WO2014134879A1 - 一种负载熔丝检测装置及电源系统 - Google Patents

一种负载熔丝检测装置及电源系统 Download PDF

Info

Publication number
WO2014134879A1
WO2014134879A1 PCT/CN2013/076286 CN2013076286W WO2014134879A1 WO 2014134879 A1 WO2014134879 A1 WO 2014134879A1 CN 2013076286 W CN2013076286 W CN 2013076286W WO 2014134879 A1 WO2014134879 A1 WO 2014134879A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuse
load
alarm
power source
source
Prior art date
Application number
PCT/CN2013/076286
Other languages
English (en)
French (fr)
Inventor
宋华
Original Assignee
深圳市安能能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市安能能源技术有限公司 filed Critical 深圳市安能能源技术有限公司
Publication of WO2014134879A1 publication Critical patent/WO2014134879A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/04Details with warning or supervision in addition to disconnection, e.g. for indicating that protective apparatus has functioned
    • H02H3/046Signalling the blowing of a fuse
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/74Testing of fuses

Definitions

  • the invention relates to the field of circuit detection, in particular to a load fuse detection device and a power supply system with strong compatibility and energy saving.
  • FIG. 1 is a schematic structural view of a power supply system and a load fuse detecting device.
  • FIG. 1 is a schematic structural view of a conventional power supply system
  • FIG. 2 is a first embodiment of a conventional load fuse detecting device. Schematic diagram of the structure.
  • Bus+ is the positive pole of the power supply
  • Bus- is the negative pole of the power supply
  • LOAD1 and LOAD2 are the load
  • FUSE1 and FUSE2 are the load fuses
  • the load fuse detection device includes the fuse state detecting module and the alarm module, wherein the fuse state detecting module includes the photoelectric coupling ISO1.
  • the voltage difference between the two input terminals FUSE+ and FUSE- of the fuse state detection module is the voltage of the power supply, so that the two output pins of the photocoupler ISO1 are connected, and then the alarm is issued.
  • the level signal received by the alarm unit in the module is pulled up by the power supply VCC, and the alarm unit sends an alarm signal ALARM.
  • FIG. 3 and FIG. 4 are schematic diagrams showing the structure of the high-voltage power supply system and the load fuse detecting device.
  • FIG. 3 is a schematic structural view of a conventional high-voltage power supply system
  • FIG. 4 is a second of the existing load fuse detecting device. Schematic diagram of the structure of the embodiment.
  • the load fuse detection device also includes the fuse state detection module and the alarm module, wherein the fuse state
  • the detection module includes a photocoupler ISO2.
  • the fuse state detecting module is different from the previous embodiment in that a reference power source VREF is provided, so that the principle of the high voltage power system operating normally is the same as that of the previous embodiment.
  • a reference power source VREF is provided, so that the principle of the high voltage power system operating normally is the same as that of the previous embodiment.
  • the load fuse detecting device needs the power supply voltage to generate an alarm signal, when used in a high voltage power supply system, if the load fuse at one end of the load is disconnected, the state of the load fuse at the other end of the load cannot be detected. Therefore, the load fuse detecting device is not suitable for the dual load fuse structure of the high voltage power supply system.
  • the load fuse detecting device cannot detect the state of the corresponding load fuse.
  • the load fuse detecting device needs the power supply voltage to generate an alarm signal, when used in a high voltage power supply system, if the load fuse at one end of the load is disconnected, the state of the load fuse at the other end of the load cannot be detected. Therefore, the load fuse detecting device is not suitable for a dual load fuse structure of a high point power system.
  • the resistor R1 connected to the reference voltage VREF is connected in parallel with the power bus. If the power system is provided with n load fuse detection devices, the equivalent of the resistor connected in parallel with the power bus is R1/n; When it is too large, the power consumption of the power supply system on the resistor R1 is also too large.
  • the object of the present invention is to provide a load fuse detecting device and a power supply system, which can improve the compatibility of the load fuse detecting device and improve the use efficiency of the power system by setting the state detecting unit and the auxiliary power source; Some of the load-carrying detection devices and power supply systems have poor compatibility and technical problems of wasting energy.
  • Embodiments of the present invention provide a load fuse detecting apparatus, including:
  • the fuse state detection module includes:
  • a state detecting unit configured to detect whether the corresponding load fuse is disconnected
  • An auxiliary power source for ensuring that the state detecting unit operates normally when the corresponding load fuse is not disconnected;
  • An alarm module configured to send an alarm signal according to the detection result of the state detecting unit
  • the load fuse detecting device is configured to detect a state of a negative electrode fuse between a negative electrode of a power supply system and a power source,
  • the state detecting unit includes a photocoupler, and the photocoupler includes a light source and a light receiver;
  • the auxiliary power source is a positive power source
  • the alarm module includes an alarm power source and an alarm unit, and the alarm unit performs an alarm when receiving a high level signal;
  • the alarm power source is connected to the input end of the photoreceiver, the output end of the photoreceiver is grounded, the alarm unit is connected to the input end of the photoreceiver, and the anode of the illumination source is connected to the auxiliary power source;
  • the negative electrode of the light source is connected through an isolation member and an intersection of the negative electrode fuse and the load.
  • the embodiment of the invention further provides a load fuse detecting device, which comprises:
  • the fuse state detection module includes:
  • a state detecting unit configured to detect whether the corresponding load fuse is disconnected
  • An auxiliary power source for ensuring that the state detecting unit operates normally when the corresponding load fuse is not disconnected;
  • An alarm module configured to send an alarm signal according to the detection result of the state detecting unit
  • the load fuse detecting device is configured to detect a state of a positive fuse between a positive electrode of a power supply system and a power source,
  • the state detecting unit includes a photocoupler, and the photocoupler includes a light source and a light receiver;
  • the auxiliary power source is a negative power source
  • the alarm module includes an alarm power source and an alarm unit, and the alarm unit performs an alarm when receiving a high level signal;
  • the alarm power source is connected to the input end of the light receiver, the output end of the light receiver is grounded, the alarm unit is connected to the input end of the light receiver, and the negative pole of the light source is connected to the auxiliary power source.
  • the positive electrode of the illuminating source is connected to the intersection of the positive electrode fuse and the load through an insulating member.
  • the embodiment of the invention further provides a load fuse detecting device, which comprises:
  • the fuse state detection module includes:
  • a state detecting unit configured to detect whether the corresponding load fuse is disconnected
  • An auxiliary power source for ensuring that the state detecting unit operates normally when the corresponding load fuse is not disconnected;
  • the alarm module is configured to issue an alarm signal according to the detection result of the state detecting unit.
  • the load fuse detecting device is configured to detect a state of a negative electrode fuse between a negative electrode of a power supply system and a power source
  • the state detecting unit includes a photocoupler including a light emitting source and a light receptor, a positive electrode of the light emitting source is connected to the auxiliary power source, a negative electrode of the light emitting source, and the negative electrode fuse An intersection of the load is connected; the light receiver is connected to the alarm module;
  • the auxiliary power source is a positive power source.
  • an isolation member is further disposed between the negative electrode of the light source and the intersection of the negative electrode fuse and the load.
  • the isolation component is an isolation diode
  • a positive electrode of the isolation diode is connected to a negative electrode of the illumination source, a negative electrode of the isolation diode, and the negative electrode are melted.
  • the wire is connected to the intersection of the load.
  • the load fuse detecting device is configured to detect a state of a positive fuse between a positive electrode of a power supply system and a power source
  • the state detecting unit includes a photocoupler including a light emitting source and a light receptor, a negative electrode of the light emitting source being connected to the auxiliary power source, a positive electrode of the light emitting source, and the positive electrode fuse An intersection of the load is connected; the light receiver is connected to the alarm module;
  • the auxiliary power source is a negative power source.
  • an isolation member is further disposed between the positive electrode of the light source and the intersection of the positive electrode fuse and the load.
  • the isolation component is an isolation diode
  • a negative electrode of the isolation diode is connected to an anode of the illumination source
  • a positive electrode of the isolation diode is melted.
  • the wire is connected to the intersection of the load.
  • the alarm module includes an alarm power source and an alarm unit, and the alarm unit performs an alarm when receiving a high level signal;
  • the alarm power source is connected to an input end of the photoreceiver, an output end of the photoreceiver is grounded, and the alarm unit is connected to an input end of the photoreceiver.
  • the embodiment of the invention further provides a power supply system, comprising:
  • Load fuse detection device including:
  • the fuse state detection module includes:
  • a state detecting unit configured to detect whether the corresponding load fuse is disconnected
  • An auxiliary power source for ensuring that the state detecting unit operates normally when the corresponding load fuse is not disconnected;
  • the alarm module is configured to issue an alarm signal according to the detection result of the state detecting unit.
  • the load fuse detecting device is configured to detect a state of a negative electrode fuse between a negative electrode of a power supply system and a power source
  • the state detecting unit includes a photocoupler including a light emitting source and a light receptor, a positive electrode of the light emitting source is connected to the auxiliary power source, a negative electrode of the light emitting source, and the negative electrode fuse An intersection of the load is connected; the light receiver is connected to the alarm module;
  • the auxiliary power source is a positive power source.
  • an isolation member is further disposed between the negative electrode of the light source and the intersection of the negative electrode fuse and the load.
  • the isolation component is an isolation diode
  • a positive electrode of the isolation diode is connected to a negative electrode of the illumination source
  • a negative electrode of the isolation diode is connected to a negative electrode of the illumination source
  • the load fuse detecting device is used to detect the state of the positive fuse between the positive pole of the power system and the power source
  • the state detecting unit includes a photocoupler including a light emitting source and a light receptor, a negative electrode of the light emitting source being connected to the auxiliary power source, a positive electrode of the light emitting source, and the positive electrode fuse An intersection of the load is connected; the light receiver is connected to the alarm module;
  • the auxiliary power source is a negative power source.
  • an isolation member is further disposed between the anode of the light source and the intersection of the cathode fuse and the load.
  • the isolation component is an isolation diode
  • a negative electrode of the isolation diode is connected to an anode of the illumination source
  • a positive electrode of the isolation diode is connected to the positive fuse and the The intersection of the load.
  • the alarm module includes an alarm power source and an alarm unit, and the alarm unit performs an alarm when receiving a high level signal;
  • the alarm power source is connected to an input end of the photoreceiver, an output end of the photoreceiver is grounded, and the alarm unit is connected to an input end of the photoreceiver.
  • the load fuse detecting device and the power supply system of the present invention improve the compatibility of the load fuse detecting device and improve the power supply by setting the state detecting unit and the auxiliary power source.
  • the system's use efficiency solves the technical problems of poor compatibility and waste of energy in existing fuse detection devices and power systems.
  • FIG. 1 is a schematic structural view of a conventional power supply system
  • FIG. 2 is a schematic structural view of a first embodiment of a conventional load fuse detecting device
  • FIG. 3 is a schematic structural view of a conventional high voltage power supply system
  • FIG. 4 is a schematic structural view of a second embodiment of a conventional load fuse detecting device
  • FIG. 5 is a schematic structural view of the load fuse detecting device of the present invention disposed between a negative electrode of a load and a power source;
  • FIG. 6 is a schematic structural view showing a load fuse detecting device of the present invention disposed between a positive electrode of a load and a power source;
  • a fuse state detecting module
  • a fuse state detecting module
  • FIG. 3 is a schematic structural diagram of a conventional high-voltage power supply system
  • FIG. 5 is a schematic structural view of the load fuse detecting device of the present invention disposed between a negative electrode of a load and a power supply
  • 6 is a schematic structural view of the load fuse detecting device of the present invention disposed between the positive electrode of the load and the power source.
  • the load fuse detecting device of the present invention includes a fuse state detecting module 51 and an alarm module 52.
  • the fuse state detecting module 51 includes a state detecting unit and an auxiliary power source.
  • the state detecting unit is configured to detect whether the corresponding load fuse is disconnected; the auxiliary power source is configured to ensure normal operation of the state detecting unit when the corresponding load fuse is not disconnected; and the alarm module 52 is configured to use the detection result of the state detecting unit, An alarm signal is issued.
  • the load fuse detecting device of the present invention ensures the normal operation of the state detecting unit by providing an auxiliary power source without relying on the voltage of the power source system itself for alarming. At the same time, depending on the set auxiliary power supply, the load fuses on both sides of the load can be independently detected, and the on/off of the circuit where the load fuse is located has no influence on the state detection of the load fuse.
  • the load fuse detecting device of the present invention When the load fuse detecting device of the present invention is used to detect the state of the negative electrode fuse (such as the load fuse FUSE3 in FIG. 3) between the negative electrode of the load of the power supply system and the power source, as shown in FIGS. 3 and 5.
  • the auxiliary power source is a positive power source V+, and the auxiliary power source is connected to the input terminal FUSE- of the fuse state detecting module 51.
  • the state detecting unit of the load fuse detecting device is a photocoupler ISO3, and the photocoupler ISO3 includes a light emitting source and a light receiver, the positive electrode of the light emitting source is connected with the auxiliary power source, the negative electrode of the light emitting source passes through the isolation member, and the negative electrode fuse and the load The intersection (ie, the input terminal FUSE+ of the fuse state detecting module 51) is connected, and the photoreceiver is connected to the alarm module 52.
  • the isolation member is an isolation diode D1
  • the anode of the isolation diode D1 is connected to the cathode of the illumination source, the cathode of the isolation diode D1, and the junction of the anode fuse and the load are connected.
  • the alarm module 52 includes an alarm power source VCC and an alarm unit, and the alarm unit issues an alarm signal ALARM when receiving a high level signal.
  • the alarm power supply VCC is connected to the input end of the photocoupler of the photocoupler ISO3, the output end of the photoreceiver is grounded, and the alarm unit is connected to the input end of the photoreceiver.
  • the load fuse detecting device of the preferred embodiment is for detecting the state of the negative electrode fuse between the negative electrode of the load of the power supply system and the power source, and the light source of the auxiliary power source and the photocoupler ISO3 when the negative electrode fuse FUSE3 is normally operated. (such as the light-emitting diode) and the isolation diode D1 constitute a current loop, at this time the photocoupler of the photocoupler ISO3 is turned on, and the alarm unit receives a low-level signal.
  • the anode fuse FUSE3 is turned off, the voltage of the input terminal FUSE+ of the fuse state detecting module 51 is greater than the voltage of the input terminal FUSE- of the fuse state detecting module 51, so that no current passes through the light source of the photocoupler ISO3.
  • the photocoupler of the photocoupler ISO3 is disconnected, and the alarm unit receives a high level signal pulled up by the power supply VCC, thereby issuing an alarm signal ALARM.
  • the state detection of the negative electrode fuse is independent of the on/off state of the corresponding positive fuse (ie, the load fuse between the positive electrode of the load and the power source), such as the positive fuse FUSE5 is disconnected, and the negative fuse is FUSE3 is normal, auxiliary power supply, photocoupler ISO3, isolation diode D1 and negative fuse FUSE3 can also form a current loop.
  • the photocoupler of ISO3 is turned on, and the alarm unit receives a low level signal. If the positive fuses FUSE5 and FUSE3 are disconnected at the same time, since no current loop is formed, no current flows through the light source of the photocoupler ISO3.
  • the photocoupler of the photocoupler ISO3 is disconnected, and the alarm unit receives the pullup of the power supply VCC.
  • the high level signal thus issuing the alarm signal ALARM.
  • the same load on and off and the size will not affect the state detection of the negative fuse.
  • the isolating diode D1 prevents the high voltage of the power source from being stringed into the load fuse detecting device, thereby damaging the load fuse detecting device, particularly the photocoupler ISO3 in the load fuse detecting device.
  • the isolation diode D1 can also be replaced by a corresponding field effect transistor.
  • the load fuse detecting device of the present invention When the load fuse detecting device of the present invention is used to detect the state of the positive electrode fuse (such as the load fuse FUSE5 in FIG. 3) between the positive electrode of the load of the power supply system and the power source, as shown in FIGS. 3 and 6.
  • the auxiliary power source is a negative power source V- (generally set to -5V to -12V), and the auxiliary power source is connected to the input terminal FUSEA- of the fuse state detecting module 61.
  • the state detecting unit of the load fuse detecting device is a photocoupler ISO4, and the photocoupler ISO4 includes a light emitting source and a light receiver, and a negative electrode of the illuminator is connected with an auxiliary power source, a positive electrode of the light emitting source passes through the isolation member, and a positive electrode fuse and a load The intersection (ie, the input terminal FUSEA+ of the fuse state detecting module 61) is connected, and the photodetector is connected to the alarm module 62.
  • the isolation component is an isolation diode D2
  • the negative electrode of the isolation diode D2 is coupled to the anode of the illumination source, the anode of the isolation diode D2, and the junction of the positive fuse and the load.
  • the alarm module 62 includes an alarm power source VCC and an alarm unit, and the alarm unit issues an alarm signal ALARM when receiving a high level signal.
  • the alarm power supply VCC is connected to the input end of the photocoupler of the photocoupler ISO4, the output end of the photoreceiver is grounded, and the alarm unit is connected to the input end of the photoreceiver.
  • the load fuse detecting device of the preferred embodiment is for detecting the state of the positive fuse between the positive pole of the load of the power supply system and the power source.
  • the positive fuse FUSE5 operates normally, the isolation diode D2 and the photocoupler ISO4 are emitted. The light source and the auxiliary power supply form a current loop. At this time, the photocoupler of the photocoupler ISO4 is turned on, and the alarm unit receives a low level signal.
  • the positive fuse FUSE5 is turned off, the voltage of the input terminal FUSEA- of the fuse state detecting module 61 is greater than the voltage of the input terminal FUSEA+ of the fuse state detecting module 61, so that no current passes through the light source of the photocoupler ISO4.
  • the photocoupler of the photocoupler ISO4 is disconnected, and the alarm unit receives a high level signal pulled up by the power supply VCC, thereby issuing an alarm signal ALARM.
  • the state detection of the positive fuse is independent of the on/off state of the corresponding negative fuse (ie, the load fuse between the negative pole of the load and the power supply), such as the negative fuse FUSE3 is disconnected, and the positive fuse is blown FUSE5.
  • the auxiliary power supply, the positive fuse FUSE5, the isolation diode D2, and the photocoupler ISO4 can also form a current loop.
  • the photocoupler of the photocoupler ISO4 is turned on, and the alarm unit receives a low level signal. If the positive fuses FUSE5 and FUSE3 are disconnected at the same time, since no current loop is formed, no current flows through the light source of the photocoupler ISO4.
  • the photocoupler of the photocoupler ISO4 is disconnected, and the alarm unit receives the pullup of the power supply VCC.
  • the high level signal thus issuing the alarm signal ALARM.
  • the same load on and off and the size will not affect the state detection of the positive fuse.
  • the isolating diode D2 prevents the high voltage of the power source from being stringed into the load fuse detecting device, thereby damaging the load fuse detecting device, particularly the photocoupler ISO4 in the load fuse detecting device.
  • the isolation diode D2 can also be replaced by a corresponding field effect transistor.
  • the present invention also relates to a power supply system that detects a load fuse state using the load fuse detecting device described above.
  • the specific working principle of the power system is the same as or similar to that described in the specific embodiment of the load fuse detecting device described above. For details, refer to the description in the specific embodiment of the load fuse detecting device.
  • the load fuse detecting device and the power supply system of the present invention improve the compatibility of the load fuse detecting device by providing the state detecting unit and the auxiliary power source.
  • the load fuse detecting device of the present invention does not have a resistor connected in parallel with the power bus. Therefore, setting the multi-channel fuse detection device has little effect on the power consumption of the power system, improving the use efficiency of the power system, and solving the existing load.
  • the fuse detection device and the power supply system have poor compatibility and technical problems of wasting energy.

Landscapes

  • Fuses (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

一种负载熔丝检测装置及电源系统,该负载熔丝检测装置包括熔丝状态检测模块(51)以及报警模块(52),熔丝状态检测模块(51)包括状态检测单元以及辅助电源,状态检测单元用于检测相应的负载熔丝是否断开;辅助电源用于在相应的负载熔丝未断开时保证状态检测单元正常工作;报警模块(52)用于根据状态检测单元的检测结果,发出报警信号。所述的负载熔丝检测装置及电源系统通过设置状态检测单元以及辅助电源,提高了负载熔丝检测装置的兼容性以及提高电源系统的使用效率。

Description

一种负载熔丝检测装置及电源系统 技术领域
本发明涉及电路检测领域,特别是涉及一种兼容性较强以及节能的负载熔丝检测装置及电源系统。
背景技术
现有的电源系统均设置有相应的负载熔丝以保护电源系统以及相应的负载。在一般的电源系统中,负载熔丝串联在负载的负极与电源之间,同时该电源系统中还设置有负载熔丝检测装置来检测负载熔丝的状态。这种电源系统和负载熔丝检测装置的结构示意图如图1和图2所示,图1为现有的电源系统的结构示意图,图2为现有的负载熔丝检测装置的第一实施例的结构示意图。其中Bus+为电源正极、Bus-为电源负极、LOAD1和LOAD2为负载、FUSE1和FUSE2为负载熔丝,负载熔丝检测装置包括熔丝状态检测模块以及报警模块,其中熔丝状态检测模块包括光电耦合器ISO1。
该电源系统工作时,如负载LOAD1正常工作,负载熔丝FUSE1没有断开,则熔丝状态检测模块的两个输入端FUSE+和FUSE-的压差很小,使得光电耦合器ISO1的受光器的两个输出引脚断开,这时报警模块中的报警单元接收到低电平信号,不进行报警。
如电源系统的负载熔丝FUSE1断开,则熔丝状态检测模块的两个输入端FUSE+和FUSE-的压差为电源的电压,使得光电耦合器ISO1的两个输出引脚连接,这时报警模块中报警单元接收的电平信号被电源VCC拉高,报警单元发出报警信号ALARM。
在高压电源系统中,为了保证电源系统的正常工作,负载熔丝还需串联在负载正极与电源之间,这样负载两侧的负载熔丝均需要设置负载熔丝检测装置来检测负载熔丝状态。这种高压电源系统和负载熔丝检测装置的结构示意图如图3和图4所示,图3为现有的高压电源系统的结构示意图,图4为现有的负载熔丝检测装置的第二实施例的结构示意图。中Bus+为电源正极、Bus-为电源负极、LOAD3和LOAD4为负载、FUSE3、FUSE4、FUSE5以及FUSE6为负载熔丝,负载熔丝检测装置同样包括熔丝状态检测模块以及报警模块,其中熔丝状态检测模块包括光电耦合器ISO2。
该熔丝状态检测模块与上一实施例的区别在于设置有一参考电源VREF,这样高压电源系统正常工作时的原理,与上一实施例的工作原理相同。当负载熔丝FUSE3、FUSE4、FUSE5以及FUSE6中某一个断开,即相应的熔丝状态检测模块的两个输入端FUSE+和FUSE-或(FUSEA+和FUSEA-)被断开,两个输入端之间就会产生参考电压VREF的压差,使得光电耦合器ISO2的两个输出引脚连接,从而报警模块产生报警信号ALARM;本实施例中负载熔丝检测装置不需要依靠电源的电压进行报警,因此该负载熔丝检测装置既可设置在负载的负极与电源之间,也可设置在负载的正极与电源之间。
但是上述的两个实施例的负载熔丝检测装置均具有其各自的缺陷。
第一实施例中的负载熔丝检测装置具有以下缺陷:
一、由于该负载熔丝检测装置需要电源电压产生报警信号,用于高压电源系统中时,如负载一端的负载熔丝断开后,负载另一端的负载熔丝的状态将无法检测。因此该负载熔丝检测装置不适用于高压电源系统的双负载熔丝结构。
二、如果电源系统没有连接负载,该负载熔丝检测装置也无法检测到相应负载熔丝的状态。
三、当负载熔丝断开时,如相应的负载过大,可能导致流过光电耦合器ISO1的电流过小,光电耦合器ISO1的受光器的两个输出引脚依旧呈现断开状态,造成报警模块无法发出报警信号。
第二实施例中的负载熔丝检测装置具有以下缺陷:
一、由于该负载熔丝检测装置需要电源电压产生报警信号,用于高压电源系统中时,如负载一端的负载熔丝断开后,负载另一端的负载熔丝的状态将无法检测。因此该负载熔丝检测装置不适用于高点电源系统的双负载熔丝结构。
二、电源系统正常工作时,与参考电压VREF连接的电阻R1与电源母线并联,如该电源系统设置有n路负载熔丝检测装置,相当于与电源母线并联的电阻为R1/n;当n过大时,电源系统在电阻R1上的消耗的功耗也过大。
故,有必要提供一种兼容性较强以及节能的负载熔丝检测装置及电源系统,以解决现有技术所存在的问题。
技术问题
本发明的目的在于提供一种负载熔丝检测装置及电源系统,其通过设置状态检测单元以及辅助电源,可提高负载熔丝检测装置的兼容性较强以及提高电源系统的使用效率;解决了现有的载熔丝检测装置及电源系统兼容性较差以及浪费能源的技术问题。
技术解决方案
为解决上述问题,本发明提供的技术方案如下:
本发明实施例提供一种负载熔丝检测装置,其包括:
熔丝状态检测模块,包括:
状态检测单元,用于检测所述相应的负载熔丝是否断开;以及
辅助电源,用于在所述相应的负载熔丝未断开时保证所述状态检测单元正常工作;以及
报警模块,用于根据所述状态检测单元的检测结果,发出报警信号;
如所述负载熔丝检测装置用于检测在电源系统的负载的负极以及电源之间的负极熔丝的状态,
则所述状态检测单元包括光电耦合器,所述光电耦合器包括发光源和受光器;
所述辅助电源为正电源;
所述报警模块包括报警电源以及报警单元,所述报警单元在接收到高电平信号时进行报警;
所述报警电源与所述受光器的输入端连接,所述受光器的输出端接地,所述报警单元与所述受光器的输入端连接,所述发光源的正极与所述辅助电源连接;所述发光源的负极通过隔离部件,和所述负极熔丝与所述负载的交点连接。
本发明实施例还提供一种负载熔丝检测装置,其包括:
熔丝状态检测模块,包括:
状态检测单元,用于检测所述相应的负载熔丝是否断开;以及
辅助电源,用于在所述相应的负载熔丝未断开时保证所述状态检测单元正常工作;以及
报警模块,用于根据所述状态检测单元的检测结果,发出报警信号;
如所述负载熔丝检测装置用于检测在电源系统的负载的正极以及电源之间的正极熔丝的状态,
则所述状态检测单元包括光电耦合器,所述光电耦合器包括发光源和受光器;
所述辅助电源为负电源;
所述报警模块包括报警电源以及报警单元,所述报警单元在接收到高电平信号时进行报警;
所述报警电源与所述受光器的输入端连接,所述受光器的输出端接地,所述报警单元与所述受光器的输入端连接,所述发光源的负极与所述辅助电源连接,所述发光源的正极通过隔离部件,和所述正极熔丝与所述负载的交点连接。
本发明实施例还提供一种负载熔丝检测装置,其包括:
熔丝状态检测模块,包括:
状态检测单元,用于检测所述相应的负载熔丝是否断开;以及
辅助电源,用于在所述相应的负载熔丝未断开时保证所述状态检测单元正常工作;以及
报警模块,用于根据所述状态检测单元的检测结果,发出报警信号。
在本发明实施例所述的负载熔丝检测装置中,如所述负载熔丝检测装置用于检测在电源系统的负载的负极以及电源之间的负极熔丝的状态,
则所述状态检测单元包括光电耦合器,所述光电耦合器包括发光源和受光器,所述发光源的正极与所述辅助电源连接,所述发光源的负极,和所述负极熔丝与所述负载的交点连接;所述受光器与所述报警模块连接;
所述辅助电源为正电源。
在本发明实施例所述的负载熔丝检测装置中,在所述发光源的负极,和所述负极熔丝与所述负载的交点之间还设置有隔离部件。
在本发明实施例所述的负载熔丝检测装置中,所述隔离部件为隔离二极管,所述隔离二极管的正极与所述发光源的负极连接,所述隔离二极管的负极,和所述负极熔丝与所述负载的交点连接。
在本发明实施例所述的负载熔丝检测装置中,如所述负载熔丝检测装置用于检测在电源系统的负载的正极以及电源之间的正极熔丝的状态,
则所述状态检测单元包括光电耦合器,所述光电耦合器包括发光源和受光器,所述发光源的负极与所述辅助电源连接,所述发光源的正极,和所述正极熔丝与所述负载的交点连接;所述受光器与所述报警模块连接;
所述辅助电源为负电源。
在本发明实施例所述的负载熔丝检测装置中,在所述发光源的正极,和所述正极熔丝与所述负载的交点之间还设置有隔离部件。
在本发明实施例所述的负载熔丝检测装置中,所述隔离部件为隔离二极管,所述隔离二极管的负极与所述发光源的正极连接,所述隔离二极管的正极,和所述正极熔丝与所述负载的交点连接。
在本发明实施例所述的负载熔丝检测装置中,所述报警模块包括报警电源以及报警单元,所述报警单元在接收到高电平信号时进行报警;
所述报警电源与所述受光器的输入端连接,所述受光器的输出端接地,所述报警单元与所述受光器的输入端连接。
本发明实施例还提供一种电源系统,其包括:
负载熔丝检测装置,包括:
熔丝状态检测模块,包括:
状态检测单元,用于检测所述相应的负载熔丝是否断开;以及
辅助电源,用于在所述相应的负载熔丝未断开时保证所述状态检测单元正常工作;以及
报警模块,用于根据所述状态检测单元的检测结果,发出报警信号。
在本发明实施例提供的电源系统中,如所述负载熔丝检测装置用于检测在电源系统的负载的负极以及电源之间的负极熔丝的状态,
则所述状态检测单元包括光电耦合器,所述光电耦合器包括发光源和受光器,所述发光源的正极与所述辅助电源连接,所述发光源的负极,和所述负极熔丝与所述负载的交点连接;所述受光器与所述报警模块连接;
所述辅助电源为正电源。
在本发明实施例提供的电源系统中,在所述发光源的负极,和所述负极熔丝与所述负载的交点之间还设置有隔离部件。
在本发明实施例提供的电源系统中,所述隔离部件为隔离二极管,所述隔离二极管的正极与所述发光源的负极连接,所述隔离二极管的负极,和所述负极熔丝与所述负载的交点连接。
在本发明实施例提供的电源系统中,如所述负载熔丝检测装置用于检测在电源系统的负载的正极以及电源之间的正极熔丝的状态,
则所述状态检测单元包括光电耦合器,所述光电耦合器包括发光源和受光器,所述发光源的负极与所述辅助电源连接,所述发光源的正极,和所述正极熔丝与所述负载的交点连接;所述受光器与所述报警模块连接;
所述辅助电源为负电源。
在本发明实施例提供的电源系统中,在所述发光源的正极,和所述正极熔丝与所述负载的交点之间还设置有隔离部件。
在本发明实施例提供的电源系统中,所述隔离部件为隔离二极管,所述隔离二极管的负极与所述发光源的正极连接,所述隔离二极管的正极,和所述正极熔丝与所述负载的交点连接。
在本发明实施例提供的电源系统中,所述报警模块包括报警电源以及报警单元,所述报警单元在接收到高电平信号时进行报警;
所述报警电源与所述受光器的输入端连接,所述受光器的输出端接地,所述报警单元与所述受光器的输入端连接。
有益效果
相较于现有的载熔丝检测装置及电源系统,本发明的负载熔丝检测装置及电源系统通过设置状态检测单元以及辅助电源,提高了负载熔丝检测装置的兼容性较强以及提高电源系统的使用效率,解决了现有的载熔丝检测装置及电源系统兼容性较差以及浪费能源的技术问题。
附图说明
图1为现有的电源系统的结构示意图;
图2为现有的负载熔丝检测装置的第一实施例的结构示意图;
图3为现有的高压电源系统的结构示意图;
图4为现有的负载熔丝检测装置的第二实施例的结构示意图;
图5为本发明的负载熔丝检测装置设置在负载的负极和电源之间时的结构示意图;
图6为本发明的负载熔丝检测装置设置在负载的正极和电源之间时的结构示意图;
其中,附图标记说明如下:
51、熔丝状态检测模块;
52、报警模块;
61、熔丝状态检测模块;
62、报警模块。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
在图中,结构相似的单元是以相同标号表示。
请参照图3、图5以及图6,图3为现有的高压电源系统的结构示意图,图5为本发明的负载熔丝检测装置设置在负载的负极和电源之间时的结构示意图,图6为本发明的负载熔丝检测装置设置在负载的正极和电源之间时的结构示意图。本发明的负载熔丝检测装置包括熔丝状态检测模块51以及报警模块52。其中熔丝状态检测模块51包括状态检测单元以及辅助电源。状态检测单元用于检测相应的负载熔丝是否断开;辅助电源用于在相应的负载熔丝未断开时保证状态检测单元的正常工作;报警模块52用于根据状态检测单元的检测结果,发出报警信号。
本发明的负载熔丝检测装置通过设置辅助电源保证状态检测单元的正常工作,而不需要依赖于电源系统自身的电压进行报警。同时根据设置的辅助电源的不同可实现对负载两侧的负载熔丝进行独立检测,负载熔丝所在电路的通断对该负载熔丝的状态检测没有影响。
下面详细说明本发明的负载熔丝检测装置的工作原理。
当本发明的负载熔丝检测装置用于检测在电源系统的负载的负极以及电源之间的负极熔丝(如图3中的负载熔丝FUSE3)的状态时,如图3和图5所示,本优选实施例中辅助电源为正电源V+,该辅助电源与熔丝状态检测模块51的输入端FUSE-连接。负载熔丝检测装置的状态检测单元为光电耦合器ISO3,该光电耦合器ISO3包括发光源和受光器,发光源的正极和辅助电源连接,发光源的负极通过隔离部件,和负极熔丝与负载的交点(即熔丝状态检测模块51的输入端FUSE+)连接,受光器与报警模块52连接。
在本优选实施例中,隔离部件为隔离二极管D1,隔离二极管D1的正极与发光源的负极连接,隔离二极管D1的负极,和负极熔丝与负载的交点连接。
报警模块52包括报警电源VCC以及报警单元,报警单元在接收到高电平信号时发出报警信号ALARM。报警电源VCC与光电耦合器ISO3的受光器的输入端连接,受光器的输出端接地,报警单元与受光器的输入端连接。
本优选实施例的负载熔丝检测装置用于检测在电源系统的负载的负极以及电源之间的负极熔丝的状态,当负极熔丝FUSE3正常工作时,辅助电源、光电耦合器ISO3的发光源(如发光二极管)以及隔离二极管D1构成电流回路,此时光电耦合器ISO3的受光器导通,报警单元接收到低电平信号。当负极熔丝FUSE3断开时,熔丝状态检测模块51的输入端FUSE+的电压大于熔丝状态检测模块51的输入端FUSE-的电压,使得没有电流经过光电耦合器ISO3的发光源,此时光电耦合器ISO3的受光器断开,报警单元接收到被电源VCC上拉的高电平信号,从而发出报警信号ALARM。
本优选实施例中,负极熔丝的状态检测与相应的正极熔丝(即位于负载的正极以及电源之间的负载熔丝)的通断状态无关,如正极熔丝FUSE5断开,负极熔丝FUSE3正常,辅助电源、光电耦合器ISO3、隔离二极管D1以及负极熔丝FUSE3同样可以构成电流回路,此时光电耦合器ISO3的受光器导通,报警单元接收到低电平信号。如正极熔丝FUSE5和FUSE3同时断开,由于没有形成电流回路,造成没有电流经过光电耦合器ISO3的发光源,此时光电耦合器ISO3的受光器断开,报警单元接收到被电源VCC上拉的高电平信号,从而发出报警信号ALARM。同样负载的通断以及大小也不会影响负极熔丝的状态检测。
进一步,隔离二极管D1可防止电源的高压串入到负载熔丝检测装置中,从而损坏负载熔丝检测装置,特别是负载熔丝检测装置中的光电耦合器ISO3。当然该隔离二极管D1也可用相应的场效应晶体管代替。
当本发明的负载熔丝检测装置用于检测在电源系统的负载的正极以及电源之间的正极熔丝(如图3中的负载熔丝FUSE5)的状态时,如图3和图6所示,本优选实施例中辅助电源为负电源V-(一般设定为-5V至-12V),该辅助电源与熔丝状态检测模块61的输入端FUSEA-连接。负载熔丝检测装置的状态检测单元为光电耦合器ISO4,该光电耦合器ISO4包括发光源和受光器,发光器的负极与辅助电源连接,发光源的正极通过隔离部件,和正极熔丝与负载的交点(即熔丝状态检测模块61的输入端FUSEA+)连接,受光器与报警模块62连接。
在本优选实施例中,隔离部件为隔离二极管D2,隔离二极管D2的负极与发光源的正极连接,隔离二极管D2的正极,和正极熔丝与负载的交点连接。
报警模块62包括报警电源VCC以及报警单元,报警单元在接收到高电平信号时发出报警信号ALARM。报警电源VCC与光电耦合器ISO4的受光器的输入端连接,受光器的输出端接地,报警单元与受光器的输入端连接。
本优选实施例的负载熔丝检测装置用于检测在电源系统的负载的正极以及电源之间的正极熔丝的状态,当正极熔丝FUSE5正常工作时,隔离二极管D2、光电耦合器ISO4的发光源以及辅助电源构成电流回路,此时光电耦合器ISO4的受光器导通,报警单元接收到低电平信号。当正极熔丝FUSE5断开时,熔丝状态检测模块61的输入端FUSEA-的电压大于熔丝状态检测模块61的输入端FUSEA+的电压,使得没有电流经过光电耦合器ISO4的发光源,此时光电耦合器ISO4的受光器断开,报警单元接收到被电源VCC上拉的高电平信号,从而发出报警信号ALARM。
本优选实施例中,正极熔丝的状态检测与相应的负极熔丝(即位于负载的负极以及电源之间的负载熔丝)的通断状态无关,如负极熔丝FUSE3断开,正极熔断FUSE5正常,辅助电源、正极熔丝FUSE5、隔离二极管D2以及光电耦合器ISO4同样可以构成电流回路,此时光电耦合器ISO4的受光器导通,报警单元接收到低电平信号。如正极熔丝FUSE5和FUSE3同时断开,由于没有形成电流回路,造成没有电流经过光电耦合器ISO4的发光源,此时光电耦合器ISO4的受光器断开,报警单元接收到被电源VCC上拉的高电平信号,从而发出报警信号ALARM。同样负载的通断以及大小也不会影响正极熔丝的状态检测。
进一步,隔离二极管D2可防止电源的高压串入到负载熔丝检测装置中,从而损坏负载熔丝检测装置,特别是负载熔丝检测装置中的光电耦合器ISO4。当然该隔离二极管D2也可用相应的场效应晶体管代替。
本发明还涉及一种电源系统,其使用上述的负载熔丝检测装置进行负载熔丝状态的检测。该电源系统的具体工作原理与上述的负载熔丝检测装置的具体实施例中的描述相同或相似,具体可参见上述负载熔丝检测装置的具体实施例中的描述。
本发明的负载熔丝检测装置及电源系统通过设置状态检测单元以及辅助电源,提高了负载熔丝检测装置的兼容性较强。同时本发明的负载熔丝检测装置没有设置电阻与电源母线并联,因此设置多路负载熔丝检测装置对电源系统的功耗影响不大,提高了电源系统的使用效率,解决了现有的载熔丝检测装置及电源系统兼容性较差以及浪费能源的技术问题。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。
本发明的实施方式
工业实用性
序列表自由内容

Claims (20)

  1. 一种负载熔丝检测装置,其包括:
    熔丝状态检测模块,包括:
    状态检测单元,用于检测所述相应的负载熔丝是否断开;以及
    辅助电源,用于在所述相应的负载熔丝未断开时保证所述状态检测单元正常工作;以及
    报警模块,用于根据所述状态检测单元的检测结果,发出报警信号;
    如所述负载熔丝检测装置用于检测在电源系统的负载的负极以及电源之间的负极熔丝的状态,
    则所述状态检测单元包括光电耦合器,所述光电耦合器包括发光源和受光器;
    所述辅助电源为正电源;
    所述报警模块包括报警电源以及报警单元,所述报警单元在接收到高电平信号时进行报警;
    所述报警电源与所述受光器的输入端连接,所述受光器的输出端接地,所述报警单元与所述受光器的输入端连接,所述发光源的正极与所述辅助电源连接;所述发光源的负极通过隔离部件,和所述负极熔丝与所述负载的交点连接。
  2. 一种负载熔丝检测装置,其包括:
    熔丝状态检测模块,包括:
    状态检测单元,用于检测所述相应的负载熔丝是否断开;以及
    辅助电源,用于在所述相应的负载熔丝未断开时保证所述状态检测单元正常工作;以及
    报警模块,用于根据所述状态检测单元的检测结果,发出报警信号;
    如所述负载熔丝检测装置用于检测在电源系统的负载的正极以及电源之间的正极熔丝的状态,
    则所述状态检测单元包括光电耦合器,所述光电耦合器包括发光源和受光器;
    所述辅助电源为负电源;
    所述报警模块包括报警电源以及报警单元,所述报警单元在接收到高电平信号时进行报警;
    所述报警电源与所述受光器的输入端连接,所述受光器的输出端接地,所述报警单元与所述受光器的输入端连接,所述发光源的负极与所述辅助电源连接,所述发光源的正极通过隔离部件,和所述正极熔丝与所述负载的交点连接。
  3. 一种负载熔丝检测装置,其包括:
    熔丝状态检测模块,包括:
    状态检测单元,用于检测所述相应的负载熔丝是否断开;以及
    辅助电源,用于在所述相应的负载熔丝未断开时保证所述状态检测单元正常工作;以及
    报警模块,用于根据所述状态检测单元的检测结果,发出报警信号。
  4. 根据权利要求3所述的负载熔丝检测装置,其中如所述负载熔丝检测装置用于检测在电源系统的负载的负极以及电源之间的负极熔丝的状态,
    则所述状态检测单元包括光电耦合器,所述光电耦合器包括发光源和受光器,所述发光源的正极与所述辅助电源连接,所述发光源的负极,和所述负极熔丝与所述负载的交点连接;所述受光器与所述报警模块连接;
    所述辅助电源为正电源。
  5. 根据权利要求4所述的负载熔丝检测装置,其中在所述发光源的负极,和所述负极熔丝与所述负载的交点之间还设置有隔离部件。
  6. 根据权利要求5所述的负载熔丝检测装置,其中所述隔离部件为隔离二极管,所述隔离二极管的正极与所述发光源的负极连接,所述隔离二极管的负极,和所述负极熔丝与所述负载的交点连接。
  7. 根据权利要求3所述的负载熔丝检测装置,其中如所述负载熔丝检测装置用于检测在电源系统的负载的正极以及电源之间的正极熔丝的状态,
    则所述状态检测单元包括光电耦合器,所述光电耦合器包括发光源和受光器,所述发光源的负极与所述辅助电源连接,所述发光源的正极,和所述正极熔丝与所述负载的交点连接;所述受光器与所述报警模块连接;
    所述辅助电源为负电源。
  8. 根据权利要求7所述的负载熔丝检测装置,其中在所述发光源的正极,和所述正极熔丝与所述负载的交点之间还设置有隔离部件。
  9. 根据权利要求8所述的负载熔丝检测装置,其中所述隔离部件为隔离二极管,所述隔离二极管的负极与所述发光源的正极连接,所述隔离二极管的正极,和所述正极熔丝与所述负载的交点连接。
  10. 根据权利要求4所述的负载熔丝检测装置,其中所述报警模块包括报警电源以及报警单元,所述报警单元在接收到高电平信号时进行报警;
    所述报警电源与所述受光器的输入端连接,所述受光器的输出端接地,所述报警单元与所述受光器的输入端连接。
  11. 根据权利要求7所述的负载熔丝检测装置,其中所述报警模块包括报警电源以及报警单元,所述报警单元在接收到高电平信号时进行报警;
    所述报警电源与所述受光器的输入端连接,所述受光器的输出端接地,所述报警单元与所述受光器的输入端连接。
  12. 一种电源系统,其包括:
    负载熔丝检测装置,包括:
    熔丝状态检测模块,包括:
    状态检测单元,用于检测所述相应的负载熔丝是否断开;以及
    辅助电源,用于在所述相应的负载熔丝未断开时保证所述状态检测单元正常工作;以及
    报警模块,用于根据所述状态检测单元的检测结果,发出报警信号。
  13. 根据权利要求12所述的电源系统,其中如所述负载熔丝检测装置用于检测在电源系统的负载的负极以及电源之间的负极熔丝的状态,
    则所述状态检测单元包括光电耦合器,所述光电耦合器包括发光源和受光器,所述发光源的正极与所述辅助电源连接,所述发光源的负极,和所述负极熔丝与所述负载的交点连接;所述受光器与所述报警模块连接;
    所述辅助电源为正电源。
  14. 根据权利要求13所述的电源系统,其中在所述发光源的负极,和所述负极熔丝与所述负载的交点之间还设置有隔离部件。
  15. 根据权利要求14所述的电源系统,其中所述隔离部件为隔离二极管,所述隔离二极管的正极与所述发光源的负极连接,所述隔离二极管的负极,和所述负极熔丝与所述负载的交点连接。
  16. 根据权利要求12所述的电源系统,其中如所述负载熔丝检测装置用于检测在电源系统的负载的正极以及电源之间的正极熔丝的状态,
    则所述状态检测单元包括光电耦合器,所述光电耦合器包括发光源和受光器,所述发光源的负极与所述辅助电源连接,所述发光源的正极,和所述正极熔丝与所述负载的交点连接;所述受光器与所述报警模块连接;
    所述辅助电源为负电源。
  17. 根据权利要求16所述的电源系统,其中在所述发光源的正极,和所述正极熔丝与所述负载的交点之间还设置有隔离部件。
  18. 根据权利要求17所述的电源系统,其中所述隔离部件为隔离二极管,所述隔离二极管的负极与所述发光源的正极连接,所述隔离二极管的正极,和所述正极熔丝与所述负载的交点连接。
  19. 根据权利要求13所述的电源系统,其中所述报警模块包括报警电源以及报警单元,所述报警单元在接收到高电平信号时进行报警;
    所述报警电源与所述受光器的输入端连接,所述受光器的输出端接地,所述报警单元与所述受光器的输入端连接。
  20. 根据权利要求16所述的电源系统,其中所述报警模块包括报警电源以及报警单元,所述报警单元在接收到高电平信号时进行报警;
    所述报警电源与所述受光器的输入端连接,所述受光器的输出端接地,所述报警单元与所述受光器的输入端连接。
PCT/CN2013/076286 2013-03-06 2013-05-27 一种负载熔丝检测装置及电源系统 WO2014134879A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310071609.3A CN103197189B (zh) 2013-03-06 2013-03-06 一种负载熔丝检测装置及电源系统
CN201310071609.3 2013-03-06

Publications (1)

Publication Number Publication Date
WO2014134879A1 true WO2014134879A1 (zh) 2014-09-12

Family

ID=48719872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076286 WO2014134879A1 (zh) 2013-03-06 2013-05-27 一种负载熔丝检测装置及电源系统

Country Status (2)

Country Link
CN (1) CN103197189B (zh)
WO (1) WO2014134879A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103985617B (zh) * 2014-06-04 2016-02-17 苏州市南光电器有限公司 一种智能熔断器
CN110994561B (zh) * 2019-04-30 2021-10-08 宁德时代新能源科技股份有限公司 电池安全保护系统和处理方法
CN111146759A (zh) * 2019-12-23 2020-05-12 柳州柳工挖掘机有限公司 工程机械保险烧毁警示电路
CN112735927B (zh) * 2020-12-17 2022-09-06 海南电网有限责任公司海南输变电检修分公司 一种用于自恢复熔断器的自检装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169599A (ja) * 1987-12-24 1989-07-04 Oki Electric Ind Co Ltd 所定場所への入場制限の解除・セット方式
JPH11306954A (ja) * 1998-04-20 1999-11-05 Toyo Commun Equip Co Ltd ヒューズ断警報出力回路
CN2874762Y (zh) * 2005-12-15 2007-02-28 中兴通讯股份有限公司 直流输出负载熔丝检测装置
CN102097261A (zh) * 2010-12-30 2011-06-15 易事特电力系统技术有限公司 一种熔断器侦测电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2169207Y (zh) * 1993-07-07 1994-06-15 何成祥 双熔丝断路自动切换与报警控制装置
CN2457748Y (zh) * 2000-12-29 2001-10-31 深圳市中兴通讯股份有限公司上海第二研究所 一种蓄电池充放电状态检测装置
US7685307B2 (en) * 2006-12-29 2010-03-23 Asset Intelligence, Llc Method and apparatus for binding transceivers of telematic devices
CN202616135U (zh) * 2012-06-14 2012-12-19 福建省电力有限公司泉州电业局 10kV真空断路器弹簧机构分闸控制回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169599A (ja) * 1987-12-24 1989-07-04 Oki Electric Ind Co Ltd 所定場所への入場制限の解除・セット方式
JPH11306954A (ja) * 1998-04-20 1999-11-05 Toyo Commun Equip Co Ltd ヒューズ断警報出力回路
CN2874762Y (zh) * 2005-12-15 2007-02-28 中兴通讯股份有限公司 直流输出负载熔丝检测装置
CN102097261A (zh) * 2010-12-30 2011-06-15 易事特电力系统技术有限公司 一种熔断器侦测电路

Also Published As

Publication number Publication date
CN103197189A (zh) 2013-07-10
CN103197189B (zh) 2015-09-23

Similar Documents

Publication Publication Date Title
WO2014134879A1 (zh) 一种负载熔丝检测装置及电源系统
WO2020122598A1 (ko) 안테나 및 이를 포함하는 전자 장치
WO2015106390A1 (zh) 电子烟识别装置、电子烟盒及对电子烟进行识别的方法
WO2018174536A1 (en) Apparatus for transmitting wireless power and method of transmitting wireless power according to position type
WO2020080804A1 (en) Electronic device and method for wired or wireless charging in electronic device
WO2019039892A1 (en) METHOD AND ELECTRONIC MODE SWITCHING DEVICE AND CORRESPONDING INFORMATION CARRIER
WO2017023014A1 (en) Electronic device including input apparatus
WO2020111793A1 (ko) 플렉서블 디스플레이를 포함하는 전자 장치 및 그 동작 방법
WO2017014429A1 (en) Electronic device and operating method thereof
EP3494462A1 (en) Display apparatus and control method thereof
WO2016148470A1 (en) Method for generating load of wireless power receiver in wireless charging system and wireless power receiver
WO2015147503A1 (en) Method for charging battery and electronic device
WO2019198978A1 (en) Electronic device equipped with flexible display and wireless charging method using the same
WO2016125962A1 (ko) 스타일러스 펜 및 터치 패널을 포함하는 이동 단말기 및 그 제어방법
WO2016133367A1 (en) An electronic device including connectors and method of operating the same
EP3123590A1 (en) Method for charging battery and electronic device
EP4018526A1 (en) Electronic device including resonant charging circuit
AU2019359728B2 (en) Electronic device and method for wired or wireless charging in electronic device
WO2021075914A1 (en) Electronic device including resonant charging circuit
WO2017045444A1 (zh) 遥控器按键分配方法和装置
WO2019093706A1 (ko) 전자 장치, 그 제어 방법, 원격 제어 장치 및 그 제어 방법
WO2021034015A1 (en) Display apparatus and method of controlling the same
WO2022097981A1 (ko) 카메라 모듈을 포함하는 전자 장치 및 그 전자 장치의 동작 방법
WO2021210855A1 (ko) 전자 장치 및 상기 전자 장치의 충전 상태 정보를 제공하는 방법
WO2020085764A1 (en) Method for detecting water in connection terminal of electronic device and electronic device supporting the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877352

Country of ref document: EP

Kind code of ref document: A1