WO2014136374A1 - アミン類のアルキル化方法 - Google Patents

アミン類のアルキル化方法 Download PDF

Info

Publication number
WO2014136374A1
WO2014136374A1 PCT/JP2014/000267 JP2014000267W WO2014136374A1 WO 2014136374 A1 WO2014136374 A1 WO 2014136374A1 JP 2014000267 W JP2014000267 W JP 2014000267W WO 2014136374 A1 WO2014136374 A1 WO 2014136374A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
groups
general formula
formula
carbon atoms
Prior art date
Application number
PCT/JP2014/000267
Other languages
English (en)
French (fr)
Inventor
理 小形
秀樹 奈良
Original Assignee
高砂香料工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高砂香料工業株式会社 filed Critical 高砂香料工業株式会社
Priority to US14/772,513 priority Critical patent/US9751827B2/en
Priority to JP2015504145A priority patent/JP6358660B2/ja
Priority to EP14760996.0A priority patent/EP2966057B1/en
Publication of WO2014136374A1 publication Critical patent/WO2014136374A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/02Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of hydrogen atoms by amino groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/189Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms containing both nitrogen and phosphorus as complexing atoms, including e.g. phosphino moieties, in one at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/20Carbonyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2442Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems
    • B01J31/2461Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as ring members in the condensed ring system or in a further ring
    • B01J31/248Bridged ring systems, e.g. 9-phosphabicyclononane
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/74Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/02Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms containing only hydrogen and carbon atoms in addition to the ring hetero elements
    • C07D295/023Preparation; Separation; Stabilisation; Use of additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4277C-X Cross-coupling, e.g. nucleophilic aromatic amination, alkoxylation or analogues
    • B01J2231/4283C-X Cross-coupling, e.g. nucleophilic aromatic amination, alkoxylation or analogues using N nucleophiles, e.g. Buchwald-Hartwig amination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/44Allylic alkylation, amination, alkoxylation or analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0258Flexible ligands, e.g. mainly sp3-carbon framework as exemplified by the "tedicyp" ligand, i.e. cis-cis-cis-1,2,3,4-tetrakis(diphenylphosphinomethyl)cyclopentane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/70Ring systems containing bridged rings containing three rings containing only six-membered rings
    • C07C2603/74Adamantanes

Definitions

  • the present invention relates to a method for catalytically alkylating amines using alcohol.
  • the N-alkylation reaction of amines is an industrially important reaction.
  • methods using methyl iodide, dimethyl sulfate, or the like as an alkylating agent are known, but since many of them are mutagenic substances, more safe methods are required.
  • One of such methods is alkylation using alcohol as a carbon source using a transition metal as a catalyst.
  • the catalyst include a heterogeneous catalyst using platinum or chromium and a homogeneous catalyst.
  • a heterogeneous catalyst generally requires a high temperature and a high pressure, and has a safety problem. Therefore, a homogeneous catalyst is industrially superior.
  • a complex containing iridium, rhodium, and ruthenium as a metal is known.
  • iridium complexes include monoalkylation of amines with alcohols using arene-type complexes described in Non-Patent Document 1 and Non-Patent Document 2, and P and N coordination described in Non-Patent Document 3. Alkylation to heteroamines using a kid is known.
  • methanol as a carbon source
  • ruthenium the dimethylation reaction of amine described in Non-Patent Document 5 using methanol as a carbon source is known.
  • Non-Patent Document 6 describes a monomethylation reaction of aniline using methanol as a carbon source using ruthenium trichloride and trialkoxyphosphine as a catalyst. Compared to iridium and rhodium, ruthenium has an industrial advantage because it is an inexpensive metal. Ruthenium complexes that catalyze the N-methylation reaction using alcohol have been reported in Non-Patent Document 5, Non-Patent Document 6, Non-Patent Document 7, etc., but ruthenium having a pincer-type tridentate ligand. There are no known reports using complexes. In addition, since ruthenium complexes described in non-patent documents require a large amount of catalyst, there are problems such as cost in order to carry out industrialization.
  • Patent Document 1 a ruthenium complex having a tridentate ligand having two phosphino groups and an —NH— group and a carbonyl ligand has already been reported as a reduction catalyst for carbonyl groups such as ketones and esters.
  • Patent Document 1 a ruthenium complex having a tridentate ligand having two phosphino groups and an —NH— group and a carbonyl ligand has already been reported as a reduction catalyst for carbonyl groups such as ketones and esters.
  • An object of the present invention is to provide a method for efficiently alkylating amines using a ruthenium complex that is easy to manufacture and handle and can be procured at a relatively low cost.
  • R 1 , R 2 , R 3 , and R 4 may be the same or different from each other, and are a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an alkyl group.
  • R 1 and R 2 or R 3 and R 4 are bonded to each other and ring together with the adjacent phosphorus atom
  • These alkyl groups, cycloalkyl groups, aryl groups, aralkyl groups, alkyloxy groups, cycloalkyloxy groups, aryloxy groups, aralkyloxy groups, heterocyclic groups, and substituted amino groups are Q 1 and Q 2 may be the same or different, and may be a divalent alkylene group or substituent which may have a substituent.
  • a process for producing an N-alkylamine, wherein an amine is reacted with an alcohol in the presence of a ruthenium complex represented by the formula: [2] L is the following general formula (3)
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 may be the same or different and each represents an aryl group or an aromatic heterocyclic group.
  • Group heterocyclic group may have a substituent.
  • R represents an optionally substituted hydrocarbon group, an optionally substituted aryl group, or an optionally substituted heterocyclic group.
  • the amine is represented by the following general formula (5): R A —NH 2 (5) (In the formula, RA represents the same group as defined in formula (4).) And an alcohol represented by the following general formula (6): R-OH (6) (In the formula, R represents the same group as defined in formula (4).) The method in any one of said [1] or [2] which is alcohol represented by these. [4] The following general formula (7)
  • R B1 is a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a heterocyclic group, an alkenyl group, an alkynyl group, a cycloalkenyl group, an alkyloxy group, a cycloalkyloxy group, an aryloxy group.
  • R B2 is an alkyl group, cycloalkyl group, aryl group, aralkyl group, heterocyclic group, alkenyl group, alkynyl group, cycloalkenyl group, alkyloxy group, cycloalkyloxy group, aryloxy group, aralkyloxy group, hydroxyl group
  • R B1 and R B2 may be bonded to each other to form a ring with the adjacent nitrogen atom.
  • R represents an optionally substituted hydrocarbon group, an optionally substituted aryl group, or an optionally substituted heterocyclic group.
  • the amine is represented by the following general formula (8):
  • R A represents an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a heterocyclic group, an alkenyl group, an alkynyl group, a cycloalkenyl group, an alkyloxy group, a cycloalkyloxy group, an aryloxy group, an aralkyloxy group.
  • R represents an optionally substituted hydrocarbon group, an optionally substituted aryl group, or an optionally substituted heterocyclic group.
  • the amine is represented by the following general formula (5): R A —NH 2 (5) (Wherein R A represents the same group as described above.) And an alcohol represented by the following general formula (6): R-OH (6) (In the formula, R represents the same group as described above.)
  • the method in any one of said [1] or [2] which is alcohol represented by these.
  • [6] The method according to any one of [1] to [5] above, wherein the alcohol is a primary or secondary alcohol.
  • the method according to any one of [1] to [7] above, wherein the reaction between the amine and the alcohol is further performed in the presence of a basic substance.
  • the method according to [8], wherein the basic substance is a metal alkoxide.
  • amines alkylated in the presence of an appropriate amount of ruthenium catalyst directly from alcohols and amines using alcohol as an alkylating agent can be produced under reaction conditions suitable for industrialization.
  • the ruthenium catalyst used in the method of the present invention is not only easy to prepare, but also stable and easy to handle, and is suitable for industrial use. An amine substitution reaction can be carried out efficiently.
  • the ruthenium carbonyl complex represented by the following general formula (1) used in the present invention will be described.
  • RuXY (CO) (L) (1)
  • Examples of the tridentate aminodiphosphine ligand represented by L in the general formula (1) include those having two phosphino groups and —NH— group.
  • Specific tridentate aminodiphosphine ligands include those represented by the following general formula (2).
  • R 1 , R 2 , R 3 and R 4 in the general formula (2) will be described.
  • R 1 , R 2 , R 3 , and R 4 in the general formula (2) may be the same or different from each other, and are a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, Represents an alkyloxy group, a cycloalkyloxy group, an aryloxy group, an aralkyloxy group, a heterocyclic group, or a substituted amino group, and these R 1 and R 2 or R 3 and R 4 are bonded to each other and together with an adjacent phosphorus atom A ring may be formed.
  • alkyl groups cycloalkyl groups, aryl groups, aralkyl groups, alkyloxy groups, cycloalkyloxy groups, aryloxy groups, aralkyloxy groups, heterocyclic groups, and substituted amino groups may have a substituent.
  • alkyl group include linear or branched alkyl groups having 1 to 50 carbon atoms, preferably 1 to 20 carbon atoms, and more preferably 1 to 10 carbon atoms. Examples thereof include a methyl group, an ethyl group, and n-propyl.
  • the cycloalkyl group is a monocyclic, polycyclic, condensed cyclic, or bridged cycloalkyl group having 3 to 30 carbon atoms, preferably 3 to 20 carbon atoms, more preferably 3 to 10 carbon atoms.
  • cyclopropyl group For example, cyclopropyl group, cyclopentyl group, cyclohexyl group, cyclooctyl group, bicyclo [1.1.0] butyl group, tricyclo [2.2.1.0] heptyl group, bicyclo [3.2.1]. ] Octyl group, bicyclo [2.2.2. Octyl group, adamantyl group (tricyclo [3.3.1.1] decanyl group), bicyclo [4.3.2] undecanyl group, tricyclo [5.3.1.1] dodecanyl group and the like.
  • Examples of the aryl group include monocyclic, polycyclic, and condensed cyclic aryl groups having 6 to 36 carbon atoms, preferably 6 to 18 carbon atoms, and more preferably 6 to 14 carbon atoms. Examples include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group.
  • examples of the aralkyl group include groups in which at least one hydrogen atom of the above-described alkyl group is substituted with the above-described aryl group. For example, the group has 7 to 37 carbon atoms, preferably 7 to 20 carbon atoms, and more preferably And an aralkyl group having 7 to 15 carbon atoms.
  • alkyloxy group examples include an alkyloxy group composed of a linear or branched alkyl group having 1 to 20 carbon atoms, preferably 1 to 15 carbon atoms, more preferably 1 to 10 carbon atoms.
  • alkyloxy group examples include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, s-butoxy group, tert-butoxy group, n-pentyloxy group and the like.
  • the cycloalkyloxy group includes a cycloalkyloxy group composed of a polycyclic or condensed cyclic cycloalkyl group having 3 to 20 carbon atoms, preferably 3 to 15 carbon atoms, more preferably 3 to 10 carbon atoms.
  • a cyclopropyloxy group, a cyclopentyloxy group, a cyclohexyloxy group, etc. are mentioned.
  • the aryloxy group is an aryloxy group comprising a monocyclic, polycyclic or condensed cyclic aryl group having 6 to 36 carbon atoms, preferably 6 to 18 carbon atoms, more preferably 6 to 14 carbon atoms.
  • phenoxy group, triloxy group, xylyloxy group, naphthoxy group and the like can be mentioned.
  • examples of the aralkyloxy group include groups in which at least one hydrogen atom of the alkyloxy group or cycloalkyl group is substituted with the aryl group.
  • an aralkyloxy group having 7 to 15 carbon atoms is preferable.
  • heterocyclic group examples include an aliphatic heterocyclic group and an aromatic heterocyclic group.
  • the aliphatic heterocyclic group has, for example, 2 to 14 carbon atoms and includes at least one hetero atom, preferably 1 to 3 hetero atoms such as nitrogen atom, oxygen atom and / or sulfur atom. Examples thereof include a 3- to 8-membered, preferably 4- to 6-membered monocyclic aliphatic heterocyclic group, a polycyclic or a condensed aliphatic heterocyclic group.
  • aliphatic heterocyclic group examples include, for example, azetidyl group, azetidino group, pyrrolidyl group, pyrrolidino group, piperidinyl group, piperidino group, piperazinyl group, piperazino group, morpholinyl group, morpholino group, tetrahydrofuryl group, tetrahydropyranyl group. Group, tetrahydrothiophenyl group and the like.
  • aromatic heterocyclic group examples include 2 to 15 carbon atoms and at least one hetero atom, preferably 1 to 3 hetero atoms such as a nitrogen atom, an oxygen atom and / or a sulfur atom.
  • Examples thereof include a 5- or 6-membered monocyclic heteroaryl group and a polycyclic or condensed ring heteroaryl group. Specific examples thereof include, for example, furyl group, thienyl group, pyridyl group, pyrimidyl group, pyrazyl group, pyridazyl group, pyrazolyl group, imidazolyl group, oxazolyl group, thiazolyl group, benzofuryl group, benzothienyl group, quinolyl group, isoquinolyl group.
  • substituted amino group examples include amino groups in which two hydrogen atoms of an amino group are substituted with the same or different alkyl group, cycloalkyl group, aryl group, aralkyl group, and / or heterocyclic group.
  • dialkylamino groups such as N, N-diethylamino group and N, N-diisopropylamino group
  • dicycloalkylamino groups such as N, N-dicyclohexylamino group; N, N-diphenylamino group, N
  • a diarylamino group such as naphthyl-N-phenylamino group
  • a diaralkylamino group such as N, N-dibenzylamino group
  • the alkyl group, cycloalkyl group, aryl group, aralkyl group, and heterocyclic group of the substituted amino group may further have a substituent.
  • substituents that the aryl group, aralkyl group, and heterocyclic group may have include the aforementioned alkyl group, the aforementioned cycloalkyl group, the aforementioned aryl group, the aforementioned aralkyl group, the aforementioned alkyloxy group, A cycloalkyloxy group, an aryloxy group described above, an aralkyloxy group described above, a heterocyclic group described above, a substituted amino group described above, a halogen atom, a silyl group, and an optionally protected hydroxyl group.
  • Examples of the halogen atom as a substituent for R 1 , R 2 , R 3 , and R 4 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the silyl group as a substituent for R 1 , R 2 , R 3 , and R 4 three hydrogen atoms of the silyl group are the above-described alkyl group, the above-described cycloalkyl group, the above-described aryl group, and the above-described aralkyl. The thing replaced with the group etc. is mentioned.
  • Specific examples include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a t-butyldiphenylsilyl group, and a triphenylsilyl group.
  • the optionally protected hydroxyl group as a substituent for R 1 , R 2 , R 3 , and R 4 include an unprotected hydroxyl group, or a trimethylsilyl group, a tert-butyldimethylsilyl group, a tert-butyldiphenylsilyl group, for example.
  • silyl group such as benzyl group, methoxymethyl group, etc.
  • R 1 and R 2 or R 3 and R 4 may be bonded to each other to form a ring together with the adjacent phosphorus atom.
  • a preferable group in the case where R 1 and R 2 or R 3 and R 4 form a ring is a chain having 2 to 20 carbon atoms, preferably 4 to 10 carbon atoms, more preferably 4 to 6 carbon atoms, A branched divalent alkylene group; a chain or branched divalent alkenylene group having 4 to 20 carbon atoms, preferably 4 to 10 carbon atoms, and more preferably 4 to 6 carbon atoms. These divalent groups may have a substituent as described above.
  • Q 1 and Q 2 in the general formula (2) will be described.
  • Q 1 and Q 2 in the formula of the general formula (2) may be the same or different, and may have a divalent alkylene group or substituent which may have a substituent. It represents a divalent cycloalkylene group or a divalent aralkylene group which may have a substituent.
  • the divalent alkylene group include a linear or branched divalent alkyl chain having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, and more preferably 1 to 6 carbon atoms.
  • a methylene group, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, and the like can be given.
  • the divalent cycloalkylene group is a bicyclic cycloalkyl group having a monocyclic, polycyclic or condensed cyclic cycloalkyl group having 3 to 15 carbon atoms, preferably 3 to 10 carbon atoms, more preferably 3 to 6 carbon atoms.
  • Valent groups such as cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group and the like.
  • Examples of the divalent aralkylene group include divalent groups having 7 to 11 carbon atoms in which one hydrogen is removed from an aryl group of an aralkyl group such as a benzyl group or a phenethyl group.
  • Benzylene group (—Ph—CH 2 —), 2-phenylethylene group (—Ph—CH 2 CH 2 —), 1-naphthylmethylene group (—Np—CH 2 —), 2-naphthylmethylene group (—Np—) CH 2 —) and the like (wherein —Ph— represents a phenylene group and —Np— represents a naphthylene group) Is mentioned.
  • Examples of the substituent that the divalent alkylene group, divalent cycloalkylene group, or divalent aralkylene group may have include R 1 , R 2 , R 3 , and the like in the general formula (2).
  • an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an alkyloxy group, a cycloalkyloxy group, an aryloxy group, an aralkyloxy group, and a heterocyclic group, as described in the description of R 4 , and a halogen atom examples thereof include a silyl group, a substituted amino group, and an optionally protected hydroxyl group.
  • the monovalent anionic ligand represented by X or Y in the general formula (1) will be described.
  • the monovalent anionic ligand include hydride, alkyloxy group, cycloalkyloxy group, aryloxy group, aralkyloxy group, hydroxy group, acyloxy group, sulfonyloxy group, halogen ion, AlH 4 ⁇ , AlH. 2 (OCH 2 CH 2 OCH 3 ) 2 ⁇ , BH 4 ⁇ , BH 3 CN ⁇ , BH (Et) 3 ⁇ and BH (sec-Bu) 3 — and the like.
  • hydride is sometimes simply referred to as hydrogen
  • halogen ion is simply referred to as halogen
  • alkyloxy group, cycloalkyloxy group, aryloxy group, and aralkyloxy group include the groups described in the general formula (2).
  • the acyloxy groups include those represented by (R a CO 2), as the R a in the acyloxy group R a CO 2, hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group.
  • alkyl group, cycloalkyl group, aryl group, and aralkyl group examples include an alkyl group and cycloalkyl as described in the description of R 1 , R 2 , R 3 , and R 4 in the general formula (2).
  • Groups, aryl groups, and aralkyl groups. These alkyl groups, cycloalkyl groups, aryl groups, and aralkyl groups are further represented by R 1 , R 2 , R 3 , and R 4 in the general formula (2).
  • the amino group which may be protected as a substituent for R a is an unprotected amino group; N-methylamino group, N, N-dimethylamino group, N, N-diethylamino group, N, N-diisopropyl Mono- or dialkylamino groups such as amino group, N-cyclohexylamino group; mono- or diaryls such as N-phenylamino group, N, N-diphenylamino group, N-naphthylamino group, N-naphthyl-N-phenylamino group Amino group; mono- or diaralkylamino group such as N-benzylamino group and N, N-dibenzylamino group; formylamino group, acetylamino group, propionylamino group, pivaloylamino group, pentanoylamino group, hexanoylamino group , Acylamino
  • Examples of Ra include a methyl group, an ethyl group, a propyl group, a tert-butyl group, a trifluoromethyl group, a phenyl group, and a pentafluorophenyl group.
  • Examples of the sulfonyloxy group include those represented by (R S SO 3 ).
  • the R S in a sulfonyloxy group R S SO 3 are the same as those of the R a in the acyloxy group.
  • Examples of the halogen ion include fluorine ion, chlorine ion, bromine ion and iodine ion.
  • a chlorine ion and a bromine ion More preferably, a chlorine ion is mentioned.
  • preferable monovalent anionic ligands include BH 4 ⁇ , hydride, or chloride ion.
  • Preferred tridentate aminophosphine ligands include those represented by the following general formula (10).
  • examples of the alkyl group, cycloalkyl group, aryl group, and aralkyl group represented by R 5 , R 6 , R 7 and R 8 include R 1 , R in the general formula (2).
  • examples thereof include an alkyl group, a cycloalkyl group, an aryl group, and an aralkyl group as described in the description of 2 , R 3 , and R 4 .
  • a substituent which these alkyl groups, a cycloalkyl group, an aryl group, and an aralkyl group may have, about R ⁇ 1 >, R ⁇ 2 >, R ⁇ 3 >, and R ⁇ 4 > in above-mentioned General formula (2)
  • a preferable group is a chain or branched divalent alkylene group having 2 to 20 carbon atoms, preferably 4 to 10 carbon atoms, more preferably 4 to 6 carbon atoms; 20, a chain or branched divalent alkenylene group having 4 to 10 carbon atoms, more preferably 4 to 6 carbon atoms, is preferable.
  • These divalent groups may have a substituent as described in the description of R 1 , R 2 , R 3 , and R 4 .
  • the alkylene chain or the alkenylene chain may contain one or two or more phenylene groups.
  • More preferred tridentate aminodiphosphine ligands include those represented by the following general formula (3).
  • Ar 1 , Ar 2 , Ar 3 and Ar 4 may be the same or different and each represents an aryl group or an aromatic heterocyclic group. Moreover, these aryl groups and aromatic heterocyclic groups may have a substituent. Examples of the aryl group and aromatic heterocyclic group in the general formula (3) include an aryl group and a heterocyclic ring as described in the description of R 1 , R 2 , R 3 , and R 4 in the general formula (2). And the aromatic heterocycle described in the above. Moreover, as a substituent which these aryl groups and aromatic heterocyclic groups may have, it was described in the description of R 1 , R 2 , R 3 , and R 4 in the general formula (2).
  • alkyl groups such as alkyl groups, cycloalkyl groups, aryl groups, aralkyl groups, alkyloxy groups, cycloalkyloxy groups, aryloxy groups, and aralkyloxy groups, and halogen atoms, silyl groups, heterocyclic groups, substituted amino groups, and protection Examples thereof include a hydroxyl group which may be used.
  • tridentate aminodiphosphine ligands include the following.
  • the tridentate aminodiphosphine ligand represented by the general formulas (2) and (10) can be used as an optically active substance depending on a substituent on Q 1 or Q 2 or depending on the type of R 1 to R 8 . It can be used as a ligand of the ruthenium carbonyl complex represented by the general formula (1).
  • the ruthenium compound which is the starting material for producing the ruthenium carbonyl complex in the present invention is not particularly limited, for example, RuCl 3 hydrate, RuBr 3 hydrate, inorganic ruthenium compounds such as RuI 3 hydrate , RuCl 2 (DMSO) 4 , [Ru (cod) Cl 2 ] n, [Ru (nbd) Cl 2 ] n, (cod) Ru (2-methyl) 2 , [Ru (benzone) Cl 2 ] 2 , [ Ru (benzone) Br 2 ] 2 , [Ru (benzone) I 2 ] 2 , [Ru (p-cymene) Cl 2 ] 2 , [Ru (p-cymene) Br 2 ] 2 , [Ru (p-cymene) I 2] 2, [Ru ( mesitylene) Cl 2] 2, [Ru (mesitylene) Br 2] 2, [Ru (me itylene) I 2] 2, [Ru (hexamethylbenzene) Cl 2] 2, [Ru
  • the ruthenium carbonyl complex represented by the general formula (1) can be easily produced from a tridentate aminodiphosphine ligand and a ruthenium carbonyl complex as a precursor.
  • a tridentate aminodiphosphine ligand can be easily produced by reacting a bis (substituted alkyl) amine having a leaving group with an alkali metal phosphide compound such as lithium, sodium or potassium.
  • the ruthenium carbonyl complex to be the precursor can be obtained by, for example, the method described in Inorg. Synth, 1974, 15, 45.
  • the ruthenium carbonyl complex to be the precursor obtained can be reacted with a tridentate aminodiphosphine ligand to obtain the ruthenium carbonyl complex of the present invention having a tridentate aminodiphosphine ligand.
  • the ruthenium carbonyl complex represented by the general formula (1) includes a tridentate aminodiphosphine ligand L represented by the general formula (2) and RuXY (CO) (P (Ar 5 ) 3 ) 3 (wherein , Ar 5 may be the same or different and each represents an aryl group which may have a substituent. Examples of the aryl group and its substituent in Ar 5 include those described above.
  • Ar 5 includes a phenyl group which may have a substituent such as an alkyl group, particularly a phenyl group.
  • the ruthenium carbonyl complex in which X is BH 4 — is obtained by reacting a ruthenium carbonyl complex in which X is a chlorine ion with a borohydride compound such as NaBH 4.
  • a borohydride compound such as NaBH 4.
  • the complex produced in this way may give stereoisomers depending on the coordination mode and conformation of the ligand, but the complex used for the reaction is a pure one even if it is a mixture of these stereoisomers. It may be an isomer of
  • a complex represented by general formula (2), (3) or (10) is represented by this complex, and the tridentate aminodiphosphosphine ligand L represented by the general formula (2), (3) or (10) and RuClH (CO) (PPh 3 ) 3 It can be easily produced by appropriately stirring in a solvent.
  • the raw material amines include primary and secondary amine compounds. These amines may be substituted with any substituent that does not adversely affect the alkylation method of the present invention.
  • the starting amines have a substituent that adversely affects the reaction, the substituent can be protected with a protecting group as necessary.
  • the method of the present invention can take various aspects, but the basic aspect of the method of the present invention is that primary and secondary amine compounds produce corresponding N-alkylated amines.
  • Reaction As used herein, the term “alkylation” is not limited to reactions that introduce alkyl groups, but is used as a simple generic term for reactions that introduce new CN bonds. ing.
  • alkylation includes all reactions that introduce new CN to amines, such as alkenylation, cycloalkylation, arylation, heteroarylation, and the like. Is.
  • alkylation in the present specification includes both monoalkylation and dialkylation.
  • Preferred amine compounds of the present invention include amine compounds represented by general formula (5).
  • R A in formula (5) is an alkyl group, cycloalkyl group, aryl group, aralkyl group, heterocyclic group, alkenyl group, alkynyl group, cycloalkenyl group, alkyloxy group, cycloalkyloxy group, aryl Oxy group, aralkyloxy group, hydroxyl group, alkoxycarbonyl group, cycloalkyloxycarbonyl group, aryloxycarbonyl group, aralkyloxycarbonyl group, alkenyloxycarbonyl group, alkynyloxycarbonyl group, cycloalkenyloxycarbonyl group, carboxamide group, or Represents an alkoxysulfonyl group, and these groups optionally have a substituent.
  • alkyl group, cycloalkyl group, aryl group, aralkyl group, heterocyclic group, alkyloxy group, cycloalkyloxy group, aryloxy group, and aralkyloxy group in R A of the general formula (5) are as described above. Examples thereof include the groups described in the description of R 1 , R 2 , R 3 , and R 4 in formula (2).
  • An alkenyl group is a group having one or more carbon-carbon double bonds in a carbon chain, and is a straight chain having 2 to 20 carbon atoms, preferably 2 to 15 carbon atoms, more preferably 2 to 10 carbon atoms. Examples thereof include a chain or branched alkenyl group.
  • alkenyl groups examples include vinyl, 1-methyl-vinyl, 2-methyl-vinyl, n-2-propenyl, 1,2-dimethyl-vinyl, 1-methyl-propenyl, Examples include 2-methyl-propenyl group, n-1-butenyl group, n-2-butenyl group, n-3-butenyl group and the like.
  • the alkynyl group is a group having one or more carbon-carbon triple bonds in a carbon chain, and is a straight chain having 2 to 10 carbon atoms, preferably 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms. Or branched alkynyl groups.
  • alkynyl groups examples include ethynyl group, n-1-propynyl group, n-2-propynyl group, n-1-butynyl group, n-2-butynyl group, n-3-butynyl group and the like. It is done.
  • the cycloalkenyl group include unsaturated monocyclic, polycyclic, or condensed cyclic alkenyl groups having 3 to 15 carbon atoms, preferably 3 to 10 carbon atoms.
  • Examples of such cycloalkenyl groups include a cyclopropenyl group, a cyclopentenyl group, a cyclohexenyl group, and a cyclooctenyl group.
  • alkoxycarbonyl group examples include those in which an oxycarbonyl group (—O—CO— group) is bonded to a linear or branched alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms.
  • alkoxycarbonyl group having 2 to 21 carbon atoms, preferably 2 to 11 carbon atoms examples include a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, and an isopropoxycarbonyl group. .
  • an oxycarbonyl group may be substituted with a monocyclic, polycyclic or condensed cyclic cycloalkyl group having 3 to 30 carbon atoms, preferably 3 to 20 carbon atoms, more preferably 3 to 10 carbon atoms. And those in which (—O—CO— group) is bonded.
  • Examples of such a cycloalkyloxycarbonyl group having 4 to 31 total carbon atoms, preferably 4 to 21 total carbon atoms, more preferably 4 to 11 total carbon atoms include, for example, a cyclopropyloxycarbonyl group, a cyclopentyloxycarbonyl group, Cyclohexyloxycarbonyl group, cyclooctyloxycarbonyl group, bicyclo [1.1.0] butyloxycarbonyl group, tricyclo [2.2.1.0] heptyloxycarbonyl group, bicyclo [3.2.1] octyloxycarbonyl The group bicyclo [2.2.2.
  • the aryloxycarbonyl group includes a monocyclic, polycyclic or condensed cyclic aryl group having 6 to 36 carbon atoms, preferably 6 to 18 carbon atoms, more preferably 6 to 14 carbon atoms. O-CO-group) may be mentioned.
  • Examples of the aryloxycarbonyl group having a total carbon number of 7 to 37, preferably a total carbon number of 7 to 19, and more preferably a total carbon number of 7 to 15, include, for example, a phenyloxycarbonyl group, a naphthyloxycarbonyl group, an anthryl. Examples thereof include an oxycarbonyl group, a phenanthryloxycarbonyl group, and a biphenyloxycarbonyl group.
  • aralkyloxycarbonyl group an aralkyl group in which at least one hydrogen atom of a linear or branched alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms is substituted with the aryl group described above, preferably And those having an oxycarbonyl group (—O—CO— group) bonded to an aralkyl group having 7 to 15 carbon atoms.
  • aralkyloxycarbonyl group include benzyloxycarbonyl group, 1-phenylethoxycarbonyl group, 2-phenylethoxycarbonyl group, 1-phenylpropoxycarbonyl group, 3-naphthylpropoxycarbonyl group and the like.
  • alkenyloxycarbonyl group a linear or branched alkenyl group having 2 to 20 carbon atoms, preferably 2 to 15 carbon atoms, more preferably 2 to 10 carbon atoms, and an oxycarbonyl group (—O—CO—) can be used. And the like).
  • alkenyloxycarbonyl group having 3 to 21 carbon atoms, preferably 3 to 16 carbon atoms, and more preferably 3 to 11 carbon atoms are vinyl group oxycarbonyl, 1-methyl-vinyloxycarbonyl, and the like.
  • the alkynyloxycarbonyl group is a group having one or more carbon-carbon triple bonds in a carbon chain and having 2 to 10, preferably 2 to 8, more preferably 2 to 6 carbon atoms.
  • Examples thereof include those in which an oxycarbonyl group (—O—CO— group) is bonded to a linear or branched alkynyl group.
  • Examples of such an alkynyloxycarbonyl group having 3 to 11 carbon atoms, preferably 3 to 9 carbon atoms, more preferably 3 to 7 carbon atoms include, for example, an n-2-propynyloxycarbonyl group, n-2 -Butynyloxycarbonyl group, n-3-butynyloxycarbonyl group and the like.
  • the cycloalkenyloxycarbonyl group includes an unsaturated monocyclic, polycyclic or condensed cyclic alkenyl group having 3 to 15 carbon atoms, preferably 3 to 10 carbon atoms, and an oxycarbonyl group (—O—CO—). And the like).
  • Examples of the cycloalkenyloxycarbonyl group having 4 to 16 carbon atoms, preferably 4 to 11 carbon atoms include, for example, a cyclopropenyloxycarbonyl group, a cyclopentenyloxycarbonyl group, a cyclohexenyloxycarbonyl group, a cyclooctyloxycarbonyl group, and the like.
  • Examples thereof include a tenyloxycarbonyl group.
  • Examples of the carboxamide group include a —CONH 2 group and a carboxamide group in which the nitrogen atom of the amide group may be substituted with the alkyl group described above.
  • Examples of the alkoxysulfonyl group include those in which an oxysulfonyl group (—O—SO 2 — group) is bonded to a linear or branched alkyl group having 1 to 20, preferably 1 to 10 carbon atoms.
  • alkoxysulfonyl group examples include a methoxysulfonyl group, an ethoxysulfonyl group, an n-propoxysulfonyl group, an isopropoxysulfonyl group, and the like.
  • R A may have a substituent.
  • a “substituent” is not particularly limited as long as it is a group that does not participate in the reaction of the present invention.
  • the substituent when there is a possibility that the substituent is involved in the reaction of the present invention such as a hydroxyl group, it can be appropriately protected with a protecting group prior to the reaction.
  • substituted or unsubstituted amino group examples include a halogen atom, a hydroxyl group, a nitro group, a cyano group, a substituted or unsubstituted amino group, an alkylsilyl group, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, a heteroaryl group, an alkoxy group having 1 to 10 carbon atoms, and an aryloxy group having 6 to 30 carbon atoms Groups, arylalkyloxy groups having 7 to 30 carbon atoms, heteroaryloxy groups and the like.
  • amine compounds represented by general formula (8) include amine compounds represented by general formula (8).
  • Examples of each group in R B1 and R B2 in the general formula (8) include the groups described in R A in the general formula (5).
  • R B1 and R B2 in the general formula (8) can be bonded to each other to form a ring together with the adjacent nitrogen atom. The ring thus formed is a heterocycle containing at least one nitrogen atom.
  • a preferable group is a chain or branched divalent alkylene group having 2 to 20 carbon atoms, preferably 4 to 10 carbon atoms, more preferably 4 to 6 carbon atoms; 20, a chain or branched divalent alkenylene group having 4 to 10 carbon atoms, more preferably 4 to 6 carbon atoms, is preferable.
  • These divalent groups may have a substituent as described in the description of R 1 , R 2 , R 3 , and R 4 . Further, one or two or more phenylene groups may be contained in the alkylene chain or alkynylene chain.
  • the alkylene chain or alkynylene chain may contain one or two or more heteroatoms selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom.
  • amines that form such a ring include pyrrolidine, piperidine, piperazine, morpholine, and derivatives thereof.
  • An amine that forms such a ring is referred to herein as an “alicyclic amine”.
  • the amine in which R A in the general formula (5) is an aryl group and the amine in which either or both of R B1 and R B2 in the general formula (8) are an aryl group are referred to as “arylamine” in this specification. .
  • an amine in which R A in the general formula (5) is a heterocyclic group and an amine in which either or both of R B1 and R B2 in the general formula (8) are heterocyclic groups are referred to as “Heteroarylamine ".
  • an amine in which R A in the general formula (5) is a cycloalkyl group and an amine in which either or both of R B1 and R B2 in the general formula (8) are cycloalkyl groups are referred to as “cycloalkyl”. “Amine”.
  • the cycloalkyl group is a bridged cycloalkyl group such as bicyclo or tricyclo, it is referred to as “bridged cycloalkylamine”.
  • Examples of the alcohol used as a raw material compound in the method of the present invention include compounds having 1 or more, preferably 1 to 5, more preferably 1 to 3 primary or secondary alcoholic hydroxyl groups. .
  • an amino group or a hydroxyl group may be present in addition to the primary or secondary alcoholic hydroxyl group.
  • alcohols used as starting compounds in the method of the present invention include alcohols represented by general formula (6).
  • examples of the aryl group and heterocyclic group of R in the general formula (6) include the groups described in the description of R 1 , R 2 , R 3 , and R 4 in the general formula (2).
  • the hydrocarbon group for R in the general formula (6) is a linear or branched alkyl group having 1 to 20 carbon atoms, preferably 1 to 15 carbon atoms, more preferably 1 to 10 carbon atoms; A linear or branched alkenyl group having 2 to 20, preferably 2 to 15 carbon atoms, more preferably 2 to 10 carbon atoms; 2 to 10 carbon atoms, preferably 2 to 8 carbon atoms, more preferably carbon A linear or branched alkynyl group having 2 to 6 carbon atoms; a saturated or unsaturated monocyclic, polycyclic or condensed cyclic alicyclic group having 3 to 15 carbon atoms, preferably 3 to 10 carbon atoms Hydrocarbon group; monocyclic, polycyclic or condensed cyclic aryl group having 6 to 36 carbon atoms, preferably 6 to 18 carbon atoms and 6 to 12 carbon atoms; 7 to 40 carbon atoms, preferably carbon number And an aralkyl group having 7 to 20 carbon atoms
  • substituents may have a “substituent”, and the substituent is not particularly limited as long as it is a group not involved in the reaction of the present invention.
  • substituent when there is a possibility that the substituent is involved in the reaction of the present invention such as a hydroxyl group, it can be appropriately protected with a protecting group prior to the reaction.
  • substituted or unsubstituted amino group examples include a halogen atom, a hydroxyl group, a nitro group, a cyano group, a substituted or unsubstituted amino group, an alkylsilyl group, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, a heteroaryl group, an alkoxy group having 1 to 10 carbon atoms, and an aryloxy group having 6 to 30 carbon atoms Groups, arylalkyloxy groups having 7 to 30 carbon atoms, heteroaryloxy groups and the like.
  • R in the general formula (6) include linear or branched alkyl groups having 1 to 20 carbon atoms, preferably 1 to 15 carbon atoms, more preferably 1 to 10 carbon atoms; Examples thereof include aralkyl groups having 7 to 40, preferably 7 to 20, and 7 to 15 carbon atoms. These alkyl groups and aralkyl groups may be substituted with the aforementioned “substituent”.
  • the method for alkylating amines of the present invention can be preferably carried out in an alcohol or other solvent used as a reactant.
  • the solvent to be used those capable of dissolving the substrate and the catalyst are preferable, and a single solvent or a mixed solvent is used.
  • aromatic hydrocarbons such as toluene and xylene, aliphatic hydrocarbons such as hexane and heptane, halogenated hydrocarbons such as methylene chloride and chlorobenzene, diethyl ether, tetrahydrofuran, methyl tert-butyl ether, cyclopentyl methyl ether, etc.
  • Examples include ethers, alcohols such as methanol, ethanol, isopropyl alcohol, n-butyl alcohol, 2-butanol and tert-butyl alcohol, and polyhydric alcohols such as ethylene glycol, propylene glycol, 1,2-propanediol and glycerin. It is done.
  • ethers or alcohols are preferable, and particularly preferable solvents include tetrahydrofuran, methanol, or isopropanol.
  • the amount of the solvent used can be appropriately selected depending on the reaction conditions and the like. The reaction is carried out with stirring as necessary.
  • the amount of the catalyst used varies depending on the alcohol as a substrate, reaction conditions, type of catalyst, etc., but is usually 0.0001 mol% to 10 mol% as a ruthenium metal molar ratio with respect to amine as a substrate, preferably It is in the range of 0.005 mol% to 5 mol%.
  • the reaction temperature for carrying out the alkylation reaction is 50 ° C to 200 ° C, preferably 80 ° C to 180 ° C. If the reaction temperature is too low, a large amount of unreacted raw material may remain, which is not preferable. Hydrogen is not required in carrying out the method of the present invention.
  • the pressure can be reduced or the pressure can be reduced during the reaction.
  • nitrogen or hydrogen may be used.
  • it can also pressurize with the vapor pressure of a solvent.
  • the reaction time in the process of the present invention is 30 minutes to 72 hours, preferably 2 hours to 48 hours, and a sufficiently high raw material conversion can be obtained.
  • the desired alkylated amines can be obtained by combining commonly used purification methods such as extraction, filtration, crystallization, distillation, various chromatography, etc., alone or in appropriate combination. That is, the method for alkylating amines of the present invention comprises the following steps (1) and (2). (1) a step of reacting an alcohol with an amine in the presence of the ruthenium complex represented by the general formula (1), and (2) A step of obtaining an N-alkylamine produced by the reaction.
  • additives include basic substances.
  • Basic substances include alkali metal carbonates such as potassium carbonate, sodium carbonate, lithium carbonate and cesium carbonate, alkaline earth metal carbonates such as magnesium carbonate and calcium carbonate, alkali metal carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate.
  • Alkali metal hydroxides such as hydrogen salt, sodium hydroxide, potassium hydroxide and lithium hydroxide, alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide, sodium methoxide, sodium ethoxide, sodium isopropoxy Alkali metal alkoxides such as sodium tert-butoxide, potassium methoxide, potassium ethoxide, potassium isopropoxide, potassium tert-butoxide, lithium methoxide, lithium isopropoxide, lithium tert-butoxide Magnesium methoxide, an alkaline earth metal alkoxides such as magnesium ethoxide, sodium hydride, calcium hydride, and a metal hydride.
  • Particularly preferred basic substances include strongly basic substances such as metal alkoxides such as sodium methoxide or potassium tert-butoxide.
  • a basic substance preferably a strong basic substance, is added in an amount of 0.01 to 1 equivalent, preferably 0.1 to 0.8 equivalent, with respect to the amines. A high conversion can be obtained by adding such a basic substance.
  • Example 6 Monomethylation reaction of aniline with methanol 4.7 mg (0.01 mmol) of complex 2 produced in Reference Example 2 was added to a 100 ml stainless steel autoclave, and after nitrogen substitution, 2 ml of methanol was added. Subsequently, 0.183 ml (2 mmol) of aniline and 1.2 ml (1.2 mmol) of 1M-NaOMe methanol solution were added, followed by stirring at 170 ° C. for 5 hours. After cooling, the reaction product was analyzed by GC. As a result, 1-methylaniline was obtained with a GC yield of 88%.
  • Example 7 Monomethylation reaction of aniline with methanol 6.3 mg (0.01 mmol) of the complex 3 produced in Reference Example 3 was added to a 100 ml stainless steel autoclave, and after nitrogen substitution, 2 ml of methanol was added. Subsequently, 0.183 ml (2 mmol) of aniline and 1.2 ml (1.2 mmol) of 1M-NaOMe methanol solution were added, followed by stirring at 170 ° C. for 5 hours. After cooling, the reaction product was analyzed by GC. As a result, 1-methylaniline was obtained with a GC yield of 62%.
  • the present invention provides a simple, safe and efficient method for alkylating amines using alcohol directly as an alkylating agent, and is safer than alcohols compared to conventional alkylating agents.
  • This is an industrial alkylation method for amines using high and environmentally friendly raw materials, and provides a useful method for the chemical industry such as pharmaceutical industry, agricultural chemical industry and food industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pyridine Compounds (AREA)

Abstract

 本発明は、効率的で簡便で、かつ工業的に有利なアミン類をアルキル化する方法を提供する。 本発明は、次の一般式(1) RuXY(CO)(L) (1) (一般式(1)中、X及びYは同一であっても異なっていてもよく1価のアニオン性配位子を表し、Lは3座アミノジホスフィン配位子を表す。) で表されるルテニウム錯体の存在下、アミンにアルコールを反応させる、N-アルキルアミンの製造方法に関する。

Description

アミン類のアルキル化方法
 本発明は、アルコールを用いてアミン類を触媒的にアルキル化する方法に関する。
 アミン類のN-アルキル化反応は工業上重要な反応である。この反応は、ヨウ化メチル、ジメチル硫酸などをアルキル化剤として用いる手法が知られているが、その多くは変異原性物質であるため、より安全性の高い手法が求められている。このような手法の一つとして、遷移金属を触媒として用いるアルコールを炭素源としたアルキル化が挙げられる。
 触媒としては、白金やクロムを用いた不均一型の触媒と均一型の触媒が挙げられる。不均一型の触媒は一般的に高温、高圧が必要であり、安全面に問題を有するため、均一型の触媒が工業上優位である。
 均一型の触媒としてはイリジウム、ロジウム、ルテニウムを金属とする錯体が知られている。
 イリジウム錯体を用いた例としては非特許文献1、非特許文献2に記載されるアレーン型の錯体によるアルコールを用いたアミンのモノアルキル化や、非特許文献3に記載されるP,N配位子を用いたヘテロアミンに対するアルキル化が知られている。また、メタノールを炭素源とした例としては非特許文献4に記載されている例が知られている。
 ルテニウムに関しては非特許文献5に記載されているメタノールを炭素源としたアミンのジメチル化反応が知られている。また、非特許文献6には三塩化ルテニウムとトリアルコキシホスフィンを触媒とするメタノールを炭素源としたアニリンのモノメチル化反応が記載されている。
 イリジウム及びロジウムと比較し、ルテニウムは安価な金属のため、工業上優位である。アルコールを用いたN-メチル化反応を触媒するルテニウム錯体としては、非特許文献5や非特許文献6、非特許文献7などに報告されているが、ピンサー型の3座配位子を有するルテニウム錯体を用いた報告例は知られていない。また、非特許文献に記載されているルテニウム錯体は触媒量を多く必要とするため、工業化を行っていくにはコスト面などの問題点がある。
 また、ケトンやエステルなどのカルボニル基の還元触媒として、2つのホスフィノ基及び-NH-基を持つ3座配位子とカルボニル配位子とを有するルテニウム錯体も既に報告されている(特許文献1参照)。しかし、これらの文献にはアミンのアルキル化の触媒能については開示されていない。
WO2011/048727号公報
Tetrahedron Letters (2003), 44(13), 2687-2690 Synlett (2005), (4), 560-571 Advanced Synthesis & Catalysis (2008), 350(5), 749-758 RSC Advances (2012), 2(23), 8645-8652 Advanced Synthesis & Catalysis (2007), 349(10), 1555-1575 Chemistry Letters (1988), 17(3), 449-452 European Journal of Inorganic Chemistry (2004), (3), 524-529
 本発明の目的は、製造及び取り扱いが容易で比較的安価に調達できるルテニウム錯体を用い、効率的にアミン類をアルキル化する方法を提供することにある。
 本発明者らは上記の事情に鑑み、鋭意検討を行った結果、2つのホスフィノ基と-NH-基を持つ3座配位子とカルボニル配位子を有するルテニウム錯体をアルキル化反応触媒として用いることで、アミン類を効率よくアルキル化できることを見出し、本発明を完成させるに至った。
 本発明は、以下の[1]から[9]に関するものである。
[1]次の一般式(1)
      RuXY(CO)(L)          (1)
(一般式(1)中、X及びYは同一であっても異なっていてもよく1価のアニオン性配位子を表し、Lは下記一般式(2)
Figure JPOXMLDOC01-appb-C000001
(一般式(2)中、R、R、R、及びRはそれぞれ同一であっても異なっていてもよく、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、複素環基、又は置換アミノ基を表し、これらのRとR又はRとRは互いに結合し隣接するリン原子と共に環を形成していてもよい。また、これらのアルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、複素環基、置換アミノ基は置換基を有していてもよい。Q及びQは同一であっても異なっていてもよく、置換基を有していてもよい二価のアルキレン基、置換基を有していてもよい二価のシクロアルキレン基、又は置換基を有していてもよい二価のアラルキレン基を表す。)
で表される3座アミノジホスフィン配位子を表す。)
で表されるルテニウム錯体の存在下、アミンにアルコールを反応させる、N-アルキルアミンの製造方法。
[2]Lが下記一般式(3)
Figure JPOXMLDOC01-appb-C000002
(一般式(3)中、Ar、Ar、Ar、Arは同一であっても異なっていてもよく、アリール基、芳香族複素環基を表す。また、これらのアリール基、芳香族複素環基は置換基を有していてもよい。)
で表される3座アミノジホスフィン配位子である前記[1]に記載の方法。
[3]下記一般式(4)
    R-NH-R    (4)
(式中、Rは、アルキル基、シクロアルキル基、アリール基、アラルキル基、複素環基、アルケニル基、アルキニル基、シクロアルケニル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、ヒドロキシル基、アルコキシカルボニル基、シクロアルキルオキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、アルケニルオキシカルボニル基、アルキニルオキシカルボニル基、シクロアルケニルオキシカルボニル基、カルボキサミド基、又はアルコキシスルホニル基を表し、これらの基は置換基を有していてもよい。
 Rは、置換されていてもよい炭化水素基、置換されていてもよいアリール基、又は置換されていてもよい複素環基を表す。)
で表されるN-アルキルアミンの製造方法であり、アミンが下記一般式(5)
    R-NH   (5)
(式中、Rは一般式(4)における定義と同一の基を表す。)
で表されるアミンであり、アルコールが下記一般式(6) 
    R-OH     (6)
(式中、Rは一般式(4)における定義と同一の基を表す。)
で表されるアルコールである、前記[1]又は[2]のいずれかに記載の方法。
[4]下記一般式(7)
Figure JPOXMLDOC01-appb-C000003
(式中、RB1は、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、複素環基、アルケニル基、アルキニル基、シクロアルケニル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、ヒドロキシル基、アルコキシカルボニル基、シクロアルキルオキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、アルケニルオキシカルボニル基、アルキニルオキシカルボニル基、シクロアルケニルオキシカルボニル基、カルボキサミド基、又はアルコキシスルホニル基を表し、これらの基は置換基を有していてもよい。
 RB2は、アルキル基、シクロアルキル基、アリール基、アラルキル基、複素環基、アルケニル基、アルキニル基、シクロアルケニル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、ヒドロキシル基、アルコキシカルボニル基、シクロアルキルオキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、アルケニルオキシカルボニル基、アルキニルオキシカルボニル基、シクロアルケニルオキシカルボニル基、カルボキサミド基、又はアルコキシスルホニル基を表し、これらの基は置換基を有していてもよい。また、RB1とRB2が互いに結合して、隣接する窒素原子と共に環を形成してもよい。
 Rは、置換されていてもよい炭化水素基、置換されていてもよいアリール基、又は置換されていてもよい複素環基を表す。)
で表されるN-アルキルアミンの製造方法であり、アミンが下記一般式(8)
Figure JPOXMLDOC01-appb-C000004
(式中、RB1、及びRB2は、一般式(7)における定義と同一の基を表す。)
であり、アルコールが下記一般式(6) 
    R-OH     (6)
(式中、Rは前記と同一の基を表す。)
で表されるアルコールである、前記[1]又は[2]のいずれかに記載の方法。
[5]下記一般式(9)
Figure JPOXMLDOC01-appb-C000005
(式中、Rは、アルキル基、シクロアルキル基、アリール基、アラルキル基、複素環基、アルケニル基、アルキニル基、シクロアルケニル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、ヒドロキシル基、アルコキシカルボニル基、シクロアルキルオキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、アルケニルオキシカルボニル基、アルキニルオキシカルボニル基、シクロアルケニルオキシカルボニル基、カルボキサミド基、又はアルコキシスルホニル基を表し、これらの基は置換基を有していてもよい。
 Rは、置換されていてもよい炭化水素基、置換されていてもよいアリール基、又は置換されていてもよい複素環基を表す。)
で表されるN-アルキルアミンの製造方法であり、アミンが下記一般式(5)
     R-NH  (5)
(式中、Rは前記と同一の基を表す。)
で表されるアミンであり、アルコールが下記一般式(6) 
     R-OH    (6)
(式中、Rは前記と同一の基を表す。)
で表されるアルコールである、前記[1]又は[2]のいずれかに記載の方法。
[6]アルコールが、1級又は2級アルコールである、前記[1]~[5]のいずれかに記載の方法。
[7]アルコールが、メタノール又はエタノールである、前記[1]~[6]のいずれかに記載の方法。
[8]アミンとアルコールの反応が、さらに塩基性物質の存在下で行われる、前記[1]~[7]のいずれかに記載の方法。
[9]塩基性物質が、金属アルコキシドである、前記[8]に記載の方法。
 本発明により、アルコールをアルキル化剤として、アルコール類とアミン類から直接、適度な量のルテニウム触媒の存在下にアルキル化されたアミン類を、工業化に適した反応条件で製造することができる。
 本発明の方法で使用されるルテニウム触媒は、調製が容易であるだけでなく、安定性が高く取り扱いも容易であり、工業的な使用に適したものであり、工業的な方法において、簡便かつ効率的にアミンの置換反応を行うことができる。
 本発明に用いられる下記一般式(1)で表されるルテニウムカルボニル錯体について説明する。
 RuXY(CO)(L)    (1)
 一般式(1)におけるLで表される3座アミノジホスフィン配位子としては、ふたつのホスフィノ基と-NH-基を有するものが挙げられる。具体的な3座アミノジホスフィン配位子としては下記一般式(2)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000006
 一般式(2)におけるR、R、R、及びRについて説明する。
 一般式(2)の式中のR、R、R、及びRはそれぞれ同一であっても異なっていてもよく、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、複素環基、又は置換アミノ基を表し、これらのRとR又はRとRは互いに結合し隣接するリン原子と共に環を形成していてもよい。また、これらのアルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、複素環基、置換アミノ基は置換基を有していてもよい。
 アルキル基としては、炭素数1~50、好ましくは炭素数1~20、より好ましくは炭素数1~10の直鎖又は分岐のアルキル基が挙げられ、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基等が挙げられる。
 また、シクロアルキル基としては炭素数3~30、好ましくは炭素数3~20、より好ましくは炭素数3~10の単環式、多環式、縮合環式、又は架橋式のシクロアルキル基が挙げられ、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、ビシクロ[1.1.0]ブチル基、トリシクロ[2.2.1.0]ヘプチル基、ビシクロ[3.2.1]オクチル基、ビシクロ[2.2.2.]オクチル基、アダマンチル基(トリシクロ[3.3.1.1]デカニル基)、ビシクロ[4.3.2]ウンデカニル基、トリシクロ[5.3.1.1]ドデカニル基等が挙げられる。
 また、アリール基としては、炭素数6~36、好ましくは炭素数6~18、より好ましくは炭素数6~14の単環式、多環式又は縮合環式のアリール基が挙げられ、具体的には、例えば、フェニル基、ナフチル基、アントリル基、フェナントリル基、ビフェニル基等が挙げられる。
 また、アラルキル基としては、前記したアルキル基の少なくとも1個の水素原子が前記したアリール基で置換された基が挙げられ、例えば炭素数7~37、好ましくは炭素数7~20、より好ましくは炭素数7~15のアラルキル基が挙げられる。具体的には、例えば、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルプロピル基、3-ナフチルプロピル基等が挙げられる。
 また、アルキルオキシ基としては、炭素数1~20、好ましくは炭素数1~15、より好ましくは炭素数1~10の直鎖若しくは分岐状のアルキル基からなるアルキルオキシ基が挙げられ、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、s-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基等が挙げられる。
 また、シクロアルキルオキシ基としては、炭素数3~20、好ましくは炭素数3~15、より好ましくは炭素数3~10の多環式又は縮合環式のシクロアルキル基からなるシクロアルキルオキシ基が挙げられ、例えば、シクロプロピルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基等が挙げられる。
 また、アリールオキシ基としては、炭素数6~36、好ましくは炭素数6~18、より好ましくは炭素数6~14の単環式、多環式又は縮合環式のアリール基からなるアリールオキシ基が挙げられ、具体的には、例えば、フェノキシ基、トリロキシ基、キシリロキシ基、ナフトキシ基等が挙げられる。
 また、アラルキルオキシ基としては前記アルキルオキシ基のアルキル基又はシクロアルキル基の少なくとも1個の水素原子が前記アリール基で置換された基が挙げられ、例えば炭素数7~15のアラルキルオキシ基が好ましく、具体的にはベンジルオキシ基、1-フェニルエトキシ基、2-フェニルエトキシ基、1-フェニルプロポキシ基、2-フェニルプロポキシ基、3-フェニルプロポキシ基、4-フェニルブトキシ基、1-ナフチルメトキシ基、2-ナフチルメトキシ基等が挙げられる。
 また、複素環基としては、脂肪族複素環基及び芳香族複素環基が挙げられる。脂肪族複素環基としては、例えば、炭素数2~14で、異種原子として少なくとも1個、好ましくは1~3個の例えば窒素原子、酸素原子及び/又は硫黄原子等のヘテロ原子を含んでいる、3~8員、好ましくは4~6員の単環の脂肪族複素環基、多環又は縮合環の脂肪族複素環基が挙げられる。脂肪族複素環基の具体例としては、例えば、アゼチジル基、アゼチジノ基、ピロリジル基、ピロリジノ基、ピペリジニル基、ピペリジノ基、ピペラジニル基、ピペラジノ基、モルホリニル基、モルホリノ基、テトラヒドロフリル基、テトラヒドロピラニル基、テトラヒドロチオフェニル基等が挙げられる。
 芳香族複素環基としては、例えば、炭素数2~15で、異種原子として少なくとも1個、好ましくは1~3個の窒素原子、酸素原子及び/又は硫黄原子等の異種原子を含んでいる、5又は6員の単環式ヘテロアリール基、多環式又は縮合環式のヘテロアリール基が挙げられる。その具体例としては、例えば、フリル基、チエニル基、ピリジル基、ピリミジル基、ピラジル基、ピリダジル基、ピラゾリル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ベンゾフリル基、ベンゾチエニル基、キノリル基、イソキノリル基、キノキサリル基、フタラジル基、キナゾリル基、ナフチリジル基、シンノリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、アクリジル基、アクリジニル基等が挙げられる。
 また、置換アミノ基としては、アミノ基の2つの水素原子が、同一又は異なる前記したアルキル基、シクロアルキル基、アリール基、アラルキル基、及び/又は複素環基で置換されたアミノ基が挙げられ、具体的には、N,N-ジエチルアミノ基、N,N-ジイソプロピルアミノ基等のジアルキルアミノ基;N,N-ジシクロヘキシルアミノ基等のジシクロアルキルアミノ基;N,N-ジフェニルアミノ基、N-ナフチル-N-フェニルアミノ基等のジアリールアミノ基;N,N-ジベンジルアミノ基等のジアラルキルアミノ基などが挙げられる。また、置換アミノ基のアルキル基、シクロアルキル基、アリール基、アラルキル基、及び複素環基はさらに置換基を有していてもよい。
 これらのアルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、複素環基、並びに、置換アミノ基上のアルキル基、シクロアルキル基、アリール基、アラルキル基、及び複素環基が有していてもよい置換基としては、前記したアルキル基、前記したシクロアルキル基、前記したアリール基、前記したアラルキル基、前記したアルキルオキシ基、前記したシクロアルキルオキシ基、前記したアリールオキシ基、前記したアラルキルオキシ基、前記した複素環基、前記した置換アミノ基、ハロゲン原子、シリル基、及び保護されていてもよい水酸基等が挙げられる。
 R、R、R、及びRの置換基としてのハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 R、R、R、及びRの置換基としてのシリル基としては、シリル基の水素原子の3個が前記したアルキル基、前記したシクロアルキル基、前記したアリール基、前記したアラルキル基等に置き換ったものが挙げられる。具体的にはトリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基、トリフェニルシリル基等が挙げられる。
 R、R、R、及びRの置換基としての保護されていてもよい水酸基としては、無保護の水酸基、又は例えばトリメチルシリル基、tert-ブチルジメチルシリル基、tert-ブチルジフェニルシリル基などのシリル基、ベンジル基やメトキシメチル基など例えば参考文献1(Protective Groups in Organic Synthesis Second Edition, JOHN WILEY&SONS, INC.1991)に記載されているペプチド合成等で用いられている一般的な水酸基の保護基で保護されていてもよい水酸基などが挙げられる。
 これらのRとR又はRとRは互いに結合し隣接するリン原子と共に環を形成していてもよい。RとR又はRとRが、環を形成する場合の好ましい基としては、炭素数2~20、好ましくは炭素数4~10、より好ましくは炭素数4~6の鎖状又は分岐状の二価のアルキレン基;炭素数4~20、好ましくは炭素数4~10、より好ましくは炭素数4~6の鎖状又は分岐状の二価のアルケニレン基が挙げられる。これらの二価の基は前記したような置換基を有していてもよい。
 一般式(2)におけるQ、及びQについて説明する。
 一般式(2)の式中のQ及びQは同一であっても異なっていてもよく、置換基を有していてもよい二価のアルキレン基、置換基を有していてもよい二価のシクロアルキレン基、又は置換基を有していてもよい二価のアラルキレン基を表す。
 二価のアルキレン基としては、炭素数1~20、好ましくは炭素数1~10、より好ましくは炭素数1~6の鎖状又は分岐状の二価のアルキル鎖が挙げられ、具体的には例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基等が挙げられる。
 また、二価のシクロアルキレン基としては、炭素数3~15、好ましくは炭素数3~10、より好ましくは3~6の単環式、多環式又は縮合環式のシクロアルキル基からなる二価の基が挙げられ、例えば、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基等が挙げられる。
 また、二価のアラルキレン基としてはベンジル基、フェネチル基等などのアラルキル基のアリール基から水素を一個除いた炭素数7~11の二価の基を挙げることができる。ベンジレン基(-Ph-CH-)、2-フェニルエチレン基(-Ph-CHCH-)、1-ナフチルメチレン基(-Np-CH-)、2-ナフチルメチレン基(-Np-CH-)等(式中、-Ph-はフェニレン基を示し、-Np-はナフチレン基を示す。)
が挙げられる。
 これらの二価のアルキレン基、二価のシクロアルキレン基、又は二価のアラルキレン基が有していてもよい置換基としては、前記した一般式(2)におけるR、R、R、及びRについての説明で述べたようなアルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、及び複素環基、並びにハロゲン原子、シリル基、置換アミノ基、及び保護されていてもよい水酸基等が挙げられる。
 次に、一般式(1)におけるX又はYで表される1価のアニオン性配位子について説明する。
 1価のアニオン性配位子としては、例えば、ヒドリド、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、ヒドロキシ基、アシルオキシ基、スルホニルオキシ基、ハロゲンイオン、AlH 、AlH(OCHCHOCH 、BH 、BHCN、BH(Et) 及びBH(sec-Bu) 等が挙げられる。なお、本明細書中では、ヒドリドを単に水素、ハロゲンイオンを単にハロゲンということもある。
 アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、及びアラルキルオキシ基としては、前記一般式(2)で説明した基が挙げられる。
 アシルオキシ基としては(RCO)で表されるものが挙げられる、アシルオキシ基RCOにおけるRとしては、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基が挙げられる。アルキル基、シクロアルキル基、アリール基、アラルキル基、としては、例えば前記した一般式(2)におけるR、R、R、及びRについての説明で述べたようなアルキル基、シクロアルキル基、アリール基、アラルキル基が挙げられ、これらのアルキル基、シクロアルキル基、アリール基、アラルキル基は、さらに前記した一般式(2)におけるR、R、R、及びRについての説明で述べたようなアルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルオキシ基、シクロアルキルオキシ基、アラルキルオキシ基、アリールオキシ基、及び複素環基、並びにハロゲン原子、シリル基、保護されていてもよい水酸基、及び保護されていてもよいアミノ基等で置換されていてもよい。
 Rの置換基としての保護されていてもよいアミノ基としては、無保護のアミノ基;N-メチルアミノ基、N,N-ジメチルアミノ基、N,N-ジエチルアミノ基、N,N-ジイソプロピルアミノ基、N-シクロヘキシルアミノ基等のモノ又はジアルキルアミノ基;N-フェニルアミノ基、N,N-ジフェニルアミノ基、N-ナフチルアミノ基、N-ナフチル-N-フェニルアミノ基等のモノ又はジアリールアミノ基;N-ベンジルアミノ基、N,N-ジベンジルアミノ基等のモノ又はジアラルキルアミノ基;ホルミルアミノ基、アセチルアミノ基、プロピオニルアミノ基、ピバロイルアミノ基、ペンタノイルアミノ基、ヘキサノイルアミノ基、ベンゾイルアミノ基等のアシルアミノ基;メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、n-プロポキシカルボニルアミノ基、n-ブトキシカルボニルアミノ基、tert-ブトキシカルボニルアミノ基、ペンチルオキシカルボニルアミノ基、ヘキシルオキシカルボニルアミノ基等のアルコキシカルボニルアミノ基;フェニルオキシカルボニルアミノ基等のアリールオキシカルボニルアミノ基;ベンジルオキシカルボニルアミノ基等のアラルキルオキシカルボニルアミノ基等が挙げられる。さらに保護されていてもよいアミノ基としては、例えば前記の参考文献1に記載されているペプチド合成等で用いられる一般的なアミノ基の保護基で保護されたアミノ基が挙げられる。
 Rとしては例えばメチル基、エチル基、プロピル基、tert-ブチル基、トリフルオロメチル基、フェニル基、ペンタフルオロフェニル基等が挙げられる。
 スルホニルオキシ基としては(RSO)で表されるものが挙げられる。スルホニルオキシ基RSOにおけるRとしてはアシルオキシ基におけるRと同様のものがあげられる。
 ハロゲンイオンとしては、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオンが挙げられる。好ましくは塩素イオン、臭素イオン、さらに好ましくは塩素イオンが挙げられる。
 これらの中でも好ましい1価のアニオン性配位子としては、BH 、ヒドリド、又は塩素イオンが挙げられる。
 好ましい3座アミノホスフィン配位子としては下記一般式(10)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000007
 一般式(10)において、R、R、R及びRで表されるアルキル基、シクロアルキル基、アリール基、及びアラルキル基としては、前記した一般式(2)におけるR、R、R、及びRについての説明で述べたようなアルキル基、シクロアルキル基、アリール基、及びアラルキル基が挙げられる。また、これらのアルキル基、シクロアルキル基、アリール基、及びアラルキル基が有していてもよい置換基としては、前記した一般式(2)におけるR、R、R、及びRについての説明で述べたようなアルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、及び複素環基、並びにハロゲン原子、シリル基、置換アミノ基、及び保護されていてもよい水酸基等が挙げられる。
 これらのR、R、R及びRは、R同士、RとR又はR又はR、RとR又はRが互いに結合し隣接する炭素原子と共に環を形成していてもよい。環を形成する場合の好ましい基としては、炭素数2~20、好ましくは炭素数4~10、より好ましくは炭素数4~6の鎖状又は分岐状の二価のアルキレン基;炭素数4~20、好ましくは炭素数4~10、より好ましくは炭素数4~6の鎖状又は分岐状の二価のアルケニレン基が挙げられる。これらの二価の基はR、R、R、及びRについての説明で述べたような置換基を有していてもよい。また、アルキレン鎖又はアルケニレン鎖中に1個又は2個以上のフェニレン基を含有していてもよい。
 より好ましい3座アミノジホスフィン配位子としては下記一般式(3)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000008
 一般式(3)中、Ar、Ar、Ar、Arは同一であっても異なっていてもよく、アリール基、芳香族複素環基を表す。また、これらのアリール基、芳香族複素環基は置換基を有していてもよい。
 一般式(3)におけるアリール基、芳香族複素環基としては例えば前記した一般式(2)におけるR、R、R、及びRについての説明で述べたようなアリール基や複素環の中で述べた芳香族複素環等が挙げられる。また、これらのアリール基や芳香族複素環基が有していてもよい置換基としては、前記した一般式(2)におけるR、R、R、及びRについての説明で述べたようなアルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、及びアラルキルオキシ基、並びにハロゲン原子、シリル基、複素環基、置換アミノ基、及び保護されていてもよい水酸基等が挙げられる。
 また、さらに好ましい3座アミノジホスフィン配位子としては下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000009
(式中、Phはフェニル基を表す。)
 また、一般式(2)及び(10)で表される3座アミノジホスフィン配位子は、Q、Q上の置換基によって、またはR~Rの種類によっては光学活性体として、一般式(1)で表されるルテニウムカルボニル錯体の配位子として用いることができる。
 本発明におけるルテニウムカルボニル錯体を製造するための出発原料であるルテニウム化合物としては、特に制限はないが、例えば、RuCl水和物、RuBr水和物、RuI水和物等の無機ルテニウム化合物、RuCl(DMSO)、[Ru(cod)Cl]n、[Ru(nbd)Cl]n、(cod)Ru(2-methallyl)、[Ru(benzene)Cl、[Ru(benzene)Br、[Ru(benzene)I、[Ru(p-cymene)Cl、[Ru(p-cymene)Br、[Ru(p-cymene)I、[Ru(mesitylene)Cl、[Ru(mesitylene)Br、[Ru(mesitylene)I、[Ru(hexamethylbenzene)Cl、[Ru(hexamethylbenzene)Br、[Ru(hexamethylbenzene)I、RuCl(PPh、RuBr(PPh、RuI(PPh、RuH(PPh、RuClH(PPh、RuH(OAc)(PPh、RuH(PPh等が挙げられる。例示中、DMSOはジメチルスルホキシド、codは1,5-シクロオクタジエン、nbdはノルボルナジエン、Phはフェニル基をそれぞれ表す。
 一般式(1)で表されるルテニウムカルボニル錯体は、3座アミノジホスフィン配位子と前駆体となるルテニウムカルボニル錯体から容易に製造することができる。
 3座アミノジホスフィン配位子は、脱離基を有するビス(置換アルキル)アミンとリチウム、ナトリウム、カリウムなどのアルカリ金属フォスフィド化合物を反応させることで容易に製造することができる。
 前駆体となるルテニウムカルボニル錯体は、例えば、Inorg.Synth,1974,15,45.に記載の方法などにより得ることができる。得られた前駆体となるルテニウムカルボニル錯体を3座アミノジホスフィン配位子と反応させて3座アミノジホスフィン配位子を有する本発明のルテニウムカルボニル錯体とすることができる。
 例えば、一般式(1)で表されるルテニウムカルボニル錯体は、一般式(2)で表される3座アミノジホスフィン配位子LとRuXY(CO)(P(Ar(式中、Arは、それぞれ同一であっても異なっていてもよく、置換基を有していてもよいアリール基を表す。)とを反応させて製造することができる。Arにおける、アリール基やその置換基としては前記したものが挙げられる。好ましいArとしては、アルキル基などの置換基を有してもよいフェニル基、特にフェニル基が挙げられる。
 また、一般式(1)で表されるルテニウムカルボニル錯体におけるXがBH であるルテニウムカルボニル錯体は、Xが塩素イオンであるルテニウムカルボニル錯体と水素化ホウ素化合物、例えばNaBHを反応させることにより製造することができる。
 このようにして製造される錯体は、配位子の配位様式やコンホメーションによって立体異性体を生じることがあるが、反応に用いる錯体はこれら立体異性体の混合物であっても純粋なひとつの異性体であっても構わない。
 また、例えば、J.Am.Chem.Soc.2005,127,516.に記載の方法などに準じて、3座アミノジホスフィン配位子とX=H(ヒドリド)、Y=BH を有するルテニウムカルボニルヒドリドボロヒドリド錯体を得ることができる。これらの錯体は比較的安定に存在し、取り扱いが容易である。
 好ましい錯体としては、例えば、下記一般式(11)
       RuHCl(CO)(L)        (11)
(式中、(L)は、前記した一般式(2)、(3)及び(10)などで表される3座アミノジホスフィンを表す。)
で表される錯体が挙げられ、この錯体は一般式(2)、(3)又は(10)で表される3座アミノジホスホスフィン配位子LとRuClH(CO)(PPhを適宜溶媒中で攪拌することで容易に製造することができる。
 また、他の好ましい錯体としては、例えば、下記一般式(12)
       RuH(BH)(CO)(L)     (12)
(式中、(L)は、前記した一般式(2)、(3)及び(10)などで表される3座アミノジホスフィンを表す。)
で表される錯体が挙げられ、この錯体は一般式(11)で表されるルテニウムカルボニル錯体と水素化ホウ素化合物、例えば、NaBHを適宜溶媒中で攪拌することで容易に製造することができる。
 本発明において原料のアミン類としては、第1級、第2級のアミン化合物が挙げられる。これらのアミン類は、本発明のアルキル化方法において悪影響を及ぼさないいかなる置換基で置換されていてもよい。また、原料のアミン類が反応に悪影響を及ぼす置換基を有する場合には、必要に応じて当該置換基を保護基で保護しておくことができる。
 このように、本発明の方法は各種の態様をとることができるが、本発明の方法の基本的な態様は、第1級、第2級のアミン化合物が対応するN-アルキル化アミンを生成させる反応である。なお、本明細書中で使用されている「アルキル化」という用語は、アルキル基を導入する反応に限定されるものではなく、新たなC-N結合を導入する反応の簡便な総称として使用されている。したがって、本明細書中で使用されている「アルキル化」は、アルケニル化、シクロアルキル化、アリール化、ヘテロアリール化などの、アミン類に新たなC-Nを導入する全ての反応を包含するものである。また、本明細書中における「アルキル化」は、モノアルキル化及びジアルキル化の両方を包含している。
 本発明の好ましいアミン化合物として一般式(5)で表されるアミン化合物が挙げられる。
   R-NH     (5)
 一般式(5)の式中のRは、アルキル基、シクロアルキル基、アリール基、アラルキル基、複素環基、アルケニル基、アルキニル基、シクロアルケニル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、ヒドロキシル基、アルコキシカルボニル基、シクロアルキルオキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、アルケニルオキシカルボニル基、アルキニルオキシカルボニル基、シクロアルケニルオキシカルボニル基、カルボキサミド基、又はアルコキシスルホニル基を表し、これらの基は置換基を有していてもよい。
 一般式(5)のRにおける、アルキル基、シクロアルキル基、アリール基、アラルキル基、複素環基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、及びアラルキルオキシ基としては、前記した一般式(2)におけるR、R、R、及びRについての説明で述べてきた基が挙げられる。
 アルケニル基としては、炭素鎖中に1個以上の炭素-炭素二重結合を有する基であって、炭素数2~20、好ましくは炭素数2~15、より好ましくは炭素数2~10の直鎖状又は分枝状のアルケニル基が挙げられる。このようなアルケニル基の例としては、ビニル基、1-メチル-ビニル基、2-メチル-ビニル基、n-2-プロペニル基、1,2-ジメチル-ビニル基、1-メチル-プロペニル基、2-メチル-プロペニル基、n-1-ブテニル基、n-2-ブテニル基、n-3-ブテニル基などが挙げられる。
 アルキニル基としては、炭素鎖中に1個以上の炭素-炭素三重結合を有する基であって、炭素数2~10、好ましくは炭素数2~8、より好ましくは炭素数2~6の直鎖状又は分枝状のアルキニル基が挙げられる。このようなアルキニル基の例としては、エチニル基、n-1-プロピニル基、n-2-プロピニル基、n-1-ブチニル基、n-2-ブチニル基、n-3-ブチニル基などが挙げられる。
 シクロアルケニル基としては、炭素数3~15、好ましくは炭素数3~10の不飽和の単環式、多環式又は縮合環式のシクロアルケニル基が挙げられる。このようなシクロアルケニル基としては、例えば、シクロプロペニル基、シクロペンテニル基、シクロヘセニル基、シクロオクテニル基などが挙げられる。
 アルコキシカルボニル基としては、炭素数1~20、好ましくは炭素数1~10の直鎖又は分岐のアルキル基にオキシカルボニル基(-O-CO-基)が結合したものが挙げられる。このような総炭素数2~21、好ましくは総炭素数2~11のアルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、イソプロポキシカルボニル基、などが挙げられる。
 シクロアルキルオキシカルボニル基としては、炭素数3~30、好ましくは炭素数3~20、より好ましくは炭素数3~10の単環式、多環式又は縮合環式のシクロアルキル基にオキシカルボニル基(-O-CO-基)が結合したものが挙げられる。このような総炭素数4~31、好ましくは総炭素数4~21、より好ましくは総炭素数4~11のシクロアルキルオキシカルボニル基としては、例えば、シクロプロピルオキシカルボニル基、シクロペンチルオキシカルボニル基、シクロヘキシルオキシカルボニル基、シクロオクチルオキシカルボニル基、ビシクロ[1.1.0]ブチルオキシカルボニル基、トリシクロ[2.2.1.0]ヘプチルオキシカルボニル基、ビシクロ[3.2.1]オクチルオキシカルボニル基、ビシクロ[2.2.2.]オクチルオキシカルボニル基、アダマンチルオキシカルボニル基(トリシクロ[3.3.1.1]デカニルオキシカルボニル基)、ビシクロ[4.3.2]ウンデカニルオキシカルボニル基、トリシクロ[5.3.1.1]ドデカニルオキシカルボニル基、などが挙げられる。
 アリールオキシカルボニル基としては、炭素数6~36、好ましくは炭素数6~18、より好ましくは炭素数6~14の単環式、多環式又は縮合環式のアリール基にオキシカルボニル基(-O-CO-基)が結合したものが挙げられる。このような総炭素数7~37、好ましくは総炭素数7~19、より好ましくは総炭素数7~15のアリールオキシカルボニル基としては、例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基、アントリルオキシカルボニル基、フェナントリルオキシカルボニル基、ビフェニルオキシカルボニル基等が挙げられる。
 アラルキルオキシカルボニル基としては、炭素数1~20、好ましくは炭素数1~10の直鎖又は分岐のアルキル基の少なくとも1個の水素原子が、前記したアリール基で置換されたアラルキル基、好ましくは炭素数7~15のアラルキル基にオキシカルボニル基(-O-CO-基)が結合したものが挙げられる。このようなアラルキルオキシカルボニル基としては、例えば、ベンジルオキシカルボニル基、1-フェニルエトキシカルボニル基、2-フェニルエトキシカルボニル基、1-フェニルプロポキシカルボニル基、3-ナフチルプロポキシカルボニル基等が挙げられる。
 アルケニルオキシカルボニル基としては、炭素数2~20、好ましくは炭素数2~15、より好ましくは炭素数2~10の直鎖状又は分枝状のアルケニル基にオキシカルボニル基(-O-CO-基)が結合したものが挙げられる。このような総炭素数3~21、好ましくは総炭素数3~16、より好ましくは総炭素数3~11のアルケニルオキシカルボニル基としては、例えば、ビニル基オキシカルボニル、1-メチル-ビニルオキシカルボニル基、2-メチル-ビニルオキシカルボニル基、n-2-プロペニルオキシカルボニル基、1,2-ジメチル-ビニルオキシカルボニル基、1-メチル-プロペニルオキシカルボニル基、2-メチル-プロペニルオキシカルボニル基、n-1-ブテニルオキシカルボニル基、n-2-ブテニルオキシカルボニル基、n-3-ブテニルオキシカルボニル基などが挙げられる。
 アルキニルオキシカルボニル基としては、炭素鎖中に1個以上の炭素-炭素三重結合を有する基であって、炭素数2~10、好ましくは炭素数2~8、より好ましくは炭素数2~6の直鎖状又は分枝状のアルキニル基にオキシカルボニル基(-O-CO-基)が結合したものが挙げられる。このような総炭素数3~11、好ましくは総炭素数3~9、より好ましくは総炭素数3~7のアルキニルオキシカルボニル基としては、例えば、n-2-プロピニルオキシカルボニル基、n-2-ブチニルオキシカルボニル基、n-3-ブチニルオキシカルボニル基などが挙げられる。
 シクロアルケニルオキシカルボニル基としては、炭素数3~15、好ましくは炭素数3~10の不飽和の単環式、多環式又は縮合環式のシクロアルケニル基にオキシカルボニル基(-O-CO-基)が結合したものが挙げられる。このような総炭素数4~16、好ましくは総炭素数4~11のシクロアルケニルオキシカルボニル基としては、例えば、シクロプロペニルオキシカルボニル基、シクロペンテニルオキシカルボニル基、シクロヘセニルオキシカルボニル基、シクロオクテニルオキシカルボニル基などが挙げられる。
 カルボキサミド基としては、-CONH基及び当該アミド基の窒素原子が前記したアルキル基で置換されていてもよいカルボキサミド基が挙げられる。
 アルコキシスルホニル基としては、炭素数1~20、好ましくは炭素数1~10の直鎖又は分岐のアルキル基にオキシスルホニル基(-O-SO-基)が結合したものが挙げられる。このようなアルコキシスルホニル基としては、例えば、メトキシスルホニル基、エトキシスルホニル基、n-プロポキシスルホニル基、イソプロポキシスルホニル基、などが挙げられる。
 Rにおけるこれらの基は置換基を有していてもよい。このような「置換基」としては、本発明の反応に関与しない基であれば特に限定されるものではない。また、置換基が水酸基などの本発明の反応に関与する可能性がある場合には、反応に先立ち適宜保護基で保護することもできる。「置換基」としては、例えば、ハロゲン原子、水酸基、ニトロ基、シアノ基、置換若しくは非置換のアミノ基、アルキルシリル基、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数3~10のシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、ヘテロアリール基、炭素数1~10のアルコキシ基、炭素数6~30のアリールオキシ基、炭素数7~30のアリールアルキルオキシ基、ヘテロアリールオキシ基などが挙げられる。
 本発明の他の好ましいアミン化合物としては、一般式(8)で表されるアミン化合物が挙げられる。一般式(8)のRB1、及びRB2における各基は、前記一般式(5)におけるRで説明してきた基が挙げられる。一般式(8)におけるRB1とRB2が互いに結合して隣接する窒素原子と共に環を形成することができる。このようにして形成された環は、少なくとも1個の窒素原子を含有する複素環となる。環を形成する場合の好ましい基としては、炭素数2~20、好ましくは炭素数4~10、より好ましくは炭素数4~6の鎖状又は分岐状の二価のアルキレン基;炭素数4~20、好ましくは炭素数4~10、より好ましくは炭素数4~6の鎖状又は分岐状の二価のアルケニレン基が挙げられる。これらの二価の基はR、R、R、及びRについての説明で述べたような置換基を有していてもよい。また、当該アルキレン鎖又はアルキニレン鎖中に1個又は2個以上のフェニレン基を含有していてもよい。また、当該アルキレン鎖又はアルキニレン鎖中に1個又は2個以上の、酸素原子、窒素原子、及び硫黄原子からなる群から選ばれるヘテロ原子を含有していてもよい。
 このような環を形成したアミンの例としては、ピロリジン、ピペリジン、ピペラジン、モルホリン、及びこれらの誘導体などが挙げられる。
 このような環を形成したアミンを本明細書では「脂環式アミン」という。
 前記一般式(5)におけるRがアリール基であるアミン、及び一般式(8)におけるRB1又はRB2のいずれか又は両方がアリール基であるアミンを、本明細書では「アリールアミン」という。
 また、前記一般式(5)におけるRが複素環基であるアミン、及び一般式(8)におけるRB1又はRB2のいずれか又は両方が複素環基であるアミンを、本明細書では「ヘテロアリールアミン」という。
 前記一般式(5)におけるRがシクロアルキル基であるアミン、及び一般式(8)におけるRB1又はRB2のいずれか又は両方がシクロアルキル基であるアミンを、本明細書では「シクロアルキルアミン」という。また、当該シクロアルキル基が、ビシクロ、トリシクロなどの架橋式のシクロアルキル基である場合は、「架橋シクロアルキルアミン」という。
 本発明の方法における原料化合物となるアルコール類としては、1個以上、好ましくは1~5個、より好ましくは1~3個の第1級又は第2級のアルコール性水酸基を有する化合物が挙げられる。原料化合物としては、第1級又は第2級のアルコール性水酸基の他に、アミノ基や水酸基などが存在していてもよい。
 本発明の方法における原料化合物となるアルコール類の好ましい例として、一般式(6)で表されるアルコールが挙げられる。
 一般式(6)におけるRのアリール基及び複素環基としては、前記した一般式(2)におけるR、R、R、及びRについての説明で述べてきた基が挙げられる。
 一般式(6)におけるRの炭化水素基としては、炭素数1~20、好ましくは炭素数1~15、より好ましくは炭素数1~10の直鎖状又は分枝状のアルキル基;炭素数2~20、好ましくは炭素数2~15、より好ましくは炭素数2~10の直鎖状又は分枝状のアルケニル基;炭素数2~10、好ましくは炭素数2~8、より好ましくは炭素数2~6の直鎖状又は分枝状のアルキニル基;炭素数3~15、好ましくは炭素数3~10の飽和又は不飽和の単環式、多環式又は縮合環式の脂環式炭化水素基;炭素数6~36、好ましくは炭素数6~18、炭素数6~12の単環式、多環式、又は縮合環式のアリール基;炭素数7~40、好ましくは炭素数7~20、炭素数7~15のアラルキル基などが挙げられる。これらの基は「置換基」を有していてもよく、当該置換基としては、本発明の反応に関与しない基であれば特に限定されるものではない。また、置換基が水酸基などの本発明の反応に関与する可能性がある場合には、反応に先立ち適宜保護基で保護することもできる。「置換基」としては、例えば、ハロゲン原子、水酸基、ニトロ基、シアノ基、置換若しくは非置換のアミノ基、アルキルシリル基、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数3~10のシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、ヘテロアリール基、炭素数1~10のアルコキシ基、炭素数6~30のアリールオキシ基、炭素数7~30のアリールアルキルオキシ基、ヘテロアリールオキシ基などが挙げられる。
 一般式(6)におけるRの特に好ましい例としては、炭素数1~20、好ましくは炭素数1~15、より好ましくは炭素数1~10の直鎖状又は分枝状のアルキル基;炭素数7~40、好ましくは炭素数7~20、炭素数7~15のアラルキル基などが挙げられる。これらのアルキル基及びアラルキル基は、前記した「置換基」で置換されていてもよい。
 本発明のアミン類のアルキル化方法は、反応剤として用いるアルコール又は他の溶媒中で好適に実施することができる。用いられる溶媒としては、基質及び触媒を溶解できるものが好ましく、単一溶媒あるいは混合溶媒が用いられる。具体的にはトルエン、キシレン等の芳香族炭化水素、ヘキサン、ヘプタン等の脂肪族炭化水素、塩化メチレン、クロロベンゼン等のハロゲン化炭化水素、ジエチルエーテル、テトラヒドロフラン、メチルtert-ブチルエーテル、シクロペンチルメチルエーテル等のエーテル類、メタノール、エタノール、イソプロピルアルコール、n-ブチルアルコール、2-ブタノール、tert-ブチルアルコール等のアルコール類、エチレングリコール、プロピレングリコール、1,2-プロパンジオール及びグリセリン等の多価アルコール類が挙げられる。この中でもエーテル類又はアルコール類が好ましく、特に好ましい溶媒としては、テトラヒドロフラン、メタノール又はイソプロパノールが挙げられる。溶媒の使用量は、反応条件等により適宜選択することができる。反応は必要に応じ撹拌下に行われる。
 触媒の使用量は、基質であるアルコール類、反応条件や触媒の種類等によって異なるが、通常、基質であるアミン類に対するルテニウム金属としてのモル比で0.0001モル%~10モル%、好ましくは0.005モル%~5モル%の範囲である。本発明の方法において、アルキル化反応を行う際の反応温度は、50℃~200℃、好ましくは80℃~180℃である。反応温度が低すぎると未反応の原料が多く残存する場合があり好ましくない。
 本発明の方法を行う際に水素は必要としない。本発明の方法は、必要により加圧もしくは反応中に減圧することもできる。加圧する場合は、窒素や水素を用いてもよい。また、溶媒の蒸気圧により加圧することもできる。
 本発明の方法における反応時問は30分~72時間、好ましくは2時間から48時間で十分に高い原料転化率を得ることができる。
 反応終了後は、抽出、濾過、結晶化、蒸留、各種クロマトグラフィー等、通常用いられる精製法を単独又は適宜組み合わせることにより目的のアルキル化アミン類を得ることができる。
 即ち、本発明のアミン類のアルキル化方法は、次の(1)及び(2)の工程を含有してなる。
(1)前記した一般式(1)で表されるルテニウム錯体の存在下、アミンにアルコールを反応させる工程、及び、
(2)前記反応により生成したN-アルキルアミンを得る工程。
 本発明の方法におけるアミンとアルコールの反応は、特に添加剤を添加する必要はないが、必要により適宜添加剤を加えてもよく、このような添加剤を反応系中に添加する工程を、さらに含有してもよい。このような添加剤としては、例えば、塩基性物質が挙げられる。塩基性物質としては、炭酸カリウム、炭酸ナトリウム、炭酸リチウム、炭酸セシウム等のアルカリ金属炭酸塩、炭酸マグネシウム、炭酸カルシウム等のアルカリ土類金属炭酸塩、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属炭酸水素塩、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属水酸化物、水酸化マグネシウム、水酸化カルシウム等のアルカリ土類金属水酸化物、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムイソプロポキシド、ナトリウムtert-ブトキシド、カリウムメトキシド、カリウムエトキシド、カリウムイソプロポキシド、カリウムtert-ブトキシド、リチウムメトキシド、リチウムイソプロポキシド、リチウムtert-ブトキシド等のアルカリ金属アルコキシド、マグネシウムメトキシド、マグネシウムエトキシド等のアルカリ土類金属アルコキシド、水素化ナトリウム、水素化カルシウム、の金属水素化物が挙げられる。特に好ましい塩基性物質としては、ナトリウムメトキシド又はカリウムtert-ブトキシドなどの金属アルコキシドのような強塩基性物質が挙げられる。このような塩基性物質、好ましくは強塩基性物質を、アミン類に対して0.01~1等量、好ましくは0.1~0.8等量を添加する。このような塩基性物質の添加により高い転化率が得られる。
 以下に実施例を挙げ、本発明を詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
実施例中において下記の分析機器を用いた。
核磁気共鳴スペクトル(NMR);MERCURY300-C/H(VARIAN社)
ガスクロマトグラフィー(GC);GC-4000(GLサイエンス(株))
カラム;Inert Cap 1(GLサイエンス(株))
HRMS;LCMS-IT-TOF(Shimadzu Corp.)
(参考例1)ルテニウムカルボニル錯体1の製造
 WO2011/048727号公報に記載の方法により、1.4gのルテニウムカルボニル錯体1を製造した。
Figure JPOXMLDOC01-appb-C000010
(参考例2)ルテニウムカルボニル錯体2の製造
 WO2011/048727号公報に記載の方法に従い、次の反応式によりルテニウムカルボニル錯体2を製造した。
Figure JPOXMLDOC01-appb-C000011
 窒素気流下、20mlシュレンク管に配位子(b)329mg(1.07mmol)、原料のルテニウム錯体(a)922mg(0.956mmol)を加え、ジグライム3mlを加えた後、165℃で1時間加熱した。反応液を-15℃まで冷却して析出した結晶をろ別し、ジエチルエーテルで結晶を洗浄した。得られた結晶を減圧乾燥し、ルテニウムカルボニル錯体2を180mg(0.39mmol)得た。
H-NMR(300MHz CDCl): δ =
-16.30(t, J = 18.0Hz, 1H), 1.01-1.49(m, 24H), 1.72-1.84(m, 4H), 2.20-2.36(m, 4H), 2.62-2.70(m, 2H), 3.15-3.33(m, 2H), 3.42(bs, 1H)
31P-NMR(121.5MHz CDCl): δ=75.1(s)
HRMS(ESI):m/z
1738NOPClRuとして、計算値:[M] 471.1155;
                実測値:     471.1133.
(参考例3)ルテニウムカルボニル錯体3の製造
 WO2011/048727号公報に記載の方法に従い、次の反応式によりルテニウムカルボニル錯体3を製造した。
Figure JPOXMLDOC01-appb-C000012
 窒素気流下、20mlシュレンク管に配位子(c)706mg(1.52mmol)、原料のルテニウム錯体(a)1320mg(1.37mmol)を加え、ジグライム4.3mlを加えた後、165℃で1時間加熱した。反応液を0℃まで冷却して析出した結晶をろ別し、ジエチルエーテルで結晶を洗浄した。得られた結晶を減圧乾燥し、ルテニウムカルボニル錯体3を581mg(0.92mmol)得た。
H-NMR(300MHz CDCl): δ =
-16.37(t, J = 18.0Hz, 1H), 1.25-2.02(m, 50H), 2.20-2.40(m, 8H), 3.19-3.25(m, 2H), 3.50-3.52(m, 2H)
31P-NMR(121.5MHz CDCl):δ=52.8(d, J = 14Hz)
HRMS(ESI):m/z
2954NOPClRuとして、計算値:[M] 631.2407;
                実測値:      631.2427.
(参考例4)ルテニウムカルボニル錯体4の製造
 WO2011/048727号公報に記載の方法に従い、次の反応式によりルテニウムカルボニル錯体4を製造した。
Figure JPOXMLDOC01-appb-C000013
 窒素気流下、20mlシュレンク管に配位子(d)494mg(1.29mmol)、原料のルテニウム錯体(a)1120mg(1.16mmol)を加え、ジグライム3.6mlを加えた後、165℃で1時間加熱した。反応液を0℃まで冷却して析出した結晶をろ別し、ジエチルエーテルで結晶を洗浄した。得られた結晶を減圧乾燥し、ルテニウムカルボニル錯体4を350mg(0.92mmol)得た。
H-NMR(300MHz CDCl): δ =
-18.76(t, J = 19.8Hz, 1H), 1.32(s, 9H), 1.34(s, 9H), 1.42(s, 9H), 1.44(s, 9H), 2.04-2.28(m, 4H), 2.37-2.47(m, 2H), 3.11-3.58(m, 3H)
31P-NMR(121.5MHz CDCl):δ=86.7(d, J = 15Hz)
HRMS(ESI):m/z
2146NOPRuとして、計算値:[M-Cl] 492.2099;
              実測値:       492.2093.
(実施例1~5)メタノールによる1級アミンのモノメチル化反応
Figure JPOXMLDOC01-appb-C000014
 100mlステンレス製オートクレーブに参考例1で製造した錯体1を1.2mg(0.002mmol)加え、窒素置換後、メタノール2mlを加えた。続いてアミン(2mmol)、塩基として1M-NaOMeメタノール溶液を加えた後、150℃にて5時間攪拌した。冷却後、反応物をGCにて分析した結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
(実施例6)メタノールによるアニリンのモノメチル化反応
 100mlステンレス製オートクレーブに参考例2で製造した錯体2を4.7mg(0.01mmol)加え、窒素置換後、メタノール2mlを加えた。続いてアニリン0.183ml(2mmol)、1M-NaOMeメタノール溶液1.2ml(1.2mmol)を加えた後、170℃にて5時間攪拌した。冷却後、反応物をGCにて分析したところ、88%のGC収率で1-メチルアニリンが得られた。
(実施例7)メタノールによるアニリンのモノメチル化反応
 100mlステンレス製オートクレーブに参考例3で製造した錯体3を6.3mg(0.01mmol)加え、窒素置換後、メタノール2mlを加えた。続いてアニリン0.183ml(2mmol)、1M-NaOMeメタノール溶液1.2ml(1.2mmol)を加えた後、170℃にて5時間攪拌した。冷却後、反応物をGCにて分析したところ、62%のGC収率で1-メチルアニリンが得られた。
(実施例8)エタノールによるアニリンのモノエチル化反応
Figure JPOXMLDOC01-appb-C000015
 100mlステンレス製オートクレーブに参考例1で製造した錯体1を1.2mg(0.002mmol)加え、窒素置換後、エタノール2mlを加えた。続いてアニリン0.183ml(2mmol)、2.68M-NaOEtエタノール溶液0.45ml(1.2mmol)を加えた後、150℃にて5時間攪拌した。冷却後、反応物をGCにて分析したところ、65%のGC収率で1-エチルアニリンが得られた。
(実施例9)ベンジルアルコールによるアニリンのモノベンジル化反応
Figure JPOXMLDOC01-appb-C000016
 100mlステンレス製オートクレーブに参考例1で製造した錯体1を1.2mg(0.002mmol)及びKOtBuを44.9mg(0.4mmol)加え、窒素置換後、テトラヒドロフラン(THF)2.9mlを加えた。続いてアニリン0.183ml(2mmol)及びベンジルアルコール(BnOH)0.31ml(3mmol)を加えた後、150℃にて5時間攪拌した。冷却後、反応物をGCにて分析したところ、73%のGC収率で1-ベンジルアニリンが得られた。
(実施例10)メタノールによるピペリジンのメチル化反応
Figure JPOXMLDOC01-appb-C000017
 100mlステンレス製オートクレーブに参考例1で製造した錯体1を1.2mg(0.002mmol)加え、窒素置換後、メタノール2mlを加えた。続いてピペリジン0.198ml(2mmol)及び1M-NaOMeメタノール溶液0.4ml(0.4mmol)を加えた後、150℃にて5時間攪拌した。冷却後、反応物をGCにて分析したところ、58%のGC収率でN-メチルピペリジンが得られた。
(実施例11)メタノールによる1-アダマンチルアミンのメチル化反応
Figure JPOXMLDOC01-appb-C000018
 100mlステンレス製オートクレーブに参考例1で製造した錯体1を6.0mg(0.01mmol)及び1-アダマンチルアミンを303mg(2mmol)加え、窒素置換後、メタノール2mlを加えた。1.13M-NaOMeメタノール溶液1.1ml(1.2mmol)を加えた後、150℃にて5時間攪拌した。冷却後、反応物をGCにて分析したところ、19%のGC収率でN-メチルアダマンチルアミンが得られ、37%のGC収率でN,N-ジメチルアダマンチルアミンが得られた。
 本発明は、アルコールを直接アルキル化剤として使用して、アミン類をアルキル化する簡便で安全で、かつ効率的な方法を提供するものであり、従来のアルキル化剤と比べアルコールという安全性が高く、かつ環境にやさしい原料を用いた工業的なアミン類のアルキル化方法であり、製薬産業、農薬産業、食品産業などの化学産業に有用な方法を提供するものである。

Claims (9)

  1.  次の一般式(1)
          RuXY(CO)(L)          (1)
    (一般式(1)中、X及びYは同一であっても異なっていてもよく1価のアニオン性配位子を表し、Lは下記一般式(2)
    Figure JPOXMLDOC01-appb-C000019
    (一般式(2)中、R、R、R、及びRはそれぞれ同一であっても異なっていてもよく、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、複素環基、又は置換アミノ基を表し、これらのRとR又はRとRは互いに結合し隣接するリン原子と共に環を形成していてもよい。また、これらのアルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、複素環基、置換アミノ基は置換基を有していてもよい。Q及びQは同一であっても異なっていてもよく、置換基を有していてもよい二価のアルキレン基、置換基を有していてもよい二価のシクロアルキレン基、又は置換基を有していてもよい二価のアラルキレン基を表す。)
    で表される3座アミノジホスフィン配位子を表す。)
    で表されるルテニウム錯体の存在下、アミンにアルコールを反応させる、N-アルキルアミンの製造方法。
  2.  Lが下記一般式(3)
    Figure JPOXMLDOC01-appb-C000020
    (一般式(3)中、Ar、Ar、Ar、Arは同一であっても異なっていてもよく、アリール基、芳香族複素環基を表す。また、これらのアリール基、芳香族複素環基は置換基を有していてもよい。)
    で表される3座アミノジホスフィン配位子である請求項1に記載の方法。
  3.  下記一般式(4)
        R-NH-R    (4)
    (式中、Rは、アルキル基、シクロアルキル基、アリール基、アラルキル基、複素環基、アルケニル基、アルキニル基、シクロアルケニル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、ヒドロキシル基、アルコキシカルボニル基、シクロアルキルオキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、アルケニルオキシカルボニル基、アルキニルオキシカルボニル基、シクロアルケニルオキシカルボニル基、カルボキサミド基、又はアルコキシスルホニル基を表し、これらの基は置換基を有していてもよい。
     Rは、置換されていてもよい炭化水素基、置換されていてもよいアリール基、又は置換されていてもよい複素環基を表す。)
    で表されるN-アルキルアミンの製造方法であり、アミンが下記一般式(5)
        R-NH   (5)
    (式中、Rは一般式(4)における定義と同一の基を表す。)
    で表されるアミンであり、アルコールが下記一般式(6) 
        R-OH     (6)
    (式中、Rは一般式(4)における定義と同一の基を表す。)
    で表されるアルコールである、請求項1又は2のいずれかに記載の方法。
  4.  下記一般式(7)
    Figure JPOXMLDOC01-appb-C000021
    (式中、RB1は、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、複素環基、アルケニル基、アルキニル基、シクロアルケニル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、ヒドロキシル基、アルコキシカルボニル基、シクロアルキルオキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、アルケニルオキシカルボニル基、アルキニルオキシカルボニル基、シクロアルケニルオキシカルボニル基、カルボキサミド基、又はアルコキシスルホニル基を表し、これらの基は置換基を有していてもよい。
     RB2は、アルキル基、シクロアルキル基、アリール基、アラルキル基、複素環基、アルケニル基、アルキニル基、シクロアルケニル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、ヒドロキシル基、アルコキシカルボニル基、シクロアルキルオキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、アルケニルオキシカルボニル基、アルキニルオキシカルボニル基、シクロアルケニルオキシカルボニル基、カルボキサミド基、又はアルコキシスルホニル基を表し、これらの基は置換基を有していてもよい。また、RB1とRB2が互いに結合して、隣接する窒素原子と共に環を形成してもよい。
     Rは、置換されていてもよい炭化水素基、置換されていてもよいアリール基、又は置換されていてもよい複素環基を表す。)
    で表されるN-アルキルアミンの製造方法であり、アミンが下記一般式(8)
    Figure JPOXMLDOC01-appb-C000022
    (式中、RB1、及びRB2は、一般式(7)における定義と同一の基を表す。)
    であり、アルコールが下記一般式(6) 
        R-OH     (6)
    (式中、Rは前記と同一の基を表す。)
    で表されるアルコールである、請求項1又は2のいずれかに記載の方法。
  5.  下記一般式(9)
    Figure JPOXMLDOC01-appb-C000023
    (式中、Rは、アルキル基、シクロアルキル基、アリール基、アラルキル基、複素環基、アルケニル基、アルキニル基、シクロアルケニル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、ヒドロキシル基、アルコキシカルボニル基、シクロアルキルオキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、アルケニルオキシカルボニル基、アルキニルオキシカルボニル基、シクロアルケニルオキシカルボニル基、カルボキサミド基、又はアルコキシスルホニル基を表し、これらの基は置換基を有していてもよい。
     Rは、置換されていてもよい炭化水素基、置換されていてもよいアリール基、又は置換されていてもよい複素環基を表す。)
    で表されるN-アルキルアミンの製造方法であり、アミンが下記一般式(5)
         R-NH  (5)
    (式中、Rは前記と同一の基を表す。)
    で表されるアミンであり、アルコールが下記一般式(6) 
         R-OH    (6)
    (式中、Rは前記と同一の基を表す。)
    で表されるアルコールである、請求項1又は2のいずれかに記載の方法。
  6.  アルコールが、1級又は2級アルコールである、請求項1~5のいずれかに記載の方法。
  7.  アルコールが、メタノール又はエタノールである、請求項1~6のいずれかに記載の方法。
  8.  アミンとアルコールの反応が、さらに塩基性物質の存在下で行われる、請求項1~7のいずれかに記載の方法。
  9.  塩基性物質が、金属アルコキシドである、請求項8に記載の方法。
PCT/JP2014/000267 2013-03-04 2014-01-21 アミン類のアルキル化方法 WO2014136374A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/772,513 US9751827B2 (en) 2013-03-04 2014-01-21 Method for alkylation of amines
JP2015504145A JP6358660B2 (ja) 2013-03-04 2014-01-21 アミン類のアルキル化方法
EP14760996.0A EP2966057B1 (en) 2013-03-04 2014-01-21 Method for alkylation of amines

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013041760 2013-03-04
JP2013-041760 2013-03-04

Publications (1)

Publication Number Publication Date
WO2014136374A1 true WO2014136374A1 (ja) 2014-09-12

Family

ID=51490913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000267 WO2014136374A1 (ja) 2013-03-04 2014-01-21 アミン類のアルキル化方法

Country Status (4)

Country Link
US (1) US9751827B2 (ja)
EP (1) EP2966057B1 (ja)
JP (1) JP6358660B2 (ja)
WO (1) WO2014136374A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017131226A1 (ja) * 2016-01-29 2017-08-03 高砂香料工業株式会社 N,n-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体及びその製造法、並びにn,n-ビス(2-ジアルキルホスフィノエチル)アミンを配位子とするルテニウム錯体の製造方法
US10059729B2 (en) 2014-04-25 2018-08-28 Takasago International Corporation Ruthenium complex, method for producing same, and use of same
WO2018181865A1 (ja) 2017-03-31 2018-10-04 高砂香料工業株式会社 カチオン型ルテニウム錯体及びその製造方法並びにその用途

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016141103A1 (en) * 2015-03-02 2016-09-09 Funfare, Llc Three dimensional printer and cartridge
EP3327009A1 (en) * 2016-11-23 2018-05-30 Borealis Agrolinz Melamine GmbH Method for alkylating an amino compound
TWI695786B (zh) * 2017-04-11 2020-06-11 三緯國際立體列印科技股份有限公司 3d印表機的模型列印方法
CN112939892B (zh) * 2021-03-23 2022-10-04 浙江工业大学 一种喹硫平的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048727A1 (ja) 2009-10-23 2011-04-28 高砂香料工業株式会社 3座配位子を有する新規ルテニウムカルボニル錯体、並びにその製造法及び用途
JP2012067021A (ja) * 2010-09-21 2012-04-05 Takasago Internatl Corp アミド化合物からアルコール及び/又はアミンを製造する方法
WO2012144650A1 (en) * 2011-04-22 2012-10-26 Takasago International Corporation Method for producing compound with carbonyl group by using ruthenium carbonyl complex having tridentate ligand as dehydrogenation oxidation catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048727A1 (ja) 2009-10-23 2011-04-28 高砂香料工業株式会社 3座配位子を有する新規ルテニウムカルボニル錯体、並びにその製造法及び用途
JP2012067021A (ja) * 2010-09-21 2012-04-05 Takasago Internatl Corp アミド化合物からアルコール及び/又はアミンを製造する方法
WO2012144650A1 (en) * 2011-04-22 2012-10-26 Takasago International Corporation Method for producing compound with carbonyl group by using ruthenium carbonyl complex having tridentate ligand as dehydrogenation oxidation catalyst

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"Protective Groups in Organic Synthesis", 1991, JOHN WILEY & SONS, INC
ADVANCED SYNTHESIS & CATALYSIS, vol. 349, no. 10, 2007, pages 1555 - 1575
ADVANCED SYNTHESIS & CATALYSIS, vol. 350, no. 5, 2008, pages 749 - 758
CHEMISTRY LETTERS, vol. 17, no. 3, 1988, pages 449 - 452
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2004, pages 524 - 529
INORG. SYNTH, vol. 15, 1974, pages 45
J. AM. CHEM. SOC., vol. 127, 2005, pages 516
ORGANOMETALLICS, vol. 30, no. 13, 2011, pages 3479 - 3482, XP055025189 *
POLYHEDRON, vol. 52, 22 March 2013 (2013-03-22), pages 1024 - 1029, XP028992097 *
RSC ADVANCES, vol. 2, no. 23, 2012, pages 8645 - 8652
SYNLETT, 2005, pages 560 - 571
TETRAHEDRON LETTERS, vol. 44, no. 13, 2003, pages 2687 - 2690

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10059729B2 (en) 2014-04-25 2018-08-28 Takasago International Corporation Ruthenium complex, method for producing same, and use of same
WO2017131226A1 (ja) * 2016-01-29 2017-08-03 高砂香料工業株式会社 N,n-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体及びその製造法、並びにn,n-ビス(2-ジアルキルホスフィノエチル)アミンを配位子とするルテニウム錯体の製造方法
US10407448B2 (en) 2016-01-29 2019-09-10 Takasago International Corporation N-N-bis(2-dialkylphosphinoethyl)amine-borane complex and production method therefor, and method for producing ruthenium complex containing N,N-bis(2-dialkylphosphinoethyl)amine as ligand
WO2018181865A1 (ja) 2017-03-31 2018-10-04 高砂香料工業株式会社 カチオン型ルテニウム錯体及びその製造方法並びにその用途

Also Published As

Publication number Publication date
US20160009632A1 (en) 2016-01-14
JPWO2014136374A1 (ja) 2017-02-09
US9751827B2 (en) 2017-09-05
JP6358660B2 (ja) 2018-07-18
EP2966057A1 (en) 2016-01-13
EP2966057A4 (en) 2016-10-19
EP2966057B1 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
JP6358660B2 (ja) アミン類のアルキル化方法
Lange et al. Selective catalytic hydrogenation of nitriles to primary amines using iron pincer complexes
JP5671456B2 (ja) 3座配位子を有する新規ルテニウムカルボニル錯体、並びにその製造法及び用途
US9000212B2 (en) Method for producing compound with carbonyl group by using ruthenium carbonyl complex having tridentate ligand as dehydrogenation oxidation catalyst
US8586742B2 (en) Process for preparing amines from alcohols and ammonia
Lane et al. Iron-catalyzed urea synthesis: dehydrogenative coupling of methanol and amines
Reboule et al. Aza-Michael reactions catalyzed by samarium diiodide
EP2619162B1 (en) Method for producing alcohol and/or amine from amide compound
Demir et al. The first used half sandwich ruthenium (II) complexes bearing benzimidazole moiety for N-alkylation of amines with alcohols
Krogstad et al. Platinum (II) and palladium (II) 1, 3, 5-triaza-7-phosphaadamantane (PTA) complexes as intramolecular hydroamination catalysts in aqueous and organic media
JP2014114257A (ja) ルテニウムカルボニル錯体を用いたハロゲン置換安息香酸エステルの還元方法
US20220402871A1 (en) Process for producing substituted amino alcohols
WO2014203963A1 (ja) 3座アミノジカルベン配位子を有する金属錯体及びそれを用いた水素化還元方法
Wang et al. Rhodium-Catalyzed Double Hydroboration of Quinolines
Scodeller et al. 2, 2, 2-Trifluoroethanol-assisted imine hydrogenation by a Ru-monohydride
Trivedi et al. Ru (II)-and Ru (IV)-dmso complexes catalyze efficient and selective aqueous-phase nitrile hydration reactions under mild conditions
JP2012224600A (ja) 2−メントキシエタノールの製造方法
Vielhaber From manganese to group VI metals: development and investigation of base metal catalysts for homogeneous hydrogenation reactions/Author Thomas Vielhaber
Adamson The Development of Palladium-Catalyzed Regio-and Enantioselective Hydrofunctionalizations of Conjugated Dienes and Enynes
Djukic et al. μ-Chlorido, μ-hydroxo-bridged dicarbonyl ruthenacycles: synthesis, structure and catalytic properties in hydrogen atom transfer
Taleb Sereshki Rh-catalyzed asymmetric CH bond activation by chiral primary amine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760996

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504145

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14772513

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014760996

Country of ref document: EP