WO2014135044A1 - 天线校准方法和基带装置 - Google Patents

天线校准方法和基带装置 Download PDF

Info

Publication number
WO2014135044A1
WO2014135044A1 PCT/CN2014/072799 CN2014072799W WO2014135044A1 WO 2014135044 A1 WO2014135044 A1 WO 2014135044A1 CN 2014072799 W CN2014072799 W CN 2014072799W WO 2014135044 A1 WO2014135044 A1 WO 2014135044A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
compensation coefficient
calibration process
channel
phase compensation
Prior art date
Application number
PCT/CN2014/072799
Other languages
English (en)
French (fr)
Inventor
李林
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2014135044A1 publication Critical patent/WO2014135044A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to an antenna calibration method and a baseband device. Background technique
  • the smart antenna system has the advantages of improving cell coverage and suppressing signal interference, and has been in Time Division Synchronized Code Division Multiple Access (TD-SCDMA) and Time Division Long Term Evolution (TD-SCDMA Long Term Evolution, TD-LTE) is widely used in mobile communication systems.
  • Antenna calibration (AC) is the operation that the base station must operate in the smart antenna mode. Its function is to eliminate the inconsistency (including amplitude and phase) between multiple channels to achieve the following purposes: The result is close to the ideal result to achieve smart antenna gain; to ensure the reciprocity of the uplink and downlink channels in the Time Division Duplex (TDD) system; to achieve spatial diversity.
  • Figure 1 illustrates how inter-channel inconsistencies are compensated.
  • the AC functions are divided into transmit channel calibration, receive channel calibration, and calibration coefficient compensation.
  • the transmission channel calibration is shown in Figure 2.
  • a calibration signal is sent from the working branch point C, coupled to the calibration port A via the coupling pad, and the Base Band Unit (BBU) is reclaimed from the calibration channel.
  • the baseband board of the BBU calculates the channel estimation value of each channel according to the recovered calibration signal, and takes the obtained channel estimation value as the compensation coefficient of each channel.
  • the current calibration algorithm does not do anything with the calibration signal sent on the working path.
  • the calibration signal in each working path is a time domain code division signal.
  • the system bandwidth is wide, and the transmission channel is not easy to be linearly flat. Therefore, it is necessary to calibrate the difference of each subcarrier channel of each antenna, and the calibration signal is a frequency domain signal.
  • An example of frequency domain discrimination The system bandwidth is 20MHz, 100 physical resource blocks (PRBs), and 1200 subcarriers are evenly distributed to 8 working paths. The allocation method is shown in Figure 3.
  • the calibration signal received from the calibration channel calculates the channel estimation value of each channel according to the frequency domain resource position of each channel, and then interpolates the channel estimation value to obtain the channel estimation value of all subcarriers of each channel. This is the current method for TD-LTE transmit channel calibration. It can be seen that the calibration signals of each channel are distributed in the frequency domain.
  • the entire frequency domain is occupied by the calibration sequence, which results in a large signal peak-to-average ratio.
  • the calibration signal transmission power of each channel can be reduced, thereby reducing the detection signal-to-noise ratio of the calibration coupling signal.
  • the ZC sequence is used as a calibration signal.
  • a complete 1200-point ZC sequence is assigned to each transmit channel as shown in Figure 3, so that the coupled signal received on the calibration channel is a complete ZC sequence.
  • the coupled signal due to the difference in amplitude of each transmission channel, the coupled signal no longer has the low peak-to-average ratio characteristic of the ZC sequence, and the randomness of the phase difference also makes the peak-to-average ratio random, and the maximum peak-to-average ratio Can reach more than lldB.
  • the antenna calibration in the TD-LTE system is in the time domain.
  • the calibration signals of the transmission channels are superimposed on the calibration channel in random phase, and the peaks are relatively high and unpredictable. Summary of the invention
  • Embodiments of the present invention provide an antenna calibration method and a baseband apparatus for improving antenna calibration Accuracy.
  • An antenna calibration method comprising:
  • each calibration process includes: performing channel difference compensation on the calibration signal according to the phase compensation coefficient, and if the current calibration process is the first calibration process, the phase compensation coefficient is 1 or the phase compensation coefficient obtained in the previous calibration period. If the calibration process is not the first calibration process, the phase compensation coefficient is the phase compensation coefficient obtained in the previous calibration process; the calibration after the channel difference compensation is performed.
  • the signal is sent from each transmission channel; after receiving the calibration signal from the calibration channel, the channel estimation is performed according to the calibration signal, and the calibration channel compensation coefficient of the calibration process is obtained according to the channel estimation result; the calibration process is obtained according to the calibration channel compensation coefficient.
  • Phase compensation coefficient Phase compensation coefficient;
  • the signal is calibrated based on the phase compensation factor obtained during the last calibration.
  • a baseband device BBU, the BBU includes:
  • a generating unit configured to generate a calibration signal to be sent
  • each calibration process includes: performing channel difference compensation on the calibration signal according to a phase compensation coefficient, if the calibration process is the first calibration process, The phase compensation coefficient is 1 or the phase compensation coefficient obtained in the previous calibration period. If the calibration process is not the first calibration process, the phase compensation coefficient is the phase compensation coefficient obtained in the previous calibration process;
  • the differentially compensated calibration signal is sent from each transmission channel; after receiving the calibration signal from the calibration channel, the channel estimation is performed according to the calibration signal, and the calibration channel compensation coefficient of the calibration process is obtained according to the channel estimation result; according to the calibration channel compensation coefficient Obtaining the phase compensation coefficient of the calibration process;
  • a baseband device BBU comprising: a memory and a processor
  • the memory is configured to store one or more executable programs used to configure the processor; the processor is configured with one or more executable programs, and the one or more executable programs
  • the program is used to perform the following methods:
  • each calibration process includes: performing channel difference compensation on the calibration signal according to a phase compensation coefficient, wherein the phase compensation is performed if the current calibration process is the first calibration process The coefficient is 1 or the phase compensation coefficient obtained in the previous calibration period. If the calibration process is not the first calibration process, the phase compensation coefficient is the phase compensation coefficient obtained in the previous calibration process;
  • the calibration signal is sent from the transmission channel; after receiving the calibration signal sent by the calibration process from the calibration channel, channel estimation is performed according to the calibration signal received by the calibration channel in the current calibration process, and the channel estimation result is obtained according to the channel estimation result.
  • the calibration channel compensation coefficient of the secondary calibration process; the phase compensation coefficient of the calibration process is obtained according to the calibration channel compensation coefficient obtained by the calibration process;
  • Signal calibration is performed based on the phase compensation coefficients obtained during the last calibration of the current calibration cycle.
  • the phase compensation coefficient is 1 or the phase compensation coefficient obtained in the previous calibration period, if the calibration process is not the first calibration In the process, the phase compensation coefficient is the phase compensation coefficient obtained in the previous calibration process.
  • the channel difference compensation is performed on the calibration signal to be sent in the transmission channel in advance, and the difference compensation of each transmission channel is basically the same, the coupled signal received by the calibration channel is a true and complete signal, and the peak-to-average ratio is much lower, and the peak-to-average ratio is A decrease means that the subsequent transmission power of the calibration signal can be increased, which means that the accuracy of the channel estimation result is improved, thereby improving the accuracy of the final calibration result.
  • 2 is a schematic diagram of a transmission channel calibration structure in the prior art
  • 3 is a schematic diagram of frequency domain occupation of a calibration signal transmitted by each TD-LTE transmission channel in the prior art
  • FIG. 4 is a schematic flowchart of a method according to an embodiment of the present invention.
  • FIG. 5A is a schematic flowchart of a first embodiment of the present invention.
  • FIG. 5B is a schematic flowchart of Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural diagram of a BBU according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a BBU according to another embodiment of the present invention. detailed description
  • an embodiment of the present invention provides an antenna calibration method.
  • an antenna calibration method provided by an embodiment of the present invention includes the following steps: Step 40: Generate a calibration signal to be sent.
  • Step 41 Perform multiple calibration processes in the current calibration cycle.
  • Each calibration process includes: performing channel difference compensation on the calibration signal according to the phase compensation coefficient. If the calibration process is the first calibration process, the phase compensation is performed. The coefficient is 1 or the phase compensation coefficient obtained in the previous calibration period. If the calibration process is not the first calibration process, the phase compensation coefficient is the phase compensation coefficient obtained in the previous calibration process;
  • the calibration signal is sent from the transmission channel; after receiving the calibration signal from the calibration channel, the channel estimation is performed according to the calibration signal, and the calibration channel compensation coefficient of the calibration process is obtained according to the channel estimation result; the calibration process is obtained according to the calibration channel compensation coefficient. Phase compensation factor.
  • the multiple calibration process refers to at least 2 calibration processes, and the number of times the calibration process is performed in one calibration cycle may be preset, and the number of times the calibration process is performed in each calibration cycle may be the same or different.
  • the phase compensation coefficient obtained in the last calibration period may be the phase compensation coefficient obtained by any calibration process in the previous calibration period.
  • the phase compensation coefficient obtained in the last calibration period takes the phase compensation coefficient obtained in the last calibration process in a calibration period.
  • Step 42 Perform signal calibration based on the phase compensation coefficients obtained during the last calibration.
  • the transmit power of the calibration signal during the first calibration during the current calibration period is less than the transmit power of the calibration signal during the other calibration process.
  • the transmission power of the calibration signal during the first calibration is p
  • the transmission power of the calibration signal in other calibration processes may be p+8 dB. Because the peak-to-average ratio of 11 dB is reserved for the first calibration process, the peak-to-average ratio is reduced to less than 3 dB after channel difference compensation, so the transmission power of 8 dB can be increased.
  • phase compensation coefficient of the calibration process is obtained according to the calibration channel compensation coefficient obtained by the calibration process, and the specific implementation may be as follows:
  • the phase information of the calibration channel compensation coefficient of the calibration process is extracted, and the phase compensation coefficient of the calibration process is obtained; if the calibration process is not the first time nor For the last calibration process, the phase compensation coefficient of the calibration process is obtained according to the phase information of the calibration channel compensation coefficient of the calibration process and the phase compensation coefficient obtained in the previous calibration process; if the calibration process is the last calibration The process obtains the phase compensation coefficient of the calibration process according to the calibration channel compensation coefficient of the calibration process and the phase compensation coefficient obtained in the previous calibration process.
  • channel estimation is performed according to the calibration signal received from the calibration channel, and the calibration channel compensation coefficient of the calibration process is obtained according to the channel estimation result, and the specific implementation may be as follows:
  • the channel estimation is performed according to the signal of the calibration signal on the subcarrier, and the channel estimation result corresponding to the subcarrier is obtained, and the calibration channel compensation coefficient corresponding to the subcarrier is obtained according to the channel estimation result.
  • the channel estimation is performed according to the signal of the calibration signal on the subcarrier, specifically: dividing the calibration signal on the subcarrier received from the calibration channel by the calibration signal sent by the corresponding transmission channel (specifically, indicating two The vector of the calibration signal is divided, and the equivalent two vectors are conjugate multiplied to obtain a channel estimation result corresponding to the subcarrier.
  • the calibration channel compensation coefficient corresponding to the subcarrier is obtained according to the channel estimation result, specifically: taking the reciprocal of the channel estimation result to obtain a calibration channel compensation coefficient corresponding to the subcarrier.
  • the coherence bandwidth can be the entire system bandwidth.
  • the calibration process is the first calibration process
  • the calibration process of the calibration process is extracted.
  • the phase information of the quasi-channel compensation coefficient is obtained, and the phase compensation coefficient of the calibration process can be obtained as follows: For the calibration channel compensation coefficient corresponding to each subcarrier obtained in the calibration process, the phase information of the calibration channel compensation coefficient is extracted, A phase compensation coefficient corresponding to the subcarrier is obtained.
  • the calibration is obtained according to the phase information of the calibration channel compensation coefficient of the calibration process and the phase compensation coefficient obtained in the previous calibration process.
  • the phase compensation coefficient of the process may be implemented as follows: determining an average value of the calibration channel compensation coefficients corresponding to each subcarrier in the coherent bandwidth, and extracting phase information of the average value; corresponding to each subcarrier obtained in the previous calibration process The phase compensation coefficient is multiplied by the extracted phase information to obtain a phase compensation coefficient corresponding to the subcarrier.
  • the phase compensation coefficient of the calibration process is obtained according to the calibration channel compensation coefficient of the calibration process and the phase compensation coefficient obtained in the previous calibration process. : for the phase compensation coefficient corresponding to each subcarrier obtained in the previous calibration process, multiplying the phase compensation coefficient by the calibration channel compensation coefficient corresponding to the subcarrier obtained in the current calibration process, to obtain the phase compensation coefficient corresponding to the subcarrier .
  • a signal to noise ratio may be determined, and whether the channel estimation result is valid according to the SNR is determined; After the channel estimation result is valid, the calibration channel compensation coefficient of the calibration process is obtained according to the channel estimation result. If the channel estimation result is invalid according to the SNR, the next calibration process is performed.
  • whether the channel estimation result is valid according to the SNR may be: determining whether the SNR is greater than a preset threshold (a value greater than 0), and if yes, determining that the channel estimation result is valid; otherwise, determining that the channel estimation result is invalid.
  • the generated calibration signal needs to be allocated to each transmission channel; during each calibration process: for each transmission channel, the calibration signal of the transmission channel is channeled according to the phase compensation coefficient.
  • Difference compensation if the calibration process is the first calibration process, the phase compensation coefficient is 1 or the phase compensation coefficient corresponding to each subcarrier where the calibration signal of the transmission channel is obtained in the previous calibration cycle, if this time The calibration process is not the first calibration process. Then, the phase compensation coefficient is a phase compensation coefficient corresponding to each subcarrier where the calibration signal of the transmission channel is obtained in the previous calibration process.
  • the channel difference compensation is performed on the calibration signal of the transmission channel according to the phase compensation coefficient, specifically: multiplying the calibration signal of the transmission channel by the corresponding phase compensation coefficient.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • Step 1 The BBU generates a calibration signal ea to be sent.
  • Step 2 Determine whether the calibration process is the first calibration process, and if yes, go to step 3, otherwise, go to step 4;
  • Step 4 Perform channel difference compensation on the calibration signal according to the phase compensation coefficient, that is, multiply the calibration signal by the phase compensation coefficient, which is the phase compensation coefficient obtained in the previous calibration process;
  • Step 5 The calibration signal after channel difference compensation is sent from the transmission channel; the transmission power of the calibration signal during the first calibration is smaller than the transmission power of the calibration signal in other calibration processes;
  • Step 6 After the calibration signal is sent from the transmission channel, it passes through the coupling disk and the calibration channel and arrives at the BBU. After receiving the calibration signal from the calibration channel, the BBU performs channel estimation according to the calibration signal, calculates SR, and determines whether the channel estimation result is valid according to the SR. If it is valid, go to step 7, otherwise, go to step 4 in the next calibration process.
  • Step 7 According to the channel estimation result, the calibration channel compensation coefficient txTmp coeff of the calibration process is obtained.
  • Chan estimate ⁇ Step 8 Determine whether the calibration process is the last calibration process, and if so, go to step 12, otherwise, go to step 9;
  • Step 9 Determine whether the calibration process is the first calibration process, and if yes, go to step 11, otherwise, go to step 10;
  • Step 10 Extract the phase information of the calibration channel compensation coefficient of the calibration process, and multiply the phase information by the phase compensation coefficient of the previous calibration process to obtain the phase compensation hand of the calibration process.
  • PhaseCoeff PhaseCoeff . exp(lj .aTan txTmp _ coeff)) ⁇
  • Step 11 Extract the phase information of the calibration channel compensation coefficient of the calibration process, and obtain the phase compensation coefficient of the calibration process;
  • Step 12 Multiply the calibration channel compensation coefficient of this calibration process with the phase compensation coefficient of the previous calibration process to obtain the final compensation coefficient:
  • Step 13 Determine whether the calibration result converges according to the channel estimation result of the last calibration process. If convergence, determine that the final compensation coefficient obtained in step 12 is available; otherwise, determine that the final compensation coefficient obtained in step 12 is unavailable, proceed to the next Calibration process for the calibration cycle.
  • the code that determines convergence can be: If aTan ⁇ chan estimate) > 5.
  • the calibration result does not converge, and the RF channel problem needs to be checked.
  • the calibration result converges and the calibration result is correct
  • the above code indicates: if aTan(chan- estimate)>5. , it indicates that the calibration result does not converge, and the RF channel problem can be further checked; otherwise, the calibration result converges.
  • aTan( . ) represents the inverse tangent function operation and the dish te is the channel estimation result.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • Step 1 Generate a ZC sequence by system bandwidth.
  • the ZC sequence selects 1200 points. Then allocate 1200 points ZC to 8 transmission channels, the specific implementation is as follows:
  • N C max(primes(L)); % find the largest prime number
  • Step 2 Perform an IFFT (Inverse Fast Fourier Transform) on the calibration signal, add the suffix and suffix, and perform a 7.5 kHz shift on the calibration signal.
  • IFFT Inverse Fast Fourier Transform
  • Step 3 Determine the appropriate transmit power of the calibration signal; multiply the phase compensation coefficient, the phase compensation coefficient is exp(0) for the first calibration; send the compensated signal from the transmit channel; the signal received from the calibration channel goes forward Suffix, do 2048 point FFT, do simple ZF channel estimation.
  • phase compensation coefficient is 1 or the phase compensation coefficient corresponding to each subcarrier where the calibration signal of the transmission channel is obtained in the previous calibration period (step 3.2).
  • the phase compensation coefficient is obtained in the previous calibration process.
  • the phase compensation coefficient corresponding to each subcarrier where the calibration signal of the transmission channel is located (step 3.3).
  • the channel difference compensated calibration signal is sent from each transmit channel (step 3.4); the transmit power of the calibration signal during the first calibration is less than the transmit power of the calibration signal during the other calibration process.
  • the BBU After the calibration signal is sent from the transmitting channel, after passing through the coupling disk and the calibration channel, the BBU arrives at the BBU, and after receiving the calibration signal from the calibration channel, the BBU performs channel estimation according to the calibration signal (step 3.5);
  • Step 4 IFFT the calibration signal according to the channel estimation result, and calculate the SNR according to the time domain impact. Determine whether the channel estimation result of the current calibration is valid according to the SNR; if it is valid, go to step 5, otherwise, go to step 3.3;
  • Step 5 Store the channel estimation result.
  • Step 6 The channel estimation result of each transmission channel is separated, that is, the channel estimation result corresponding to each subcarrier where the calibration signal of each transmission channel is located is separated from the channel estimation result stored in step 5.
  • Step 7 Calculate the group delay of each transmission channel according to the separated channel estimation result, and the alarm is caused when the group delay difference is too large.
  • Step 8 The channel estimation result corresponding to each subcarrier is reciprocal, and the calibration channel compensation coefficient corresponding to the subcarrier in the current calibration process is obtained.
  • Step 9 Determine whether the calibration process is the last calibration process, and if yes, go to step 11, otherwise, go to step 10;
  • Step 10 Determine whether the calibration process is the first calibration process (step 10.1). If the first calibration process is performed, extract the phase information of each calibration channel compensation coefficient of the calibration process as the current calibration process. The phase compensation coefficient corresponding to the subcarrier (step 10.3). If it is not the first calibration process, the calibration channel compensation coefficients corresponding to each subcarrier are averaged, and then the phase information of the average value is presented, and the phase information is respectively multiplied by the phase compensation coefficients corresponding to the subcarriers obtained in the previous calibration process. , obtain the phase compensation coefficient corresponding to each subcarrier wave in the calibration process (Step 10.2). Go back to step 3.1 during the next calibration process.
  • Step 11 Multiply the calibration channel compensation coefficient of this calibration process with the phase compensation coefficient of the previous calibration process to obtain the final compensation coefficient. Specifically, for the phase compensation coefficient corresponding to each subcarrier obtained in the previous calibration process, the phase compensation coefficient is multiplied by the calibration channel compensation coefficient corresponding to the subcarrier obtained in the current calibration process, to obtain a phase corresponding to the subcarrier. Compensation factor.
  • Step 12 According to the phase change of the compensation coefficient of the calibration channel before and after, determine whether the phase frequency characteristic of the channel is stable. For example, if the phase difference between the compensation coefficients of the two calibration channels exceeds 5 degrees, an alarm is issued.
  • the feedback compensation mechanism also superimposes the phase estimation error of the previous calibration into the next calibration error. It is reflected that the final phase error jitter will become larger, for example, the previous error is ⁇ 2 degrees maximum, and the feedback compensation calibration phase error will be extended to 5 degrees.
  • the solution to this problem is to use the channel estimation combination in the relevant bandwidth in the feedback compensation calibration, that is, the compensation coefficient calculated by the feedback compensation calibration is the group delay correction of the previous compensation coefficient, so that the jitter amplitude of the error is not increased. It is. That is, Step 3.5 in the flowchart can use the full bandwidth channel estimation and merge. Since the phase compensation is done before, the full bandwidth can be considered as relevant.
  • an embodiment of the present invention provides a BBU, which can be applied to the foregoing embodiment to implement an antenna calibration process.
  • the BBU can include:
  • a generating unit 60 configured to generate a calibration signal to be sent
  • the calibration unit 61 is configured to perform multiple calibration processes in the current calibration period, and each calibration process includes: performing channel difference compensation on the calibration signal according to the phase compensation coefficient, if the calibration process is the first calibration process, The phase compensation coefficient is 1 or a phase compensation coefficient obtained in the previous calibration period. If the current calibration process is not the first calibration process, the phase compensation coefficient is the phase compensation coefficient obtained in the previous calibration process; After the channel difference compensation calibration signal is sent from the transmission channel; after receiving the calibration signal from the calibration channel, channel estimation is performed according to the calibration signal, and the calibration channel compensation coefficient of the calibration process is obtained according to the channel estimation result; according to the calibration channel compensation coefficient Obtaining the phase compensation coefficient of the calibration process;
  • the application unit 62 is configured to perform signal calibration according to the phase compensation coefficient obtained in the last calibration process. Further, the transmission power of the calibration unit 61 when transmitting the calibration signal in the first calibration process is smaller than the transmission power when the calibration signal is sent in other calibration processes.
  • the calibration unit 61 is configured to: obtain the phase compensation coefficient of the calibration process according to the following method:
  • the phase information of the calibration channel compensation coefficient of the calibration process is extracted, and the phase compensation coefficient of the calibration process is obtained; if the calibration process is not the first time and the last time During the calibration process, the phase compensation coefficient of the calibration process is obtained according to the phase information of the calibration channel compensation coefficient of the calibration process and the phase compensation coefficient obtained by the previous calibration process; if the calibration process is the last calibration process, then According to the calibration channel compensation coefficient of the calibration process and the phase compensation coefficient obtained in the previous calibration process, the phase compensation coefficient of the calibration process is obtained.
  • the calibration unit 61 is configured to: perform channel estimation according to the calibration signal according to the following method, and obtain a calibration channel compensation coefficient of the calibration process according to the channel estimation result:
  • the channel estimation is performed according to the signal of the calibration signal on the subcarrier, and the channel estimation result corresponding to the subcarrier is obtained, and the calibration channel compensation coefficient corresponding to the subcarrier is obtained according to the channel estimation result.
  • the calibration unit 61 is configured to: when the calibration process is the first calibration process, extract the phase information of the calibration channel compensation coefficient of the calibration process according to the following method, and obtain the phase compensation coefficient of the calibration process. :
  • the phase information of the calibration channel compensation coefficient is extracted, and the phase compensation coefficient corresponding to the subcarrier is obtained.
  • the calibration unit 61 is configured to: according to the following method, according to the phase information of the calibration channel compensation coefficient of the calibration process and the last calibration process, when the calibration process is not the first and last calibration process
  • the phase compensation coefficient of the phase is obtained by the phase compensation coefficient of the calibration process:
  • phase compensation coefficient corresponding to each subcarrier in the coherent bandwidth Determining an average value of the calibration channel compensation coefficients corresponding to each subcarrier in the coherent bandwidth, and extracting phase information of the average value; For the phase compensation coefficient corresponding to each subcarrier obtained in the last calibration process, the phase compensation coefficient is multiplied by the extracted phase information to obtain a phase compensation coefficient corresponding to the subcarrier.
  • the calibration unit 61 is configured to: when the calibration process is the last calibration process, according to the calibration channel compensation coefficient of the calibration process and the phase compensation coefficient obtained in the previous calibration process, the following method is obtained.
  • Phase compensation factor for the calibration process :
  • phase compensation coefficient corresponding to each subcarrier obtained in the previous calibration process the phase compensation coefficient is multiplied by the calibration channel compensation coefficient corresponding to the subcarrier obtained in the current calibration process, and the phase compensation coefficient corresponding to the subcarrier is obtained.
  • the calibration unit 61 is further configured to:
  • the calibration channel compensation coefficient of the calibration process After performing channel estimation according to the calibration signal, and obtaining a calibration channel compensation coefficient of the current calibration process according to the channel estimation result, determining a signal to noise ratio SNR, determining whether the channel estimation result is valid according to the SNR; after determining that the channel estimation result is valid, According to the channel estimation result, the calibration channel compensation coefficient of the calibration process is obtained.
  • the BBU can include: a memory 71 and a processor 72, where: the memory 71 is configured to store One or more executable programs are used to configure the processor 72; the processor 72 is configured with one or more executable programs for performing the following methods:
  • each calibration process includes: performing channel difference compensation on the calibration signal according to a phase compensation coefficient, wherein the phase compensation is performed if the current calibration process is the first calibration process The coefficient is 1 or the phase compensation coefficient obtained in the previous calibration period. If the calibration process is not the first calibration process, the phase compensation coefficient is the phase compensation coefficient obtained in the previous calibration process;
  • the calibration signal is sent from the transmission channel; after receiving the calibration signal sent by the calibration process from the calibration channel, channel estimation is performed according to the calibration signal received by the calibration channel in the current calibration process, and the channel estimation result is obtained according to the channel estimation result.
  • Calibration channel compensation coefficient for the secondary calibration process calibration channel compensation system based on this calibration process The number obtains the phase compensation coefficient of the calibration process;
  • Signal calibration is performed based on the phase compensation coefficients obtained during the last calibration of the current calibration cycle.
  • the transmit power of the processor 72 when transmitting the calibration signal during the first calibration process during the current calibration period is less than the transmit power when the calibration signal is sent during the other calibration process.
  • the processor 72 is specifically configured to obtain the phase compensation coefficient of the calibration process according to the following method: If the calibration process is the first calibration process, extract the phase information of the calibration channel compensation coefficient of the calibration process, and obtain The phase compensation coefficient of the calibration process; if the calibration process is not the first time and is not the last calibration process, the phase information of the calibration channel compensation coefficient and the phase obtained in the previous calibration process according to the calibration process The compensation coefficient is used to obtain the phase compensation coefficient of the calibration process. If the calibration process is the last calibration process, the calibration is obtained according to the calibration channel compensation coefficient of the calibration process and the phase compensation coefficient obtained in the previous calibration process. The phase compensation factor of the process.
  • the processor 72 is specifically configured to: when the current calibration process is the first calibration process in the current calibration cycle, extract the phase information of the calibration channel compensation coefficient of the calibration process according to the following method, and obtain the current calibration.
  • the phase compensation coefficient of the process For the calibration channel compensation coefficient corresponding to each subcarrier obtained in the calibration process, the phase information of the calibration channel compensation coefficient is extracted, and the phase compensation coefficient corresponding to the subcarrier is obtained.
  • the processor 72 is specifically configured to: according to the following method, the phase information of the calibration channel compensation coefficient and the last calibration process according to the current calibration process when the calibration process is not the first time nor the last calibration process.
  • the obtained phase compensation coefficient obtains the phase compensation coefficient of the calibration process: determining the average value of the calibration channel compensation coefficient corresponding to each subcarrier in the coherent bandwidth, extracting the phase information of the average value; obtained for the last calibration process A phase compensation coefficient corresponding to each subcarrier is multiplied by the extracted phase information to obtain a phase compensation coefficient corresponding to the subcarrier.
  • the processor 72 is specifically configured to use the calibration channel compensation coefficient and the last calibration process of the calibration process according to the following method when the calibration process is the last calibration process.
  • the phase compensation coefficient obtains the phase compensation coefficient of the calibration process: the phase compensation coefficient corresponding to each subcarrier obtained in the previous calibration process, and the phase compensation coefficient and the calibration channel compensation corresponding to the subcarrier obtained in the current calibration process The coefficients are multiplied to obtain a phase compensation coefficient corresponding to the subcarrier.
  • the processor 72 is specifically configured to perform channel estimation according to the calibration signal according to the following method, and obtain a calibration channel compensation coefficient of the current calibration process according to the channel estimation result: for each subcarrier in the coherent bandwidth, according to the calibration signal, The signal on the subcarrier is subjected to channel estimation, and the channel estimation result corresponding to the subcarrier is obtained, and the calibration channel compensation coefficient corresponding to the subcarrier is obtained according to the channel estimation result.
  • the processor 72 is further configured to: after performing channel estimation according to the calibration signal, and obtain a calibration channel compensation coefficient of the current calibration process according to the channel estimation result, determine a signal to noise ratio SNR, and determine a channel estimation result according to the SNR. Whether it is valid; After determining the channel estimation result is valid, the calibration channel compensation coefficient of the current calibration process is obtained according to the channel estimation result.
  • the beneficial effects of the present invention include: In the solution provided by the embodiment of the present invention, after generating the calibration signal to be sent, performing multiple calibration processes in the current calibration period, in each calibration process, firstly according to the phase The compensation coefficient compensates the channel difference of the calibration signal, and then sends the calibration signal through the transmission channel. If the calibration process is the first calibration process, the phase compensation coefficient is 1 or the phase compensation coefficient obtained in the previous calibration cycle. The calibration process is not the first calibration process, and the phase compensation coefficient is the phase compensation coefficient obtained in the previous calibration process.
  • the channel difference compensation is performed on the calibration signal to be sent in the transmission channel in advance, and the difference compensation of each transmission channel is basically the same, the coupled signal received by the calibration channel is a true and complete signal, and the peak-to-average ratio is much lower, and the peak-to-average ratio is A decrease means that the subsequent transmission power of the calibration signal can be increased, which means that the accuracy of the channel estimation result is improved, thereby improving the accuracy of the final calibration result.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

一种天线校准方法和基带装置,涉及无线通信领域,用于提高天线校准的准确度。本发明实施例提供的方案中,在生成待发送的校准信号后,在当前校准周期内执行多次校准过程,在每次校准过程中,需要首先根据相位补偿系数对校准信号进行通道差异补偿,再通过发送通道发送校准信号,从而降低了信号峰均比,可以提高最终的校准结果的准确度。

Description

天线校准方法和基带装置 本申请要求在 2013年 3月 4日提交中国专利局、 申请号为 201310067902.2、 发明名称为"天线校准方法和基带装置"的中国专利申请的优先权,其全部内容 通过引用结合在本申请中。 技术领域
本发明涉及无线通信领域, 尤其涉及一种天线校准方法和基带装置。 背景技术
智能天线系统由于其具有提高小区覆盖范围, 抑制信号干扰等优点, 已 经在时分同步码分多址 ( Time Division Synchronized Code Division Multiple Access, TD-SCDMA )、 时分长期演进( TD-SCDMA Long Term Evolution, TD-LTE )等移动通信系统中广泛使用。 天线校准 ( antenna calibration, AC ) 是基站工作在智能天线模式下必须实现的操作, 它的作用是消除多个通道间 的不一致性(包括幅度和相位), 以达到以下目的: 使基站的赋形结果接近理 想结果实现智能天线增益; 保证时分双工 ( Time Division Duplex, TDD ) 系 统上下行信道的互逆性; 实现空间分集。 图 1 示意了通道间不一致是如何补 偿的。
AC功能分为发送通道校准、 接收通道校准、 校准系数补偿。 发送通道校 准如图 2所示, 从工作支路 C点发出校准信号, 经过耦合盘耦合到校准口 A, 再从校准通道收回基带装置(Base Band Unit, BBU )处理。 BBU的基带板根 据收回的校准信号计算各通道的信道估计值, 把获得的信道估计值取倒数即 为各通道的补偿系数。 目前的校准算法对工作路径上发送的校准信号是没有 做任何处理的。
在 TD-SCDMA系统中,由于系统带宽较窄,发送通道容易做到线性平坦, 所以釆用时域校准的方式, 各工作路径中的校准信号是时域码分信号。 在 TD-LTE系统中, 系统带宽较宽, 发送通道不易做到线性平坦, 所以需 要对各天线的每个子载波信道差异进行校准, 校准信号是频域信号。 在校准 耦合信号区分各工作天线信道方面, 有频域区分、 码域区分两个方向。 码域 区分由于检测信噪比低于频域区分, 所以码域区分就不再考虑了。 举一个频 域区分的例子: 系统带宽是 20MHz, 100 个物理资源块(Physical Resource Block, PRB ), 则把 1200个子载波平均分配给 8个工作路径, 分配方式见图 3。
从校准通道收到的校准信号, 按各通道的频域资源位置计算各通道的信 道估计值, 再对信道估计值进行插值则得出各通道的所有子载波的信道估计 值。这是目前 TD-LTE发送通道校准常釆用的方法。可以看到各通道的校准信 号是在频域分布的。
综上, 目前的校准算法缺点如下:
第一, 由于 TD-LTE系统中的发送通道校准需要校准所有子载波,就导致 整个频域被校准序列占有, 这样会带来很大的信号峰均比。 为了给发送通道 预留峰均比, 只能降低各通道的校准信号发射功率, 进而降低了校准耦合信 号的检测信噪比。 而在做发送通道校准时, 为了提高信道估计的可靠性, 往 往需要发送较大功率的校准信号(尤其是存在外部干扰信号时)。 通常为了获 得小的峰均比,会使用 ZC序列作为校准信号。例如把一个完整的 1200点 ZC 序列按图 3 分配到各发送通道中, 这样在校准通道接收的耦合信号就是一个 完整 ZC序列。 但由于各发送通道的幅相差异, 会使得耦合后信号不再具备 ZC序列的低峰均比特性, 而且由于相位差异的随机性也会让峰均比大小呈现 随机性, 最大峰均比时可达到 lldB以上。
第二, TD-LTE系统中的天线校准在时域上, 各发送通道的校准信号在校 准通道按随机相位叠加, 峰均比较高且无法预知。 发明内容
本发明实施例提供一种天线校准方法和基带装置, 用于提高天线校准的 准确度。
一种天线校准方法, 该方法包括:
生成待发送的校准信号;
在当前校准周期内执行多次校准过程, 每次校准过程包括: 根据相位补 偿系数对所述校准信号进行通道差异补偿, 若本次校准过程为第一次校准过 程, 则所述相位补偿系数为 1 或上一个校准周期内得到的相位补偿系数, 若 本次校准过程不为第一次校准过程, 则所述相位补偿系数为上一次校准过程 得到的相位补偿系数; 将通道差异补偿后的校准信号从各发送通道发出; 从 校准通道接收到校准信号后, 根据该校准信号进行信道估计, 根据信道估计 结果得到本次校准过程的校准通道补偿系数; 根据该校准通道补偿系数得到 本次校准过程的相位补偿系数;
根据最后一次校准过程中得到的相位补偿系数进行信号校准。
一种基带装置 BBU, 该 BBU包括:
生成单元, 用于生成待发送的校准信号;
校准单元, 用于在当前校准周期内执行多次校准过程, 每次校准过程包 括: 根据相位补偿系数对所述校准信号进行通道差异补偿, 若本次校准过程 为第一次校准过程, 则所述相位补偿系数为 1 或上一个校准周期内得到的相 位补偿系数, 若本次校准过程不为第一次校准过程, 则所述相位补偿系数为 上一次校准过程得到的相位补偿系数; 将通道差异补偿后的校准信号从各发 送通道发出; 从校准通道接收到校准信号后, 根据该校准信号进行信道估计, 根据信道估计结果得到本次校准过程的校准通道补偿系数; 根据该校准通道 补偿系数得到本次校准过程的相位补偿系数;
应用单元, 用于根据最后一次校准过程中得到的相位补偿系数进行信号 校准。
一种基带装置 BBU, 包括: 存储器和处理器;
所述存储器, 用于存储一个或多个可执行程序, 被用于配置所述处理器; 所述处理器, 被配置了一个或多个可执行程序, 所述一个或多个可执行 程序用于执行以下方法:
生成待发送的校准信号;
在当前校准周期内执行多次校准过程, 每次校准过程包括: 根据相位补 偿系数对所述校准信号进行通道差异补偿, 其中, 若本次校准过程为第一次 校准过程, 则所述相位补偿系数为 1 或上一个校准周期内得到的相位补偿系 数, 若本次校准过程不为第一次校准过程, 则所述相位补偿系数为上一次校 准过程得到的相位补偿系数; 将通道差异补偿后的校准信号从发送通道发出; 从校准通道接收到本次校准过程发送的校准信号后, 根据所述本次校准过程 中所述校准通道接收到的校准信号进行信道估计 , 根据信道估计结果得到本 次校准过程的校准通道补偿系数; 根据本次校准过程得到的校准通道补偿系 数得到本次校准过程的相位补偿系数;
根据所述当前校准周期最后一次校准过程中得到的相位补偿系数进行信 号校准。
本发明实施例提供的方案中, 在生成待发送的校准信号后, 在当前校准 周期内执行多次校准过程, 在每次校准过程中, 需要首先根据相位补偿系数 对校准信号进行通道差异补偿, 再通过发送通道发送校准信号, 其中若本次 校准过程为第一次校准过程, 则相位补偿系数为 1 或上一个校准周期内得到 的相位补偿系数, 若本次校准过程不为第一次校准过程, 则相位补偿系数为 上一次校准过程得到的相位补偿系数。 由于预先对发送通道待发送的校准信 号进行了通道差异补偿, 各发送通道的差异补偿基本一致后, 校准通道收到 的耦合信号就是一个真实完整的信号, 峰均比会降低很多, 峰均比降低就意 味着后续可以提高校准信号的发送功率, 也就意味着信道估计结果的准确度 会提高, 进而提高最终的校准结果的准确度。 附图说明
图 1为现有技术中的通道不一致性的补偿示意图;
图 2为现有技术中的发送通道校准结构示意图; 图 3为现有技术中的 TD-LTE各发送通道发送的校准信号频域占用示意 图;
图 4为本发明实施例提供的方法流程示意图;
图 5A为本发明实施例一流程示意图;
图 5B为本发明实施例二的流程示意图;
图 6为本发明实施例提供的 BBU结构示意图;
图 7为本发明另一实施例提供的 BBU结构示意图。 具体实施方式
为了提高天线校准的准确性, 本发明实施例提供一种天线校准方法。 参见图 4, 本发明实施例提供的天线校准方法, 包括以下步骤: 步骤 40: 生成待发送的校准信号。
步骤 41 : 在当前校准周期内执行多次校准过程, 每次校准过程包括: 根 据相位补偿系数对该校准信号进行通道差异补偿, 若本次校准过程为第一次 校准过程, 则所述相位补偿系数为 1 或上一个校准周期内得到的相位补偿系 数, 若本次校准过程不为第一次校准过程, 则该相位补偿系数为上一次校准 过程得到的相位补偿系数; 将通道差异补偿后的校准信号从发送通道发出; 从校准通道接收到校准信号后, 根据该校准信号进行信道估计, 根据信道估 计结果得到本次校准过程的校准通道补偿系数; 根据该校准通道补偿系数得 到本次校准过程的相位补偿系数。
其中, 所述多次校准过程是指至少 2次校准过程, 一个校准周期内执行 校准过程的次数可预先设定, 每个校准周期内执行校准过程的次数可以相同 也可以不同。
所述上一个校准周期内得到的相位补偿系数, 可以是上一个校准周期内 的任意一个校准过程得到的相位补偿系数。 优选的, 所述上一个校准周期内 得到的相位补偿系数取上一个校准周期内最后一次校准过程得到的相位补偿 系数。 步骤 42: 根据最后一次校准过程中得到的相位补偿系数进行信号校准。 较佳的, 当前校准周期内第一次校准过程中校准信号的发送功率小于其 他校准过程中校准信号的发送功率。 比如, 第一次校准过程中校准信号的发 送功率为 p, 则其他校准过程中校准信号的发送功率可以为 p+8dB。 因为第一 次校准过程要预留 11个 dB的峰均比, 经过通道差异补偿后峰均比降低到 3 个 dB以内, 所以可以提升 8个 dB的发送功率。
具体的, 步骤 41中根据本次校准过程得到的校准通道补偿系数得到本次 校准过程的相位补偿系数, 具体实现可以如下:
若本次校准过程为第一次校准过程, 则提取本次校准过程的校准通道补 偿系数的相位信息, 得到本次校准过程的相位补偿系数; 若本次校准过程不 为第一次且也不为最后一次校准过程, 则根据本次校准过程的校准通道补偿 系数的相位信息和上一次校准过程得到的相位补偿系数, 得到本次校准过程 的相位补偿系数; 若本次校准过程为最后一次校准过程, 则根据本次校准过 程的校准通道补偿系数和上一次校准过程得到的相位补偿系数, 得到本次校 准过程的相位补偿系数。
具体的, 根据从校准通道接收到的校准信号进行信道估计, 根据信道估 计结果得到本次校准过程的校准通道补偿系数, 具体实现可以如下:
对于相干带宽内的每个子载波, 根据该校准信号在该子载波上的信号进 行信道估计, 得到该子载波对应的信道估计结果, 根据该信道估计结果得到 该子载波对应的校准通道补偿系数。 这里, 根据该校准信号在该子载波上的 信号进行信道估计, 具体为: 将从校准通道接收到的该子载波上的校准信号 与对应发送通道发送的校准信号相除(具体是表示两个校准信号的矢量相除, 等效两个矢量共轭相乘), 得到该子载波对应的信道估计结果。 这里, 根据该 信道估计结果得到该子载波对应的校准通道补偿系数, 具体为: 取该信道估 计结果的倒数, 得到该子载波对应的校准通道补偿系数。 相干带宽可以是整 个系统带宽。
具体的, 若本次校准过程为第一次校准过程, 则提取本次校准过程的校 准通道补偿系数的相位信息, 得到本次校准过程的相位补偿系数, 具体实现 可以如下: 对于本次校准过程得到的每个子载波对应的校准通道补偿系数, 提取该校准通道补偿系数的相位信息, 得到该子载波对应的相位补偿系数。
具体的, 若本次校准过程不为第一次且不为最后一次校准过程, 则根据 本次校准过程的校准通道补偿系数的相位信息和上一次校准过程得到的相位 补偿系数, 得到本次校准过程的相位补偿系数, 具体实现可以如下: 确定相 干带宽内的每个子载波对应的校准通道补偿系数的平均值, 提取出该平均值 的相位信息; 对于上一次校准过程得到的每个子载波对应的相位补偿系数, 将该相位补偿系数与提取出的相位信息相乘, 得到该子载波对应的相位补偿 系数。
具体的, 若本次校准过程为最后一次校准过程, 则根据本次校准过程的 校准通道补偿系数和上一次校准过程得到的相位补偿系数, 得到本次校准过 程的相位补偿系数, 具体实现可以如下: 对于上一次校准过程得到的每个子 载波对应的相位补偿系数, 将该相位补偿系数与本次校准过程得到的该子载 波对应的校准通道补偿系数相乘, 得到该子载波对应的相位补偿系数。
进一步的, 在根据该校准信号进行信道估计之后、 且根据信道估计结果 得到本次校准过程的校准通道补偿系数之前, 可以确定信噪比(SNR ), 根据 SNR确定信道估计结果是否有效; 在确定信道估计结果有效后, 再根据信道 估计结果得到本次校准过程的校准通道补偿系数。 若根据 SNR确定信道估计 结果无效, 则执行下一次校准过程。 这里, 根据 SNR确定信道估计结果是否 有效, 具体可以为: 判断 SNR是否大于预先设定的门限值(大于 0的数值 ), 若是, 则确定信道估计结果有效, 否则, 确定信道估计结果无效。
步骤 40中生成待发送的校准信号后, 需要将生成的校准信号分配到各发 送通道上; 在每次校准过程中: 对于每个发送通道, 根据相位补偿系数对该 发送通道的校准信号进行通道差异补偿, 若本次校准过程为第一次校准过程, 则该相位补偿系数为 1 或上一个校准周期内得到的该发送通道的校准信号所 在的各子载波对应的相位补偿系数, 若本次校准过程不为第一次校准过程, 则该相位补偿系数为上一次校准过程得到的该发送通道的校准信号所在的各 子载波对应的相位补偿系数。 这里, 根据相位补偿系数对该发送通道的校准 信号进行通道差异补偿, 具体为: 将该发送通道的校准信号与对应的相位补 偿系数相乘。
下面结合具体实施例对本发明进行说明:
实施例一:
具体流程如图 5A所示:
步骤 1: BBU生成待发送的校准信号 ea 。
步骤 2: 判断本次校准过程是否为第一次校准过程, 若是, 则到步骤 3 , 否则, 到步骤 4;
步骤 3 : 根据相位补偿系数对校准信号进行通道差异补偿, 即将校准信号 与相位 ^卜偿系数相乘: txCalSeq _ equalize = txCalSeq.PhaseCoeff , 相位^卜偿系数 PhaseCoejf = 1或 PhaseCoeff为上一个校准周期内得到的相位补偿系数, 并到步 骤 5;
步骤 4: 根据相位补偿系数对校准信号进行通道差异补偿, 即将校准信号 与相位补偿系数相乘, 该相位补偿系数为上一次校准过程得到的相位补偿系 数;
步骤 5 : 从发送通道发出通道差异补偿后的校准信号; 第一次校准过程中 校准信号的发送功率小于其他校准过程中校准信号的发送功率;
步骤 6:校准信号从发送通道发出后,经过耦合盘和校准通道后到达 BBU, BBU从校准通道接收到校准信号后, 根据该校准信号进行信道估计, 计算 S R, 根据 S R判断信道估计结果是否有效; 若有效, 则到步骤 7 , 否则, 在下一个校准过程转到步骤 4。
通道差异补偿后的校准信号可表示为: txCalSeq equalize = txCalSeq.PhaseCoeff
txcal recv - txCalSeq equalize. Channel
, txcal recv
chan estimate = 二
_ txCalSeq
- PhaseCoeff .Channel 其中, i C S^ ^afce为通道差异补偿后的校准信号, ^Catt^为生成的 校准信号, ^ ^为相位补偿系数, toa - eev为从校准信道接收到的校准 信号; Ctowwe/为信道特性; e/^ - 皿 为信道估计结果。 步骤 7 : 根据信道估计结果得到本次校准过程的校准通道补偿系数 txTmp coeff
chan estimate · 步骤 8: 判断本次校准过程是否是最后一次校准过程, 若是, 则到步骤 12 , 否则, 到步骤 9;
步骤 9: 判断本次校准过程是否是第一次校准过程, 若是, 则到步骤 11 , 否则, 到步骤 10;
步骤 10: 提取本次校准过程的校准通道补偿系数的相位信息, 将该相位 信息与上一次校准过程的相位补偿系数相乘, 得到本次校准过程的相位补偿 手数. PhaseCoeff = PhaseCoeff . exp(l j .aTan txTmp _ coeff)) · 步骤 11 : 提取本次校准过程的校准通道补偿系数的相位信息, 得到本次 校准过程的相位补偿系数;
步骤 12: 将本次校准过程的校准通道补偿系数与上一次校准过程的相位 补偿系数相乘, 得到最终的补偿系数:
txCal— coeff - txTmp coeff .PhaseCoeff
1
Channel 。
步骤 13 :根据最后一次校准过程的信道估计结果确定校准结果是否收敛, 若收敛, 则确定步骤 12得到的最终的补偿系数可用; 否则, 确定步骤 12得 到的最终的补偿系数不可用, 进行下一校准周期的校准过程。
判断收敛的代码可以是: if aTan{chan estimate) > 5。
校准结果不收敛, 需要查射频通道问题;
else
校准结果收敛, 校准结果正确;
end
上述代码表示: 若 aTan(chan— estimate)>5。 , 则表明校准结果不收敛, 可 进一步查射频通道问题; 否则, 表明校准结果收敛。 其中, aTan( . )表示反正 切函数运算, 皿 te为信道估计结果。
实施例二:
针对一个 8通道、 20MHz带宽的 TD-LTE系统, 方案举例如下, 如图 5B 所示:
步骤 1 : 按系统带宽生成 ZC序列。 系统带宽为 20MHz时, ZC序列选择 1200点。 再把 1200点 ZC分配到 8个发送通道上, 具体实现如下:
L = 1200; 点序列长度
N C = max(primes(L)); %求最大质数
m zc = 1193; % sequence index
xk
- zc„ *m-zc 0 N:(LZ-Cm L) );
txCalSeq = zeros(8, 2048);
sc index = [425: 1024 1026: 1625];
for n Ant = 1 : 8
txCalSeq(n Ant, sc index(n Ant: 8: end)) = Xk ZC(n Ant: 8: end);
end
rxCalSeq(l, sc index) = Xk ZC;
步骤 2: 将校准信号进行 IFFT ( Inverse Fast Fourier Transform, 快速傅里 叶逆变换)、 加前后缀, 并对校准信号进行 7.5kHz频移。
步骤 3: 确定校准信号的适当发送功率; 乘以相位补偿系数, 第一次校准 时相位补偿系数为 exp(0);把补偿后的信号从发送通道发出;从校准通道收到 的信号去前后缀, 做 2048点 FFT, 做简单的 ZF信道估计。 具体的:
对每个发送通道: 根据相位补偿系数对该发送通道的校准信号进行通道 差异补偿, 即将校准信号与相位补偿系数相乘。 其中, 对于第一次校准过程, 相位补偿系数为 1 或为上一个校准周期内得到的该发送通道的校准信号所在 的各子载波对应的相位补偿系数(步骤 3.2 ), 对于其他校准过程, 该相位补 偿系数为上一次校准过程得到的该发送通道的校准信号所在的各子载波对应 的相位补偿系数(步骤 3.3 )。 从各发送通道发出通道差异补偿后的校准信号 (步骤 3.4 ); 第一次校准过程中校准信号的发送功率小于其他校准过程中校 准信号的发送功率。 校准信号从发送通道发出后, 经过耦合盘和校准通道后 到达 BBU, BBU从校准通道接收到一路校准信号后, 根据该校准信号进行信 道估计(步骤 3.5 );
步骤 4:根据信道估计结果对校准信号进行 IFFT,根据时域冲击计算 SNR。 根据 SNR判断本次校准的信道估计结果是否有效; 若有效, 则到步骤 5 , 否 则, 到步骤 3.3;
步骤 5: 存储信道估计结果。
步骤 6: 分离各发送通道的信道估计结果, 即从步骤 5中存储的信道估计 结果中分离出各发送通道的校准信号所在的各子载波对应的信道估计结果。
步骤 7: 根据分离出的信道估计结果计算每个发送通道的群时延,群时延 差异过大则告警。 群时延的差异不能超过前后缀的长度。 如果前后缀长度为 12Ts, 则群时延差异不应超过 12/30.72=0.39us。
步骤 8: 对每个子载波对应的信道估计结果取倒数,得到本次校准过程中 该子载波对应的校准通道补偿系数。
步骤 9: 判断本次校准过程是否是最后一次校准过程, 若是, 则到步骤 11 , 否则, 到步骤 10;
步骤 10: 判断本次校准过程是否为第一次校准过程(步骤 10.1 ), 如是第 一校准过程, 则将本次校准过程的各校准通道补偿系数的相位信息提取出来 作为本次校准过程中各子载波对应的相位补偿系数(步骤 10.3 )。 如非第一次 校准过程, 则将每个子载波对应的校准通道补偿系数取平均, 然后提出平均 值的相位信息, 将该相位信息分别乘以上一次校准过程中得到的个子载波对 应的相位补偿系数, 得到本次校准过程中每个子载波波对应的相位补偿系数 (步骤 10.2 )。 下一次校准过程时重新回到步骤 3.1。
步骤 11 : 将本次校准过程的校准通道补偿系数与上一次校准过程的相位 补偿系数相乘, 得到最终的补偿系数。 具体的, 对于上一次校准过程得到的 每个子载波对应的相位补偿系数, 将该相位补偿系数与本次校准过程得到的 该子载波对应的校准通道补偿系数相乘, 得到该子载波对应的相位补偿系数。
步骤 12:根据前后两次校准通道补偿系数的相位变化情况, 判断通道的相 频特性是否稳定。 例如, 若两次校准通道补偿系数的相位差超过 5度则告警。
这里需要提到的是反馈补偿的机制把前一次校准的相位估计误差也叠加 到了下次校准误差中了。 体现为最终的相位误差 jitter会变大, 例如之前误差 最大 ± 2度,之后进行的反馈补偿校准相位误差会扩大到土 5度。 解决这个问题 方法就是在反馈补偿校准时釆用相关带宽内的信道估计合并, 即反馈补偿校 准计算出的补偿系数是对之前补偿系数的群时延修正, 这样就不会加大误差 的 jitter幅度了。 即在流程图中的 Step3.5可以使用全带宽的信道估计合并, 由 于之前做了相位补偿, 所以可以认为全带宽为相关的。
参见图 6,本发明实施例提供一种 BBU,该 BBU可以应用于上述实施例, 以实现天线校准过程, 该 BBU可包括:
生成单元 60, 用于生成待发送的校准信号;
校准单元 61 , 用于在当前校准周期内执行多次校准过程, 每次校准过程 包括: 根据相位补偿系数对所述校准信号进行通道差异补偿, 若本次校准过 程为第一次校准过程, 则所述相位补偿系数为 1 或上一个校准周期内得到的 相位补偿系数, 若本次校准过程不为第一次校准过程, 则所述相位补偿系数 为上一次校准过程得到的相位补偿系数; 将通道差异补偿后的校准信号从发 送通道发出; 从校准通道接收到校准信号后, 根据该校准信号进行信道估计, 根据信道估计结果得到本次校准过程的校准通道补偿系数; 根据该校准通道 补偿系数得到本次校准过程的相位补偿系数;
应用单元 62, 用于根据最后一次校准过程中得到的相位补偿系数进行信 号校准。 进一步的, 所述校准单元 61在第一次校准过程中发送校准信号时的发送 功率小于其他校准过程中发送校准信号时的发送功率。
进一步的, 所述校准单元 61用于: 按照如下方法得到本次校准过程的相 位补偿系数:
若本次校准过程为第一次校准过程, 则提取本次校准过程的校准通道补 偿系数的相位信息, 得到本次校准过程的相位补偿系数; 若本次校准过程不 为第一次和最后一次校准过程, 则根据本次校准过程的校准通道补偿系数的 相位信息和上一次校准过程得到的相位补偿系数, 得到本次校准过程的相位 补偿系数; 若本次校准过程为最后一次校准过程, 则根据本次校准过程的校 准通道补偿系数和上一次校准过程得到的相位补偿系数, 得到本次校准过程 的相位补偿系数。
进一步的, 所述校准单元 61用于: 按照如下方法根据该校准信号进行信 道估计 , 根据信道估计结果得到本次校准过程的校准通道补偿系数:
对于相干带宽内的每个子载波, 根据该校准信号在该子载波上的信号进 行信道估计, 得到该子载波对应的信道估计结果, 根据该信道估计结果得到 该子载波对应的校准通道补偿系数。
进一步的, 所述校准单元 61用于:在本次校准过程为第一次校准过程时, 按照如下方法提取本次校准过程的校准通道补偿系数的相位信息, 得到本次 校准过程的相位补偿系数:
对于本次校准过程得到的每个子载波对应的校准通道补偿系数, 提取该 校准通道补偿系数的相位信息, 得到该子载波对应的相位补偿系数。
进一步的, 所述校准单元 61用于: 在本次校准过程不为第一次和最后一 次校准过程时, 按照如下方法根据本次校准过程的校准通道补偿系数的相位 信息和上一次校准过程得到的相位补偿系数, 得到本次校准过程的相位补偿 系数:
确定相干带宽内的每个子载波对应的校准通道补偿系数的平均值, 提取 出该平均值的相位信息; 对于上一次校准过程得到的每个子载波对应的相位补偿系数, 将该相位 补偿系数与所述提取出的相位信息相乘, 得到该子载波对应的相位补偿系数。
进一步的, 所述校准单元 61用于: 在本次校准过程为最后一次校准过程 时, 按照如下方法根据本次校准过程的校准通道补偿系数和上一次校准过程 得到的相位补偿系数, 得到本次校准过程的相位补偿系数:
对于上一次校准过程得到的每个子载波对应的相位补偿系数, 将该相位 补偿系数与本次校准过程得到的该子载波对应的校准通道补偿系数相乘, 得 到该子载波对应的相位补偿系数。
进一步的, 所述校准单元 61还用于:
在根据该校准信号进行信道估计之后、 且根据信道估计结果得到本次校 准过程的校准通道补偿系数之前, 确定信噪比 SNR, 根据 SNR确定信道估计 结果是否有效; 在确定信道估计结果有效后, 根据信道估计结果得到本次校 准过程的校准通道补偿系数。
参见图 7, 本发明另一实施例提供一种 BBU, 该 BBU可以应用于上述实 施例, 以实现天线校准过程, 该 BBU可包括: 存储器 71和处理器 72, 其中: 存储器 71 , 用于存储一个或多个可执行程序, 被用于配置处理器 72; 处理器 72, 被配置了一个或多个可执行程序, 所述一个或多个可执行程 序用于执行以下方法:
生成待发送的校准信号;
在当前校准周期内执行多次校准过程, 每次校准过程包括: 根据相位补 偿系数对所述校准信号进行通道差异补偿, 其中, 若本次校准过程为第一次 校准过程, 则所述相位补偿系数为 1 或上一个校准周期内得到的相位补偿系 数, 若本次校准过程不为第一次校准过程, 则所述相位补偿系数为上一次校 准过程得到的相位补偿系数; 将通道差异补偿后的校准信号从发送通道发出; 从校准通道接收到本次校准过程发送的校准信号后, 根据所述本次校准过程 中所述校准通道接收到的校准信号进行信道估计 , 根据信道估计结果得到本 次校准过程的校准通道补偿系数; 根据本次校准过程得到的校准通道补偿系 数得到本次校准过程的相位补偿系数;
根据所述当前校准周期最后一次校准过程中得到的相位补偿系数进行信 号校准。
优选地, 处理器 72在所述当前校准周期内第一次校准过程中发送校准信 号时的发送功率小于其他校准过程中发送校准信号时的发送功率。
优选地, 处理器 72具体用于按照如下方法得到本次校准过程的相位补偿 系数: 若本次校准过程为第一次校准过程, 则提取本次校准过程的校准通道 补偿系数的相位信息, 得到本次校准过程的相位补偿系数; 若本次校准过程 不为第一次且也不为最后一次校准过程, 则根据本次校准过程的校准通道补 偿系数的相位信息和上一次校准过程得到的相位补偿系数, 得到本次校准过 程的相位补偿系数; 若本次校准过程为最后一次校准过程, 则根据本次校准 过程的校准通道补偿系数和上一次校准过程得到的相位补偿系数, 得到本次 校准过程的相位补偿系数。
优选地, 处理器 72具体用于在本次校准过程为所述当前校准周期内的第 一次校准过程时, 按照如下方法提取本次校准过程的校准通道补偿系数的相 位信息, 得到本次校准过程的相位补偿系数: 对于本次校准过程得到的每个 子载波对应的校准通道补偿系数, 提取该校准通道补偿系数的相位信息, 得 到该子载波对应的相位补偿系数。
优选地, 处理器 72具体用于在本次校准过程不为第一次且也不为最后一 次校准过程时, 按照如下方法根据本次校准过程的校准通道补偿系数的相位 信息和上一次校准过程得到的相位补偿系数, 得到本次校准过程的相位补偿 系数: 确定相干带宽内的每个子载波对应的校准通道补偿系数的平均值, 提 取出该平均值的相位信息; 对于上一次校准过程得到的每个子载波对应的相 位补偿系数, 将该相位补偿系数与所述提取出的相位信息相乘, 得到该子载 波对应的相位补偿系数。
优选地, 处理器 72具体用于在本次校准过程为最后一次校准过程时, 按 照如下方法根据本次校准过程的校准通道补偿系数和上一次校准过程得到的 相位补偿系数, 得到本次校准过程的相位补偿系数: 对于上一次校准过程得 到的每个子载波对应的相位补偿系数, 将该相位补偿系数与本次校准过程得 到的该子载波对应的校准通道补偿系数相乘, 得到该子载波对应的相位补偿 系数。
优选地, 处理器 72 具体用于按照如下方法根据该校准信号进行信道估 计, 根据信道估计结果得到本次校准过程的校准通道补偿系数: 对于相干带 宽内的每个子载波, 根据该校准信号在该子载波上的信号进行信道估计, 得 到该子载波对应的信道估计结果, 根据该信道估计结果得到该子载波对应的 校准通道补偿系数。
可选地, 处理器 72还用于: 在根据该校准信号进行信道估计之后、 且根 据信道估计结果得到本次校准过程的校准通道补偿系数之前, 确定信噪比 SNR, 根据 SNR确定信道估计结果是否有效; 在确定信道估计结果有效后, 根据信道估计结果得到本次校准过程的校准通道补偿系数。
综上, 本发明的有益效果包括: 本发明实施例提供的方案中, 在生成待 发送的校准信号后, 在当前校准周期内执行多次校准过程, 在每次校准过程 中, 需要首先根据相位补偿系数对校准信号进行通道差异补偿, 再通过发送 通道发送校准信号, 其中若本次校准过程为第一次校准过程, 则相位补偿系 数为 1 或上一个校准周期内得到的相位补偿系数, 若本次校准过程不为第一 次校准过程, 则相位补偿系数为上一次校准过程得到的相位补偿系数。 由于 预先对发送通道待发送的校准信号进行了通道差异补偿, 各发送通道的差异 补偿基本一致后, 校准通道收到的耦合信号就是一个真实完整的信号, 峰均 比会降低很多, 峰均比降低就意味着后续可以提高校准信号的发送功率, 也 就意味着信道估计结果的准确度会提高, 进而提高最终的校准结果的准确度。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产 品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图 和 /或方框图中的每一流程和 /或方框、 以及流程图和 /或方框图中的流程 和 /或方框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器, 使得通 过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流 程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个流程或 多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的步 骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了 基本创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权 利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种天线校准方法, 其特征在于, 该方法包括:
生成待发送的校准信号;
在当前校准周期内执行多次校准过程, 每次校准过程包括: 根据相位补 偿系数对所述校准信号进行通道差异补偿, 其中, 若本次校准过程为第一次 校准过程, 则所述相位补偿系数为 1 或上一个校准周期内得到的相位补偿系 数, 若本次校准过程不为第一次校准过程, 则所述相位补偿系数为上一次校 准过程得到的相位补偿系数; 将通道差异补偿后的校准信号从发送通道发出; 从校准通道接收到本次校准过程发送的校准信号后, 根据所述本次校准过程 中所述校准通道接收到的校准信号进行信道估计 , 根据信道估计结果得到本 次校准过程的校准通道补偿系数; 根据本次校准过程得到的校准通道补偿系 数得到本次校准过程的相位补偿系数;
根据所述当前校准周期内最后一次校准过程中得到的相位补偿系数进行 信号校准。
2、 如权利要求 1所述的方法, 其特征在于, 在所述当前校准周期内, 第 一次校准过程中校准信号的发送功率小于其他校准过程中校准信号的发送功 率。
3、 如权利要求 1所述的方法, 其特征在于, 所述根据本次校准过程得到 的校准通道补偿系数得到本次校准过程的相位补偿系数, 具体包括:
若本次校准过程为第一次校准过程, 则提取本次校准过程的校准通道补 偿系数的相位信息, 得到本次校准过程的相位补偿系数;
若本次校准过程不为第一次且也不为最后一次校准过程, 则根据本次校 准过程的校准通道补偿系数的相位信息和上一次校准过程得到的相位补偿系 数, 得到本次校准过程的相位补偿系数;
若本次校准过程为最后一次校准过程, 则根据本次校准过程的校准通道 补偿系数和上一次校准过程得到的相位补偿系数, 得到本次校准过程的相位 补偿系数。
4、 如权利要求 3所述的方法, 其特征在于, 若本次校准过程为所述当前 校准周期内的第一次校准过程, 则提取本次校准过程的校准通道补偿系数的 相位信息, 得到本次校准过程的相位补偿系数, 具体包括:
对于本次校准过程得到的每个子载波对应的校准通道补偿系数, 提取该 校准通道补偿系数的相位信息, 得到该子载波对应的相位补偿系数。
5、 如权利要求 3所述的方法, 其特征在于, 所述若本次校准过程不为第 一次且也不为最后一次校准过程, 则根据本次校准过程的校准通道补偿系数 的相位信息和上一次校准过程得到的相位补偿系数, 得到本次校准过程的相 位补偿系数, 具体包括:
确定相干带宽内的每个子载波对应的校准通道补偿系数的平均值, 提取 出该平均值的相位信息;
对于上一次校准过程得到的每个子载波对应的相位补偿系数, 将该相位 补偿系数与所述提取出的相位信息相乘, 得到该子载波对应的相位补偿系数。
6、 如权利要求 3所述的方法, 其特征在于, 所述若本次校准过程为最后 一次校准过程, 则根据本次校准过程的校准通道补偿系数和上一次校准过程 得到的相位补偿系数, 得到本次校准过程的相位补偿系数, 具体包括:
对于上一次校准过程得到的每个子载波对应的相位补偿系数, 将该相位 补偿系数与本次校准过程得到的该子载波对应的校准通道补偿系数相乘, 得 到该子载波对应的相位补偿系数。
7、 如权利要求 1-6中任一项所述的方法, 其特征在于, 所述根据所述本 次校准过程中所述校准通道接收到的校准信号进行信道估计 , 根据信道估计 结果得到本次校准过程的校准通道补偿系数, 具体包括:
对于相干带宽内的每个子载波, 根据该校准信号在该子载波上的信号进 行信道估计, 得到该子载波对应的信道估计结果, 根据该信道估计结果得到 该子载波对应的校准通道补偿系数。
8、 如权利要求 1-7中任一所述的方法, 其特征在于, 在根据该校准信号 进行信道估计之后、 且根据信道估计结果得到本次校准过程的校准通道补偿 系数之前, 进一步包括:
确定信噪比 SNR, 根据 SNR确定信道估计结果是否有效;
所述根据信道估计结果得到本次校准过程的校准通道补偿系数, 具体包 括:
在确定信道估计结果有效后, 根据信道估计结果得到本次校准过程的校 准通道补偿系数。
9、 一种基带装置 BBU, 其特征在于, 该 BBU包括:
生成单元, 用于生成待发送的校准信号;
校准单元, 用于在当前校准周期内执行多次校准过程, 每次校准过程包 括: 根据相位补偿系数对所述校准信号进行通道差异补偿, 其中, 若本次校 准过程为第一次校准过程, 则所述相位补偿系数为 1 或上一个校准周期内得 到的相位补偿系数, 若本次校准过程不为第一次校准过程, 则所述相位补偿 系数为上一次校准过程得到的相位补偿系数; 将通道差异补偿后的校准信号 从发送通道发出; 从校准通道接收到本次校准过程发送的校准信号后, 根据 所述本次校准过程中所述校准通道接收到的校准信号进行信道估计, 根据信 道估计结果得到本次校准过程的校准通道补偿系数; 根据本次校准过程得到 的校准通道补偿系数得到本次校准过程的相位补偿系数;
应用单元, 用于根据所述当前校准周期最后一次校准过程中得到的相位 补偿系数进行信号校准。
10、 如权利要求 9所述的 BBU, 其特征在于, 所述校准单元在所述当前 校准周期内第一次校准过程中发送校准信号时的发送功率小于其他校准过程 中发送校准信号时的发送功率。
11、 如权利要求 9所述的 BBU, 其特征在于, 所述校准单元用于: 按照 如下方法得到本次校准过程的相位补偿系数:
若本次校准过程为第一次校准过程, 则提取本次校准过程的校准通道补 偿系数的相位信息, 得到本次校准过程的相位补偿系数; 若本次校准过程不 为第一次且也不为最后一次校准过程, 则根据本次校准过程的校准通道补偿 系数的相位信息和上一次校准过程得到的相位补偿系数, 得到本次校准过程 的相位补偿系数; 若本次校准过程为最后一次校准过程, 则根据本次校准过 程的校准通道补偿系数和上一次校准过程得到的相位补偿系数, 得到本次校 准过程的相位补偿系数。
12、 如权利要求 11所述的 BBU, 其特征在于, 所述校准单元用于: 在本 次校准过程为所述当前校准周期内的第一次校准过程时, 按照如下方法提取 本次校准过程的校准通道补偿系数的相位信息, 得到本次校准过程的相位补 偿系数:
对于本次校准过程得到的每个子载波对应的校准通道补偿系数, 提取该 校准通道补偿系数的相位信息, 得到该子载波对应的相位补偿系数。
13、 如权利要求 11所述的 BBU, 其特征在于, 所述校准单元用于: 在本 次校准过程不为第一次且也不为最后一次校准过程时, 按照如下方法根据本 次校准过程的校准通道补偿系数的相位信息和上一次校准过程得到的相位补 偿系数, 得到本次校准过程的相位补偿系数:
确定相干带宽内的每个子载波对应的校准通道补偿系数的平均值, 提取 出该平均值的相位信息;
对于上一次校准过程得到的每个子载波对应的相位补偿系数, 将该相位 补偿系数与所述提取出的相位信息相乘, 得到该子载波对应的相位补偿系数。
14、 如权利要求 11所述的 BBU, 其特征在于, 所述校准单元用于: 在本 次校准过程为最后一次校准过程时, 按照如下方法根据本次校准过程的校准 通道补偿系数和上一次校准过程得到的相位补偿系数, 得到本次校准过程的 相位补偿系数:
对于上一次校准过程得到的每个子载波对应的相位补偿系数, 将该相位 补偿系数与本次校准过程得到的该子载波对应的校准通道补偿系数相乘, 得 到该子载波对应的相位补偿系数。
15、 如权利要求 9-14中任一项所述的 BBU, 其特征在于, 所述校准单元 用于: 按照如下方法根据该校准信号进行信道估计, 根据信道估计结果得到 本次校准过程的校准通道补偿系数:
对于相干带宽内的每个子载波, 根据该校准信号在该子载波上的信号进 行信道估计, 得到该子载波对应的信道估计结果, 根据该信道估计结果得到 该子载波对应的校准通道补偿系数。
16、 如权利要求 9-15中任一所述的 BBU, 其特征在于, 所述校准单元还 用于:
在根据该校准信号进行信道估计之后、 且根据信道估计结果得到本次校 准过程的校准通道补偿系数之前, 确定信噪比 SNR, 根据 SNR确定信道估计 结果是否有效; 在确定信道估计结果有效后, 根据信道估计结果得到本次校 准过程的校准通道补偿系数。
17、 一种基带装置 BBU, 其特征在于, 包括: 存储器和处理器; 所述存储器, 用于存储一个或多个可执行程序, 被用于配置所述处理器; 所述处理器, 被配置了一个或多个可执行程序, 所述一个或多个可执行 程序用于执行以下方法:
生成待发送的校准信号;
在当前校准周期内执行多次校准过程, 每次校准过程包括: 根据相位补 偿系数对所述校准信号进行通道差异补偿, 其中, 若本次校准过程为第一次 校准过程, 则所述相位补偿系数为 1 或上一个校准周期内得到的相位补偿系 数, 若本次校准过程不为第一次校准过程, 则所述相位补偿系数为上一次校 准过程得到的相位补偿系数; 将通道差异补偿后的校准信号从发送通道发出; 从校准通道接收到本次校准过程发送的校准信号后, 根据所述本次校准过程 中所述校准通道接收到的校准信号进行信道估计 , 根据信道估计结果得到本 次校准过程的校准通道补偿系数; 根据本次校准过程得到的校准通道补偿系 数得到本次校准过程的相位补偿系数;
根据所述当前校准周期最后一次校准过程中得到的相位补偿系数进行信 号校准。
18、如权利要求 17所述的 BBU, 其特征在于, 所述处理器在所述当前校 准周期内第一次校准过程中发送校准信号时的发送功率小于其他校准过程中 发送校准信号时的发送功率。
19、如权利要求 17所述的 BBU, 其特征在于, 所述处理器具体用于按照 如下方法得到本次校准过程的相位补偿系数:
若本次校准过程为第一次校准过程, 则提取本次校准过程的校准通道补 偿系数的相位信息, 得到本次校准过程的相位补偿系数; 若本次校准过程不 为第一次且也不为最后一次校准过程, 则根据本次校准过程的校准通道补偿 系数的相位信息和上一次校准过程得到的相位补偿系数, 得到本次校准过程 的相位补偿系数; 若本次校准过程为最后一次校准过程, 则根据本次校准过 程的校准通道补偿系数和上一次校准过程得到的相位补偿系数, 得到本次校 准过程的相位补偿系数。
20、如权利要求 19所述的 BBU, 其特征在于, 所述处理器具体用于在本 次校准过程为所述当前校准周期内的第一次校准过程时, 按照如下方法提取 本次校准过程的校准通道补偿系数的相位信息, 得到本次校准过程的相位补 偿系数:
对于本次校准过程得到的每个子载波对应的校准通道补偿系数, 提取该 校准通道补偿系数的相位信息, 得到该子载波对应的相位补偿系数。
21、如权利要求 19所述的 BBU, 其特征在于, 所述处理器具体用于在本 次校准过程不为第一次且也不为最后一次校准过程时, 按照如下方法根据本 次校准过程的校准通道补偿系数的相位信息和上一次校准过程得到的相位补 偿系数, 得到本次校准过程的相位补偿系数:
确定相干带宽内的每个子载波对应的校准通道补偿系数的平均值, 提取 出该平均值的相位信息;
对于上一次校准过程得到的每个子载波对应的相位补偿系数, 将该相位 补偿系数与所述提取出的相位信息相乘, 得到该子载波对应的相位补偿系数。
22、如权利要求 19所述的 BBU, 其特征在于, 所述处理器具体用于在本 次校准过程为最后一次校准过程时, 按照如下方法根据本次校准过程的校准 通道补偿系数和上一次校准过程得到的相位补偿系数, 得到本次校准过程的 相位补偿系数:
对于上一次校准过程得到的每个子载波对应的相位补偿系数, 将该相位 补偿系数与本次校准过程得到的该子载波对应的校准通道补偿系数相乘, 得 到该子载波对应的相位补偿系数。
23、 如权利要求 17-22中任一项所述的 BBU, 其特征在于, 所述处理器 具体用于按照如下方法根据该校准信号进行信道估计, 根据信道估计结果得 到本次校准过程的校准通道补偿系数:
对于相干带宽内的每个子载波, 根据该校准信号在该子载波上的信号进 行信道估计, 得到该子载波对应的信道估计结果, 根据该信道估计结果得到 该子载波对应的校准通道补偿系数。
24、 如权利要求 17-23中任一所述的 BBU, 其特征在于, 所述处理器还 用于: 在根据该校准信号进行信道估计之后、 且根据信道估计结果得到本次 校准过程的校准通道补偿系数之前, 确定信噪比 SNR, 根据 SNR确定信道估 计结果是否有效; 在确定信道估计结果有效后, 根据信道估计结果得到本次 校准过程的校准通道补偿系数。
PCT/CN2014/072799 2013-03-04 2014-03-03 天线校准方法和基带装置 WO2014135044A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310067902.2A CN103209010B (zh) 2013-03-04 2013-03-04 天线校准方法和基带装置
CN201310067902.2 2013-03-04

Publications (1)

Publication Number Publication Date
WO2014135044A1 true WO2014135044A1 (zh) 2014-09-12

Family

ID=48756112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072799 WO2014135044A1 (zh) 2013-03-04 2014-03-03 天线校准方法和基带装置

Country Status (2)

Country Link
CN (1) CN103209010B (zh)
WO (1) WO2014135044A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112968738A (zh) * 2019-11-27 2021-06-15 大唐移动通信设备有限公司 一种通道校准方法及其装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209010B (zh) * 2013-03-04 2015-08-26 电信科学技术研究院 天线校准方法和基带装置
CN104579508B (zh) * 2013-10-25 2017-12-01 普天信息技术有限公司 测量发送校准的相位补偿效果的方法、系统及处理装置
CN105763269B (zh) * 2014-12-17 2019-01-25 中国电信股份有限公司 用于校准天线的方法、校准信号处理装置和系统
CN104852776B (zh) * 2015-04-23 2017-09-22 中国电子科技集团公司第四十一研究所 一种基于虚拟通道的射频信号校准方法
CN107689842A (zh) * 2016-08-05 2018-02-13 北京信威通信技术股份有限公司 一种校准数据的方法及装置
EP3565134B1 (en) * 2017-01-24 2020-08-05 Huawei Technologies Co., Ltd. Antenna correction method and device
CN113904739B (zh) * 2020-07-06 2022-09-23 大唐移动通信设备有限公司 多天线通道校准方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101854323A (zh) * 2009-04-03 2010-10-06 中兴通讯股份有限公司 天线校准方法和系统
WO2010147515A1 (en) * 2009-06-17 2010-12-23 Telefonaktiebolage Lm Eriksson (Publ) A method for antenna calibration in a wideband communication system
CN102404033A (zh) * 2011-11-24 2012-04-04 北京交通大学 一种ofdm系统中的天线阵列校准方法和装置
CN103209010A (zh) * 2013-03-04 2013-07-17 电信科学技术研究院 天线校准方法和基带装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE359648T1 (de) * 2003-12-30 2007-05-15 Ericsson Telefon Ab L M Kalibrierverfahren zur erzielung von reziprozität bidirektionaler kommunikationskanäle
CN101729140A (zh) * 2009-11-10 2010-06-09 中兴通讯股份有限公司 通道校准方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101854323A (zh) * 2009-04-03 2010-10-06 中兴通讯股份有限公司 天线校准方法和系统
WO2010147515A1 (en) * 2009-06-17 2010-12-23 Telefonaktiebolage Lm Eriksson (Publ) A method for antenna calibration in a wideband communication system
CN102404033A (zh) * 2011-11-24 2012-04-04 北京交通大学 一种ofdm系统中的天线阵列校准方法和装置
CN103209010A (zh) * 2013-03-04 2013-07-17 电信科学技术研究院 天线校准方法和基带装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112968738A (zh) * 2019-11-27 2021-06-15 大唐移动通信设备有限公司 一种通道校准方法及其装置
CN112968738B (zh) * 2019-11-27 2022-04-01 大唐移动通信设备有限公司 一种通道校准方法及其装置

Also Published As

Publication number Publication date
CN103209010B (zh) 2015-08-26
CN103209010A (zh) 2013-07-17

Similar Documents

Publication Publication Date Title
WO2014135044A1 (zh) 天线校准方法和基带装置
US9325522B2 (en) Minimizing interference between communication networks
CN105450559B (zh) 一种自干扰信道估计方法和设备
KR20200017678A (ko) 무선 통신 시스템에서 경로감쇄 결정 방법 및 장치
WO2011112477A1 (en) System and method for implementing power distribution
CN112956153A (zh) 远程干扰管理参考信号
WO2018049683A1 (zh) 频点切换方法和装置以及无线基站
WO2015000306A1 (zh) 信道估计处理方法、装置和通信设备
WO2015109044A1 (en) Null beamforming in a communication network
WO2014183382A1 (zh) 多输入输出正交频分复用通信系统及信号补偿方法
CN111656702B (zh) 无线通信系统中发送和接收信号的方法和设备
WO2015192359A1 (zh) 数据发送、接收方法、装置及设备
CN115515175A (zh) 一种无线感知的方法及装置
CN108292930B (zh) 双工通信方法、通信设备和系统
JP2022189829A (ja) New radioにおけるチャネルパラメータ推定に基づく適応同期及び非同期分類の技術
EP3355610B1 (en) Method and device for eliminating co-channel interference
JP2020512727A (ja) スケジューリング方法、基地局、および端末
US9155096B2 (en) Communication apparatus and communication method
US11394473B2 (en) Adjusting an error vector measure (EVM) window
WO2024077615A1 (zh) 测距方法及装置
US20180287836A1 (en) Signal processing method, network equipment, system and computer storage medium
TW202040958A (zh) 無線通訊裝置、其通道估計方法及無線通訊系統
WO2015165102A1 (zh) 用于干扰消除的方法和装置
US11160063B2 (en) Channel feedback information transmission method and apparatus
WO2013120391A1 (zh) 一种多数据流波束赋形向量确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14760644

Country of ref document: EP

Kind code of ref document: A1