WO2014135721A1 - Método y patrón de características geométricas para calibración y verificación de la medición con brazos articulados de medir por coordenadas - Google Patents

Método y patrón de características geométricas para calibración y verificación de la medición con brazos articulados de medir por coordenadas Download PDF

Info

Publication number
WO2014135721A1
WO2014135721A1 PCT/ES2014/000031 ES2014000031W WO2014135721A1 WO 2014135721 A1 WO2014135721 A1 WO 2014135721A1 ES 2014000031 W ES2014000031 W ES 2014000031W WO 2014135721 A1 WO2014135721 A1 WO 2014135721A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
spheres
pattern according
planes
calibration
Prior art date
Application number
PCT/ES2014/000031
Other languages
English (en)
French (fr)
Inventor
Eduardo CUESTA GONZÁLEZ
Daniel GONZÁLEZ MADRUGA
Miguel SÁNCHEZ ÁLVAREZ
Barulio José ÁLVAREZ ÁLVAREZ
Joaquín BARREIRO GARCÍA
Octavio Manuel Pereira Neto
Original Assignee
Universidad De Oviedo
Universidad De León
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Oviedo, Universidad De León filed Critical Universidad De Oviedo
Publication of WO2014135721A1 publication Critical patent/WO2014135721A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Measuring instruments characterised by the use of mechanical techniques
    • G01B3/30Bars, blocks, or strips in which the distance between a pair of faces is fixed, although it may be preadjustable, e.g. end measure, feeler strip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/004Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
    • G01B5/008Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points using coordinate measuring machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/042Calibration or calibration artifacts

Definitions

  • the present invention relates to a pattern endowed with geometric characteristics directed to the verification and calibration of the measurement with Articulated Coordinate Measuring Arms (Articulate Arm Coordinate Measuring Machine, AACMM or simply Coordinate Measuring Arm (CMA). Its use can also be extended to other Cartesian metrological measuring devices (Coordinate Measuring Machines, CMM), as well as to other manual instruments in dimensional metrology.
  • the invention is based on a particular selection and spatial arrangement of geometric characteristics that are integrated in the apparatus in such a way that it allows to realize numerous dimensional and geometric tolerances specifically oriented to the verification and calibration of three-dimensional measuring equipment in whole, or in a part , of your workload.
  • the present invention also relates to a method for calibrating and / or verifying AACMM with said standard.
  • the invention is applicable in the sectors in which calibration standards are designed, produced and used, such as industrial dimensional metrology applied to the verification and manufacture of products, metallurgy and manufacture of metallic products, or machinery. and mechanical equipment. Focusing even more this field, the main sector of the invention is that in which this type of coordinate measuring machines, of fixed structure (CMM) or portable (AACMM), used in the inspection and dimensional verification processes are used in metal-mechanical industries, manufacturers of parts and components of capital goods. STATE OF THE TECHNIQUE
  • CMM coordinate measuring machines
  • AACMM a alternative to the use of CMM.
  • CMM three-dimensional measurement of parts with high precision, but they have totally different construction and control characteristics that give it its own classification within the coordinate measuring instruments. Its structure is composed of segments joined by rotary joints similar to an arm, usually with 6 or 7 degrees of freedom.
  • Another characteristic of its own is its manual control, that is, the operator is responsible for directing the movement of the arm, deciding the value of the measurement parameters in each contact (direction, pressure, speed, etc.). Contrary to what happens in the CMM where in each measurement the parameters are automated and controlled by the machine.
  • the AACMM can be used in contact or non-contact measurement.
  • a probe is placed that allows obtaining the coordinates of the contact point.
  • the probe is replaced by a laser triangulation sensor (LTS) that collects the points of the surface thanks to the capture of the reflection of a laser beam on it.
  • LTS laser triangulation sensor
  • a software processing is performed, which calculates the dimensional and geometric values of the constructed entities.
  • the density of points can be very high, allowing in this case to reconstruct all the geometry, which has application in reverse engineering work and / or where a comparison is required against a nominal CAD.
  • the calibration and verification patterns used for both types are different.
  • the ability of the AACMM to measure a point accurately, and with it the acceptance of the measurements carried out and the inspection process, is achieved through two processes: calibration and verification.
  • a quantitative value is obtained (uncertainty and correction values if applicable) and in the second one a rather qualitative value is obtained (maximum approximate error, correct or not correct, degree of approximation to limits, etc.) .
  • an optimization or correction of the measurements is usually carried out, so that they approximate those of a reference standard. Over time and with the use of the equipment, the accuracy reached after that calibration is progressively lost.
  • the verification of the precision that the arm can reach, in periodic intervals, measuring the distance of the measured values with respect to those of the last calibration is, in fact, a verification.
  • Both calibration and verification consist in comparing the measurements obtained with those of a standard device, whose dimensions are known with very high precision.
  • the patterns and methods used in verification tasks are usually simpler and more specific than those used in calibration (it is only necessary to see if it measures within specifications) although the calibration ones are also used for verification.
  • the ultimate goal of a calibration is to know the uncertainty associated with the measurements of the device and the necessary corrections to compensate the measurements if necessary.
  • the errors in the measurement are induced by defects in the physical and mechanical elements of the kinematic structure (in the directions of the coordinate axes) of the machine itself and its sensors. Because they have great repeatability, since the measurement conditions are automated and constant, their patterns do not need complex elements. In fact, the most commonly used CMM pattern in the industry is simply composed of several spheres joined by a bar. To facilitate the task of calibration and verification throughout the MMC's workload, bar-based patterns have been developed that are coupled by adopting three-dimensional shapes with spheres at singular points, which save time by avoiding multipositioning of the linear pattern.
  • Three-dimensional shapes include tetrahedra (Joao Bosco de Aquino Silva, M Burdekin, A modular space frame for assessing the performance of co-ordinate measuring machines (CMMs), Precision Engineering, Volume 26, Issue 1, January 2002, Pages 37-48, ISSN 0141-6359, 10.1016 / S0141-6359 (01) 00096-4), cubes, plates and others.
  • CMMs co-ordinate measuring machines
  • Other inventions and devices included in the state of the art are variations of the bars with spheres, such as those included in the patent document US5681981 (A) in which the use of a configurable structure consisting of bars and spheres used for the verification of CMMs is revealed.
  • Patent document JP2003302202 mentions the use of spheres in an "L" shaped structure to calibrate CMMs, and the use of spheres with the same object is also included in DE102010051921 (Al).
  • Other related patent documents develop devices used for positioning bars with spheres within the CMM's workload, such as US4763507 (A).
  • US4763507 There are plate-shaped (flat) patterns in which spheres are distributed with which they simulate various positions of a linear bar of spheres.
  • linear patterns are also constructed by adding longitudinal pattern blocks, as shown in US6493956 (Bl), in US7036236 (Bl) or in L, Takatsuji. T. (2001).
  • the kinematic structure of the AACMM provides great flexibility in the measurement but in turn adds redundancy, since a point can be read from almost infinite positional configurations (poses) of the AACMM. Together with this feature, manual control causes a great lack of repeatability and reproducibility, since the operator will never measure the same point with the same AACMM pose and therefore, due to the mathematical model, there will be a different error at that same point. every time. These facts cause the values obtained in the calibration and verification to vary according to the AACMM itself, to the operator's criteria and to the measurement strategy or technique.
  • the patterns used to verify the AACMM are basically patterns with spheres mounted on small metal stems and distributed spatially on linear bars (profiles of square, round section, in H, etc.), or on plates similar to those used in the CMM. In any case, patterns with a varying number of spheres are used (Hamana. H. (2010) Calibration of articulated arm coordinate Measuring machine considering Measuring posture. International journal of automation technology. 5, 2. 109-1 14; Santolaria, J (2007). Kinematic parameter estimation the technique for calibration and repeability improvement of articulated arm coordinate training machines. Precision Engineering. 32, 4.
  • the current state of the art does not present calibration and / or verification patterns adapted to the unique characteristics of the AACMM: non-Cartesian kinematic structure, control and manual measurement technique, and that they also adapt to the actual pieces of measurement instead of scarcely measured elements in the industry (as is the case with spheres), with CMM standards clearly insufficient for the calibration and verification of articulated coordinate measuring arms and for the evaluation of the way of measuring of the operator.
  • AACMM standards known in the state of the art that jointly verify the factors that influence the reliability and accuracy of their measurements while using both dimensional tolerances and, above all, geometric tolerances.
  • the present invention relates to a dimensional pattern with geometric characteristics designed for calibration and verification of the measurement with AACMM.
  • Another aspect of the present invention is a method for using the standard in calibration and / or verification of AACMM.
  • the invention preferably relates to AACMM, although it could also be applied more generically to other types of coordinate dimensional metrology instruments (such as CMM) and / or conventional instruments.
  • dimensional pattern, pattern, pattern of characteristics, calibrator or verifier refer to the device of the invention intended for the verification and calibration of metrological devices of three-dimensional coordinate measurement.
  • An object of this invention is a pattern for calibration and verification of measurement with coordinate measuring machines, especially for articulated arms measuring by coordinates, comprising the following geometric characteristics:
  • At least four cylinders At least four cylinders.
  • the pattern of the invention further comprises a bearing structure with a longitudinal preferred dimension on which the geometric characteristics are located.
  • the longitudinal preferred dimension on which all the geometric characteristics are located has a length of at least 55% of the measuring range of the equipment to be calibrated or verified.
  • Both the characteristics to be measured and the supporting structure must be of thermally and mechanically stable materials, and equipped with a high rigidity structure.
  • the material for materializing the geometric characteristics and the supporting structure is the same, this material being the same metal alloy or the same fiber composite or the same ceramic material.
  • the geometric characteristics are inserts or bushings in the bearing structure, both of which are of different materials, these materials being preferably the following:
  • the geometric characteristics are of a metallic alloy and the bearing structure is of a fiber composite or;
  • the geometric characteristics are made of ceramic material and the bearing structure is made of a fiber composite or;
  • the geometric characteristics are made of ceramic material and the supporting structure is made of metallic alloy.
  • the metal alloy is steel. In another more preferred embodiment, the metal alloy is INVAR. In another more preferred embodiment, the metal alloy is aluminum. In an even more preferred embodiment, the surface of the geometric characteristics of aluminum alloy is surface hardened, for example by heat treatment and / or by coating. In a more specific embodiment, the fiber compound is carbon fiber.
  • the material to manufacture the pattern must have good metrological properties, such as structural stability and resistance to corrosion and oxidation among others, being able to use for example INVAR (alloy with Fe64% -Ni36% base), material of excellent properties against thermal changes (low coefficient of expansion) but, in order to lighten its weight, other options such as carbon fiber, ceramic materials (Zr02, or others), hardened and / or coated aluminum alloys, etc. can also be used. .
  • the pattern can also be made of two materials, one for the bearing bar or structure and the other for materializing the geometric characteristics to be measured.
  • a light and rigid bearing structure carbon fiber, for example
  • economically materialized characteristics with good surface finish properties and very low shape errors (few micrometers in any case)
  • the Features can be made of ceramic materials or metal alloys, such as INVAR, steel alloys or coated aluminum alloys, hard metal (metal carbide), etc.
  • INVAR indium nitride
  • steel alloys or coated aluminum alloys indium nitride
  • hard metal metal
  • the solid spheres are palpated or digitized (in the case of non-contact sensors such as laser sensors), by external contact or digitized, respectively.
  • the virtual spheres are defined by four points located on their surface.
  • each of the four points that define the virtual spheres are constructed with a spherical probe stably supported in a conical seat or hole, so that the contact between the probe sphere and conical hole is always according to the same circle for each of the four points, the point being considered the center of that circle.
  • the pattern further comprises a virtual circle, defined from three of the four points that define any of the virtual spheres, located on its contour.
  • the furthest spheres either the solid spheres or the virtual spheres, are separated by a distance equal to or greater than 80% of the larger dimension of the pattern.
  • two planes are parallel separated by a distance equal to or greater than 90% of the larger dimension of the pattern; two other planes are parallel separated a distance less than 30 mm or less than 10% of the pattern length; two planes are perpendicular with common axis; and at least two planes form an acute angle greater than or equal to 20 ° and less than or equal to 70 °.
  • two cylinders are for external palpation and two for internal palpation, two of the cylinders being parallel and two others perpendicular.
  • two cones are parallel axes and more preferably, the cones are both outer or both inner which allows both to serve for external palpation or both for internal palpation.
  • the pattern is rigidly coupled to a spatial positioning system to move or pivot it along three orthogonal axes X, Y, Z, (where the X axis is longitudinal horizontal, the Y axis is horizontal transverse, and the Z axis is vertical), allowing the measurement of the characteristics of the pattern in different spatial positions within the work volume of the equipment.
  • the geometric characteristics have an error of less than 10% of the precision or uncertainty value of the articulated measuring arm object of the calibration or verification.
  • Each of the mentioned geometries of the pattern will be manufactured with tolerances and surface finishes appropriate to the minimum precision or errors given by the manufacturers of the measuring arms, taking as reference the requirement of geometric errors (shape errors), in all characteristics considered, less than 1/10 of said value.
  • the surfaces In the case of use of the AACMM without contact, by means of laser triangulation sensors, the surfaces must have optical properties appropriate to the sensor (eg spheres or planes with a matte finish, white ceramic, etc.).
  • the dimensional pattern allows to realize dimensional tolerances of diameters, angles and distances between characteristics (either central point or axis of the elements).
  • the dimensional pattern makes it possible to realize geometric tolerances given by the errors in the form of the different individual characteristics and tolerances of related elements of the parallelism, perpendicularity, inclination, coaxiality and position type.
  • the geometric tolerance of the virtual spheres is excepted, since error cannot be calculated here since the number of points, four, coincides with the minimum necessary for its definition.
  • the pattern of the invention has minimal geometric characteristics, a total length and a spatial multiposition capacity such that it allows to evaluate the volume of work of the AACMM, and optionally of any Coordinate Measuring Machine (CMM).
  • CCM Coordinate Measuring Machine
  • the pattern of characteristics allows the incorporation of the geometric characteristics, adjusting to the measurements and types of tolerances to be verified in inspection and verification of real parts in the industry. Likewise, it is especially indicating to quantify the influence of the measurement technique of the operator, largely responsible for the accuracy achieved in the case of the AACMM.
  • the measurement technique with this pattern brings together numerous factors that in other machines, such as CMM, are automated and controlled such as the position of the arm during contact, the orientation of the probe or optical sensor with respect to the part, the distribution of points, the measurement strategy (continuous or point-to-point measurement), the contact force, the approach or approach speed, as well as the variation of these parameters during the process.
  • the calibration or verification procedure using a pattern such as the one presented here is based on something that is not evident: the need to check the measurements made with this equipment not only in dimensional tolerances (as traditional patterns do) but also, and especially, in the measurement of a range of geometric tolerances. This allows to evaluate the real precision (or quantify the uncertainty if we talk about calibration) of the AACMM in the measurement of all its characteristics.
  • the invention incorporates a series of manufacturing features (manufacturingfeatures), such as: a) Solid spheres.
  • Cones (exterior or interior).
  • the first, the spheres concern the external palpation of solid real spheres, compared to the second, which involve the construction of a "virtual sphere".
  • This virtual sphere is obtained from the 4-point palpation, where each point is given by the coordinates of the center of the spherical probe, by supporting it on an inner conical surface ("conical seat” or “conical hole seat”).
  • the cylinders and the cones are not only palpated on the outside, but also include their variant of palpation on the inside: cylindrical and conical holes respectively.
  • the new pattern combines this type of characteristics to enable the manual measurement of multiple dimensional and geometric tolerances, both individual and related: a) With solid spheres: sphericity (shape error), distances between sphere centers and their diameters.
  • two “virtual circles” can be constructed, enabling the measurement of diameter and distance between them.
  • outer and inner cylinders diameter, cylindricality (shape error), angle between the axes (parallelism, coaxiality and perpendicularities between axes), distances between parallel axes and between perpendicular axes.
  • Another aspect of the present invention is a method for performing calibration and verification of coordinate measuring machines, especially articulated arms measuring by coordinates, and which, using the pattern of the invention, comprises the following steps: a) Define the positions that the employer will adopt within the working volume of the instrument to be calibrated or verified. b) Position and fix the pattern in a stable spatial position of the multiposition apparatus that defines the first position or orientation. c) Measure all geometric pattern features. d) Position the pattern in the next position and repeat step (c) until measured in all positions defined in (a). e) Determine, by comparison with reference values, if the measuring instrument measures within the acceptable tolerance range according to each geometric characteristic and its relations between them.
  • the method further comprises the step: f) If the measuring instrument is outside the tolerance range, correct it.
  • All the constituent elements of the pattern require a variation of its spatial position, with a combination of displacement of different axes of the AACMM during its measurement, thus revealing the importance of the measurement technique or skill of the operator.
  • Each element can be measured differently, either in Contact or contactless measurement.
  • a solid sphere can be measured point to point (discrete points) or with continuous contact (keeping the probe in contact with the sphere at all times), which influences the deflection of the probe and the deformation of the structure itself of the AACMM.
  • the same geometric characteristic can also be measured with points taken perpendicular or parallel to the surface, at different speeds and with greater or lesser contact force depending on the skills of the operator, etc.
  • laser triangulation sensor where the distance of the sensor with the piece, the intensity, the orientation of the sensor and the speed of scanning are very important in the quality and reliability of the measurements.
  • This basic configuration which differentiates it from the other existing standards, is complemented by a series of features and / or accessories that make the pattern can also be used for current calibration procedures: low form errors, portability, multiorientation, material Low expansion coefficient (INVAR, carbon fiber, ceramic materials such as Zirconium oxide, Zerodur, etc.) or, failing that and additionally, incorporation of thermocouple for temperature measurement that allows a structural correction of errors geometric in industrial environments of uncontrolled temperature.
  • the pattern also allows biapoyado in the two points that define a minimum arrow in the center, or in the points that maintain the extreme faces of parallel measures (Airy points), or those of the minimum variation of length of the neutral fiber during the buckling (Bessel points).
  • the invention provides, compared to the standards that are currently known, a fundamental advantage that lies in the possibility of accepting and guaranteeing measurements with AACMM performed "in situ" by a specific operator, or of correcting them otherwise, by performing subsequent calibration.
  • the main advantage is the development of the necessary means to calibrate and / or verify the AACMM completely, including all the factors that influence its accuracy: its structure, its manual control and especially its measurement technique by a operator, in addition to adapting to the real parts of the industry. It follows from this advantage that all AACMMs in the market can be reliably compared to each other.
  • the evaluation of the capabilities and abilities of an operator in the measurement with AACMM is possible, performing training and certification functions or qualification of operators.
  • these procedures can be performed "in situ” where AACMM works without losing its portability and flexibility characteristics.
  • the present invention is applicable in the sectors in which calibration and verification standards are designed, produced and used, such as industrial dimensional metrology applied to product verification and manufacturing, metallurgy and metal product manufacturing, or the one of machinery and mechanical equipment DESCRIPTION OF THE FIGURES
  • FIG. 1 A conceptual scheme of the invention in its most basic version is shown in Fig. 1, with the minimum basic types of geometric characteristics and their arrangement aligned to become a pattern of characteristics.
  • This figure shows a central pivot point (0) on which the pattern pivots to make spatial multiposition, and that corresponds to the origin of coordinates of the X, Y, Z axes.
  • cylinders (3), (4), (15) and (16) Two of them, cylinder (3) and (4) or cylinder (15) and (16), are perpendicular to each other, and two of them will be parallel shafts, cylinders (3) and (16) or cylinders (4) and (15), specifying two of them in the case of coaxials. At least two of them are palpated on the outside, such as cylinders (4) and (15), and two others are palpated on the inside, such as cylinders (3) and (16).
  • Fig. 2 presents an isometric view of a preferred materialization of the pattern with geometric characteristics, where these are arranged on an axis that also It contains a central pivot point for multiposition.
  • the pattern of the figure comprises at least the five different types of characteristics to be measured, with double measurement of cylinders and cones for internal and external measurements.
  • the pattern comprises: a) Five solid spheres (19), (20), (21), (22), (23).
  • Fig. 4 a plan view of the same preferred materialization of the pattern with characteristics of Fig. 2 can be seen, in which also the virtual spheres have been omitted.
  • Fig. 5 a detail is observed, in right isometric view, of the virtual sphere (56) located to the left of the pattern and represented by dotted lines, which is constructed by palpating the points (A), (B), ( C) and (D).
  • the point (B) is taken by supporting the spherical probe of the AACMM, horizontally, and on a machined cone perpendicular in the plane (24).
  • Point (A) and point (C) are also taken by resting the probe vertically on the machined cones on the horizontal surfaces of the pattern.
  • the point (D), hidden in this view, is taken by supporting the spherical tip of the probe horizontally.
  • all kinematic support cones are 90 ° cones machined with centering or tapping bits.
  • FIG. 6 a detail is observed, in isometric left view, of the same virtual sphere (56) located to the left of the pattern, which is constructed by palpating the same points (A), (B), (C) and ( D) that in Fig. 5.
  • point (A) is the one that remains hidden from view and is taken by supporting the spherical tip of the probe vertically.
  • Fig. 7 the plan view of the same detail shown in Figs. 5 and 6.
  • the virtual sphere (56) is shown as a virtual circle projected in the view. Note that points (B) and (C) are at different height and that belonging to the virtual sphere are not on the circle that represents the diameter of the virtual sphere.
  • FIG. 8 the profile view of the same detail shown in Figs. 5 and 6.
  • the virtual sphere (56) is shown as a virtual circle projected in the view. Note that points (A) and (D) are at different height and that belonging to the virtual sphere are not exactly over the circle that represents the diameter of the virtual sphere.
  • Fig. 9 it is observed, in isometric view, a new variant of the preferred materialization of the pattern, in which the outer cones of the central area have been removed to enhance (by repeatability analysis) the measurement with more outer cylinders.
  • the pattern is equipped with 4 outer cylinders with parallel shafts (42), (43), (58) and (59). Two of them, the cylinders (42) and (43) are the same as those indicated in Fig. 1.
  • the other two new cylinders (58) and (59) contain inside the respective trunks of inner cones (48) and (49), which do not vary respects to those indicated in Fig. 1. So in this variant the outer cones (46) and (47) have been removed from the preferred pattern shown in the previous figures (Figs. 1, 2 and 3), because the cones are treated external entities of much less interest in precision metrological applications.
  • a preferred pattern design as shown in Figs. 2, 3 and 4 all types of basic geometric elements mentioned above were used, and even with repetitions in some of them.
  • the standard was used to calibrate and / or verify an AACMM measuring arm, 1800 mm diameters in range.
  • the length of the pattern was 1000 mm.
  • the cross section of the pattern had the inverted T-shape approximately 20 mm wide, and inscribed in a rectangle of approximately 50x50 mm.
  • the material chosen for the entire pattern was INVAR and some elements were materialized on the support bar itself, as was done with all measurement planes (24) to (35) and the six horizontal cylinders machined in the battlements (50), ( 51), (52), (53), (54) and (55), all cylinders approximately 28 mm in diameter.
  • the support bar was manufactured by milling with an inverted T-shape, in whose vertical soul the 6 face battlements were machined parallel planes separated approximately 100 mm, distance between planes (24) and (25), planes (26) and (27) and so on to the plane (34) and (35). Between the two central battlements, flat (29) and (30), there was a gap of approximately 28 mm. These parallel planes that defined the battlements, correlatively from (24) to (35), also defined distances between planes along the length of the pattern.
  • the palpation surface for these planes was of the order of 20x15 mm, somewhat larger than the measurement area of the standard longitudinal standard blocks.
  • the ends of the pattern were machined forming planes with an angle of 60 ° between them, planes (36) with (37) and (38) with (39).
  • the inverted T-shape of the central bearing bar itself defined two perpendicular planes (40) and (41) between the soul and the wings of the pattern.
  • the conical holes had an approximate depth of 5 mm, diameter of the footprint on the surface of 10 mm and angle of the cone of 90 °, trying to make them on faces of the pattern with different orientations and space them enough to allow building virtual spheres (56) and (57) of significantly large diameters, of the order of 50 mm.
  • the pattern also maintained its characteristics in several spatial positions and was designed to adapt to a positioning system.
  • the points by which the pattern was attached to said positioning system were points of the pattern separated such that the deformation (arrow) suffered by its own weight in the central area was minimized, points that were not far from the points that maintained the parallel end faces (Airy points), which for the 1000 mm long pattern they were approximately 570 mm separated points. This distance was adjusted by analyzing the straightness of the pattern once machined, taking as supports or areas of support those that minimized the error of straightness of the entire bar.
  • the design of the pattern made it possible to extend its application to compliance with ASME and VDI regulations, for verification of AACMM, or even use ISO 10360 (oriented to CMM in general) by varying the methodology to introduce the new elements and extending the total length of the pattern to cover 60% of the AACMM range.
  • the incorporated elements made it possible to realize a multitude of tolerances: a) Diameters, distances between spheres and sphericity. This was done with the five solid spheres (19), (20), (21), (22) and (23) of the pattern. For reasons of covering the working range and to adapt to the current regulations, two of the spheres, (19) and (23), were separated between them at least between 50 and 55% of the total length of the pattern or between 100% and 1 10% of the range of the AACMM.
  • the calibration procedure with the characteristic pattern consisted of the measurement of all the elements that comprise it, in different positions of the workspace in such a way that an important part of the AACMM's work volume was included.
  • the operator who manually controls the movement the AACMM provided its measurement technique.
  • the application of the method on the pattern of the invention was carried out by the following steps: a) The positions that the pattern would adopt within the working volume of the instrument to be calibrated or verified were defined. b) The pattern was positioned and fixed in a stable spatial position of the multiposition apparatus that defined the first position or orientation. c) All geometric pattern characteristics were measured. d) The pattern was positioned in the next position and step (c) was repeated. until measured in all positions defined in (a); e) It was determined, by comparison with reference values, if the measuring instrument measured within the acceptable tolerance range according to each geometric characteristic and its relations between them.
  • the calculation of the measurement uncertainty obtained in the calibration was obtained from a mathematical calculation process in which the differences between the real (nominal) values of the standard and the values measured by the AACMM were evaluated. With the characteristic pattern presented, the measurement errors of the geometric and dimensional characteristics considered were used, the calibration procedure approaching the measurement of real parts in the industry.
  • the periodic measurement of the characteristics of the standard was carried out, in order to verify that the values obtained were in accordance with those obtained in the calibration, that is, within the limits of acceptance imposed on the inspection process. This guaranteed that the measurements made with the AACMM were reliable enough to be accepted.
  • the pattern also had the function of operator training as it shows the correct measurement and allows the correction of the measurement technique.
  • the calibration procedure was as described in the previous example, although on a pattern with the characteristics described in this example.
  • the pattern designs did not vary except surface finishes.
  • the surfaces of the characteristics considered were manufactured with suitable optical qualities (in matt or satin finish or white ceramic) to maximize the amount of surface points read by the sensor, then proceeding to apply the method as described in in example 2.

Abstract

Método y patrón de características geométricas para la verificación y calibración de la medición con brazos articulados de medir por coordenadas, que comprende esferas macizas, esferas virtuales, planos, cilindros interiores (44), (45) y exteriores (42), (43), (58), (59) y conos interiores (48), (49) o exteriores. La invención comprende una particular selección y disposición espacial de características geométricas que permite materializar numerosas tolerancias dimensionales y geométricas. La medición de las características geométricas y su comparación con valores de referencia en distintas posiciones del espacio, permite evaluar tanto el equipo como la técnica de medición, entrenando o acreditando a operarios en su utilización. La invención también comprende un método de calibración y verificación utilizando dicho patrón. De aplicación en sectores en los que se diseñen, produzcan y utilicen patrones de calibración, como en metrología dimensional industrial preferentemente con máquinas de medir por coordenadas de estructura portátil o de estructura fija.

Description

MÉTODO Y PATRÓN DE CARACTERÍSTICAS GEOMÉTRICAS PARA CALIBRACIÓN Y VERIFICACIÓN DE LA MEDICIÓN CON BRAZOS ARTICULADOS DE MEDIR POR COORDENADAS La presente invención se refiere a un patrón dotado de características geométricas dirigido a la verificación y calibración de la medición con Brazos Articulados de Medición por Coordenadas (Articúlate Arm Coordínate Measuring Machine, AACMM o, simplemente, Coordínate Measuring Arm, CMA). Su uso también puede extenderse a otros aparatos metrológicos de medición cartesiana (Coordínate Measuring Machines, CMM), así como a otros instrumentos manuales en metrología dimensional. La invención se basa en una particular selección y disposición espacial de características geométricas que se integran en el aparato de tal manera que permite materializar numerosas tolerancias dimensionales y geométricas específicamente orientadas a la verificación y calibración de equipos de medición tridimensional en todo, o en una parte, de su volumen de trabajo. La presente invención también se refiere a un método para calibrar y/o verificar los AACMM con dicho patrón.
La invención es de aplicación en los sectores en los que se diseñen, produzcan y utilicen patrones de calibración, como el de la metrología dimensional industrial aplicada a la verificación y fabricación de productos, el de metalurgia y fabricación de productos metálicos, o el de maquinaria y equipo mecánico. Centrando aún más este ámbito, el sector principal de la invención es aquel en el que se utilizan este tipo de máquinas de medir por coordenadas, de estructura fija (CMM) o portátiles (AACMM), usadas en los procesos de inspección y verificación dimensional en industrias metal-mecánicas, fabricantes de piezas y componentes de bienes de equipo. ESTADO DE LA TÉCNICA
Los expertos en la materia son conocedores de la existencia de diferentes tipos de patrones dimensionales para comprobar el comportamiento y precisión de los aparatos metrológicos de medición por coordenadas. Dentro de los del tipo tridimensional, las máquinas de medir por coordenadas (CMM) son los aparatos de referencia en el campo de la metrología de inspección tridimensional de piezas. Los AACMM son una alternativa al uso de las CMM. Estos instrumentos comparten la misma función que las CMM, la medición tridimensional de piezas con alta precisión, pero son de características constructivas y de control totalmente distintas que le otorgan una clasificación propia dentro de los instrumentos de medición por coordenadas. Su estructura está compuesta por segmentos unidos por articulaciones rotativas similares a un brazo, normalmente de 6 ó 7 grados de libertad. Otra característica propia es su control de naturaleza manual, es decir, es el propio operario el encargado de dirigir el movimiento del brazo decidiendo el valor de los parámetros de medición en cada contacto (dirección, presión, velocidad, etc.). Al contrario de lo que ocurre en las CMM donde en cada medición los parámetros son automatizados y controlados por la máquina.
Los AACMM pueden ser utilizados en medición por contacto o sin contacto. En la primera, en el extremo libre del brazo, se sitúa un palpador que permite la obtención de las coordenadas del punto de contacto. En la segunda, el palpador es sustituido por un sensor de triangulación láser (LTS) que recoge los puntos de la superficie gracias a la captura del reflejo de un haz láser sobre ella. Tanto en un caso como en otro, a partir de las coordenadas de los puntos obtenidos se realiza un procesado mediante software, que calcula los valores dimensionales y geométricos de las entidades construidas. En el caso de los sensores láser de triangulación, la densidad de puntos puede ser muy elevada, permitiendo en este caso reconstruir toda la geometría, lo que tiene aplicación en trabajos de ingeniería inversa y/o donde se requiera una comparativa contra un CAD nominal. Los patrones de calibración y verificación utilizados para ambos tipos son diferentes.
La capacidad de los AACMM de medir un punto con precisión, y con ello la aceptación de las medidas realizadas y del proceso de inspección, se consigue por medio de dos procesos: la calibración y la verificación. En el primero se obtiene un valor cuantitativo (incertidumbre y valores de corrección si procede) y en el segundo se obtiene un valor más bien de tipo cualitativo (error máximo aproximado, correcto o no correcto, grado de aproximación a unos límites, etc.). Después de una calibración, habitualmente se lleva a cabo una optimización o corrección de las medidas, de forma que las mismas se aproximen a las de un patrón de referencia. Con el paso del tiempo y con el uso del equipo, la precisión alcanzada tras esa calibración se pierde progresivamente. La comprobación de la precisión que el brazo puede llegar a alcanzar, en intervalos periódicos, midiendo el alejamiento de los valores medidos con respecto a los de la última calibración es, en realidad, una verificación. Con objeto de abaratar costes sin pérdida de fiabilidad, es habitual realizar verificaciones periódicas entre calibraciones. A menudo el resultado de las verificaciones modifica, y establece, el periodo óptimo de calibración necesario.
Tanto la calibración como la verificación consisten en la comparación de las medidas obtenidas con las que tiene un artefacto patrón, del cual se conocen sus dimensiones con muy alta precisión. Los patrones y métodos utilizados en tareas de verificación suelen ser más simples y específicos que los utilizados en calibración (solo se requiere ver si mide dentro de especificaciones) aunque los de calibración sirven igualmente para verificación. El objetivo último de una calibración es conocer la incertidumbre asociada a las medidas del aparato y las correcciones necesarias para compensar las mediciones si fuese necesario.
En las CMM los errores en la medición vienen inducidos por defectos en los elementos físicos y mecánicos de la estructura cinemática (en las direcciones de los ejes coordenados) de la propia máquina y de sus sensores. Debido a que poseen una gran repetibilidad, y a que las condiciones de medición están automatizadas y son constantes, sus patrones no necesitan elementos complejos. De hecho, el patrón para CMM más utilizado en la industria está compuesto simplemente por varias esferas unidas por una barra. Para facilitar la tarea de calibración y verificación en todo el volumen de trabajo de las MMC, se han desarrollado patrones basados en barras que se acoplan adoptando formas tridimensionales con esferas en puntos singulares, que ahorran tiempo al evitar el multiposicionamiento del patrón lineal. Las formas tridimensionales incluyen tetraedros (Joao Bosco de Aquino Silva, M Burdekin, A modular space frame for assessing the performance of co-ordinate measuring machines (CMMs), Precisión Engineering, Volume 26, Issue 1, January 2002, Pages 37-48, ISSN 0141-6359, 10.1016/S0141 -6359(01)00096-4), cubos, placas y otras. Otras invenciones y aparatos incluidos en el estado del arte son variaciones de las barras con esferas, como por ejemplo los incluidos en el documento de patente US5681981 (A) en la que se revela el uso de una estructura configurable formada por barras y esferas utilizadas para la verificación de las CMM. El documento de patente JP2003302202 (A) menciona el uso de esferas en una estructura en forma de "L" para calibrar las CMM, y en DE102010051921 (Al) también se incluye la utilización de esferas con el mismo objeto. Otros documentos de patente relacionados desarrollan aparatos utilizados para el posicionamiento de barras con esferas dentro del volumen de trabajo de las CMM, como por ejemplo US4763507 (A). Existen patrones en forma de placa (plano) en los que se distribuyen esferas con los que simulan varias posiciones de una barra lineal de esferas. Además, en algunos casos también se construyen patrones de tipo lineal por adición de bloques patrones longitudinales, como se muestra en US6493956 (Bl), en US7036236 (Bl) o en L, Takatsuji. T. (2001). Uncertainty analisys of calibration of geometrical gauges. Precisión Engineering. 6, 1. 24-29. Otras invenciones incluyen aparatos adicionales como interferómetros para calcular los errores de los patrones (Osawa. S. (2001). Development of a ball step-gauge and an interfometric stepper used for ball píate calibration. Precisión Engineering. 26, 2. 214-221).
La estructura cinemática de los AACMM aporta gran flexibilidad en la medición pero a su vez añade redundancia, ya que un punto puede ser leído de casi infinitas configuraciones posicionales (poses) del AACMM. Unido a esta característica, el control manual causa una gran falta de repetibilidad y reproducibilidad, pues el operario no medirá nunca el mismo punto con la misma pose del AACMM y por lo tanto, debido al modelo matemático, existirá un error diferente en ese mismo punto cada vez. Estos hechos provocan que los valores obtenidos en la calibración y verificación varíen de acuerdo al propio AACMM, al criterio del operario y a la estrategia o técnica de medición. Además, la falta de automatización en el control genera una distribución de puntos desigual en la medición de un mismo elemento entre sucesivas repeticiones, mientras que los puntos de contacto en las CMM son prácticamente siempre los mismos (precisiones por debajo del micrómetro), lo que acentúa la influencia del binomio "técnica de medición - operario" en la precisión de los AACMM. Por último, al no existir en su estructura ningún elemento físico que se ajuste a los ejes coordenados del sistema de medición, los errores del AACMM no pueden ser atribuidos a ningún elemento físico único (como en el caso de las CMM donde se calcula el error del eje X al posicionar y medir el patrón en esta dirección). A pesar de su especificidad, los AACMM han heredado mayoritariamente los patrones y metodologías de calibración y verificación de las CMM. Esto es debido a que poseen el mismo objetivo funcional (medición por coordenadas), a la celeridad de su implantación y a la escasa normativa asociada. No obstante, son muy pocos los patrones específicamente diseñados para AACMM, y los que hay siguen estando basados en los de las CMM.
Del estado del arte se deduce que los patrones utilizados para verificar los AACMM son básicamente patrones con esferas montadas sobre pequeños vástagos metálicos y repartidas espacialmente sobre barras lineales (perfiles de sección cuadrada, redonda, en H, etc.), o sobre placas similares a las empleadas en las CMM. En todo caso, se utilizan patrones con un número variante de esferas (Hamana. H. (2010) Calibration of articulated arm coordínate Measuring machine considering Measuring posture. International journal of automation technology. 5, 2. 109-1 14; Santolaria, J (2007). Kinematic parameter estimation thecnique for calibration and repeability improvement of articulated arm coordínate measuring machines. Precisión Engineering. 32, 4. 251-268) o incluso esferas virtuales formadas por puntos definidos por asientos cinemáticos cónicos (Piratelli-Filho, A. (2009). Virtual spheres gauge for coordínate Measuring arms performance test. Measurement. 43, 2. 236-244). Además, también se utilizan estructuras tridimensionales formadas por la unión de barras y esferas (Han, J. (2010). Quick verification technology of coordínate Measuring arm. Advanced Materials Research. 156, 157. 56-59). Como en las CMM, también algunos autores utilizan placas bidimensionales con esferas distribuidas por su superficie (Shimojima, K. (2002). The estimation method of uncertainty of articulated coordínate measuring machine. International conference on industrial technology, 2002. IEEE ICIT) y/o esferas virtuales definidas también por 4 puntos en el espacio (Piratelli- Filho, A. (201 1). Application of virtual spheres píate for AACMMs evaluation. Precisión Engineering. 36, 2. 349-355). Debido a la facilidad de los AACMM de adaptarse a los asientos cinemáticos cónicos, también han sido incluidos en algunos trabajos como en Gatti, G. (2006). Validation of a calibration technique for 6-DOF instrumented spatial linkages. Journal of biomechanics. 40, 7. 1455-1466.; Gao, G. (2009). Structural Parameter Identification for articulated arm coordínate measuring machines. International conference on measuring technology and mechatronics automation, o Gao, G. (2009) Kinematic calibration for articulated arm coordinate measuring machines base on particle swarm optimization. Second international conference on intelligent computation technology and automation. 1. 189-192. Por otra parte, las dos normas existentes actualmente más importantes y aceptadas internacionalmente (ASME B89.4.22-2004.(2004): Methods for performance evaluation of Articulated Arm Coordinate Measuring Machines y VDI/VDE 2617 Part 9.(2009): Acceptance and reverification test for Articulated Arm Coordinate Measuring Machines) también utilizan el concepto de barras o perfiles lineales dotados únicamente de esferas y asientos cinemáticos cónicos. Sus procedimientos se basan en la medición reiterativa de varias distancias entre centros de esferas y la distancia entre ellos.
Por lo mencionado anteriormente puede decirse que el estado de la técnica actual no presenta patrones de calibración y/o verificación adaptados a las características únicas de los AACMM: estructura cinemática no cartesiana, control y técnica de medición manual, y que además se adapten a las piezas reales de medición en lugar de elementos escasamente medidos en la industria (como ocurre con las esferas), siendo los patrones de CMM claramente insuficientes para la calibración y verificación de los brazos articulados de medición por coordenadas y para la evaluación de la forma de medir del operario. Tampoco se conocen en el estado de la técnica patrones de AACMM que verifiquen conjuntamente los factores que influyen en la fiabilidad y precisión de sus medidas utilizando a la vez tolerancias dimensionales y, sobretodo, tolerancias geométricas.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención se refiere a un patrón dimensional dotado de características geométricas concebido para la calibración y verificación de la medición con AACMM. Otro aspecto de la presente invención es un método para utilizar el patrón en tareas de calibración y/o verificación de los AACMM. La invención se refiere preferiblemente a AACMM, aunque podría también aplicarse de forma más genérica a otro tipo de instrumentos de metrología dimensional por coordenadas (como las CMM) y/o instrumentos convencionales.
A los efectos de esta invención y su descripción, los términos patrón dimensional, patrón, patrón de características, calibrador o verificador, se refieren al dispositivo de la invención destinado a la verificación y calibración de aparatos metrológicos de medición tridimensional por coordenadas.
Un objeto de esta invención es un patrón para la calibración y verificación de la medición con máquinas de medir por coordenadas, especialmente para brazos articulados de medir por coordenadas, que comprende las siguientes características geométricas:
- Al menos dos esferas de calibración macizas.
- Al menos dos esferas virtuales.
- Al menos ocho planos.
- Al menos cuatro cilindros. - Al menos dos conos (o troncos de cono).
El patrón de la invención además comprende una estructura portante con una dimensión preferente longitudinal sobre la que se sitúan las características geométricas.
En una realización preferida, la dimensión preferente longitudinal sobre la que se sitúan todas las características geométricas, tiene una longitud de al menos un 55 % del rango de medida del equipo a calibrar o verificar.
Tanto las características a medir como la estructura portante deben ser de materiales estables térmica y mecánicamente, y dotados de una estructura de alta rigidez. En otra realización preferida, el material para materializar las características geométricas y la estructura portante es el mismo, siendo este material la misma aleación metálica o el mismo compuesto de fibra o el mismo material cerámico.
En otra realización preferida, las características geométricas son insertos o casquillos en la estructura portante, siendo ambos de materiales diferentes, siendo estos materiales preferí damente los siguientes:
- Las características geométricas son de una aleación metálica y la estructura portante es de un compuesto de fibra o;
- las características geométricas son de material cerámico y la estructura portante es de un compuesto de fibra o;
- las características geométricas son de material cerámico y la estructura portante es de aleación metálica.
En una realización más preferida, la aleación metálica es acero. En otra realización más preferida, la aleación de metal es INVAR. En otra realización más preferida, la aleación de metal es de aluminio. En una realización todavía más preferida, la superficie de las características geométricas de aleación de aluminio está endurecida superficialmente, por ejemplo mediante un tratamiento térmico y/o por aportación de recubrimiento. En una realización más específica, el compuesto de fibra es de fibra de carbono. Desde el punto de vista constructivo, el material para fabricar el patrón debe tener buenas propiedades metrológicas, como estabilidad estructural y resistencia a la corrosión y oxidación entre otras, pudiendo utilizarse por ejemplo INVAR (aleación con base Fe64%-Ni36%), material de excelentes propiedades ante cambios térmicos (bajo coeficiente de dilatación) pero, con objeto de aligerar su peso, también pueden utilizarse otras opciones como fibra de carbono, materiales cerámicos (Zr02, u otros), aleaciones de aluminio endurecidas y/o con recubrimiento, etc. El patrón también puede estar fabricado de dos materiales, uno para la barra o estructura portante y otro distinto para materializar las características geométricas a medir. De esta forma puede usarse una estructura portante ligera y rígida (fibra de carbono, por ejemplo) y unas características materializadas económicamente con buenas propiedades de acabado superficial y muy bajos errores de forma (pocos micrómetros en todo caso). Las características pueden ser fabricadas de materiales cerámicos o sobre aleaciones metálicas, como INVAR, aleaciones de acero o aleaciones de aluminio con recubrimiento, metal duro (carburo metálico), etc. En caso de usar materiales con alto coeficiente de dilatación, será muy importante controlar la temperatura en el procedimiento de calibración o verificación correspondiente, con objeto de compensar las dilataciones (o contracciones) en las mediciones alejadas de la temperatura de referencia de 20° C.
En una realización específica, las esferas macizas se palpan o se digitalizan (en el caso de sensores sin contacto como por ejemplo sensores láser), por contacto o digitalizado exterior, respectivamente.
En otra realización específica, las esferas virtuales están definidas por cuatro puntos situados sobre su superficie. En una realización más específica, cada uno de los cuatro puntos que definen las esferas virtuales, se construyen con un palpador esférico apoyado de forma estable en un asiento o agujero cónico, de forma que el contacto entre esfera del palpador y agujero cónico es siempre según el mismo círculo para cada uno de los cuatro puntos, siendo el punto a considerar el centro de dicho círculo.
En otra realización específica, el patrón además comprende un círculo virtual, definido a partir de tres de los cuatro puntos que definen cualesquiera de las esferas virtuales, situados sobre su contorno. En otra realización específica, las esferas más alejadas, bien las esferas macizas o las esferas virtuales, están separadas por una distancia igual o mayor al 80% de la dimensión mayor del patrón.
En otra realización específica, dos planos son paralelos separados una distancia igual o mayor al 90% de la dimensión mayor del patrón; otros dos planos son paralelos separados una distancia menor de 30 mm o menor al 10 % de la longitud del patrón; dos planos son perpendiculares con eje común; y al menos dos planos forman un ángulo agudo mayor o igual que 20° y menor o igual que 70°.
En otra realización específica, dos cilindros son para palpado externo y dos para palpado interno, siendo dos de los cilindros paralelos y otros dos perpendiculares. En otra realización específica, dos conos son de ejes paralelos y más preferidamente, los conos son ambos exteriores o ambos interiores lo que permite que ambos sirvan para palpado externo o ambos para palpado interno.
En una realización preferida, el patrón se acopla rígidamente a un sistema de posicionamiento espacial para desplazarlo o pivotarlo a lo largo de tres ejes ortogonales X, Y, Z, (donde el eje X es longitudinal horizontal, el eje Y es transversal horizontal, y el eje Z es vertical), permitiendo la medida de las características del patrón en distintas posiciones espaciales dentro del volumen de trabajo del equipo.
En otra realización preferida, las características geométricas poseen un error de forma menor al 10% de la precisión o valor de incertidumbre del brazo articulado de medición objeto de la calibración o verificación. Cada una de las geometrías citadas del patrón estará fabricada con unas tolerancias y acabados superficiales adecuados a las precisiones o errores mínimos dados por los fabricantes de los brazos de medición, tomándose como referencia la exigencia de errores geométricos (errores de forma), en todas las características consideradas, inferiores a 1/10 de dicho valor. En el caso de uso del AACMM sin contacto, por medio de sensores de triangulación láser, las superficies deben tener propiedades ópticas adecuadas al sensor (p. ej. esferas o planos con acabado mate, de cerámica blanca, etc.).
El patrón dimensional permite materializar tolerancias dimensionales de diámetros, ángulos y distancias entre características (bien punto central o eje de los elementos).
Igualmente, el patrón dimensional permite materializar tolerancias geométricas dadas por los errores de forma de las distintas características individuales y tolerancias de elementos relacionados del tipo paralelismo, perpendicularidad, inclinación, coaxialidad y posición. Se exceptúa en este caso la tolerancia geométrica de las esferas virtuales (esfericidad) pues aquí no se pude calcular error de forma dado que el número de puntos, cuatro, coincide con el mínimo necesario para su definición.
El uso de estas características geométricas o, lo que es lo mismo, la medición de sus tolerancias (tanto individuales como asociadas) añade mucha más información que la mera medición de distancias entre centros de esferas como hacen los procedimientos (y los patrones) actuales de verificación y calibración de AACMM. Por lo que el método de calibración o verificación con este nuevo patrón permite realizar dichos procedimientos con muchas menos posiciones espaciales alrededor del AACMM.
El patrón de la invención posee unas características geométricas mínimas, una longitud total y una capacidad de multiposición espacial tal que permite evaluar el volumen de trabajo de los AACMM, y opcionalmente de cualquier Máquina de Medir por Coordenadas (CMM). El patrón de características posibilita la incorporación de las características geométricas ajustándose a las mediciones y tipos de tolerancias a comprobar habituales en inspección y verificación de piezas reales en la industria. Asimismo, está especialmente indicando para cuantificar la influencia de la técnica de la medición del operario, responsable en gran medida de la precisión alcanzada en el caso de los AACMM. La técnica de medición con este patrón aglutina numerosos factores que en otras máquinas, como las CMM, se encuentran automatizados y controlados como son la posición del brazo durante el contacto, la orientación del palpador o sensor óptico con respecto a la pieza, la distribución de puntos, la estrategia de medición (medición continua o punto a punto), la fuerza de contacto, la velocidad de acercamiento o de aproximación, así como la variación de estos parámetros durante el proceso.
El procedimiento de calibración o verificación utilizando un patrón como el que aquí se presenta se fundamenta en algo que no es evidente: la necesidad de comprobar las mediciones efectuadas con estos equipos no sólo en tolerancias dimensionales (como hacen los patrones tradicionales) sino también, y sobre todo, en la medición de una gama de tolerancias geométricas. Esto permite evaluar la precisión real (o cuantificar la incertidumbre si hablamos de calibración) de los AACMM en la medición de todas sus características. Para ello, la invención incorpora una serie de características de fabricación (manufacturingfeatures), como: a) Esferas macizas.
b) Esferas virtuales.
c) Planos.
d) Cilindros (exteriores e interiores),
e) Conos (exteriores o interiores). Los primeros, las esferas, atañen al palpado exterior de esferas reales macizas, frente a los segundos, que suponen la construcción de una "esfera virtual". Esta esfera virtual es obtenida del palpado de 4 puntos, donde cada punto viene dado por las coordenadas del centro del palpador esférico, al apoyarlo en una superficie cónica interior ("asiento cónico" o "asiento de agujero cónico"). En cuanto a los dos últimos elementos, los cilindros y los conos, no sólo se palpan por el exterior, sino que incluyen también su variante de palpado por el interior: agujeros cilindricos y cónicos respectivamente.
El nuevo patrón combina este tipo de características para posibilitar la medición manual de múltiples tolerancias dimensionales y geométricas, tanto individuales como relacionadas: a) Con esferas macizas: esfericidad (error de forma), distancias entre centros de esferas y sus diámetros.
b) Con esferas (virtuales): distancia entre ellas y diámetro de los mismos.
Escogiendo 3 puntos cualesquiera de cada una de las esferas se pueden construir dos "círculos virtuales", posibilitando la medición de diámetro y distancia entre ellos.
c) Con cilindros exteriores e interiores: diámetro, cilindricidad (error de forma), ángulo entre los ejes (paralelismo, coaxialidad y perpendicularidades entre ejes), distancias entre ejes paralelos y entre ejes perpendiculares.
d) Con planos: planitud (error de forma), distancias entre planos y ángulos entre ellos. Otros errores de forma evaluables serán el paralelismo, la perpendicularidad y la inclinación (ángulo entre recta y plano).
e) Con conos exteriores e interiores: conicidad (error de forma) y distancias entre ejes paralelos de conos, ángulos entre ejes de conos.
f) Tolerancias dimensionales y geométricas entre superficies básicas de distinta naturaleza (combinadas): tolerancias de posición de ejes, como la distancia entre plano y eje de cilindro, distancia y paralelismo entre plano y cilindro (cuyos ejes sean perpendiculares), distancia y paralelismo entre plano y cono o distancia de centro de esfera a plano. Cada característica del patrón tiene una superficie de palpado lo suficientemente grande como para permitir su medición manual en distintos puntos de su superficie (entre 2 y 50 cm2), siendo el error de forma de cada característica geométrica igual o inferior a una décima parte de la precisión del AACMM, a excepción de los círculos y esferas virtuales en los que no se considera su error de forma pues su construcción utiliza los puntos mínimos que los definen matemáticamente (error de forma nulo).
Otro aspecto de la presente invención es un método para la realización de calibración y verificación de máquinas de medir por coordenadas, especialmente brazos articulados de medir por coordenadas, y que, utilizando el patrón de la invención, comprende las siguientes etapas: a) Definir las posiciones que adoptará el patrón dentro del volumen de trabajo del instrumento a calibrar o verificar. b) Posicionar y fijar el patrón en una posición espacial estable del aparato de multiposición que defina la primera posición u orientación. c) Medir todas las características geométricas de patrón. d) Posicionar el patrón en la siguiente posición y repetir el paso (c) hasta medir en todas las posiciones definidas en (a). e) Determinar, por comparación con valores de referencia, si el instrumento de medición mide dentro del rango de tolerancia aceptable de acuerdo a cada característica geométrica y a sus relaciones entre ellas.
En una realización preferida, el método además comprende la etapa: f) Si el instrumento de medición está fuera de rango de tolerancia proceder a su corrección.
Todos los elementos constituyentes del patrón obligan a una variación de la posición espacial del mismo, con combinación de desplazamiento de distintos ejes del AACMM durante su medición, revelando así la importancia de la técnica de medición o destreza del operario. Cada elemento puede ser medido de diferente forma, ya sea en medición por contacto o sin contacto. Por ejemplo: una esfera maciza puede ser medida punto a punto (puntos discretos) o con contacto continuo (manteniendo el palpador en contacto con la esfera en todo momento), lo que influye en la deflexión del palpador y en la deformación de la propia estructura del AACMM. Una misma característica geométrica también puede ser medida con puntos tomados en perpendicular o paralelo a la superficie, a distintas velocidades y con fuerza de contacto mayor o menor dependiendo de las habilidades del operario, etc. Y lo mismo en mediciones con sensor láser de triangulación donde la distancia del sensor con la pieza, la intensidad, la orientación del sensor y la rapidez de barrido son muy importantes en la calidad y fiabilidad de las mediciones.
Por otra parte, las características geométricas del patrón y sus combinaciones materializan tolerancias dimensionales y geométricas que habitualmente se encuentran en las piezas reales de la industria, de esta forma se garantiza la calidad y fiabilidad de las mediciones de AACMM ya que la calibración se ha ejercido teniendo en cuenta la estructura de los AACMM y el control manual. La medición de los elementos tradicionales en las Máquinas de Medir por Coordenadas (CMM), sólo con esferas y/o asientos cinemáticos cónicos, es claramente insuficiente.
Esta configuración básica, que la diferencia de los demás patrones existentes, se complementa con una serie de características y/o accesorios que hacen que el patrón se pueda utilizar además para los procedimientos de calibración actuales: bajos errores de forma, portabilidad, multiorientación, material de bajo coeficiente de dilatación (INVAR, fibra carbono, materiales cerámicos como el óxido de Zirconio, el Zerodur, etc.) o, en su defecto y de forma adicional, incorporación de termopar para medición de temperatura que posibilite una corrección estructural de los errores geométricos en entornos industriales de temperatura no controlada. El patrón también permite ser biapoyado en los dos puntos que definen una flecha mínima en el centro, o en los puntos que mantienen las caras extremas de medidas paralelas (puntos de Airy), o los del mínima variación de longitud de la fibra neutra durante el pandeo (puntos de Bessel). En todo caso se tendrán en cuenta las deformaciones que sufre una pieza estructural como la aquí presentada debido a su proceso de fabricación (para este tipo de patrón, habitualmente será mecanizado por arranque de viruta), que deberá ser apoyado por los puntos que definan la máxima planitud y rectitud longitudinalmente.
Todas estas aportaciones permiten que pueda ser usado también como elemento de referencia para calibraciones según los procedimientos de calibración estándar actuales de CMM y de AACMM, modificando las partes necesarias para adaptarse a los elementos del patrón. Aunque el uso preferible del patrón es para AACMM, también es posible su utilización en CMM, ya que la técnica de medición también influye en su medición aunque en mucha menor medida.
La invención aporta, frente a los patrones que actualmente se conocen, una ventaja fundamental que radica en la posibilidad de aceptar y garantizar las mediciones con AACMM realizadas "in situ" por un determinado operario, o de corregirlas en caso contrario, realizando calibración posterior. En concreto, la principal ventaja consiste en el desarrollo de los medios necesarios para calibrar y/o verificar los AACMM completamente, incluyendo todos los factores que influyen en su precisión: su estructura, su control manual y especialmente su técnica de medición por parte de un operario, además de adecuarse a las piezas reales de la industria. De esta ventaja se desprende que todos los AACMM del mercado podrán ser comparados entre ellos de manera fiable. Además también se desprende que es posible la evaluación de las capacidades y habilidades de un operario en la medición con AACMM, realizando funciones de entrenamiento y certificación o habilitación de operarios. Por último, estos procedimientos pueden ser realizados "in situ" allí donde el AACMM trabaje sin perder sus características de portabilidad y flexibilidad.
La presente invención resulta de aplicación en los sectores en los que se diseñen, produzcan y utilicen patrones de calibración y verificación, como el de la metrología dimensional industrial aplicada a la verificación y fabricación de productos, el de metalurgia y fabricación de productos metálicos, o el de maquinaria y equipo mecánico DESCRIPCIÓN DE LAS FIGURAS
En la Fig. 1 se muestra un esquema conceptual de la invención en su versión más básica, con los tipos básicos mínimos de características geométricas y su disposición alineada para constituirse en un patrón de características. En esta figura se muestra un punto central de giro (0) sobre el que pivota el patrón para hacer multiposición espacial, y que se corresponde con el origen de .coordenadas de los ejes X, Y, Z.
En su concepción completa más básica, el patrón incorpora un mínimo de:
- Dos esferas macizas, esferas (2) y (17).
- Dos esferas virtuales, esferas (1) y (18).
- Ocho planos, cuatro de ellos (6), (7), (8) y (9) a un lado del punto central de giro (0) u origen del sistema de coordenadas y cuatro planos (10), (1 1), (12) y (13) al otro lado, de forma que dos de los planos del mismo lado forman un ángulo agudo entre ellos; plano (6) con (7), a un lado del patrón y plano (12) con (13) al otro lado, mientras que otros planos son perpendiculares con arista común, plano (8) con (9) y plano (10) con (1 1). Los planos paralelos pueden establecerse considerando combinaciones de los planos anteriores, como por ejemplo el plano (9) con (11) o el plano (8) con (10). En cuanto a los valores de los ángulos agudos, y con objeto de separarse claramente de los casos límites de paralelismo y perpendicularidad, están comprendidos entre 20° y 70°.
- Cuatro cilindros, (3), (4), (15) y (16). Dos de ellos, cilindro (3) y (4) o cilindro (15) y (16), son perpendiculares entre sí, y dos de ellos serán de ejes paralelos, cilindros (3) y (16) o cilindros (4) y (15), particularizando dos de ellos para el caso de coaxiales. Al menos dos de ellos se palpan por el exterior, como por ejemplo cilindros (4) y (15), y otros dos se palpan por el interior, como los cilindros (3) y (16).
- Dos conos, (5) y (14), con ejes paralelos y que son palpados de la misma manera, es decir, ambos por el interior o ambos por el exterior.
La Fig. 2 presenta una vista isométrica de una materialización preferente del patrón on características geométricas, donde éstas se disponen sobre un eje que además contiene un punto central de giro para la multiposición. El patrón de la figura comprende al menos los cinco tipos distintos de características a medir, con duplicidad de medida de cilindros y conos para hacer medidas interiores y exteriores. El patrón comprende: a) Cinco esferas macizas (19), (20), (21), (22), (23).
b) Dos esferas virtuales (56) y (57), construidas a partir de cuatro puntos palpados cada uno sobre agujeros cónicos accesibles desde distintas orientaciones y representadas mediante líneas punteadas.
c) Doce planos paralelos (24), (25), (26), (27), (28), (29). (30), (31), (32), (33), (34) y (35).
d) Al menos dos planos perpendiculares con arista común (40) y (41).
e) Dos planos en ángulo agudo, el (36) y el (37), (oculto en la vista isométrica derecha), y otros dos planos en ángulo agudo (38) y (39), (oculto en la vista isométrica derecha), en el otro extremo.
f) Dos cilindros interiores de ejes paralelos (44) y (45).
g) Dos cilindros exteriores de ejes paralelos (42) y (43). Estos son coaxiales con los cilindros interiores, el (42) es coaxial al (44) y el (43) al (45) respectivamente.
h) Seis cilindros interiores de ejes paralelos entre ellos y perpendiculares a los anteriores (50), (51), (52), (53), (54) y (55).
i) Dos conos interiores (48) y (49) de ejes paralelos entre sí.
j) Dos conos exteriores (46) y (47) de ejes paralelos entre sí. Esos son coaxiales a los conos interiores anteriores, el (46) es coaxial con el (48) y el (47) con el (49).
En la Fig. 3 se puede ver una vista de perfil de una materialización preferente del mismo patrón con características de la Fig.2, en la que se han omitido las esferas virtuales.
En la Fig. 4 se puede ver una vista en planta de la misma materialización preferente del patrón con características de las Fig. 2, en la también que se han omitido las esferas virtuales. En la Fig. 5 se observa un detalle, en vista isométrica derecha, de la esfera virtual (56) situada a la izquierda del patrón y representada mediante unas líneas punteadas, que se construye palpando los puntos (A), (B), (C) y (D). El punto (B) se toma apoyando el palpador de punta esférica del AACMM, horizontalmente, y sobre un cono mecanizado perpendicular en el plano (24). El punto (A) y el punto (C) se toman igualmente apoyando el palpador verticalmente sobre los conos mecanizados en las superficies horizontales del patrón. El punto (D), oculto en esta vista, se toma apoyando la punta esférica del palpador horizontalmente. Preferiblemente, todos los conos de apoyo cinemático son conos de 90° mecanizados con broca de centrar o puntear.
En la Fig. 6 se observa un detalle, en vista isométrica izquierda, de la misma esfera virtual (56) situada a la izquierda del patrón, que se construye palpando los mismos puntos (A), (B), (C) y (D) que en la Fig. 5. Ahora el punto (A) es el que permanece oculto a la vista y se toma apoyando la punta esférica del palpador verticalmente. En la Fig. 7 se muestra la vista en planta del mismo detalle señalado en las Figs. 5 y 6. La esfera virtual (56) se muestra como un círculo virtual proyectado en la vista. Nótese que los puntos (B) y (C) están a distinta altura y que perteneciendo a la esfera virtual no están sobre el círculo que representa el diámetro de la esfera virtual.
En la Fig. 8 se muestra la vista de perfil del mismo detalle señalado en las Figs. 5 y 6. La esfera virtual (56) se muestra como un círculo virtual proyectado en la vista. Nótese que los puntos (A) y (D) están a distinta altura y que perteneciendo a la esfera virtual no están exactamente sobre el círculo que representa el diámetro de la esfera virtual.
En la Fig. 9 se observa, en vista isométrica, una nueva variante de la materialización preferente del patrón, en la que se han eliminado los conos exteriores de la zona central para potenciar (por análisis de repetibilidad) la medida con más cilindros exteriores. En este caso el patrón está dotado de 4 cilindros exteriores de ejes paralelos (42), (43), (58) y (59). Dos de ellos, los cilindros (42) y (43) son iguales a los señalados en la Fig. 1. Los otros dos nuevos cilindros (58) y (59), contienen en su interior los respectivos troncos de conos interiores (48) y (49), que no varían respectos a los señalados en la Fig. 1. Por lo que en esta variante se han eliminado los conos exteriores (46) y (47) del patrón preferente mostrado en las figuras anteriores (Figs. 1, 2 y 3), por tratarse los conos exteriores de entidades de mucho menos interés en aplicaciones metrológicas de precisión.
EXPLICACIÓN DE UN EJEMPLO DE REALIZACIÓN PREFERENTE
Para una mejor comprensión de la presente invención, se exponen los siguientes ejemplos de realización preferente, descritos en detalle, que deben entenderse sin carácter limitativo del alcance de la invención. EJEMPLO 1
En un diseño preferente del patrón como el mostrado en la Figs. 2, 3 y 4 se utilizaron todos los tipos de elementos geométricos básicos mencionados anteriormente, e incluso con repeticiones en algunos de ellos. El patrón se usó para calibrar y/o verificar un brazo de medición AACMM, de 1800 mm diametrales de rango. La longitud del patrón era de 1000 mm. La sección transversal del patrón tenía la forma de T invertida de 20 mm de ancho aproximadamente, e inscrita en un rectángulo de aproximadamente 50x50 mm. A lo largo de esta barra soporte, o perfil lineal en T invertida, que define su longitud, se mecanizaron seis almenas, dotando además al patrón de las siguientes características geométricas: - Cinco esferas macizas (19), (20), (21), (22) y (23) unidas con vástagos al perfil central, de diámetro nominal 25 mm, y que iban montadas en la superficies elevadas de las almenas.
- Dos esferas virtuales (56) y (57) de diámetro aproximado de 50 mm.
- Doce planos paralelos (24), (25), (26), (27), (28), (29), (30), (31), (32), (33), (34) y (35), que formaban las laterales de las seis almenas del patrón.
- Cuatro planos, los planos (36) y (37) a la izquierda, y los planos (38) y (39) a la derecha, formando dos ángulos agudos en cada lado del patrón, ambos de 60°.
- Dos planos perpendiculares (40) y (41). - Dos cilindros exteriores (42) y (43) con ejes verticales en la dirección del eje Z, conformados cada uno por un casquillos y situados uno a cada lado del patrón. Estos cilindros fueron mecanizados independientemente (mecanizado de los casquillos en torno) y montados con apriete o ajuste fijo sobre el perfil en forma de T invertida que constituye la barra soporte.
- Dos cilindros interiores (44) y (45) con ejes verticales en la dirección del eje Z, coaxiales con los cilindros verticales exteriores anteriores (42) y (43) respectivamente y que se encontraban dentro de los mismos casquillos, también uno a cada lado del patrón.
- Seis cilindros interiores (50), (51), (52), (53), (54) y (55), situados con eje horizontal, y por lo tanto de ejes perpendiculares a los anteriores. Entre ellos mantenían los ejes paralelos y los seis fueron mecanizados (fresados) en sus respectivas almenas.
- Dos conos exteriores (46) y (47) situados verticalmente en una dirección del eje Z, de ejes paralelos y conformados por casquillos cónicos montados con apriete sobre el perfil uno a cada lado del centro del patrón.
- Dos conos interiores (48) y (49) también verticales en la dirección del eje Z, de ejes paralelos entre sí y en este caso coaxiales con los conos verticales exteriores anteriores (46) y (47) respectivamente, fabricados por torneado cónico interior dentro de los mismos casquillos cónicos.
El material elegido para todo el patrón fue INVAR y algunos elementos fueron materializados sobre la propia barra soporte, como se hizo con todos los planos de medida (24) a (35) y los seis cilindros horizontales mecanizados en las almenas (50), (51), (52), (53), (54) y (55), todos ellos cilindros de 28 mm de diámetro aproximadamente. Los elementos cilindros exteriores (42) y (43), de 45 mm aproximadamente de diámetro, y los interiores (44) y (45), de 40 mm aproximadamente de diámetro, fueron mecanizados externamente (torneado, mandrinado y escariado en los interiores) y montados con apriete o ajuste fijo sobre un alojamiento cilindrico fresado en la propia barra soporte. Lo mismo se puede decir de los conos exteriores (46) y (47) y los agujeros cónicos (48) y (49), dados también por casquillos torneados y montados con apriete. La barra soporte se fabricó por fresado con forma de T invertida, en cuya alma vertical se mecanizaron las 6 almenas de caras planas paralelas separadas aproximadamente 100 mm, distancia entre planos (24) y (25), planos (26) y (27) y así sucesivamente hasta el plano (34) y (35). Entre las dos almenas centrales, planos (29) y (30), había una separación de 28 mm aproximadamente. Estos planos paralelos que definían las almenas, correlativamente desde el (24) a (35), definían además distancias entre planos a lo largo de la longitud del patrón. La superficie de palpado para estos planos era del orden de 20x15 mm, algo mayor que el área de medida de los bloques patrón longitudinales estándar. Además, los extremos del patrón fueron mecanizados conformando planos con un ángulo de 60° entre ellos, planos (36) con (37) y (38) con (39). La propia forma en T invertida de la barra portante central definía dos planos perpendiculares (40) y (41) entre el alma y las alas del patrón.
En las zonas extremas del patrón se mecanizaron cuatro agujeros cónicos, empleando brocas de puntear o de centrar. Los agujeros cónicos tenían una profundidad aproximada de 5 mm, diámetro de la huella en la superficie de 10 mm y ángulo del cono de 90°, procurando realizarlos en caras del patrón con orientaciones distintas y espaciarlos lo suficiente para permitir construir esferas virtuales (56) y (57) de diámetros significativamente grandes, del orden de 50 mm.
Entre las almenas se incorporaron los cuatro casquillos de los cilindros y de los conos (42), (46), (47) y (43), que se montaron por apriete a la estructura base portante. Además, se mecanizaron cilindros perpendiculares a estos en las almenas anteriormente realizadas con el fin de incluir relaciones geométricas perpendiculares y aligerar la estructura. Las cinco esferas (19), (20), (21), (22) y (23) eran de diámetro aproximado de 20 mm, y se añadieron mediante unión de las mismas a un vástago del mismo material que la barra portante que las sujeta y éste vástago se une a su vez a la barra soporte por unión roscada (M8).
El patrón además mantenía sus características en varias posiciones espaciales y se diseñó para que se adaptara a un sistema de posicionamiento. Los puntos por los que se sujetaba el patrón a dicho sistema de posicionamiento eran puntos del patrón separados tal distancia que la deformación (flecha) sufrida por su propio peso en la zona central se minimizaba, puntos que no estaban lejos de los puntos que mantenían las caras finales paralelas (puntos de Airy), que para el patrón de 1000 mm de longitud eran puntos separados 570 mm aproximadamente. Esta distancia se ajustó analizando la rectitud del patrón una vez mecanizado, tomando como apoyos o zonas de sujeción aquellos que minimizaban el error de rectitud de toda la barra.
El diseño del patrón hacía posible extender su aplicación al cumplimiento de la normativa ASME y VDI, para verificación de AACMM, o incluso utilizar la norma ISO 10360 (orientada a CMM en general) variando la metodología para introducir los nuevos elementos y extendiendo la longitud total del patrón para que cubra el 60 % del rango del AACMM.
Los elementos incorporados posibilitaban materializar multitud de tolerancias: a) Diámetros, distancias entre esferas y esfericidad. Esto se hacía con las cinco esferas macizas (19), (20), (21), (22) y (23) del patrón. Por razones de recubrimiento del rango de trabajo y para adecuarse a la normativa actual, dos de las esferas, (19) y (23), estaban separadas entre ellas como mínimo entre el 50 y el 55 % de la longitud total del patrón o entre el 100 % y 1 10 % del radio de alcance del AACMM.
b) Diámetros y distancias entre esferas virtuales. Se usaban para ellos las dos esferas virtuales (56) y (57) del patrón.
c) Diámetros y distancias entre círculos virtuales. Se usaban para ellos tres puntos cualesquiera de los utilizados para construir cada una de las esferas virtuales (56) y (57), lo que constituye un "círculo virtual" contenido en cada una de las esferas.
d) Distancia entre planos, planitud y paralelismo. Se usaban para ello los doce planos paralelos (24), (25), (26), (27), (28), (29), (30), (31), (32), (33), (34) y (35), que permitían medir al menos siete distancias correlativas entre el primero y el último; dos de ellos, planos (29) y (30), estaban situados a menos de 30 mm (o menos del 10 % de la longitud del patrón), y otros dos de ellos, planos (24) y (35), definiendo el "alcance" del patrón; esto es, separados al menos el 55% del alcance diametral o rango de medida del AACMM.
e) Medida de ángulo y angularidad. Esto se conseguía con los dos planos que formaban ángulo entre ellos menor de 90°, preferiblemente con valores entre 20° y 70° (planos (36) y (37) y planos (38) y (39)). f) Perpendicularidad. Mediante cualesquiera pareja de planos perpendiculares con arista común, como los planos (40) y (41).
g) Diámetros de cilindros, distancia entre ejes paralelos de cilindros.
Cilindricidad, coaxialidad, paralelismos y perpendicularidad de ejes cilindricos. Esto se consiguió con los cuatro cilindros con eje verticales (42),
(43) , (44) y (45) y seis cilindros con ejes horizontales (cilindros (50), (51), (52), (53), (54) y (55)). Dos de los verticales eran exteriores con ejes paralelos (42) y (43) y los interiores y exteriores se situaban de forma concéntrica (42) y
(44) o (43) y (45) para materializar la tolerancia de coaxialidad.
h) Distancia entre ejes de conos y conicidad. Para ello se usaron los dos conos interiores (48) y (49) y/o los dos conos exteriores (46), (47). Dos de ellos coaxiales y dos con ejes paralelos. El uso de esta característica en calibración o verificación de AACMM, a diferencia del resto, puede ser prescindible para aplicaciones que no requieran calibrar o verificar el comportamiento del equipo (o su operario) en la medida de conos. La ausencia de esta característica se justificaría además por la dificultad en ajustar una superficie cónica por puntos palpados en su superficie con alta precisión.
i) Otras tolerancias dimensionales combinadas. Como las tolerancias de posición dadas por la distancias de cilindros, conos o esferas a planos. Así, por ejemplo, se consideraron como tolerancias válidas para calibración las distancias de cualquier cilindro como el (42), (43), (44), (45), (50), (51), (52), (53), (54), (55), o de cualquier eje de cono (46), (47), (48), (49), o centro de esfera maciza (19), (20), (21), (22), (23) o virtual (56), (57) a un plano del tipo (24) o (35) por ejemplo. Estas tolerancias se materializaron combinando las características citadas, por ejemplo, plano (24) con esfera (19), plano (26) con cilindro exterior (42), plano (26) con cilindro interior (44), plano (28) con cono (46), etc. También se analizó la perpendicularidad de eje de cilindro con un plano perpendicular al mismo, por ejemplo perpendicularidad entre cilindro exterior (42) y plano (40), o entre el cilindro interior de almena (53) y el plano (41). EJEMPLO 2
El procedimiento de calibración con el patrón de características consistió en la medición de todos los elementos que lo conforman, en distintas posiciones del espacio de trabajo de tal forma que se incluía una parte importante del volumen de trabajo del AACMM. Como parte del proceso de calibración, el operario que controla manualmente el movimiento el AACMM aportó su técnica de medición.
La aplicación del método sobre el patrón de la invención se llevó a cabo mediante las siguientes etapas: a) Se definieron las posiciones que adoptaría el patrón dentro del volumen de trabajo del instrumento a calibrar o verificar. b) Se posicionó y fijó el patrón en una posición espacial estable del aparato de multiposición que definía la primera posición u orientación. c) Se midieron todas las características geométricas de patrón. d) Se posicionó el patrón en la siguiente posición y se repitió el paso (c). hasta medir en todas las posiciones definidas en (a); e) Se determinó, por comparación con valores de referencia, si el instrumento de medición medía dentro del rango de tolerancia aceptable de acuerdo a cada característica geométrica y a sus relaciones entre ellas.
El cálculo de la incertidumbre de medida obtenida en la calibración se obtuvo de un proceso de cálculo matemático en el que se evaluaron las diferencias entre los valores reales (nominales) del patrón y los valores medidos por el AACMM. Con el patrón de características presentado se utilizaron los errores de medida de las características geométricas y dimensionales consideradas, aproximándose el procedimiento de calibración a la medición de piezas reales en la industria.
Para la utilización del patrón en un procedimiento de verificación se realizó la medición periódica de las características del patrón, con objeto de comprobar que los valores obtenidos se encontraban en concordancia con los obtenidos en la calibración, esto es, dentro de los límites de aceptación impuestos al proceso de inspección. De esta manera se garantizaba que las mediciones realizadas con el AACMM tenían la fiabilidad suficiente para ser aceptadas.
Por extensión, el patrón también tenía la función de formación de operarios ya que muestra la medición correcta y permite la corrección de la técnica de medición.
EJEMPLO 3
En los procesos donde, por motivos de especificidad de la tarea de inspección, no se requerían todos los elementos del patrón, se realizó una construcción parcial del patrón y no se incluyeron todos los elementos en el proceso de medición en la calibración o verificación. Por ejemplo, en un proceso donde se verificaron cilindros y únicamente cilindros (por ejemplo piezas cilindricas como ejes de transmisión, etc.) se redujeron los elementos del patrón a los cilindros, adaptando el procedimiento de calibración o verificación a este tipo de elementos preferentemente.
El procedimiento de calibración fue tal como el descrito en el ejemplo anterior, aunque sobre un patrón con las características descritas en este ejemplo.
Esta metodología hace posible la realización de calibraciones personalizadas (en función de la aplicación del AACMM) de acuerdo al elemento medido, y aunque el patrón contenga todos los elementos geométricos del ejemplo 1, se podrán utilizar solo aquellos relacionados con la aplicación. EJEMPLO 4
En la aplicación de medidas tridimensionales (tanto AACMM como también CMM) con incorporación de sensores ópticos sin contacto (como por ejemplo de sensores de triangulación láser), los diseños del patrón no variaron salvo los acabados superficiales. Para esta aplicación, las superficies de las características consideradas se fabricaron con calidades ópticas adecuadas (en acabado mate o satinado o de cerámica blanca) para maximizar la cantidad de puntos superficiales leídos por el sensor, procediendo después a aplicar el método tal como se describe el en ejemplo 2.

Claims

REIVINDICACIONES
Patrón para la calibración y verificación de la medición con máquinas de medir por coordenadas, especialmente para brazos articulados de medir por coordenadas, que comprende las siguientes características geométricas:
- al menos dos esferas de calibración macizas
(2) y (17);
- al menos dos esferas virtuales (1) y (18);
- al menos ocho planos (6), (7), (8), (9), (10), (11), (12) y (13);
- al menos cuatro cilindros
(3),
(4), (15) y (16);
- al menos dos conos (o troncos de cono) (5) y (14); y además comprende una estructura portante con una dimensión preferente longitudinal sobre la que se sitúan las características geométricas.
Patrón según la reivindicación 1, caracterizado por que la dimensión preferente longitudinal sobre la que se sitúan las características geométricas, tiene una longitud de al menos un 55 % del rango máximo de medida del equipo a calibrar o verificar.
Patrón según la reivindicación 1, caracterizado por que el material de las características geométricas y la estructura portante es:
- la misma aleación metálica o;
- el mismo compuesto de fibra o;
- el mismo material cerámico.
Patrón según la reivindicación 1, caracterizado por que las características geométricas son insertos o casquillos en la estructura portante, de los siguientes materiales: - las características geométricas son de una aleación metálica y la estructura portante es de un compuesto de fibra o;
- las características geométricas son de material cerámico y la estructura portante es de un compuesto de fibra o; - las características geométricas son de material cerámico y la estructura portante es de aleación metálica.
5. Patrón según la reivindicación 3 ó 4 caracterizado por que la aleación metálica es acero.
6. Patrón según la reivindicación 3 ó 4 caracterizado por que la aleación metálica es I VAR.
7. Patrón según la reivindicación 3 ó 4 caracterizado por que la aleación metálica es una aleación de aluminio.
8. Patrón según la reivindicación 7 caracterizado por que la superficie de las características geométricas de aleación de aluminio está endurecida superficialmente.
9. Patrón según la reivindicación 3 ó 4 caracterizado por que el compuesto de fibra es fibra de carbono.
10. Patrón según la reivindicación 1 caracterizado por que cualquiera de las esferas virtuales (1) o (18) están definidas por cuatro puntos (A), (B), (C) y (D) situados sobre su superficie.
11. Patrón según la reivindicación 1 caracterizado por que las esferas más alejadas, bien las esferas macizas (2) y (17), o las esferas virtuales (1) y (18), están separadas por una distancia igual o mayor al 80% de la dimensión mayor del patrón.
12. Patrón según la reivindicación 1 , caracterizado por que dos planos (5) y ( 13) son paralelos, separados una distancia igual o mayor al 90% de la dimensión mayor del patrón, otros dos planos (9) y (11) son paralelos separados una distancia menor de 30 mm o menor al 10 % de la longitud del patrón, dos planos (8) y (9) son perpendiculares con eje común, y al menos dos planos (6) y (7) forman un ángulo agudo mayor o igual que 20° y menor o igual que 70°.
13. Patrón según la reivindicación 1, caracterizado por que dos cilindros son para palpado externo y dos para palpado interno, siendo dos de los cilindros (3) y
(16) ó (4) y (15) paralelos y otros dos, (3) y (15) ó (4) y (16) perpendiculares.
14. Patrón según la reivindicación 1, caracterizado por que dos conos son de ejes paralelos (5) y (14).
15. Patrón según la reivindicación 14, caracterizado por que los conos (5) y (14) son ambos exteriores o ambos interiores.
16. Patrón según la reivindicación 1, caracterizado por que las características geométricas poseen un error de forma menor al 10% de la precisión o valor de incertidumbre del brazo articulado de medición objeto de la calibración o verificación.
17. Método para la realización de calibración y verificación de máquinas de medir por coordenadas, especialmente brazos articulados de medir por coordenadas, y que, utilizando el patrón de la reivindicación 1, comprende las siguientes etapas: a) definir las posiciones que adoptará el patrón dentro del volumen de trabajo del instrumento a calibrar o verificar; b) posicionar y fijar rígidamente el patrón en una posición espacial estable del aparato de multiposición que defina la primera posición u orientación: c) medir todas las características geométricas de patrón; d) posicionar el patrón en la siguiente posición y repetir el paso (c) hasta medir en todas las posiciones definidas en (a); e) determinar, por comparación con valores de referencia, si el instrumento de medición mide dentro del rango de tolerancia aceptable de acuerdo a cada característica geométrica y a sus relaciones entre ellas.
18. Método según la reivindicación 17 que además comprende la etapa: f) si el instrumento de medición está fuera de rango de tolerancia proceder a su corrección.
PCT/ES2014/000031 2013-03-04 2014-03-03 Método y patrón de características geométricas para calibración y verificación de la medición con brazos articulados de medir por coordenadas WO2014135721A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201300241A ES2490940B1 (es) 2013-03-04 2013-03-04 Método y patrón de características geométricas para calibración y verificación de la medición con brazos articulados de medir por coordenadas
ESP201300241 2013-03-04

Publications (1)

Publication Number Publication Date
WO2014135721A1 true WO2014135721A1 (es) 2014-09-12

Family

ID=51427380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/000031 WO2014135721A1 (es) 2013-03-04 2014-03-03 Método y patrón de características geométricas para calibración y verificación de la medición con brazos articulados de medir por coordenadas

Country Status (2)

Country Link
ES (1) ES2490940B1 (es)
WO (1) WO2014135721A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3051253A1 (en) * 2015-02-02 2016-08-03 Rolls-Royce North American Technologies, Inc. Multi-axis calibration block
DE102017126226A1 (de) 2017-03-07 2018-09-13 Taixi GAN Stufenendmaß hoher Stabilität sowie dessen Herstellungsverfahren
WO2019207437A1 (en) * 2018-04-24 2019-10-31 Vici & C. S.P.A. Optical measuring machine for measuring an object having a mainly longitudinal extension
EP3671114A1 (de) * 2018-12-20 2020-06-24 QS GRIMM GmbH Verfahren und vorrichtung zur erhöhung der genauigkeit einer fertigungsvorrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5313410A (en) * 1991-03-28 1994-05-17 Alpha Q, Inc. Artifact and method for verifying accuracy of a positioning apparatus
US5671541A (en) * 1995-09-01 1997-09-30 Brown & Sharpe Manufacturing Company Accuracy verification devices for coordinate measuring machines
US5681981A (en) * 1994-01-28 1997-10-28 Renishaw Plc Performing measurement or calibration on positioning machines
US6493957B1 (en) * 1999-06-18 2002-12-17 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Ball step gauge
US20090094847A1 (en) * 2007-10-12 2009-04-16 Los Alamos National Security Llc Integrated calibration sphere and calibration step fixture for improved coordinate measurement machine calibration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5313410A (en) * 1991-03-28 1994-05-17 Alpha Q, Inc. Artifact and method for verifying accuracy of a positioning apparatus
US5681981A (en) * 1994-01-28 1997-10-28 Renishaw Plc Performing measurement or calibration on positioning machines
US5671541A (en) * 1995-09-01 1997-09-30 Brown & Sharpe Manufacturing Company Accuracy verification devices for coordinate measuring machines
US6493957B1 (en) * 1999-06-18 2002-12-17 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Ball step gauge
US20090094847A1 (en) * 2007-10-12 2009-04-16 Los Alamos National Security Llc Integrated calibration sphere and calibration step fixture for improved coordinate measurement machine calibration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PIRATELLI-FILHO A ET AL.: "Virtual spheres gauge for coordinate measuring arms performance test.", MEASUREMENT. INSTITUTE OF MEASUREMENT AND CONTROL., vol. 43, no. 2, LONDON, GB, pages 236 - 244, XP026801547 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3051253A1 (en) * 2015-02-02 2016-08-03 Rolls-Royce North American Technologies, Inc. Multi-axis calibration block
US9952044B2 (en) 2015-02-02 2018-04-24 Rolls-Royce North American Technologies, Inc. Multi-axis calibration block
DE102017126226A1 (de) 2017-03-07 2018-09-13 Taixi GAN Stufenendmaß hoher Stabilität sowie dessen Herstellungsverfahren
DE102017126226B4 (de) 2017-03-07 2023-06-29 Taixi GAN Stufenendmaß hoher Stabilität sowie dessen Herstellungsverfahren
WO2019207437A1 (en) * 2018-04-24 2019-10-31 Vici & C. S.P.A. Optical measuring machine for measuring an object having a mainly longitudinal extension
EP3671114A1 (de) * 2018-12-20 2020-06-24 QS GRIMM GmbH Verfahren und vorrichtung zur erhöhung der genauigkeit einer fertigungsvorrichtung

Also Published As

Publication number Publication date
ES2490940A1 (es) 2014-09-04
ES2490940B1 (es) 2015-05-29

Similar Documents

Publication Publication Date Title
US6513253B2 (en) Method for evaluating measurement error in coordinate measuring machine and gauge for coordinate measuring machine
JP4275632B2 (ja) パラレルメカニズム機構のキャリブレーション方法、キャリブレーションの検証方法、キャリブレーションの検証プログラム、データ採取方法及び空間位置補正における補正データ採取方法
US20050066534A1 (en) Gauge for three-dimensional coordinate measurer
US10890440B2 (en) 3D floating support system and related geometry-detecting machine of slender articles
US11293745B2 (en) Inspection master
WO2000079216A1 (fr) Calibre à rangée de billes
US11781849B2 (en) Inspection master
JP2013503380A (ja) 工作機械の校正方法
WO2014135721A1 (es) Método y patrón de características geométricas para calibración y verificación de la medición con brazos articulados de medir por coordenadas
JP3993784B2 (ja) 多次元座標測定機の性能評価方法、多次元座標測定機の校正用ゲージ及び校正用ゲージの治具
ES2375433T3 (es) Procedimiento para controlar un eje giratorio con un dispositivo de detección autocentrante.
JP4049272B2 (ja) 光学式3次元測定機の検査マスタ用基準部材
JP2023090783A (ja) 表面感知デバイス(surface sensing device)を較正する方法、対応する制御コンピュータ用較正プログラムおよび対応する較正キット
JP4890188B2 (ja) 運動誤差測定基準体及び運動誤差測定装置
CN115503022A (zh) 一种基于多工位测量的机器人测量构型确定方法
KR20190135111A (ko) 이송계의 기하학적 직각도 오차 측정방법 및 그 방법을 수행하는 프로그램이 기록된 컴퓨터로 판독 가능한 기록매체
JP4093111B2 (ja) ワークの精度測定装置と精度測定方法
JPH04160301A (ja) 機械の静的精度計測用のマスター計測装置
JP6181935B2 (ja) 座標測定機
JP7201208B2 (ja) 校正ゲージ及び校正方法
ES2663122T3 (es) Método de calibración de los ejes de accionamiento de una máquina herramienta
Yagüe et al. Development and calibration of self-centring probes for assessing geometrical errors of machines
CN109062138A (zh) 一种基于立体标定块的五轴平台系统标定方案
US20070084072A1 (en) Kite square
JP2011220971A (ja) 部品の外径測定装置及び外径測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14761163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14761163

Country of ref document: EP

Kind code of ref document: A1