WO2014133297A1 - Method for producing colorless and transparent polyimide film impregnated with glass fabric and planarizing surface thereof - Google Patents

Method for producing colorless and transparent polyimide film impregnated with glass fabric and planarizing surface thereof Download PDF

Info

Publication number
WO2014133297A1
WO2014133297A1 PCT/KR2014/001511 KR2014001511W WO2014133297A1 WO 2014133297 A1 WO2014133297 A1 WO 2014133297A1 KR 2014001511 W KR2014001511 W KR 2014001511W WO 2014133297 A1 WO2014133297 A1 WO 2014133297A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide film
glass fiber
fiber fabric
impregnated
polyamic acid
Prior art date
Application number
PCT/KR2014/001511
Other languages
French (fr)
Korean (ko)
Inventor
윤춘섭
오승현
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20140009715A external-priority patent/KR101482707B1/en
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to US14/768,018 priority Critical patent/US9469735B2/en
Publication of WO2014133297A1 publication Critical patent/WO2014133297A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a method of manufacturing a colorless transparent polyimide film impregnated with a glass fiber fabric and to a surface planarizing method, and more particularly, to a film for a cover window of a flexible display substrate and a flat panel display and a mobile phone.
  • CPI colorless and transparent polyimide
  • It relates to a method for producing a polyimide film impregnated with a glass fiber fabric that can solve the problem, and a method for planarizing the surface of the colorless transparent polyimide film impregnated with the glass fiber fabric.
  • Flexible displays must use a substrate that is mechanically flexible so that it can bend or fold well.
  • Very thin glass plates, thin stainless steel plates, plastic films and the like can be used as flexible substrates, of which plastic films are most advantageous.
  • glass is currently used as a cover window of flat panel displays such as TVs, monitors, and mobile phones.
  • Glass has excellent characteristics in heat resistance, light transmittance, and mechanical strength, but has a disadvantage of being heavy and fragile.
  • Colorless transparent plastic films are being reviewed in the art.
  • plastic film substrates are much more mechanically flexible than glass substrates, but their tensile strength is inferior to glass substrates. Impregnating a glass film with a plastic film, such as fiber reinforced plastic (FRP), The tensile strength of plastic films can be increased to the level of tempered glass, and Korean Patent Publication No. 10-2010-0118220 (Invention: Flexible Substrate for Display Panel and Manufacturing Method thereof), 10-2010-0118222 (Invention) Names: Flexible substrates for display panels and methods for manufacturing the same, No. 10-2012-0027632 (name of the invention: manufacturing method of a flexible device), and No. 10-2011-0055425 (name of the invention: excellent thermal expansion characteristics and Polymer-organic nanofiber composite having a light-transmitting property and a light-transmissive composite film using the same), and the like, and are widely used.
  • FRP fiber reinforced plastic
  • Polyimide films are widely used in electronic materials such as insulation films, flexible cables, and printed circuit boards because of their flexibility, heat resistance, abrasion resistance, insulation, chemical resistance and mechanical strength. Has been used.
  • the general polyimide film has a dark brown color, and thus has not been used in display substrates despite the excellent physical properties, but recently, colorless and transparent polyimide has been developed and used as a display substrate.
  • a thin film transistor In order to fabricate a display device, a thin film transistor (TFT) must be fabricated on a substrate to control individual pixels and adjust brightness.
  • TFTs using amorphous silicon, polysilicon, oxides, organics, and the like are used, but in the case of amorphous silicon showing the most stable performance, the minimum process temperature required for deposition and heat treatment is about 230 ° C.
  • the TFT thin film process is performed on the plastic substrate at 230 ° C and the temperature is lowered to room temperature, the TFT thin film is peeled from the plastic substrate due to the difference in the coefficient of thermal expansion (CTE) between the plastic substrate and the TFT thin film material.
  • CTE coefficient of thermal expansion
  • the thermal expansion coefficient of the substrate must be 10 ppm (part per million) / ° C or less.
  • the thermal expansion coefficient of the colorless transparent polyimide is at least 50 ppm / ° C, but the colorless transparent polyimide impregnated with the glass fiber fabric by impregnating the colorless transparent polyimide film with a glass fiber fabric having a coefficient of thermal expansion of about 5 ppm / ° C. It is possible to reduce the coefficient of thermal expansion of the film substrate to the level of 10 ppm / ° C.
  • the polyamic acid solution forms a complete horizontal plane by gravity, but since the woven surface of the fiberglass fabric is not flat, The thickness up to the surface of the acid solution depends on the location.
  • the thickness of the polyamic acid solution in the glass fiber raised portion is thin
  • the polyamic acid solution located in the glass fiber lowered portion is thick
  • the solvent evaporates during the colorless transparent polyimide film forming process and the polymerization reaction is When this occurs, shrinkage occurs in the thin part of the solution and shrinkage occurs in the thick part of the solution, so that the surface of the formed colorless transparent polyimide film has irregularities similar to the surface topography of the glass fiber fabric.
  • the surface roughness of the concave-convex reaches up to 1 ⁇ m at the minimum of several 10 nm depending on the thickness of the glass fiber fabric.
  • TFT thin film transistor
  • the surface roughness of the substrate In order to increase the light transmittance and transparency of the substrate and to enable the TFT process on the substrate, the surface roughness of the substrate must be on the order of 1 nm.
  • the thin film thickness of the coating used for the surface planarization of the display substrate is a few levels, it is difficult to planarize a film surface having a roughness of several 10 nm to 1 ⁇ m to a surface roughness of 1 nm level by the planarization coating.
  • the main object of the present invention is to provide a method for producing a polyimide film impregnated with a glass fiber fabric comprising a two-step flattening step.
  • another object of the present invention is to provide the roughness of the film surface which is inevitably encountered when impregnated with a colorless transparent polyimide film in order to improve the thermal and mechanical properties of the glass substrate replacement substrate for flexible displays and flat panel displays. It is to provide a method for planarization in a continuous process.
  • Another object of the present invention to provide a colorless transparent polyimide film prepared by the above method.
  • the present invention provides a method for producing a polyimide film impregnated with a glass fiber fabric comprising a two-step flattening step.
  • the first planarization step after the solvent is evaporated from a colorless transparent polyamic acid solution, which is a precursor of polyimide, to prepare a film, two rollers having a smooth and cylindrical surface The film is positioned between the rollers and the gap between the two rollers is adjusted to pass the film between the two rollers while applying pressure to the film to planarize the film surface.
  • a colorless transparent polyamic acid solution which is a precursor of polyimide
  • the flattened colorless transparent polyamic acid film has a ring-closing and dehydration reaction during imidization to produce a colorless transparent polyimide film, so that the surface of the colorless transparent polyimide film is Again, the roughness of the colorless transparent polyimide film is much smaller than the roughness before the polyamic acid film is flattened.
  • the surface roughness of the colorless transparent polyimide film produced by the imidization reaction is flattened, and the colorless transparent polyimide film is formed between another pair of rollers having a smooth and cylindrical surface.
  • the present invention comprises the steps of flattening a polyamic acid film impregnated with a glass fiber fabric; And planarizing the polyimide film prepared by using the polyamic acid film of the above step.
  • the present invention provides a colorless transparent polyimide film impregnated with a glass fiber fabric prepared by the above method.
  • the present invention by flattening the surface roughness of the colorless transparent polyimide film substrate for flexible display and glass substrate replacement impregnated with glass fiber fabric from the level of several 10 nm to 1 ⁇ m level to several nm level, By preventing the surface scattering of light to increase the light transmittance and transparency of the colorless transparent polyimide film substrate impregnated with glass fiber fabric, there is an effect that enables the TFT process on the substrate.
  • FIGS. 1A and 1B are schematic views showing the cause of the colorless transparent polyamic acid film or the colorless transparent polyimide film impregnated with glass fiber fabric having a large surface roughness.
  • Figure 2 is a schematic view illustrating the principle that the surface of the colorless transparent polyamic acid film or polyimide film impregnated with a glass fiber fabric.
  • Figures 3a to 3f is a schematic view showing the manufacturing process of a polyimide film impregnated with a glass fiber fabric comprising a two-step flattening step according to the present invention.
  • Figure 4 is a schematic diagram showing the planarization process of a colorless transparent polyamic acid film or polyimide film impregnated with a glass fiber fabric using N pairs of rollers according to the present invention.
  • 5a to 5f are schematic views showing the planarization process of a polyimide film impregnated with a glass fiber fabric using a flat plate according to the present invention.
  • FIG. 6 is an AFM photograph showing the surface roughness of a polyimide film impregnated with a flattened glass fiber fabric according to the first embodiment of the present invention.
  • FIG. 7 is an AFM photograph showing the surface roughness of a polyimide film impregnated with a flattened glass fiber fabric according to a second embodiment of the present invention.
  • FIG. 8A is an AFM photograph showing the surface roughness of a polyamic acid film impregnated with a flattened glass fiber fabric according to a third embodiment of the present invention.
  • FIG. 8B is an AFM photograph showing the surface roughness of a polyimide film impregnated with a flattened glass fiber fabric according to a third embodiment of the present invention.
  • the present invention provides a method for producing a polyimide film impregnated with a glass fiber fabric comprising a two-step flattening step.
  • step (1) planarizing the polyamic acid film impregnated with the glass fiber fabric prepared by step (1) (first planarization step);
  • step (3) producing a polyimide film impregnated with a glass fiber fabric by imidizing the polyamic acid film prepared by step (2);
  • step (3) second flattening step
  • planarization step of the two steps of the present invention will be described in detail as follows.
  • the colorless transparent polyamic acid film of the present invention may be molded by dissolving a dianhydride compound and a diamine compound in a solvent and evaporating the solvent in a polyamic acid solution made through a polymerization reaction.
  • the polyamic acid film is heated to dry for about 30 minutes at a temperature of 80 ° C or less to prepare a polyamic acid film having self-support.
  • the colorless transparent polyamic acid film having a surface roughness of about 0.3 ⁇ m has a ring-closing reaction between the glass transition temperature (T g ) of the film and the temperature at which the imidization reaction starts to occur. Since this does not occur and the main chain of the polymer may have some fluidity, applying pressure to the polyamic acid film may easily induce deformation of the colorless transparent polyamic acid film.
  • planar colorless transparent polyamic acid film is thermally or chemically imidized to form a colorless transparent polyimide film
  • the surface roughness is roughened back to a few tens of nm due to ring-closing and dehydration reactions ( 3d).
  • the polymer main chain of the colorless transparent polyimide film has a long-range segmental motion above the glass transition temperature (T g ) of the film. Therefore, applying a pressure to the colorless transparent polyimide film above the glass transition temperature of the film can induce deformation of the colorless transparent polyimide film.
  • T g glass transition temperature
  • two rollers at a temperature between the glass transition temperature and the decomposition temperature of the colorless transparent polyimide film When the two rollers are rotated in opposite directions while a constant pressure is applied to the colorless and transparent polyimide film by narrowing the gap therebetween, the polyimide polymer in the high portion of the film surface moves to the low portion (see FIG. 2).
  • the surface of the colorless transparent polyimide film is flattened to a surface roughness similar to that of the two rollers under pressure (see FIG. 3F).
  • the dianhydride compound 4,4'-Oxydiphthalic anhydride (OPDA), Pyromellitic dianhydride (PMDA), 3,3 ', 4,4'- Diphenylsulfone tetracarboxylic dianhydride (DSDA), 3,3' , 4,4'-Benzophenone tetracarboxylic dianhydride (BTDA), 4- (2,5-Dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic Anhydride (DTDA), 4,4 '-Bisphenol A dianhydride (BPADA), 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), bicycle [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (BCDA), 3 , 3 ', 4,4'-Biphenyl te
  • OPDA
  • the diamine compound is 2,2-Bis (3-amino-4-hydroxyphenyl) hexafluoropropane (BAHFP), 1,3-Bis (3-aminophenoxy) benzene (m-BAPB), 4,4'-Bis (4- aminophenoxy) biphenyl (p-BAPB), 2,2-Bis (3-aminophenyl) hexafluoropropane (BAPF), bis [4- (3-aminophenoxy) phenyl] sulfone (m-BAPS), 2,2-Bis [4- (4-aminophenoxy) phenyl] sulfone (p-BAPS), Bis (3-aminophenyl) sulfone (APS), m-xylylenediamine (m-XDA), p-xylylenediamine (p-XDA), 3,4'-Oxydianiline ( 3,4-ODA), 2,2-Bis (3-amino-4-methylphenyl) hexa
  • the manufacturing method of the said polyamic-acid solution does not need to specifically limit, Any method may be sufficient as it is a conventional synthetic method.
  • dimethyl acetamide may be exemplified as a solvent for dissolving the dianhydride compound and the diamine compound, but is not limited thereto.
  • the glass fiber fabric impregnated polyamic acid solution is preferably heated to a temperature range of 40 ⁇ 150 °C to evaporate the solvent to form a polyamic acid film impregnated with a glass fiber fabric, the polya
  • the thermosetting by the thermal method of the mixed acid film is preferably made of a polyimide film impregnated with a glass fiber fabric through an imidization reaction in a temperature range of 100 ⁇ 300 °C.
  • the first or second planarization step it is preferable to pass through the two rollers of the cylindrical (cylindrical) to planarize the polyamic acid film or polyimide film impregnated with the glass fiber fabric.
  • the width of the polyamic acid film or polyimide film is preferably less than or equal to the length of the two rollers. This is because if the area of the polyamic acid film or polyimide film impregnated with the glass fiber fabric is wider than the length of the two rollers, the film larger than the roller is not subjected to pressure and the surface is not planarized.
  • the polyamic acid film or polyimide film impregnated with the glass fiber fabric is located at the central portion of the two rollers so that the pressure can be uniformly applied from the two rollers.
  • the roller may be a stainless steel or cylindrical glass of cylindrical shape having a hard surface, a surface roughness of 0.5 to 2 nm, and a melting point of 500 ° C. or more.
  • the temperature of the roller is controlled between the glass transition (T g ) of the polyamic acid film impregnated with the glass fiber fabric in the first flattening step and the temperature at which the imidization reaction starts to occur, and the glass fiber in the second flattening step. It is desirable to control between the glass transition (T g ) and thermal decomposition temperature of the fabric-impregnated polyimide film.
  • N pairs of rollers in place of two rollers (pair of rollers).
  • the flattening time of the surface of the polyamic acid film or polyimide film impregnated with the glass fiber fabric can be reduced to 1 / N than when using a pair of rollers, This is equivalent to the effect of flattening N pairs of rollers at the same time with the effect of flattening N pairs of rollers.
  • the present invention after positioning the polyamic acid film or polyimide film impregnated with a glass fiber fabric between the rollers, the roller and the polyamic acid film or polyimide film impregnated with the glass fiber fabric located therebetween
  • the temperature of the furnace in an environmental chamber is the temperature at which the glass transition temperature (T g ) of the polyamic acid film impregnated with the glass fiber fabric and the imidization reaction start to occur, or the glass transition temperature (T) of the polyimide film. g ) and it is possible to planarize by adjusting to pyrolysis temperature range.
  • the rotational speed of the roller is the glass transition temperature (T g ) of the polyamic acid film impregnated with the glass fiber fabric in the first planarization step, the temperature at which the imidization reaction occurs, the temperature of the roller, the roller And according to the temperature of the atmosphere furnace for heating the polyamic acid film impregnated with the glass fiber fabric and the magnitude of the pressure applied between the rollers, and in the second planarization step, the glass transition temperature of the polyimide film impregnated with the glass fiber fabric (T g ) and pyrolysis temperature, the temperature of the roller, it is preferable to adjust according to the temperature of the atmosphere furnace for heating the polyimide film impregnated with the roller and glass fiber fabric and the magnitude of the pressure applied between the rollers.
  • T g glass transition temperature
  • the first or second planarization step may be planarized by placing a polyamic acid film or a polyimide film between two flat surfaces and applying pressure thereto (see FIGS. 5A to 5F). .
  • planarization of the polyamic acid film or polyimide film is sandwiched between two glass plates in a sandwich structure, and then placed between two plates equipped with a heater to maintain a constant pressure perpendicular to the two plate surfaces. Can be achieved by application.
  • the width of the polyamic acid film or polyimide film impregnated with the glass fiber fabric is preferably equal to the width of the two glass plates or at least 70% or more and the maximum of 100% or less of the two glass plates. If the area of the polyamic acid film or polyimide film impregnated with the glass fiber fabric is too small, less than 70% of the width of the two glass plates, the glass plate is more likely to be damaged due to uneven pressure and, conversely, larger than the two glass plates. If the film is larger (more than 100%), the film larger than the glass plate is not subjected to pressure and the surface is not planarized.
  • the polyamic acid film or polyimide film impregnated with the two glass plates and the glass fiber fabric laminated therebetween is located at the center portion of the two plates so that pressure can be uniformly applied from the two plates. .
  • the two glass plates used for laminating the polyamic acid film or polyimide film impregnated with the glass fiber fabric have a hard surface, a flat surface, a surface roughness of 0.5 to 2 nm, and a melting point of 500 ° C. It is preferable to use the above plate glass. It is also possible to use a stainless steal plate having a hard, flat surface, a surface roughness of 0.5 to 2 nm and a melting point of 500 ° C. or more in place of the glass plate.
  • the temperature of the two plates is the glass transition temperature (T g ) of the polyamic acid film impregnated with the glass fiber fabric and the temperature at which the imidization reaction starts to occur, or the glass transition temperature (T g ) of the polyimide film Pyrolysis temperatures are preferred.
  • the application time of the pressure to be applied perpendicular to the two plate surfaces is adjusted according to the temperature of the two plates and the magnitude of the pressure applied, or heating the polyamic acid film or polyimide film impregnated with the two plates and glass fiber fabric It is preferable to adjust according to the temperature of the furnace and the size of the applied pressure, for example, the temperature of the two plates is 300 °C, the application time is preferably within 2 hours when applying a pressure of 17 MPa to the two glass plates.
  • the present invention after placing a polyamic acid film or polyimide film impregnated with a glass fiber fabric between two flat surfaces, the polyamic acid film or polyimide impregnated with the glass fiber fabric positioned between the flat plate and the The temperature of the furnace in an environmental furnace together with the film is the temperature at which the glass transition temperature (T g ) of the polyamic acid film impregnated with the glass fiber and the imidization reaction start to occur, or the glass transition of the polyimide film. It is also possible to planarize by adjusting the temperature (T g ) and pyrolysis temperature range.
  • Advantages of the method of manufacturing a polyimide film including the two-step planarization step of the present invention as described above include a low polyamic acid film having low hardness and glass transition temperature (T g ) at a low temperature and pressure.
  • T g hardness and glass transition temperature
  • the second planarization of the polyimide film By drastically reducing the time required for the step, a gain of at least five times in production efficiency and production costs can be achieved.
  • the browning phenomenon of the color of the polyimide film gradually turning brown near 300 ° C. which is the optimum temperature for the planarization of the polyimide film, is greatly reduced, without passing through the first planarization step.
  • the yellowness index of the polyimide film is greatly reduced from 5.36 when only the second planarization step is performed, and to 2.65 when the first and second planarization steps are performed.
  • high light transmittance (90% or more) is an essential condition for the display cover window and the film for the substrate, the two-step planarization method disclosed in the present invention has a very important meaning.
  • the method of manufacturing and planarizing the colorless transparent polyimide film impregnated with the glass fiber fabric of the present invention the step of flattening the polyamic acid film, that is, the first planarization step of the polyimide film impregnated with the glass fiber fabric It can be achieved simply by leveling the surface.
  • the present invention also provides a polyimide film impregnated with a glass fiber fabric produced by the above method.
  • the polyimide film impregnated with the glass fiber fabric preferably has a thickness of 10 to 1000 ⁇ m, and the glass fiber fabric preferably has a thickness of 5 to 500 ⁇ m.
  • Figures 3a to 3f is a method for flattening the surface of a colorless transparent polyamic acid film impregnated with a glass fiber fabric and a colorless transparent polyimide (CPI) film substrate impregnated with a glass fiber fabric using a pair of rollers according to the present invention
  • FIG. 3A shows a colorless transparent polyamic acid film 301 impregnated with a glass fiber fabric and a glass fiber fabric 302 having a thickness of 25 ⁇ m impregnated in the polyamic acid film.
  • the surface roughness of the colorless transparent polyamic acid film 301 impregnated with the glass fiber fabric is 273 nm (RMS).
  • the glass fiber fabric impregnated colorless transparent polyamic acid film 301 is placed between a pair of rollers (305, 306) equipped with embedded heaters (303, 304) of the roller After the temperature was heated to 80 ° C., a pressure of 3 MPa was applied perpendicularly to the contact surface of the pair of rollers 305 and 306 and the colorless transparent polyamic acid film 301 impregnated with the glass fiber fabric as shown in FIG. 3C. 273 nm (RMS) by applying a pair of rollers and rotating the pair of rollers in opposite directions about the rotating shafts 307 and 308 to pass the colorless and transparent polyamic acid film 301 impregnated with the glass fiber fabric between the two rollers.
  • the surface of the colorless transparent polyamic acid film 301 impregnated with the glass fiber fabric having a surface roughness of was planarized to a surface roughness 309 of about 2.51 nm (RMS) (see FIG. 8A).
  • the surface roughness of the two rollers 305 and 306 to be used is 2 nm (RMS) or less.
  • the colorless transparent polyamic acid film 309 impregnated with the glass fiber fabric flattened to the surface roughness of about 2.51 nm (RMS) was thermally imidized at a temperature ranging from 110 ° C. to 250 ° C. to impregnate the glass fiber fabric.
  • RMS surface roughness
  • the colorless transparent polyimide film 310 impregnated with the glass fiber fabric formed by the imidization reaction is disposed between the pair of rollers 315 and 316 equipped with the embedded heaters 313 and 314. Position, and after heating the temperature of the two rollers to 300 °C, as shown in Figure 3f perpendicular to the contact surface of the colorless transparent polyimide film 310 impregnated with the two rollers (315, 316) and the glass fiber fabric A pressure of 17 MPa was applied, and the two rollers were rotated in opposite directions at a rate of 0.05 revolutions / sec about the rotating shafts 317 and 318 to pass a colorless transparent polyimide film impregnated with fiberglass fabric between the two rollers.
  • the surface roughness of the two rollers 315 and 316 to be used was 2 nm (RMS) or less.
  • the maximum rotational speed of the pair of rollers required for the planarization of the surface of the colorless and transparent polyimide film impregnated with the glass fiber fabric is 17 MPa. Is within 0.05 revolutions / sec, but within 0.025 revolutions / sec when the applied pressure is 15 MPa. In addition, when the applied pressure is 20 MPa, the rotation speed of the roller is within 0.1 revolutions / sec. This is because the higher the pressure applied to the colorless transparent polyimide film for flexible display impregnated with glass fiber fabric, the faster the deformation of the colorless transparent polyimide film occurs, and the smaller the pressure applied to the colorless transparent polyimide film occurs slowly. .
  • the flattening time of the colorless transparent polyamic acid film impregnated with the glass fiber fabric and the colorless transparent polyimide film impregnated with the glass fiber fabric It can be reduced to 1 / N than when using a pair of rollers. This is because the effect of flattening the N-pair rollers at the same time is equivalent to the effect of the flattening of the pair of rollers N times.
  • the roller temperature of each pair is changed from the glass transition temperature of the colorless transparent polyamic acid film to the colorless transparent polyimide.
  • Gradually increasing before the thermal decomposition temperature of the film roll-to-roll the surface planarization process and imidization reaction of the colorless transparent polyamic acid film impregnated with the glass fiber fabric, and the surface planarization process of the colorless transparent polyimide film impregnated with the glass fiber fabric This can be achieved by a roll to roll process.
  • dianhydride monomer hydride 6FDA 5.47 g (1.231 ⁇ 10 -2 mol) and 2,2-Bis (3-amino- 4-methylphenyl) hexafluoropropane (BAMF) 4.46 g (1.231 ⁇ 10 -2 mol) and the solvent is DMAc 74.44 g of the polyamic acid solution PA-1 and PA-2 were prepared in the same manner as described above, and the polyamic acid solution PA-1 and PA-2 were each added in a weight ratio of 4: 6 (5.96 g, 8.94 g) was prepared to prepare a polyamic acid mixed solution.
  • a glass fiber fabric having a thickness of 25 ⁇ m was placed on a glass substrate having an area of 10 cm ⁇ 10 cm, and the polyamic acid mixture solution prepared above was evenly poured onto the glass fiber fabric and placed in a vacuum oven to obtain a temperature inside the vacuum oven at 50 ° C. at room temperature. After raising at 5 °C / min speed to maintain 5 minutes at 50 °C, up to 2.5 °C / min speed from 50 °C to 110 °C and maintained at 110 °C for 3 hours and the degree of vacuum inside the vacuum oven to -0.1 MPa or less The solvent was evaporated rapidly to form a polyamic acid film.
  • the polyamic acid film impregnated with the glass fiber fabric was raised from 110 ° C to 170 ° C at a rate of 0.4 ° C / min at a vacuum degree of -0.1 MPa or less, and then from 170 ° C to 250 ° C at a rate of 1 ° C / min.
  • a colorless and transparent polyimide film (CPI) impregnated with a glass fiber fabric through the imidation reaction of the polyamic acid film by step thermosetting.
  • CPI colorless and transparent polyimide film
  • the pressure applied to the two plates was removed, and the two glass plates and the flattened colorless transparent polyimide film laminated therebetween were separated from the two plates together.
  • a colorless transparent polyimide film impregnated with a glass fiber fabric was separated from the lower glass substrate and the upper glass substrate to obtain a flattened transparent polyimide film.
  • the surface roughness of the polyimide film impregnated with glass fiber fabric was measured by alpha step (XE-100, Park Systems, Korea) when the surface roughness of the film was 0.2 ⁇ m or more, and AFM (atomic force) when the roughness was less than 0.2 ⁇ m. microscope; Dektak-8, VEECO, USA).
  • the coefficient of thermal expansion (CTE) of the flattened colorless transparent polyimide film obtained as described above was measured by a thermo-mechanical analyzer (TMA-2940, TA Instruments, USA).
  • TMA-2940 thermo-mechanical analyzer
  • the thermal expansion coefficient of the colorless transparent polyimide film impregnated with glass fiber was 11 ppm at a temperature range from room temperature to 400 ° C. This can be seen that the glass fiber fabric is very effective in suppressing the thermal expansion of the colorless transparent polyimide film considering that the thermal expansion coefficient of the colorless transparent polyimide film not impregnated with the glass fiber fabric.
  • Example 2 After preparing a polyamic acid mixed solution in the same manner as in Example 1, the glass fiber fabric was placed on a support, and the polyamic acid mixed solution was evenly poured on the glass fiber fabric.
  • the glass fiber fabric impregnated with the polyamic acid mixed solution and the whole support were put in a temperature atmosphere, and the internal temperature was raised at a rate of 5 ° C./min from room temperature to 50 ° C. and maintained at 50 ° C. for 5 minutes, and the temperature was increased from 50 ° C. to 110 ° C. 2.5.
  • the polyamic acid film was formed by evaporating the solvent while raising the mixture at a rate of ° C / min and maintaining the same at 110 ° C for 3 hours.
  • a colorless transparent polyimide film impregnated with the glass fiber fabric was placed between a pair of rollers having a surface roughness of 2 nm (RMS) and a diameter of 20 cm, and a pair using a buried heater mounted on the pair of rollers. After heating the temperature of the roller to 300 ° C, a pressure of 17 MPa was applied perpendicularly to the contact surface of the pair of rollers and the colorless and transparent polyimide film impregnated with the glass fiber fabric, and the pair of rollers were rotated on a rotating shaft. By rotating at a rate of 0.01 revolutions / sec in the opposite direction to each other, the colorless and transparent polyimide film impregnated with glass fiber was passed between a pair of rollers.
  • RMS surface roughness of 2 nm
  • the surface roughness of the polyimide film impregnated with glass fiber fabric is measured by alpha step (XE-100, Park Systems, Korea) when the surface roughness of the film is 0.2 ⁇ m or more, and AFM (atomic force) when the roughness is less than 0.2 ⁇ m. microscope; Dektak-8, VEECO, USA).
  • the coefficient of thermal expansion (CTE) of the flattened colorless transparent polyimide film obtained as described above was measured by a thermo-mechanical analyzer (TMA-2940, TA Instruments, USA).
  • TMA-2940 thermo-mechanical analyzer
  • the thermal expansion coefficient of the colorless transparent polyimide film impregnated with glass fiber was 11 ppm at a temperature range from room temperature to 400 ° C. This can be seen that the glass fiber fabric is very effective in suppressing the thermal expansion of the colorless transparent polyimide film considering that the thermal expansion coefficient of the colorless transparent polyimide film not impregnated with the glass fiber fabric.
  • a polyamic acid film was molded in the same manner as in Example 2.
  • the surface roughness with embedded heater was placed between a pair of rollers having a diameter of 2 nm (RMS) and a diameter of 20 cm, and the temperature of the roller was heated to 80 ° C., Adjusting the distance of the roller to apply a pressure of 3 MPa perpendicular to the contact surface of the colorless transparent polyamic acid film impregnated with the roller and the glass fiber fabric, the pair of rollers of 0.1 revolutions / sec about the axis of rotation
  • the surface of the polyamic acid film impregnated with the glass fiber fabric was flattened by passing the colorless and transparent polyamic acid film impregnated with the fiberglass fabric through a pair of rollers by rotating in opposite directions at a speed.
  • the colorless transparent polyimide film impregnated with the fiberglass fabric was placed between a pair of rollers having a surface roughness of 2 nm (RMS) and a diameter of 20 cm with a embedded heater, and a pair of rollers using the embedded heater.
  • RMS surface roughness of 2 nm
  • the pair of rollers were rotated in opposite directions at a speed of 0.05 revolutions / sec about the rotation axis to pass the colorless and transparent polyimide film impregnated with the glass fiber fabric between the pair of rollers to be flattened (second flattening step).
  • the surface roughness of the polyimide film impregnated with glass fiber fabric is measured by alpha step (XE-100, Park Systems, Korea) when the surface roughness of the film is 0.2 ⁇ m or more, and AFM (atomic force) when the roughness is less than 0.2 ⁇ m. microscope; Dektak-8, VEECO, USA).
  • the surface of the polyamic acid film impregnated with the glass fiber fabric having the surface roughness of 273 nm (RMS) was flattened to the surface roughness of about 2.51 nm (RMS) (see FIG. 8A).
  • the surface of the colorless and transparent polyimide film impregnated with the glass fiber fabric subjected to the imidization reaction was again roughened with a surface roughness of 56 nm (RMS), and the 56 through the second planarization step of flattening the polyimide film.
  • a polyimide film impregnated with a glass fiber fabric having a surface roughness of nm (RMS) was flattened to a surface roughness of 2.19 nm (RMS) (see FIG. 8B).
  • CTE coefficient of thermal expansion
  • the coefficient of thermal expansion of the colorless transparent polyimide film without impregnation of glass fiber was about 61 ppm / °C in the temperature range from room temperature to glass transition temperature (264), but rapidly increased to 2837 ppm / °C above the glass transition temperature. It was.
  • the thermal expansion coefficient of the colorless and transparent polyimide film impregnated with glass fiber fabric at a temperature range from room temperature to 400 ° C. was very small at 11 ppm / ° C. without increasing the coefficient of thermal expansion due to glass transition. This confirmed that the glass fiber fabric is very effective in suppressing thermal expansion of the colorless transparent polyimide film.
  • the surface roughness of the colorless transparent polyimide film impregnated with a glass fiber fabric is several 10 nm ⁇ 1 ⁇ m level
  • the surface roughness of the colorless transparent polyimide film impregnated with a glass fiber fabric is several 10 nm ⁇ 1 ⁇ m level
  • the glass fiber fabric impregnated with the colorless transparent polyimide film can increase the tensile strength of the colorless transparent polyimide film, which can greatly increase the flexibility and life of the substrate and cover window for flexible display, By replacing the glass cover window with a colorless transparent polyimide cover window impregnated with fiberglass fabric, it is advantageous to significantly reduce the weight of the display and eliminate the risk of breakage.
  • the colorless transparent polyimide film impregnated with the flattened glass fiber fabric according to the present invention can be very usefully used in the flexible display industry and the flat panel display industry.

Abstract

The present invention relates to a method for producing a polyimide film, the method comprising a two-stage planarization step for planarizing the surface of a colorless and transparent polyimide (CPI) film impregnated with a glass fabric by a roll-to-roll process, and the purpose of the present invention is to solve a problem of an increase in the surface roughness of a polyimide substrate, which inevitably occurs when a glass fabric is impregnated into a colorless and transparent polyimide film in order to improve thermal and mechanical properties of a film that is used for a flexible display substrate and a cover window of a flat panel display or a cellular phone. According to the present invention, the surface of a colorless and transparent polyimide film impregnated with a glass fabric is planarized such that the roughness thereof is reduced from a range of about several tens of nanometers to several microns to about several nanometers, which enables a TFT process to be carried out on a substrate made of the colorless and transparent polyimide film, and increases the optical transmittance and transparency of the colorless and transparent polyimide film, thereby allowing the colorless and transparent polyimide film to be used for a flexible display substrate and a cover window of a flat panel display or a cellular phone.

Description

유리섬유직물이 함침된 무색투명 폴리이미드 필름의 제조 및 표면 평탄화 방법Method for preparing colorless and transparent polyimide film impregnated with glass fiber fabric and surface planarization method
본 발명은 유리섬유직물이 함침된 디스플레이 기판용 무색투명 폴리이미드 필름의 제조 및 표면 평탄화 방법에 관한 것으로, 더욱 상세하게는 플렉시블 디스플레이 기판용 및 평판 디스플레이와 휴대폰의 커버 윈도우(cover window)용 필름의 열적, 기계적 특성을 개선하기 위해 무색투명 폴리이미드(colorless and transparent polyimide, CPI) 필름 내에 유리섬유직물(glass fabric)을 함침(impregnating) 시킬 때 발생하는 폴리이미드 기판의 표면 거칠기(surface roughness)가 커지는 문제점을 해결할 수 있는 유리섬유직물이 함침된 폴리이미드 필름의 제조방법 및 상기 유리섬유직물이 함침된 무색투명 폴리이미드 필름의 표면을 평탄화 하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a colorless transparent polyimide film impregnated with a glass fiber fabric and to a surface planarizing method, and more particularly, to a film for a cover window of a flexible display substrate and a flat panel display and a mobile phone. Increasing the surface roughness of polyimide substrates caused by impregnating glass fabric in colorless and transparent polyimide (CPI) films to improve thermal and mechanical properties. It relates to a method for producing a polyimide film impregnated with a glass fiber fabric that can solve the problem, and a method for planarizing the surface of the colorless transparent polyimide film impregnated with the glass fiber fabric.
현재 전자종이(EPD), 플라즈마 디스플레이(PDP), 액정 디스플레이(LCD), 유기발광 디스플레이(OLED) 기술을 사용한 평판 디스플레이(flat panel display)가 TV, 휴대폰, 모니터, 전자책, 모바일 기기 등에 광범위하게 사용되고 있다.Currently, flat panel displays using electronic paper (EPD), plasma display (PDP), liquid crystal display (LCD) and organic light emitting display (OLED) technologies are widely used in TVs, mobile phones, monitors, e-books and mobile devices. It is used.
그러나, 차세대에는 휴대하기 쉽고, 언제 어디서나 편리하게 사용할 수 있는 플렉시블 디스플레이가 휴대폰, 휴대용 단말기, 노트북 컴퓨터 등 전자기기에 폭넓게 사용될 것으로 예측된다.However, in the next generation, it is expected that a flexible display that is easy to carry and can be conveniently used anytime and anywhere, will be widely used in electronic devices such as mobile phones, portable terminals, and notebook computers.
플렉시블 디스플레이는 잘 휘어지고 말거나 접을 수 있도록 기판 자체가 기계적으로 유연한 기판을 사용하여야 한다. 매우 얇은 유리판, 얇은 스테인리스 스틸(stainless steel)판, 플라스틱 필름 등이 유연한 기판으로 사용될 수 있는데, 이중에서도 플라스틱 필름을 사용하는 것이 가장 유리하다.Flexible displays must use a substrate that is mechanically flexible so that it can bend or fold well. Very thin glass plates, thin stainless steel plates, plastic films and the like can be used as flexible substrates, of which plastic films are most advantageous.
또한 현재 TV, 모니터, 휴대폰 등 평판 디스플레이의 커버 윈도우로 유리를 사용하고 있는데, 유리는 내열성, 광 투과성 및 기계적 강도에는 우수한 특성을 보이지만 무겁고 깨지기 쉬운 단점이 있어 이를 대체하기 위해 열적, 광학적 특성이 우수한 무색투명 플라스틱 필름이 관련업계에서 검토되고 있다. In addition, glass is currently used as a cover window of flat panel displays such as TVs, monitors, and mobile phones. Glass has excellent characteristics in heat resistance, light transmittance, and mechanical strength, but has a disadvantage of being heavy and fragile. Colorless transparent plastic films are being reviewed in the art.
그러나, 플라스틱 필름 기판은 기계적 유연성이 유리 기판보다 훨씬 우수하지만 인장강도(tensile strength)는 유리 기판보다 열등한데, 유리섬유직물을 플라스틱 필름에 함침시키면 유리섬유강화 플라스틱(fiber reinforced plastic, FRP)과 같이 플라스틱 필름의 인장강도를 강화유리 수준으로 높일 수 있어, 한국공개특허공보 제10-2010-0118220호(발명의 명칭: 디스플레이 패널용 플렉서블 기판 및 그 제조방법), 제10-2010-0118222호(발명의 명칭: 디스플레이 패널용 플렉서블 기판 및 그 제조방법), 제10-2012-0027632호(발명의 명칭: 플렉시블 소자의 제작방법), 및 제10-2011-0055425호(발명의 명칭: 우수한 열팽창특성 및 투광성을 갖는 고분자-유기 나노섬유 복합체 및 이를 이용한 투광성 복합체 필름) 등을 포함하여 널리 사용되고 있다.However, plastic film substrates are much more mechanically flexible than glass substrates, but their tensile strength is inferior to glass substrates. Impregnating a glass film with a plastic film, such as fiber reinforced plastic (FRP), The tensile strength of plastic films can be increased to the level of tempered glass, and Korean Patent Publication No. 10-2010-0118220 (Invention: Flexible Substrate for Display Panel and Manufacturing Method thereof), 10-2010-0118222 (Invention) Names: Flexible substrates for display panels and methods for manufacturing the same, No. 10-2012-0027632 (name of the invention: manufacturing method of a flexible device), and No. 10-2011-0055425 (name of the invention: excellent thermal expansion characteristics and Polymer-organic nanofiber composite having a light-transmitting property and a light-transmissive composite film using the same), and the like, and are widely used.
폴리이미드(polyimide) 필름은 유연성과 함께 내열성, 내마모성, 절연성, 내화학성 및 기계적 강도가 우수하여 절연 필름, 플렉시블 케이블(flexible cable), 인쇄회로기판(printed circuit board, PCB)과 같은 전자재료로 널리 사용되어 왔다. 일반적인 폴리이미드 필름은 진한 갈색을 띄기 때문에 상기와 같은 우수한 물성에도 불구하고 디스플레이 기판에는 사용되지 못하고 있었지만, 최근 무색투명(colorless and transparent)한 폴리이미드가 개발되어 디스플레이 기판으로 사용이 가능해 졌다. Polyimide films are widely used in electronic materials such as insulation films, flexible cables, and printed circuit boards because of their flexibility, heat resistance, abrasion resistance, insulation, chemical resistance and mechanical strength. Has been used. The general polyimide film has a dark brown color, and thus has not been used in display substrates despite the excellent physical properties, but recently, colorless and transparent polyimide has been developed and used as a display substrate.
디스플레이 소자를 제작하기 위해서는 개개 화소(pixel)의 스위칭 및 휘도 조절을 위해 박막 트랜지스터(thin film transistor, TFT)를 기판 위에 제작해야 한다. 현재, 비정질 실리콘(amorphous silicon), 다결정 실리콘(polysilicon), 산화물, 유기물 등을 이용한 TFT가 사용되고 있으나, 가장 안정된 성능을 보이는 비정질 실리콘의 경우, 증착 및 열처리에 필요한 최소 공정 온도가 약 230℃이다. 230℃에서 플라스틱 기판 위에 TFT 박막 공정을 진행한 후 상온으로 온도를 내리면 플라스틱 기판과 TFT 박막 물질의 열팽창 계수(coefficient of thermal expansion, CTE) 차이로 인해 TFT 박막이 플라스틱 기판으로 부터 박리되는데, 이를 방지하기 위해서는 기판의 열팽창 계수가 10 ppm(part per million)/℃ 이하여야 한다.In order to fabricate a display device, a thin film transistor (TFT) must be fabricated on a substrate to control individual pixels and adjust brightness. Currently, TFTs using amorphous silicon, polysilicon, oxides, organics, and the like are used, but in the case of amorphous silicon showing the most stable performance, the minimum process temperature required for deposition and heat treatment is about 230 ° C. After the TFT thin film process is performed on the plastic substrate at 230 ° C and the temperature is lowered to room temperature, the TFT thin film is peeled from the plastic substrate due to the difference in the coefficient of thermal expansion (CTE) between the plastic substrate and the TFT thin film material. In order to do this, the thermal expansion coefficient of the substrate must be 10 ppm (part per million) / ° C or less.
무색투명 폴리이미드(CPI)의 열팽창 계수는 최소 50 ppm/℃ 이상이나, 열팽창계수가 약 5 ppm/℃인 유리섬유직물을 무색투명 폴리이미드 필름에 함침시킴으로써 유리섬유직물이 함침된 무색투명 폴리이미드 필름 기판의 열팽창 계수를 10 ppm/℃ 수준으로 감소시키는 것이 가능하다. The thermal expansion coefficient of the colorless transparent polyimide (CPI) is at least 50 ppm / ° C, but the colorless transparent polyimide impregnated with the glass fiber fabric by impregnating the colorless transparent polyimide film with a glass fiber fabric having a coefficient of thermal expansion of about 5 ppm / ° C. It is possible to reduce the coefficient of thermal expansion of the film substrate to the level of 10 ppm / ° C.
용액공정을 이용하여 유리섬유직물이 함침된 무색투명 폴리이미드 필름을 성형하는 과정에서 다음과 같은 원인에 의해 필연적으로 필름의 표면이 수 10 ㎚ ~ 1 ㎛ 수준으로 거칠어진다. In the process of forming a colorless transparent polyimide film impregnated with a glass fiber fabric using a solution process, the surface of the film is inevitably roughened to several 10 nm to 1 μm due to the following causes.
유리섬유직물을 유리판 위에 위치시키고 폴리아믹산(polyamic acid) 용액을 그 위에 부으면 폴리아믹산 용액은 중력에 의해 완전한 수평면을 형성하지만, 유리섬유직물의 직조된 표면이 평평하지 않기 때문에 유리섬유직물 표면에서부터 폴리아믹산 용액 표면까지의 두께는 위치에 따라 달라진다.When the fiberglass fabric is placed on a glass plate and the polyamic acid solution is poured on it, the polyamic acid solution forms a complete horizontal plane by gravity, but since the woven surface of the fiberglass fabric is not flat, The thickness up to the surface of the acid solution depends on the location.
즉, 유리섬유가 올라온 부분의 폴리아믹산 용액의 두께는 얇고, 유리섬유가 내려간 부분에 위치한 폴리아믹산 용액은 두껍게 되어(도 1a 참조), 무색투명 폴리이미드 필름 성형과정에서 용매가 증발되고 중합반응이 일어나게 되면, 용액이 얇은 부분에서는 수축이 적게 일어나고, 용액이 두꺼운 부분에서는 수축이 많이 일어나게 되므로 성형된 무색투명 폴리이미드 필름 표면에는 유리섬유직물의 표면 지형(surface topography)과 유사한 형태를 갖는 요철이 발생하며(도 1b 참조), 상기 요철의 표면 거칠기는 유리섬유직물의 두께에 따라 최소 수 10 ㎚에서 최대 1 ㎛에 이르게 된다. That is, the thickness of the polyamic acid solution in the glass fiber raised portion is thin, the polyamic acid solution located in the glass fiber lowered portion is thick (see Fig. 1a), the solvent evaporates during the colorless transparent polyimide film forming process and the polymerization reaction is When this occurs, shrinkage occurs in the thin part of the solution and shrinkage occurs in the thick part of the solution, so that the surface of the formed colorless transparent polyimide film has irregularities similar to the surface topography of the glass fiber fabric. (See FIG. 1B), the surface roughness of the concave-convex reaches up to 1 μm at the minimum of several 10 nm depending on the thickness of the glass fiber fabric.
또한, 기판의 표면이 거칠어지면 무색투명 폴리이미드 필름의 굴절률과 유리섬유의 굴절률이 일치되었다 하더라도 수 10 ㎚ ~ 1 ㎛ 수준의 표면 거칠기(surface roughness)는 빛을 산란(scattering)시켜 기판의 광 투과도(optical transmittance) 및 투명도(transparency)를 크게 감소시킬 뿐만 아니라, 디스플레이 소자 제작에 필수적인 박막 트랜지스터(TFT) 공정을 어렵게 하는 문제가 발생한다.In addition, when the surface of the substrate becomes rough, even if the refractive index of the colorless and transparent polyimide film and the refractive index of the glass fiber coincide, the surface roughness of the order of 10 nm to 1 μm scatters the light and scatters the light so that the light transmittance of the substrate In addition to significantly reducing optical transmittance and transparency, a problem arises that makes a thin film transistor (TFT) process essential for display device fabrication.
기판의 광 투과도 및 투명도를 증가시키고 기판 위에 TFT 공정을 가능하게 하기 위해서는 기판의 표면 거칠기가 1 ㎚ 수준이 되어야 한다. In order to increase the light transmittance and transparency of the substrate and to enable the TFT process on the substrate, the surface roughness of the substrate must be on the order of 1 nm.
일반적으로 디스플레이 기판의 표면 평탄화에 사용되는 코팅의 박막 두께는 수 수준이기 때문에 수 10 ㎚ ~ 1 ㎛ 수준의 거칠기를 갖는 필름 표면을 상기 평탄화 코팅에 의해 1 ㎚ 수준의 표면 거칠기로 평탄화 시키기는 어렵다.In general, since the thin film thickness of the coating used for the surface planarization of the display substrate is a few levels, it is difficult to planarize a film surface having a roughness of several 10 nm to 1 µm to a surface roughness of 1 nm level by the planarization coating.
따라서, 유리섬유직물이 함침된 무색투명 폴리이미드 필름 표면을 평탄화 코팅을 이용해 1 ㎚ 수준의 표면 거칠기로 평탄화 시키기 위해서는 유리섬유직물이 함침된 무색투명 폴리이미드 필름의 표면 거칠기를 수 ㎚ 수준으로 만들 필요가 있다.Therefore, in order to planarize the surface of the colorless transparent polyimide film impregnated with glass fiber fabric to a surface roughness of 1 nm level using a flattening coating, it is necessary to make the surface roughness of the colorless transparent polyimide film impregnated with glass fiber fabric to several nm level. There is.
결국, 본 발명은 종래기술의 문제점을 해결하고자 안출된 것으로, 본 발명의 주된 목적은 두 단계의 평탄화 단계를 포함하는 유리섬유직물이 함침된 폴리이미드 필름의 제조방법을 제공하는데 있다.After all, the present invention has been made to solve the problems of the prior art, the main object of the present invention is to provide a method for producing a polyimide film impregnated with a glass fiber fabric comprising a two-step flattening step.
또한, 본 발명의 다른 목적은 플렉시블 디스플레이용 및 평판 디스플레이의 유리기판 대체용 기판의 열적, 기계적 특성을 개선하기 위해 유리섬유직물을 무색투명 폴리이미드 필름에 함침시킬 때 필연적으로 나타나는 필름 표면의 거칠기를 연속공정으로 평탄화 시키는 방법을 제공하는데 있다.In addition, another object of the present invention is to provide the roughness of the film surface which is inevitably encountered when impregnated with a colorless transparent polyimide film in order to improve the thermal and mechanical properties of the glass substrate replacement substrate for flexible displays and flat panel displays. It is to provide a method for planarization in a continuous process.
또한, 본 발명의 또 다른 목적은 상기 방법으로 제조된 무색투명 폴리이미드 필름을 제공하는데 있다.  In addition, another object of the present invention to provide a colorless transparent polyimide film prepared by the above method.
상기 목적을 달성하기 위하여, 본 발명은 두 단계의 평탄화 단계를 포함하는 유리섬유직물이 함침된 폴리이미드 필름의 제조방법을 제공한다.In order to achieve the above object, the present invention provides a method for producing a polyimide film impregnated with a glass fiber fabric comprising a two-step flattening step.
본 발명에 있어서, 제1 평탄화 단계에서는, 폴리이미드의 전구체(precursor)인 무색투명 폴리아믹산(polyamic acid) 용액에서 용매를 증발시켜 필름으로 제조한 후, 표면이 매끄럽고 원통형(cylindrical)인 두 개의 롤러(roller) 사이에 상기 필름을 위치시키고, 상기 두 개의 롤러 사이의 간격을 조절하여 필름에 압력을 인가한 상태에서 상기 필름을 두 롤러 사이로 통과시켜 필름 표면을 평탄화 한다.In the present invention, in the first planarization step, after the solvent is evaporated from a colorless transparent polyamic acid solution, which is a precursor of polyimide, to prepare a film, two rollers having a smooth and cylindrical surface The film is positioned between the rollers and the gap between the two rollers is adjusted to pass the film between the two rollers while applying pressure to the film to planarize the film surface.
상기 평탄화 된 무색투명 폴리아믹산 필름은 이미드화(imidization) 반응을 시켜 무색투명 폴리이미드 필름으로 제조하는 과정에서 폐환(ring-closing) 및 탈수(dehydration) 반응이 일어나기 때문에 무색투명 폴리이미드 필름의 표면이 다시 거칠어지는데, 이때 무색투명 폴리이미드 필름의 거칠기 정도는 폴리아믹산 필름이 평탄화 되기 전의 거칠기보다는 훨씬 작다.The flattened colorless transparent polyamic acid film has a ring-closing and dehydration reaction during imidization to produce a colorless transparent polyimide film, so that the surface of the colorless transparent polyimide film is Again, the roughness of the colorless transparent polyimide film is much smaller than the roughness before the polyamic acid film is flattened.
따라서, 제2 평탄화 단계에서는, 상기 이미드화 반응으로 생긴 무색투명 폴리이미드 필름의 표면 거칠기를 평탄화 하는 과정으로, 표면이 매끄럽고 원통형인 또 다른 한 쌍의 롤러(roller) 사이에 상기 무색투명 폴리이미드 필름을 위치시키고, 상기 한 쌍의 롤러 사이의 간격을 조절하여 필름에 압력을 인가한 상태에서 상기 필름을 두 롤러 사이로 통과시켜 필름 표면을 평탄화 하여 달성된다.Therefore, in the second planarization step, the surface roughness of the colorless transparent polyimide film produced by the imidization reaction is flattened, and the colorless transparent polyimide film is formed between another pair of rollers having a smooth and cylindrical surface. By placing the film and adjusting the spacing between the pair of rollers to achieve a planarization of the film surface by passing the film between the two rollers while applying pressure to the film.
또한, 본 발명은 유리섬유직물이 함침된 폴리아믹산 필름을 평탄화 하는 단계; 및 상기 단계의 폴리아믹산 필름을 이용하여 제조된 폴리이미드 필름을 평탄화 하는 단계;를 포함하는 유리섬유직물이 함침된 폴리이미드 필름 표면의 평탄화 방법을 제공한다.In addition, the present invention comprises the steps of flattening a polyamic acid film impregnated with a glass fiber fabric; And planarizing the polyimide film prepared by using the polyamic acid film of the above step.
또한, 본 발명은 상기 방법으로 제조된 유리섬유직물이 함침된 무색투명 폴리이미드 필름을 제공한다.In addition, the present invention provides a colorless transparent polyimide film impregnated with a glass fiber fabric prepared by the above method.
상기와 같은 본 발명에 따르면, 본 발명은 유리섬유직물이 함침된 플렉시블 디스플레이용 및 유리 기판 대체용 무색투명 폴리이미드 필름 기판의 표면 거칠기를 수 10 ㎚ ~ 1 ㎛ 수준에서 수 ㎚ 수준으로 평탄화 시킴으로써, 빛의 표면 산란을 방지하여 유리섬유직물이 함침된 무색투명 폴리이미드 필름 기판의 광 투과도 및 투명도를 증가시키고, 기판 위에 TFT 공정을 가능하게 하는 효과가 있다.According to the present invention as described above, the present invention by flattening the surface roughness of the colorless transparent polyimide film substrate for flexible display and glass substrate replacement impregnated with glass fiber fabric from the level of several 10 nm to 1 ㎛ level to several nm level, By preventing the surface scattering of light to increase the light transmittance and transparency of the colorless transparent polyimide film substrate impregnated with glass fiber fabric, there is an effect that enables the TFT process on the substrate.
도 1a 및 도 1b는 유리섬유직물이 함침된 무색투명 폴리아믹산 필름 또는 무색투명 폴리이미드 필름이 큰 표면 거칠기를 갖는 원인을 도시한 개략도. 1A and 1B are schematic views showing the cause of the colorless transparent polyamic acid film or the colorless transparent polyimide film impregnated with glass fiber fabric having a large surface roughness.
도 2는 유리섬유직물이 함침된 무색투명 폴리아믹산 필름 또는 폴리이미드 필름의 표면이 평탄화 되는 원리를 설명한 개략도.Figure 2 is a schematic view illustrating the principle that the surface of the colorless transparent polyamic acid film or polyimide film impregnated with a glass fiber fabric.
도 3a 내지 도 3f는 본 발명에 따른 두 단계 평탄화 단계를 포함하는 유리섬유직물이 함침된 폴리이미드 필름의 제조 과정을 나타낸 개략도. Figures 3a to 3f is a schematic view showing the manufacturing process of a polyimide film impregnated with a glass fiber fabric comprising a two-step flattening step according to the present invention.
도 4는 본 발명에 따른 N쌍의 롤러를 사용한 유리섬유직물이 함침된 무색투명 폴리아믹산 필름 또는 폴리이미드 필름의 평탄화 과정을 나타낸 개략도.Figure 4 is a schematic diagram showing the planarization process of a colorless transparent polyamic acid film or polyimide film impregnated with a glass fiber fabric using N pairs of rollers according to the present invention.
도 5a 내지 도 5f는 본 발명에 따른 평판을 이용한 유리섬유직물이 함침된 폴리이미드 필름의 평탄화 과정을 나타낸 개략도. 5a to 5f are schematic views showing the planarization process of a polyimide film impregnated with a glass fiber fabric using a flat plate according to the present invention.
도 6은 본 발명의 제1 실시예에 따라 평탄화 된 유리섬유직물이 함침된 폴리이미드 필름의 표면 거칠기를 보여주는 AFM 사진.6 is an AFM photograph showing the surface roughness of a polyimide film impregnated with a flattened glass fiber fabric according to the first embodiment of the present invention.
도 7은 본 발명의 제2 실시예에 따라 평탄화 된 유리섬유직물이 함침된 폴리이미드 필름의 표면 거칠기를 보여주는 AFM 사진.7 is an AFM photograph showing the surface roughness of a polyimide film impregnated with a flattened glass fiber fabric according to a second embodiment of the present invention.
도 8a는 본 발명의 제3 실시예에 따라 평탄화 된 유리섬유직물이 함침된 폴리아믹산 필름의 표면 거칠기를 보여주는 AFM 사진.8A is an AFM photograph showing the surface roughness of a polyamic acid film impregnated with a flattened glass fiber fabric according to a third embodiment of the present invention.
도 8b는 본 발명의 제3 실시예에 따라 평탄화 된 유리섬유직물이 함침된 폴리이미드 필름의 표면 거칠기를 보여주는 AFM 사진.8B is an AFM photograph showing the surface roughness of a polyimide film impregnated with a flattened glass fiber fabric according to a third embodiment of the present invention.
[부호의 설명][Description of the code]
101 : 기판 101: substrate
102 : 폴리아믹산(polyamic acid) 용액102: polyamic acid solution
103, 203, 302, 402, 503 : 유리섬유직물103, 203, 302, 402, 503: glass fiber fabric
104, 301 : 유리섬유직물이 함침된 표면이 거친 무색투명 폴리아믹산 필름 104, 301: Rough, colorless, transparent polyamic acid film impregnated with glass fiber fabric
201 : 표면이 거친 무색투명 폴리아믹산 필름 또는 폴리이미드 필름과 접촉하는 하부 롤러 부분201: Lower roller portion in contact with a rough, colorless, transparent polyamic acid film or polyimide film
202, 401 : 유리섬유직물이 함침된 표면이 거친 무색투명 폴리아믹산 필름 또는 유리섬유직물이 함침된 표면이 거친 무색투명 폴리이미드 필름202, 401: colorless transparent polyamic acid film with a rough surface impregnated with glass fiber fabric or colorless transparent polyimide film with a rough surface impregnated with glass fiber fabric
204 : 표면이 거친 무색투명 폴리아믹산 필름 또는 폴리이미드 필름과 접촉하는 상부 롤러 일부204: Part of the upper roller in contact with the rough surface colorless transparent polyamic acid film or polyimide film
305, 315, 405 : 하부 롤러 305, 315, 405: lower roller
306, 316, 406 : 상부 롤러 306, 316, 406: upper roller
303, 313, 403 : 하부 롤러 히터 303, 313, 403: lower roller heater
304, 314, 404 : 상부 롤러 히터304, 314, 404: Upper Roller Heaters
307, 317, 407 : 하부 롤러 축 307, 317, 407: lower roller shaft
308, 318, 408 : 상부 롤러 축308, 318, 408: upper roller shaft
309 : 표면이 평탄화 된 유리섬유직물이 함침된 무색투명 폴리아믹산 필름309: Colorless and transparent polyamic acid film impregnated with glass fiber fabric with flattened surface
310 : 유리섬유직물이 함침된 표면이 거친 무색투명 폴리이미드 필름310: colorless transparent polyimide film having a rough surface impregnated with a glass fiber fabric
319 : 표면이 평탄화 된 유리섬유직물이 함침된 무색투명 폴리이미드 필름319: Colorless and transparent polyimide film impregnated with glass fiber fabric with flattened surface
409 : 표면이 평탄화 된 유리섬유직물이 함침된 무색투명 폴리아믹산 필름 혹은 표면이 평탄화 된 유리섬유직물이 함침된 무색투명 폴리이미드 필름409: colorless transparent polyamic acid film impregnated with glass fiber fabric with flattened surface or colorless transparent polyimide film impregnated with glass fiber fabric with flattened surface
501 : 하부 유리판501: lower glass plate
502 : 유리섬유직물이 함침된 표면이 거친 무색투명 폴리이미드 필름502: colorless transparent polyimide film having a rough surface impregnated with glass fiber fabric
504 : 상부 유리판504: upper glass plate
505 : 하부 히터505: lower heater
506 : 상부 히터506: upper heater
507 : 하부 평판507: lower plate
508 : 상부 평판508: upper plate
509 : 표면이 평탄화 된 유리섬유직물이 함침된 무색투명 폴리이미드 필름509: Colorless transparent polyimide film impregnated with glass fiber fabric with flattened surface
이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.
본 발명은 두 단계의 평탄화 단계를 포함하는 유리섬유직물이 함침된 폴리이미드 필름의 제조방법을 제공한다.The present invention provides a method for producing a polyimide film impregnated with a glass fiber fabric comprising a two-step flattening step.
본 발명에 있어서, 유리섬유직물이 함침된 폴리이미드 필름의 제조방법은, In the present invention, the method for producing a polyimide film impregnated with a glass fiber fabric,
(1) 유리섬유직물을 폴리아믹산(polyamic acid) 용액에 함침시켜 유리섬유직물이 함침된 폴리아믹산 필름을 제조하는 단계;(1) impregnating a glass fiber fabric with a polyamic acid solution to produce a polyamic acid film impregnated with a glass fiber fabric;
(2) 상기 (1) 단계에 의해 제조된 유리섬유직물이 함침된 폴리아믹산 필름을 평탄화 하는 단계(제1 평탄화 단계);(2) planarizing the polyamic acid film impregnated with the glass fiber fabric prepared by step (1) (first planarization step);
(3) 상기 (2) 단계에 의해 제조된 폴리아믹산 필름을 이미드화(imidization) 반응시켜 유리섬유직물이 함침된 폴리이미드(polyimide) 필름을 제조하는 단계; 및(3) producing a polyimide film impregnated with a glass fiber fabric by imidizing the polyamic acid film prepared by step (2); And
(4) 상기 (3) 단계에 의해 제조된 유리섬유직물이 함침된 폴리이미드 필름을 평탄화 하는 단계(제2 평탄화 단계);를 포함하는 것을 특징으로 평탄화한다.(4) flattening the polyimide film impregnated with the glass fiber fabric prepared by step (3) (second flattening step).
본 발명의 두 단계의 평탄화 단계를 보다 상세하게 설명하면 다음과 같다.The planarization step of the two steps of the present invention will be described in detail as follows.
본 발명의 무색투명 폴리아믹산 필름은 디안하이드라이드(dianhydride) 화합물과 디아민(diamine) 화합물을 용매에 녹여 중합반응을 통해 만든 폴리아믹산 용액에서 용매를 증발시켜 성형할 수 있다. 상기 폴리아믹산 필름은 80℃ 이하의 온도에서 약 30분간 가열 건조시켜 자체 지지성을 갖는 폴리아믹산 필름으로 제조한다.The colorless transparent polyamic acid film of the present invention may be molded by dissolving a dianhydride compound and a diamine compound in a solvent and evaporating the solvent in a polyamic acid solution made through a polymerization reaction. The polyamic acid film is heated to dry for about 30 minutes at a temperature of 80 ° C or less to prepare a polyamic acid film having self-support.
0.3 ㎛ 내외의 표면 거칠기를 갖는 상기 무색투명 폴리아믹산 필름은 상기 필름의 유리전이온도(glass transition temperature, Tg)와 이미드화(imidization) 반응이 일어나기 시작하는 온도 사이에서는 폐환(ring-closing) 반응이 일어나지 않아서 고분자의 주사슬(main chain)이 약간의 유동성을 가질 수 있으므로, 폴리아믹산 필름에 압력을 인가하면 무색투명 폴리아믹산 필름의 변형을 용이하게 유도할 수 있다.The colorless transparent polyamic acid film having a surface roughness of about 0.3 μm has a ring-closing reaction between the glass transition temperature (T g ) of the film and the temperature at which the imidization reaction starts to occur. Since this does not occur and the main chain of the polymer may have some fluidity, applying pressure to the polyamic acid film may easily induce deformation of the colorless transparent polyamic acid film.
표면 거칠기가 큰 무색투명 폴리아믹산 필름을 표면이 매끄럽고 원통형(cylindrical)인 두 개의 롤러(roller) 사이에 위치시킨 후, 상기 필름의 유리전이온도와 이미드화 반응이 일어나기 시작하는 온도 사이에서 두 롤러 사이의 간격을 좁혀 무색투명 폴리아믹산 필름에 일정한 압력을 인가한 상태에서 상기 두 롤러를 서로 반대 방향으로 회전시키면, 필름 표면의 높은 부분의 고분자가 낮은 부분으로 이동하여(도 2 참조) 폴리아믹산 필름의 표면이 압력을 인가하는 두 롤러의 표면 거칠기와 비슷한 수준의 표면 거칠기로 평탄화 된다(도 3c 참조). After placing a colorless transparent polyamic acid film having a large surface roughness between two rollers having a smooth and cylindrical surface, between the two rollers between the glass transition temperature of the film and the temperature at which the imidization reaction starts to occur. When the two rollers are rotated in opposite directions while a constant pressure is applied to the colorless and transparent polyamic acid film by narrowing the intervals of the polymer, the polymer of the high part of the film surface moves to the low part (see FIG. 2). The surface is planarized to a surface roughness similar to that of the two rollers under pressure (see FIG. 3C).
그러나 평탄화된 무색투명 폴리아믹산 필름을 열적 혹은 화학적으로 이미드화 반응시켜 무색투명 폴리이미드 필름을 만들면 폐환(ring-closing) 및 탈수(dehydration) 반응으로 인해 표면 거칠기가 수 10 ㎚ 수준으로 다시 거칠어진다(도 3d 참조).However, when the planar colorless transparent polyamic acid film is thermally or chemically imidized to form a colorless transparent polyimide film, the surface roughness is roughened back to a few tens of nm due to ring-closing and dehydration reactions ( 3d).
무색투명 폴리이미드 필름의 고분자 주사슬은 상기 필름의 유리전이온도(Tg) 이상에서 약간의 유동성(long-range segmental motion)을 가진다. 따라서, 상기 필름의 유리전이온도 이상에서 무색투명 폴리이미드 필름에 압력을 인가하면 무색투명 폴리이미드 필름의 변형을 유도할 수 있다. 상기 무색투명 폴리이미드 필름을 표면이 매끄럽고 원통형(cylindrical)인 두 개의 롤러(roller) 사이에 위치시킨 후, 상기 무색투명 폴리이미드 필름의 유리전이온도와 열분해온도(decomposition temperature) 사이의 온도에서 두 롤러 사이의 간격을 좁혀 무색투명 폴리이미드 필름에 일정한 압력을 인가한 상태에서 상기 두 롤러를 서로 반대 방향으로 회전시키면, 필름 표면의 높은 부분의 폴리이미드 고분자가 낮은 부분으로 이동하여(도 2 참조) 상기 무색투명 폴리이미드 필름의 표면이 압력을 인가하는 두 롤러의 표면 거칠기와 비슷한 수준의 표면 거칠기로 평탄화 된다(도 3f 참조).The polymer main chain of the colorless transparent polyimide film has a long-range segmental motion above the glass transition temperature (T g ) of the film. Therefore, applying a pressure to the colorless transparent polyimide film above the glass transition temperature of the film can induce deformation of the colorless transparent polyimide film. After placing the colorless transparent polyimide film between two rollers having a smooth and cylindrical surface, two rollers at a temperature between the glass transition temperature and the decomposition temperature of the colorless transparent polyimide film When the two rollers are rotated in opposite directions while a constant pressure is applied to the colorless and transparent polyimide film by narrowing the gap therebetween, the polyimide polymer in the high portion of the film surface moves to the low portion (see FIG. 2). The surface of the colorless transparent polyimide film is flattened to a surface roughness similar to that of the two rollers under pressure (see FIG. 3F).
본 발명에 있어서, 상기 디안하이드라이드 화합물은, 4,4'-Oxydiphthalic anhydride (OPDA), Pyromellitic dianhydride (PMDA), 3,3',4,4'- Diphenylsulfone tetracarboxylic dianhydride (DSDA), 3,3',4,4'-Benzophenone tetracarboxylic dianhydride (BTDA), 4-(2,5-Dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic Anhydride (DTDA), 4,4'-Bisphenol A dianhydride (BPADA), 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), bicycle[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (BCDA), 3,3',4,4'-Biphenyl tetracarboxylic dianhydride (BPDA), 5-(2,5-Dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride (DOMDA), Ethylene diamine tetraacetic dianhydride (EDTE), 1,2,4,5-cyclohexanetetracarboxylic dianhydride (CHDA)으로 이루어진 군에서 선택되는 어느 하나 또는 2 이상인 것이 바람직하며, In the present invention, the dianhydride compound, 4,4'-Oxydiphthalic anhydride (OPDA), Pyromellitic dianhydride (PMDA), 3,3 ', 4,4'- Diphenylsulfone tetracarboxylic dianhydride (DSDA), 3,3' , 4,4'-Benzophenone tetracarboxylic dianhydride (BTDA), 4- (2,5-Dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic Anhydride (DTDA), 4,4 '-Bisphenol A dianhydride (BPADA), 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), bicycle [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (BCDA), 3 , 3 ', 4,4'-Biphenyl tetracarboxylic dianhydride (BPDA), 5- (2,5-Dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride (DOMDA), Ethylene diamine tetraacetic dianhydride (EDTE ), 1,2,4,5-cyclohexanetetracarboxylic dianhydride (CHDA) is preferably any one or two or more selected from the group consisting of,
상기 디아민 화합물은, 2,2-Bis(3-amino-4-hydroxyphenyl)hexafluoropropane (BAHFP), 1,3-Bis(3-aminophenoxy)benzene (m-BAPB), 4,4'-Bis(4-aminophenoxy)biphenyl (p-BAPB), 2,2-Bis(3-aminophenyl)hexafluoropropane (BAPF), bis[4-(3-aminophenoxy)phenyl] sulfone (m-BAPS), 2,2-Bis [4-(4-aminophenoxy) phenyl] sulfone (p-BAPS), Bis(3-aminophenyl) sulfone (APS), m-xylylenediamine (m-XDA), p-xylylenediamine (p-XDA), 3,4'-Oxydianiline (3,4-ODA), 2,2-Bis(3-amino-4-methylphenyl)hexafluoropropane (BAMF), 4,4'-Diaminooctafluorobiphenyl, 3,3'-Dihydroxybenzidine, 2,2'-Ethylenedianilin, 2,2'-bis(trifluoromethyl)benzidine (TFB), 2,2',5,5'-Tetrachlorobenzidine, Bis(3-aminophenyl)methanone, 2,7-Diaminofluorene, 2-Chloro-p-phenylenediamine, 1,3-Bis(3-aminopropyl)-tetramethyldisiloxane, 1,1-Bis(4-aminophenyl) cyclohexane, 9,9-Bis(4-aminophenyl) fluorene, 5-(Trifluoromethyl)-1,3-phenylenediamine, 4,4'-methylenebis(2-methylcyclohexylamine), 4-Fluoro-1,2-phenylenediamine, 4,4'-(1,3-Phenylenediisopropylidene) bisaniline, 4-Nitro-1,3-phenylenediamine, 4-Chloro-1,3-phenylenediamine, 1,3,5-Triazine-2,4,6-triamine (Melamine), 3,5-Diaminobenzonitrile, 1,3-bis(aminomethyl)cyclohexane (m-CHDA), 1,4-Bis(aminomethyl)cyclohexane (p-CHDA), 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane (6FBAPP), 2,2'-Bis(trifluoromethyl)benzidine (MDB), 4,4'-Oxydianiline (4,4'-ODA), 2,2-Bis [4-(4-aminophenoxy)phenyl] propane (BAPP), 1,3-Cyclohexanediamine, 1,4-Cyclohexanediamine, Bis(4-aminophenyl) sulfide (4,4'-SDA)으로 이루어진 군에서 선택되는 어느 하나 또는 2 이상인 것이 바람직하다.The diamine compound is 2,2-Bis (3-amino-4-hydroxyphenyl) hexafluoropropane (BAHFP), 1,3-Bis (3-aminophenoxy) benzene (m-BAPB), 4,4'-Bis (4- aminophenoxy) biphenyl (p-BAPB), 2,2-Bis (3-aminophenyl) hexafluoropropane (BAPF), bis [4- (3-aminophenoxy) phenyl] sulfone (m-BAPS), 2,2-Bis [4- (4-aminophenoxy) phenyl] sulfone (p-BAPS), Bis (3-aminophenyl) sulfone (APS), m-xylylenediamine (m-XDA), p-xylylenediamine (p-XDA), 3,4'-Oxydianiline ( 3,4-ODA), 2,2-Bis (3-amino-4-methylphenyl) hexafluoropropane (BAMF), 4,4'-Diaminooctafluorobiphenyl, 3,3'-Dihydroxybenzidine, 2,2'-Ethylenedianilin, 2,2 '-bis (trifluoromethyl) benzidine (TFB), 2,2', 5,5'-Tetrachlorobenzidine, Bis (3-aminophenyl) methanone, 2,7-Diaminofluorene, 2-Chloro-p-phenylenediamine, 1,3-Bis (3-aminopropyl) -tetramethyldisiloxane, 1,1-Bis (4-aminophenyl) cyclohexane, 9,9-Bis (4-aminophenyl) fluorene, 5- (Trifluoromethyl) -1,3-phenylenediamine, 4,4'-methylenebis (2-methylcyclohexylamine), 4-Fluoro-1,2-phenylenediamine, 4,4 '-(1,3-Phenylenediisopropylidene) bisaniline, 4-Nitro-1,3-phenylenediamine, 4-Chloro-1,3-phenylenediamine, 1,3,5-Triazine-2,4,6-triamine (Melamine), 3,5-Diaminobenzonitrile, 1,3 -bis (aminomethyl) cyclohexane (m-CHDA), 1,4-Bis (aminomethyl) cyclohexane (p-CHDA), 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane (6FBAPP), 2,2 '-Bis (trifluoromethyl) benzidine (MDB), 4,4'-Oxydianiline (4,4'-ODA), 2,2-Bis [4- (4-aminophenoxy) phenyl] propane (BAPP), 1,3- Cyclohexanediamine, 1,4-Cyclohexanediamine, Bis (4-aminophenyl) sulfide (4,4'-SDA) is preferably any one or two or more selected from the group consisting of.
또한, 본 발명에 있어서, 상기 폴리아믹산 용액의 제조방법은 특별히 한정시킬 필요는 없으며, 통상적인 합성방법이라면 어떠한 방법도 무방하다.In addition, in this invention, the manufacturing method of the said polyamic-acid solution does not need to specifically limit, Any method may be sufficient as it is a conventional synthetic method.
또한, 본 발명에 있어서, 상기 디안하이드라이드 화합물과 디아민 화합물을 용해시키기 위한 용매로 디메틸 아세트아미드(dimethyl acetamide, DMAc)를 예시할 수 있는데, 이에 한정되는 것은 아니다.In addition, in the present invention, dimethyl acetamide (DMAc) may be exemplified as a solvent for dissolving the dianhydride compound and the diamine compound, but is not limited thereto.
또한, 본 발명에 있어서, 상기 유리섬유직물이 함침된 폴리아믹산 용액은 40~150℃의 온도 범위에서 가열하여 용매를 증발시켜 유리섬유직물이 함침된 폴리아믹산 필름을 성형하는 것이 바람직하며, 상기 폴리아믹산 필름의 열적 방법에 의한 열경화는 100~300℃의 온도 범위에서 이미드화 반응을 통해 유리섬유직물이 함침된 폴리이미드 필름으로 제조하는 것이 바람직하다.In addition, in the present invention, the glass fiber fabric impregnated polyamic acid solution is preferably heated to a temperature range of 40 ~ 150 ℃ to evaporate the solvent to form a polyamic acid film impregnated with a glass fiber fabric, the polya The thermosetting by the thermal method of the mixed acid film is preferably made of a polyimide film impregnated with a glass fiber fabric through an imidization reaction in a temperature range of 100 ~ 300 ℃.
또한, 본 발명에 있어서, 상기 제1 또는 제2 평탄화 단계는, 원통형(cylindrical)의 두 개의 롤러 사이를 통과시켜 유리섬유직물이 함침된 폴리아믹산 필름 또는 폴리이미드 필름을 평탄화 시키는 것이 바람직하다. 이때, 상기 폴리아믹산 필름 또는 폴리이미드 필름의 넓이는 상기 두 개의 롤러 길이 보다 작거나 동일한 것이 바람직하다. 상기 유리섬유직물이 함침된 폴리아믹산 필름 또는 폴리이미드 필름의 넓이가 상기 두 개의 롤러 길이 보다 넓으면 롤러보다 큰 부분의 필름은 압력을 받지 못해 표면 평탄화가 되지 않기 때문이다. In addition, in the present invention, the first or second planarization step, it is preferable to pass through the two rollers of the cylindrical (cylindrical) to planarize the polyamic acid film or polyimide film impregnated with the glass fiber fabric. At this time, the width of the polyamic acid film or polyimide film is preferably less than or equal to the length of the two rollers. This is because if the area of the polyamic acid film or polyimide film impregnated with the glass fiber fabric is wider than the length of the two rollers, the film larger than the roller is not subjected to pressure and the surface is not planarized.
또한, 상기 유리섬유직물이 함침된 폴리아믹산 필름 또는 폴리이미드 필름은, 두 롤러로부터 압력이 균일하게 작용될 수 있도록 상기 두 롤러의 중앙 부분에 위치시키는 것이 바람직하다. In addition, it is preferable that the polyamic acid film or polyimide film impregnated with the glass fiber fabric is located at the central portion of the two rollers so that the pressure can be uniformly applied from the two rollers.
또한, 상기 롤러는 표면이 단단하고, 표면 거칠기(surface roughness)가 0.5 내지 2 ㎚이고, 용융점이 500℃ 이상인 원통형 모양의 스테인리스 스틸(stainless steel) 또는 원통형 모양의 유리를 사용할 수도 있다. In addition, the roller may be a stainless steel or cylindrical glass of cylindrical shape having a hard surface, a surface roughness of 0.5 to 2 nm, and a melting point of 500 ° C. or more.
또한, 상기 롤러의 온도는 제1 평탄화 단계에서는 상기 유리섬유직물이 함침된 폴리아믹산 필름의 유리전이(Tg)와 이미드화 반응이 일어나기 시작하는 온도 사이로 조절하고, 제2 평탄화 단계에서는 상기 유리섬유직물이 함침된 폴리이미드 필름의 유리전이(Tg)와 열분해온도(thermal decomposition temperature) 사이로 조절하는 것이 바람직하다. In addition, the temperature of the roller is controlled between the glass transition (T g ) of the polyamic acid film impregnated with the glass fiber fabric in the first flattening step and the temperature at which the imidization reaction starts to occur, and the glass fiber in the second flattening step. It is desirable to control between the glass transition (T g ) and thermal decomposition temperature of the fabric-impregnated polyimide film.
또한, 상기 롤러는 두 개의 롤러(한 쌍의 롤러)를 대신하여, N 쌍의 롤러를 사용하는 것이 가능하다. 도 4에서와 같이, N 쌍의 롤러를 사용하면, 상기 유리섬유직물이 함침된 폴리아믹산 필름 또는 폴리이미드 필름 표면의 평탄화 시간을 한 쌍의 롤러를 사용하였을 때 보다 1/N로 줄일 수 있으며, 이는 N 쌍의 롤러가 동시에 평탄화 하는 효과가 한 쌍의 롤러가 N 번 평탄화 하는 효과와 대등하다. It is also possible to use N pairs of rollers in place of two rollers (pair of rollers). As shown in Figure 4, by using the N pair of rollers, the flattening time of the surface of the polyamic acid film or polyimide film impregnated with the glass fiber fabric can be reduced to 1 / N than when using a pair of rollers, This is equivalent to the effect of flattening N pairs of rollers at the same time with the effect of flattening N pairs of rollers.
또한, 본 발명은, 유리섬유직물이 함침된 폴리아믹산 필름 또는 폴리이미드 필름을 롤러 사이에 위치시킨 후, 상기 롤러와 그 사이에 위치한 상기 유리섬유직물이 함침된 폴리아믹산 필름 또는 폴리이미드 필름을 함께 분위기 노(environmental chamber) 내에서 상기 노의 온도를 유리섬유직물이 함침된 폴리아믹산 필름의 유리전이온도(Tg)와 이미드화 반응이 일어나기 시작하는 온도, 또는 폴리이미드 필름의 유리전이온도(Tg)와 열분해온도 범위로 조절하여 평탄화 하는 것이 가능하다.In addition, the present invention, after positioning the polyamic acid film or polyimide film impregnated with a glass fiber fabric between the rollers, the roller and the polyamic acid film or polyimide film impregnated with the glass fiber fabric located therebetween The temperature of the furnace in an environmental chamber is the temperature at which the glass transition temperature (T g ) of the polyamic acid film impregnated with the glass fiber fabric and the imidization reaction start to occur, or the glass transition temperature (T) of the polyimide film. g ) and it is possible to planarize by adjusting to pyrolysis temperature range.
또한, 본 발명에서, 상기 롤러의 회전속도는 제1 평탄화 단계에서는 상기 유리섬유직물이 함침된 폴리아믹산 필름의 유리전이온도(Tg), 이미드화 반응이 일어나는 온도, 상기 롤러의 온도, 상기 롤러와 유리섬유직물이 함침된 폴리아믹산 필름을 가열하는 분위기 노의 온도 및 상기 롤러 사이에 인가되는 압력의 크기에 따라 조절하고, 제2 평탄화 단계에서는 유리섬유직물이 함침된 폴리이미드 필름의 유리전이온도(Tg) 및 열분해온도, 상기 롤러의 온도, 상기 롤러와 유리섬유직물이 함침된 폴리이미드 필름을 가열하는 분위기 노의 온도 및 상기 롤러 사이에 인가되는 압력의 크기에 따라 조절하는 것이 바람직하다.Further, in the present invention, the rotational speed of the roller is the glass transition temperature (T g ) of the polyamic acid film impregnated with the glass fiber fabric in the first planarization step, the temperature at which the imidization reaction occurs, the temperature of the roller, the roller And according to the temperature of the atmosphere furnace for heating the polyamic acid film impregnated with the glass fiber fabric and the magnitude of the pressure applied between the rollers, and in the second planarization step, the glass transition temperature of the polyimide film impregnated with the glass fiber fabric (T g ) and pyrolysis temperature, the temperature of the roller, it is preferable to adjust according to the temperature of the atmosphere furnace for heating the polyimide film impregnated with the roller and glass fiber fabric and the magnitude of the pressure applied between the rollers.
또한, 본 발명에 있어서, 상기 제1 또는 제2 평탄화 단계는, 두 개의 평판면 사이에 폴리아믹산 필름 또는 폴리이미드 필름을 위치시켜 압력을 가함으로써 평탄화 하는 것이 가능하다(도 5a ~ 도 5f 참조).In addition, in the present invention, the first or second planarization step may be planarized by placing a polyamic acid film or a polyimide film between two flat surfaces and applying pressure thereto (see FIGS. 5A to 5F). .
구체적으로, 상기 폴리아믹산 필름 또는 폴리이미드 필름의 평탄화는 두 개의 유리판 사이에 샌드위치 구조로 적층시킨 후, 히터가 장착된 두 개의 평판 사이에 위치시켜 상기 두 개의 평판 면에 수직하게 일정한 압력을 일정 시간 동안 인가하여 달성될 수 있다.Specifically, the planarization of the polyamic acid film or polyimide film is sandwiched between two glass plates in a sandwich structure, and then placed between two plates equipped with a heater to maintain a constant pressure perpendicular to the two plate surfaces. Can be achieved by application.
이때, 유리섬유직물이 함침된 폴리아믹산 필름 또는 폴리이미드 필름의 넓이는 상기 두 개의 유리판 넓이와 동일하거나, 상기 두 개의 유리판 넓이의 최소 70% 이상 최대 100% 이하인 것이 바람직하다. 상기 유리섬유직물이 함침된 폴리아믹산 필름 또는 폴리이미드 필름의 넓이가 상기 두 개의 유리판 넓이보다 70% 미만으로 너무 작으면 유리판이 불균일한 압력을 받아 파손될 가능성이 크고, 반대로 상기 두 개의 유리판 넓이보다 크게 되면(100% 초과) 유리판보다 큰 부분의 필름은 압력을 받지 못해 표면 평탄화가 되지 않기 때문이다.  In this case, the width of the polyamic acid film or polyimide film impregnated with the glass fiber fabric is preferably equal to the width of the two glass plates or at least 70% or more and the maximum of 100% or less of the two glass plates. If the area of the polyamic acid film or polyimide film impregnated with the glass fiber fabric is too small, less than 70% of the width of the two glass plates, the glass plate is more likely to be damaged due to uneven pressure and, conversely, larger than the two glass plates. If the film is larger (more than 100%), the film larger than the glass plate is not subjected to pressure and the surface is not planarized.
또한, 상기 두 개의 유리판과 그 사이에 적층된 유리섬유직물이 함침된 폴리아믹산 필름 또는 폴리이미드 필름은, 두 평판으로부터 압력이 균일하게 작용될 수 있도록 상기 두 평판의 중앙 부분에 위치시키는 것이 바람직하다.In addition, it is preferable that the polyamic acid film or polyimide film impregnated with the two glass plates and the glass fiber fabric laminated therebetween is located at the center portion of the two plates so that pressure can be uniformly applied from the two plates. .
또한, 상기 유리섬유직물이 함침된 폴리아믹산 필름 또는 폴리이미드 필름을 적층하는데 사용하는 두 개의 유리판은 표면이 단단하고, 평평하며, 표면 거칠기(surface roughness)가 0.5 내지 2 ㎚이고, 용융점이 500℃ 이상인 판유리를 사용하는 것이 바람직하다. 또한, 상기 유리판을 대신하여 표면이 단단하고, 평평하며, 표면 거칠기(surface roughness)가 0.5 내지 2 ㎚이고, 용융점이 500℃ 이상인 스테인리스 스틸(stainless steal) 판을 사용할 수도 있다. In addition, the two glass plates used for laminating the polyamic acid film or polyimide film impregnated with the glass fiber fabric have a hard surface, a flat surface, a surface roughness of 0.5 to 2 nm, and a melting point of 500 ° C. It is preferable to use the above plate glass. It is also possible to use a stainless steal plate having a hard, flat surface, a surface roughness of 0.5 to 2 nm and a melting point of 500 ° C. or more in place of the glass plate.
또한, 상기 두 개의 평판의 온도는 상기 유리섬유직물이 함침된 폴리아믹산 필름의 유리전이온도(Tg)와 이미드화 반응이 일어나기 시작하는 온도, 또는 폴리이미드 필름의 유리전이온도(Tg)와 열분해온도 사이가 바람직하다.In addition, the temperature of the two plates is the glass transition temperature (T g ) of the polyamic acid film impregnated with the glass fiber fabric and the temperature at which the imidization reaction starts to occur, or the glass transition temperature (T g ) of the polyimide film Pyrolysis temperatures are preferred.
또한, 상기 두 개의 평판 면에 수직하게 인가하는 압력의 인가시간은 두 평판의 온도와 인가되는 압력의 크기에 따라 조절하거나, 두 평판과 유리섬유직물이 함침된 폴리아믹산 필름 또는 폴리이미드 필름을 가열하는 노의 온도와 인가되는 압력의 크기에 따라 조절하는 것이 바람직한데, 일례로 두 평판의 온도가 300℃이고, 두 유리판에 17 MPa의 압력을 인가할 때 인가시간은 2 시간 이내가 바람직하다. In addition, the application time of the pressure to be applied perpendicular to the two plate surfaces is adjusted according to the temperature of the two plates and the magnitude of the pressure applied, or heating the polyamic acid film or polyimide film impregnated with the two plates and glass fiber fabric It is preferable to adjust according to the temperature of the furnace and the size of the applied pressure, for example, the temperature of the two plates is 300 ℃, the application time is preferably within 2 hours when applying a pressure of 17 MPa to the two glass plates.
또한, 본 발명은, 유리섬유직물이 함침된 폴리아믹산 필름 또는 폴리이미드 필름을 두 개의 평판면 사이에 위치시킨 후, 상기 평판과 그 사이에 위치한 상기 유리섬유직물이 함침된 폴리아믹산 필름 또는 폴리이미드 필름을 함께 분위기 노(environmental chamber) 내에서 상기 노의 온도를 유리섬유직물이 함침된 폴리아믹산 필름의 유리전이온도(Tg)와 이미드화 반응이 일어나기 시작하는 온도, 또는 폴리이미드 필름의 유리전이온도(Tg)와 열분해온도 범위로 조절하여 평탄화 하는 것도 가능하다.In addition, the present invention, after placing a polyamic acid film or polyimide film impregnated with a glass fiber fabric between two flat surfaces, the polyamic acid film or polyimide impregnated with the glass fiber fabric positioned between the flat plate and the The temperature of the furnace in an environmental furnace together with the film is the temperature at which the glass transition temperature (T g ) of the polyamic acid film impregnated with the glass fiber and the imidization reaction start to occur, or the glass transition of the polyimide film. It is also possible to planarize by adjusting the temperature (T g ) and pyrolysis temperature range.
상기와 같은 본 발명의 두 단계의 평탄화 단계를 포함하는 폴리이미드 필름의 제조 방법의 장점은 경도(hardness) 및 유리전이온도(glass transition temperature, Tg)가 낮은 폴리아믹산 필름을 낮은 온도 및 압력으로 단시간 내에 평탄화 함으로써 경도 및 유리전이온도가 매우 높은 폴리이미드 필름의 평탄화에 요하는 시간을 대폭 줄이는 데 있다. 이것은 디스플레이 커버 윈도우 및 기판용 필름 대량 생산 측면에서 매우 중요한 두 가지 의미가 있다. Advantages of the method of manufacturing a polyimide film including the two-step planarization step of the present invention as described above include a low polyamic acid film having low hardness and glass transition temperature (T g ) at a low temperature and pressure. By planarization within a short time, the time required for planarization of a polyimide film having a very high hardness and glass transition temperature is significantly reduced. This has two important meanings in terms of mass production of film for display cover windows and substrates.
첫 번째는 폴리아믹산 필름의 평탄화 하는 제1 평탄화 단계를 거친 경우가 거치지 않은 경우에 비해 제2 평탄화 단계 전 폴리이미드 필름의 표면 거칠기가 약 1/7로 줄어들기 때문에, 폴리이미드 필름의 제2 평탄화 단계에서 요하는 시간을 대폭 줄임으로써 생산 효율 및 생산 단가에서 최소 5 배 이상의 이득을 볼 수 있다. First, since the surface roughness of the polyimide film before the second planarization step is reduced to about 1/7, compared to the case where the first planarization step of planarization of the polyamic acid film is not performed, the second planarization of the polyimide film By drastically reducing the time required for the step, a gain of at least five times in production efficiency and production costs can be achieved.
두 번째는 제2 평탄화 단계에서 요하는 시간을 대폭 줄임으로써 폴리이미드 필름의 평탄화 적정 온도인 300℃ 부근에서 폴리이미드 필름 색깔이 서서히 갈색으로 변하는 갈변현상이 대폭 감소되어, 제1 평탄화 단계를 거치지 않고 제2 평탄화 단계만 거친 경우 폴리이미드 필름의 황색도(Yellowness Index)가 5.36에서, 제1 및 제2 평탄화 단계를 모두 거친 경우 폴리이미드 필름의 황색도가 2.65로 대폭 감소된다. 이는 고 광투과도(90% 이상)가 디스플레이 커버 윈도우 및 기판용 필름에 필수적 조건임을 고려할 때, 본 발명에서 개시하는 두 단계의 평탄화 방법은 매우 중요한 의미를 갖는다.Second, by significantly reducing the time required for the second planarization step, the browning phenomenon of the color of the polyimide film gradually turning brown near 300 ° C., which is the optimum temperature for the planarization of the polyimide film, is greatly reduced, without passing through the first planarization step. The yellowness index of the polyimide film is greatly reduced from 5.36 when only the second planarization step is performed, and to 2.65 when the first and second planarization steps are performed. Considering that high light transmittance (90% or more) is an essential condition for the display cover window and the film for the substrate, the two-step planarization method disclosed in the present invention has a very important meaning.
한편, 본 발명의 유리섬유직물이 함침된 무색투명 폴리이미드 필름을 제조 및 평탄화 하는 방법은, 폴리아믹산 필름을 평탄화 하는 단계, 즉 제1 평탄화 단계를 거치지 않고 유리섬유직물이 함침된 폴리이미드 필름의 표면을 평탄화 하는 것만으로도 달성될 수 있다.On the other hand, the method of manufacturing and planarizing the colorless transparent polyimide film impregnated with the glass fiber fabric of the present invention, the step of flattening the polyamic acid film, that is, the first planarization step of the polyimide film impregnated with the glass fiber fabric It can be achieved simply by leveling the surface.
그러나, 이 경우에는 평탄화에 사용하는 롤러의 회전 속도를 더 감소시켜야 하기 때문에 평탄화에 더 많은 시간이 소요되고, 표면 거칠기가 더 크기 때문에 더 높은 온도에서 평탄화 해야 하는 단점이 있다.However, in this case, since the rotational speed of the roller used for the flattening must be further reduced, the flattening takes more time, and the surface roughness is larger, so that the flattening is required at a higher temperature.
본 발명은 또한, 상기 방법으로 제조된 유리섬유직물이 함침된 폴리이미드 필름을 제공한다. The present invention also provides a polyimide film impregnated with a glass fiber fabric produced by the above method.
본 발명에 있어서, 상기 유리섬유직물이 함침된 폴리이미드 필름은 그 두께가 10~1000 ㎛인 것이 바람직하고, 이때 상기 유리섬유직물의 두께는 5~500 ㎛인 것이 바람직하다. In the present invention, the polyimide film impregnated with the glass fiber fabric preferably has a thickness of 10 to 1000 µm, and the glass fiber fabric preferably has a thickness of 5 to 500 µm.
이하, 도면을 참조하여 본 발명에 따른 두 단계 평탄화 방법을 더욱 상세히 설명한다.Hereinafter, a two-stage planarization method according to the present invention will be described in more detail with reference to the drawings.
도 3a 내지 도 3f는 본 발명에 따른 한 쌍의 롤러를 사용하여 유리섬유직물이 함침된 무색투명 폴리아믹산 필름 및 유리섬유직물이 함침된 무색투명 폴리이미드(CPI) 필름 기판의 표면을 평탄화 하는 방법을 설명하기 위한 구성도이다.Figures 3a to 3f is a method for flattening the surface of a colorless transparent polyamic acid film impregnated with a glass fiber fabric and a colorless transparent polyimide (CPI) film substrate impregnated with a glass fiber fabric using a pair of rollers according to the present invention The configuration diagram for explaining the.
도 3a는 유리섬유직물이 함침된 무색투명 폴리아믹산 필름(301)과 상기 폴리아믹산 필름 내에 함침된 두께 25 ㎛의 유리섬유직물(302)을 보여준다. 상기 유리섬유직물이 함침된 무색투명 폴리아믹산 필름(301)의 표면 거칠기는 273 ㎚(RMS)이다. 3A shows a colorless transparent polyamic acid film 301 impregnated with a glass fiber fabric and a glass fiber fabric 302 having a thickness of 25 μm impregnated in the polyamic acid film. The surface roughness of the colorless transparent polyamic acid film 301 impregnated with the glass fiber fabric is 273 nm (RMS).
또한, 도 3b에서와 같이, 상기 유리섬유직물이 함침된 무색투명 폴리아믹산 필름(301)을 매립형 히터(303, 304)가 장착된 한 쌍의 롤러(305, 306) 사이에 위치시켜 상기 롤러의 온도를 80℃로 가열시킨 후, 도 3c에서와 같이 상기 한 쌍의 롤러(305, 306)와 상기 유리섬유직물이 함침된 무색투명 폴리아믹산 필름(301)의 접촉면에 수직하게 3 MPa의 압력을 인가하고, 상기 한 쌍의 롤러를 회전축(307, 308)을 중심으로 서로 반대 방향으로 회전시켜 상기 유리섬유직물이 함침된 무색투명 폴리아믹산 필름(301)을 두 롤러 사이로 통과시킴으로써 273 ㎚(RMS)의 표면 거칠기를 갖는 상기 유리섬유직물이 함침된 무색투명 폴리아믹산 필름(301)의 표면을 약 2.51 ㎚(RMS)의 표면 거칠기(309)로 평탄화 시킨다(도 8a 참조). In addition, as shown in Figure 3b, the glass fiber fabric impregnated colorless transparent polyamic acid film 301 is placed between a pair of rollers (305, 306) equipped with embedded heaters (303, 304) of the roller After the temperature was heated to 80 ° C., a pressure of 3 MPa was applied perpendicularly to the contact surface of the pair of rollers 305 and 306 and the colorless transparent polyamic acid film 301 impregnated with the glass fiber fabric as shown in FIG. 3C. 273 nm (RMS) by applying a pair of rollers and rotating the pair of rollers in opposite directions about the rotating shafts 307 and 308 to pass the colorless and transparent polyamic acid film 301 impregnated with the glass fiber fabric between the two rollers. The surface of the colorless transparent polyamic acid film 301 impregnated with the glass fiber fabric having a surface roughness of was planarized to a surface roughness 309 of about 2.51 nm (RMS) (see FIG. 8A).
이때, 사용하는 상기 두 롤러(305, 306)의 표면 거칠기는 2 ㎚(RMS) 이하이다.At this time, the surface roughness of the two rollers 305 and 306 to be used is 2 nm (RMS) or less.
상기 약 2.51 ㎚(RMS)의 표면 거칠기로 평탄화 된 유리섬유직물이 함침된 무색투명 폴리아믹산 필름(309)을 110℃부터 250℃까지의 온도 범위에서 열적 이미드화 반응을 시켜 유리섬유직물이 함침된 무색투명 폴리이미드 필름(310)으로 성형하면, 필름 표면이 도 3d에서와 같이 56 ㎚(RMS)의 표면 거칠기로 다시 거칠어진다. The colorless transparent polyamic acid film 309 impregnated with the glass fiber fabric flattened to the surface roughness of about 2.51 nm (RMS) was thermally imidized at a temperature ranging from 110 ° C. to 250 ° C. to impregnate the glass fiber fabric. When molded into a colorless transparent polyimide film 310, the film surface is roughened again with a surface roughness of 56 nm (RMS) as in FIG. 3D.
도 3e에서와 같이, 상기 이미드화 반응을 시켜 성형한 유리섬유직물이 함침된 무색투명 폴리이미드 필름(310)을 매립형 히터(313, 314)가 장착된 한 쌍의 롤러(315, 316) 사이에 위치시키고, 상기 두 롤러의 온도를 300℃로 가열시킨 후, 도 3f에서와 같이 상기 두 롤러(315, 316)와 상기 유리섬유직물이 함침된 무색투명 폴리이미드 필름(310)의 접촉면에 수직하게 17 MPa의 압력을 인가하고, 상기 두 롤러를 회전축(317, 318)을 중심으로 0.05 revolutions/sec의 속도로 서로 반대 방향으로 회전시켜 유리섬유직물이 함침된 무색투명 폴리이미드 필름을 두 롤러 사이로 통과시키면, 상기 56 ㎚(RMS)의 표면 거칠기를 갖는 유리섬유직물이 함침된 폴리이미드 필름(310)을 약 2.19 ㎚(RMS)의 표면 거칠기(319)로 평탄화 하는 것이 가능하다(도 8b 참조). As shown in FIG. 3E, the colorless transparent polyimide film 310 impregnated with the glass fiber fabric formed by the imidization reaction is disposed between the pair of rollers 315 and 316 equipped with the embedded heaters 313 and 314. Position, and after heating the temperature of the two rollers to 300 ℃, as shown in Figure 3f perpendicular to the contact surface of the colorless transparent polyimide film 310 impregnated with the two rollers (315, 316) and the glass fiber fabric A pressure of 17 MPa was applied, and the two rollers were rotated in opposite directions at a rate of 0.05 revolutions / sec about the rotating shafts 317 and 318 to pass a colorless transparent polyimide film impregnated with fiberglass fabric between the two rollers. In other words, it is possible to planarize the polyimide film 310 impregnated with the glass fiber fabric having the surface roughness of 56 nm (RMS) to the surface roughness 319 of about 2.19 nm (RMS) (see FIG. 8B).
이때, 사용하는 상기 두 롤러(315, 316)의 표면 거칠기는 2 ㎚(RMS) 이하였다.At this time, the surface roughness of the two rollers 315 and 316 to be used was 2 nm (RMS) or less.
상기 두 롤러의 온도가 300℃일 때, 상기 유리섬유직물이 함침된 무색투명 폴리이미드 필름 표면의 평탄화 공정을 위해 필요한 한 쌍의 롤러의 최대 회전속도는 한 쌍의 롤러에 인가되는 압력이 17 MPa일 때 0.05 revolutions/sec 이내지만, 인가되는 압력이 15 MPa일 때는 0.025 revolutions/sec 이내이다. 또한, 인가되는 압력이 20 MPa에서는 상기 롤러의 회전속도는 0.1 revolutions/sec 이내가 된다. 이는 유리섬유직물이 함침된 플렉시블 디스플레이용 무색투명 폴리이미드 필름에 인가되는 압력이 클수록 무색투명 폴리이미드 필름의 변형이 빨리 일어나고, 인가되는 압력이 작을수록 무색투명 폴리이미드 필름의 변형이 천천히 일어나기 때문이다. When the two rollers have a temperature of 300 ° C., the maximum rotational speed of the pair of rollers required for the planarization of the surface of the colorless and transparent polyimide film impregnated with the glass fiber fabric is 17 MPa. Is within 0.05 revolutions / sec, but within 0.025 revolutions / sec when the applied pressure is 15 MPa. In addition, when the applied pressure is 20 MPa, the rotation speed of the roller is within 0.1 revolutions / sec. This is because the higher the pressure applied to the colorless transparent polyimide film for flexible display impregnated with glass fiber fabric, the faster the deformation of the colorless transparent polyimide film occurs, and the smaller the pressure applied to the colorless transparent polyimide film occurs slowly. .
예를 들어, 한 쌍의 롤러 사이에 인가되는 압력이 17 MPa일 때, 평탄화 공정에 걸리는 시간이 1시간이라면, 압력이 15 MPa일 때는 두 시간이 필요하고, 압력이 20 MPa일 때는 30분으로 줄어든다. For example, when the pressure applied between a pair of rollers is 17 MPa, if the time required for the flattening process is 1 hour, two hours are required when the pressure is 15 MPa, and 30 minutes when the pressure is 20 MPa. Decreases.
도 4는 상기 두 개의 롤러(한쌍의 롤러) 대신 N쌍의 롤러를 사용하여 상기 유리섬유직물이 함침된 무색투명 폴리아믹산 필름 및 상기 유리섬유직물이 함침된 무색투명 폴리이미드 필름의 표면 평탄화 시간을 줄이는 방법을 개략적으로 나타낸 것이다. 4 is a planarization time of the colorless transparent polyamic acid film impregnated with the glass fiber fabric and the colorless transparent polyimide film impregnated with the glass fiber fabric using N pairs of rollers instead of the two rollers (pair of rollers). It outlines how to reduce it.
상기 도 4에서와 같이, 한 쌍의 롤러 대신 N쌍의 롤러를 사용하면, 상기 유리섬유직물이 함침된 무색투명 폴리아믹산 필름 및 상기 유리섬유직물이 함침된 무색투명 폴리이미드 필름 표면의 평탄화 시간을 한 쌍의 롤러를 사용하였을 때 보다 1/N로 줄일 수 있다. 이는 N쌍의 롤러가 동시에 평탄화 하는 효과가 한 쌍의 롤러가 N번 평탄화 하는 효과와 대등하기 때문이다. As shown in FIG. 4, when N pairs of rollers are used instead of a pair of rollers, the flattening time of the colorless transparent polyamic acid film impregnated with the glass fiber fabric and the colorless transparent polyimide film impregnated with the glass fiber fabric It can be reduced to 1 / N than when using a pair of rollers. This is because the effect of flattening the N-pair rollers at the same time is equivalent to the effect of the flattening of the pair of rollers N times.
또한 상기 N쌍의 롤러를 사용하여 유리섬유직물이 함침된 무색투명 폴리아믹산 필름 및 폴리이미드 필름 표면을 평탄화 하는 과정에서 각 쌍의 롤러 온도를 무색투명 폴리아믹산 필름의 유리전이온도부터 무색투명 폴리이미드 필름의 열분해온도 전까지 점차적으로 증가시키면 상기 유리섬유직물이 함침된 무색투명 폴리아믹산 필름의 표면 평탄화 공정 및 이미드화 반응, 그리고 상기 유리섬유직물이 함침된 무색투명 폴리이미드 필름의 표면 평탄화 공정을 롤투롤(roll to roll) 공정으로 이룰 수 있다.In addition, in the process of flattening the surface of the colorless transparent polyamic acid film and the polyimide film impregnated with the glass fiber fabric using the N pairs of rollers, the roller temperature of each pair is changed from the glass transition temperature of the colorless transparent polyamic acid film to the colorless transparent polyimide. Gradually increasing before the thermal decomposition temperature of the film roll-to-roll the surface planarization process and imidization reaction of the colorless transparent polyamic acid film impregnated with the glass fiber fabric, and the surface planarization process of the colorless transparent polyimide film impregnated with the glass fiber fabric This can be achieved by a roll to roll process.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.
실시예 1. 평판을 이용한 폴리이미드 필름의 평탄화Example 1. Planarization of Polyimide Film Using Flat Plate
디안하이드리드 단량체로 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) 2.31 g(5.2×10-3 mol)과 디아민 단량체로 Bis(3-aminophenyl) sulfone (APS) 1.29 g(5.2×10-3 mol)을 용매인 dimethyl acetamide(DMAc) 26.99 g에 넣고, 0℃ 질소 분위기에서 1시간 동안 자석 교반기로 서서히 교반하여 단량체들을 완전히 용해시키고, 상기 용액을 상온(25℃)에서 15시간 이상 매우 격렬하게 교반하여 중합반응을 통해 폴리아믹산 용액(PA-1)을 제조하였다.2.31 g (5.2 × 10 -3 mol) of 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) as dianhydride monomer and 1.29 g (5.2 × 10 -3 ) Bis (3-aminophenyl) sulfone (APS) as diamine monomer mol) was added to 26.99 g of dimethyl acetamide (DMAc) as a solvent, and slowly stirred in a magnetic stirrer for 1 hour in a nitrogen atmosphere at 0 ° C. to completely dissolve the monomers, and the solution was very vigorously at room temperature (25 ° C.) for more than 15 hours. By stirring, a polyamic acid solution (PA-1) was prepared through polymerization.
또한, 디안하이드리드 단량체 6FDA 5.47 g(1.231×10-2 mol)과 2,2-Bis(3-amino-4-methylphenyl)hexafluoropropane (BAMF) 4.46 g(1.231×10-2 mol)을 용매인 DMAc 74.44 g에 넣고, 상기 기술한 방법과 동일하게 처리하여 폴리아믹산 용액(PA-2)을 제조한 후, 상기 폴리아믹산 용액 PA-1과 PA-2를 각각 4 : 6의 무게 비율(5.96 g, 8.94 g)로 혼합하여 폴리아믹산 혼합 용액을 제조하였다.In addition, the dianhydride monomer hydride 6FDA 5.47 g (1.231 × 10 -2 mol) and 2,2-Bis (3-amino- 4-methylphenyl) hexafluoropropane (BAMF) 4.46 g (1.231 × 10 -2 mol) and the solvent is DMAc 74.44 g of the polyamic acid solution PA-1 and PA-2 were prepared in the same manner as described above, and the polyamic acid solution PA-1 and PA-2 were each added in a weight ratio of 4: 6 (5.96 g, 8.94 g) was prepared to prepare a polyamic acid mixed solution.
두께 25 ㎛의 유리섬유직물을 면적이 10 ㎝× 10 ㎝인 유리 기판 위에 놓고, 상기에서 제조한 폴리아믹산 혼합 용액을 유리섬유직물 위에 고르게 붓고 진공오븐에 넣어 진공오븐 내부의 온도를 상온에서 50℃까지 5℃/min 속도로 올린 후 50℃에서 5분 유지하고, 50℃에서 110℃까지 2.5℃/min 속도로 올린 후 110℃에서 3시간 동안 유지하며 진공오븐 내부의 진공도를 -0.1 MPa 이하로 낮추어 용매를 빠르게 증발시켜 폴리아믹산 필름을 성형하였다. A glass fiber fabric having a thickness of 25 μm was placed on a glass substrate having an area of 10 cm × 10 cm, and the polyamic acid mixture solution prepared above was evenly poured onto the glass fiber fabric and placed in a vacuum oven to obtain a temperature inside the vacuum oven at 50 ° C. at room temperature. After raising at 5 ℃ / min speed to maintain 5 minutes at 50 ℃, up to 2.5 ℃ / min speed from 50 ℃ to 110 ℃ and maintained at 110 ℃ for 3 hours and the degree of vacuum inside the vacuum oven to -0.1 MPa or less The solvent was evaporated rapidly to form a polyamic acid film.
상기 유리섬유직물이 함침된 폴리아믹산 필름은 -0.1 MPa 이하의 진공도에서 0.4℃/min의 속도로 110℃에서 170℃까지 온도를 올린 후, 1℃/min의 속도로 170℃에서 250℃까지 온도를 올리고 250℃에서 30분 동안 유지함으로써 폴라아믹산 필름을 단계적 열경화에 의한 이미드화 반응을 통해 유리섬유직물이 함침된 무색투명의 폴리이미드 필름(colorless and transparent polyimide, CPI)을 제조하였다.The polyamic acid film impregnated with the glass fiber fabric was raised from 110 ° C to 170 ° C at a rate of 0.4 ° C / min at a vacuum degree of -0.1 MPa or less, and then from 170 ° C to 250 ° C at a rate of 1 ° C / min. By raising and maintaining for 30 minutes at 250 ℃ to prepare a colorless and transparent polyimide film (CPI) impregnated with a glass fiber fabric through the imidation reaction of the polyamic acid film by step thermosetting.
상기 유리섬유직물이 함침된 무색투명 폴리이미드 필름(CIP) 위에 상기 유리 기판과 동일한 크기와 동일한 종류의 유리판을 위치시켰다. 이때, 사용한 두 유리판의 표면 거칠기는 1.2 ㎚(RMS) 이하였다. 이들을 히터가 내장된 하부 평판과 또 다른 히터가 내장된 상부 평판 사이의 중앙 부분에 위치키시고, 두 평판에 내장된 히터를 사용하여 두 평판의 온도를 300℃로 가열한 후, 두 평판 면에 수직하게 17 MPa의 압력을 1 시간 동안 폴리이미드 필름에 인가하여 상기 무색투명 폴리이미드 필름 표면을 평탄화 시켰다. On the colorless transparent polyimide film (CIP) impregnated with the glass fiber fabric, a glass plate of the same size and same type as the glass substrate was placed. At this time, the surface roughness of the two glass plates used was 1.2 nm (RMS) or less. Place them in the center between the lower plate with the heater and the upper plate with the other heater, heat the temperature of the two plates to 300 ° C using the heaters embedded in the two plates, and then Vertically, a pressure of 17 MPa was applied to the polyimide film for 1 hour to planarize the surface of the colorless transparent polyimide film.
두 평판에 인가한 압력을 제거하고, 상기 두 유리판과 그들 사이에 적층된 평탄화 된 무색투명 폴리이미드 필름을 함께 상기 두 평판으로부터 분리하였다. 유리섬유직물이 함침된 무색투명 폴리이미드 필름을 하부 유리 기판과 상부 유리 기판으로부터 분리하여 평탄화 된 무색투명 폴리이미드 필름을 얻었다.The pressure applied to the two plates was removed, and the two glass plates and the flattened colorless transparent polyimide film laminated therebetween were separated from the two plates together. A colorless transparent polyimide film impregnated with a glass fiber fabric was separated from the lower glass substrate and the upper glass substrate to obtain a flattened transparent polyimide film.
유리섬유직물이 함침된 폴리이미드 필름의 표면 거칠기는 필름의 표면 거칠기가 0.2 ㎛ 이상인 경우에는 알파스텝(XE-100, Park Systems, Korea)으로 측정하였고, 거칠기가 0.2 ㎛ 미만인 경우에는 AFM(atomic force microscope; Dektak-8, VEECO사, USA)으로 측정하였다. The surface roughness of the polyimide film impregnated with glass fiber fabric was measured by alpha step (XE-100, Park Systems, Korea) when the surface roughness of the film was 0.2 μm or more, and AFM (atomic force) when the roughness was less than 0.2 μm. microscope; Dektak-8, VEECO, USA).
그 결과, 평탄화 전의 유리섬유직물이 함침된 무색투명 폴리이미드 필름의 표면 거칠기는 0.4 ㎛(RMS)인데 반해, 평탄화 된 무색투명 폴리이미드 필름의 표면 거칠기는 1.184 ㎚(RMS)로 감소하였다(도 6 참조). As a result, the surface roughness of the colorless transparent polyimide film impregnated with the glass fiber fabric before flattening was 0.4 μm (RMS), whereas the surface roughness of the flattened colorless transparent polyimide film was reduced to 1.184 nm (RMS) (FIG. 6). Reference).
또한, 상기와 같이 얻어진 평탄화 된 무색투명 폴리이미드 필름의 열팽창 계수(coefficient of thermal expansion, CTE)를 열기계분석장비(thermo-mechanical analyser; TMA-2940, TA Instruments, USA)로 측정하였다. 유리섬유직물이 함침된 무색투명 폴리이미드 필름의 열팽창계수는 상온에서 400℃까지의 온도구간에서 11 ppm이었다. 이는 유리섬유직물이 함침되지 않은 무색투명 폴리이미드 필름의 열팽창 계수가 61 ppm이상인 것을 고려하면 유리섬유직물이 무색투명 폴리이미드 필름의 열팽창을 억제하는데 매우 효과적임을 알 수 있다.In addition, the coefficient of thermal expansion (CTE) of the flattened colorless transparent polyimide film obtained as described above was measured by a thermo-mechanical analyzer (TMA-2940, TA Instruments, USA). The thermal expansion coefficient of the colorless transparent polyimide film impregnated with glass fiber was 11 ppm at a temperature range from room temperature to 400 ° C. This can be seen that the glass fiber fabric is very effective in suppressing the thermal expansion of the colorless transparent polyimide film considering that the thermal expansion coefficient of the colorless transparent polyimide film not impregnated with the glass fiber fabric.
실시예 2. 롤러를 이용한 폴리이미드 필름의 평탄화Example 2. Planarization of Polyimide Film Using Rollers
상기 실시예 1과 동일하게 폴리아믹산 혼합 용액을 제조한 후, 유리섬유직물을 지지체 위에 놓고, 상기 폴리아믹산 혼합 용액을 유리섬유직물 위에 고르게 부었다.After preparing a polyamic acid mixed solution in the same manner as in Example 1, the glass fiber fabric was placed on a support, and the polyamic acid mixed solution was evenly poured on the glass fiber fabric.
폴리아믹산 혼합 용액에 함침된 유리섬유직물 및 상기 지지체 전체를 온도 분위기로에 넣고 내부 온도를 상온에서 50℃까지 5℃/min 속도로 올린 후 50에서 5분 유지하고, 50℃에서 110℃까지 2.5℃/min 속도로 올린 후 110℃에서 3시간 동안 유지하며 용매를 증발시켜 폴리아믹산 필름을 성형하였다. The glass fiber fabric impregnated with the polyamic acid mixed solution and the whole support were put in a temperature atmosphere, and the internal temperature was raised at a rate of 5 ° C./min from room temperature to 50 ° C. and maintained at 50 ° C. for 5 minutes, and the temperature was increased from 50 ° C. to 110 ° C. 2.5. The polyamic acid film was formed by evaporating the solvent while raising the mixture at a rate of ° C / min and maintaining the same at 110 ° C for 3 hours.
상기 유리섬유직물이 함침된 무색투명 폴리아믹산 필름을 110℃에서 170℃까지 0.4℃/min의 속도로 온도를 올리고, 다시 170℃에서 250℃까지 1℃/min의 속도로 온도를 올린 후, 250℃에서 30분 동안 유지함으로써 폴라아믹산 필름을 단계적 열경화에 의한 이미드화 반응을 시켜 유리섬유직물이 함침된 무색투명의 폴리이미드 필름을 제조하였다. After raising the temperature of the colorless transparent polyamic acid film impregnated with the glass fiber fabric at a rate of 0.4 ° C./min from 110 ° C. to 170 ° C., and then again at 170 ° C. to 250 ° C. at a rate of 1 ° C./min, 250 The polyamic acid film was subjected to an imidization reaction by step thermosetting by maintaining at 30 ° C. to prepare a colorless transparent polyimide film impregnated with a glass fiber fabric.
상기 유리섬유직물이 함침된 무색투명 폴리이미드 필름을 표면 거칠기가 2 ㎚(RMS)이고 직경 20 ㎝인 한 쌍의 롤러 사이에 위치시키고, 상기 한 쌍의 롤러에 장착된 매립형 히터를 사용하여 한 쌍의 롤러의 온도를 300℃로 가열시킨 후, 상기 한 쌍의 롤러와 상기 유리섬유직물이 함침된 무색투명 폴리이미드 필름의 접촉면에 수직하게 17 MPa의 압력을 인가하고, 상기 한 쌍의 롤러를 회전축을 중심으로 서로 반대 방향으로 0.01 revolutions/sec의 속도로 회전시켜 유리섬유직물이 함침된 무색투명 폴리이미드 필름을 한 쌍의 롤러 사이로 통과시켰다. A colorless transparent polyimide film impregnated with the glass fiber fabric was placed between a pair of rollers having a surface roughness of 2 nm (RMS) and a diameter of 20 cm, and a pair using a buried heater mounted on the pair of rollers. After heating the temperature of the roller to 300 ° C, a pressure of 17 MPa was applied perpendicularly to the contact surface of the pair of rollers and the colorless and transparent polyimide film impregnated with the glass fiber fabric, and the pair of rollers were rotated on a rotating shaft. By rotating at a rate of 0.01 revolutions / sec in the opposite direction to each other, the colorless and transparent polyimide film impregnated with glass fiber was passed between a pair of rollers.
유리섬유직물이 함침된 폴리이미드 필름의 표면 거칠기는 필름의 표면 거칠기가 0.2 ㎛ 이상인 경우에는 알파스텝(XE-100, Park Systems, Korea)으로 측정하고, 거칠기가 0.2 ㎛ 미만인 경우에는 AFM(atomic force microscope; Dektak-8, VEECO사, USA)으로 측정였다. The surface roughness of the polyimide film impregnated with glass fiber fabric is measured by alpha step (XE-100, Park Systems, Korea) when the surface roughness of the film is 0.2 μm or more, and AFM (atomic force) when the roughness is less than 0.2 μm. microscope; Dektak-8, VEECO, USA).
그 결과, 평탄화 전의 유리섬유직물이 함침된 무색투명 폴리이미드 필름의 표면 거칠기는 0.4 ㎛(RMS)인데 반해, 평탄화 된 무색투명 폴리이미드 필름의 표면 거칠기는 2.031 ㎚(RMS)로 감소하였다(도 7 참조). As a result, the surface roughness of the colorless transparent polyimide film impregnated with the glass fiber fabric before flattening was 0.4 μm (RMS), whereas the surface roughness of the flattened colorless transparent polyimide film was reduced to 2.031 nm (RMS) (FIG. 7). Reference).
또한, 상기와 같이 얻어진 평탄화 된 무색투명 폴리이미드 필름의 열팽창 계수(coefficient of thermal expansion, CTE)를 열기계분석장비(thermo-mechanical analyser; TMA-2940, TA Instruments, USA)로 측정하였다. 유리섬유직물이 함침된 무색투명 폴리이미드 필름의 열팽창계수는 상온에서 400℃까지의 온도구간에서 11 ppm이었다. 이는 유리섬유직물이 함침되지 않은 무색투명 폴리이미드 필름의 열팽창 계수가 61 ppm이상인 것을 고려하면 유리섬유직물이 무색투명 폴리이미드 필름의 열팽창을 억제하는데 매우 효과적임을 알 수 있다.In addition, the coefficient of thermal expansion (CTE) of the flattened colorless transparent polyimide film obtained as described above was measured by a thermo-mechanical analyzer (TMA-2940, TA Instruments, USA). The thermal expansion coefficient of the colorless transparent polyimide film impregnated with glass fiber was 11 ppm at a temperature range from room temperature to 400 ° C. This can be seen that the glass fiber fabric is very effective in suppressing the thermal expansion of the colorless transparent polyimide film considering that the thermal expansion coefficient of the colorless transparent polyimide film not impregnated with the glass fiber fabric.
실시예 3. 두 단계 평탄화 과정을 이용한 폴리이미드 필름의 평탄화Example 3. Planarization of Polyimide Film Using Two-Step Planarization Process
상기 실시예 2와 동일한 방법으로 폴리아믹산 필름을 성형하였다. A polyamic acid film was molded in the same manner as in Example 2.
상기 폴리아믹산 필름을 지지체로부터 분리시킨 후, 매립형 히터가 장착된 표면 거칠기가 2 ㎚(RMS)이고 직경 20 ㎝인 한 쌍의 롤러 사이에 위치시키고, 상기 롤러의 온도를 80℃로 가열시킨 후, 상기 롤러의 간격을 조절하여 상기 롤러와 상기 유리섬유직물이 함침된 무색투명 폴리아믹산 필름의 접촉면에 수직하게 3 MPa의 압력을 인가하고, 상기 한 쌍의 롤러를 회전축을 중심으로 0.1 revolutions/sec의 속도로 서로 반대 방향으로 회전시켜 유리섬유직물이 함침된 무색투명 폴리아믹산 필름을 한 쌍의 롤러 사이로 통과시켜 유리섬유직물이 함침된 폴리아믹산 필름의 표면을 평탄화 시켰다(제1 평탄화 단계). After the polyamic acid film was separated from the support, the surface roughness with embedded heater was placed between a pair of rollers having a diameter of 2 nm (RMS) and a diameter of 20 cm, and the temperature of the roller was heated to 80 ° C., Adjusting the distance of the roller to apply a pressure of 3 MPa perpendicular to the contact surface of the colorless transparent polyamic acid film impregnated with the roller and the glass fiber fabric, the pair of rollers of 0.1 revolutions / sec about the axis of rotation The surface of the polyamic acid film impregnated with the glass fiber fabric was flattened by passing the colorless and transparent polyamic acid film impregnated with the fiberglass fabric through a pair of rollers by rotating in opposite directions at a speed.
상기 평탄화된 유리섬유직물이 함침된 무색투명 폴리아믹산 필름을 110℃에서 170℃까지 0.4℃/min의 속도로 온도를 올리고, 다시 170℃에서 250℃까지 1℃/min의 속도로 온도를 올린 후, 250℃에서 30분 동안 유지함으로써 폴라아믹산 필름을 단계적 열경화에 의한 이미드화 반응을 시켜 유리섬유직물이 함침된 무색투명의 폴리이미드 필름을 성형하였다. 이때 상기 폴리이미드 필름의 표면은 56 ㎚(RMS)의 표면 거칠기로 다시 거칠어졌다. After raising the temperature of the colorless transparent polyamic acid film impregnated with the flattened glass fiber fabric at a rate of 0.4 ° C./min from 110 ° C. to 170 ° C., and then increasing the temperature at a rate of 1 ° C./min from 170 ° C. to 250 ° C. The polyamic acid film was subjected to an imidization reaction by step thermosetting by maintaining at 250 ° C. for 30 minutes to form a colorless transparent polyimide film impregnated with a glass fiber fabric. At this time, the surface of the polyimide film was again roughened with a surface roughness of 56 nm (RMS).
상기 유리섬유직물이 함침된 무색투명 폴리이미드 필름을 매립형 히터가 장착된 표면 거칠기가 2 ㎚(RMS)이고 직경 20 ㎝인 한 쌍의 롤러 사이에 위치시키고, 상기 매립형 히터를 사용하여 한 쌍의 롤러의 온도를 300℃로 올린 후, 상기 한 쌍의 롤러 사이의 간격을 조절하여 상기 롤러와 상기 유리섬유직물이 함침된 무색투명 폴리이미드 필름의 접촉면에 수직하게 17 MPa의 압력을 인가하고, 상기 한 쌍의 롤러를 회전축을 중심으로 0.05 revolutions/sec의 속도로 서로 반대 방향으로 회전시켜 유리섬유직물이 함침된 무색투명 폴리이미드 필름을 한 쌍의 롤러 사이로 통과시켜 평탄화 시켰다(제2 평탄화 단계). The colorless transparent polyimide film impregnated with the fiberglass fabric was placed between a pair of rollers having a surface roughness of 2 nm (RMS) and a diameter of 20 cm with a embedded heater, and a pair of rollers using the embedded heater. After raising the temperature to 300 ° C, by adjusting the distance between the pair of rollers and applying a pressure of 17 MPa perpendicular to the contact surface of the colorless transparent polyimide film impregnated with the roller and the glass fiber fabric, The pair of rollers were rotated in opposite directions at a speed of 0.05 revolutions / sec about the rotation axis to pass the colorless and transparent polyimide film impregnated with the glass fiber fabric between the pair of rollers to be flattened (second flattening step).
유리섬유직물이 함침된 폴리이미드 필름의 표면 거칠기는 필름의 표면 거칠기가 0.2 ㎛ 이상인 경우에는 알파스텝(XE-100, Park Systems, Korea)으로 측정하고, 거칠기가 0.2 ㎛ 미만인 경우에는 AFM(atomic force microscope; Dektak-8, VEECO사, USA)으로 측정였다. The surface roughness of the polyimide film impregnated with glass fiber fabric is measured by alpha step (XE-100, Park Systems, Korea) when the surface roughness of the film is 0.2 μm or more, and AFM (atomic force) when the roughness is less than 0.2 μm. microscope; Dektak-8, VEECO, USA).
그 결과, 제1 평탄화 단계에서는 273 ㎚(RMS)의 표면 거칠기를 갖는 유리섬유직물이 함침된 폴리아믹산 필름의 표면이 약 2.51 ㎚(RMS)의 표면 거칠기로 평탄화 되었다(도 8a 참조). 그러나, 이미드화 반응을 거친 유리섬유직물이 함침된 무색투명의 폴리이미드 필름의 표면은 56 ㎚(RMS)의 표면 거칠기로 다시 거칠어졌으며, 상기 폴리이미드 필름을 평탄화 시키는 제2 평탄화 단계를 통해 상기 56 ㎚(RMS)의 표면 거칠기를 갖는 유리섬유직물이 함침된 폴리이미드 필름이 2.19 ㎚(RMS)의 표면 거칠기로 평탄화 되었다(도 8b 참조).As a result, in the first planarization step, the surface of the polyamic acid film impregnated with the glass fiber fabric having the surface roughness of 273 nm (RMS) was flattened to the surface roughness of about 2.51 nm (RMS) (see FIG. 8A). However, the surface of the colorless and transparent polyimide film impregnated with the glass fiber fabric subjected to the imidization reaction was again roughened with a surface roughness of 56 nm (RMS), and the 56 through the second planarization step of flattening the polyimide film. A polyimide film impregnated with a glass fiber fabric having a surface roughness of nm (RMS) was flattened to a surface roughness of 2.19 nm (RMS) (see FIG. 8B).
또한, 상기와 같이 얻어진 평탄화 된 무색투명 폴리이미드 필름의 열팽창 계수(coefficient of thermal expansion, CTE)를 열기계분석장비(thermo-mechanical analyser; TMA-2940, TA Instruments, USA)로 측정하였다. In addition, the coefficient of thermal expansion (CTE) of the flattened colorless transparent polyimide film obtained as described above was measured by a thermo-mechanical analyzer (TMA-2940, TA Instruments, USA).
유리섬유직물이 함침되지 않은 무색투명 폴리이미드 필름의 열팽창계수는 상온에서 유리전이온도(264)까지의 온도구간에서 약 61 ppm/℃이었으나, 유리전이온도 이상에서는 2837 ppm/℃로 매우 급격하게 증가하였다. 반면, 상온에서 400℃까지의 온도구간에서 유리섬유직물이 함침된 무색투명 폴리이미드 필름의 열팽창계수는 유리전이로 인한 열팽창 계수의 증가 없이 11 ppm/℃로 매우 작은 값을 보였다. 이로써 유리섬유직물이 무색투명 폴리이미드 필름의 열팽창을 억제하는데 매우 효과적임을 확인할 수 있었다.The coefficient of thermal expansion of the colorless transparent polyimide film without impregnation of glass fiber was about 61 ppm / ℃ in the temperature range from room temperature to glass transition temperature (264), but rapidly increased to 2837 ppm / ℃ above the glass transition temperature. It was. On the other hand, the thermal expansion coefficient of the colorless and transparent polyimide film impregnated with glass fiber fabric at a temperature range from room temperature to 400 ° C. was very small at 11 ppm / ° C. without increasing the coefficient of thermal expansion due to glass transition. This confirmed that the glass fiber fabric is very effective in suppressing thermal expansion of the colorless transparent polyimide film.
이상, 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. As described above, specific portions of the contents of the present invention have been described in detail, and for those skilled in the art, these specific techniques are merely preferred embodiments, and the scope of the present invention is not limited thereto. Will be obvious. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
전술한 바와 같이, 본 발명에 따른 유리섬유직물이 함침된 무색투명 폴리이미드 필름의 제조 및 표면 평탄화 방법은, 유리섬유직물이 함침된 무색투명 폴리이미드 필름의 표면 거칠기를 수 10 ㎚ ~ 1 ㎛ 수준에서 수 ㎚ 수준으로 평탄화 시킴으로써, 플렉시블 디스플레이 기판 위에 TFT 공정을 가능하게 하고, 빛의 표면 산란을 방지하여 무색투명 폴리이미드 필름의 광 투과도 및 투명도를 증가시킴으로써 평판 디스플레이 및 휴대폰의 커버 윈도우(cover window)로 사용할 수 있다.As described above, the method of manufacturing a colorless transparent polyimide film impregnated with a glass fiber fabric according to the present invention, the surface roughness of the colorless transparent polyimide film impregnated with a glass fiber fabric is several 10 nm ~ 1 ㎛ level By flattening to a few nm level, which enables the TFT process on the flexible display substrate, prevents surface scattering and increases the light transmittance and transparency of the colorless transparent polyimide film to cover windows of flat panel displays and mobile phones Can be used as
또한, 무색투명 폴리이미드 필름에 함침된 유리섬유직물은 무색투명 폴리이미드 필름의 인장 강도를 증가시켜 플렉시블 디스플레이용 기판 및 커버 윈도우의 유연성 및 수명을 획기적으로 증가시킬 수 있고, 기존 평판 디스플레이에 사용되는 유리 커버 윈도우를 유리섬유직물이 함침된 무색투명 폴리이미드 커버 윈도우로 교체함으로써 디스플레이의 무게를 획기적으로 줄이고 파손의 위험성을 제거할 수 있는 장점이 있다.In addition, the glass fiber fabric impregnated with the colorless transparent polyimide film can increase the tensile strength of the colorless transparent polyimide film, which can greatly increase the flexibility and life of the substrate and cover window for flexible display, By replacing the glass cover window with a colorless transparent polyimide cover window impregnated with fiberglass fabric, it is advantageous to significantly reduce the weight of the display and eliminate the risk of breakage.
따라서, 본 발명에 따라 평탄화 된 유리섬유직물이 함침된 무색투명 폴리이미드필름은 플렉시블 디스플레이 산업 및 평판 디스플레이 산업에서 매우 유용하게 이용될 수 있다.Therefore, the colorless transparent polyimide film impregnated with the flattened glass fiber fabric according to the present invention can be very usefully used in the flexible display industry and the flat panel display industry.

Claims (14)

  1. (1) 유리섬유직물을 폴리아믹산(polyamic acid) 용액에 함침시켜 유리섬유직물이 함침된 폴리아믹산 필름을 제조하는 단계;(1) impregnating a glass fiber fabric with a polyamic acid solution to produce a polyamic acid film impregnated with a glass fiber fabric;
    (2) 상기 (1) 단계에 의해 제조된 유리섬유직물이 함침된 폴리아믹산 필름을 평탄화하는 단계(제1 평탄화 단계);(2) planarizing the polyamic acid film impregnated with the glass fiber fabric prepared by step (1) (first planarization step);
    (3) 상기 (2) 단계에 의해 제조된 폴리아믹산 필름을 이미드화(imidization) 반응시켜 유리섬유직물이 함침된 폴리이미드(polyimide) 필름을 제조하는 단계; 및(3) producing a polyimide film impregnated with a glass fiber fabric by imidizing the polyamic acid film prepared by step (2); And
    (4) 상기 (3) 단계에 의해 제조된 유리섬유직물이 함침된 폴리이미드 필름을 평탄화하는 단계(제2 평탄화 단계);를 포함하는 유리섬유직물이 함침된 폴리이미드 필름 제조방법.(4) planarizing the polyimide film impregnated with the glass fiber fabric prepared by step (3) (second planarization step); a method of manufacturing a polyimide film impregnated with a glass fiber fabric comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 (1) 단계에서 폴리아믹산 용액은 디안하이드라이드(dianhydride) 화합물과 디아민(diamine) 화합물을 용매에 녹인 후 중합반응을 시켜 제조하는 것을 특징으로 하는 유리섬유직물이 함침된 폴리이미드 필름 제조방법.The polyamic acid solution in the step (1) is a polyimide film impregnated with a glass fiber fabric, characterized in that the dianhydride compound and diamine (diamine) compound dissolved in a solvent to produce a polymerization reaction.
  3. 제2항에 있어서,The method of claim 2,
    상기 디안하이드라이드 화합물은 4,4'-Oxydiphthalic anhydride(OPDA), Pyromellitic dianhydride(PMDA), 3,3',4,4'- Diphenylsulfone tetracarboxylic dianhydride(DSDA), 3,3',4,4'-Benzophenone tetracarboxylic dianhydride(BTDA), 4-(2,5-Dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic Anhydride(DTDA), 4,4'-Bisphenol A dianhydride(BPADA), 4,4'-(hexafluoroisopropylidene)diphthalic anhydride(6FDA), bicycle[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride(BCDA), 3,3',4,4'-Biphenyl tetracarboxylic dianhydride(BPDA), 5-(2,5-Dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride(DOMDA), Ethylene diamine tetraacetic dianhydride(EDTE), 1,2,4,5-cyclohexanetetracarboxylic dianhydride(CHDA)으로 이루어진 군에서 선택되는 어느 하나 또는 2 이상인 것을 특징으로 하는 유리섬유직물이 함침된 폴리이미드 필름 제조방법.The dianhydride compound is 4,4'-Oxydiphthalic anhydride (OPDA), Pyromellitic dianhydride (PMDA), 3,3 ', 4,4'- Diphenylsulfone tetracarboxylic dianhydride (DSDA), 3,3', 4,4'- Benzophenone tetracarboxylic dianhydride (BTDA), 4- (2,5-Dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic Anhydride (DTDA), 4,4'-Bisphenol A dianhydride ( BPADA), 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), bicycle [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (BCDA), 3,3', 4, 4'-Biphenyl tetracarboxylic dianhydride (BPDA), 5- (2,5-Dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride (DOMDA), Ethylene diamine tetraacetic dianhydride (EDTE), 1,2, 4,5-cyclohexanetetracarboxylic dianhydride (CHDA) A method for producing a polyimide film impregnated with a glass fiber fabric, characterized in that any one or two or more selected from the group consisting of.
  4. 제2항에 있어서,The method of claim 2,
    상기 디아민 화합물은 2,2-Bis(3-amino-4-hydroxyphenyl)hexafluoropropane(BAHFP), 1,3-Bis(3-aminophenoxy)benzene(m-BAPB), 4,4'-Bis(4-aminophenoxy)biphenyl(p-BAPB), 2,2-Bis(3-aminophenyl)hexafluoropropane(BAPF), bis[4-(3-aminophenoxy)phenyl] sulfone(m-BAPS), 2,2-Bis [4-(4-aminophenoxy) phenyl] sulfone(p-BAPS), Bis(3-aminophenyl) sulfone(APS), m-xylylenediamine(m-XDA), p-xylylenediamine(p-XDA), 3,4'-Oxydianiline(3,4-ODA), 2,2-Bis(3-amino-4-methylphenyl)hexafluoropropane(BAMF), 4,4'-Diaminooctafluorobiphenyl, 3,3'-Dihydroxybenzidine, 2,2'-Ethylenedianilin, 2,2'-bis(trifluoromethyl)benzidine(TFB), 2,2',5,5'-Tetrachlorobenzidine, Bis(3-aminophenyl)methanone, 2,7-Diaminofluorene, 2-Chloro-p-phenylenediamine, 1,3-Bis(3-aminopropyl)-tetramethyldisiloxane, 1,1-Bis(4-aminophenyl) cyclohexane, 9,9-Bis(4-aminophenyl) fluorene, 5-(Trifluoromethyl)-1,3-phenylenediamine, 4,4'-methylenebis(2-methylcyclohexylamine), 4-Fluoro-1,2-phenylenediamine, 4,4'-(1,3-Phenylenediisopropylidene) bisaniline, 4-Nitro-1,3-phenylenediamine, 4-Chloro-1,3-phenylenediamine, 1,3,5-Triazine-2,4,6-triamine(Melamine), 3,5-Diaminobenzonitrile, 1,3-bis(aminomethyl)cyclohexane(m-CHDA), 1,4-Bis(aminomethyl)cyclohexane(p-CHDA), 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane(6FBAPP), 2,2'-Bis(trifluoromethyl)benzidine(MDB), 4,4'-Oxydianiline(4,4'-ODA), 2,2-Bis [4-(4-aminophenoxy)phenyl] propane(BAPP), 1,3-Cyclohexanediamine, 1,4-Cyclohexanediamine, Bis(4-aminophenyl) sulfide(4,4'-SDA)으로 이루어진 군에서 선택되는 어느 하나 또는 2 이상인 것을 특징으로 하는 유리섬유직물이 함침된 폴리이미드 필름 제조방법.The diamine compound is 2,2-Bis (3-amino-4-hydroxyphenyl) hexafluoropropane (BAHFP), 1,3-Bis (3-aminophenoxy) benzene (m-BAPB), 4,4'-Bis (4-aminophenoxy biphenyl (p-BAPB), 2,2-Bis (3-aminophenyl) hexafluoropropane (BAPF), bis [4- (3-aminophenoxy) phenyl] sulfone (m-BAPS), 2,2-Bis [4- ( 4-aminophenoxy) phenyl] sulfone (p-BAPS), Bis (3-aminophenyl) sulfone (APS), m-xylylenediamine (m-XDA), p-xylylenediamine (p-XDA), 3,4'-Oxydianiline (3 , 4-ODA), 2,2-Bis (3-amino-4-methylphenyl) hexafluoropropane (BAMF), 4,4'-Diaminooctafluorobiphenyl, 3,3'-Dihydroxybenzidine, 2,2'-Ethylenedianilin, 2,2 ' -bis (trifluoromethyl) benzidine (TFB), 2,2 ', 5,5'-Tetrachlorobenzidine, Bis (3-aminophenyl) methanone, 2,7-Diaminofluorene, 2-Chloro-p-phenylenediamine, 1,3-Bis ( 3-aminopropyl) -tetramethyldisiloxane, 1,1-Bis (4-aminophenyl) cyclohexane, 9,9-Bis (4-aminophenyl) fluorene, 5- (Trifluoromethyl) -1,3-phenylenediamine, 4,4'-methylenebis ( 2-methylcyclohexylamine), 4-Fluoro-1,2-phenylenediamine, 4,4 '-(1,3-Phenylenediisopropylidene) bisaniline, 4 -Nitro-1,3-phenylenediamine, 4-Chloro-1,3-phenylenediamine, 1,3,5-Triazine-2,4,6-triamine (Melamine), 3,5-Diaminobenzonitrile, 1,3-bis ( aminomethyl) cyclohexane (m-CHDA), 1,4-Bis (aminomethyl) cyclohexane (p-CHDA), 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane (6FBAPP), 2,2'-Bis (trifluoromethyl) benzidine (MDB), 4,4'-Oxydianiline (4,4'-ODA), 2,2-Bis [4- (4-aminophenoxy) phenyl] propane (BAPP), 1,3-Cyclohexanediamine, 1 , 4-Cyclohexanediamine, Bis (4-aminophenyl) sulfide (4,4'-SDA) A method for producing a polyimide film impregnated with a glass fiber fabric, characterized in that any one or two or more selected from the group consisting of.
  5. 제1항에 있어서,The method of claim 1,
    상기 (2) 단계 또는 (4) 단계에서 원통형(cylindrical)인 두 개의 롤러 사이를 통과시켜 폴리아믹산 필름 또는 폴리이미드 필름을 평탄화시키는 것을 특징으로 하는 유리섬유직물이 함침된 폴리이미드 필름 제조방법. Method of producing a polyimide film impregnated with a glass fiber fabric, characterized in that to pass between two cylindrical rollers in the step (2) or (4) to planarize the polyamic acid film or polyimide film.
  6. 제5항에 있어서,The method of claim 5,
    상기 원통형 롤러의 온도를 유리섬유직물이 함침된 폴리아믹산 필름의 유리전이온도(glass transition temperature, Tg)와 이미드화 반응이 일어나기 시작하는 온도(imidization temperature)로 가열하거나, 또는 유리섬유직물이 함침된 폴리이미드 필름의 유리전이온도(glass transition temperature, Tg)와 열분해온도(thermal decomposition temperature) 사이로 가열하는 것을 특징으로 하는 유리섬유직물이 함침된 폴리이미드 필름 제조방법.The temperature of the cylindrical roller is heated to the glass transition temperature (T g ) of the polyamic acid film impregnated with the glass fiber fabric and the imidization temperature at which the imidization reaction starts to occur, or the glass fiber fabric is impregnated. Method of producing a polyimide film impregnated with a glass fiber fabric, characterized in that heating between the glass transition temperature (T g ) and thermal decomposition temperature (thermal decomposition temperature) of the polyimide film.
  7. 제5항에 있어서,The method of claim 5,
    상기 원통형 롤러의 표면 거칠기는 0.5 내지 2 ㎚인 것을 특징으로 하는 유리섬유직물이 함침된 폴리이미드 필름 제조방법.Surface roughness of the cylindrical roller is a method of producing a polyimide film impregnated with a glass fiber fabric, characterized in that 0.5 to 2 nm.
  8. 제1항에 있어서,The method of claim 1,
    상기 (2) 단계 또는 (4) 단계에서 두 개의 평판면 사이에 폴리아믹산 필름 또는 폴리이미드 필름을 위치시키고 압력을 가함으로써 평탄화시키는 것을 특징으로 하는 유리섬유직물이 함침된 폴리이미드 필름 제조방법.The method of manufacturing a polyimide film impregnated with a glass fiber fabric, characterized in that the step of (2) or (4) to planarize by placing a polyamic acid film or polyimide film between the two flat surfaces and applying pressure.
  9. 제8항에 있어서,The method of claim 8,
    상기 평판의 온도를 유리섬유직물이 함침된 폴리아믹산 필름의 유리전이온도(glass transition temperature, Tg)와 이미드화 반응이 일어나기 시작하는 온도(imidization temperature)로 가열하거나, 또는 유리섬유직물이 함침된 폴리이미드 필름의 유리전이온도(glass transition temperature, Tg)와 열분해온도 사이로 가열하는 것을 특징으로 하는 유리섬유직물이 함침된 폴리이미드 필름 제조방법.The temperature of the plate is heated to the glass transition temperature (T g ) of the polyamic acid film impregnated with the glass fiber fabric and the imidization temperature at which the imidization reaction starts to occur, or the glass fiber fabric is impregnated. A method for producing a polyimide film impregnated with a glass fiber fabric, characterized in that heating is carried out between the glass transition temperature (T g ) and the pyrolysis temperature of the polyimide film.
  10. 제8항에 있어서,The method of claim 8,
    상기 평판의 표면 거칠기는 0.5 내지 2 ㎚인 것을 특징으로 하는 유리섬유직물이 함침된 폴리이미드 필름 제조방법.The surface roughness of the flat plate is a polyimide film impregnated glass fiber fabric, characterized in that 0.5 to 2 nm.
  11. 제1항에 있어서,The method of claim 1,
    상기 (3) 단계에서 폴리아믹산 필름을 열적(thermal) 방법에 의해 이미드화 반응을 시켜 유리섬유직물이 함침된 폴리이미드 필름을 제조하는 것을 특징으로 하는 유리섬유직물이 함침된 폴리이미드 필름 제조방법. Method for producing a polyimide film impregnated with a glass fiber fabric, characterized in that the polyimide film impregnated by the thermal method in the step (3) to produce a polyimide film impregnated with a glass fiber fabric.
  12. 제11항에 있어서,The method of claim 11,
    상기 폴리아믹산 필름을 100 ~ 300℃의 온도 범위에서 열적으로 이미드화 반응시키는 것을 특징으로 하는 유리섬유직물이 함침된 폴리이미드 필름 제조방법.Method for producing a polyimide film impregnated with a glass fiber fabric, characterized in that the polyamic acid film is thermally imidized at a temperature range of 100 ~ 300 ℃.
  13. 제1항에 있어서,The method of claim 1,
    상기 (3) 단계에서 폴리아믹산 필름을 화학적(chemical) 방법에 의해 이미드화 반응을 시켜 유리섬유직물이 함침된 폴리이미드 필름을 제조하는 것을 특징으로 하는 유리섬유직물이 함침된 폴리이미드 필름 제조방법.Method of producing a polyimide film impregnated with a glass fiber fabric, characterized in that the polyimide film impregnated by the chemical method in the step (3) to produce a polyimide film impregnated with a glass fiber fabric.
  14. 제1항 내지 제13항 중 어느 한 항의 방법으로 제조된 폴리이미드 필름.A polyimide film produced by the method of any one of claims 1 to 13.
PCT/KR2014/001511 2013-02-27 2014-02-25 Method for producing colorless and transparent polyimide film impregnated with glass fabric and planarizing surface thereof WO2014133297A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/768,018 US9469735B2 (en) 2013-02-27 2014-02-25 Method of manufacturing colorless transparent polyimide film having impregnated glass fabric and of flattening surface thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2013-0021155 2013-02-27
KR20130021155 2013-02-27
KR10-2013-0032544 2013-03-27
KR20130032544 2013-03-27
KR20140009715A KR101482707B1 (en) 2013-02-27 2014-01-27 Method of surface planarization of colorless and transparent polyimide films impregnated with glass fabric for display substrates and cover window
KR10-2014-0009715 2014-01-27

Publications (1)

Publication Number Publication Date
WO2014133297A1 true WO2014133297A1 (en) 2014-09-04

Family

ID=51428507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001511 WO2014133297A1 (en) 2013-02-27 2014-02-25 Method for producing colorless and transparent polyimide film impregnated with glass fabric and planarizing surface thereof

Country Status (1)

Country Link
WO (1) WO2014133297A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104492284A (en) * 2014-12-29 2015-04-08 大连理工大学 Double-sided asymmetrical-structure flat support membrane and preparation method and application thereof
WO2016089159A1 (en) * 2014-12-05 2016-06-09 동우화인켐 주식회사 Flexible substrate and method for manufacturing same
CN107207725A (en) * 2015-02-11 2017-09-26 可隆工业株式会社 Polyamic acid, polyimide resin and Kapton

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1134221A (en) * 1997-07-15 1999-02-09 Matsushita Electric Works Ltd Production of copper clad laminated sheet
JP2004136354A (en) * 2002-10-21 2004-05-13 Sanee Giken Kk Pressing device and method
JP2009242715A (en) * 2008-03-31 2009-10-22 Panasonic Electric Works Co Ltd Method for smoothing transparent laminate
US20120244330A1 (en) * 2011-03-23 2012-09-27 Limin Sun Aromatic polyamide films for transparent flexible substrates
WO2013002614A2 (en) * 2011-06-30 2013-01-03 코오롱인더스트리 주식회사 Polyamic acid, polyamic acid solution, polyimide protective layer, and polyimide film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1134221A (en) * 1997-07-15 1999-02-09 Matsushita Electric Works Ltd Production of copper clad laminated sheet
JP2004136354A (en) * 2002-10-21 2004-05-13 Sanee Giken Kk Pressing device and method
JP2009242715A (en) * 2008-03-31 2009-10-22 Panasonic Electric Works Co Ltd Method for smoothing transparent laminate
US20120244330A1 (en) * 2011-03-23 2012-09-27 Limin Sun Aromatic polyamide films for transparent flexible substrates
WO2013002614A2 (en) * 2011-06-30 2013-01-03 코오롱인더스트리 주식회사 Polyamic acid, polyamic acid solution, polyimide protective layer, and polyimide film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016089159A1 (en) * 2014-12-05 2016-06-09 동우화인켐 주식회사 Flexible substrate and method for manufacturing same
CN104492284A (en) * 2014-12-29 2015-04-08 大连理工大学 Double-sided asymmetrical-structure flat support membrane and preparation method and application thereof
CN107207725A (en) * 2015-02-11 2017-09-26 可隆工业株式会社 Polyamic acid, polyimide resin and Kapton

Similar Documents

Publication Publication Date Title
KR101482707B1 (en) Method of surface planarization of colorless and transparent polyimide films impregnated with glass fabric for display substrates and cover window
WO2014168400A1 (en) Laminate, and element comprising substrate manufactured using same
WO2014163352A1 (en) Polyimide cover substrate
WO2014168423A1 (en) Polyimide cover substrate
KR101387031B1 (en) Manufacturing method of colorless and transparent polyimide substrate embedded with glass fabric for flexible display
WO2017111289A1 (en) Polyamic acid composition to which alicyclic monomers are applied and transparent polyimide film using same
CN108136755B (en) Polyimide laminate and method for producing same
WO2017209413A1 (en) High-strength transparent polyamidimide and method for preparing same
WO2014092422A1 (en) Transparent polyimide substrate and method for fabricating the same
JP2007046054A (en) Low tinted polyimide resin composition useful in optical application field, as well as method and composition relating to the same
WO2017116171A1 (en) Polysilsesquioxane resin composition for flexible substrate
CN111971327B (en) Polyamic acid, polyamic acid solution, polyimide film, laminate, flexible device, and method for producing same
WO2013100558A1 (en) Polyamic acid solution
WO2020138687A1 (en) Polyamic acid composition for manufacturing display substrate and method for manufacturing display substrate by using same
WO2020096259A1 (en) Ultra-thin polyimide film having improved dimensional stability and manufacturing method therefor
WO2018216853A1 (en) Method for manufacturing polyamic acid resin having easy laser separation property and high heat resistance and polyimide film manufactured using same
WO2018117551A1 (en) Transparent polyimide film
WO2014133297A1 (en) Method for producing colorless and transparent polyimide film impregnated with glass fabric and planarizing surface thereof
CN110621721A (en) Polyamic acid, polyamic acid solution, polyimide film, laminate, flexible device, and method for producing polyimide film
JP6995470B2 (en) Method of manufacturing polyimide film
WO2017018753A1 (en) Method for fabricating flexible substrate
WO2020159183A1 (en) Polyimide-based polymer film, and substrate for display device and optical device, each using same
WO2020101225A1 (en) Polyimide precursor composition containing crosslinkable dianhydride-based compound and antioxidant, and polyimide film produced therefrom
JP6772519B2 (en) Polyimide film, its manufacturing method, transparent conductive film and touch panel
WO2021117960A1 (en) Polyimide film having excellent yield strain and flexural characteristics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14757058

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14768018

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14757058

Country of ref document: EP

Kind code of ref document: A1