウムであってもよい。 In the composite member, the metal may be titanium or aluminum.
 前記複合部材において、前記基材がカメラ筐体部品であってもよい。 In the composite member, the base material may be a camera housing part.
 第2の態様に従えば、第1の態様の複合部材を備えた光学機器が提供される。 According to the second aspect, an optical apparatus provided with the composite member of the first aspect is provided.
 第3の態様に従えば、第1の態様の複合部材を備えた電子機器が提供される。 According to the third aspect, an electronic apparatus including the composite member of the first aspect is provided.
 上記態様によれば、耐摩耗性が高く、金属光沢及び金属的素材感を有する装飾膜が形成された複合部材、並びにこの複合部材を備える光学部品及び電子部品を提供することができる。 According to the above aspect, it is possible to provide a composite member on which a decorative film having high wear resistance and a metallic luster and a metallic material feeling is formed, and an optical component and an electronic component including the composite member.
第1実施形態の複合部材の表面の概略断面図である。It is a schematic sectional drawing of the surface of the composite member of 1st Embodiment. 基材と装飾膜の間に透明層を備える第2実施形態の複合部材の表面の概略断面図である。It is a schematic sectional drawing of the surface of the composite member of 2nd Embodiment provided with a transparent layer between a base material and a decoration film. 基材と装飾膜の間に着色層を備える第3実施形態の複合部材の表面の概略断面図である。It is a schematic sectional drawing of the surface of the composite member of 3rd Embodiment provided with a colored layer between a base material and a decoration film. 基材と装飾膜の間に透明層及び着色層を備える第4実施形態の複合部材の表面の概略断面図である。It is a schematic sectional drawing of the surface of the composite member of 4th Embodiment provided with a transparent layer and a colored layer between a base material and a decoration film. FCVA成膜装置の構成を示す概略構成図である。It is a schematic block diagram which shows the structure of a FCVA film-forming apparatus. 実施例1~9及び比較例1、2で作製した試料の成膜条件及び評価結果を示す表である。10 is a table showing film forming conditions and evaluation results of samples manufactured in Examples 1 to 9 and Comparative Examples 1 and 2. 実施例10~13及び比較例3~6で作製した試料の成膜条件及び評価結果を示す表である。10 is a table showing film forming conditions and evaluation results of samples manufactured in Examples 10 to 13 and Comparative Examples 3 to 6.
 以下、本発明を実施するための形態について、図面を参照しながら説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
<第1実施形態>
 図1に示すように、第1の実施形態の複合部材100は、基材60と、基材を被覆する最上層としての装飾膜80を有する。なお、「最上層」とは、複合部材の最表面に現れる層を意味し、その層の上には別の層が存在していない。また、「装飾膜」とは、製品の外観に表れる部分の全体または一部に、製品のデザイン性を高めるために形成される膜であり、他の部材との連結等により製品外観に表れない部分に形成される膜、例えば、他との部材と摺動接触する部分に形成されて、使用状態では外部に露出しない膜は装飾膜に含まれない。
<First Embodiment>
As shown in FIG. 1, the composite member 100 of 1st Embodiment has the base material 60 and the decoration film | membrane 80 as an uppermost layer which coat | covers a base material. The “uppermost layer” means a layer that appears on the outermost surface of the composite member, and no other layer exists on the layer. The “decorative film” is a film formed to enhance the design of the product on all or part of the part appearing on the appearance of the product, and does not appear on the product appearance due to connection with other members. The decorative film does not include a film formed on the part, for example, a film that is formed on a part that is in sliding contact with another member and is not exposed to the outside in a use state.
 複合部材100の基材60には、用途に応じて種々の材料が用いられる。本実施形態の複合部材100がカメラシステムに用いられる場合、基材60として例えば、アルミニウム、ステンレス鋼のような金属やセラミックなどの無機材料、樹脂等の有機材料などで形成され、任意の形状を有するカメラ筐体部品を用いることができる。樹脂は安価で比重が小さいため、樹脂を射出成型して形成した基材60を用いることで、複合部材を軽量化し、安価に大量生産することが可能となる。樹脂としては、射出成型などの量産化プロセスに適した樹脂(プラスチック)が好ましく、例えば、ポリカーボネート、ポリエチレン、ポリ塩化ビニル、ポリスチレン、ABS樹脂、ポリプロピレン、ポリ酢酸ビニル、アクリル樹脂(PMMA)、ポリエチレンテレフタレート(PET)、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂,ポリエーテルエーテルケトン(PEEK)、ポリアミドイミド(PAI)、ポリフェニレンスルファイド(PPS)、ポリエステル樹脂、及びこれらの樹脂中にガラスファイバーやカーボンファイバーを添加した樹脂など種々の熱可塑性樹脂を用いることができる。また、基材60は、例えば顔料または染料を基材材料に練りこむことによって、着色されていてもよい。 Various materials are used for the base material 60 of the composite member 100 depending on applications. When the composite member 100 of the present embodiment is used in a camera system, the base member 60 is formed of, for example, a metal such as aluminum or stainless steel, an inorganic material such as ceramic, an organic material such as resin, or the like, and has an arbitrary shape. It is possible to use a camera housing component having the same. Since the resin is inexpensive and has a small specific gravity, it is possible to reduce the weight of the composite member and to mass-produce it at low cost by using the base material 60 formed by injection molding of the resin. As the resin, a resin (plastic) suitable for mass production processes such as injection molding is preferable. For example, polycarbonate, polyethylene, polyvinyl chloride, polystyrene, ABS resin, polypropylene, polyvinyl acetate, acrylic resin (PMMA), polyethylene terephthalate (PET), fluororesin such as polytetrafluoroethylene (PTFE), polyetheretherketone (PEEK), polyamideimide (PAI), polyphenylene sulfide (PPS), polyester resin, and glass fiber and carbon in these resins Various thermoplastic resins such as a resin to which fibers are added can be used. Moreover, the base material 60 may be colored by, for example, kneading a pigment or a dye into the base material.
 装飾膜80は金属がドープされたアモルファスカーボンからなる。アモルファスカーボンとは、ダイヤモンドに対応するsp結合した炭素sp‐Cと、グラファイトに対応するsp結合した炭素sp‐Cがランダムに混じり合った炭素組成物(以下、適宜「a‐C」と表記する)である。アモルファスカーボンは、ダイヤモンドとグラファイトの両者の特徴を併せ持った特性を有し、高硬度で耐摩耗性に優れる材料である。 The decorative film 80 is made of amorphous carbon doped with metal. The amorphous carbon, sp 3 bonded carbon sp 3 -C, carbon composition carbon sp 2 -C of sp 2 bonded corresponding to graphite is a mixture randomly corresponding to the diamond (hereinafter, as "a-C ”). Amorphous carbon is a material that has the characteristics of both diamond and graphite, and has high hardness and excellent wear resistance.
 アモルファスカーボンにより、耐摩耗性を獲得できても、所望の金属的な外観(金属光沢)及び素材感を獲得することは困難であると考えられてきた。これは、アモルファスカーボンの高い硬度は自由電子をもたない炭素原子間の共有結合により実現されるが、一方、金属光沢及び金属的な素材感は多数の自由電子を有することにより実現されるからである。本実施形態では、金属をドープしたアモルファスカーボン(以下、適宜「a‐C:M」と表記する)を用いることで、良好な耐摩耗性、並びに金属的な外観(金属光沢)及び素材感を備えた装飾膜を製造することに成功した。 It has been considered that it is difficult to obtain a desired metallic appearance (metallic luster) and material feeling even if wear resistance can be obtained by amorphous carbon. This is because the high hardness of amorphous carbon is realized by covalent bonds between carbon atoms without free electrons, while metallic luster and metallic texture are realized by having many free electrons. It is. In the present embodiment, by using amorphous carbon doped with metal (hereinafter referred to as “aC: M” as appropriate), good wear resistance, metallic appearance (metallic luster), and texture are obtained. Succeeded in producing the decorative film provided.
 アモルファスカーボンにドープする金属としては、装飾膜80の耐摩耗性や、金属的な外観(金属光沢)及び素材感、特に金属的な外観という観点からすれば、Ti、Ni、Cr、Al、Mg、Cu、Fe、Ag、Au、Pt等が挙げられる。このうち、Ti、Al、Cr、Ni、Feが好ましく、Ti、Alが特に好ましい。装飾膜80中の金属の含有量(ドープ量)は、装飾膜80の耐摩耗性並びに金属的な外観及び素材感を適度に維持するためには、1~33at%、特に1~20at%が望ましい。含有量が1at%未満であると金属的な外観(金属光沢)及び素材感が不十分である。含有量が20at%を超えると、装飾膜80の硬度が低下して耐摩耗性が悪化する傾向にある。 As the metal doped into amorphous carbon, Ti, Ni, Cr, Al, Mg can be used from the viewpoint of wear resistance of the decorative film 80, metallic appearance (metallic luster) and material feeling, particularly metallic appearance. Cu, Fe, Ag, Au, Pt and the like. Of these, Ti, Al, Cr, Ni, and Fe are preferable, and Ti and Al are particularly preferable. The metal content (dope amount) in the decorative film 80 is 1 to 33 at%, particularly 1 to 20 at%, in order to maintain the wear resistance and the metallic appearance and texture of the decorative film 80 appropriately. desirable. When the content is less than 1 at%, the metallic appearance (metallic luster) and the material feeling are insufficient. If the content exceeds 20 at%, the hardness of the decorative film 80 decreases and the wear resistance tends to deteriorate.
 装飾膜80の金属がドープされたアモルファスカーボン層は、10nm以上の膜厚を有する。装飾膜80の膜厚が10nm未満であると、装飾膜80の金属光沢を認識することが難しい。さらに、装飾膜80の金属がドープされたアモルファスカーボン層は、300nm以下の膜厚を有することが好ましい。装飾膜80の膜厚が300nmを超える場合、装飾膜80の成膜時間及び材料が多く必要になり、複合部材100の製造プロセスの生産性が低下する。この点で、装飾膜80の膜厚の上限は特に100nmが好ましい。さらに、装飾膜80の膜厚が20nm以下であると、装飾膜80の光透過性が大きくなり、装飾膜80を通して基材60の色相が見える。そのため、所望の色に着色した基材60や基材60上に着色層を備える場合には、所望の色の金属光沢を有する複合部材100を得ることができるという理由から、装飾膜80の膜厚は10nm~20nmであることがさらに好ましい。 The amorphous carbon layer doped with metal of the decorative film 80 has a thickness of 10 nm or more. If the thickness of the decorative film 80 is less than 10 nm, it is difficult to recognize the metallic luster of the decorative film 80. Furthermore, the amorphous carbon layer doped with metal of the decorative film 80 preferably has a film thickness of 300 nm or less. When the film thickness of the decorative film 80 exceeds 300 nm, a lot of film formation time and material for the decorative film 80 are required, and the productivity of the manufacturing process of the composite member 100 is reduced. In this respect, the upper limit of the thickness of the decorative film 80 is particularly preferably 100 nm. Furthermore, if the thickness of the decorative film 80 is 20 nm or less, the light transmittance of the decorative film 80 increases, and the hue of the substrate 60 can be seen through the decorative film 80. Therefore, when the base material 60 colored in a desired color or a colored layer on the base material 60 is provided, the composite member 100 having a desired color metallic luster can be obtained, so that the film of the decorative film 80 is used. More preferably, the thickness is 10 nm to 20 nm.
 装飾膜80の金属がドープされたアモルファスカーボン層は、1×10-5Ωcm~8×10-3Ωcmの範囲の電気抵抗率を有することが好ましい。低電気抵抗率は自由電子を有する金属結合性材料に特有の性質である。金属光沢および高い伝熱性による金属的な素材感もまた、自由電子が存在することによって得ることができる性質である。したがって装飾膜80の電気抵抗率が前記上限以下である場合、装飾膜80は自由電子を有するため、その装飾膜80を備える複合部材100は所望の金属光沢及び金属的な素材感を有することができる。一方、装飾膜80の電気抵抗率が前記下限未満である場合、貴金属のように極めて軟質な膜となり、装飾膜80を備える複合部材100の耐摩耗性が不十分となるため、装飾膜として不適当である。 The amorphous carbon layer doped with metal of the decorative film 80 preferably has an electrical resistivity in the range of 1 × 10 −5 Ωcm to 8 × 10 −3 Ωcm. Low electrical resistivity is a property unique to metal binding materials having free electrons. A metallic texture due to metallic luster and high heat transfer is also a property that can be obtained by the presence of free electrons. Therefore, when the electrical resistivity of the decorative film 80 is equal to or lower than the above upper limit, the decorative film 80 has free electrons. Therefore, the composite member 100 including the decorative film 80 may have a desired metallic luster and metallic feel. it can. On the other hand, when the electrical resistivity of the decorative film 80 is less than the lower limit, the film is extremely soft like a noble metal, and the wear resistance of the composite member 100 including the decorative film 80 becomes insufficient. Is appropriate.
 装飾膜80の金属がドープされたアモルファスカーボンは、10GPa~20GPaの硬度を有することが好ましい。装飾膜80の硬度が前記下限未満である場合、装飾膜80を備える複合部材100の耐摩耗性が不十分となり、複合部材100に傷が生じたり、装飾膜80が剥離したりする恐れがある。一方、装飾膜80の硬度が前記上限を超える場合、自由電子をほとんど有さない透明な膜となり金属光沢を呈さないため、装飾膜として不適当である。 The amorphous carbon doped with metal of the decorative film 80 preferably has a hardness of 10 GPa to 20 GPa. When the hardness of the decorative film 80 is less than the lower limit, the wear resistance of the composite member 100 including the decorative film 80 becomes insufficient, and the composite member 100 may be damaged or the decorative film 80 may be peeled off. . On the other hand, when the hardness of the decorative film 80 exceeds the above upper limit, it becomes a transparent film having almost no free electrons and does not exhibit a metallic luster.
<第2実施形態>
 この実施形態の複合部材200は、図2に示すように、基材60と装飾膜80の間に、下地層を備えている。第2実施形態における下地層は透明層120である。透明層120は、クリアコートと呼ばれる樹脂をスプレー塗装することより形成することができる。下地層(透明層120)を形成することにより、基材60表面に凹凸や欠陥がある場合に、基材60の凹凸及び欠陥を埋めることができる。そのため、基材60と装飾膜80の間に透明層120を備える複合部材200は、粗さが小さく欠陥が少ない、高品位の外観品質を有し得る。
Second Embodiment
The composite member 200 of this embodiment includes a base layer between the base material 60 and the decorative film 80 as shown in FIG. The foundation layer in the second embodiment is the transparent layer 120. The transparent layer 120 can be formed by spray coating a resin called a clear coat. By forming the base layer (transparent layer 120), when the surface of the substrate 60 has irregularities or defects, the irregularities and defects of the substrate 60 can be filled. Therefore, the composite member 200 including the transparent layer 120 between the base material 60 and the decorative film 80 can have high quality appearance quality with small roughness and few defects.
<第3実施形態>
 この実施形態の複合部材300は、図3に示すように、基材60と装飾膜80の間に、下地層を備えている。第3実施形態における下地層は着色層140である。装飾膜80越しに着色層140の色相が見えるようにするため、装飾膜80の膜厚は10~20nmであることが好ましい。着色層80は、特定波長帯域の光を吸収する顔料や染料を含有させたクリアコート樹脂をスプレー塗装することより形成することができる。
<Third Embodiment>
As shown in FIG. 3, the composite member 300 of this embodiment includes an underlayer between the base material 60 and the decorative film 80. The ground layer in the third embodiment is a colored layer 140. In order to make the hue of the colored layer 140 visible through the decorative film 80, the thickness of the decorative film 80 is preferably 10 to 20 nm. The colored layer 80 can be formed by spray-coating a clear coat resin containing a pigment or dye that absorbs light in a specific wavelength band.
<第4実施形態>
 この実施形態の複合部材400は、図4に示すように、基材60と装飾膜80の間に下地層を備えている。第4実施形態における下地層は、着色層140と、着色層140と基材60との間の透明層120とからなる。装飾膜80越しに着色層140の色相が見えるようにするため、装飾膜80の膜厚は10~20nmであることが好ましい。透明層120は、クリアコートと呼ばれる樹脂をスプレー塗装することより形成することができる。透明層120を形成することにより、基材60表面に凹凸や欠陥がある場合に、基材60の凹凸及び欠陥を埋めることができる。そのため、基材60と装飾膜80の間に透明層120を備える複合部材400は、粗さが小さく欠陥が少ない、高品位の外観品質を有し得る。
<Fourth embodiment>
The composite member 400 of this embodiment includes a base layer between the base material 60 and the decorative film 80 as shown in FIG. The foundation layer in the fourth embodiment includes a colored layer 140 and a transparent layer 120 between the colored layer 140 and the substrate 60. In order to make the hue of the colored layer 140 visible through the decorative film 80, the thickness of the decorative film 80 is preferably 10 to 20 nm. The transparent layer 120 can be formed by spray coating a resin called a clear coat. By forming the transparent layer 120, when the surface of the substrate 60 has irregularities or defects, the irregularities and defects of the substrate 60 can be filled. Therefore, the composite member 400 including the transparent layer 120 between the base material 60 and the decorative film 80 can have high quality appearance quality with small roughness and few defects.
 <装飾膜の製造方法>
 基材上に装飾膜を形成する成膜方法の一例として、FCVA(Filtered Cathodic Vacuum Arc)法及びその方法を実施する成膜装置1の概要構造を、図5を参照しながら説明する。
<Method for producing decorative film>
As an example of a film forming method for forming a decorative film on a substrate, an outline of a FCVA (Filtered Cathodic Vacuum Arc) method and a film forming apparatus 1 for performing the method will be described with reference to FIG.
 FCVA成膜装置1は、主に、アークプラズマ生成部10と、フィルタ部20と、成膜チャンバ部30とから構成される。アークプラズマ生成部10と成膜チャンバ部30とがフィルタ部20により接続され、図示省略する真空装置により成膜チャンバ部30の圧力が10-5[Torr]程度の真空度に設定される。 The FCVA film forming apparatus 1 mainly includes an arc plasma generating unit 10, a filter unit 20, and a film forming chamber unit 30. The arc plasma generation unit 10 and the film forming chamber unit 30 are connected by the filter unit 20, and the pressure of the film forming chamber unit 30 is set to a vacuum degree of about 10 −5 [Torr] by a vacuum device (not shown).
 アークプラズマ生成部10には、カソードであるターゲット11とアノード(ストライカー)が設けられており、ストライカーをターゲット11に接触させて直後に離すことによってアーク放電を生じさせる。a‐C膜を成膜する場合には、ターゲット11としてグラファイトが用いられ、アーク放電によりアークプラズマ(炭素プラズマ)が発生される。アークプラズマにより生成された中性の炭素粒子及び炭素イオンは、成膜チャンバ部30に向けてフィルタ部20を飛行する。上記実施形態の金属ドープされたa‐C膜からなる装飾膜を製造するには、金属を含み且つ水素を含まないグラファイトのターゲットを用いる。金属種は前述のようにTi、Ni、Cr、Al、Mg、Cu、Fe、Ag、Au、Ptなどが挙げられる。 The arc plasma generator 10 is provided with a target 11 which is a cathode and an anode (striker), and an arc discharge is generated by bringing the striker into contact with the target 11 and separating immediately after the striker. When forming an aC film, graphite is used as the target 11 and arc plasma (carbon plasma) is generated by arc discharge. The neutral carbon particles and carbon ions generated by the arc plasma fly through the filter unit 20 toward the film forming chamber unit 30. In order to manufacture the decorative film made of the metal-doped aC film of the above embodiment, a graphite target containing a metal and not containing hydrogen is used. Examples of the metal species include Ti, Ni, Cr, Al, Mg, Cu, Fe, Ag, Au, and Pt as described above.
 フィルタ部20には、電磁石コイル21が巻かれたダクト23及びイオンスキャン用コイル25が設けられている。ダクト23は、アークプラズマ生成部10と成膜チャンバ部30との間で、直交する二方向に2度曲折されており、その外周に電磁石コイル21が巻き付けられている。ダクト23がこのような屈曲構造(ダブルベンド構造)を有することにより、ダクト23内の中性粒子は内壁面に衝突して堆積することで除去される。一方、電磁石コイル21に電流を流すことによりダクト23内部の荷電粒子にはローレンツ力が作用して、ダクト断面の中心領域に集約され、ダクトの屈曲に沿って飛行し、成膜チャンバ部30に導くことができる。すなわち、この電磁石コイル21とダクト23が、荷電粒子のみを高効率で通過させる狭帯域の電磁気空間的フィルタを構成する。 The filter unit 20 is provided with a duct 23 around which an electromagnetic coil 21 is wound and an ion scanning coil 25. The duct 23 is bent twice in two orthogonal directions between the arc plasma generating unit 10 and the film forming chamber unit 30, and an electromagnet coil 21 is wound around the outer periphery thereof. Since the duct 23 has such a bent structure (double bend structure), neutral particles in the duct 23 are removed by colliding with the inner wall surface and being deposited. On the other hand, when a current is passed through the electromagnetic coil 21, Lorentz force acts on the charged particles inside the duct 23, and is concentrated in the central region of the duct cross section, flies along the duct bend, and enters the film forming chamber 30. Can lead. That is, the electromagnetic coil 21 and the duct 23 constitute a narrow-band electromagnetic spatial filter that allows only charged particles to pass with high efficiency.
 イオンスキャン用コイル25は、上記のようにしてダクト23を通り成膜チャンバ部30に入る荷電粒子のビームをスキャンし、ホルダ31に保持された基材32の表面に一様なa‐C:M膜を形成する。基材は、樹脂等の有機材料や、金属やセラミックなどの無機材料からなる任意の形状の材料を使用することができる。装飾膜がカメラ用の複合部材に使用される場合には、樹脂などのプラスチックやアルミニウム、ステンレス鋼などの金属が用いられる。 The ion scanning coil 25 scans the beam of charged particles that passes through the duct 23 and enters the film forming chamber 30 as described above, and is uniformly aC: on the surface of the substrate 32 held by the holder 31. An M film is formed. The base material may be an arbitrary material made of an organic material such as a resin or an inorganic material such as a metal or ceramic. When the decorative film is used for a composite member for a camera, a plastic such as a resin, or a metal such as aluminum or stainless steel is used.
 成膜チャンバ部30には、フィルタ部20の出口と対向するプレート状のホルダ31が設けられ、このホルダ31の表面に基材32がセットされる。ホルダ31はモータ35によりその回転軸を中心として回転可能である。ホルダ31には電源37によって任意のバイアスを設定可能になっている。 The film forming chamber section 30 is provided with a plate-shaped holder 31 facing the outlet of the filter section 20, and a base material 32 is set on the surface of the holder 31. The holder 31 can be rotated around its rotation axis by a motor 35. An arbitrary bias can be set to the holder 31 by a power source 37.
<複合部材を有する部品>
 さらなる実施形態によれば、上記のような複合部材を有する部品もまた提供される。上記実施形態の複合部材は、複合部材の有する高い耐摩耗性、金属的外観(金属光沢)及び金属的素材感という観点から様々な用途の部品に使用することができるが、特に、形状や外観などのデザイン要素が商品価値を大きく左右する重要な因子となるデジタルカメラ、双眼鏡、眼鏡等の光学機器、携帯電話、スマートフォン、携帯音楽機器、携帯映像機器等の電子機器などの部品に好適である。
<Parts with composite members>
According to a further embodiment, a component having a composite member as described above is also provided. The composite member of the above embodiment can be used for parts of various applications from the viewpoint of the high wear resistance, the metallic appearance (metallic luster) and the metallic material feeling of the composite member. Suitable for parts such as digital cameras, optical devices such as binoculars, glasses, etc., electronic devices such as mobile phones, smartphones, portable music devices, portable video devices, etc. .
 [実施例]
 以下に、装飾膜を備える部材の製造方法を記載するが、本発明はそれらの実施例に限定されるものではない。
[Example]
Although the manufacturing method of the member provided with a decoration film is described below, the present invention is not limited to those examples.
実施例1~7
 図5に示すようなFCVA成膜装置1を用いて、基材上に、アモルファスカーボン層として、FCVA法によりa‐C:Ti膜(チタンドープアモルファスカーボン膜)を作製した。金属元素を含むターゲット11としては、Tiを2.15[at%]含有した焼結グラファイトターゲットを用いた。なお、焼結グラファイトターゲットは脱水処理したものを用いた。また、基材としてはポリカーボネート基板を用いた。a‐C:Ti膜の成膜時におけるFCVA成膜装置1の運転条件として、アークプラズマ生成部10におけるアーク電源(カソード側電源)の電流を60A、フィルタ部20における電磁石コイル21の電流(フィルタ電流)を13A、アークプラズマ生成部10におけるアノード側電源の電流(アノード電流)を8A、イオンスキャン用コイル25の電圧(ダクト電圧)を0.2Vとした。バイアス電源の電圧は、フローティングとした。a‐C:Ti膜は、成膜時間を制御することにより、図6の表中に示すように種々の膜厚に調整した。
Examples 1-7
Using an FCVA film forming apparatus 1 as shown in FIG. 5, an aC: Ti film (titanium-doped amorphous carbon film) was produced as an amorphous carbon layer on the substrate by the FCVA method. As the target 11 containing a metal element, a sintered graphite target containing 2.15 [at%] of Ti was used. The sintered graphite target used was dehydrated. A polycarbonate substrate was used as the base material. aC: As the operating condition of the FCVA film forming apparatus 1 when forming the Ti film, the current of the arc power source (cathode side power source) in the arc plasma generation unit 10 is 60 A, and the current of the electromagnetic coil 21 in the filter unit 20 (filter Current) was 13 A, the anode-side power source current (anode current) in the arc plasma generator 10 was 8 A, and the voltage (duct voltage) of the ion scanning coil 25 was 0.2 V. The bias power supply voltage was floating. The aC: Ti film was adjusted to various film thicknesses as shown in the table of FIG. 6 by controlling the film formation time.
実施例8、9
 実施例1~7で用いたFCVA成膜装置1により、基材上に、アモルファスカーボン層として、FCVA法によりa‐C:Al膜(アルミニウムドープアモルファスカーボン膜)を作製した。金属元素を含むターゲット11としては、Alを8.5[at%]含有した焼結グラファイトターゲットを用いた。なお、焼結グラファイトターゲットは脱水処理したものを用いた。また、基材としてはポリカーボネート基板を用いた。a‐C:Al膜の成膜時におけるFCVA成膜装置1の運転条件として、アークプラズマ生成部10におけるアーク電源(カソード側電源)のアーク電流を70A、フィルタ部20における電磁石コイル21の電流(フィルタ電流)を13A、アークプラズマ生成部10におけるアノード側電源の電流(アノード電流)を8A、イオンスキャン用コイル25の電圧(ダクト電圧)を0.2Vとした。バイアス電源の電圧は、フローティングとした。a‐C:Al膜の膜厚は、成膜時間を制御することにより、15nm及び300nmにそれぞれ調整した。
Examples 8 and 9
Using the FCVA film forming apparatus 1 used in Examples 1 to 7, an aC: Al film (aluminum-doped amorphous carbon film) was formed as an amorphous carbon layer on the substrate by the FCVA method. As the target 11 containing a metal element, a sintered graphite target containing 8.5 [at%] of Al was used. The sintered graphite target used was dehydrated. A polycarbonate substrate was used as the base material. aC: As the operating condition of the FCVA film forming apparatus 1 when forming the Al film, the arc current of the arc power source (cathode side power source) in the arc plasma generation unit 10 is 70 A, and the current of the electromagnetic coil 21 in the filter unit 20 ( The filter current was 13 A, the anode-side power source current (anode current) in the arc plasma generator 10 was 8 A, and the voltage (duct voltage) of the ion scanning coil 25 was 0.2 V. The bias power supply voltage was floating. The film thickness of the aC: Al film was adjusted to 15 nm and 300 nm, respectively, by controlling the film formation time.
比較例1
 実施例で用いたFCVA成膜装置1により、基材上に、FCVA法によりTi膜を作製した。ターゲット11としては、Tiターゲットを用いた。基材としてはポリカーボネート基板を用いた。Ti膜の成膜時におけるFCVA成膜装置1の運転条件として、アークプラズマ生成部10におけるアーク電源(カソード側電源)のアーク電流を140A、フィルタ部20における電磁石コイル21の電流(フィルタ電流)を7.5A、アークプラズマ生成部10におけるアノード側電源の電流(アノード電流)を10.5A、イオンスキャン用コイル25の電圧(ダクト電圧)を0.5Vとした。バイアス電源の電圧は、フローティングとした。Ti膜の膜厚は、成膜時間を制御することにより、200nmとした。
Comparative Example 1
A Ti film was produced on the substrate by the FCVA method using the FCVA film forming apparatus 1 used in the examples. A Ti target was used as the target 11. A polycarbonate substrate was used as the substrate. As operating conditions of the FCVA film forming apparatus 1 when forming the Ti film, the arc current of the arc power source (cathode side power source) in the arc plasma generation unit 10 is 140 A, and the current (filter current) of the electromagnet coil 21 in the filter unit 20 is The current (anode current) of the anode side power source in the arc plasma generator 10 was 10.5 A, and the voltage (duct voltage) of the ion scanning coil 25 was 0.5 V. The bias power supply voltage was floating. The thickness of the Ti film was set to 200 nm by controlling the film formation time.
比較例2
 a‐C:Ti膜の膜厚を5nmとした以外は、実施例1と同様にしてa‐C:Ti膜を作製した。
Comparative Example 2
An aC: Ti film was prepared in the same manner as in Example 1 except that the film thickness of the aC: Ti film was changed to 5 nm.
 上記のようにして作製した実施例1~9及び比較例1、2の試料について、可視分光光度計にて、波長500nmにおける反射率及び透過率を測定した。また、スガ試験機(株)製カラーコンピュータSM-4型により試料の色度を計測した。結果を図6の表中に示す。実施例1~9の試料は、反射率が29.7~34.1%であった。比較例1の試料は、反射率が53.2%であった。比較例2の試料は反射率が10.7%であった。また、a‐C:M膜の膜厚が25nm以上である実施例4~7及び実施例9の試料では透過率は0%であり、a‐C:M膜を透過したポリカーボネート基板の色相は見られなかった。一方、a‐C:M膜の膜厚が20nm以下である実施例1~3及び実施例8の試料では、透過率が12.6%~56.3%であり、a‐C:M膜を透過してポリカーボネート基材の色相が見られた。なお、L*a*b*表色系により表示された試料の色度がa*≒0かつb*≒0のときに、色相無しと表示した。 For the samples of Examples 1 to 9 and Comparative Examples 1 and 2 produced as described above, the reflectance and transmittance at a wavelength of 500 nm were measured with a visible spectrophotometer. Further, the chromaticity of the sample was measured with a color computer SM-4 type manufactured by Suga Test Instruments Co., Ltd. The results are shown in the table of FIG. The samples of Examples 1 to 9 had a reflectance of 29.7 to 34.1%. The sample of Comparative Example 1 had a reflectance of 53.2%. The sample of Comparative Example 2 had a reflectance of 10.7%. Further, the transmittance of the samples of Examples 4 to 7 and Example 9 in which the film thickness of the aC: M film is 25 nm or more is 0%, and the hue of the polycarbonate substrate that has passed through the aC: M film is I couldn't see it. On the other hand, in the samples of Examples 1 to 3 and Example 8 in which the film thickness of the aC: M film is 20 nm or less, the transmittance is 12.6% to 56.3%, and the aC: M film And the hue of the polycarbonate substrate was seen. When the chromaticity of the sample displayed by the L * a * b * color system is a * ≈0 and b * ≈0, “no hue” is displayed.
 次に、実施例1~9及び比較例1、2の試料について、金属光沢の有無を測定した。金属光沢は、デジタル変角光沢計(Digital Variable Gloss Meter, UGV-5D,スガ試験機(株)製)によって測定した。測定条件は次のとおりである。
光源:D65
角度:60度
参照材料:60°Gloss standard
校正値:91.2%
 上記の光沢度測定によりオーバーレンジと表示されたものを金属光沢有りとした。結果を図6の表中に示す。実施例1~9及び比較例1の試料は金属光沢を有していたが、比較例2の試料は金属光沢を有さなかった。
Next, the presence or absence of metallic luster was measured for the samples of Examples 1 to 9 and Comparative Examples 1 and 2. The metallic luster was measured with a digital variable gloss meter (Digital Variable Gloss Meter, UGV-5D, manufactured by Suga Test Instruments Co., Ltd.). The measurement conditions are as follows.
Light source: D65
Angle: 60 degrees Reference material: 60 ° Gloss standard
Calibration value: 91.2%
What was indicated as overrange by the above glossiness measurement was regarded as having a metallic luster. The results are shown in the table of FIG. The samples of Examples 1 to 9 and Comparative Example 1 had a metallic luster, but the sample of Comparative Example 2 did not have a metallic luster.
 次に、実施例1~9及び比較例1、2の試料について、スチールウール試験によって耐摩耗性を評価した。スチールウール試験は、スチールウール(steel wool No.0000)を取り付けたラビングテスター((株)ケイエステ製)によって行い、スチールウールを200gfの荷重で試料に押し付けて、振幅30mmで80回往復させて、目視にて傷が確認できない場合を合格(表中では「○」と表記する)、目視にて傷が確認できる場合を不合格(表中では「×」と表記する)とした。結果を図6の表中に示す。実施例1~9の試料はいずれも合格であったが、比較例1、2の試料はスチールウールによって傷が生じたため不合格であった。 Next, the wear resistance of the samples of Examples 1 to 9 and Comparative Examples 1 and 2 was evaluated by a steel wool test. The steel wool test is performed by a rubbing tester (manufactured by Kei Este Co., Ltd.) attached with steel wool (steel wool No. 0000), and the steel wool is pressed against the sample with a load of 200 gf and reciprocated 80 times with an amplitude of 30 mm. The case where no scratch was visually confirmed was accepted (denoted as “◯” in the table), and the case where a scratch was visually confirmed was regarded as unacceptable (denoted as “x” in the table). The results are shown in the table of FIG. All of the samples of Examples 1 to 9 passed, but the samples of Comparative Examples 1 and 2 failed because they were scratched by steel wool.
実施例10
 基材とa‐C:Ti膜の間に紫外線硬化コート層を形成した以外は、実施例2と同様にして試料を作製した。紫外線硬化コート層は、ポリカーボネート基材上に市販のUV下塗り用アクリルラッカー塗料を手動でスプレーコートすることにより作製した。紫外線硬化コート層の膜厚は8μmとした。
Example 10
A sample was prepared in the same manner as in Example 2 except that an ultraviolet curable coating layer was formed between the substrate and the aC: Ti film. The UV-curing coat layer was prepared by manually spray-coating a commercially available UV lacquer acrylic lacquer paint on a polycarbonate substrate. The film thickness of the ultraviolet curable coating layer was 8 μm.
実施例11
 基材とa‐C:Al膜の間に紫外線硬化コート層を形成した以外は、実施例8と同様にして試料を作製した。紫外線硬化コート層は、実施例10と同様にしてスプレーコート法により作製した。紫外線硬化コート層の膜厚は8μmとした。
Example 11
A sample was prepared in the same manner as in Example 8 except that an ultraviolet curable coating layer was formed between the substrate and the aC: Al film. The ultraviolet curable coating layer was produced by the spray coating method in the same manner as in Example 10. The film thickness of the ultraviolet curable coating layer was 8 μm.
実施例12
 紫外線硬化コート層とa‐C:Ti膜の間に顔料入り紫外線硬化コート層を形成した以外は、実施例10と同様にして試料を作製した。顔料入り紫外線硬化コート層は、青色の顔料をブレンドした市販のUV硬化型上塗り用クリヤー塗料を手動で紫外線硬化コート層上にスプレーコートすることにより作製した。顔料入り紫外線硬化コート層の膜厚は8μmとした。
Example 12
A sample was prepared in the same manner as in Example 10 except that a pigmented ultraviolet curable coating layer was formed between the ultraviolet curable coating layer and the aC: Ti film. The UV-cured coat layer containing the pigment was prepared by manually spray-coating a commercially available UV-curable clear coating composition with a blue pigment blended onto the UV-cured coat layer. The film thickness of the ultraviolet curable coating layer containing the pigment was 8 μm.
実施例13
 紫外線硬化コート層とa‐C:Al膜の間に顔料入り紫外線硬化コート層を形成した以外は、実施例11と同様にして試料を作製した。顔料入り紫外線硬化コート層は、実施例12と同様にして作製した。顔料入り紫外線硬化コート層の膜厚は8μmとした。
Example 13
A sample was prepared in the same manner as in Example 11 except that an ultraviolet curable coating layer containing a pigment was formed between the ultraviolet curable coating layer and the aC: Al film. The pigmented UV curable coating layer was prepared in the same manner as in Example 12. The film thickness of the ultraviolet curable coating layer containing the pigment was 8 μm.
比較例3
 a‐C:Al膜の代わりにAl膜を形成した以外は、実施例11と同様にして試料を作製した。Al膜は実施例で用いたFCVA成膜装置1により作製した。ターゲット11としては、Alターゲットを用いた。Al膜の成膜時におけるFCVA成膜装置1の運転条件として、アークプラズマ生成部10におけるアーク電源(カソード側電源)のアーク電流を160A、フィルタ部20における電磁石コイル21の電流(フィルタ電流)を7.5A、アークプラズマ生成部10におけるアノード側電源の電流(アノード電流)を10.5A、イオンスキャン用コイル25の電圧(ダクト電圧)を0.5Vとした。バイアス電源の電圧は、フローティングとした。Al膜の膜厚は、成膜時間を制御することにより、200nmとした。
Comparative Example 3
A sample was prepared in the same manner as in Example 11 except that an Al film was formed instead of the aC: Al film. The Al film was produced by the FCVA film forming apparatus 1 used in the examples. As the target 11, an Al target was used. As operating conditions of the FCVA film forming apparatus 1 when forming an Al film, the arc current of the arc power source (cathode side power source) in the arc plasma generation unit 10 is 160 A, and the current (filter current) of the electromagnetic coil 21 in the filter unit 20 is The current (anode current) of the anode side power source in the arc plasma generator 10 was 10.5 A, and the voltage (duct voltage) of the ion scanning coil 25 was 0.5 V. The bias power supply voltage was floating. The thickness of the Al film was set to 200 nm by controlling the film formation time.
比較例4
 膜厚20nmのAl膜上に紫外線硬化コート層を形成した以外は、比較例3と同様にして試料を作製した。紫外線硬化コート層は実施例10と同様にしてスプレーコート法により作製した。紫外線硬化コート層の膜厚は8μmとした。Al膜の膜厚は、成膜時間を制御することにより、20nmとした。
Comparative Example 4
A sample was prepared in the same manner as in Comparative Example 3 except that an ultraviolet curable coating layer was formed on an Al film having a thickness of 20 nm. The ultraviolet curable coating layer was prepared by the spray coating method in the same manner as in Example 10. The film thickness of the ultraviolet curable coating layer was 8 μm. The thickness of the Al film was set to 20 nm by controlling the film formation time.
比較例5
 a‐C:Al膜の代わりにAl膜を形成した以外は、実施例13と同様にして試料を作製した。Al膜は、比較例3と同様にして作製した。Al膜の膜厚は、成膜時間を制御することにより、20nmとした。
Comparative Example 5
A sample was prepared in the same manner as in Example 13 except that an Al film was formed instead of the aC: Al film. The Al film was produced in the same manner as in Comparative Example 3. The thickness of the Al film was set to 20 nm by controlling the film formation time.
比較例6
 膜厚20nmのAl膜上に紫外線硬化コート層を形成した以外は、比較例5と同様にして試料を作製した。紫外線硬化コート層は実施例10と同様にしてスプレーコート法により作製した。紫外線硬化コート層の膜厚は8μmとした。Al膜の膜厚は、成膜時間を制御することにより、20nmとした。
Comparative Example 6
A sample was prepared in the same manner as in Comparative Example 5 except that an ultraviolet curable coating layer was formed on an Al film having a thickness of 20 nm. The ultraviolet curable coating layer was prepared by the spray coating method in the same manner as in Example 10. The film thickness of the ultraviolet curable coating layer was 8 μm. The thickness of the Al film was set to 20 nm by controlling the film formation time.
 上記のようにして作製した実施例10~13及び比較例3~6の試料について、実施例1と同様にして金属光沢の有無を測定した。結果を図7の表中に示す。表面に金属光沢を有するa‐C:M膜またはAl膜が形成されている実施例10~13及び比較例3、5の試料は金属光沢を有していたが、最表面に金属光沢を有さない紫外線硬化コート層が形成されている比較例4、6の試料は、金属光沢(金属的な素材感)を有さなかった。比較例4、6の試料は、一見すると金属的な素材感を有しているように感じられるが、紫外線硬化コート層を通して見た金属膜からの光沢であるため、よく見ると、金属を直接目視した時に感じられる金属光沢とは異なっているように感じられてしまう。このように、金属的な素材感を得るためには、最表層に金属光沢を有する層を配置する必要があることがわかる。 For the samples of Examples 10 to 13 and Comparative Examples 3 to 6 produced as described above, the presence or absence of metallic luster was measured in the same manner as in Example 1. The results are shown in the table of FIG. The samples of Examples 10 to 13 and Comparative Examples 3 and 5 in which the aC: M film or Al film having a metallic luster on the surface had a metallic luster, but the outermost surface had the metallic luster. The samples of Comparative Examples 4 and 6 on which the UV-cured coating layer was not formed did not have a metallic luster (metallic material feeling). The samples of Comparative Examples 4 and 6 seem to have a metallic texture at first glance, but because of the gloss from the metal film seen through the UV cured coating layer, It feels different from the metallic luster that can be felt when viewing. Thus, it can be seen that in order to obtain a metallic feel, it is necessary to dispose a layer having metallic luster on the outermost layer.
 次に、実施例10~13及び比較例3~6の試料について、実施例1と同様にしてスチールウール試験によって耐摩耗性を評価した。結果を図7の表中に示す。最表面にa‐C:M膜または紫外線硬化コート層が形成されている実施例10~13及び比較例4、6の試料は合格であったが、最表面にAl膜が形成されている比較例3、5の試料は、スチールウールによって目視で確認できる傷が生じたため不合格であった。最上層に軟質(低硬度)な金属膜を配置すると容易に傷がつくため、耐摩耗性に劣ることがわかる。このような耐摩耗性の低い膜を複合部材の装飾膜として用いると、ユーザが複合部材を使用する時に、容易に装飾膜表面に傷がついたり装飾膜が剥離したりして、複合部材の外観を損ねるおそれがある。 Next, the wear resistance of the samples of Examples 10 to 13 and Comparative Examples 3 to 6 was evaluated by a steel wool test in the same manner as in Example 1. The results are shown in the table of FIG. Although the samples of Examples 10 to 13 and Comparative Examples 4 and 6 in which the aC: M film or the UV-cured coating layer was formed on the outermost surface passed, the comparison in which the Al film was formed on the outermost surface The samples of Examples 3 and 5 were unacceptable because of scratches that could be visually confirmed with steel wool. It can be seen that when a soft (low hardness) metal film is placed on the uppermost layer, the film is easily scratched, resulting in poor wear resistance. When such a low abrasion-resistant film is used as a decorative film for a composite member, when the user uses the composite member, the surface of the decorative film is easily damaged or the decorative film is peeled off. There is a risk of damaging the appearance.
 さらに、実施例10~13及び比較例3~6の試料について、色相を評価した。結果を図7の表中に示す。顔料入り紫外線硬化コート層を備える実施例12、13及び比較例5、6の試料はいずれも顔料色を呈していた。実施例12、13では、a‐C:M膜の膜厚が15nm、つまり20nm以下であるため、a‐C:M膜を透過して顔料の色相を見ることができた。 Furthermore, the hues of the samples of Examples 10 to 13 and Comparative Examples 3 to 6 were evaluated. The results are shown in the table of FIG. All of the samples of Examples 12 and 13 and Comparative Examples 5 and 6 provided with a pigment-containing UV-cured coating layer exhibited a pigment color. In Examples 12 and 13, since the film thickness of the aC: M film was 15 nm, that is, 20 nm or less, the hue of the pigment could be seen through the aC: M film.
 以上の評価結果に示された通り、実施例で用いたa‐C:M膜は、耐摩耗性及び金属光沢(金属的な素材感)を有している。このようなa‐C:M膜が表面に形成された部材は、金属光沢による高い外観品質をもち、且つ高い耐摩耗性により長期間外観品質を保持することができる。樹脂製基材を用いてa‐C:M膜が表面に形成された部材を作製することにより、容易かつ安価にデザイン性の高い部材を提供することができる。
 なお、以上の実施例及び比較例の試料において、金属がドープされたアモルファスカーボン膜(a-C:M膜)は、金属がドープされたテトラヘドラルアモルファスカーボン膜(ta-C:M膜)であった。ta-C:M膜は、前述のとおり、金属元素を含む炭素ターゲットを用いて、FCVA法により成膜することができる。
As shown in the above evaluation results, the aC: M film used in the examples has wear resistance and metallic luster (metallic material feeling). A member having such an aC: M film formed on the surface has high appearance quality due to metallic luster and can maintain appearance quality for a long time due to high wear resistance. By producing a member having an aC: M film formed on the surface using a resin base material, a member having high design properties can be provided easily and inexpensively.
In the samples of Examples and Comparative Examples above, the amorphous carbon film doped with metal (aC: M film) is a tetrahedral amorphous carbon film doped with metal (ta-C: M film). Met. As described above, the ta-C: M film can be formed by the FCVA method using a carbon target containing a metal element.
 以上、本発明の好ましい実施形態及び実施例について説明したが、本発明はこれらの実施形態及び実施例に限定されるものではない。例えば、a‐C:Mの金属ドープ元素Mの一例としてチタン及びアルミニウムを示したが、以上の説明から当業者であれば理解されるように、金属ドープ元素はa‐Cを基本とする皮膜に導電性を付与する役割を果たせばよく、他の金属元素、例えばNi、Cr、Mg、Cu、Fe、Ag、Au、Pt等であってもよい。 The preferred embodiments and examples of the present invention have been described above, but the present invention is not limited to these embodiments and examples. For example, titanium and aluminum are shown as an example of the metal doping element M of aC: M. As will be understood by those skilled in the art from the above description, the metal doping element is a film based on aC. Any other metal element such as Ni, Cr, Mg, Cu, Fe, Ag, Au, or Pt may be used.
 本実施形態の複合部材を有する部品は広範な用途に適用することができる。その一例を例示すれば、形状や外観などのデザイン要素が商品価値を大きく左右する重要な因子となるデジタルカメラ、双眼鏡、眼鏡等の光学機器、携帯電話、スマートフォン、携帯音楽機器、携帯映像機器等の電子機器などが挙げられる。 The part having the composite member of this embodiment can be applied to a wide range of uses. For example, digital cameras, optical devices such as binoculars and glasses, mobile phones, smartphones, portable music devices, portable video devices, etc., whose design elements such as shape and appearance are important factors that greatly influence the product value. Electronic devices.
1 成膜装置
10 アークプラズマ生成部
11 ターゲット
20 フィルタ部
21 電磁石コイル
23 ダクト
25 イオンスキャン用コイル
30 成膜チャンバ部
31 ホルダ
32 基材
35 モータ
37 電源
60 基材
80 装飾膜
100 複合部材
120 透明層
140 着色層
200、300、400 複合部材
DESCRIPTION OF SYMBOLS 1 Film-forming apparatus 10 Arc plasma production | generation part 11 Target 20 Filter part 21 Electromagnetic coil 23 Duct 25 Ion scanning coil 30 Film-forming chamber part 31 Holder 32 Base material 35 Motor 37 Power supply 60 Base material 80 Decoration film 100 Composite member 120 Transparent layer 140 Colored layer 200, 300, 400 Composite member

Claims (16)

  1.  複合部材であって、
     基材と、
     前記基材を被覆する装飾膜とを備え、
     前記装飾膜が金属がドープされたアモルファスカーボンであり且つ10nm以上の厚さを有する複合部材。
    A composite member,
    A substrate;
    A decorative film covering the substrate;
    A composite member in which the decorative film is amorphous carbon doped with metal and has a thickness of 10 nm or more.
  2.  前記装飾膜が、300nm以下の厚さを有する請求項1に記載の複合部材。 The composite member according to claim 1, wherein the decorative film has a thickness of 300 nm or less.
  3.  前記装飾膜が、1×10-5Ωcm~8×10-3Ωcmの範囲の電気抵抗率を有する請求項1または2に記載の複合部材。 The composite member according to claim 1 or 2, wherein the decorative film has an electrical resistivity in a range of 1 × 10 -5 Ωcm to 8 × 10 -3 Ωcm.
  4.  前記装飾膜が、10GPa~20GPaの硬度を有する請求項1~3のいずれか一項に記載の複合部材。 The composite member according to any one of claims 1 to 3, wherein the decorative film has a hardness of 10 GPa to 20 GPa.
  5.  前記基材と前記装飾膜の間に下地層を備える請求項1~4のいずれか一項に記載の複合部材。 The composite member according to any one of claims 1 to 4, further comprising a base layer between the base material and the decorative film.
  6.  前記下地層は樹脂層を含む請求項5に記載の複合部材。 The composite member according to claim 5, wherein the base layer includes a resin layer.
  7.  前記下地層は透明層および/又は着色層である請求項5に記載の複合部材。 The composite member according to claim 5, wherein the base layer is a transparent layer and / or a colored layer.
  8.  前記下地層は前記透明層および前記着色層を含み、前記透明層は前記着色層と前記基材との間に設けられている請求項7に記載の複合部材。 The composite member according to claim 7, wherein the foundation layer includes the transparent layer and the colored layer, and the transparent layer is provided between the colored layer and the base material.
  9.  前記装飾膜が前記基材に直接設けられている請求項1~4のいずれか一項に記載の複合部材。 The composite member according to any one of claims 1 to 4, wherein the decorative film is directly provided on the base material.
  10.  前記基材が、着色された基材である請求項9に記載の複合部材。 The composite member according to claim 9, wherein the base material is a colored base material.
  11.  前記装飾層の膜厚が10~20nmである請求項7、8または10に記載の複合部材。 The composite member according to claim 7, 8 or 10, wherein the thickness of the decorative layer is 10 to 20 nm.
  12.  前記基材がプラスチックである請求項1~11のいずれか一項に記載の複合部材。 The composite member according to any one of claims 1 to 11, wherein the base material is plastic.
  13.  前記金属がチタンまたはアルミニウムである請求項1~12のいずれか一項に記載の複合部材。 The composite member according to any one of claims 1 to 12, wherein the metal is titanium or aluminum.
  14.  前記基材がカメラ筐体部品である請求項1~13のいずれか一項に記載の複合部材。 The composite member according to any one of claims 1 to 13, wherein the base material is a camera housing part.
  15.  請求項1~14のいずれか一項に記載の複合部材を備えた光学機器。 An optical instrument comprising the composite member according to any one of claims 1 to 14.
  16.  請求項1~13のいずれか一項に記載の複合部材を備えた電子機器。
     
    An electronic device comprising the composite member according to any one of claims 1 to 13.
PCT/JP2014/055723 2013-03-06 2014-03-06 Composite member provided with decorative film having metallic shine WO2014136861A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-043964 2013-03-06
JP2013043964A JP2016101658A (en) 2013-03-06 2013-03-06 Composite member comprising decorative film having metallic luster

Publications (1)

Publication Number Publication Date
WO2014136861A1 true WO2014136861A1 (en) 2014-09-12

Family

ID=51491369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055723 WO2014136861A1 (en) 2013-03-06 2014-03-06 Composite member provided with decorative film having metallic shine

Country Status (2)

Country Link
JP (1) JP2016101658A (en)
WO (1) WO2014136861A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113542553A (en) * 2021-06-15 2021-10-22 荣耀终端有限公司 Camera decorating part, manufacturing method and electronic equipment
CN115896695A (en) * 2023-01-09 2023-04-04 北京华锐臻隆技术有限公司 Composite board for xenon lamp resistance test and coating method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326350A (en) * 1985-12-17 1988-02-03 テヒニシェ、ユニベルジテ−ト、カルル−マルクス−シュタット Hard coating for element to which mechanical and corrosive stresses are applied
JP2002501575A (en) * 1997-05-30 2002-01-15 パティノール アーエス Method of forming diamond-like carbon thin film in vacuum
JP3134340U (en) * 2007-06-01 2007-08-09 株式会社Ncc Decorative coating structure of articles
JP2009293110A (en) * 2008-06-09 2009-12-17 Toyota Central R&D Labs Inc Method for manufacturing coated member and coated member
WO2011138967A1 (en) * 2010-05-07 2011-11-10 株式会社ニコン Conductive sliding film, member formed from conductive sliding film, and method for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326350A (en) * 1985-12-17 1988-02-03 テヒニシェ、ユニベルジテ−ト、カルル−マルクス−シュタット Hard coating for element to which mechanical and corrosive stresses are applied
JP2002501575A (en) * 1997-05-30 2002-01-15 パティノール アーエス Method of forming diamond-like carbon thin film in vacuum
JP3134340U (en) * 2007-06-01 2007-08-09 株式会社Ncc Decorative coating structure of articles
JP2009293110A (en) * 2008-06-09 2009-12-17 Toyota Central R&D Labs Inc Method for manufacturing coated member and coated member
WO2011138967A1 (en) * 2010-05-07 2011-11-10 株式会社ニコン Conductive sliding film, member formed from conductive sliding film, and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113542553A (en) * 2021-06-15 2021-10-22 荣耀终端有限公司 Camera decorating part, manufacturing method and electronic equipment
WO2022262431A1 (en) * 2021-06-15 2022-12-22 荣耀终端有限公司 Camera decoration member, manufacturing method, and electronic device
CN115896695A (en) * 2023-01-09 2023-04-04 北京华锐臻隆技术有限公司 Composite board for xenon lamp resistance test and coating method thereof

Also Published As

Publication number Publication date
JP2016101658A (en) 2016-06-02

Similar Documents

Publication Publication Date Title
CN102034565B (en) Transparent conductive film
TW557364B (en) Antireflection film and antireflection layer-affixed plastic substrate
JP5842814B2 (en) Camera mount
EP3486693A1 (en) Optical layered body
JP2008275737A (en) Optical thin film layered product
JP2009092913A (en) Optical thin film laminate
TW201730727A (en) Conductive laminate of touch panel and method for manufacturing conductive laminate of touch panel comprising a light-transmitting substrate, a light-transmitting base layer, a first copper oxynitride layer, a copper layer, and a second copper oxynitride layer
WO2014136861A1 (en) Composite member provided with decorative film having metallic shine
TW201932515A (en) Organic-inorganic hybrid film, laminate and articles
US20130171446A1 (en) Coated article and method for making same
CN116075420A (en) Transparent substrate with antireflection film and image display device
WO2014132923A1 (en) Sliding film, member on which sliding film is formed, and manufacturing method therefor
JP2022159380A (en) Antireflection film
CN112415638A (en) Method for producing laminated film
CN104264112B (en) A kind of Matte film vacuum optical coating method
Pat et al. Antireflective coating on polyethylene terephthalate by thermionic vacuum arc
CN112297538A (en) Ceramic-like shell, preparation method thereof and electronic equipment
TW201115594A (en) Transparent electrically conductive film and touch panel using the same
JP6282374B1 (en) Black vapor deposition film and method for producing the same
CN115812035B (en) Optical film with antifouling layer
TW202208883A (en) Optical film with anti-fouling layer
TWI527063B (en) Conductive transparent laminates, patterned conductive transparent laminates and touch panels
CN201509211U (en) Mobile phone lens capable of clearly displaying interface of color-screen mobile phone
Mano et al. Fabrication of an antireflection structure on an aspherical lens using a UV-curable inorganic–organic hybrid polymer
TWI549030B (en) Conductive transparent laminates, patterned conductive transparent laminates and touch panels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14761033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14761033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP