WO2014136727A1 - 掘削ビット - Google Patents

掘削ビット Download PDF

Info

Publication number
WO2014136727A1
WO2014136727A1 PCT/JP2014/055313 JP2014055313W WO2014136727A1 WO 2014136727 A1 WO2014136727 A1 WO 2014136727A1 JP 2014055313 W JP2014055313 W JP 2014055313W WO 2014136727 A1 WO2014136727 A1 WO 2014136727A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
excavation
bit body
reaming
bit
Prior art date
Application number
PCT/JP2014/055313
Other languages
English (en)
French (fr)
Inventor
中村 和由
博士 太田
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to EP14760641.2A priority Critical patent/EP2966254B1/en
Priority to CN201480011182.0A priority patent/CN105102752B/zh
Priority to KR1020157021766A priority patent/KR20150120970A/ko
Priority to AU2014227092A priority patent/AU2014227092B2/en
Priority to US14/771,634 priority patent/US10006251B2/en
Priority to CA2902966A priority patent/CA2902966C/en
Publication of WO2014136727A1 publication Critical patent/WO2014136727A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/26Drill bits with leading portion, i.e. drill bits with a pilot cutter; Drill bits for enlarging the borehole, e.g. reamers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/36Percussion drill bits
    • E21B10/38Percussion drill bits characterised by conduits or nozzles for drilling fluids
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/60Drill bits characterised by conduits or nozzles for drilling fluids

Definitions

  • the present invention relates to an excavation bit in which an excavation tip is disposed at a tip portion of a bit body that is rotated around an axis to form an excavation hole in a rock or the like.
  • the present application claims priority based on Japanese Patent Application No. 2013-043549 filed in Japan on March 5, 2013 and Japanese Patent Application No. 2014-021674 filed in Japan on February 6, 2014. The contents thereof are incorporated herein.
  • the rear end portion of the bit body is a cylindrical skirt portion, and the tip end portion of the bit body is reamed with a larger diameter than the tip side portion of the skirt portion. It is considered to be a part.
  • An excavation tip for excavating the rock mass is disposed on the front end surface of the reaming portion, and the earth and sand crushed by the excavation tip when the excavation hole is formed is sent to the rear of the reaming portion on the outer periphery of the reaming portion.
  • a flouring groove is formed.
  • a large-diameter portion is formed at the rear end portion of the skirt portion, the diameter of the skirt portion being larger on the outer peripheral side than the tip side portion.
  • the recessed part is formed so that it may dent in the front end side from the rear-end surface of a skirt part, and the said cutting blade is formed in the intersection ridgeline part of this recessed part and the rear-end surface of a skirt part .
  • a groove extending from the concave portion toward the front end in the axial direction is formed on the outer periphery of the large diameter portion, and this groove communicates with the flouring groove at the tip of the skirt portion, and the reaming portion of the reaming portion passes through the flouring groove. The earth and sand sent to the rear is discharged.
  • the present invention has been made under such a background, and does not cause a reduction in the performance of dusting discharge when forming a drilling hole, and is reliable and reliable after the drilling hole is formed to a predetermined depth. It is an object of the present invention to provide a drill bit that can efficiently pull out a bit body from a drill hole and collect it.
  • one aspect of the excavation bit of the present invention is an excavation bit that forms an excavation hole in a rock mass, and the tip of the bit body that is rotated around an axis.
  • a reaming portion having a diameter larger than that of the rear end portion of the bit body is formed in the portion, and a drilling tip is disposed at a front end portion of the reaming portion.
  • the outer peripheral portion of the reaming portion extends in the axial direction.
  • a flouring groove is formed, and a communication groove communicating with the dusting groove is formed from the outer peripheral portion of the reaming portion to the rear end portion of the reaming portion.
  • the rear end portion of the bit body has a smaller diameter than the large diameter reaming portion formed at the front end portion, so that the earth and sand sent to the rear of the reaming portion through the flouring groove can be smoothly discharged. It is possible to reduce the excavation resistance by preventing the dust discharge performance from being impaired. Further, when the bit body is pulled out from the excavation hole, it is possible to suppress clogging of earth and sand between the bit body rear end portion and the hole wall.
  • the communication groove which communicates with the above-mentioned flouring groove is formed from the outer peripheral part to the rear end part of the reaming part, when the bit body is retracted when being pulled out from the drilling hole, the rear end part of the bit body The earth and sand collected on the outer periphery is fed into the flouring groove through this communication groove. For this reason, even when an excavation hole is formed in a rock having high collapsibility, the collapsed earth and sand can be efficiently discharged to the tip side of the bit body, and the bit body can be reliably pulled out and collected. .
  • the rear end portion of the bit body is the cylindrical skirt portion as described above, the male screw portion at the tip of the excavation rod is screwed into the female screw portion formed on the inner periphery thereof.
  • the bit body is rotated during excavation. Therefore, especially when the bit body is pulled out from the excavation hole, when it is pulled out while rotating in the same direction as the rotation direction during excavation, at least excavation of the intersecting ridge line between the communication groove and the rear end surface of the reaming portion.
  • the intersecting ridge line located on the rear side in the rotational direction of the bit body at the time may be located on a plane parallel to the axis or on a plane including the axis.
  • the bit body when the bit body is pulled out from the excavation hole and collected by making the width of the communication groove in the circumferential direction of the bit body larger than the width of the dusting groove, the rear end of the bit body A lot of earth and sand around the part can be taken into the communicating groove and efficiently discharged into the flouring groove.
  • the communication groove communicates with the plurality of flouring grooves adjacent in the circumferential direction.
  • the communication groove is formed so that the groove depth from the rear end surface of the reaming portion gradually increases as it goes to the rear side in the rotation direction of the bit body during excavation. In the case of pulling out while rotating in the rotation direction, a lot of earth and sand can be accommodated in a portion where the groove depth is deep, and efficient discharge can be promoted.
  • the communication groove so as to extend in a direction inclined with respect to the axis, even when the bit body is pulled out from the drilling hole without rotating, it is formed on the outer periphery of the rear end portion of the bit body.
  • the accumulated earth and sand are fed into the flouring groove so as to be guided by the inclination of the communication groove. For this reason, the earth and sand collected on the outer periphery of the rear end portion of the bit body can be efficiently discharged to the front end side without rotating the bit body, and the bit body can be reliably recovered.
  • the communication groove is formed to be inclined as described above, the communication groove is inclined to the rotation direction of the bit body at the time of excavation as it goes to the tip end side in the axial direction.
  • the communication groove is inclined to the rotation direction of the bit body at the time of excavation as it goes to the tip end side in the axial direction.
  • the inclination angle that is, the intersection ridge line between the communication groove and the outer peripheral surface of the reaming portion is relative to the axis when viewed from the radially outer peripheral side with respect to the axis. It is desirable that the inclination angle to be formed is in the range of 25 ° to 70 °.
  • this inclination angle is smaller than the above range, the communication groove becomes too close to the axis, whereas if larger than the above range, the communication groove is almost perpendicular to the axis. In both cases, when the bit body is pulled out, it may be difficult to efficiently guide and discharge the earth and sand to the flouring groove.
  • the excavation bit is a reaming bit that is used to expand an excavation hole previously formed by normal excavation, and the outer diameter of the reaming part is larger than that of the general excavation bit.
  • the inclination angle may be less than 25 °.
  • at least the cross ridge line located on the rear side in the rotation direction of the bit body during excavation is on a plane parallel to the axis or including the axis It may be located above.
  • the bit body is pulled out from the excavation hole after completion of excavation while maintaining the dust discharge performance when forming the excavation hole and reducing the excavation resistance.
  • earth and sand collected on the outer periphery of the rear end of the bit body can be efficiently discharged from the flouring groove, and the bit body can be reliably recovered.
  • FIG. 7 is a side view (plan view) as viewed in the direction of arrow X in FIG. 6. It is a side view (bottom view) of the arrow line Y direction view in FIG.
  • FIG. 10 is a side view of the distal end portion of the bit body of the embodiment shown in FIG. 9 as viewed in the direction of arrow Y in FIG. 10. It is a side view at the time of forming an excavation hole by embodiment shown in FIG.
  • the excavation bit of this embodiment is called a reaming bit that is inserted into a small-diameter excavation hole formed in advance and expands the excavation hole to a large diameter.
  • the bit body 11 is formed integrally with a metal material such as a steel material and has a substantially bottomed multistage cylindrical shape with the axis O as the center.
  • the rear end portion of the bit body 11 (lower right portion in FIG. 1 and left portion in FIG. 3) is a cylindrical skirt portion 12 having a constant outer diameter, and the front end side of the skirt portion 12 (in FIG. 1).
  • a reaming portion 13 having an outer diameter larger than that of the skirt portion 12 is formed on the upper left side (right side in FIG. 3).
  • a pilot portion 14 having a smaller diameter than the skirt portion 12 is formed on the distal end side of the reaming portion 13 so as to protrude along the axis O of the bit body 11.
  • the front end surface 13A of the reaming portion 13 has a truncated cone shape centering on the axis O that is inclined toward the rear end side as the whole moves toward the outer peripheral side.
  • the pilot portion 14 is formed integrally with the reaming portion 13 at the center of the tip surface 13A, and is formed on the tip side of the small-diameter portion 14A with a small-diameter portion 14A centering on an axis O having a constant outer diameter connected to the tip surface 13A.
  • the large-diameter portion 14B having a slightly larger diameter than the small-diameter portion 14A is formed in a multistage columnar shape.
  • the outer diameter of the large-diameter portion 14B is smaller than the outer diameter of the skirt portion 12 and is sized to be inserted into a small-diameter excavation hole formed in advance.
  • a plurality of excavation tips 15 made of a cemented carbide harder than the bit body 11 are disposed on the distal end surface 13A of the reaming portion 13 respectively.
  • the excavation tip 15 in this embodiment is a button tip in which a cylindrical rear end portion and a convex spherical tip portion having a center on the center line of the rear end portion are integrally formed.
  • the excavation tip 15 is formed by shrink-fitting, press-fitting, or brazing the rear end portion into a circular hole formed in the front end surface 13A, so that the center line is perpendicular to the front end surface 13A and the front end portion is the front end surface. It is made to protrude from 13A.
  • a female screw portion is formed on the inner peripheral surface of the skirt portion 12, and a male screw portion at the tip of a drilling rod (not shown) is screwed into the female screw portion.
  • the bit body 11 uses the thrust and striking force toward the front end side in the direction of the axis O transmitted from the rock drill through this excavation rod, and the above-mentioned excavation by the rotational force around the axis O in the rotation direction T during excavation.
  • the rock is crushed and excavated by the tip 15, and a small-diameter excavation hole formed in advance is expanded.
  • the screwing direction of the male screw portion into the female screw portion is the same as the rotation direction T of the bit body 11 during excavation, so that the screwing between the female screw portion and the male screw portion is not loosened by the rotational force during excavation. Is set to
  • a blow hole 16 extends from the bottom surface of the inner peripheral portion of the skirt portion 12 toward the distal end side in the reaming portion 13, and the blow hole 16 is, for example, in the radial direction with respect to the axis O on the distal end surface 13 A of the reaming portion 13.
  • the plurality of excavation tips 15 implanted in the distal end surface 13A avoids these blow holes 16 so that the rotation trajectory around the axis O is slightly away from the axis O toward the outer peripheral side. It is planted so as to continue to the outer peripheral edge of 13A.
  • the outer peripheral surface 13B of the reaming portion 13 has a frustoconical surface centered on the axis O inclined toward the inner peripheral side toward the rear end side with a gentler inclination than the inclination formed by the front end surface 13A with respect to the axis O. It is said that. Further, the rear end surface 13C of the reaming portion 13 is steeper than the inclination of the outer peripheral surface 13B, for example, an axis that is inclined substantially the same as the inclination of the front end surface 13A and is inclined toward the inner peripheral side toward the rear end side. It is in the shape of a truncated cone with O as the center, and forms a concave curve in cross section at the rear end thereof and continues to the outer peripheral surface of the skirt portion 12.
  • the dusting groove 17 has a concave curved surface shape such as a concave cylindrical surface having a center line extending in the direction of the axis O, and the flouring groove 17 having the same shape and size is circumferential. Are formed at equal intervals.
  • a communication groove 18 communicating with the flouring groove 17 is formed from the outer peripheral surface 13B to the rear end surface 13C of the reaming portion 13.
  • the communication groove 18 of the present embodiment is the rotation direction of the bit body 11 during excavation among the intersecting ridgelines M and N with the rear end surface 13C of the reaming portion 13 like the communication groove 18 shown on the right side of FIG.
  • An intersecting ridge line M located on the rear side of T is located on a plane Q parallel to the axis O.
  • this intersection ridgeline M may be located on the plane containing the axis line O like 2nd Embodiment mentioned later.
  • the communication groove 18 of the present embodiment has a circumferential width larger than the circumferential width of the flouring groove 17.
  • the communication groove 18 of the present embodiment has a plurality of flouring grooves 17 adjacent to each other in the circumferential direction among the plurality of flouring grooves 17 formed on the outer peripheral portion of the reaming portion 13 at intervals in the circumferential direction. Also communicate.
  • the nine flouring grooves 17 are formed at equal intervals in the circumferential direction on the outer peripheral portion of the reaming portion 13, whereas the communication groove 18 is formed in the circumferential direction.
  • Three communicating grooves 18 respectively communicating with two flouring grooves 17 adjacent to each other are formed at equal intervals in the circumferential direction.
  • a total of three flouring grooves 17 where the communication grooves 18 do not communicate are formed.
  • the intersecting ridge line M is the rotation of the intersecting ridge line between the flouring groove 17 on the rear side in the rotational direction T and the outer peripheral surface 13B of the reaming portion 13 among the two flouring grooves 17 communicated with the communication groove 18. It is substantially connected to the intersecting ridge line on the rear side in the direction T.
  • the wall surface facing the rotation direction T of the communication groove 18 connected to the intersecting ridge line M has a concave curved surface extending toward the rotation direction T side toward the inner peripheral side of the bit body 11.
  • the bottom surface of the communication groove 18 facing the outer peripheral side of the bit body 11 is also formed in a concave curved surface shape.
  • the width in the direction of the axis O of the outer peripheral surface 13B of the reaming portion 13 left between the two flouring grooves 17 communicating with the communication groove 18 is the axis O of the outer peripheral surface 13B between the other flouring grooves 17. It is smaller than the width of the direction.
  • the intersecting ridge line N between the communication groove 18 on the rotation direction T side and the rear end face 13C of the reaming portion 13 is cut off toward the tip end side of the bit body 11 in a convex curve toward the rotation direction T side.
  • the two flouring grooves 17 communicated with each other intersects the intersecting ridge line between the flouring groove 17 on the rotation direction T side and the rear end surface 13C of the reaming portion 13.
  • the excavation bit (reaming bit) having such a configuration has a small diameter formed in advance by being given thrust and striking force toward the front end side in the axis O direction and rotational force in the rotational direction T as described above.
  • the rock around the excavation hole is crushed by the excavation tip 15 disposed on the tip surface 13A of the reaming portion 13 to become earth and sand, and the excavation hole is expanded.
  • This earth and sand is pushed out to the outer periphery of the skirt portion 12 through the flouring groove 17 by compressed air supplied to the blow hole 16 and ejected from the excavation rod during excavation, and is discharged to the rear end side of the bit body 11.
  • the pilot body 14 is inserted into the small-diameter excavation hole to guide the bit body 11.
  • the excavation bit having the above-described configuration it is not necessary to form a large-diameter portion for providing a cutting blade at the rear end portion of the bit body unlike the conventional retrack bit.
  • the rear end portion of the bit body 11 is a skirt portion 12 having a constant outer diameter, the earth and sand fed from the flouring groove 17 to the rear end side is clogged with such a large diameter portion. Can be discharged to the rear end side of the bit main body 11 without causing any problems. Therefore, it is possible to prevent the dust discharge performance from being impaired and to form an efficient excavation hole with less excavation resistance.
  • the bit body 11 When the bit body 11 is recovered after the excavation hole has been expanded to a predetermined depth, the bit body 11 is pulled out toward the rear end side in the axis O direction while rotating in the same direction as the rotation direction T during excavation. The earth and sand remaining between the skirt portion 12 and the excavation hole can be discharged from the communication groove 18 to the tip side of the reaming portion 13 through the flouring groove 17. Therefore, according to the excavation bit having the above configuration, the bit body 11 can be reliably recovered from the excavation hole.
  • the outer diameter difference or the outer diameter ratio between the skirt portion 12 and the larger diameter reaming portion 13 is larger. growing. For this reason, it is possible to ensure a long intersection ridgeline M, N between the communication groove 18 and the rear end face 13C of the reaming portion 13, and at least one of the intersection ridgelines M, N is on the plane Q or the axis parallel to the axis O Even if it is located on a plane containing O, the earth and sand can be surely scraped into the communication groove 18 and sent out to the flouring groove 17.
  • the circumferential width of the communication groove 18 is larger than the circumferential width of each flouring groove 17, a large amount of earth and sand is taken into the communication groove 18 and fed into the flouring groove 17, and the efficiency. Can be discharged. Furthermore, in the present embodiment, one continuous communication groove 18 communicates with each of the multiple flouring grooves 17 adjacent to each other in the circumferential direction among the multiple powdering grooves 17, and thus is taken into the communication groove 18. A large amount of earth and sand can be dispersed in these dusting grooves 17 and discharged more efficiently. Even if the communicating grooves 18 do not communicate with some of the dusting grooves 17 as described above, The main body 11 can be reliably recovered. However, the communicating grooves 18 may be formed so as to communicate with all the flouring grooves 17.
  • the communication groove 18 is formed so that the groove depth from the rear end surface 13C of the reaming portion 13 becomes gradually deeper toward the rear side in the rotation direction T of the bit body 11 during excavation. .
  • the communication groove 18 is formed so that the groove depth from the rear end surface 13C of the reaming portion 13 becomes gradually deeper toward the rear side in the rotation direction T of the bit body 11 during excavation.
  • the pilot part 14 in this embodiment has a larger width in the axis O direction of the large diameter part 14B than the small diameter part 14A. For this reason, when expanding a small-diameter excavation hole, the advantage that the bit main body 11 can be guided stably is also acquired.
  • FIGS. 4 to 8 show a second embodiment of the present invention.
  • the excavation bit of the second embodiment is also a reaming bit for expanding a small-diameter excavation hole formed in advance as in the first embodiment, and the same reference numerals are used for parts common to the first embodiment. Is arranged.
  • each of the plurality of (9) flouring grooves 17 formed on the outer peripheral portion of the reaming part 13 is formed so that one communication groove 18 communicates with each other. 18 are also formed at equal intervals in the circumferential direction.
  • the communication groove 18 of this embodiment is the rotation direction of the bit main body 11 at the time of excavation among intersection ridgelines M and N with the rear-end surface 13C of the reaming part 13 like the communication groove 18 shown on the left side of FIG.
  • the intersecting ridge line M located on the rear side of T is located on the plane P including the axis O.
  • the communication groove 18 of the present embodiment also has a circumferential width larger than the circumferential width of the flouring groove 17.
  • the intersecting ridge lines M and N are respectively outer in the circumferential direction than the intersecting ridge line between the flouring groove 17 and the outer peripheral surface 13 ⁇ / b> B of the reaming portion 13. It is formed so that it may be located in.
  • the intersecting ridge line N on the rotation direction T side may be located on a plane parallel to the axis O as shown in FIG. 6 and is a convex curve toward the rotation direction T side as in the first embodiment. And may be cut off at the tip end side of the bit body 11.
  • the intersecting ridge line M is located slightly behind the intersecting ridge line of the flouring groove 17 and the outer peripheral surface 13B of the reaming portion 13 in the rotational direction T.
  • the intersection ridge line N between the communication groove 18 on the rotation direction T side and the rear end face 13C of the reaming portion 13 is larger than the interval between the intersection ridge line M and the flouring groove 17 in the rotation direction. It is formed so as to be located on the T side.
  • the communication groove 18 gradually becomes deeper as the groove depth from the rear end surface 13C of the reaming portion 13 goes to the rear side in the rotational direction T during excavation, and cuts to the outer peripheral side behind the rotational direction T. It is formed so as to reach the intersection ridge line M.
  • the cross ridge line between the communication groove 18 connecting the rear ends of the cross ridge lines M and N in the axis O direction and the rear end face 13C of the reaming portion 13 extends toward the rear end side in the axis O direction toward the rear side in the rotation direction T. ing.
  • the bit body 11 is rotated in the direction of rotation T during excavation, as in the first embodiment.
  • the earth and sand remaining between the skirt portion 12 and the excavation hole is discharged from the communication groove 18 to the front end side of the reaming portion 13 through the flouring groove 17.
  • the communication groove 18 communicates with every flouring groove 17, clogging with earth and sand is less likely to occur in the flouring groove 17.
  • the circumferential width of the communication groove 18 is larger than the circumferential width of the flouring groove 17, a large amount of earth and sand is taken into the communication groove 18, fed into the flouring groove 17, and discharged. Can do.
  • the rotational direction T between the communication groove 18 and the rear end face 13C of the reaming portion 13 and the crossed ridgelines M and N on the rear side thereof are located on both outer sides in the circumferential direction of the flouring groove 17. Therefore, the earth and sand taken in the communication groove 18 can be uniformly fed into the flouring groove 17.
  • the groove depth from the rear end surface 13C of the reaming portion 13 of the communication groove 18 gradually increases toward the rear side in the rotational direction T of the bit body 11 during excavation.
  • the communication groove 18 that is wider than the flouring groove 17 as described above has a circumferential interval between the intersecting ridge line M on the rear side in the rotation direction T and the flouring groove 17 on the rotation direction T side. Since it is smaller than the interval between the intersecting ridge line N and the flouring groove 17, the earth and sand accommodated on the rear side in the rotation direction T can be discharged without leaving the communication groove 18.
  • FIG. 9 to FIG. 13 show a third embodiment of the present invention
  • FIG. 13 shows a case where an excavation hole H is formed in the rock mass G according to this embodiment.
  • the excavation bit of this embodiment is not a reaming bit for expanding a small-diameter excavation hole formed in advance as in the first and second embodiments. It is used to form.
  • the bit body 1 is formed integrally with a metal material such as a steel material and has a substantially bottomed multistage cylindrical shape with the axis O as the center.
  • the bit body 1 has a rear end (upper left portion in FIG. 9, left portion in FIGS. 11 and 13) having a cylindrical skirt portion 2 having a constant outer diameter and a bottomed bottom portion.
  • 1 is a reaming portion 3 having an outer diameter larger than that of the skirt portion 2 (a lower right portion in FIG. 9 and a right portion in FIGS. 11 and 13).
  • the outer diameter difference and the outer diameter ratio between the skirt portion 2 and the reaming portion 3 are smaller than those in the first and second embodiments.
  • the pilot portion is not formed at the tip of the bit body 1.
  • a conical frustum-shaped gauge surface 3A is formed with an axis O inclined toward the rear end side toward the outer peripheral side, and the inner peripheral side of the gauge surface 3A Is formed with a face surface 3 ⁇ / b> B that forms a circle centered on the axis O and faces the tip perpendicular to the axis O.
  • the outer peripheral surface 3C of the reaming portion 3 connected to the rear end side of the gauge surface 3A has a truncated cone shape centering on the axis O inclined toward the inner peripheral side toward the rear end side, provided that the axis O Is inclined more gently than the inclination of the gauge surface 3A.
  • the rear end surface 3D of the reaming portion 3 on the rear end side of the frustoconical outer peripheral surface 3C is formed so as to be in contact with the outer peripheral surface of the skirt portion 2 in a cross section along the axis O, for example. ing.
  • a button chip as a drilling chip 4 is planted on the gauge surface 3A and the face surface 3B of the reaming unit 3 with its center line perpendicular to the gauge surface 3A and the face surface 3B.
  • a plurality of gauges are provided so as to protrude from the gauge surface 3A and the face surface 3B.
  • the blow holes 5 are opened at two locations at equal intervals from the axis O in the diameter direction with respect to the axis O on the face surface 3B.
  • the plurality of excavation tips (face tips) 4 planted on the face surface 3B have their rotational trajectories around the axis O so as to avoid the blow holes 5 from positions slightly away from the axis O toward the outer peripheral side. It is planted so as to continue to the outer peripheral edge of the face surface 3B.
  • a plurality of flouring grooves 6 having a concave curved bottom surface are provided at equal intervals in the circumferential direction (eight in this embodiment). Is formed.
  • the diameter of the circle inscribed in the bottom surface of the flouring groove 6 with the axis O of the bit body 1 as the center is larger than the diameter of the face surface 3B forming a circle and is substantially equal to the outer diameter of the skirt portion 2.
  • excavation tips (gauge tips) 4 implanted in the gauge surface 3A are arranged at equal intervals between the openings of the flouring grooves 6 to the gauge surface 3A, and outside the face surface 3B.
  • the excavation tip 4 planted at the periphery is disposed on the inner peripheral side of the opening of every other flouring groove 6 in the circumferential direction.
  • a communication groove 7 that opens to the rear end surface 3D of the reaming portion 3 and communicates with the flouring groove 6 is formed from the outer peripheral portion to the rear end portion of the reaming portion 3.
  • the communication groove 7 in this embodiment extends in a direction inclined with respect to the axis O.
  • one communication groove 7 of the same shape and the same size is formed for each flouring groove 6 so as to communicate with the plurality of flouring grooves 6, respectively.
  • the grooves 7 are formed at intervals so as not to communicate with the dusting grooves 6 other than the communicated dusting grooves 6 and other communication grooves 7.
  • each communication groove 7 is directed to the axis O so as to go in the rotation direction T from the position on the rear side in the rotation direction T and the rear end side in the axis O direction of the flouring groove 6 to be communicated. As viewed from the radially outer peripheral side, it extends with an inclination with respect to the axis O, but does not reach the gauge surface 3A, but is cut off at the approximate center of the outer peripheral surface 3C in the direction of the axis O.
  • the inclination angle ⁇ formed by the intersecting ridge line L between the communication groove 7 and the outer peripheral surface 3C of the reaming portion 3 with respect to the axial line O when viewed from the radial outer peripheral side with respect to the axial line O is in the range of 25 ° to 70 °. In this embodiment, the angle is 30 °.
  • the groove depth from the outer peripheral surface 3C of the communication groove 7 is shallower than the groove depth from the outer peripheral surface 3C of the flouring groove 6.
  • the portion where the communication groove 7 rises to the outer peripheral surface 3C has a concave curved surface shape such as a concave arc when viewed from the direction along the intersecting ridgeline L, and is directed toward the rotation direction T toward the front end side in the axis O direction.
  • a wall surface extending in the rotation direction T is formed along the intersecting ridge line L.
  • the bottom surface of the communication groove 7 facing the outer peripheral side of the bit body 1 is formed in a convex curved surface shape such as a convex cylindrical surface having a center line parallel to the axis O, or a flat surface in contact with the convex cylindrical surface.
  • the bit main body 1 is directed toward the front end side in the axis O direction via the excavation rod R.
  • the rock mass G is crushed by the excavation tip 4 planted on the gauge surface 3A and the face surface 3B at the tip of the bit body 1 to become earth and sand.
  • This earth and sand is pushed out to the outer periphery of the skirt portion 2 through the flouring groove 6 by compressed air supplied from the excavation rod R to the blow hole 5 and ejected from the face surface 3B during excavation. Discharged.
  • the reaming portion 3 of the reaming portion 3 is not affected by the collapsed earth and sand C staying between the skirt portion 2 at the rear end of the bit body 1 and the hole wall W of the excavation hole H. Since the communication groove 7 that is open to the rear end surface 3D and communicates with the flouring groove 6 is formed from the outer peripheral part to the rear end part, the earth and sand C are discharged from the communication groove 7 as the bit body 1 moves backward. It is fed into the groove 6.
  • the communication groove 7 communicates with the dusting groove 6 while extending in a direction inclined with respect to the axis O. For this reason, even if the bit body 1 is simply pulled out along the axis O, the earth and sand C are fed into the flouring groove 6 so as to be guided along the wall surface connected to the intersecting ridge line L of the communication groove 7. It is discharged to the front end side of the main body 1. Therefore, also in this embodiment, the earth and sand C can be discharged
  • the communication groove 7 is inclined so as to be directed to the rotation direction T of the bit body 1 during excavation and communicates with the flouring groove 6 toward the tip end side in the axis O direction of the bit body 1. Yes. Therefore, when the bit body 1 is pulled out from the excavation hole H, if the bit body 1 is moved backward in the same rotation direction T as during excavation so as not to loosen the threaded engagement between the female screw portion and the male screw portion, The earth and sand C fed into the groove 7 is discharged to the front end side of the bit body 1 through the flouring groove 6 while being pushed out to the front end side as the bit body 1 rotates. Thus, the bit body 1 can be reliably recovered.
  • the communication groove 7 is cut off at the approximate center of the reaming portion 3 in the direction of the axis O and intersects the outer peripheral surface 3C at the intersecting ridge line L.
  • the intersecting ridge line L is also on the front side of the axis O direction. As it goes, it is inclined toward the rotation direction T of the bit body 1 during excavation. Therefore, when the bit body 1 is pulled out, the earth and sand that has collapsed on the outer periphery of the reaming portion 3 can be scraped into the communication groove 7 with the intersecting ridge line L as a cutting edge and discharged to the tip side through the flouring groove 6. Further, the clearance between the reaming portion 3 and the hole wall W of the excavation hole H can be secured, and the bit body 1 can be collected more smoothly.
  • the communication groove 7 is cut off at substantially the center in the axis O direction of the reaming part 3, so that a sufficient thickness is provided between the flouring grooves 6 adjacent in the circumferential direction at the tip of the reaming part 3.
  • the holding strength of the excavation tip 4 planted on the gauge surface 3A of this portion is not impaired.
  • a sufficient perimeter can be ensured also in the intersecting ridge line portion between the gauge surface 3A and the outer peripheral surface 3C of the reaming portion 3 having the maximum outer diameter in the bit body 1, a hole for forming the excavation hole H is provided. Bending can also be suppressed.
  • the inclination angle ⁇ formed by the intersecting ridge line L between the communication groove 7 and the outer peripheral surface 3C of the reaming portion 3 with respect to the axial line O when viewed from the radially outer side with respect to the axial line O is 25 ° to It is within the range of 70 °, and this also makes it possible to efficiently discharge the earth and sand C when the bit body 1 is pulled out. That is, if the inclination angle ⁇ is smaller than the above range, the wall surface of the communication groove 7 becomes too close to the axis O, and conversely if the inclination angle ⁇ is larger than the above range, the wall surface of the communication groove 7 is perpendicular to the axis O. In any case, for example, when the bit body 1 is retracted along the axis O, it may be difficult to efficiently feed the earth and sand C along the communication groove 7 into the flouring groove 6. Occurs.
  • the skirt portions 2 and 12 of the rear ends of the bit bodies 1 and 11 are formed in a cylindrical shape having a constant outer diameter centered on the axis O. 11 A portion having a large diameter is formed on the outer periphery of the skirt portions 2 and 12 as long as the diameter is sufficiently smaller than the reaming portions 3 and 13 at the front end portion and does not prevent the clogging of the earth and sand or clogging. May be.
  • the present invention relates to an excavation bit in which an excavation tip is disposed at the tip of a bit body that is rotated around an axis to form an excavation hole in a rock or the like.
  • a reaming portion having a diameter larger than that of the rear end portion of the bit body is formed at the front end portion of the bit body rotated around the axis, and the excavation tip is provided at the front end portion of the reaming portion.
  • a flouring groove extending in the axial direction is formed on the outer peripheral portion of the reaming portion, and the flouring groove extends from the outer peripheral portion of the reaming portion to the rear end portion of the reaming portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Abstract

 軸線(O)回りに回転させられるビット本体(11)の先端部に後端部よりも大径のリーミング部(13)が形成されていて、このリーミング部(13)の先端部に掘削チップ(15)が配設されており、リーミング部(13)の外周部には軸線(O)方向に延びる繰り粉溝(17)が形成されるとともに、リーミング部(13)の外周部から後端部にかけては繰り粉溝(17)に連通する連通溝(18)が形成されている。

Description

掘削ビット
 本発明は、軸線回りに回転させられるビット本体の先端部に掘削チップが配設されて岩盤等に掘削孔を形成する掘削ビットに関するものである。
 本願は、2013年3月5日に日本で出願された特願2013-043549号と、2014年2月6日に日本で出願された特願2014-021674号とに基づき優先権を主張し、それらの内容をここに援用する。
 このような掘削ビットによる削孔作業において、所定の深さまで掘削孔が形成された後は、ビット本体を掘削孔から引き抜いて回収する。ところが、崩壊性の高い岩盤に掘削孔を形成した場合には、掘削孔の孔壁が崩れてビット本体の後端側に土砂が溜まり、ビット本体を掘削孔から抜き出すことができなくなることがある。そこで、このような場合には、例えば特許文献1に記載されているように、ビット本体の後端部に切刃が設けられたリトラックビットが用いられている。
日本国特許第4709226号公報
 ここで、このようなリトラックビットでは一般的に、ビット本体の後端部が円筒状のスカート部とされるとともに、ビット本体の先端部はスカート部の先端側の部分よりも大径のリーミング部とされている。このリーミング部の先端面には岩盤を掘削する掘削チップが配設されているとともに、リーミング部の外周には、掘削孔を形成する際に掘削チップによって破砕された土砂をリーミング部の後方に送り出す繰り粉溝が形成されている。
 さらに、スカート部の後端部には、スカート部の先端側の部分よりも外周側に拡径する大径部が形成されている。そして、この大径部には、スカート部の後端面から先端側に凹むように凹部が形成されていて、この凹部とスカート部の後端面との交差稜線部に上記切刃が形成されている。また、大径部の外周には凹部から軸線方向先端側に延びる溝が形成されており、この溝は、スカート部の先端において上記繰り粉溝に連通していて、繰り粉溝を通してリーミング部の後方に送り出された土砂を排出するようにされている。
 しかしながら、このようなリトラックビットでは、こうしてスカート部の後端の大径部に溝を形成してはいるものの、スカート部の全体がリーミング部よりも小径とされた通常の掘削ビットと比較すると、大径部によって繰り粉排出性能が低下することが避けらなくなり、掘削孔を形成する際に掘削抵抗の増大を招くおそれがある。また、ビット本体を掘削孔から引き抜くときにも、大径部と孔壁との間に土砂が詰まるおそれがあるとともに、スカート部のうちの大径部とリーミング部との間の部分に土砂が滞留すると、この滞留した土砂を繰り粉溝から効率よく排出するのが困難となって、ビット本体を回収できなくなるおそれがある。
 本発明は、このような背景の下になされたもので、掘削孔を形成するときに繰り粉排出性能の低下を招くことがないとともに、所定の深さまで掘削孔が形成された後は確実かつ効率的にビット本体を掘削孔から引き抜いて回収することが可能な掘削ビットを提供することを目的としている。
 上記課題を解決して、このような目的を達成するために、本発明の掘削ビットの一態様は、岩盤に掘削孔を形成する掘削ビットであって、軸線回りに回転させられるビット本体の先端部にビット本体の後端部よりも大径のリーミング部が形成されていて、このリーミング部の先端部に掘削チップが配設されており、上記リーミング部の外周部には上記軸線方向に延びる繰り粉溝が形成されているとともに、上記リーミング部の外周部からリーミング部の後端部にかけては、上記繰り粉溝に連通する連通溝が形成されている。
 このような掘削ビットでは、ビット本体の後端部は、先端部に形成された大径のリーミング部よりも小径となるため、繰り粉溝を通してリーミング部の後方に送り出された土砂を円滑に排出することができ、繰り粉排出性能が損なわれるのを防いで掘削抵抗の低減を図ることができる。また、ビット本体を掘削孔から引き抜くときに、ビット本体後端部と孔壁との間に土砂が詰まるのも抑えることができる。
 そして、リーミング部の外周部から後端部にかけては、上記繰り粉溝に連通する連通溝が形成されているので、掘削孔から引き抜くときにビット本体を後退させると、ビット本体の後端部の外周に溜まった土砂は、この連通溝を介して繰り粉溝に送り込まれる。このため、崩壊性の高い岩盤に掘削孔を形成した場合でも、崩れた土砂を効率的にビット本体の先端側に排出することができ、ビット本体を確実に引き抜いて回収することが可能となる。
 ここで、一般的にビット本体の後端部が上述したような円筒状のスカート部である場合には、その内周に形成された雌ネジ部に掘削ロッド先端の雄ネジ部がねじ込まれて掘削時にビット本体が回転させられる。そこで、特にビット本体を掘削孔から引き抜く際にも掘削時の回転方向と同じ方向に回転させながら引き抜くような場合には、上記連通溝と上記リーミング部の後端面との交差稜線のうち少なくとも掘削時の上記ビット本体の回転方向後方側に位置する交差稜線は、上記軸線に平行な平面上または上記軸線を含む平面上に位置していてもよい。ビット本体の回転により、この交差稜線に連なる連通溝の溝壁に沿って土砂を掻き込んで繰り粉溝に案内することができる。
 また、このような場合には、ビット本体の周方向における上記連通溝の幅を上記繰り粉溝の幅より大きくすることにより、ビット本体を掘削孔から引き抜いて回収する際に、ビット本体後端部の周りの多くの土砂を連通溝に取り込んで、繰り粉溝に効率的に排出することができる。例えば、上記リーミング部の外周部に、複数の上記繰り粉溝が周方向に間隔をあけて形成されている場合には、上記連通溝を、周方向に隣接する複数の上記繰り粉溝に連通するように形成することにより、連通孔に取り込んだ多くの土砂を複数の繰り粉溝に分散して送り込んで一層効率的に排出することができる。
 さらに、上記連通溝は、掘削時の上記ビット本体の回転方向後方側に向かうに従い、上記リーミング部の後端面からの溝深さが漸次深くなるように形成することによっても、ビット本体を掘削時の回転方向に回転させながら引き抜く場合には、溝深さが深い部分に多くの土砂を収容して効率的な排出を促すことができる。
 一方、上記連通溝を、上記軸線に対して傾斜する方向に延びるように形成することにより、特にビット本体を回転させずに掘削孔から引き抜くような場合でも、ビット本体の後端部の外周に溜まった土砂は、連通溝の傾斜に案内させられるようにして繰り粉溝に送り込まれる。このため、ビット本体を回転させなくてもビット本体後端部外周に溜まった土砂を効率的に先端側に排出することができ、やはり確実にビット本体を回収することが可能となる。
 また、このように連通溝を傾斜させて形成する場合には、該連通溝を、軸線方向先端側に向かうに従い、掘削時のビット本体の回転方向に向かうように傾斜させることにより、上述のようにビット本体を引き抜くときにも掘削時の回転方向に回転させることで、このビット本体の回転によっても連通溝から繰り粉溝に土砂を案内することができ、より一層効率的な土砂の排出を促すことが可能となる。
 なお、上述のように連通溝を傾斜させた場合には、その傾斜角、すなわち上記連通溝と上記リーミング部の外周面との交差稜線が上記軸線に対する径方向外周側から見て該軸線に対してなす傾斜角は、25°~70°の範囲内とされるのが望ましい。ビット本体を回転させずに引き抜く場合には、この傾斜角が上記範囲よりも小さいと連通溝が軸線と平行に近くなりすぎる一方、逆に上記範囲よりも大きいと連通溝が軸線に垂直に近くなりすぎて、いずれもビット本体を引き抜くときに土砂を効率的に繰り粉溝に案内して排出することが困難となるおそれが生じる。
 ただし、例えば当該掘削ビットが、通常の掘削によって先に形成された掘削孔を拡孔するために用いられるリーミングビットであって、一般的な掘削ビットと比べてリーミング部の外径がビット本体後端部の外径よりも大きく、掘削孔とビット本体後端部との間に滞留する土砂も多くなる場合には、ビット本体を掘削時の回転方向に回転させながら引き抜くことを考慮して、上記傾斜角は25°未満であってもよい。上述のように連通溝とリーミング部の後端面との交差稜線のうち少なくとも掘削時の上記ビット本体の回転方向後方側に位置する交差稜線が、上記軸線に平行な平面上または上記軸線を含む平面上に位置していてもよい。
 以上説明したように、本発明の掘削ビットの一態様によれば、掘削孔を形成する際の繰り粉排出性能を維持して掘削抵抗を低減しつつ、掘削終了後にビット本体を掘削孔から引き抜く際にはビット本体の後端部外周に溜まった土砂を効率的に繰り粉溝から排出することができ、確実にビット本体を回収することが可能となる。
本発明の第1の実施形態を示す後端外周側から見た斜視図である。 図1に示す実施形態を後端側から見た背面図である。 図2における矢線X方向視の側面図である。 本発明の第2の実施形態を示す先端外周側から見た斜視図である。 図4に示す実施形態を後端外周側から見た斜視図である。 図4に示す実施形態を後端側から見た背面図である。 図6における矢線X方向視の側面図(平面図)である。 図6における矢線Y方向視の側面図(底面図)である。 本発明の第3の実施形態を示す斜視図である。 図9に示す実施形態の正面図である。 図10における矢線X方向視の側面図である。 図9に示す実施形態のビット本体先端部の図10における矢線Y方向視の側面図である。 図9に示す実施形態によって掘削孔を形成する際の側面図である。
 図1ないし図3は、本発明の第1の実施形態を示すものである。本実施形態の掘削ビットは、予め形成された小径の掘削孔に挿通されて、この掘削孔を大径に拡孔するリーミングビットと称されるものである。本実施形態において、ビット本体11は、鋼材等の金属材料により一体に形成されて軸線Oを中心とした概略有底の多段円筒状をなしている。
 このビット本体11の後端部(図1において右下側部分、図3において左側部分)は一定外径の円筒状のスカート部12とされるとともに、このスカート部12の先端側(図1において左上側、図3において右側)にはスカート部12よりも外径が大径のリーミング部13が形成されている。さらに、このリーミング部13の先端側には、スカート部12よりも小径のパイロット部14がビット本体11の軸線Oに沿って突出するように形成されている。
 本実施形態において、リーミング部13の先端面13Aは、全体が外周側に向かうに従い後端側に向けて傾斜する軸線Oを中心とした円錐台面状とされている。パイロット部14は、この先端面13Aの中央にリーミング部13と一体に形成され、先端面13Aに連なる一定外径の軸線Oを中心とした小径部14Aと、この小径部14Aの先端側に形成された小径部14Aより僅かに大径の大径部14Bとを備えた多段円柱状に形成されている。この大径部14Bの外径は、スカート部12の外径よりも小さく、予め形成された小径の掘削孔に挿入可能な大きさとされている。
 また、リーミング部13の先端面13Aには、ビット本体11よりも硬質の超硬合金等よりなる掘削チップ15がそれぞれ複数ずつ配設されている。本実施形態における掘削チップ15は、円柱状の後端部とこの後端部の中心線上に中心を有する凸球面状の先端部とが一体に形成されたボタンチップである。この掘削チップ15は、上記先端面13Aに形成された円形孔に上記後端部が焼き嵌めや圧入、ロウ付けされることにより、それぞれ上記中心線を先端面13Aに垂直として先端部を先端面13Aから突出させて植設されている。
 一方、スカート部12の内周面には雌ネジ部が形成されており、この雌ネジ部に、図示されない掘削ロッドの先端の雄ネジ部が螺合させられる。ビット本体11は、この掘削ロッドを介して削岩機から伝播される軸線O方向先端側への推力および打撃力と、掘削時の回転方向Tへの軸線O回りの回転力とにより、上記掘削チップ15によって岩盤を破砕して掘削し、予め形成された小径の掘削孔を拡孔してゆく。雌ネジ部への雄ネジ部のねじ込み方向は掘削時のビット本体11の回転方向Tと同じであり、掘削時の回転力によって雌ネジ部と雄ネジ部との螺合が緩むことがないように設定されている。
 さらに、スカート部12の内周部の底面からリーミング部13内にはブロー孔16が先端側に向けて延びており、このブロー孔16はリーミング部13の先端面13Aにおいて例えば軸線Oに対する径方向に間隔をあけた複数箇所に開口させられている。先端面13Aに植設される複数の掘削チップ15は、これらのブロー孔16を避けるようにして、互いの軸線O回りの回転軌跡が、軸線Oから僅かに外周側に離れた位置から先端面13Aの外周縁まで連続するように植設されている。
 リーミング部13の外周面13Bは、先端面13Aが軸線Oに対してなす傾斜よりも緩やかな傾斜で、後端側に向かうに従い内周側に向けて傾斜する軸線Oを中心とした円錐台面状とされている。また、リーミング部13の後端面13Cは、この外周面13Bの傾斜よりも急勾配で、例えば先端面13Aの傾斜と略等しい傾斜で、後端側に向かうに従い内周側に向けて傾斜する軸線Oを中心とした円錐台面状とされ、その後端で断面凹曲線状をなしてスカート部12の外周面に連なっている。
 さらに、リーミング部13の外周面13Bには、先端面13Aからリーミング部13の後端面13Cに亙って軸線O方向に延びる複数条(本実施形態では9条)の繰り粉溝17が形成されている。本実施形態における繰り粉溝17は、その底面が軸線O方向に延びる中心線を有する凹円筒面等の凹曲面状をなしており、同形同大のこのような繰り粉溝17が周方向に等間隔に形成されている。
 そして、リーミング部13の外周面13Bから後端面13Cにかけては、上記繰り粉溝17に連通する連通溝18が形成されている。ここで、本実施形態の連通溝18は、図2の右側に示す連通溝18のようにリーミング部13の後端面13Cとの交差稜線M、Nのうち、掘削時のビット本体11の回転方向Tの後方側に位置する交差稜線Mが、軸線Oに平行な平面Q上に位置している。なお、この交差稜線Mは、後述する第2の実施形態のように軸線Oを含む平面上に位置していてもよい。
 また、本実施形態の連通溝18は、その周方向の幅が、繰り粉溝17の周方向の幅よりも大きくされている。特に、本実施形態の連通溝18は、周方向に間隔をあけてリーミング部13の外周部に形成された複数の繰り粉溝17のうち、さらに周方向に隣接した複数の繰り粉溝17にも連通している。
 具体的に、本実施形態では、上述のようにリーミング部13の外周部に9条の繰り粉溝17が周方向に等間隔に形成されているのに対して、連通溝18は、周方向に隣接する2条ずつの繰り粉溝17にそれぞれ連通する3条の連通溝18が周方向に等間隔に形成されている。なお、これらの連通溝18の間には、連通溝18が連通していない繰り粉溝17が合計3条形成されている。
 さらに、上記交差稜線Mは、連通溝18が連通した2条の繰り粉溝17のうちの回転方向T後方側の繰り粉溝17とリーミング部13の外周面13Bとの交差稜線のうち、回転方向T後方側の交差稜線に略連なっている。なお、この交差稜線Mに連なる連通溝18の回転方向Tを向く壁面は、ビット本体11の内周側に向かうに従い回転方向T側に延びる凹曲面状をなしている。
 また、ビット本体11の外周側を向く連通溝18の底面も凹曲面状に形成されている。
 さらに、連通溝18が連通する2条の繰り粉溝17の間に残されるリーミング部13の外周面13Bの軸線O方向の幅は、他の繰り粉溝17の間の外周面13Bの軸線O方向の幅よりも小さくされている。また、回転方向T側の連通溝18とリーミング部13の後端面13Cとの交差稜線Nは、回転方向T側に向かうに従い凸曲線を描いてビット本体11の先端側に切れ上がり、連通溝18が連通した2条の繰り粉溝17のうちの回転方向T側の繰り粉溝17とリーミング部13の後端面13Cとの交差稜線に交差している。
 このような構成の掘削ビット(リーミングビット)は、上述のように軸線O方向先端側に向けての推力および打撃力と回転方向Tへの回転力とが与えられることにより、予め形成された小径の掘削孔の周りの岩盤が、リーミング部13の先端面13Aに配設された掘削チップ15によって破砕されて土砂となり、掘削孔を拡孔する。この土砂は、掘削時に掘削ロッドからブロー孔16に供給されて噴出する圧縮空気により、繰り粉溝17を通してスカート部12の外周に押し出され、ビット本体11の後端側に排出させられる。さらに、掘削時には、パイロット部14が小径の掘削孔に挿入されることによってビット本体11を案内する。
 このとき、上記構成の掘削ビットにおいては、従来のリトラックビットのようにビット本体の後端部に切刃を設けるための大径部を形成する必要がない。特に本実施形態では、ビット本体11の後端部が一定外径のスカート部12とされているので、繰り粉溝17から後端側に送り出された土砂を、このような大径部によって詰まりを生じることなくビット本体11の後端側に排出することができる。従って、繰り粉排出性能が損なわれるのを防いで、掘削抵抗の少ない効率的な掘削孔の形成を図ることができる。
 そして、所定の深さまで掘削孔が拡孔された後にビット本体11を回収するときには、特にビット本体11を掘削時の回転方向Tと同じ方向に回転しつつ軸線O方向後端側に引き抜くことにより、スカート部12と掘削孔との間に残存する土砂を連通溝18から繰り粉溝17を通してリーミング部13の先端側に排出することができる。従って、上記構成の掘削ビットによれば、確実にビット本体11を掘削孔から回収することができる。
 また、本実施形態のリーミングビットのように、小径の掘削孔を大径に拡孔する掘削ビットでは、スカート部12とこれよりも大径のリーミング部13との外径差や外径比が大きくなる。このため、連通溝18とリーミング部13の後端面13Cとの交差稜線M、Nを長く確保することができ、これらの交差稜線M、Nの少なくとも一方が軸線Oに平行な平面Q上または軸線Oを含む平面上に位置していても、確実に土砂を連通溝18に掻き込んで繰り粉溝17に送り出すことができる。
 さらに、本実施形態では、連通溝18の周方向の幅が個々の繰り粉溝17の周方向の幅よりも大きいので、多くの土砂を連通溝18に取り込んで繰り粉溝17に送り込み、効率的に排出することができる。さらにまた、本実施形態では、複数条の繰り粉溝17のうち周方向に隣接する2条ずつの繰り粉溝17に1条の連通溝18が連通しているので、こうして連通溝18に取り込んだ多くの土砂を、これらの繰り粉溝17に分散して一層効率的に排出することができ、上述のように一部の繰り粉溝17に連通溝18が連通していなくても、ビット本体11を確実に回収することができる。ただし、すべての繰り粉溝17に連通溝18が連通するように形成されていてもよい。
 さらにまた、本実施形態において連通溝18は、リーミング部13の後端面13Cからの溝深さが、掘削時のビット本体11の回転方向T後方側に向かうに従い漸次深くなるように形成されている。このため、特にビット本体11を掘削時の回転方向Tに回転させながら引き抜くことにより、溝深さが深い連通溝18の回転方向T後方側の部分に多くの土砂を収容して一層効率的な排出を促すことができる。
 なお、本実施形態におけるパイロット部14は、大径部14Bの軸線O方向の幅が小径部14Aよりも大きい。このため、小径の掘削孔を拡孔するときに、安定してビット本体11を案内できるという利点も得られる。
 次に、図4ないし図8は、本発明の第2の実施形態を示すものである。この第2の実施形態の掘削ビットも、第1の実施形態と同様に予め形成された小径の掘削孔を拡孔するリーミングビットであり、第1の実施形態と共通する部分には同一の符号を配してある。
 本実施形態では、リーミング部13の外周部に形成された複数条(9条)の繰り粉溝17のそれぞれに1条ずつの連通溝18が連通するように形成されており、これらの連通溝18同士も周方向に等間隔をあけて形成されている。また、本実施形態の連通溝18は、図6の左側に示す連通溝18のように、リーミング部13の後端面13Cとの交差稜線M、Nのうち、掘削時のビット本体11の回転方向Tの後方側に位置する交差稜線Mは軸線Oを含む平面P上に位置している。
 さらに、本実施形態の連通溝18も、その周方向の幅が、繰り粉溝17の周方向の幅よりも大きくされている。具体的に、本実施形態における連通溝18は、図6に示すように上記交差稜線M、Nが、繰り粉溝17とリーミング部13の外周面13Bとの交差稜線よりも周方向のそれぞれ外側に位置するように形成されている。なお、回転方向T側の交差稜線Nは、図6に示すように軸線Oに平行な平面上に位置していてもよく、第1の実施形態のように回転方向T側に向かうに従い凸曲線を描いてビット本体11の先端側に切れ上がっていてもよい。
 ただし、周方向のうち上記回転方向Tの後方側では、上記交差稜線Mが繰り粉溝17とリーミング部13の外周面13Bとの交差稜線の僅かに回転方向T後方側に位置しているのに対し、回転方向T側では、この回転方向T側の連通溝18とリーミング部13の後端面13Cとの交差稜線Nが、上記交差稜線Mと繰り粉溝17との間隔よりも大きく回転方向T側に位置するように形成されている。
 さらに、本実施形態でも、連通溝18はリーミング部13の後端面13Cからの溝深さが掘削時の回転方向T後方側に向かうに従い漸次深くなり、この回転方向Tの後方で外周側に切れ上がって上記交差稜線Mに達するように形成されている。交差稜線M、Nの軸線O方向の後端を結ぶ連通溝18とリーミング部13の後端面13Cとの交差稜線は、回転方向Tの後方側に向かうに従い軸線O方向後端側に向けて延びている。
 このような第2の実施形態の掘削ビット(リーミングビット)でも、所定の深さまで掘削孔が拡孔した後は、第1の実施形態と同様に特にビット本体11を掘削時の回転方向Tと同じ方向に回転しつつ軸線O方向後端側に引き抜くことにより、スカート部12と掘削孔との間に残存した土砂を連通溝18から繰り粉溝17を通してリーミング部13の先端側に排出することができる。また、本実施形態においては、すべての繰り粉溝17ごとにそれぞれ1条の連通溝18が連通しているので、繰り粉溝17に土砂の詰まりが生じるようなことも少ない。
 また、本実施形態でも、連通溝18の周方向の幅が繰り粉溝17の周方向の幅よりも大きいので、多くの土砂を連通溝18に取り込んで繰り粉溝17に送り込み、排出することができる。特に、本実施形態では、連通溝18とリーミング部13の後端面13Cとの回転方向Tとその後方側の両方の交差稜線M、Nが、繰り粉溝17の周方向の両外側に位置しているので、連通溝18に取り込んだ土砂を満遍なく繰り粉溝17に送り込むことができる。
 さらに、本実施形態でも、連通溝18のリーミング部13の後端面13Cからの溝深さが、掘削時のビット本体11の回転方向T後方側に向かうに従い漸次深くなるので、ビット本体11を掘削時の回転方向Tに回転させながら引き抜くことにより、溝深さが深い回転方向T後方側の部分に多くの土砂を収容して効率的な排出を促すことができる。このとき、上述のように繰り粉溝17よりも幅広とされた連通溝18は、回転方向T後方側の上記交差稜線Mと繰り粉溝17との周方向の間隔が、回転方向T側の上記交差稜線Nと繰り粉溝17との間隔よりも小さいので、こうして回転方向T後方側に収容された土砂を連通溝18内に残すことなく排出することができる。
 次に、図9ないし図13は本発明の第3の実施形態を示すものであり、図13はこの実施形態によって岩盤Gに掘削孔Hを形成する場合を示すものである。本実施形態の掘削ビットは、第1、第2の実施形態のように予め形成された小径の掘削孔を拡孔するリーミングビットではなく、専ら予め掘削孔が形成されていない岩盤に掘削孔を形成するのに用いられるものである。
 本実施形態においても、ビット本体1は、鋼材等の金属材料により一体に形成されて軸線Oを中心とした概略有底の多段円筒状をなしている。このビット本体1の後端部(図9において左上側部分、図11および図13において左側部分)は一定外径の円筒状のスカート部2とされるとともに、有底の底部とされるビット本体1の先端部(図9において右下側部分、図11および図13において右側部分)は、スカート部2よりも外径が大径とされたリーミング部3とされている。ただしこれらスカート部2とリーミング部3との外径差や外径比は、第1、第2の実施形態よりも小さい。また、ビット本体1の先端にパイロット部は形成されていない。
 リーミング部3の先端部外周には、外周側に向かうに従い後端側に向けて傾斜する軸線Oを中心とした円錐台面状のゲージ面3Aが形成されるとともに、このゲージ面3Aの内周側には、軸線Oを中心とした円形をなして軸線Oに垂直に先端側を向くフェイス面3Bが形成されている。また、ゲージ面3Aの後端側に連なるリーミング部3の外周面3Cは、後端側に向かうに従い内周側に向けて傾斜する軸線Oを中心とした円錐台面状とされ、ただしその軸線Oに対する傾斜はゲージ面3Aの傾斜よりも緩やかとされている。さらに、この円錐台面状の外周面3Cよりも後端側のリーミング部3の後端面3Dは、例えば軸線Oに沿った断面において凹曲線をなしてスカート部2の外周面に接するように形成されている。
 リーミング部3の上記ゲージ面3Aとフェイス面3Bには、本実施形態においても掘削チップ4としてボタンチップが、その中心線をゲージ面3Aおよびフェイス面3Bに垂直にして植設され、先端部をゲージ面3Aおよびフェイス面3Bから突出させてそれぞれ複数ずつ配設されている。また、ブロー孔5は、フェイス面3Bにおいて軸線Oに対する直径方向に該軸線Oから等間隔をあけた2箇所に開口させられている。フェイス面3Bに植設される複数の掘削チップ(フェイスチップ)4は、このブロー孔5を避けるようにして互いの軸線O回りの回転軌跡が、軸線Oから僅かに外周側に離れた位置からフェイス面3Bの外周縁まで連続するように植設されている。
 さらに、リーミング部3の外周部には、第1、第2の実施形態と同様に底面が凹曲面状をなす繰り粉溝6が周方向に等間隔に複数条(本実施形態では8条)形成されている。なお、ビット本体1の軸線Oを中心として繰り粉溝6の底面に内接する円の直径は、円形をなすフェイス面3Bの直径よりは大きく、スカート部2の外径と略等しくされている。また、ゲージ面3Aに植設される掘削チップ(ゲージチップ)4は、これらの繰り粉溝6のゲージ面3Aへの開口部の間に等間隔に配設されるとともに、フェイス面3Bの外周縁に植設される掘削チップ4は、周方向に1つおきの繰り粉溝6の開口部の内周側に配設されている。
 さらに、リーミング部3の外周部から後端部にかけては、該リーミング部3の後端面3Dに開口して上記繰り粉溝6に連通する連通溝7が形成されている。そして、本実施形態における連通溝7は、軸線Oに対して傾斜する方向に延びている。本実施形態においても第2の実施形態と同様に複数条の繰り粉溝6にそれぞれ連通するように各繰り粉溝6ごとに1つずつ同形同大の連通溝7が形成され、各連通溝7は、連通した繰り粉溝6以外の繰り粉溝6や他の連通溝7とは連通しないように間隔をあけて形成されている。
 また、各連通溝7は、連通する繰り粉溝6の回転方向T後方側かつ軸線O方向後端側の位置から、軸線O方向先端側に向かうに従い回転方向Tに向かうように、軸線Oに対する径方向外周側から見て軸線Oに対して傾斜して延びており、ただしゲージ面3Aにまでは至らずに、軸線O方向において外周面3Cの略中央で切れ上がっている。この連通溝7とリーミング部3の外周面3Cとの交差稜線Lが軸線Oに対する径方向外周側から見て該軸線Oに対してなす傾斜角θは25°~70°の範囲内とされるのが望ましく、本実施形態では30°とされている。
 なお、連通溝7の外周面3Cからの溝深さは、繰り粉溝6の外周面3Cからの溝深さよりは浅くされている。また、連通溝7が外周面3Cに切れ上がる部分は、上記交差稜線Lに沿った方向から見て凹円弧等の凹曲面状をなしており、軸線O方向先端側に向かうに従い回転方向Tに向けて延びる回転方向Tを向いた壁面が交差稜線Lに沿って形成されている。さらに、連通溝7のビット本体1外周側を向く底面は、軸線Oに平行な中心線を有する凸円筒面等の凸曲面状、または該凸円筒面に接する平面状とされている。
 図13に示すように、このような第3の実施形態の掘削ビットによって岩盤Gに掘削孔Hを形成する際に、掘削ロッドRを介してビット本体1に軸線O方向先端側に向けての推力および打撃力と回転方向Tへの回転力とを与えると、ビット本体1先端のゲージ面3Aとフェイス面3Bに植設された掘削チップ4によって岩盤Gが破砕されて土砂となる。この土砂は、掘削時に掘削ロッドRからブロー孔5に供給されてフェイス面3Bから噴出する圧縮空気により、繰り粉溝6を通してスカート部2の外周に押し出され、さらにビット本体1の後端側に排出させられる。
 そして、このように所定の深さまで掘削孔Hを形成した後に、掘削ロッドRごとビット本体1を掘削孔Hから引き抜いて回収する際、たとえ岩盤Gが崩壊性の高いものであって、図13に示したように崩壊した土砂Cがビット本体1後端部のスカート部2と掘削孔Hの孔壁Wとの間に滞留していても、上記構成の掘削ビットにおいては、リーミング部3の外周部から後端部にかけて、後端面3Dに開口して繰り粉溝6に連通する連通溝7が形成されているので、ビット本体1が後退するのに伴い土砂Cは連通溝7から繰り粉溝6に送り込まれる。
 特に、この第3の実施形態では、上記連通溝7が、軸線Oに対して傾斜する方向に延びつつ繰り粉溝6に連通している。このため、ビット本体1を軸線Oに沿って真っ直ぐ引き抜くだけでも、土砂Cは、連通溝7の上記交差稜線Lに連なる壁面に沿って案内されるようにして繰り粉溝6に送り込まれ、ビット本体1の先端側に排出させられる。従って、本実施形態においても、効率的に土砂Cを排出することができる。
 さらに、本実施形態では、上記連通溝7は、ビット本体1の軸線O方向先端側に向かうに従い、掘削時のビット本体1の回転方向T向かうように傾斜して繰り粉溝6に連通している。従って、ビット本体1を掘削孔Hから引き抜く際に、雌ネジ部と雄ネジ部との螺合が緩まないように掘削時と同じ回転方向Tにビット本体1を回転しつつ後退させると、連通溝7に送り込まれた土砂Cはビット本体1の回転に伴い先端側に押し出されながら繰り粉溝6を介してビット本体1の先端側に排出させられるので、一層効率的な土砂Cの排出を促して確実なビット本体1の回収を図ることができる。
 さらにまた、本実施形態では、連通溝7は軸線O方向にリーミング部3の略中央で切れ上がって交差稜線Lにおいて外周面3Cに交差しており、この交差稜線Lも軸線O方向先端側に向かうに従い掘削時のビット本体1の回転方向Tに向けて傾斜することになる。従って、ビット本体1を引き抜く際には、この交差稜線Lを切刃としてリーミング部3の外周に崩壊した土砂も連通溝7に掻き込み、繰り粉溝6を通して先端側に排出することができるので、リーミング部3と掘削孔Hの孔壁Wとの間のクリアランスを確保して一層円滑なビット本体1の回収を図ることができる。
 その一方で、こうして連通溝7がリーミング部3の軸線O方向略中央で切れ上がっていることにより、リーミング部3の先端部では周方向に隣接する繰り粉溝6の間に十分な肉厚を確保することができ、この部分のゲージ面3Aに植設される掘削チップ4の保持強度が損なわれたりすることはない。また、ビット本体1において最大外径となるリーミング部3のゲージ面3Aと外周面3Cとの交差稜線部にも十分な周長を確保することができるので、掘削孔Hを形成する際の穴曲がりも抑制することができる。
 さらに、本実施形態では、連通溝7とリーミング部3の外周面3Cとの上記交差稜線Lが軸線Oに対する径方向外周側から見て該軸線Oに対してなす傾斜角θが、25°~70°の範囲内とされており、これによってもビット本体1を引き抜く際に土砂Cを効率的に排出することが可能となる。すなわち、傾斜角θが上記範囲よりも小さいと連通溝7の壁面が軸線Oに平行に近くなりすぎ、また逆に傾斜角θが上記範囲よりも大きいと連通溝7の壁面が軸線Oに垂直に近くなりすぎ、いずれの場合にも例えばビット本体1を軸線Oに沿って後退させた際には土砂Cを連通溝7に沿って効率的に繰り粉溝6に送り込むことが困難となるおそれが生じる。
 なお、上記第1ないし第3の実施形態では、ビット本体1、11後端部のスカート部2、12が軸線Oを中心とした一定外径の円筒状とされているが、ビット本体1、11先端部のリーミング部3、13よりも十分小径であって、土砂の排出を妨げたり詰まりを生じたりすることがなければ、スカート部2、12の外周に大径となる部分が形成されていてもよい。
 以上、本発明の好ましい実施形態を説明したが、本発明は上記の実施形態に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は、上述した説明によって限定されることはなく、添付の特許請求の範囲によってのみ限定される。
 本発明は、軸線回りに回転させられるビット本体の先端部に掘削チップが配設されて岩盤等に掘削孔を形成する掘削ビットに関する。本発明の掘削ビットによれば、軸線回りに回転させられるビット本体の先端部にビット本体の後端部よりも大径のリーミング部が形成されていて、このリーミング部の先端部に掘削チップが配設されており、上記リーミング部の外周部には上記軸線方向に延びる繰り粉溝が形成されているとともに、上記リーミング部の外周部からリーミング部の後端部にかけては、上記繰り粉溝に連通する連通溝が形成されていることにより、掘削孔を形成する際の繰り粉排出性能を維持して掘削抵抗を低減しつつ、掘削終了後にビット本体を掘削孔から引き抜く際にはビット本体の後端部外周に溜まった土砂を効率的に繰り粉溝から排出することができ、確実にビット本体を回収することが可能となる。従って、産業上の利用可能性を有する。
 1、11 ビット本体 2、12 スカート部 3、13 リーミング部 3A ゲージ面 3B フェイス面 3C、13B リーミング部3、13の外周面 3D、13C リーミング部3、13の後端面 4、15 掘削チップ 5、16 ブロー孔 6、17 繰り粉溝 7、18 連通溝 13A リーミング部13の先端面 14 パイロット部 O ビット本体1、11の軸線 P 軸線Oを含む平面 T 掘削時のビット本体1、11の回転方向 L 連通溝7とリーミング部3の外周面3Cとの交差稜線 M 回転方向T後方側の連通溝18とリーミング部13の後端面13Cとの交差稜線 N 回転方向T側の連通溝18とリーミング部13の後端面13Cとの交差稜線 θ 交差稜線Lが軸線Oに対する径方向外周側から見て軸線Oに対してなす傾斜角

Claims (8)

  1.  岩盤に掘削孔を形成する掘削ビットであって、
     軸線回りに回転させられるビット本体の先端部にビット本体の後端部よりも大径のリーミング部が形成されていて、このリーミング部の先端部に掘削チップが配設されており、上記リーミング部の外周部には上記軸線方向に延びる繰り粉溝が形成されているとともに、上記リーミング部の外周部からリーミング部の後端部にかけては、上記繰り粉溝に連通する連通溝が形成されている掘削ビット。
  2.  上記連通溝と上記リーミング部の後端面との交差稜線のうち少なくとも掘削時の上記ビット本体の回転方向後方側に位置する交差稜線は、上記軸線に平行な平面上または上記軸線を含む平面上に位置している請求項1に記載の掘削ビット。
  3.  上記ビット本体の周方向における上記連通溝の幅が上記繰り粉溝の幅よりも大きい請求項2に記載の掘削ビット。
  4.  上記リーミング部の外周部には、複数の上記繰り粉溝が周方向に間隔をあけて形成されているとともに、上記連通溝は、周方向に隣接する複数の上記繰り粉溝に連通している請求項3に記載の掘削ビット。
  5.  上記連通溝は、掘削時の上記ビット本体の回転方向後方側に向かうに従い、上記リーミング部の後端面からの溝深さが漸次深くなる請求項1から請求項4のうちいずれか一項に記載の掘削ビット。
  6.  上記連通溝は、上記軸線に対して傾斜する方向に延びている請求項1に記載の掘削ビット。
  7.  上記連通溝は、上記軸線方向先端側に向かうに従い、掘削時の上記ビット本体の回転方向に向かうように傾斜している請求項6に記載の掘削ビット。
  8.  上記連通溝と上記リーミング部の外周面との交差稜線が上記軸線に対する径方向外周側から見て該軸線に対してなす傾斜角が25°~70°の範囲内とされている請求項6または請求項7に記載の掘削ビット。
PCT/JP2014/055313 2013-03-05 2014-03-03 掘削ビット WO2014136727A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14760641.2A EP2966254B1 (en) 2013-03-05 2014-03-03 Digging bit
CN201480011182.0A CN105102752B (zh) 2013-03-05 2014-03-03 挖掘钻头
KR1020157021766A KR20150120970A (ko) 2013-03-05 2014-03-03 굴삭 비트
AU2014227092A AU2014227092B2 (en) 2013-03-05 2014-03-03 Digging bit
US14/771,634 US10006251B2 (en) 2013-03-05 2014-03-03 Digging bit
CA2902966A CA2902966C (en) 2013-03-05 2014-03-03 Digging bit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-043549 2013-03-05
JP2013043549 2013-03-05
JP2014021674A JP2014196655A (ja) 2013-03-05 2014-02-06 掘削ビット
JP2014-021674 2014-02-06

Publications (1)

Publication Number Publication Date
WO2014136727A1 true WO2014136727A1 (ja) 2014-09-12

Family

ID=51491244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055313 WO2014136727A1 (ja) 2013-03-05 2014-03-03 掘削ビット

Country Status (8)

Country Link
US (1) US10006251B2 (ja)
EP (1) EP2966254B1 (ja)
JP (1) JP2014196655A (ja)
KR (1) KR20150120970A (ja)
CN (1) CN105102752B (ja)
AU (1) AU2014227092B2 (ja)
CA (1) CA2902966C (ja)
WO (1) WO2014136727A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9784038B2 (en) 2013-06-17 2017-10-10 Longyear Tm, Inc. High-productivity drill bits
CN106401465B (zh) * 2016-11-16 2018-06-15 江苏双辉机械制造有限公司 一种钻孔开挖表面处理装置
KR102077893B1 (ko) * 2017-07-12 2020-02-14 (주)동우기계 굴착장비용 비트
EP3617439B1 (en) * 2018-08-30 2021-07-28 Sandvik Mining and Construction Tools AB Drill bit with curved sludge grooves

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174968A (ja) * 2007-01-18 2008-07-31 Mitsubishi Materials Corp 掘削工具
JP4709226B2 (ja) 2004-11-17 2011-06-22 サンドビック インテレクチュアル プロパティー アクティエボラーグ ロック・ドリルビット

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2633779C3 (de) 1976-07-28 1983-11-03 Richard 5383 Kierspe Karnebogen Schlagbohrkrone
US4883132A (en) * 1987-10-13 1989-11-28 Eastman Christensen Drag bit for drilling in plastic formation with maximum chip clearance and hydraulic for direct chip impingement
US6039127A (en) * 1998-03-13 2000-03-21 Loudon Enterprises, Inc. Rock drill
SE0000688L (sv) * 2000-03-02 2001-05-21 Sandvik Ab Bergborrkrona samt förfarande för dess tillverkning
US6568492B2 (en) * 2001-03-02 2003-05-27 Varel International, Inc. Drag-type casing mill/drill bit
CN2758440Y (zh) 2004-11-26 2006-02-15 自贡科瑞德新材料有限责任公司 一种硬质合金钎头
ATE414212T1 (de) 2006-01-18 2008-11-15 Omni Oil Technologies Bohrlochräumer
US8991524B2 (en) * 2010-09-13 2015-03-31 Longyear Tm, Inc. Impregnated drill bits with integrated reamers
CN202645432U (zh) 2012-06-08 2013-01-02 郑州力拓金刚石钻头有限公司 锚杆钻头

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4709226B2 (ja) 2004-11-17 2011-06-22 サンドビック インテレクチュアル プロパティー アクティエボラーグ ロック・ドリルビット
JP2008174968A (ja) * 2007-01-18 2008-07-31 Mitsubishi Materials Corp 掘削工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2966254A4

Also Published As

Publication number Publication date
CA2902966C (en) 2020-12-15
EP2966254B1 (en) 2018-05-02
KR20150120970A (ko) 2015-10-28
CN105102752A (zh) 2015-11-25
AU2014227092B2 (en) 2017-07-20
CN105102752B (zh) 2017-11-21
EP2966254A1 (en) 2016-01-13
CA2902966A1 (en) 2014-09-12
JP2014196655A (ja) 2014-10-16
US20160002979A1 (en) 2016-01-07
EP2966254A4 (en) 2016-11-23
US10006251B2 (en) 2018-06-26
AU2014227092A1 (en) 2015-09-17

Similar Documents

Publication Publication Date Title
JP4954542B2 (ja) 掘削ロッド、掘削ビット及び掘削工具
CN102802851B (zh) 开孔工具
JP6330573B2 (ja) 掘削工具
JP6307979B2 (ja) 掘削工具
JP2013521899A (ja) ドリルビット
WO2014136727A1 (ja) 掘削ビット
WO2014142011A1 (ja) 掘削工具
KR20160117441A (ko) 플러싱 그루브를 갖는 충격식 암석 드릴 비트
JP5135962B2 (ja) 掘削工具、掘削ビット及びデバイス
WO2020213482A1 (ja) ドリル
CN105750596A (zh) 钻头
JP2004074400A (ja) 多段穴明け工具
JP6447741B2 (ja) 掘削工具
WO2016158879A1 (ja) 掘削工具
JP5152022B2 (ja) 掘削工具
JP4706639B2 (ja) 掘削工具
EP3048241B1 (en) A rotary claw drill bit
JP2018119345A (ja) 掘削工具
JP2007245277A (ja) 総形カッタおよび総形カッタの製造方法
JP6589374B2 (ja) 掘削工具
JP4006950B2 (ja) 掘削ビット
JP2014185478A (ja) 掘削ビット
JP2014185477A (ja) 掘削ビット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480011182.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760641

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157021766

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2902966

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14771634

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014760641

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014227092

Country of ref document: AU

Date of ref document: 20140303

Kind code of ref document: A