WO2014136850A1 - 通信システム、制御装置、転送ノード、制御方法およびプログラム - Google Patents

通信システム、制御装置、転送ノード、制御方法およびプログラム Download PDF

Info

Publication number
WO2014136850A1
WO2014136850A1 PCT/JP2014/055679 JP2014055679W WO2014136850A1 WO 2014136850 A1 WO2014136850 A1 WO 2014136850A1 JP 2014055679 W JP2014055679 W JP 2014055679W WO 2014136850 A1 WO2014136850 A1 WO 2014136850A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
nodes
topology information
forwarding
control device
Prior art date
Application number
PCT/JP2014/055679
Other languages
English (en)
French (fr)
Inventor
俊夫 小出
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/772,905 priority Critical patent/US9838336B2/en
Priority to JP2015504367A priority patent/JPWO2014136850A1/ja
Publication of WO2014136850A1 publication Critical patent/WO2014136850A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/15Interconnection of switching modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • H04L41/122Discovery or management of network topologies of virtualised topologies, e.g. software-defined networks [SDN] or network function virtualisation [NFV]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery

Definitions

  • the present invention is based on the priority claim of Japanese Patent Application: Japanese Patent Application No. 2013-043908 (filed on Mar. 06, 2013), the entire contents of which are incorporated herein by reference. Shall.
  • the present invention relates to a communication system, a control device, a transfer node, a control method, and a program, and in particular, the control device centrally manages the transfer nodes arranged in the network using the control information and grasps the connection state between the transfer nodes.
  • the present invention relates to a communication system configured to, a control device and a transfer node in the communication system, and a communication system control method and program.
  • OpenFlow A technology called OpenFlow is known as a communication system in which a control device centrally controls forwarding nodes (Patent Document 1, Non-Patent Documents 1 and 2).
  • communication is regarded as an end-to-end flow, and path control, failure recovery, load balancing, and optimization are performed in units of flow.
  • the OpenFlow switch specified in Non-Patent Document 2 has a secure channel for communication with an OpenFlow controller positioned as a control device, and operates according to a flow table instructed to be added or rewritten as appropriate by the OpenFlow controller. .
  • a set of a matching rule (header field) to be matched with a packet header, flow statistical information (Counters), and an action (Actions) that defines processing contents is defined.
  • an OpenFlow switch when an OpenFlow switch receives a packet, it searches the flow table for an entry having a matching rule that matches the header information of the received packet. When an entry that matches the received packet is found as a result of the search, the OpenFlow switch updates the flow statistical information (counter) and processes the process (specified) in the action field of the entry for the received packet. Perform packet transmission, flooding, discard, etc. from the port). On the other hand, if no entry matching the received packet is found as a result of the search, the OpenFlow switch forwards the received packet to the OpenFlow controller via the secure channel, and sends it to the source / destination of the received packet. Requests the determination of the route of the packet based on it, receives a flow entry that realizes this, and updates the flow table. In this way, the OpenFlow switch performs packet transfer using the entry stored in the flow table as a processing rule.
  • Non-Patent Document 3 describes a technique for constructing a secure channel in an OpenFlow network on a real network using a special frame and source routing.
  • the control channel constructed on the actual network is referred to as “in-band secure channel”.
  • Non-Patent Document 3 By using the method of Non-Patent Document 3, it is possible to construct a network compliant with the above OpenFlow using an in-band secure channel without preparing a dedicated control network in a company or home.
  • the in-band secure channel is established between a control device that functions as an OpenFlow controller and a transfer node that functions as an OpenFlow switch.
  • Non-Patent Document 3 describes the construction of an in-band secure channel using source routing.
  • the in-band / secure channel route is a route calculated based on the topology information of the entire network ascertained in advance by the control device.
  • the control device In the initial state, the control device cannot communicate with a transfer node that is not physically adjacent, and cannot obtain control rights of the transfer node. Therefore, there is a problem that the control device cannot grasp the topology information of the entire network.
  • Non-Patent Document 3 in order to solve such a problem, the operation of obtaining the control right of the forwarding node adjacent to the control device and then obtaining the control right of the forwarding node adjacent to the forwarding node is repeated, so that the final In particular, a method is described in which the control information of all forwarding nodes is obtained and the topology information of the entire network is grasped.
  • Non-Patent Document 3 since it is attempted to grasp the topology sequentially, it takes a long time to obtain the control right of all the forwarding nodes, and there is a possibility that the amount of control information passing over the network becomes enormous. is there. Further, according to this method, when a change occurs in the network topology due to the addition or deletion of the transfer node itself or the communication link between the transfer nodes, or a failure, it becomes difficult to immediately respond to the change. Furthermore, when responding immediately, a large amount of control information places a load on the network, which may reduce the network performance.
  • An object of the present invention is to provide a communication system, a transfer node, a control device, and a control method that contribute to such a demand.
  • the communication system is: A communication system comprising a group of nodes comprising a plurality of forwarding nodes and a control device for controlling the plurality of forwarding nodes,
  • the plurality of forwarding nodes include a topology holding unit that holds, as first topology information, a connection relationship between at least a part of the group of nodes and the own node;
  • a topology notification unit for notifying the first topology information to a node adjacent to the own node of the group of nodes;
  • An in-band communication unit that notifies the control device of the first topology information,
  • the control device integrates a plurality of the first topology information notified from the plurality of forwarding nodes to generate second topology information;
  • An in-band control unit that obtains a route from the control device to each forwarding node based on the second topology information and establishes a control channel for controlling each forwarding node along the obtained route. .
  • the forwarding node is: One of the plurality of forwarding nodes controlled by the control device, A topology holding unit that holds, as first topology information, a connection relationship between at least a part of a group of nodes including the control device and the plurality of forwarding nodes and the own node; A topology notification unit for notifying the first topology information to a node adjacent to the own node of the group of nodes; An in-band communication unit that notifies the control device of the first topology information.
  • the control device is: A control device for controlling a plurality of forwarding nodes, The plurality of forwarding nodes hold, as first topology information, a connection relationship between at least a part of a group of nodes including the plurality of forwarding nodes and the control device and the own node. Notifying topology information to a node adjacent to the own node of the group of nodes and the control device; The control device integrates a plurality of the first topology information notified from the plurality of forwarding nodes to generate second topology information; An in-band control unit that obtains a route from the control device to each forwarding node based on the second topology information and establishes a control channel for controlling each forwarding node along the obtained route. .
  • the control method is: A control method for controlling a plurality of forwarding nodes by a control device, The plurality of forwarding nodes holding, as first topology information, a connection relationship between at least some of the group of nodes composed of the plurality of forwarding nodes and the control device and the own node; Notifying the first topology information to a node adjacent to its own node in the group of nodes; Notifying the control device of the first topology information; The control device integrates the plurality of first topology information notified from the plurality of forwarding nodes to generate second topology information; Obtaining a route from the control device to each forwarding node based on the second topology information; Establishing a control channel for controlling each forwarding node along the determined path.
  • the control method is: One forwarding node of a plurality of forwarding nodes controlled by the control device is Holding a connection relationship between at least a part of a group of nodes including the control device and the plurality of forwarding nodes and the own node as first topology information; Notifying the first topology information to a node adjacent to its own node in the group of nodes; Notifying the control device of the first topology information.
  • the time required for the control device to grasp the topology of the entire network is shortened, and the transmission / reception load of control information necessary for grasping the topology is reduced. It becomes possible to reduce.
  • FIG. 1 It is a block diagram which shows the structure of the communication system which concerns on one Embodiment as an example. It is a block diagram which shows the structure of the communication system which concerns on 1st Embodiment as an example. It is a figure for demonstrating an example of operation
  • 10 is a diagram showing reception topology information 30B received by the control device 10A and forwarding nodes 20A to 20C. It is a figure which shows the topology information which a topology structure part comprises and hold
  • FIG. 1 illustrates the configuration of a communication system according to an embodiment.
  • the communication system includes a group of nodes including a plurality of transfer nodes (20A to 20D) and a control device (10A) that controls the plurality of transfer nodes (20A to 20D).
  • the plurality of forwarding nodes (20A to 20D) include a topology holding unit (21) that holds, as first topology information, a connection relationship between at least a part of the group of nodes and the own node; A topology notification unit (25) for notifying topology information to a node adjacent to its own node in the group of nodes, an in-band communication unit (22) for notifying the control device (10A) of first topology information, Have
  • the control device (10A) includes a topology configuration unit (11) that generates a second topology information by integrating a plurality of first topology information notified from the plurality of transfer nodes (20A to 20D), An in-band control unit (12) for obtaining a route from the control device (10A) to each forwarding node based on the topology information and establishing a control channel for controlling each forwarding node along the obtained route. .
  • the topology holding unit receives the first topology information received from the node (20B) adjacent to the own node (20A) among the plurality of forwarding nodes (20A to 20D). Based on this, the first topology information held by itself may be updated.
  • the topology holding unit (for example, the topology holding unit 21 of the forwarding node 20A) is a node (10A) in which the number of hops from the own node (20A) in the group of nodes is within a predetermined number of hops (eg, 1 hop) 20B) and the own node (20A) may be held as the first topology information.
  • the topology holding unit (for example, the topology holding unit 21 of the forwarding node 20A) is within a predetermined distance from the own node (20A) of the group of nodes or from the own node (20A).
  • the connection relationship between the node within the predetermined time and the own node (20A) may be held as the first topology information.
  • the topology notification unit (for example, the topology notification unit 25 of the forwarding node 20A) notifies the first topology information to the nodes (10A, 20B) adjacent to the own node (20A) of the group of nodes (transmission timing).
  • the first topology information held by the topology holding unit (21) has been updated, that a predetermined period has elapsed since the update, that a predetermined period has elapsed since the previous notification, or Any of these combinations may be used.
  • the time required for the control device (10A) to grasp the topology of the entire network is shortened as compared with the related technique (Non-patent Document 3) described in the background art, and is necessary for grasping the topology. It becomes possible to reduce the transmission / reception load of control information.
  • control device (10A) instructs the predetermined number of hops (or a predetermined distance and a predetermined time) to the plurality of forwarding nodes (20A to 20D) via the established control channel. May be provided (not shown in FIG. 1). Further, the control device (10A) may include a condition instructing unit for instructing the above conditions (transmission timing conditions) to the plurality of transfer nodes (20A to 20D) via the established control channel.
  • FIG. 2 is a block diagram illustrating an example of the configuration of the communication system according to the present embodiment.
  • the communication system includes forwarding nodes 20A to 20D and a control device 10A that controls the forwarding nodes 20A to 20D.
  • FIG. 2 illustrates a case where the communication system includes four transfer nodes 20A to 20D.
  • FIG. 2 illustrates a case where two transfer nodes 20A and 20C are connected to the control device 10A.
  • the number of transfer nodes and the connection relationship of the transfer nodes are not limited to the mode illustrated in FIG. It is sufficient that at least one transfer node is connected to the control device 10A, and the number of transfer nodes connected to the control device 10A may be one, or may be three or more.
  • the control device 10A recognizes connection information between the transfer nodes 20A to 20D and generates topology information, and in-band control that establishes a channel between the transfer nodes 20A to 20D and performs control information transmission / reception processing. And a packet processing unit 13 that performs transmission / reception and distribution of packets.
  • the topology configuration unit 11 requests topology information known by the forwarding nodes 20A to 20D via the in-band control unit 12, and receives a topology information response as a response. Further, the topology configuration unit 11 grasps and holds the topology information of the entire network by assembling partial topology information included in the received topology information response. Further, the topology configuration unit 11 updates and holds the topology information of the entire network based on the topology information input from the packet processing unit 13. Further, the topology configuration unit 11 returns the retained topology information in response to a reference request from the in-band control unit 12.
  • the in-band control unit 12 refers to the topology information of the entire network held in the topology configuration unit 11 and grasps the presence of the forwarding nodes 20A to 20D.
  • the in-band control unit 12 calculates a transfer path of a channel established between each transfer node and the control device 10A, and establishes a control channel along each transfer path.
  • the packet processing unit 13 transmits and receives packets to and from the transfer nodes 20A and 20C connected to the control device 10A, and only the packets necessary for the inband control unit 12 among the transmitted and received packets are transmitted to the inband control unit 12. And distribute. Further, when receiving the topology information, the packet processing unit 13 configures the topology information together with the received communication port information, and outputs the topology information to the topology configuration unit 11.
  • Each of the forwarding nodes 20A to 20D includes a topology holding unit 21 that holds peripheral topology information that can be known by itself, an in-band communication unit 22 that establishes a channel with the control device 10A and performs transmission / reception processing of control information, and a packet A packet processing unit 23 for performing transmission / reception and distribution, a topology filter unit 24 for reducing the amount of topology information to a predetermined range, and a topology notification unit 25 for notifying the surrounding forwarding nodes of the topology information. Yes.
  • the topology holding unit 21 holds topology information around its own node, provides the held topology information in response to requests from the in-band communication unit 22 and the topology notification unit 25, and is input from the topology filter unit 24. Combine and update the topology information to be retained. Further, when there is a change in topology, the topology holding unit 21 notifies the topology notification unit 25 to that effect. In the initial state, the topology holding unit 21 holds topology information consisting only of information of the own node.
  • the in-band communication unit 22 establishes a control channel with the control device 10A according to the control of the control device 10A, and instructs the packet processing unit 23 to transfer the control channel of another transfer node according to the control of the control device 10A. To do.
  • the in-band communication unit 22 inquires topology information to the topology holding unit 21 in response to the topology information request received from the control device 10A via the packet processing unit 23. Further, the in-band communication unit 22 transmits the obtained topology information as a topology information response to the control device 10A via the packet processing unit 23.
  • the packet processing unit 23 transmits and receives packets to and from other transfer nodes and the control device 10A. Further, when receiving the topology information, the packet processing unit 23 outputs the topology information to the topology filter unit 24 together with the received communication port information. Further, the packet processing unit 23 inputs / outputs a transmission / reception packet to / from the control device 10 ⁇ / b> A to the in-band communication unit 22. Further, the packet processing unit 23 transmits the topology information input from the topology notification unit 25 together with the forwarding node information and communication port information used for transmission. Furthermore, the packet processing unit 23 transfers the control channel of another transfer node according to an instruction from the in-band communication unit 22.
  • the topology filter unit 24 reduces the amount of topology information input from the packet processing unit 23 to a predetermined range and outputs it to the topology holding unit 21.
  • the topology filter unit 24 may use a node within a predetermined number of hops centered on its own node as a filter condition.
  • the topology filter unit 24 reduces the input topology information to a topology including only the topology of the node within a predetermined number of hops centered on the own node.
  • the filter condition created and applied by the topology filter unit 24 is not limited to this.
  • the nature of the topology information held in the topology holding unit 21 can be determined according to the filter condition.
  • the topology notification unit 25 acquires the topology information held in the topology holding unit 21 and instructs the packet processing unit 23 to notify the surrounding forwarding nodes.
  • the topology notification unit 25 can notify the topology information held in the topology holding unit 21 to the control device 10A.
  • the timing at which the topology notification unit 25 outputs the topology information may be immediately after the topology holding unit 21 is updated, or may be a case where there is no update for a certain period after the update. Regardless of whether or not there is an update, the topology notification unit 25 may periodically transmit the topology information. This transmission timing condition can be arbitrarily created and applied, and it is possible to control the total number of packets for grasping topology information and the convergence of topology information grasp according to this transmission timing condition.
  • the communication system includes a plurality of forwarding nodes 20A to 20D that perform partial topology grasping and control information transmission / reception processing, and a control device that controls forwarding nodes using control information. 10A.
  • the control device 10A determines the topology configuration unit 11 that grasps and configures connection information between the transfer nodes, and determines the transfer path of the control information for each transfer node based on the information of the topology configuration unit 11, And an in-band control unit 12 that establishes a control channel according to the transfer path.
  • each forwarding node determines the amount of information of the received topology information, and the topology holding unit 21 that holds the peripheral topology information that can be known by itself, the topology notification unit 25 that notifies the topology information to the surrounding forwarding nodes.
  • the topology filter unit 24 that reduces to the specified range and registers it in the topology holding unit 21 and the in-band communication unit 22 that returns the topology information to the control device 10A in response to a request from the control device 10A.
  • the time required to grasp the topology of the entire network necessary for constructing a centralized control network represented by OpenFlow is shortened, and the transmission / reception load of control information necessary for grasping the topology is reduced. It becomes possible to reduce.
  • FIG. 3 is a diagram for explaining the operation of the communication system according to the present embodiment.
  • a control device 10A and three transfer nodes 20A to 20C are connected in series.
  • reference numerals # 1 and # 2 assigned between the control device 10A and the three forwarding nodes 20A to 20C indicate communication port identifiers.
  • the packet processing unit 23 of each forwarding node inputs / outputs a packet including the communication port information used and information of the transmission source forwarding node when transmitting / receiving topology information.
  • FIG. 4 shows information included in the transmission topology information 30A included in the transmitted packet and the reception topology information 30B composed of the received packet. Note that the order of information arrangement in the transmission topology information 30A and the reception topology information 30B is not limited to the mode shown in FIG. Further, the transmission topology information 30A and the reception topology information 30B may include information other than the information illustrated in FIG.
  • the transmission topology information 30A is configured when transmitting topology information.
  • the transmission topology information 30A includes information representing the topology information 31A, the transmission source forwarding node 32A, and the transmission source communication port 33A.
  • the reception topology information 30B is configured when topology information is received.
  • the reception topology information 30B includes information indicating the reception destination communication port 34B in addition to the elements included in the transmission topology information 30A.
  • FIG. 5 is a diagram showing a list of topology information grasped by the control device 10A and the forwarding nodes 20A to 20C in the initial state.
  • each of the topology holding units 21 of the forwarding nodes 20A to 20C and the topology configuration unit 11 of the control device 10A include their own nodes, but other forwarding nodes and control devices are included. Topology information not including 10A is held.
  • Each of the topology notification units 25 of the forwarding nodes 20A to 20C starts a periodic operation, inquires and acquires the topology information from the topology holding unit 21, and transmits the topology information including the topology information acquired through the packet processing unit 23.
  • a packet including 30A is configured.
  • the topology notification unit 25 transmits the configured packet to a node adjacent to the own node among the transfer nodes 20A to 20C and the control device 10A.
  • FIG. 6 shows transmission topology information 30A transmitted from each forwarding node 20A, 20B, 20C in the initial state.
  • forwarding node 20A configures transmission topology information 30A including topology information including only itself for communication port # 2, and transmits packet 40 including communication port #A from communication port # 2.
  • forwarding node 20A configures transmission topology information 30A including topology information including only itself for communication port # 1, and transmits packet 41 including communication port # 1 from communication port # 1.
  • forwarding node 20B also transmits packets 42 and 43 from communication ports # 2 and # 1, respectively.
  • the forwarding node 20C also transmits the packet 44 from the communication port # 2.
  • the control device 10A receives the packet 40 transmitted from the forwarding node 20A.
  • the packet processing unit 13 configures the received packet 40 as reception topology information 30B.
  • FIG. 7 shows reception topology information 30B received by the control device 10A and the forwarding nodes 20A to 20C.
  • FIG. 8 shows a list of topology information grasped by the control device 10A and the forwarding nodes 20A-20C after receiving the packets 40-44.
  • the transmission source forwarding node 32B is the forwarding node 20A
  • the transmission source communication port 33B is the communication port # 2
  • the reception destination communication port 34B is the communication port # 1.
  • the packet processing unit 13 grasps that the communication port # 2 of the forwarding node 20A and the communication port # 1 of the control device 10A are connected by the communication link, and uses this as topology information to the topology configuration unit 11. Output.
  • the topology configuration unit 11 Upon receiving the topology information from the packet processing unit 13, the topology configuration unit 11 connects the communication port # 2 of the forwarding node 20A and the communication port # 1 of the control device 10A via a communication link as shown in FIG. Configure and maintain existing topology information.
  • the forwarding node 20A receives the packet 42 transmitted from the forwarding node 20B.
  • the packet processing unit 23 configures the received packet 42 as reception topology information 30B.
  • the third row in FIG. 7 shows reception topology information 30B composed of received packets.
  • the transmission source forwarding node is the forwarding node 20B
  • the transmission source communication port is the communication port # 2
  • the reception destination communication port is the communication port # 1.
  • the packet processing unit 23 of the forwarding node 20A grasps that the communication port # 2 of the forwarding node 20B and the communications port # 1 of the forwarding node 20A are connected by a communication link, and uses this as topology information Output to the filter unit 24.
  • the topology filter unit 24 of the forwarding node 20A processes the topology information input from the packet processing unit 23 based on the designated filter condition.
  • a condition for maintaining the topology up to the forwarding node adjacent to the own node is specified as the filter condition.
  • the topology filter unit 24 outputs the topology information as it is to the topology holding unit 21 without processing it.
  • the topology holding unit 21 of the forwarding node 20A receives the topology information from the topology filter unit 24, as shown in FIG. 8, the communication port # 2 of the forwarding node 20B and the communication port # 1 of the forwarding node 20A are in communication links. Configure and hold the topology information connected by.
  • the forwarding node 20B receives the packet 41 transmitted from the forwarding node 20A and the packet 44 transmitted from the forwarding node 20C.
  • the forwarding node 20C receives the packet 43 transmitted from the forwarding node 20B.
  • Each of the forwarding nodes 20B and 20C operates similarly to the forwarding node 20A, and configures and holds topology information as shown in FIG.
  • the topology configuration unit 11 of the control device 10A grasps the presence of the forwarding node 20A by updating the topology information, and instructs the in-band control unit 12 to establish a control channel.
  • a method for establishing a control channel between the control device 10A and the forwarding node 20A for example, the method described in Non-Patent Document 3 can be used. However, the method for establishing the control channel is not limited to such a method.
  • the topology configuration unit 11 makes a topology information request to the forwarding node 20A using the control channel established with the forwarding node 20A.
  • the topology information request is input to the inband communication unit 22 of the forwarding node 20A via the inband control unit 12 and the established control channel.
  • the in-band communication unit 22 of the forwarding node 20A inquires the topology holding unit 21 according to the input topology information request, and returns a topology information response including the obtained topology information.
  • the topology information response is input to the in-band control unit 12 of the control device 10A via the control channel established with the control device 10A.
  • the in-band control unit 12 of the control device 10A outputs the topology information included in the input topology information response to the topology configuration unit 11.
  • the topology constructing unit 11 combines the input topology information and the currently held topology information to grasp a wider range of topology information.
  • FIG. 9 is a diagram showing topology information grasped by the control device 10A.
  • the control device 10A can grasp the topology information in the range up to the control device 10A and the forwarding nodes 20A and 20B.
  • the topology configuration unit 11 of the control device 10A grasps the presence of the forwarding node 20B by updating the topology information.
  • the topology configuration unit 11 instructs the in-band control unit 12 to establish a control channel for the forwarding node 20B and transmits a topology information request.
  • the topology configuration unit 11 receives the topology information of the forwarding node 20B as a topology information response, combines with the currently held topology information, and grasps the topology information of the entire network.
  • FIG. 10 is a diagram showing topology information grasped by the control device 10A. Referring to FIG. 10, at this point, the control apparatus 10A can grasp the topology information of the entire network.
  • the topology configuration unit 11 of the control device 10A grasps the presence of the forwarding node 20C by updating the topology information.
  • the topology configuration unit 11 instructs the in-band control unit 12 to establish a control channel for the forwarding node 20C.
  • control device 10A can establish control channels with all the transfer nodes 20A to 20C.
  • the forwarding nodes 20A and 20C are connected to the neighboring nodes according to the condition for maintaining the topology up to the forwarding node adjacent to the own node set as the filter condition in the topology filter unit 24. Maintain a state where topology is preserved.
  • each forwarding node can maintain the latest state of the topology information up to the adjacent node of its own node.
  • the change notification is performed, the amount of packet exchange for grasping the latest topology state is reduced, and the load on the entire network can be reduced.
  • the control device 10A can grasp that the topology has changed via the control channel, and the notification is limited to those from the surrounding forwarding nodes where the topology has changed. Therefore, the control apparatus 10A can immediately grasp the topology change and can further reduce the load on the entire network by reducing the amount of packet exchange.
  • FIG. 11 is a block diagram illustrating an example of a configuration of a communication system according to the present embodiment.
  • the communication system according to the present embodiment includes transfer nodes 60A to 60D and a control device 50A that controls the transfer nodes 60A to 60D, similarly to the communication system according to the first embodiment. .
  • the control device 50A further includes a condition instruction unit 54 in addition to the configuration of the control device 10A (FIG. 2) of the first embodiment.
  • the topology configuration unit 51 operates in the same manner as the topology configuration unit 11 of the first embodiment except that it returns the retained topology information in response to a reference request from the condition instruction unit 54.
  • the in-band control unit 52 and the packet processing unit 53 operate in the same manner as the in-band control unit 12 and the packet processing unit 13 in the control device 10A of the first embodiment, respectively.
  • the condition instruction unit 54 refers to the topology information of the entire network held in the topology configuration unit 51 and grasps the existence of the forwarding nodes 60A to 60D. In addition, the condition instructing unit 54 establishes one or both of a filter condition to be set in the topology filter unit 64 of the forwarding nodes 60A to 60D and a transmission timing condition to be set in the topology notification unit 65 by the in-band control unit 52. Each of the transfer nodes 60A to 60D is designated through the control channel.
  • the forwarding nodes 60A to 60D have the same configuration as the forwarding nodes 20A to 20D according to the first embodiment.
  • the in-band communication unit 62 outputs the filter condition instructed from the condition instruction unit 54 of the control device 50A to the topology filter unit 64 and outputs the transmission timing condition to the topology notification unit 65 in the first embodiment. It operates in the same manner as the in-band communication unit 22.
  • the topology filter unit 64 operates in the same manner as the topology filter unit 24 in the first embodiment except that the filter condition input from the in-band communication unit 62 is applied.
  • the topology notification unit 65 operates in the same manner as the topology notification unit 25 in the first embodiment except that the transmission timing condition input from the in-band communication unit 62 is applied.
  • the topology holding unit 61 and the packet processing unit 63 operate in the same manner as the topology holding unit 21 and the packet processing unit 23 in the first embodiment, respectively.
  • FIG. 12 is a diagram for explaining the operation of the communication system according to the present embodiment.
  • a control device 50A and three transfer nodes 60A to 60C are connected in series.
  • reference numerals # 1 and # 2 assigned between the control device 50A and the three forwarding nodes 60A to 60C indicate communication port identifiers.
  • control device 50A finally establishes control channels with all the forwarding nodes 60A to 60C. Can do.
  • the condition instructing unit 54 of the control device 50A sets the filter condition and the transmission timing condition appropriately set for each of the transfer nodes 60A to 60C via the control channel established by the in-band control unit 52. Transmit to each of 60C.
  • the in-band communication unit 62 of the forwarding node 60A outputs the filter condition received via the control channel to the topology filter unit 64. Further, the in-band communication unit 62 outputs the transmission timing condition received via the control channel to the topology notification unit 65.
  • the topology filter unit 64 of the forwarding node 60A holds the input filter condition and applies it as a filter for subsequent topology information.
  • the topology notification unit 65 of the transfer node 60A holds the input transmission timing condition and applies it as a condition for timing control of subsequent topology notification to the peripheral transfer node and the control device 50A.
  • the forwarding nodes 60B and 60C also hold and apply the specified filter condition and transmission timing condition.
  • control device 50A can control the filter condition and transmission timing condition of each transfer node existing in the network. Thereby, control of the packet exchange amount for grasping the topology state and control of time until grasping when there is a topology change can be centrally managed on the control device 50A side. This makes it easy to reflect the network operation policy of the network operator.
  • the communication system according to the first aspect is as described above.
  • the topology holding unit updates the first topology information held by itself based on the first topology information received from a node adjacent to the own node among the plurality of forwarding nodes.
  • the topology notifying unit updates the first topology information held by the topology holding unit as a condition for notifying the first topology information to a node adjacent to its own node in the group of nodes.
  • the communication system according to appendix 2 wherein a predetermined period has elapsed since the update, a predetermined period has elapsed since the previous notification, or a combination thereof.
  • the control device further includes a condition indicating unit that instructs the plurality of forwarding nodes to the predetermined number of hops via the control channel.
  • the topology notifying unit updates the first topology information held by the topology holding unit as a condition for notifying the first topology information to a node adjacent to its own node in the group of nodes.
  • the forwarding node according to appendix 8 wherein a predetermined period has elapsed since the update, a predetermined period has elapsed since the previous notification, or a combination thereof.
  • the forwarding node according to appendix 9 The forwarding node according to appendix 9, wherein the control device receives an instruction of the predetermined hop number from the control device.
  • the forwarding node according to appendix 10 The forwarding node according to appendix 10, wherein the control device receives an instruction for the condition via the control channel.
  • Appendix 13 As in the control device according to the third aspect.
  • the plurality of forwarding nodes updates the first topology information held by the plurality of forwarding nodes based on the first topology information received from a node adjacent to the own node among the plurality of forwarding nodes.
  • [Appendix 15] The additional forwarding node according to appendix 13, wherein the plurality of forwarding nodes hold, as the first topology information, a connection relationship between a node within a predetermined number of hops from the node of the group of nodes and the node itself. Control device.
  • the plurality of forwarding nodes update the first topology information held by the topology holding unit as a condition for notifying the first topology information to a node adjacent to the own node of the group of nodes.
  • the control method according to the fourth aspect is as described above.
  • the plurality of forwarding nodes includes a step of updating the first topology information held by the plurality of forwarding nodes based on the first topology information received from a node adjacent to the own node among the plurality of forwarding nodes.
  • the plurality of forwarding nodes update the first topology information held by the topology holding unit as a condition for notifying the first topology information to a node adjacent to the own node of the group of nodes.
  • the control method according to appendix 20 wherein a predetermined period has elapsed since the update, a predetermined period has elapsed since the previous notification, or a combination thereof.
  • the control method according to the fifth aspect is as described above.
  • a control device that controls a plurality of forwarding nodes, Integrating a plurality of first topology information notified from the plurality of forwarding nodes to generate second topology information; Obtaining a route from the control device to each forwarding node based on the second topology information, and establishing a control channel for controlling each forwarding node along the obtained route,
  • the plurality of forwarding nodes hold, as the first topology information, a connection relationship between at least a part of a group of nodes including the plurality of forwarding nodes and the control device and the own node.
  • Appendix 25 For a computer provided in one of the plurality of transfer nodes controlled by the control device, A process of holding, as first topology information, a connection relationship between at least a part of a group of nodes including the control device and the plurality of forwarding nodes and the own node; A process of notifying the first topology information to a node adjacent to its own node in the group of nodes; And a program for notifying the control device of the first topology information.
  • Appendix 26 For a computer provided in a control device that controls a plurality of forwarding nodes, A process of generating a second topology information by integrating a plurality of first topology information notified from the plurality of forwarding nodes; Obtaining a route from the control device to each forwarding node based on the second topology information, and establishing a control channel for controlling each forwarding node along the obtained route; The plurality of forwarding nodes hold, as the first topology information, a connection relationship between at least a part of a group of nodes including the plurality of forwarding nodes and the control device and the own node. The topology information is notified to a node adjacent to the own node of the group of nodes and the control device.
  • Appendix 27 A non-transitory computer-readable storage medium that holds the program according to attachment 25 or 26.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

 本発明は、制御装置がネットワーク全体のトポロジーを把握するのに要する時間を短縮し、トポロジー把握に必要な制御情報の送受信負荷を低減する。通信システムは、複数の転送ノードと複数の転送ノードを制御する制御装置から成る一群のノードを備え、複数の転送ノードは、一群のノードのうちの少なくとも一部のノードと自ノードとの接続関係を第1のトポロジー情報として保持し、第1のトポロジー情報を一群のノードのうちの自ノードに隣接するノードに通知し、第1のトポロジー情報を制御装置に通知し、制御装置は、複数の転送ノードから通知された複数の第1のトポロジー情報を統合して第2のトポロジー情報を生成し、第2のトポロジー情報に基づいて制御装置から各転送ノードへの経路を求め、求めた経路に沿って各転送ノードを制御するための制御チャネルを確立する。

Description

通信システム、制御装置、転送ノード、制御方法およびプログラム
 (関連出願についての記載)
 本発明は、日本国特許出願:特願2013-043908号(2013年03月06日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、通信システム、制御装置、転送ノード、制御方法およびプログラムに関し、特に、制御装置が制御情報を用いて、ネットワークに配置された転送ノードを集中管理し、転送ノード間の接続状態を把握するように構成された通信システム、かかる通信システムにおける制御装置および転送ノード、ならびに、通信システムの制御方法およびプログラムに関する。
 制御装置が転送ノードを集中制御する通信システムとして、オープンフロー(OpenFlow)という技術が知られている(特許文献1、非特許文献1、2)。オープンフローでは、通信をエンドツーエンドのフローとして捉え、フロー単位で経路制御、障害回復、負荷分散、最適化を行う。非特許文献2に仕様化されているオープンフロースイッチは、制御装置と位置付けられるオープンフローコントローラとの通信用のセキュアチャネルを備え、オープンフローコントローラから適宜追加または書き換えを指示されるフローテーブルに従って動作する。フローテーブルには、フロー毎に、パケットヘッダと照合するマッチングルール(ヘッダフィールド)と、フロー統計情報(Counters)と、処理内容を定義したアクション(Actions)と、の組が定義される。
 例えば、オープンフロースイッチは、パケットを受信すると、フローテーブルから、受信パケットのヘッダ情報に適合するマッチングルールを持つエントリを検索する。検索の結果、受信パケットに適合するエントリが見つかった場合、オープンフロースイッチは、フロー統計情報(カウンタ)を更新するとともに、受信パケットに対して、当該エントリのアクションフィールドに記述された処理内容(指定ポートからのパケット送信、フラッディング、廃棄など)を実施する。一方、検索の結果、受信パケットに適合するエントリが見つからなかった場合、オープンフロースイッチは、セキュアチャネルを介して、オープンフローコントローラに対して受信パケットを転送し、受信パケットの送信元・送信先に基づいたパケットの経路の決定を依頼し、これを実現するフローエントリを受け取ってフローテーブルを更新する。このように、オープンフロースイッチは、フローテーブルに格納されたエントリを処理規則として用いてパケット転送を行う。
 非特許文献3には、オープンフローネットワークにおけるセキュアチャネルを、特殊フレームとソースルーティングを用いて実ネットワーク上に構築する技術が記載されている。以下では、実ネットワーク上に構築された制御チャネルを「インバンド・セキュアチャネル」という。
国際公開第2008/095010号
Nick McKeownほか7名、"OpenFlow: Enabling Innovation in Campus Networks"、[online]、[平成25(2013)年3月4日検索]、インターネット<URL: http://www.openflow.org/documents/openflow-wp-latest.pdf> "OpenFlow Switch Specification" Version 1.1.0. (Wire Protocol 0x02) 、[online]、[平成25(2013)年3月4検索]、インターネット<URL:http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf> 小出俊夫、下西英之、「OpenFlowネットワークにおける制御ネットワークの構築自動化に関する一検討」、信学技報、社団法人電子情報通信学会、NS2009-165(2010-3)、Vol.109、No.448、pp.19-24、2010年3月
 上記の特許文献および非特許文献の全開示内容は、本書に引用をもって繰り込み記載されているものとする。以下の分析は、本発明者によってなされたものである。
 非特許文献3の手法を用いることで、企業や家庭において、制御専用ネットワークを用意しなくとも、インバンド・セキュアチャネルを用いて、上記オープンフローに準拠したネットワークを構築することが可能となる。
 インバンド・セキュアチャネルは、オープンフローコントローラとして機能する制御装置と、オープンフロースイッチとして機能する転送ノードとの間で確立される。非特許文献3には、ソースルーティングを用いてインバンド・セキュアチャネルを構築することが記載されている。
 インバンド・セキュアチャネルの経路は、予め制御装置で把握されているネットワーク全体のトポロジー情報に基づいて計算された経路である。初期状態では、制御装置は物理的に隣接していない転送ノードとの通信を行うことができず、転送ノードの制御権を得ることもできない。したがって、制御装置は、ネットワーク全体のトポロジー情報を把握することができないという問題がある。
 非特許文献3では、かかる問題を解決するため、制御装置に隣接する転送ノードの制御権を得て、次にその転送ノードと隣接する転送ノードの制御権を得るという動作を繰り返すことで、最終的にすべての転送ノードの制御権を得てネットワーク全体のトポロジー情報を把握する方法が記載されている。
 しかし、非特許文献3の方式によると、逐次的なトポロジー把握を試みるため、すべての転送ノードの制御権を得るまでの時間が長くなり、ネットワーク上を行き交う制御情報の量が膨大となるおそれがある。また、かかる方式によると、転送ノードそのものや、転送ノード間の通信リンクの追加・削除、または障害などによってネットワークトポロジーに変化が生じた際、即時に変化に対応することが困難となる。さらに、即時に対応した場合、大量の制御情報によりネットワークに負荷がかかり、ネットワークの性能が低下するおそれもある。
 そこで、制御装置がネットワーク全体のトポロジーを把握するのに要する時間を短縮し、トポロジー把握に必要な制御情報の送受信負荷を低減することが要望される。本発明の目的は、かかる要望に寄与する通信システム、転送ノード、制御装置、および、制御方法を提供することにある。
 本発明の第1の視点に係る通信システムは、
 複数の転送ノードと前記複数の転送ノードを制御する制御装置から成る一群のノードを備えた通信システムであって、
 前記複数の転送ノードは、前記一群のノードのうちの少なくとも一部のノードと自ノードとの接続関係を第1のトポロジー情報として保持するトポロジー保持部と、
 前記第1のトポロジー情報を前記一群のノードのうちの自ノードに隣接するノードに通知するトポロジー通知部と、
 前記第1のトポロジー情報を前記制御装置に通知するインバンド通信部と、を有し、
 前記制御装置は、前記複数の転送ノードから通知された複数の前記第1のトポロジー情報を統合して第2のトポロジー情報を生成するトポロジー構成部と、
 前記第2のトポロジー情報に基づいて前記制御装置から各転送ノードへの経路を求め、求めた経路に沿って前記各転送ノードを制御するための制御チャネルを確立するインバンド制御部と、を有する。
 本発明の第2の視点に係る転送ノードは、
 制御装置によって制御される複数の転送ノードのうちの一の転送ノードであって、
 前記制御装置と前記複数の転送ノードから成る一群のノードのうちの少なくとも一部のノードと自ノードとの接続関係を第1のトポロジー情報として保持するトポロジー保持部と、
 前記第1のトポロジー情報を前記一群のノードのうちの自ノードに隣接するノードに通知するトポロジー通知部と、
 前記第1のトポロジー情報を前記制御装置に通知するインバンド通信部と、備える。
 本発明の第3の視点に係る制御装置は、
 複数の転送ノードを制御する制御装置であって、
 前記複数の転送ノードは、前記複数の転送ノードと前記制御装置から成る一群のノードのうちの少なくとも一部のノードと自ノードとの接続関係を第1のトポロジー情報として保持し、前記第1のトポロジー情報を前記一群のノードのうちの自ノードに隣接するノードと前記制御装置に通知し、
 前記制御装置は、前記複数の転送ノードから通知された複数の前記第1のトポロジー情報を統合して第2のトポロジー情報を生成するトポロジー構成部と、
 前記第2のトポロジー情報に基づいて前記制御装置から各転送ノードへの経路を求め、求めた経路に沿って前記各転送ノードを制御するための制御チャネルを確立するインバンド制御部と、を備える。
 本発明の第4の視点に係る制御方法は、
 複数の転送ノードを制御装置によって制御する制御方法であって、
 前記複数の転送ノードが、前記複数の転送ノードと前記制御装置から成る一群のノードのうちの少なくとも一部のノードと自ノードとの接続関係を第1のトポロジー情報として保持する工程と、
 前記第1のトポロジー情報を前記一群のノードのうちの自ノードに隣接するノードに通知する工程と、
 前記第1のトポロジー情報を前記制御装置に通知する工程と、
 前記制御装置が、前記複数の転送ノードから通知された複数の前記第1のトポロジー情報を統合して第2のトポロジー情報を生成する工程と、
 前記第2のトポロジー情報に基づいて前記制御装置から各転送ノードへの経路を求める工程と、
 求めた経路に沿って前記各転送ノードを制御するための制御チャネルを確立する工程と、を含む。
 本発明の第5の視点に係る制御方法は、
 制御装置によって制御される複数の転送ノードのうちの一の転送ノードが、
 前記制御装置と前記複数の転送ノードから成る一群のノードのうちの少なくとも一部のノードと自ノードとの接続関係を第1のトポロジー情報として保持する工程と、
 前記第1のトポロジー情報を前記一群のノードのうちの自ノードに隣接するノードに通知する工程と、
 前記第1のトポロジー情報を前記制御装置に通知する工程と、含む。
 本発明に係る通信システム、転送ノード、制御装置、および、制御方法によれば、制御装置がネットワーク全体のトポロジーを把握するのに要する時間を短縮し、トポロジー把握に必要な制御情報の送受信負荷を低減することが可能になる。
一実施形態に係る通信システムの構成を一例として示すブロック図である。 第1の実施形態に係る通信システムの構成を一例として示すブロック図である。 第1の実施形態に係る通信システムの動作の一例について説明するための図である。 送信トポロジー情報および受信トポロジー情報の構成を一例として示す図である。 初期状態において制御装置および転送ノードが把握するトポロジー情報の一覧を示す図である。 初期状態において各転送ノード20A~20Cから送信される送信トポロジー情報30Aを示す図である。 制御装置10A、転送ノード20A~20Cが受信する受信トポロジー情報30Bを示す図である。 トポロジー構成部が構成して保持するトポロジー情報を示す図である。 制御装置10Aが把握するトポロジー情報を示す図である。 制御装置10Aが把握するトポロジー情報を示す図である。 第2の実施形態に係る通信システムの構成を一例として示すブロック図である。 第2の実施形態に係る通信システムの動作の一例について説明するための図である。
 はじめに、一実施形態の概要について説明する。なお、この概要に付記する図面参照符号は、専ら理解を助けるための例示であり、本発明を図示の態様に限定することを意図するものではない。
 図1は、一実施形態に係る通信システムの構成を例示する。図1を参照すると、通信システムは、複数の転送ノード(20A~20D)と複数の転送ノード(20A~20D)を制御する制御装置(10A)から成る一群のノードを備えている。複数の転送ノード(20A~20D)は、上記一群のノードのうちの少なくとも一部のノードと自ノードとの接続関係を第1のトポロジー情報として保持するトポロジー保持部(21)と、第1のトポロジー情報を上記一群のノードのうちの自ノードに隣接するノードに通知するトポロジー通知部(25)と、第1のトポロジー情報を制御装置(10A)に通知するインバンド通信部(22)と、を有する。
 制御装置(10A)は、複数の転送ノード(20A~20D)から通知された複数の第1のトポロジー情報を統合して第2のトポロジー情報を生成するトポロジー構成部(11)と、第2のトポロジー情報に基づいて制御装置(10A)から各転送ノードへの経路を求め、求めた経路に沿って各転送ノードを制御するための制御チャネルを確立するインバンド制御部(12)と、を有する。
 トポロジー保持部(例えば、転送ノード20Aのトポロジー保持部21)は、複数の転送ノード(20A~20D)のうちの自ノード(20A)に隣接するノード(20B)から受信した第1のトポロジー情報に基づいて、自身が保持する第1のトポロジー情報を更新してもよい。また、トポロジー保持部(例えば、転送ノード20Aのトポロジー保持部21)は、一群のノードのうちの自ノード(20A)からのホップ数が所定のホップ数(例えば、1ホップ)以内のノード(10A、20B)と自ノード(20A)との接続関係を第1のトポロジー情報として保持するようにしてもよい。なお、トポロジー保持部(例えば、転送ノード20Aのトポロジー保持部21)は、一群のノードのうちの自ノード(20A)からの物理的な距離が所定の距離以内、または、自ノード(20A)からの通信遅延が所定の時間以内のノードと自ノード(20A)との接続関係を第1のトポロジー情報として保持するようにしてもよい。
 トポロジー通知部(例えば、転送ノード20Aのトポロジー通知部25)は、第1のトポロジー情報を一群のノードのうちの自ノード(20A)に隣接するノード(10A、20B)に通知する条件(送出タイミング条件)として、トポロジー保持部(21)が保持する第1のトポロジー情報が更新されたこと、更新されてから所定の期間が経過したこと、前回の通知から所定の期間が経過したこと、または、これらの組み合わせのいずれかを用いるようにしてもよい。
 かかる通信システムによると、背景技術に記載した関連技術(非特許文献3)と比較して、制御装置(10A)がネットワーク全体のトポロジーを把握するのに要する時間を短縮し、トポロジー把握に必要な制御情報の送受信負荷を低減することが可能になる。
 また、制御装置(10A)は、確立した制御チャネルを介して、複数の転送ノード(20A~20D)に対して上記所定のホップ数(または、所定の距離、所定の時間)を指示する条件指示部(図1において非図示)を備えていてもよい。また、制御装置(10A)は、確立した制御チャネルを介して、複数の転送ノード(20A~20D)に対して上記条件(送信タイミング条件)を指示する条件指示部を備えていてもよい。
 かかる通信システムによると、トポロジー状態の把握のためのパケット交換量の制御や、トポロジー変更があった場合の把握に係るまでの時間の制御を制御装置(10A)の側で集中管理することが可能となり、ネットワーク運用者のネットワーク運用ポリシーの反映が容易となる。
 以下では、実施形態に基づいて、本発明に係る通信システムについてさらに詳細に説明する。
<第1の実施形態>
 第1の実施形態に係る通信システムについて、図面を参照して詳細に説明する。図2は、本実施形態に係る通信システムの構成を一例として示すブロック図である。図2を参照すると、通信システムは、転送ノード20A~20Dと、転送ノード20A~20Dを制御する制御装置10Aを備えている。
 図2は、通信システムが4つの転送ノード20A~20Dを備えている場合を例示する。また、図2は、制御装置10Aに2台の転送ノード20A、20Cが接続されている場合を例示する。ただし、転送ノードの台数および転送ノードの接続関係は、図2に例示した態様に限定されない。制御装置10Aには少なくとも1台の転送ノードが接続されていればよく、制御装置10Aに接続される転送ノードの台数は1台であってもよいし、3台以上であってもよい。
 制御装置10Aは、転送ノード20A~20D間の接続情報を把握してトポロジー情報を生成するトポロジー構成部11と、転送ノード20A~20Dとのチャネルを確立し制御情報の送受信処理を行うインバンド制御部12と、パケットの送受信や振分けを行うパケット処理部13と、を備えている。
 トポロジー構成部11は、インバンド制御部12を介して転送ノード20A~20Dが把握しているトポロジー情報を要求し、その返答としてトポロジー情報応答を受信する。また、トポロジー構成部11は、受信したトポロジー情報応答に含まれる部分的なトポロジー情報を組み立てることでネットワーク全体のトポロジー情報を把握して保持する。さらに、トポロジー構成部11は、パケット処理部13から入力されたトポロジー情報を元にしてネットワーク全体のトポロジー情報を更新して保持する。また、トポロジー構成部11は、インバンド制御部12からの参照要求に応じて、保持しているトポロジー情報を返答する。
 インバンド制御部12は、トポロジー構成部11において保持されるネットワーク全体のトポロジー情報を参照して、転送ノード20A~20Dの存在を把握する。また、インバンド制御部12は、各転送ノードと制御装置10Aの間に確立されるチャネルの転送経路を計算し、各転送経路に沿って制御チャネルを確立する。
 パケット処理部13は、制御装置10Aに接続された転送ノード20A、20Cに対してパケットを送受信し、送受信されるパケットのうちインバンド制御部12に必要なパケットのみをインバンド制御部12に対して振り分ける。また、パケット処理部13は、トポロジー情報を受け取った場合、これを受信した通信ポート情報とともにトポロジー情報を構成してトポロジー構成部11へ出力する。
 転送ノード20A~20Dは、それぞれ、自身が知りうる周辺のトポロジー情報を保持するトポロジー保持部21と、制御装置10Aとのチャネルを確立し制御情報の送受信処理を行うインバンド通信部22と、パケットの送受信や振分けを行うパケット処理部23と、トポロジー情報の情報量を定められた範囲に削減するトポロジーフィルタ部24と、トポロジー情報を周辺の転送ノードへ通知するトポロジー通知部25と、を備えている。
 トポロジー保持部21は、自ノード周辺のトポロジー情報を保持し、インバンド通信部22およびトポロジー通知部25からの要求に応じて、保持しているトポロジー情報を提供し、トポロジーフィルタ部24から入力されるトポロジー情報と保持するトポロジー情報の結合および更新を行う。また、トポロジー保持部21は、トポロジーの変更があった場合、その旨をトポロジー通知部25へ通知する。初期状態では、トポロジー保持部21は、自ノードの情報のみから成るトポロジー情報を保持する。
 インバンド通信部22は、制御装置10Aの制御に従って制御装置10Aとの間で制御チャネルを確立し、制御装置10Aの制御に従ってパケット処理部23に他の転送ノードの制御チャネルを転送するように指示する。また、インバンド通信部22は、パケット処理部23を介して、制御装置10Aから受信するトポロジー情報要求に応じて、トポロジー保持部21へトポロジー情報の照会を行う。さらに、インバンド通信部22は、得られたトポロジー情報をトポロジー情報応答として制御装置10Aへパケット処理部23を介して送信する。
 パケット処理部23は、他の転送ノードや制御装置10Aとパケットの送受信を行う。また、パケット処理部23は、トポロジー情報を受け取った場合、これを受信した通信ポート情報とともにトポロジーフィルタ部24へ出力する。さらに、パケット処理部23は、制御装置10Aとの送受信パケットをインバンド通信部22に入出力する。また、パケット処理部23は、トポロジー通知部25から入力されたトポロジー情報を転送ノード情報および送信に用いる通信ポート情報とともに送信する。さらに、パケット処理部23は、インバンド通信部22からの指示により、他の転送ノードの制御チャネルの転送を行う。
 トポロジーフィルタ部24は、パケット処理部23から入力されたトポロジー情報の情報量を定められた範囲に削減してトポロジー保持部21へ出力する。定められた範囲として、一例として、トポロジーフィルタ部24は、自ノードを中心とする所定のホップ数内のノードであることをフィルタ条件として使用してもよい。このとき、トポロジーフィルタ部24は、入力されたトポロジー情報を、自ノードを中心とする所定のホップ数以内ノードのトポロジーのみから成るトポロジーに削減する。ただし、トポロジーフィルタ部24が作成して適用するフィルタ条件は、これに限定されない。フィルタ条件に応じて、トポロジー保持部21において保持されるトポロジー情報の性質を決定することができる。
 トポロジー通知部25は、トポロジー保持部21に保持されるトポロジー情報を取得し、周辺の転送ノードへ通知するようにパケット処理部23に指示する。また、制御装置10Aとの制御チャネルが確立している場合、トポロジー通知部25は、トポロジー保持部21に保持されるトポロジー情報を制御装置10Aへ通知することもできる。トポロジー通知部25がトポロジー情報を出力するタイミング(送信タイミング条件)として、トポロジー保持部21が更新された直後としてもよいし、更新されてから一定期間更新がなかった場合としてもよい。また、更新の有無に依らず、トポロジー通知部25は定期的にトポロジー情報を送信してもよい。この送出タイミング条件は任意に作成して適用でき、この送出タイミング条件に応じてトポロジー情報の把握を行うパケット総数やトポロジー情報把握の収束を制御することが可能となる。
 以上説明したように、本実施形態に係る通信システムは、部分的なトポロジーの把握や制御情報の送受信処理を行う複数の転送ノード20A~20Dと、制御情報を用いて転送ノードを制御する制御装置10Aと、を備えている。ここで、制御装置10Aは、各転送ノード間の接続情報を把握し構成するトポロジー構成部11と、各転送ノードについてそれぞれ制御情報の転送経路をトポロジー構成部11の情報を元に決定し、各転送経路に従って制御チャネルを確立するインバンド制御部12と、を有する。また、各転送ノードは、自身が知りうる周辺のトポロジー情報を保持するトポロジー保持部21と、当該トポロジー情報を周辺の転送ノードへ通知するトポロジー通知部25と、受信したトポロジー情報の情報量を定められた範囲に削減してトポロジー保持部21へ登録するトポロジーフィルタ部24と、制御装置10Aからの要求に応じて当該トポロジー情報を制御装置10Aへ返答するインバンド通信部22と、を有する。
 かかる通信システムによると、オープンフローに代表される集中制御型ネットワークを構築する場合に必要なネットワーク全体のトポロジーを把握するのに要する時間を短縮し、トポロジーの把握に必要な制御情報の送受信負荷を低減することが可能となる。
 次に、本実施形態の通信システム(図1)の動作について、3つの転送ノード20A~20Cと制御装置10Aが直列につながっている場合を例として、具体的に説明する。
 図3は、本実施形態に係る通信システムの動作を説明するための図である。図3を参照すると、通信システムは、制御装置10Aと、3つの転送ノード20A~20Cとが直列に接続されている。図3において、制御装置10Aと、3つの転送ノード20A~20Cとの間に付された符号#1、#2は、通信ポートの識別子を示す。
 ここで、転送ノード20A~20Cが送信するパケットの内容について説明する。各転送ノードのパケット処理部23は、トポロジー情報の送受信に際して、用いた通信ポート情報や送信元転送ノードの情報を含むパケットの入出力を行う。図4は、送信されるパケットに含まれる送信トポロジー情報30Aと、受信したパケットから構成される受信トポロジー情報30Bに含まれる情報を示す。なお、送信トポロジー情報30Aおよび受信トポロジー情報30Bにおける情報の並びの順序は、図4に示した態様に限定されない。また、送信トポロジー情報30Aおよび受信トポロジー情報30Bは、図4に示す情報以外の他の情報を含んでいてもよい。
 送信トポロジー情報30Aは、トポロジー情報の送信時に構成される。送信トポロジー情報30Aは、トポロジー情報31A、送信元転送ノード32A、および、送信元通信ポート33Aをそれぞれ表す情報を含む。一方、受信トポロジー情報30Bは、トポロジー情報の受信時に構成される。受信トポロジー情報30Bは、送信トポロジー情報30Aに含まれる要素に加えて、受信先通信ポート34Bを表す情報を含む。
 図5は、初期状態での制御装置10A、転送ノード20A~20Cが把握するトポロジー情報の一覧を示す図である。図5を参照すると、初期状態では、転送ノード20A~20Cのそれぞれのトポロジー保持部21、および、制御装置10Aのトポロジー構成部11は、いずれも自ノードを含むものの、他の転送ノードや制御装置10Aを含まないトポロジー情報を保持している。
 転送ノード20A~20Cのトポロジー通知部25は、それぞれ定期的な動作を開始し、トポロジー保持部21にトポロジー情報を問い合わせて取得し、パケット処理部23を介して取得したトポロジー情報を含む送信トポロジー情報30Aを含むパケットを構成する。トポロジー通知部25は、構成したパケットを転送ノード20A~20Cおよび制御装置10Aのうちの自ノードに隣接するノードへ送信する。
 図6は、初期状態において、各転送ノード20A、20B、20Cから送信される送信トポロジー情報30Aを示す。図6を参照すると、転送ノード20Aは、自身のみを含むトポロジー情報を含んだ送信トポロジー情報30Aを、通信ポート#2について構成し、通信ポート#Aを含むパケット40を通信ポート#2から送信する。また、転送ノード20Aは、自身のみを含むトポロジー情報を含む送信トポロジー情報30Aを、通信ポート#1について構成し、通信ポート#1を含むパケット41を通信ポート#1から送信する。同様に、転送ノード20Bも、パケット42、43を、それぞれ、通信ポート#2、#1から送信する。また、転送ノード20Cも、パケット44を通信ポート#2から送信する。
 制御装置10Aは、転送ノード20Aから送信されたパケット40を受信する。パケット処理部13は、受信したパケット40を受信トポロジー情報30Bとして構成する。
 図7は、制御装置10Aおよび転送ノード20A~20Cが受信する受信トポロジー情報30Bを示す。また、図8は、パケット40~44を受信した後、制御装置10Aおよび転送ノード20A~20Cが把握するトポロジー情報の一覧を示す。
 図7の1段目は、制御装置10Aが受信したパケット40から構成された受信トポロジー情報30Bを示す。図7の1段目を参照すると、送信元転送ノード32Bは転送ノード20Aであり、送信元通信ポート33Bは通信ポート#2であり、受信先通信ポート34Bは通信ポート#1である。このとき、パケット処理部13は、転送ノード20Aの通信ポート#2と制御装置10Aの通信ポート#1とが通信リンクにより接続されていることを把握し、これをトポロジー情報としてトポロジー構成部11へ出力する。
 トポロジー構成部11はパケット処理部13からのトポロジー情報の入力を受けて、図8に示すように、転送ノード20Aの通信ポート#2と、制御装置10Aの通信ポート#1が通信リンクにより接続されているトポロジー情報を構成して保持する。
 同様に、転送ノード20Aは、転送ノード20Bから送信されたパケット42を受信する。パケット処理部23は、受信したパケット42を受信トポロジー情報30Bとして構成する。図7の3段目は、受信されたパケット42から構成された受信トポロジー情報30Bを示す。図7の3段目を参照すると、送信元転送ノードは転送ノード20Bであり、送信元通信ポートは通信ポート#2であり、受信先通信ポートは通信ポート#1である。このとき、転送ノード20Aのパケット処理部23は、転送ノード20Bの通信ポート#2と転送ノード20Aの通信ポート#1とが通信リンクにより接続されていることを把握し、これをトポロジー情報としてトポロジーフィルタ部24へ出力する。
 転送ノード20Aのトポロジーフィルタ部24は、パケット処理部23から入力されたトポロジー情報を指定されたフィルタ条件に基づいて加工する。ここでは、フィルタ条件として、自ノードに隣接する転送ノードまでのトポロジーを保持する条件が指定されているものとする。このとき、入力された前記トポロジー情報は、かかるフィルタ条件に収まるものである。したがって、トポロジーフィルタ部24は、トポロジー情報を加工することなく、そのままトポロジー保持部21に出力する。
 転送ノード20Aのトポロジー保持部21は、トポロジーフィルタ部24からのトポロジー情報を受けると、図8に示すように、転送ノード20Bの通信ポート#2と、転送ノード20Aの通信ポート#1が通信リンクにより接続されているトポロジー情報を構成して保持する。
 転送ノード20Bは、転送ノード20Aから送信されたパケット41と、転送ノード20Cから送信されたパケット44を受信する。転送ノード20Cは、転送ノード20Bから送信されたパケット43を受信する。転送ノード20B、20Cも、それぞれ、転送ノード20Aと同様に動作し、図8に示すように、トポロジー情報を構成して保持する。
 制御装置10Aのトポロジー構成部11は、トポロジー情報の更新により転送ノード20Aの存在を把握し、インバンド制御部12に指示して、制御チャネルを確立する。制御装置10Aと転送ノード20Aの間の制御チャネルを確立する方法として、一例として、非特許文献3に記載された方法を使用することができる。ただし、制御チャネルを確立する方法は、かかる方法に限定されない。
 トポロジー構成部11は、転送ノード20Aとの間で確立された制御チャネルを用いて、転送ノード20Aに対して、トポロジー情報要求を行う。当該トポロジー情報要求は、インバンド制御部12および確立された制御チャネルを介して転送ノード20Aのインバンド通信部22へ入力される。
 転送ノード20Aのインバンド通信部22は、入力されたトポロジー情報要求に従って、トポロジー保持部21に対してトポロジー情報を照会し、得られたトポロジー情報を含むトポロジー情報応答を返送する。当該トポロジー情報応答は、制御装置10Aと確立された制御チャネルを介して、制御装置10Aのインバンド制御部12へ入力される。
 制御装置10Aのインバンド制御部12は、入力されたトポロジー情報応答に含まれるトポロジー情報をトポロジー構成部11へ出力する。トポロジー構成部11は、入力されたトポロジー情報と現在保持しているトポロジー情報とを結合し、より広い範囲のトポロジー情報を把握する。
 図9は、制御装置10Aが把握するトポロジー情報を示す図である。図9を参照すると、この時点で、制御装置10Aは、制御装置10A、転送ノード20A、20Bまでの範囲のトポロジー情報を把握できている。
 同様に、制御装置10Aのトポロジー構成部11は、トポロジー情報の更新により転送ノード20Bの存在を把握する。次に、トポロジー構成部11は、インバンド制御部12に指示して、転送ノード20Bの制御チャネルを確立し、トポロジー情報要求を送信する。これにより、トポロジー構成部11は、転送ノード20Bのトポロジー情報をトポロジー情報応答として受信し、現在保持しているトポロジー情報と結合し、ネットワーク全体のトポロジー情報を把握する。
 図10は、制御装置10Aが把握するトポロジー情報を示す図である。図10を参照すると、この時点で、制御装置10Aは、ネットワーク全体のトポロジー情報を把握できている。
 同様にして、制御装置10Aのトポロジー構成部11は、トポロジー情報の更新により転送ノード20Cの存在を把握する。次に、トポロジー構成部11は、インバンド制御部12に指示して、転送ノード20Cの制御チャネルの確立を行う。
 以上のようにして、制御装置10Aは、すべての転送ノード20A~20Cとの間で制御チャネルを確立することができる。
 これ以降、トポロジーの変更が生じなければ、転送ノード20A、20Cは、トポロジーフィルタ部24においてフィルタ条件として設定された、自ノードに隣接する転送ノードまでのトポロジーを保持する条件により、隣接ノードまでのトポロジーが保持される状態を維持する。
 本実施形態によれば、各転送ノードは、自ノードの隣接ノードまでのトポロジー情報の最新状態を維持することができる。これにより、ネットワーク中のある場所においてトポロジー変更があった場合に、その変更通知を行い、最新のトポロジー状態を把握するためのパケット交換の量が減り、ネットワーク全体の負荷を下げることができる。また、制御装置10Aは、トポロジーの変化があったことを制御チャネルを経由して把握することができ、かつ、その通知はトポロジー変更があった周辺の転送ノードからのものに限定される。したがって、制御装置10Aはトポロジーの変更を即座に把握することができ、かつ、パケット交換量の削減によりネットワーク全体の負荷をさらに下げることができる。
<第2の実施形態>
 次に、第2の実施形態に係る通信システムについて、図面を参照して詳細に説明する。図11は、本実施形態に係る通信システムの構成を一例として示すブロック図である。図11を参照すると、本実施形態に係る通信システムは、第1の実施形態に係る通信システムと同様に、転送ノード60A~60Dと、転送ノード60A~60Dを制御する制御装置50Aを備えている。
 制御装置50Aは、第1の実施形態の制御装置10A(図2)の構成に加えて、条件指示部54をさらに備えている。
 トポロジー構成部51は、条件指示部54からの参照要求に応じて、保持しているトポロジー情報を返答する以外は、第1の実施形態のトポロジー構成部11と同様に動作する。
 インバンド制御部52およびパケット処理部53は、それぞれ、第1の実施形態の制御装置10Aにおけるインバンド制御部12およびパケット処理部13と同様に動作する。
 条件指示部54は、トポロジー構成部51において保持されるネットワーク全体のトポロジー情報を参照して、転送ノード60A~60Dの存在を把握する。また、条件指示部54は、転送ノード60A~60Dのトポロジーフィルタ部64に設定すべきフィルタ条件と、トポロジー通知部65に設定すべき送出タイミング条件の一方または両方を、インバンド制御部52によって確立される制御チャネルを通して、各転送ノード60A~60Dに指定する。
 転送ノード60A~60Dは、第1の実施形態に係る転送ノード20A~20Dと同様の構成を備えている。
 インバンド通信部62は、制御装置50Aの条件指示部54から指示されるフィルタ条件をトポロジーフィルタ部64へ出力し、送出タイミング条件をトポロジー通知部65へ出力する以外は、第1の実施形態におけるインバンド通信部22と同様に動作する。
 トポロジーフィルタ部64は、インバンド通信部62から入力されたフィルタ条件を適用する以外は、第1の実施形態におけるトポロジーフィルタ部24と同様に動作する。
 トポロジー通知部65は、インバンド通信部62から入力された送出タイミング条件を適用する以外は、第1の実施形態におけるトポロジー通知部25と同様に動作する。
 トポロジー保持部61およびパケット処理部63は、それぞれ、第1の実施形態におけるトポロジー保持部21およびパケット処理部23と同様に動作する。
 次に、本実施形態の通信システム(図11)の動作について、3つの転送ノード60A~60Cと制御装置50Aが直列につながっている場合を例として、具体的に説明する。
 図12は、本実施形態に係る通信システムの動作を説明するための図である。図12を参照すると、通信システムは、制御装置50Aと、3つの転送ノード60A~60Cとが直列に接続されている。図12において、制御装置50Aと、3つの転送ノード60A~60Cとの間に付された符号#1、#2は、通信ポートの識別子を示す。
 図3ないし図10を参照しつつ説明した第1の実施形態に係る通信システムの動作と同様にして、最終的に、制御装置50Aはすべての転送ノード60A~60Cとの制御チャネルを確立することができる。
 制御装置50Aの条件指示部54は、転送ノード60A~60Cのそれぞれに適切に設定されたフィルタ条件と送出タイミング条件を、インバンド制御部52により確立された制御チャネルを介して、転送ノード60A~60Cのそれぞれに送信する。
 転送ノード60Aのインバンド通信部62は、制御チャネルを介して受信したフィルタ条件をトポロジーフィルタ部64へ出力する。また、インバンド通信部62は、制御チャネルを介して受信した送出タイミング条件をトポロジー通知部65へ出力する。転送ノード60Aのトポロジーフィルタ部64は、入力されたフィルタ条件を保持し、以降のトポロジー情報のフィルタとして適用する。転送ノード60Aのトポロジー通知部65は、入力された送出タイミング条件を保持し、以降の周辺の転送ノードや制御装置50Aへのトポロジー通知のタイミング制御の条件として適用する。
 同様に、転送ノード60B、60Cも、指定されたフィルタ条件および送出タイミング条件を保持して適用する。
 本実施形態の通信システムによると、制御装置50Aは、ネットワーク中に存在する各転送ノードのフィルタ条件と送出タイミング条件を制御することができる。これにより、トポロジー状態の把握のためのパケット交換量の制御や、トポロジー変更があった場合の把握に係るまでの時間の制御を制御装置50Aの側で集中管理することができる。これにより、ネットワーク運用者のネットワーク運用ポリシーの反映が容易となる。
 なお、本発明において、以下に付記として記載する形態が可能である。
[付記1]
 上記第1の視点に係る通信システムのとおりである。
[付記2]
 前記トポロジー保持部は、前記複数の転送ノードのうちの自ノードに隣接するノードから受信した前記第1のトポロジー情報に基づいて、自身が保持する前記第1のトポロジー情報を更新する、付記1に記載の通信システム。
[付記3]
 前記トポロジー保持部は、前記一群のノードのうちの自ノードからのホップ数が所定のホップ数以内のノードと自ノードとの接続関係を前記第1のトポロジー情報として保持する、付記2に記載の通信システム。
[付記4]
 前記トポロジー通知部は、前記第1のトポロジー情報を前記一群のノードのうちの自ノードに隣接するノードに通知する条件として、前記トポロジー保持部が保持する前記第1のトポロジー情報が更新されたこと、更新されてから所定の期間が経過したこと、前回の通知から所定の期間が経過したこと、または、これらの組み合わせのいずれかを用いる、付記2に記載の通信システム。
[付記5]
 前記制御装置は、前記制御チャネルを介して、前記複数の転送ノードに対して前記所定のホップ数を指示する条件指示部をさらに有する、付記3に記載の通信システム。
[付記6]
 前記制御装置は、前記制御チャネルを介して、前記複数の転送ノードに対して前記条件を指示する条件指示部をさらに有する、付記4に記載の通信システム。
[付記7]
 上記第2の視点に係る転送ノードのとおりである。
[付記8]
 前記トポロジー保持部は、前記複数の転送ノードのうちの自ノードに隣接するノードから受信した前記第1のトポロジー情報に基づいて、自身が保持する前記第1のトポロジー情報を更新する、付記7に記載の転送ノード。
[付記9]
 前記トポロジー保持部は、前記一群のノードのうちの自ノードからのホップ数が所定のホップ数以内のノードと自ノードとの接続関係を前記第1のトポロジー情報として保持する、付記8に記載の転送ノード。
[付記10]
 前記トポロジー通知部は、前記第1のトポロジー情報を前記一群のノードのうちの自ノードに隣接するノードに通知する条件として、前記トポロジー保持部が保持する前記第1のトポロジー情報が更新されたこと、更新されてから所定の期間が経過したこと、前回の通知から所定の期間が経過したこと、または、これらの組み合わせのいずれかを用いる、付記8に記載の転送ノード。
[付記11]
 前記制御チャネルを介して、前記制御装置による前記所定のホップ数の指示を受ける、付記9に記載の転送ノード。
[付記12]
 前記制御チャネルを介して、前記制御装置によ前記条件の指示を受ける、付記10に記載の転送ノード。
[付記13]
 上記第3の視点に係る制御装置のとおりである。
[付記14]
 前記複数の転送ノードは、前記複数の転送ノードのうちの自ノードに隣接するノードから受信した前記第1のトポロジー情報に基づいて、自身が保持する前記第1のトポロジー情報を更新する、付記13に記載の制御装置。
[付記15]
 前記複数の転送ノードは、前記一群のノードのうちの自ノードからのホップ数が所定のホップ数以内のノードと自ノードとの接続関係を前記第1のトポロジー情報として保持する、付記13に記載の制御装置。
[付記16]
 前記複数の転送ノードは、前記第1のトポロジー情報を前記一群のノードのうちの自ノードに隣接するノードに通知する条件として、前記トポロジー保持部が保持する前記第1のトポロジー情報が更新されたこと、更新されてから所定の期間が経過したこと、前回の通知から所定の期間が経過したこと、または、これらの組み合わせのいずれかを用いる、付記14に記載の制御装置。
[付記17]
 前記制御チャネルを介して、前記複数の転送ノードに対して前記所定のホップ数を指示する条件指示部をさらに備える、付記15に記載の制御装置。
[付記18]
 前記制御チャネルを介して、前記複数の転送ノードに対して前記条件を指示する条件指示部をさらに備える、付記16に記載の制御装置。
[付記19]
 上記第4の視点に係る制御方法のとおりである。
[付記20]
 前記複数の転送ノードが、前記複数の転送ノードのうちの自ノードに隣接するノードから受信した前記第1のトポロジー情報に基づいて、自身が保持する前記第1のトポロジー情報を更新する工程を含む、付記19に記載の制御方法。
[付記21]
 前記複数の転送ノードは、前記一群のノードのうちの自ノードからのホップ数が所定のホップ数以内のノードと自ノードとの接続関係を前記第1のトポロジー情報として保持する、付記20に記載の制御方法。
[付記22]
 前記複数の転送ノードは、前記第1のトポロジー情報を前記一群のノードのうちの自ノードに隣接するノードに通知する条件として、前記トポロジー保持部が保持する前記第1のトポロジー情報が更新されたこと、更新されてから所定の期間が経過したこと、前回の通知から所定の期間が経過したこと、または、これらの組み合わせのいずれかを用いる、付記20に記載の制御方法。
[付記23]
 上記第5の視点に係る制御方法のとおりである。
[付記24]
 複数の転送ノードを制御する制御装置が、
 前記複数の転送ノードから通知された複数の第1のトポロジー情報を統合して第2のトポロジー情報を生成する工程と、
 前記第2のトポロジー情報に基づいて前記制御装置から各転送ノードへの経路を求め、求めた経路に沿って前記各転送ノードを制御するための制御チャネルを確立する工程と、を含み、
 前記複数の転送ノードは、前記複数の転送ノードと前記制御装置から成る一群のノードのうちの少なくとも一部のノードと自ノードとの接続関係を前記第1のトポロジー情報として保持し、前記第1のトポロジー情報を前記一群のノードのうちの自ノードに隣接するノードと前記制御装置に通知する、制御方法。
[付記25]
 制御装置によって制御される複数の転送ノードのうちの一の転送ノードに設けられたコンピュータに対して、
 前記制御装置と前記複数の転送ノードから成る一群のノードのうちの少なくとも一部のノードと自ノードとの接続関係を第1のトポロジー情報として保持する処理と、
 前記第1のトポロジー情報を前記一群のノードのうちの自ノードに隣接するノードに通知する処理と、
 前記第1のトポロジー情報を前記制御装置に通知する処理と、を実行させる、プログラム。
[付記26]
 複数の転送ノードを制御する制御装置に設けられたコンピュータに対して、
 前記複数の転送ノードから通知された複数の第1のトポロジー情報を統合して第2のトポロジー情報を生成する処理と、
 前記第2のトポロジー情報に基づいて前記制御装置から各転送ノードへの経路を求め、求めた経路に沿って前記各転送ノードを制御するための制御チャネルを確立する処理と、を実行させ、
 前記複数の転送ノードは、前記複数の転送ノードと前記制御装置から成る一群のノードのうちの少なくとも一部のノードと自ノードとの接続関係を前記第1のトポロジー情報として保持し、前記第1のトポロジー情報を前記一群のノードのうちの自ノードに隣接するノードと前記制御装置に通知する、プログラム。
[付記27]
 付記25または26に記載のプログラムを保持する、非一時的なコンピュータ可読記録媒体(non-transitory computer-readable storage medium)。
 なお、上記の特許文献等の先行技術文献の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素(各請求項の各要素、各実施形態の各要素、各図面の各要素等を含む)の多様な組み合わせ、ないし、選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。特に、本書に記載した数値範囲については、当該範囲内に含まれる任意の数値ないし小範囲が、別段の記載のない場合でも具体的に記載されているものと解釈されるべきである。
10A、50A  制御装置
11、51  トポロジー構成部
12、52  インバンド制御部
13、53  パケット処理部
20A~20D、60A~60D  転送ノード
21、61  トポロジー保持部
22、62  インバンド通信部
23、63  パケット処理部
24、64  トポロジーフィルタ部
25、65  トポロジー通知部
30A  送信トポロジー情報
30B  受信トポロジー情報
31A、31B  トポロジー情報
32A、32B  送信元転送ノード
33A、33B  送信元通信ポート
34B  受信先通信ポート
40~44  パケット
54  条件指示部

Claims (26)

  1.  複数の転送ノードと前記複数の転送ノードを制御する制御装置から成る一群のノードを備えた通信システムであって、
     前記複数の転送ノードは、前記一群のノードのうちの少なくとも一部のノードと自ノードとの接続関係を第1のトポロジー情報として保持するトポロジー保持部と、
     前記第1のトポロジー情報を前記一群のノードのうちの自ノードに隣接するノードに通知するトポロジー通知部と、
     前記第1のトポロジー情報を前記制御装置に通知するインバンド通信部と、を有し、
     前記制御装置は、前記複数の転送ノードから通知された複数の前記第1のトポロジー情報を統合して第2のトポロジー情報を生成するトポロジー構成部と、
     前記第2のトポロジー情報に基づいて前記制御装置から各転送ノードへの経路を求め、求めた経路に沿って前記各転送ノードを制御するための制御チャネルを確立するインバンド制御部と、を有する、通信システム。
  2.  前記トポロジー保持部は、前記複数の転送ノードのうちの自ノードに隣接するノードから受信した前記第1のトポロジー情報に基づいて、自身が保持する前記第1のトポロジー情報を更新する、請求項1に記載の通信システム。
  3.  前記トポロジー保持部は、前記一群のノードのうちの自ノードからのホップ数が所定のホップ数以内のノードと自ノードとの接続関係を前記第1のトポロジー情報として保持する、請求項2に記載の通信システム。
  4.  前記トポロジー通知部は、前記第1のトポロジー情報を前記一群のノードのうちの自ノードに隣接するノードに通知する条件として、前記トポロジー保持部が保持する前記第1のトポロジー情報が更新されたこと、更新されてから所定の期間が経過したこと、前回の通知から所定の期間が経過したこと、または、これらの組み合わせのいずれかを用いる、請求項2に記載の通信システム。
  5.  前記制御装置は、前記制御チャネルを介して、前記複数の転送ノードに対して前記所定のホップ数を指示する条件指示部をさらに有する、請求項3に記載の通信システム。
  6.  前記制御装置は、前記制御チャネルを介して、前記複数の転送ノードに対して前記条件を指示する条件指示部をさらに有する、請求項4に記載の通信システム。
  7.  制御装置によって制御される複数の転送ノードのうちの一の転送ノードであって、
     前記制御装置と前記複数の転送ノードから成る一群のノードのうちの少なくとも一部のノードと自ノードとの接続関係を第1のトポロジー情報として保持するトポロジー保持部と、
     前記第1のトポロジー情報を前記一群のノードのうちの自ノードに隣接するノードに通知するトポロジー通知部と、
     前記第1のトポロジー情報を前記制御装置に通知するインバンド通信部と、備える、転送ノード。
  8.  前記トポロジー保持部は、前記複数の転送ノードのうちの自ノードに隣接するノードから受信した前記第1のトポロジー情報に基づいて、自身が保持する前記第1のトポロジー情報を更新する、請求項7に記載の転送ノード。
  9.  前記トポロジー保持部は、前記一群のノードのうちの自ノードからのホップ数が所定のホップ数以内のノードと自ノードとの接続関係を前記第1のトポロジー情報として保持する、請求項8に記載の転送ノード。
  10.  前記トポロジー通知部は、前記第1のトポロジー情報を前記一群のノードのうちの自ノードに隣接するノードに通知する条件として、前記トポロジー保持部が保持する前記第1のトポロジー情報が更新されたこと、更新されてから所定の期間が経過したこと、前回の通知から所定の期間が経過したこと、または、これらの組み合わせのいずれかを用いる、請求項8に記載の転送ノード。
  11.  前記制御チャネルを介して、前記制御装置による前記所定のホップ数の指示を受ける、請求項9に記載の転送ノード。
  12.  前記制御チャネルを介して、前記制御装置による前記条件の指示を受ける、請求項10に記載の転送ノード。
  13.  複数の転送ノードを制御する制御装置であって、
     前記複数の転送ノードは、前記複数の転送ノードと前記制御装置から成る一群のノードのうちの少なくとも一部のノードと自ノードとの接続関係を第1のトポロジー情報として保持し、前記第1のトポロジー情報を前記一群のノードのうちの自ノードに隣接するノードと前記制御装置に通知し、
     前記制御装置は、前記複数の転送ノードから通知された複数の前記第1のトポロジー情報を統合して第2のトポロジー情報を生成するトポロジー構成部と、
     前記第2のトポロジー情報に基づいて前記制御装置から各転送ノードへの経路を求め、求めた経路に沿って前記各転送ノードを制御するための制御チャネルを確立するインバンド制御部と、を備える、制御装置。
  14.  前記複数の転送ノードは、前記複数の転送ノードのうちの自ノードに隣接するノードから受信した前記第1のトポロジー情報に基づいて、自身が保持する前記第1のトポロジー情報を更新する、請求項13に記載の制御装置。
  15.  前記複数の転送ノードは、前記一群のノードのうちの自ノードからのホップ数が所定のホップ数以内のノードと自ノードとの接続関係を前記第1のトポロジー情報として保持する、請求項13に記載の制御装置。
  16.  前記複数の転送ノードは、前記第1のトポロジー情報を前記一群のノードのうちの自ノードに隣接するノードに通知する条件として、前記トポロジー保持部が保持する前記第1のトポロジー情報が更新されたこと、更新されてから所定の期間が経過したこと、前回の通知から所定の期間が経過したこと、または、これらの組み合わせのいずれかを用いる、請求項14に記載の制御装置。
  17.  前記制御チャネルを介して、前記複数の転送ノードに対して前記所定のホップ数を指示する条件指示部をさらに備える、請求項15に記載の制御装置。
  18.  前記制御チャネルを介して、前記複数の転送ノードに対して前記条件を指示する条件指示部をさらに備える、請求項16に記載の制御装置。
  19.  複数の転送ノードを制御装置によって制御する制御方法であって、
     前記複数の転送ノードが、前記複数の転送ノードと前記制御装置から成る一群のノードのうちの少なくとも一部のノードと自ノードとの接続関係を第1のトポロジー情報として保持する工程と、
     前記第1のトポロジー情報を前記一群のノードのうちの自ノードに隣接するノードに通知する工程と、
     前記第1のトポロジー情報を前記制御装置に通知する工程と、
     前記制御装置が、前記複数の転送ノードから通知された複数の前記第1のトポロジー情報を統合して第2のトポロジー情報を生成する工程と、
     前記第2のトポロジー情報に基づいて前記制御装置から各転送ノードへの経路を求める工程と、
     求めた経路に沿って前記各転送ノードを制御するための制御チャネルを確立する工程と、を含む、制御方法。
  20.  前記複数の転送ノードが、前記複数の転送ノードのうちの自ノードに隣接するノードから受信した前記第1のトポロジー情報に基づいて、自身が保持する前記第1のトポロジー情報を更新する工程を含む、請求項19に記載の制御方法。
  21.  前記複数の転送ノードは、前記一群のノードのうちの自ノードからのホップ数が所定のホップ数以内のノードと自ノードとの接続関係を前記第1のトポロジー情報として保持する、請求項20に記載の制御方法。
  22.  前記複数の転送ノードは、前記第1のトポロジー情報を前記一群のノードのうちの自ノードに隣接するノードに通知する条件として、前記トポロジー保持部が保持する前記第1のトポロジー情報が更新されたこと、更新されてから所定の期間が経過したこと、前回の通知から所定の期間が経過したこと、または、これらの組み合わせのいずれかを用いる、請求項20に記載の制御方法。
  23.  制御装置によって制御される複数の転送ノードのうちの一の転送ノードが、
     前記制御装置と前記複数の転送ノードから成る一群のノードのうちの少なくとも一部のノードと自ノードとの接続関係を第1のトポロジー情報として保持する工程と、
     前記第1のトポロジー情報を前記一群のノードのうちの自ノードに隣接するノードに通知する工程と、
     前記第1のトポロジー情報を前記制御装置に通知する工程と、含む、制御方法。
  24.  複数の転送ノードを制御する制御装置が、
     前記複数の転送ノードから通知された複数の第1のトポロジー情報を統合して第2のトポロジー情報を生成する工程と、
     前記第2のトポロジー情報に基づいて前記制御装置から各転送ノードへの経路を求め、求めた経路に沿って前記各転送ノードを制御するための制御チャネルを確立する工程と、を含み、
     前記複数の転送ノードは、前記複数の転送ノードと前記制御装置から成る一群のノードのうちの少なくとも一部のノードと自ノードとの接続関係を前記第1のトポロジー情報として保持し、前記第1のトポロジー情報を前記一群のノードのうちの自ノードに隣接するノードと前記制御装置に通知する、制御方法。
  25.  制御装置によって制御される複数の転送ノードのうちの一の転送ノードに設けられたコンピュータに対して、
     前記制御装置と前記複数の転送ノードから成る一群のノードのうちの少なくとも一部のノードと自ノードとの接続関係を第1のトポロジー情報として保持する処理と、
     前記第1のトポロジー情報を前記一群のノードのうちの自ノードに隣接するノードに通知する処理と、
     前記第1のトポロジー情報を前記制御装置に通知する処理と、を実行させる、プログラム。
  26.  複数の転送ノードを制御する制御装置に設けられたコンピュータに対して、
     前記複数の転送ノードから通知された複数の第1のトポロジー情報を統合して第2のトポロジー情報を生成する処理と、
     前記第2のトポロジー情報に基づいて前記制御装置から各転送ノードへの経路を求め、求めた経路に沿って前記各転送ノードを制御するための制御チャネルを確立する処理と、を実行させ、
     前記複数の転送ノードは、前記複数の転送ノードと前記制御装置から成る一群のノードのうちの少なくとも一部のノードと自ノードとの接続関係を前記第1のトポロジー情報として保持し、前記第1のトポロジー情報を前記一群のノードのうちの自ノードに隣接するノードと前記制御装置に通知する、プログラム。
PCT/JP2014/055679 2013-03-06 2014-03-05 通信システム、制御装置、転送ノード、制御方法およびプログラム WO2014136850A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/772,905 US9838336B2 (en) 2013-03-06 2014-03-05 Communication system, control apparatus, forwarding node, control method and program
JP2015504367A JPWO2014136850A1 (ja) 2013-03-06 2014-03-05 通信システム、制御装置、転送ノード、制御方法およびプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-043908 2013-03-06
JP2013043908 2013-03-06

Publications (1)

Publication Number Publication Date
WO2014136850A1 true WO2014136850A1 (ja) 2014-09-12

Family

ID=51491359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055679 WO2014136850A1 (ja) 2013-03-06 2014-03-05 通信システム、制御装置、転送ノード、制御方法およびプログラム

Country Status (3)

Country Link
US (1) US9838336B2 (ja)
JP (1) JPWO2014136850A1 (ja)
WO (1) WO2014136850A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016538768A (ja) * 2013-10-26 2016-12-08 華為技術有限公司Huawei Technologies Co.,Ltd. Sdnスイッチにより正確なフロー・エントリを獲得するための方法、およびsdnスイッチ、コントローラ、およびシステム

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013249152B2 (en) 2012-04-18 2016-04-28 Nicira, Inc. Using transactions to minimize churn in a distributed network control system
CN103067277B (zh) * 2013-01-06 2016-06-22 华为技术有限公司 建立控制通道的方法、转发设备和控制设备
JPWO2014136850A1 (ja) * 2013-03-06 2017-02-16 日本電気株式会社 通信システム、制御装置、転送ノード、制御方法およびプログラム
US9967134B2 (en) 2015-04-06 2018-05-08 Nicira, Inc. Reduction of network churn based on differences in input state
US10204122B2 (en) 2015-09-30 2019-02-12 Nicira, Inc. Implementing an interface between tuple and message-driven control entities
CN107171883B (zh) 2016-03-08 2020-04-28 华为技术有限公司 检测转发表的方法、装置和设备
US11019167B2 (en) 2016-04-29 2021-05-25 Nicira, Inc. Management of update queues for network controller
CN106603408B (zh) * 2016-11-17 2019-06-14 华东师范大学 一种sdn多控制器可扩展的协同方法
JP6568549B2 (ja) * 2017-03-10 2019-08-28 株式会社東芝 無線通信装置、無線通信システム、および無線通信プログラム
US11627049B2 (en) * 2019-01-31 2023-04-11 Hewlett Packard Enterprise Development Lp Failsafe firmware upgrade for cloud-managed devices
CN109936480B (zh) * 2019-03-19 2020-09-15 鹏城实验室 网络拓扑发现方法及装置、存储介质及电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311973A (ja) * 2004-04-26 2005-11-04 Ntt Docomo Inc ネットワークリカバリーシステム及びネットワークリカバリー方法並びにノード
WO2011108205A1 (ja) * 2010-03-05 2011-09-09 日本電気株式会社 通信システム、経路制御装置、パケット転送装置および経路制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080189769A1 (en) 2007-02-01 2008-08-07 Martin Casado Secure network switching infrastructure
US8811153B1 (en) * 2010-05-03 2014-08-19 Pluribus Networks Inc. Switch fabric for network devices
US8804490B2 (en) * 2011-07-29 2014-08-12 Telefonaktiebolaget L M Ericsson (Publ) Controller placement for fast failover in the split architecture
US9350671B2 (en) * 2012-03-22 2016-05-24 Futurewei Technologies, Inc. Supporting software defined networking with application layer traffic optimization
JPWO2014136850A1 (ja) * 2013-03-06 2017-02-16 日本電気株式会社 通信システム、制御装置、転送ノード、制御方法およびプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311973A (ja) * 2004-04-26 2005-11-04 Ntt Docomo Inc ネットワークリカバリーシステム及びネットワークリカバリー方法並びにノード
WO2011108205A1 (ja) * 2010-03-05 2011-09-09 日本電気株式会社 通信システム、経路制御装置、パケット転送装置および経路制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOSHIO KOIDE: "A consideration of unified topology discovery method of in-band control plane in OpenFlow-based networks", IEICE TECHNICAL REPORT, vol. 112, no. 492, 15 March 2013 (2013-03-15) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016538768A (ja) * 2013-10-26 2016-12-08 華為技術有限公司Huawei Technologies Co.,Ltd. Sdnスイッチにより正確なフロー・エントリを獲得するための方法、およびsdnスイッチ、コントローラ、およびシステム
US9742656B2 (en) 2013-10-26 2017-08-22 Huawei Technologies Co., Ltd. Method for acquiring, by SDN switch, exact flow entry, and SDN switch, controller, and system
US10367718B2 (en) 2013-10-26 2019-07-30 Huawei Technologies Co., Ltd. Method for acquiring, by SDN switch, exact flow entry, and SDN switch, controller, and system

Also Published As

Publication number Publication date
US9838336B2 (en) 2017-12-05
US20160021028A1 (en) 2016-01-21
JPWO2014136850A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
WO2014136850A1 (ja) 通信システム、制御装置、転送ノード、制御方法およびプログラム
US11134012B2 (en) Communication system, communication device, controller, and method and program for controlling forwarding path of packet flow
US10044830B2 (en) Information system, control apparatus, method of providing virtual network, and program
JP5850068B2 (ja) 制御装置、通信システム、通信方法およびプログラム
JP5585660B2 (ja) 通信システム、制御装置、処理規則の設定方法およびプログラム
KR101810340B1 (ko) 정보 시스템, 제어 장치, 통신 방법 및 기록 매체
JP5987841B2 (ja) 通信システム、制御装置、転送ノード、通信システムの制御方法およびプログラム
JP5987971B2 (ja) 通信システム、スイッチ、制御装置、制御用チャネルの構築方法及びプログラム
JP6064989B2 (ja) 制御装置、通信システム、ノード制御方法及びプログラム
US20150256455A1 (en) Communication system, path information exchange apparatus, communication node, forwarding method for path information and program
KR20160003762A (ko) 통신 노드, 통신 시스템, 패킷 처리 방법, 및 프로그램
JP6440191B2 (ja) スイッチ装置、vlan設定管理方法及びプログラム
WO2014104277A1 (ja) 制御装置、通信システム、通信ノードの制御方法及びプログラム
JP6544242B2 (ja) パケット転送システム、制御装置、中継装置の制御方法及びプログラム
KR101610031B1 (ko) 소프트웨어 정의 네트워크에서 컨트롤러를 내장하는 오픈플로우 스위치의 제어방법 및 장치
JP5991427B2 (ja) 制御装置、通信システム、制御情報の送信方法及びプログラム
US10742539B2 (en) Control apparatus, communication system, relay apparatus control method, and program
JP2014160951A (ja) スイッチ、制御装置、通信システム、制御チャネルの管理方法及びプログラム
WO2014119602A1 (ja) 制御装置、スイッチ、通信システム、スイッチの制御方法及びプログラム
WO2015046539A1 (ja) 中継装置、制御装置、通信システム、監視パケットの処理方法及びトポロジ管理方法
KR101839499B1 (ko) 오픈플로우 컨트롤러 및 오픈플로우 컨트롤러의 플로우 모니터링 방법
JP2018113564A (ja) 通信システム、スイッチ、制御装置、通信方法、および、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14759783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504367

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14772905

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14759783

Country of ref document: EP

Kind code of ref document: A1