WO2020138687A1 - Polyamic acid composition for manufacturing display substrate and method for manufacturing display substrate by using same - Google Patents

Polyamic acid composition for manufacturing display substrate and method for manufacturing display substrate by using same Download PDF

Info

Publication number
WO2020138687A1
WO2020138687A1 PCT/KR2019/014503 KR2019014503W WO2020138687A1 WO 2020138687 A1 WO2020138687 A1 WO 2020138687A1 KR 2019014503 W KR2019014503 W KR 2019014503W WO 2020138687 A1 WO2020138687 A1 WO 2020138687A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamic acid
acid composition
component
polyimide resin
amorphous
Prior art date
Application number
PCT/KR2019/014503
Other languages
French (fr)
Korean (ko)
Inventor
김주영
이익상
Original Assignee
에스케이씨코오롱피아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨코오롱피아이 주식회사 filed Critical 에스케이씨코오롱피아이 주식회사
Publication of WO2020138687A1 publication Critical patent/WO2020138687A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor

Definitions

  • the present invention relates to a polyamic acid composition for manufacturing a display substrate and a method for manufacturing the display substrate using the same.
  • the flat panel display includes a liquid crystal display (LCD), an organic light emitting display (OLED), or an electrophoretic device.
  • LCD liquid crystal display
  • OLED organic light emitting display
  • electrophoretic device an electrophoretic device
  • Such displays are mainly applied to mobile devices such as smart phones and tablet PCs, and their application fields are expanding.
  • the display substrate constituting the flexible display may be manufactured by a process of forming a thin film transistor (TFTs on Plastic) device structure on a flexible substrate.
  • TFTs on Plastic thin film transistor
  • a polyimide-based material having the highest level of heat resistance and mechanical properties and flexible properties is preferably used as a flexible substrate.
  • the display substrate is (i) a polyamic acid solution, which is a precursor of polyimide, is applied and cured on a sacrificial layer made of amorphous or crystalline silicon to form a polyimide resin that is a flexible substrate, and (ii) thereafter a polyimide resin.
  • the process of forming the thin film transistor device structure on the flexible substrate is performed, and (iii) when the process is completed, it can be manufactured by peeling the sacrificial layer from the flexible substrate using a laser having a predetermined wavelength. .
  • the appropriate level of the above is maintained firmly in the adhesion state and shape of the polyimide resin and the sacrificial layer.
  • the sacrificial layer is removed from the polyimide resin. It means the level at which the layer can be easily peeled off.
  • the adhesive strength exceeds a certain level
  • the polyimide resin and a portion of the sacrificial layer are kept in the process of peeling the sacrificial layer with a laser, or ash derived from the sacrificial layer is applied to the polyimide resin. It may be glued. Due to this, the polyimide resin may be damaged during the peeling process, and the quality of the display substrate obtained by peeling may deteriorate.
  • the energy of the laser is amplified in order to completely peel the sacrificial layer maintaining the strong adhesion state, the structure of the polyimide resin or the thin film transistor device may be damaged or destroyed.
  • An object of the present invention is to provide a novel polyamic acid composition capable of solving all of the conventional problems recognized above.
  • the polyamic acid composition is cured on an amorphous or crystalline silicon substrate, that is, when converted to a polyimide resin, the adhesion to the amorphous or crystalline silicon may be 0.05 to 0.1 N/cm.
  • the adhesive force is maintained in a solid state of adhesion between the polyimide resin and the sacrificial layer, amorphous or crystalline silicon, in the process of forming a thin film transistor device structure on the polyimide resin derived from the polyamic acid composition, and sacrifice after this process.
  • the sacrificial layer can be easily peeled from the polyimide resin, which is particularly preferable.
  • the aromatic dianhydride-based monomer includes a third component having a benzophenone structure
  • the content of the third component having the benzophenone structure relative to the total number of moles of the aromatic dianhydride monomer is greater than 1 mol% and less than 7 mol%
  • the polyamic acid composition while cured on an amorphous or crystalline silicon substrate, provides a polyamic acid composition having an adhesion to the amorphous or crystalline silicon of 0.05 to 0.1 N/cm.
  • the adhesive force may be the adhesive force measured while being attached to an amorphous or crystalline silicon substrate such that the width of the cured polyamic acid composition is 1 cm according to ASTM D 3359, and peeling at a peeling rate of 20 mm/min and a peeling angle of 180°. have.
  • the present invention is a method of manufacturing a display substrate using a polyamic acid composition
  • dianhydride dianhydride
  • dianhydride is intended to include its precursors or derivatives, which may not technically be dianhydrides, but will nevertheless react with diamines to form polyamic acids. And this polyamic acid can be converted back to polyimide.
  • Diamine as used herein is intended to include precursors or derivatives thereof, which may not technically be diamines, but will nevertheless react with dianhydrides to form polyamic acids, which are polyamic The acid can be converted back to polyimide.
  • any upper limit of any pair of any pair regardless of whether the ranges are disclosed separately or It should be understood to specifically disclose all ranges that can be formed with preferred values and any lower range limits or desirable values.
  • a range of numerical values is referred to herein, unless stated otherwise, eg, unless there is a limiting term such as greater than, less than, the range is intended to include the endpoint and all integers and fractions within the range. It is intended that the scope of the invention not be limited to the specific values recited when defining a range.
  • the aromatic dianhydride-based monomer includes a component having a benzophenone structure
  • the content of the component having the benzophenone structure relative to the total number of moles of the aromatic dianhydride monomer is greater than 1 mol% and less than 7 mol%
  • the polyamic acid composition while cured on an amorphous or crystalline silicon substrate, may have an adhesive strength with the amorphous or crystalline silicon of 0.05 to 0.1 N/cm.
  • the polyamic acid composition of the present invention includes an organic solvent
  • It may include a polyamic acid prepared by polymerization of an aromatic dianhydride-based monomer and an aromatic diamine-based monomer.
  • the aromatic dianhydride-based monomer may include a first component having a biphenyl structure, a second component having one benzene ring, and a third component having a benzophenone structure.
  • the aromatic diamine-based monomer may include a diamine component having one benzene ring in an amount of more than 50 mol% based on the total number of moles thereof.
  • the content of the first component may be 50 mol% to 70 mol%.
  • the content of the second component may be 20 mol% to 40 mol%.
  • the content of the third component may be greater than 1 mol% and less than 7 mol%.
  • the polyamic acid composition in a state cured on an amorphous or crystalline silicon substrate, may have an adhesive strength with the amorphous or crystalline silicon of 0.05 to 0.1 N/cm.
  • the polyamic acid composition may also be cured by heat treatment to form a polyimide resin.
  • the polyamic acid composition may be heat-treated at 20°C to 550°C or 20°C to 500°C to produce a polyimide resin, and such polyimide resin may have excellent physical properties as follows.
  • the polyamic acid composition of the present invention and the polyimide resin prepared thereby which can satisfy all of the above properties, it can be preferably used as a material for a display substrate.
  • the polyimide resin capable of expressing all of these properties and the polyamic acid composition realizing the same are novel polyimide-based materials that have not been known so far, and the configuration thereof will be described in more detail below through non-limiting examples.
  • the amorphous or crystalline silicon substrate may be used for the manufacture of a display substrate, but is not limited to, in particular, it may be used as a sacrificial layer that is adhered to and removed from the flexible substrate during manufacture of the display substrate.
  • the polyamic acid composition of the present invention can be cured on the amorphous or crystalline silicon substrate to form a polyimide resin, and the polyimide resin can be preferably used as a flexible substrate.
  • An amorphous or crystalline silicon substrate as the sacrificial layer exists in a state of being attached to a polyimide resin in a process of forming a thin film transistor (TFT) device structure, and after this process, when an amorphous or crystalline silicon substrate is irradiated with laser, it is amorphous or crystalline
  • TFT thin film transistor
  • the adhesive force is slightly outside the range described in the present invention, the thin film transistor element formed on the polyimide resin or the polyimide resin may be significantly damaged.
  • a non-preferred aspect in which at least a portion of the amorphous or crystalline silicon substrate remains bonded to the polyimide resin despite treatment of the amorphous or crystalline silicon substrate with a laser can lead to
  • a portion of the polyimide resin whose adhesion is maintained can be broken by an amorphous or crystalline silicon substrate.
  • ash derived from an amorphous or crystalline silicon substrate may be adhered to the polyimide resin.
  • the polyimide resin having a thickness of nanometers to micrometers and a thin film transistor device structure may be used.
  • the laser of the energy it is possible to cause their damage, for example, decomposition, deformation, and fracture of the resin and/or transistor element.
  • high-energy lasers can generate relatively more ash originating from an amorphous or crystalline silicon substrate, which can act as a foreign body, for example, deteriorating the quality of a transistor device.
  • the adhesion state of the polyimide resin and the amorphous or crystalline silicon substrate at a high temperature of about 300° C. or higher or about 400° C. or higher can be well maintained.
  • the adhesion between the polyimide resin and the amorphous or crystalline silicon substrate is extremely limited and falls within the most preferred range, and the present invention provides such a preferred range as described above.
  • the polyamic acid composition of the present invention can express the adhesive force in the above range to the amorphous or crystalline silicon substrate in a cured state.
  • the adhesive force measured after laser irradiation may be 0.01 N/cm or less.
  • the adhesive strength after the laser irradiation may be a level that the adhesion state with the amorphous or crystalline silicon substrate at a very small level cannot be substantially maintained, and thus, for example, the polyamic acid composition after the process of forming a thin film transistor device structure.
  • the resulting polyimide resin can be easily peeled from the amorphous or crystalline silicon substrate, and its shape can be maintained intact.
  • the present invention provides a method of curing a polyamic acid composition to form a polyimide resin, and testing adhesion in this state.
  • a tape having a width of 1 cm is attached to the end of the product, and the required force is measured while peeling the polyimide resin from the substrate using the tape.
  • a polyamic acid composition is coated on an amorphous or crystalline silicon substrate having a width of 1 cm*10 cm and heat treated to form a polyimide resin thin film having a thickness of about 10 ⁇ m to 20 ⁇ m or 13 ⁇ m to 17 ⁇ m.
  • a tape having a width of 1 cm is attached to the end portion of the polyimide resin, and the required force is measured while peeling the polyimide resin from the substrate using the tape.
  • the reason why the adhesive strength of the cured polyamic acid composition can satisfy the limited and most preferable range described in the present invention may be a main reason for the use of a third component having a benzophenone structure.
  • the polymer chain of the polyamic acid may include a benzophenone structure by a third component having a benzophenone structure, and the benzophenone structure is a polyimide in which the polyamic acid polymer chain is converted. It can also be retained in the polymer chain.
  • the benzophenone structure may improve adhesion through interaction with a polar functional group such as a hydroxy group present on the surface of an amorphous or crystalline silicon substrate, and the structure of the third component and its content satisfy the scope of the present invention
  • the adhesive force with an object to be adhered such as an amorphous or crystalline silicon substrate, can be mainly expressed in a desired level.
  • the adhesive strength of a conventional polyimide resin belongs to an extremely low side, and for example, it may have a lower adhesive strength of less than 0.05 N/cm for an amorphous or crystalline silicon substrate. This may be attributed to the fact that the polyimide resin includes a Weak Boundary Layer (WBL) at a contact interface with an amorphous or crystalline silicon substrate.
  • WBL Weak Boundary Layer
  • the surface vulnerable layer has various forms, but one of them may be in an excited form, at least part of the polyimide resin does not support the amorphous or crystalline silicon substrate at the contact interface.
  • the excited form is generated by, for example, moisture and/or organic solvents that volatilize when the attractive force acting at the interface between the polyimide resin and the amorphous or crystalline silicon substrate is weak or is converted from the polyamic acid composition to the polyimide resin. Can be.
  • the third component may improve the adhesion level of the polyimide resin through interaction with a polar functional group in which the benzophenone structure is present on the amorphous or crystalline silicon substrate.
  • the benzophenone structure of the third component may be advantageous in that volatilization of moisture and/or an organic solvent is easily achieved at an initial point in time when the polyamic acid composition is converted to a polyimide resin.
  • the resin can advantageously act to suppress the excitation from an amorphous or crystalline silicon substrate.
  • the third component advantageously acts to minimize the formation of this surface fragile layer in the polyimide resin, which may be related to the polyimide resin having a desired level of adhesion.
  • the third component in a predetermined amount or more in consideration of only the above-mentioned advantages, because the adhesion of the polyimide resin to the amorphous or crystalline silicon substrate is significantly increased, so that it can easily exceed 0.1 N/cm. .
  • the use of the third component can excessively increase the glass transition temperature and the coefficient of thermal expansion of the polyimide resin, which is desirable for the production of display substrates, for example, produced by chemical/physical interactions with inorganic materials. Do not
  • the content of the third component should be particularly carefully selected in a range in which the adhesive strength of the polyimide resin may fall within the range of 0.05 to 0.1 N/cm, and the glass transition temperature and the coefficient of thermal expansion are not realized in a non-desirable manner. do.
  • the content of the third component compared to the total number of moles of the aromatic dianhydride monomer, may be greater than 1 mol% to less than 7 mol%, and may be 2 mol% to 5 mol%, 3 mol To 5 mol%.
  • the third component having a benzophenone structure may be 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA).
  • BTDA 3,3',4,4'-benzophenone tetracarboxylic dianhydride
  • the third component having a benzophenone structure may be a pair of benzene rings curved based on a carbonyl group, and thus may be a relatively flexible monomer in terms of molecular structure, and the flexible monomer is a thermal expansion coefficient of a polyimide resin derived from a polyamic acid composition. It can help increase.
  • the thermal expansion coefficient of most inorganic materials is less than 9 ppm/°C or 8 ppm/°C or less, so that the polyimide resin capable of being adhered to the inorganic material is too large. Having may be quite undesirable in terms of dimensional stability.
  • the coefficient of thermal expansion can generally be reduced when using rigid monomers in terms of molecular structure.
  • the rigidity in terms of molecular structure may mean a molecular structure in which the main chain between diamine groups or carboxyl groups is composed of one benzene ring, and thus the main chain is difficult to bend.
  • the second component may be a component having one benzene ring, pyromellitic dianhydride (PMDA), and the polyimide resin derived from the polyamic acid composition of the present invention may advantageously function to have a low coefficient of thermal expansion. have.
  • PMDA pyromellitic dianhydride
  • the thermal expansion coefficient of the polyimide film may be lowered to less than 6 ppm/°C or 1 ppm/°C or less, and polya
  • the polyimide resin converted from the mixed acid composition may exhibit brittle brittle characteristics and may have a relatively low elongation.
  • the first component is further included together with the second component and the third component.
  • the first component having a biphenyl structure is not a rigid molecular structure compared to the second component, but it can be considered to have a more flexible molecular structure and a more rigid molecular structure for the third component, and consequently the molecular structure for rigidity or flexibility.
  • the first component can be a material between the second component and the third component.
  • the polyamic acid composition of the present invention due to the first component, may have an elongation of 20% or more, and the elongation may preferably act, for example, in a process of forming a thin film transistor device structure.
  • the polyimide resin derived from the polyamic acid composition of the present invention is 8 ppm/°C or less, 7.7 ppm/°C or less, or 6 ppm/°C to 7 ppm/ It may have an appropriate coefficient of thermal expansion of °C, may have an excellent glass transition temperature of 490 °C or more or a glass transition temperature of 500 °C to 550 °C or more tensile strength of 350 MPa or more or 370 MPa or more.
  • the present invention provides the preferred contents of the first component and the second component.
  • the content of the first component relative to the total number of moles of the aromatic dianhydride monomer is 50 mol% to 70 mol%, 55 mol% to 65 mol%, 57 mol% to 62 mol% or 58 mol % To 60 mol%.
  • the content of the second component is 20 mol% to 40 mol%, 30 mol% to 40 mol%, 32 mol% to 38 mol%, or 35 mol% to 38 mol%.
  • the polyimide resin may exhibit an appropriate level of elongation, thermal expansion coefficient, and glass transition temperature.
  • the aromatic dianhydride-based monomer may further include some other dianhydride components in addition to the first to third components described above.
  • dianhydride components include, but are not limited to, 2,3,3',4'-biphenyltetracarboxylic dianhydride (a-BPDA), oxydiphthalic dianhydride (ODPA), diphenylsulfone- 3,4,3',4'-tetracarboxylic dianhydride (DSDA), bis(3,4-dicarboxyphenyl)sulfide dianhydride, 2,2-bis(3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2,3,3',4'- benzophenonetetracarboxylic dianhydride, bis(3,4-dicarboxyphenyl )Methane dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, p-phenylenebis (trimeric monoester acid anhydride), p-biphenylenebis (tri Mellitic monoester acid
  • the diamine component having one benzene ring may have a molecular structure in which the main chain between diamine groups is composed of one benzene ring, so that the main chain is difficult to bend.
  • the thermal expansion coefficient of most inorganic materials is relatively small, and it is preferable that the polyimide resin applied thereto has a thermal expansion coefficient similar to that of inorganic materials.
  • the diamine component having one benzene ring may be preferable in that it can lower the coefficient of thermal expansion, and in another aspect, it may advantageously act to improve the glass transition temperature of the polyimide resin.
  • an aspect in which the diamine component can compensate for an increase in the coefficient of thermal expansion due to the second component used in a relatively low content can also be recognized as a desirable factor.
  • the diamine component having one benzene ring is 1,4-diaminobenzene (PPD), 1,3-diaminobenzene (MPD), 2,4-diaminotoluene, 2,6-diaminotoluene and 3,
  • a component comprising at least one member selected from 5-diaminobenzoic acid may be selected as the diamine component.
  • 1,4-diaminobenzene which is advantageous for improving tensile strength and can be advantageously combined with the pyromellitic dianhydride to induce a thermal expansion coefficient to a desired level, is a diamine component having one benzene ring. It may be desirable.
  • the aromatic diamine-based monomer may include a diamine component having one benzene ring in an amount greater than 50 mol%, 60 mol% or more, or 70 mol% to 100 mol% based on the total number of moles thereof.
  • the polyimide resin may exhibit an appropriate level of elongation, thermal expansion coefficient, and glass transition temperature.
  • the aromatic diamine-based monomer may further include some other dianhydride components in addition to the diamine components described above.
  • diamine components include, but are not limited to, diaminodiphenyl ethers such as 4,4'-diaminodiphenyl ether (or oxidianiline, ODA), 3,4'-diaminodiphenyl ether, and 4,4'.
  • diaminodiphenyl ethers such as 4,4'-diaminodiphenyl ether (or oxidianiline, ODA), 3,4'-diaminodiphenyl ether, and 4,4'.
  • the polyamic acid composition according to the present invention has a desirable adhesion to implement a display substrate due to the third component, and in addition, as the first component and the second component are combined, various characteristics required for the polyimide It may be a reasonable level.
  • the polyamic acid composition according to the present invention may further include at least one of a silane-based coupling agent and a silicone-based surfactant.
  • the silane-based coupling agent is a part of which is bonded to the imide group of the polyimide resin in which the amic acid group or the amic acid group of the polyamic acid composition is converted, and the other part is an inorganic material, for example, a silicon-based material, for example, amorphous or It can be combined with oxygen or silicon present in a crystalline silicon substrate.
  • the silane coupling agent can increase the adhesion of the polyimide resin derived from curing of the polyamic acid composition within the range of 0.05 to 0.1 N/cm.
  • the excessive use of the silane-based coupling agent may cause deterioration in the physical properties of the polyimide resin derived from the polyamic acid composition, and thus it may be preferable to use an extremely limited content.
  • the silane coupling agent may be included in the polyamic acid composition in an amount of 0.01 to 0.05% by weight, 0.01 to 0.03% by weight, or 0.018 to 0.022% by weight based on the weight of the polyamic acid solid content of the polyamic acid composition.
  • the silane-based coupling agent that can be preferably included in the polyamic acid composition of the present invention is not limited to, 3-aminopropyl trimethoxysilane ((3-Aminopropyl)trimethoxysilane, APTMS), aminopropyl triethoxysilane (Aminopropyltriethoxysilane), 3-(2-aminoethylamino)propyl-dimethoxymethylsilane, 3-glycidoxypropyldimethoxymethylsilane and 2-(3,4 -Epoxycyclohexyl) trimethoxysilane (2-(3,4-epoxycyclohexyl) trimethoxysilane) may include one or more selected from the group consisting of, particularly preferably, including an amine group, polyamic acid composition of 3-Aminopropyl trimethoxysilane, aminopropyl triethoxysilane and 3-(2-aminoethylamino)propy
  • the silicone-based surfactant for example, when the polyamic acid composition is applied to an inorganic substrate or the like, may preferably act to make the polyamic acid composition having fluidity spread well on the substrate to form a uniform thickness.
  • the surfactant when included in an excessive amount, at least a part of the polyamic acid composition may be agglomerated to make film formation difficult, and may cause deterioration in physical properties of the polyimide resin derived from curing the polyamic acid composition.
  • surfactants contained in small amounts are not preferable because they do not help with the advantages related to the previous film formation.
  • the preferred surfactant content may be 0.001 to 0.02% by weight, and 0.005 to 0.015% by weight or 0.008 to 0.012% by weight based on the polyamic acid solids weight of the polyamic acid composition.
  • the type of the surfactant is not particularly limited, but a silicone-based surfactant may be preferable.
  • the silicone surfactant can be easily obtained commercially, for example, BYK's'BYK-378' can be used as a silicone surfactant.
  • BYK's'BYK-378' can be used as a silicone surfactant.
  • the above examples are intended to help the practice of the invention, and the surfactant that can be used in the present invention is not limited to the above examples.
  • the polyamic acid composition may also include at least one selected from acetic anhydride (AA), propionic acid anhydride, and lactic acid anhydride, quinoline, isoquinoline, ⁇ -picoline (BP), and pyridine.
  • AA acetic anhydride
  • propionic acid anhydride propionic acid anhydride
  • lactic acid anhydride quinoline
  • isoquinoline isoquinoline
  • ⁇ -picoline (BP) ⁇ -picoline
  • pyridine pyridine
  • Such a curing accelerator may assist in obtaining a desired polyimide resin by promoting the cyclization reaction through dehydration of the polyamic acid when forming a polyamic acid composition and converting it into a polyimide resin.
  • the curing accelerator may be included in an amount of 0.05 to 20 mol with respect to 1 mol of the amic acid group in the polyamic acid.
  • the polyamic acid composition may further include a filler for the purpose of improving various properties of the polyimide resin such as sliding property, thermal conductivity, and loop hardness of the polyimide resin derived from the polyamic acid composition.
  • the filler is not particularly limited, and preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, and mica.
  • the average particle diameter of the filler is not particularly limited, and can be determined according to the characteristics of the polyimide resin to be modified and the type of filler to be added. In one example, the average particle diameter of the filler may be 0.05 ⁇ m to 100 ⁇ m, 0.1 ⁇ m to 75 ⁇ m, 0.1 ⁇ m to 50 ⁇ m, or 0.1 ⁇ m to 25 ⁇ m.
  • the modification effect is excellent, and the surface properties of the polyimide resin and its mechanical properties can be induced.
  • the addition amount of the filler is not particularly limited, and can be determined by the characteristics of the polyimide resin to be modified, the particle size of the filler, and the like.
  • the amount of the filler added is 0.01 to 100 parts by weight, 0.01 to 90 parts by weight, or 0.02 to 80 parts by weight based on 100 parts by weight of the polyamic acid composition.
  • the amount of the filler added satisfies this range, the modification effect by the filler is excellent, and the mechanical properties of the polyimide resin can be improved.
  • the method for adding the filler is not particularly limited, and any known method can be used.
  • the method for producing the polyamic acid constituting the polyamic acid composition is, for example,
  • Some diamine-based monomer components and some dianhydride-based monomer components are reacted so as to be in excess in one of the organic solvents to form a first polymerization product, and some diamine-based monomer components and some dianhydrides in another organic solvent.
  • a ride-based monomer component so that either one is in excess, forming a second polymer, mixing the first and second polymers and completing the polymerization, wherein a diamine-based monomer is used to form the first polymer.
  • the second polymer is an excess of the dianhydride-based monomer component
  • the first polymer is the excess of the dianhydride-based monomer component
  • the second polymerization product is an excess of the diamine-based monomer component.
  • the organic solvent is not particularly limited as long as it is a solvent in which the polyamic acid can be dissolved, but as an example, the organic solvent may be an aprotic polar solvent.
  • amide solvents such as N,N'-dimethylformamide (DMF), N,N'-dimethylacetamide (DMAc), p-chlorophenol, o-chloro And phenol-based solvents such as phenol, N-methyl-pyrrolidone (NMP), gamma brotirolactone (GBL), and digrime, and these may be used alone or in combination of two or more.
  • DMF N,N'-dimethylformamide
  • DMAc N,N'-dimethylacetamide
  • p-chlorophenol o-chloro And phenol-based solvents
  • phenol-based solvents such as phenol, N-methyl-pyrrolidone (NMP), gamma brotirolactone (GBL), and digrime
  • the solubility of the polyamic acid may be controlled by using auxiliary solvents such as toluene, tetrahydrofuran, acetone, methyl ethyl ketone, methanol, ethanol, and water.
  • auxiliary solvents such as toluene, tetrahydrofuran, acetone, methyl ethyl ketone, methanol, ethanol, and water.
  • organic solvents that can be particularly preferably used for preparing the polyamic acid composition of the present invention may be N-methyl-pyrrolidone, N,N'-dimethylformamide and N,N'-dimethylacetamide. .
  • the polyamic acid composition thus prepared may have a viscosity measured at 23°C of 3,000 cP to 7,000 cP, 3,500 cP to 6,500 cP, or 4,000 cP to 5,500 cP.
  • the viscosity may be a viscosity measured with a Brookfield viscometer on the spindle RV-7 under conditions of a temperature of 23° C. and a rotation speed of 0.5 rpm.
  • the polyamic acid composition may have a solid content of 5 to 30%, 10 to 25%, or 12 to 20%.
  • the present invention provides a method of manufacturing a display substrate using the polyamic acid composition of the preceding embodiment.
  • the manufacturing method of the present application comprises the steps of first heat-treating the polyamic acid composition at 20°C to 40°C;
  • a second heat treatment of the polyamic acid composition at 40°C to 200°C;
  • the polyamic acid composition may include a third heat treatment at 200°C to 500°C.
  • the polyamic acid composition produces a polyimide resin containing an imide group in which the amic acid group of polyamic acid is closed and dehydrated, and an organic solvent is volatilized and cured.
  • the polyimide resin may be cured and adhered on the amorphous or crystalline silicon substrate.
  • the thickness of the polyimide resin produced after the polyamic acid composition is cured is 0.5 ⁇ m to 20 ⁇ m, 2 ⁇ m to 18
  • the polyamic acid composition may be applied so as to be ⁇ m or 2 to 5 ⁇ m.
  • the first heat treatment, the second heat treatment, and the third heat treatment step respectively, independently, 3 °C / min to 7 °C / min, two or more variable heating rate selected from the range, or in the above range It can be carried out at a single constant heating rate selected.
  • TFT thin film transistor
  • the method may further include removing the amorphous or crystalline silicon substrate from the polyimide resin by irradiating the amorphous or crystalline silicon substrate with a laser for a predetermined time.
  • the adhesive strength after the laser irradiation may be a level that the adhesion state with the amorphous or crystalline silicon substrate at a very small level cannot be substantially maintained, and thus, for example, the polyamic acid composition after the process of forming a thin film transistor device structure.
  • the resulting polyimide resin can be easily peeled from the amorphous or crystalline silicon substrate, and its shape can be maintained intact.
  • the laser may be performed by a laser lift off (LLO) method.
  • LLO laser lift off
  • the energy density (E/D) of the laser may be 180 mJ/cm 2 or less, and preferably 150 mJ/cm 2 or less.
  • the polyamic acid composition according to the present invention can express the most desirable adhesion to an amorphous or crystalline silicon substrate by a third component having a benzophenone structure.
  • the polyamic acid composition according to the present invention is also a polyimide resin in which various properties required for the production of a display substrate are incorporated at an appropriate level by a combination of a diamine-based monomer and a diamine-based monomer containing a specific component. You can implement
  • PPD aromatic dianhydride-based monomer
  • BPDA first component
  • PMDA second component
  • BTDA third component
  • aromatic diamine-based monomer is shown in the molar ratio shown in Table 1 below. It was added and stirred for about 30 minutes to polymerize the polyamic acid.
  • the following materials were added, and the aging process was performed for about 2 hours to prepare a final polyamic acid composition.
  • the viscosity of the polyamic acid composition was about 5,100 cP.
  • the viscosity was about 5,000 cP in the same manner as in Example 1, except that the molar ratios of BPDA (first component), PMDA (second component), and BTDA (third component) were changed and added to the molar ratios shown in Table 1 below.
  • a polyamic acid composition was prepared.
  • the viscosity was about 5,100 cP in the same manner as in Example 1, except that the molar ratios of BPDA (first component), PMDA (second component), and BTDA (third component) were changed and added to the molar ratios shown in Table 1 below.
  • a polyamic acid composition was prepared.
  • the viscosity was about 4,800 cP in the same manner as in Example 1, except that the molar ratios of BPDA (first component), PMDA (second component), and BTDA (third component) were changed and added to the molar ratios shown in Table 1 below.
  • a polyamic acid composition was prepared.
  • BTDA third component
  • BPDA first component
  • PMDA second component
  • a polyamic acid composition having a viscosity of about 4,800 cP was prepared in the same manner as in Example 1.
  • BTDA third component
  • BPDA first component
  • PMDA second component
  • a polyamic acid composition having a viscosity of about 5,300 cP was prepared in the same manner as in Example 1.
  • BTDA third component
  • BPDA first component
  • PMDA second component
  • a polyamic acid composition having a viscosity of about 4,750 cP was prepared in the same manner as in Example 1.
  • BTDA third component
  • BPDA first component
  • PMDA second component
  • a polyamic acid composition having a viscosity of about 4,950 cP was prepared in the same manner as in Example 1.
  • the viscosity was about 5,100 cP in the same manner as in Example 1, except that the molar ratios of BPDA (first component), PMDA (second component), and BTDA (third component) were changed and added to the molar ratios shown in Table 1 below.
  • a polyamic acid composition was prepared.
  • the composition was prepared.
  • the polyamic acid compositions prepared in Examples 1 to 4 and Comparative Examples 1 to 6 were cast to 30 ⁇ m on an amorphous silicon substrate having a width of 1 cm*10 cm and dried in a temperature range of 20° C. to 460° C., resulting in an average thickness.
  • the first adhesive strength (before laser treatment), curl test, and second adhesive strength (after laser treatment) of the polyimide resin were evaluated for the laminate thus prepared.
  • a tape having a width of 1 cm is attached to the end of the polyimide resin, and the required force is measured while peeling the polyimide resin from the substrate using the tape.
  • -Second adhesive force After irradiating an amorphous silicon substrate with a laser having a wavelength of 308 nm at 150 mJ/cm 2 , a tape having a width of 1 cm is attached to the end of the polyimide resin and the polyimide resin is used from the substrate using this tape. While peeling, the force required for this is measured.
  • the adhesive force was measured according to ASTM D 3359, peeling at a peeling rate of 20 mm/min and a peeling angle of 180°.
  • Second adhesive force (N/cm)
  • Example 1 0.07 X 0.01 or less
  • Example 2 0.08 X 0.01 or less
  • Example 3 0.07 X 0.01 or less
  • Example 4 0.07 X 0.01 or less Comparative Example 1 0.03 O 0.01 or less Comparative Example 2 0.03 O 0.01 or less Comparative Example 3 0.03 O 0.01 or less Comparative Example 4 0.03 O 0.01 or less Comparative Example 5 0.03 O 0.01 or less Comparative Example 6 0.12 X 0.05
  • the polyamic acid compositions prepared in Examples 1 to 5 and Comparative Examples 1 to 6 were applied to a stainless steel support in the form of a thin film, and then heat treated at a temperature range of 20°C to 350°C, and then peeled from the support to obtain an average thickness, respectively.
  • a polyimide resin in the form of a film of about 15 to 17 ⁇ m was prepared.
  • the coefficient of thermal expansion was measured in the range of 100 to 350°C using TMA.
  • the glass transition temperature was obtained by using TMA to obtain the loss modulus and storage modulus of each polyimide resin, and the inflection point was measured as the glass transition temperature in their tangent graph.
  • thermogravimetric analyzer (TG-DTA2000) was used to measure the temperature when the initial weight of the polyimide resin decreased by 1% while heating at a heating rate of 10°C/min in nitrogen.
  • Tensile strength was measured by the method presented in KS6518.
  • Elongation was measured by the method set forth in ASTM D1708.
  • the transmittance of 550 nm wavelength was measured by the method presented in ASTM D1003 in the visible light region.
  • Example 1 6.2 507 567 385 23.8 60.8
  • Example 2 6.4 509 563 388 23.4 61.0
  • Example 3 6.7 506 561 382 22.7 60.7
  • Example 4 7.7 495 559 374 24.8 61.3
  • Comparative Example 1 6.3 508 566 382 23.8 60.7
  • Comparative Example 2 11.8 481 569 347 27.9 62.1
  • Comparative Example 3 14.1 435 565 324 34.8 65.7
  • Comparative Example 4 5.8 521 556 398 15.2 57.1
  • Comparative Example 6 9.5 489 561 382 17.5 61.8
  • the Examples expressed an appropriate level of adhesion to the amorphous silicon substrate, that is, a first adhesion belonging to 0.05 to 0.1 N/cm.
  • the advantage of the first adhesion belonging to the above range is whether curling occurs or not Can be confirmed indirectly through.
  • curling did not occur at all even when heat treatment was performed at a high temperature of 400° C. for a predetermined time. If the adhesive strength is low, the adhesive state between the polyimide resin and the amorphous silicon substrate is released at a high temperature of 400° C., and curls may be generated where the ends of the polyimide resin are dried inward. In fact, most of the comparative examples exhibited a lower first adhesive force than the examples, and curls were all generated.
  • the embodiment according to the present invention expresses a desirable adhesive force for the TFT process.
  • the embodiment showed an extremely slight adhesion (second adhesion) after treatment with a laser for removal of the amorphous silicon substrate, from which the amorphous silicon substrate from the polyimide resin once the first adhesion was met It can be expected that this can peel off well.
  • Comparative Examples 1 to 5 can be confirmed that the first adhesive force is out of the range of 0.05 to 0.1 N/cm. Due to the low first adhesive force, the comparative examples can generate curl at high temperature, and it can be expected that it is unsuitable for manufacturing a display substrate requiring a high temperature process.
  • Comparative Example 6 is a case where the first adhesive strength is excessive, and in particular, it can be confirmed that the second adhesive strength after laser treatment is also very high, which is unlikely to be difficult to separate the amorphous silicon substrate from the polyimide resin after laser irradiation unlike the example. Suggests
  • the comparative example has poor adhesion, and at least one property is not satisfied, so that it is difficult to be used as a display substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

The present invention provides a polyamic acid composition having an adhesive strength of 0.05-0.1 N/cm with amorphous or crystalline silicon in a cured state on an amorphous or crystalline silicon substrate.

Description

디스플레이 기판 제조용 폴리아믹산 조성물 및 이를 이용하여 디스플레이용 기판을 제조하는 방법Polyamic acid composition for manufacturing display substrate and method for manufacturing substrate for display using the same
관련 출원들과의 상호 인용Mutual citations with related applications
본 출원은 2018년 12월 24일자 한국 특허 출원 제10-2018-0168515호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2018-0168515 filed on December 24, 2018, and all contents disclosed in the literature of the Korean patent application are incorporated as part of this specification.
기술분야Technology field
본 발명은 디스플레이 기판 제조용 폴리아믹산 조성물 및 이를 이용하여 디스플레이용 기판을 제조하는 방법에 관한 것이다. The present invention relates to a polyamic acid composition for manufacturing a display substrate and a method for manufacturing the display substrate using the same.
디스플레이 장치는 대면적이 용이하고 박형 및 경량화가 가능한 평판 디스플레이(Flat Panel Display; FPD) 위주로 급속히 발전하고 있다. 이러한 평판 디스플레이에는 액정 표시 장치(Liquid Crystal Display; LCD), 유기 발광 표시 장치(Organic Light Emitting Display; OLED) 또는 전기 영동 소자 등이 있다.2. Description of the Related Art Display devices are rapidly evolving around flat panel displays (FPDs), which are easy to have a large area and can be thin and lightweight. The flat panel display includes a liquid crystal display (LCD), an organic light emitting display (OLED), or an electrophoretic device.
최근에는 이러한 평판 디스플레이의 응용과 용도를 더욱 확장하기 위해, 가요성 기판을 적용한 플렉서블 디스플레이가 개발되고 있다. 이러한 디스플레이는 스마트 폰, 태블릿 PC 등의 모바일 기기에 주로 적용되고 있으며, 그 응용 분야가 확장되고 있다.Recently, to further expand the application and use of such a flat panel display, a flexible display using a flexible substrate has been developed. Such displays are mainly applied to mobile devices such as smart phones and tablet PCs, and their application fields are expanding.
플렉서블 디스플레이를 구성하는 디스플레이 기판은 가요성 기판(flexibility substrate)상에 박막 트랜지스터(TFTs on Plastic; TOP) 소자 구조를 형성시키는 공정에 의해 제조될 수 있다. 다만 상기 공정이 300 ℃ 이상 또는 400 ℃ 이상의 고온에서 수행되는 바, 유기 고분자 소재 중에서도 최고 수준의 내열성 및 기계적 특성과 함께 유연한 특성을 가진 폴리이미드계 소재가 가요성 기판으로 바람직하게 활용되고 있다.The display substrate constituting the flexible display may be manufactured by a process of forming a thin film transistor (TFTs on Plastic) device structure on a flexible substrate. However, since the above process is performed at a high temperature of 300° C. or higher or 400° C. or higher, among organic polymer materials, a polyimide-based material having the highest level of heat resistance and mechanical properties and flexible properties is preferably used as a flexible substrate.
전형적으로, 디스플레이 기판은 (i)비정질 또는 결정질 실리콘으로 이루어진 희생층상에 폴리이미드의 전구체인 폴리아믹산 용액을 도포하고 경화시켜 가요성 기판인 폴리이미드 수지를 형성하고, (ii)이후 폴리이미드 수지로 이루어진 가요성 기판상에 상기 박막 트랜지스터 소자 구조를 형성하는 공정을 수행하며, (iii)이러한 공정이 완료되면, 소정의 파장을 갖는 레이저를 이용하여 희생층을 가요성 기판으로부터 박리함으로써 제조될 수 있다.Typically, the display substrate is (i) a polyamic acid solution, which is a precursor of polyimide, is applied and cured on a sacrificial layer made of amorphous or crystalline silicon to form a polyimide resin that is a flexible substrate, and (ii) thereafter a polyimide resin. The process of forming the thin film transistor device structure on the flexible substrate is performed, and (iii) when the process is completed, it can be manufactured by peeling the sacrificial layer from the flexible substrate using a laser having a predetermined wavelength. .
소망하는 품질을 내재한 디스플레이 기판의 제조에는 다양한 공정적 변수가 복합적으로 작용할 수 있지만, 특히 중요한 하나는 가요성 기판인 폴리이미드 수지가 희생층에 대해 적절한 수준으로 접착되는 것이다.Although various process parameters may act in combination in the manufacture of a display substrate having a desired quality, one particularly important is that a flexible substrate, a polyimide resin, is adhered to an appropriate level to the sacrificial layer.
전술의 적절한 수준이란 폴리이미드 수지상에 박막 트랜지스터 소자 구조를 형성하는 과정에서 폴리이미드 수지와 희생층의 접착 상태 및 형태가 공고하게 유지되되, 이 공정 이후의 희생층 제거 시에는 폴리이미드 수지로부터 상기 희생층이 쉽게 박리될 수 있는 수준을 의미한다.In the process of forming the thin film transistor device structure on the polyimide resin, the appropriate level of the above is maintained firmly in the adhesion state and shape of the polyimide resin and the sacrificial layer. When removing the sacrificial layer after this process, the sacrificial layer is removed from the polyimide resin. It means the level at which the layer can be easily peeled off.
만약, 희생층에 대한 폴리이미드 수지의 접착력이 불량하면, 폴리이미드 수지상에 박막 트랜지스터를 형성하는 과정에서 폴리이미드 수지 또는 희생층이 탈락하는 심각한 폐해가 발생될 수 있다. If the adhesion of the polyimide resin to the sacrificial layer is poor, serious damage may occur in which the polyimide resin or the sacrificial layer is dropped in the process of forming a thin film transistor on the polyimide resin.
반대로 상기 접착력이 일정 수준을 넘어 과도한 경우에는 레이저로 희생층을 박리하는 과정에서 폴리이미드 수지와 희생층의 일부분이 접착된 상태를 유지하거나, 희생층으로부터 유래된 재(ash)가 폴리이미드 수지에 접착되어 있을 수 있다. 이로 인해 박리 과정에서 폴리이미드 수지가 손상될 수 있고, 박리되어 수득된 디스플레이 기판의 품질이 저하될 수 있다. 또한, 강한 접착 상태를 유지하는 희생층을 완전히 박리시키기 위하여 레이저의 에너지를 증폭하면, 폴리이미드 수지 또는 박막 트랜지스터 소자 구조가 손상 또는 파괴될 수 있다.On the contrary, when the adhesive strength exceeds a certain level, the polyimide resin and a portion of the sacrificial layer are kept in the process of peeling the sacrificial layer with a laser, or ash derived from the sacrificial layer is applied to the polyimide resin. It may be glued. Due to this, the polyimide resin may be damaged during the peeling process, and the quality of the display substrate obtained by peeling may deteriorate. In addition, when the energy of the laser is amplified in order to completely peel the sacrificial layer maintaining the strong adhesion state, the structure of the polyimide resin or the thin film transistor device may be damaged or destroyed.
따라서, 상술한 기술적 문제를 해소할 수 있는 신규한 폴리이미드계 소재가 필요한 실정이다.Therefore, there is a need for a novel polyimide-based material capable of solving the above-described technical problems.
본 발명의 목적은, 상기에서 인식된 종래의 문제를 일거에 해소할 수 있는 신규한 폴리아믹산 조성물을 제공하는 것이다.An object of the present invention is to provide a novel polyamic acid composition capable of solving all of the conventional problems recognized above.
본 발명의 일 측면에 따르면, 폴리아믹산 조성물은 비정질 또는 결정질 실리콘 기판 상에서 경화된 상태에서, 즉 폴리이미드 수지로 변환되면 상기 비정질 또는 결정질 실리콘과의 접착력이 0.05 내지 0.1 N/cm일 수 있다.According to one aspect of the invention, the polyamic acid composition is cured on an amorphous or crystalline silicon substrate, that is, when converted to a polyimide resin, the adhesion to the amorphous or crystalline silicon may be 0.05 to 0.1 N/cm.
이러한 접착력은 상기 폴리아믹산 조성물로부터 유래된 폴리이미드 수지상에 박막 트랜지스터 소자 구조를 형성하는 과정에서 폴리이미드 수지와 희생층인 비정질 또는 결정질 실리콘의 접착 상태 및 형태가 공고하게 유지되되, 이 공정 이후의 희생층 제거 시, 폴리이미드 수지로부터 상기 희생층이 쉽게 박리될 수 있는데 특히 바람직한 것이다.The adhesive force is maintained in a solid state of adhesion between the polyimide resin and the sacrificial layer, amorphous or crystalline silicon, in the process of forming a thin film transistor device structure on the polyimide resin derived from the polyamic acid composition, and sacrifice after this process. When removing the layer, the sacrificial layer can be easily peeled from the polyimide resin, which is particularly preferable.
이러한 측면에 의해, 상술한 문제가 해소될 수 있으며, 본 발명은 이의 구현을 위한 구체적인 실시양태를 제공한다.By this aspect, the above-mentioned problems can be solved, and the present invention provides specific embodiments for its implementation.
하나의 실시양태에서, 본 발명은, In one embodiment, the present invention,
방향족 디안하이드라이드계 단량체 및 방향족 디아민계 단량체가 중합된 폴리아믹산 중합체를 포함하고,An aromatic dianhydride-based monomer and a polyamic acid polymer in which an aromatic diamine-based monomer is polymerized,
상기 방향족 디안하이드라이드계 단량체는 벤조페논 구조를 갖는 제3 성분을 포함하며,The aromatic dianhydride-based monomer includes a third component having a benzophenone structure,
방향족 디안하이드라이드계 단량체 전체 몰수 대비 상기 벤조페논 구조를 갖는 제3 성분의 함량이 1 몰% 초과 내지 7 몰% 미만이며,The content of the third component having the benzophenone structure relative to the total number of moles of the aromatic dianhydride monomer is greater than 1 mol% and less than 7 mol%,
상기 폴리아믹산 조성물은, 비정질 또는 결정질 실리콘 기판 상에서 경화된 상태에서, 상기 비정질 또는 결정질 실리콘과의 접착력이 0.05 내지 0.1 N/cm인 폴리아믹산 조성물을 제공한다. 상기 접착력은 ASTM D 3359에 따라, 경화된 상기 폴리아믹산 조성물의 너비가 1cm가 되도록 비정질 또는 결정질 실리콘 기판에 부착하고, 20mm/min의 박리 속도 및 180°의 박리 각도로 박리하면서 측정한 접착력일 수 있다.The polyamic acid composition, while cured on an amorphous or crystalline silicon substrate, provides a polyamic acid composition having an adhesion to the amorphous or crystalline silicon of 0.05 to 0.1 N/cm. The adhesive force may be the adhesive force measured while being attached to an amorphous or crystalline silicon substrate such that the width of the cured polyamic acid composition is 1 cm according to ASTM D 3359, and peeling at a peeling rate of 20 mm/min and a peeling angle of 180°. have.
하나의 실시양태에서, 본 발명은 폴리아믹산 조성물을 이용하여 디스플레이 기판을 제조하는 방법으로서,In one embodiment, the present invention is a method of manufacturing a display substrate using a polyamic acid composition,
이하에서는 본 발명에 따른 "폴리아믹산 조성물" 및 "디스플레이 기판을 제조하는 방법"의 순서로 발명의 실시양태를 보다 상세하게 설명한다.Hereinafter, embodiments of the present invention will be described in more detail in the order of “polyamic acid composition” and “method for manufacturing display substrate” according to the present invention.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to this, the terms or words used in the present specification and claims should not be construed as being limited to ordinary or lexical meanings, and the inventor appropriately explains the concept of terms to explain his or her invention in the best way. Based on the principle that it can be defined, it should be interpreted as meanings and concepts consistent with the technical spirit of the present invention.
따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 하나의 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 존재할 수 있음을 이해하여야 한다.Therefore, the configuration of the embodiments described herein is only one of the most preferred embodiments of the present invention and does not represent all of the technical spirit of the present invention, and various equivalents and modifications that can replace them at the time of this application It should be understood that examples may exist.
본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this specification, a singular expression includes a plural expression unless the context clearly indicates otherwise. In this specification, the terms "include", "have" or "have" are intended to indicate the presence of implemented features, numbers, steps, elements, or combinations thereof, one or more other features or It should be understood that the existence or addition possibilities of numbers, steps, elements, or combinations thereof are not excluded in advance.
본 명세서에서 "디안하이드라이드(이무수물; dianhydride)"는 그 전구체 또는 유도체를 포함하는 것으로 의도되는데, 이들은 기술적으로는 디안하이드라이드가 아닐 수 있지만, 그럼에도 불구하고 디아민과 반응하여 폴리아믹산을 형성할 것이며, 이 폴리아믹산은 다시 폴리이미드로 변환될 수 있다.As used herein, "dianhydride (dianhydride)" is intended to include its precursors or derivatives, which may not technically be dianhydrides, but will nevertheless react with diamines to form polyamic acids. And this polyamic acid can be converted back to polyimide.
본 명세서에서 "디아민(diamine)"은 그의 전구체 또는 유도체를 포함하는 것으로 의도되는데, 이들은 기술적으로는 디아민이 아닐 수 있지만, 그럼에도 불구하고 디안하이드라이드와 반응하여 폴리아믹산을 형성할 것이며, 이 폴리아믹산은 다시 폴리이미드로 변환될 수 있다.“Diamine” as used herein is intended to include precursors or derivatives thereof, which may not technically be diamines, but will nevertheless react with dianhydrides to form polyamic acids, which are polyamic The acid can be converted back to polyimide.
본 명세서에서 양, 농도, 또는 다른 값 또는 파라미터가 범위, 바람직한 범위 또는 바람직한 상한 값 및 바람직한 하한 값의 열거로서 주어지는 경우, 범위가 별도로 개시되는지에 상관없이 임의의 한 쌍의 임의의 위쪽 범위 한계치 또는 바람직한 값 및 임의의 아래쪽 범위 한계치 또는 바람직한 값으로 형성될 수 있는 모든 범위를 구체적으로 개시하는 것으로 이해되어야 한다. 수치 값의 범위가 본 명세서에서 언급될 경우, 달리 기술되지 않는다면, 예컨대 초과, 미만 등의 한정 용어가 없다면, 그 범위는 그 종점값 및 그 범위 내의 모든 정수와 분수를 포함하는 것으로 의도된다. 본 발명의 범주는 범위를 정의할 때 언급되는 특정 값으로 한정되지 않는 것으로 의도된다.Where an amount, concentration, or other value or parameter herein is given as an enumeration of a range, a preferred range, or a preferred upper and lower limits, any upper limit of any pair of any pair, regardless of whether the ranges are disclosed separately or It should be understood to specifically disclose all ranges that can be formed with preferred values and any lower range limits or desirable values. When a range of numerical values is referred to herein, unless stated otherwise, eg, unless there is a limiting term such as greater than, less than, the range is intended to include the endpoint and all integers and fractions within the range. It is intended that the scope of the invention not be limited to the specific values recited when defining a range.
폴리아믹산 조성물Polyamic acid composition
본 발명에 따른 폴리아믹산 조성물은, The polyamic acid composition according to the present invention,
방향족 디안하이드라이드계 단량체 및 방향족 디아민계 단량체가 중합된 폴리아믹산 중합체를 포함하고,An aromatic dianhydride-based monomer and a polyamic acid polymer in which an aromatic diamine-based monomer is polymerized,
상기 방향족 디안하이드라이드계 단량체는 벤조페논 구조를 갖는 성분을 포함하며,The aromatic dianhydride-based monomer includes a component having a benzophenone structure,
방향족 디안하이드라이드계 단량체 전체 몰수 대비 상기 벤조페논 구조를 갖는 성분의 함량이 1 몰% 초과 내지 7 몰% 미만이며,The content of the component having the benzophenone structure relative to the total number of moles of the aromatic dianhydride monomer is greater than 1 mol% and less than 7 mol%,
상기 폴리아믹산 조성물은, 비정질 또는 결정질 실리콘 기판 상에서 경화된 상태에서, 상기 비정질 또는 결정질 실리콘과의 접착력이 0.05 내지 0.1 N/cm일 수 있다.The polyamic acid composition, while cured on an amorphous or crystalline silicon substrate, may have an adhesive strength with the amorphous or crystalline silicon of 0.05 to 0.1 N/cm.
구체적으로, 본 발명의 폴리아믹산 조성물은 유기용매; 및Specifically, the polyamic acid composition of the present invention includes an organic solvent; And
방향족 디안하이드라이드계 단량체와 방향족 디아민계 단량체가 중합되어 제조된 폴리아믹산을 포함할 수 있다.It may include a polyamic acid prepared by polymerization of an aromatic dianhydride-based monomer and an aromatic diamine-based monomer.
상기 방향족 디안하이드라이드계 단량체는 바이페닐 구조를 갖는 제1 성분, 1 개의 벤젠 고리를 갖는 제2 성분 및 벤조페논 구조를 갖는 제3 성분을 포함할 수 있다.The aromatic dianhydride-based monomer may include a first component having a biphenyl structure, a second component having one benzene ring, and a third component having a benzophenone structure.
상기 방향족 디아민계 단량체는 1 개의 벤젠 고리를 갖는 디아민 성분을 그것의 전체 몰수에 대해 50 몰% 초과로 포함할 수 있다.The aromatic diamine-based monomer may include a diamine component having one benzene ring in an amount of more than 50 mol% based on the total number of moles thereof.
상기 방향족 디안하이드라이드계 단량체 전체 몰수 대비, 제1 성분의 함량은 50 몰% 내지 70 몰%일 수 있다.Compared to the total number of moles of the aromatic dianhydride monomer, the content of the first component may be 50 mol% to 70 mol%.
상기 방향족 디안하이드라이드계 단량체 전체 몰수 대비, 상기 제2 성분의 함량은 20 몰% 내지 40 몰%일 수 있다.Compared to the total number of moles of the aromatic dianhydride monomer, the content of the second component may be 20 mol% to 40 mol%.
상기 방향족 디안하이드라이드계 단량체 전체 몰수 대비, 상기 제3 성분의 함량은 1 몰% 초과 내지 7 몰% 미만일 수 있다.Compared to the total number of moles of the aromatic dianhydride-based monomer, the content of the third component may be greater than 1 mol% and less than 7 mol%.
이러한 폴리아믹산 조성물은, 비정질 또는 결정질 실리콘 기판상에 경화된 상태에서, 상기 비정질 또는 결정질 실리콘과의 접착력이 0.05 내지 0.1 N/cm일 수 있다.The polyamic acid composition, in a state cured on an amorphous or crystalline silicon substrate, may have an adhesive strength with the amorphous or crystalline silicon of 0.05 to 0.1 N/cm.
상기 폴리아믹산 조성물은 또한, 열처리에 의해 경화되어 폴리이미드 수지를 형성할 수 있다. 상기 폴리아믹산 조성물이 20 ℃ 내지 550 ℃ 또는 20 ℃ 내지 500 ℃에서 열처리되어 폴리이미드 수지가 제조될 수 있고, 이러한 폴리이미드 수지는 하기와 같은 우수한 물성을 내재할 수 있다.The polyamic acid composition may also be cured by heat treatment to form a polyimide resin. The polyamic acid composition may be heat-treated at 20°C to 550°C or 20°C to 500°C to produce a polyimide resin, and such polyimide resin may have excellent physical properties as follows.
- 8 ppm/℃ 이하의 열팽창계수-Thermal expansion coefficient below 8 ppm/℃
- 490 ℃ 이상의 유리전이온도-Glass transition temperature above 490 ℃
- 555 ℃ 이상의 열분해 온도-Pyrolysis temperature above 555 ℃
- 350 MPa 이상의 인장강도-Tensile strength over 350 MPa
- 20 % 이상의 신율-Elongation over 20%
- 60 % 이상의 투과율-Transmittance over 60%
이와 관련하여, 이상의 물성을 모두 만족할 수 있는 본 발명의 폴리아믹산 조성물 및 이에 의해 제조된 폴리이미드 수지의 경우, 디스플레이 기판의 소재로서 바람직하게 이용될 수 있다.In this regard, in the case of the polyamic acid composition of the present invention and the polyimide resin prepared thereby, which can satisfy all of the above properties, it can be preferably used as a material for a display substrate.
이들 물성이 모두 발현될 수 있는 폴리이미드 수지와 이를 구현하는 폴리아믹산 조성물은 지금까지 알려지지 않은 신규한 폴리이미드계 소재로서, 이의 구성을 비제한적인 예를 통해 이하에서 더욱 상세하게 설명한다.The polyimide resin capable of expressing all of these properties and the polyamic acid composition realizing the same are novel polyimide-based materials that have not been known so far, and the configuration thereof will be described in more detail below through non-limiting examples.
<접착력><Adhesive force>
일반적으로, 상기 비정질 또는 결정질 실리콘 기판은, 비제한적으로 디스플레이 기판의 제조에 이용될 수 있으며, 특히, 디스플레이 기판의 제조 시 가요성 기판에 접착되었다가 제거되는 희생층으로 이용될 수 있다. 이때, 본 발명의 폴리아믹산 조성물은 상기 비정질 또는 결정질 실리콘 기판상에 경화되어 폴리이미드 수지를 형성할 수 있고, 상기 폴리이미드 수지는 가요성 기판으로 바람직하게 이용될 수 있다.In general, the amorphous or crystalline silicon substrate may be used for the manufacture of a display substrate, but is not limited to, in particular, it may be used as a sacrificial layer that is adhered to and removed from the flexible substrate during manufacture of the display substrate. At this time, the polyamic acid composition of the present invention can be cured on the amorphous or crystalline silicon substrate to form a polyimide resin, and the polyimide resin can be preferably used as a flexible substrate.
상기 희생층으로서 비정질 또는 결정질 실리콘 기판은 박막 트랜지스터(TFT) 소자 구조를 형성하는 공정에서 폴리이미드 수지에 접착된 상태로 존재하고, 이 공정 이후, 비정질 또는 결정질 실리콘 기판에 레이저를 조사하면 비정질 또는 결정질 실리콘 기판과 폴리이미드 수지의 접착 상태가 해제되어 서로 박리될 수 있다.An amorphous or crystalline silicon substrate as the sacrificial layer exists in a state of being attached to a polyimide resin in a process of forming a thin film transistor (TFT) device structure, and after this process, when an amorphous or crystalline silicon substrate is irradiated with laser, it is amorphous or crystalline The adhesive state of the silicon substrate and the polyimide resin may be released and peeled from each other.
다만 주목할 것은, 상기 접착력이 본 발명에 기재된 범위를 약간이라도 벗어날 경우, 폴리이미드 수지 또는 폴리이미드 수지에 형성된 박막 트랜지스터 소자가 크게 손상될 수 있는 점이다.However, it should be noted that, if the adhesive force is slightly outside the range described in the present invention, the thin film transistor element formed on the polyimide resin or the polyimide resin may be significantly damaged.
예를 들어, 상기 접착력을 근소하게 초과하는 경우는 레이저를 이용한 비정질 또는 결정질 실리콘 기판의 처리에도 불구하고 상기 비정질 또는 결정질 실리콘 기판의 적어도 일부가 폴리이미드 수지와 접착된 상태를 유지하는 비-바람직한 양태로 이어질 수 있다. 이러한 양태에서, 접착 상태가 유지된 폴리이미드 수지의 일부분은 비정질 또는 결정질 실리콘 기판에 의해 파단될 수 있다. For example, if the adhesive force is slightly exceeded, a non-preferred aspect in which at least a portion of the amorphous or crystalline silicon substrate remains bonded to the polyimide resin despite treatment of the amorphous or crystalline silicon substrate with a laser Can lead to In this aspect, a portion of the polyimide resin whose adhesion is maintained can be broken by an amorphous or crystalline silicon substrate.
또한, 비정질 또는 결정질 실리콘 기판으로부터 유래된 재(ash)가 폴리이미드 수지에 접착되어 있을 수 있다.In addition, ash derived from an amorphous or crystalline silicon substrate may be adhered to the polyimide resin.
다른 측면에서, 더욱 고 에너지의 레이저를 이용하여 비정질 또는 결정질 실리콘 기판의 박리를 유도하는 것을 고려할 수 있으나, 이 경우는 나노미터 내지 마이크로미터 단위의 두께를 갖는 폴리이미드 수지와 박막 트랜지스터 소자 구조에 고 에너지의 레이저가 영향을 미침으로써, 이들의 손상, 예를 들어 수지 및/또는 트랜지스터 소자의 분해, 변형, 파단을 유발할 수 있다. 또한, 고 에너지의 레이저는 비정질 또는 결정질 실리콘 기판으로부터 유래되는 재를 상대적으로 더 많이 생성할 수 있고, 상기 재는 이물로서 작용하여 예를 들어 트랜지스터 소자의 품질을 저해할 수 있다.In another aspect, it may be considered to induce peeling of an amorphous or crystalline silicon substrate by using a laser having a higher energy, but in this case, the polyimide resin having a thickness of nanometers to micrometers and a thin film transistor device structure may be used. By affecting the laser of the energy, it is possible to cause their damage, for example, decomposition, deformation, and fracture of the resin and/or transistor element. In addition, high-energy lasers can generate relatively more ash originating from an amorphous or crystalline silicon substrate, which can act as a foreign body, for example, deteriorating the quality of a transistor device.
상기 접착력을 만족하는 경우는 약 300 ℃ 이상 또는 약 400 ℃ 이상의 고온에서 폴리이미드 수지와 비정질 또는 결정질 실리콘 기판의 접착 상태가 잘 유지될 수 있다.When the adhesive strength is satisfied, the adhesion state of the polyimide resin and the amorphous or crystalline silicon substrate at a high temperature of about 300° C. or higher or about 400° C. or higher can be well maintained.
이는 폴리이미드 수지가 가요성 기판으로서 이용되는 것을 어렵게 하는 주요한 이유로서 폴리이미드 수지상에 박막 트랜지스터 소자 구조를 형성시키는 공정이 약 300 ℃이상의 고온에서 수행되기 때문이다. 본 발명의 범위에 비해 상대적으로 낮은 접착력 하에서는 폴리이미드 수지의 적어도 일부가 박리되어 들뜬 상태가 유발되거나, 또는 박리된 일부가 말려서 컬(curl)을 형성할 수 있고, 이 경우 상기 공정의 진행이 불가능하다.This is a major reason that makes it difficult to use polyimide resin as a flexible substrate, because the process of forming a thin film transistor element structure on a polyimide resin is performed at a high temperature of about 300°C or higher. Under a relatively low adhesive force compared to the scope of the present invention, at least a part of the polyimide resin may be peeled off to cause an excited state, or the peeled part may curl to form a curl, in which case the process cannot be performed. Do.
정리하면, 폴리이미드 수지와 비정질 또는 결정질 실리콘 기판간의 접착력이 극히 한정적이면서 가장 바람직한 범위에 속하는 것이 중요하고, 본 발명은 이러한 바람직한 범위를 상기와 같이 제공한다. 또한 본 발명의 폴리아믹산 조성물은 경화된 상태에서 비정질 또는 결정질 실리콘 기판에 대해 상기 범위의 접착력을 발현할 수 있다.In summary, it is important that the adhesion between the polyimide resin and the amorphous or crystalline silicon substrate is extremely limited and falls within the most preferred range, and the present invention provides such a preferred range as described above. In addition, the polyamic acid composition of the present invention can express the adhesive force in the above range to the amorphous or crystalline silicon substrate in a cured state.
더욱이 본 발명의 폴리아믹산 조성물은, 비정질 또는 결정질 실리콘 기판 상에서 경화된 상태에서, 레이저 조사 후 측정된 접착력이 0.01 N/cm 이하일 수 있다. 상기 레이저 조사 후의 접착력은 매우 미미한 수준으로 비정질 또는 결정질 실리콘 기판과 접착 상태가 실질적으로 유지될 수 없는 수준일 수 있으며, 이에 따라 예를 들어, 박막 트랜지스터 소자 구조를 형성시키는 공정 이후에 상기 폴리아믹산 조성물 유래의 폴리이미드 수지가 비정질 또는 결정질 실리콘 기판으로부터 쉽게 박리될 수 있고, 그 형태도 온전히 유지될 수 있다.Moreover, the polyamic acid composition of the present invention, in a cured state on an amorphous or crystalline silicon substrate, the adhesive force measured after laser irradiation may be 0.01 N/cm or less. The adhesive strength after the laser irradiation may be a level that the adhesion state with the amorphous or crystalline silicon substrate at a very small level cannot be substantially maintained, and thus, for example, the polyamic acid composition after the process of forming a thin film transistor device structure. The resulting polyimide resin can be easily peeled from the amorphous or crystalline silicon substrate, and its shape can be maintained intact.
본 발명은 폴리아믹산 조성물을 경화하여 폴리이미드 수지를 형성하고, 이 상태에서 접착력을 테스트 하는 방법을 제공한다. The present invention provides a method of curing a polyamic acid composition to form a polyimide resin, and testing adhesion in this state.
상기 테스트 방법은, The test method,
가로 1 cm * 세로 10 cm의 비정질 또는 결정질 실리콘 기판 상에 폴리아믹산 조성물을 도포하고, 열처리하여 약 10 ㎛ 내지 20 ㎛ 또는 13 ㎛ 내지 17 ㎛의 폴리이미드 수지 박막을 형성한 상태에서, 폴리이미드 수지의 끝 부분에 폭 1 cm의 테이프를 부착하고 이 테이프를 이용하여 기판으로부터 폴리이미드 수지를 박리하면서 이에 요구된 힘을 측정한다.A polyimide resin in a state where a polyamic acid composition is coated on an amorphous or crystalline silicon substrate having a width of 1 cm*10 cm and heat-treated to form a thin film of polyimide resin of about 10 μm to 20 μm or 13 μm to 17 μm. A tape having a width of 1 cm is attached to the end of the product, and the required force is measured while peeling the polyimide resin from the substrate using the tape.
레이저 처리 후 접착력을 측정하는 방법은, 하기의 방법이 이용될 수 있다:As a method of measuring the adhesive force after laser treatment, the following method can be used:
가로 1 cm * 세로 10 cm의 비정질 또는 결정질 실리콘 기판 상에 폴리아믹산 조성물을 도포하고, 열처리하여 약 10 ㎛ 내지 20 ㎛ 또는 13 ㎛ 내지 17 ㎛ 두께의 폴리이미드 수지 박막을 형성한 상태에서, 상기 비정질 또는 결정질 실리콘 기판에 308 nm의 파장의 레이저를 조사한 후, 폴리이미드 수지의 끝 부분에 폭 1 cm의 테이프를 부착하고 이 테이프를 이용하여 기판으로부터 폴리이미드 수지를 박리하면서 이에 요구된 힘을 측정한다.In a state where a polyamic acid composition is coated on an amorphous or crystalline silicon substrate having a width of 1 cm*10 cm and heat treated to form a polyimide resin thin film having a thickness of about 10 μm to 20 μm or 13 μm to 17 μm. Alternatively, after irradiating a laser having a wavelength of 308 nm to a crystalline silicon substrate, a tape having a width of 1 cm is attached to the end portion of the polyimide resin, and the required force is measured while peeling the polyimide resin from the substrate using the tape. .
경화된 폴리아믹산 조성물의 접착력이 본 발명에 기재된 한정적이면서 가장 바람직한 범위를 만족할 수 있는 것은, 벤조페논 구조를 갖는 제3 성분의 사용이 주요한 이유일 수 있다.The reason why the adhesive strength of the cured polyamic acid composition can satisfy the limited and most preferable range described in the present invention may be a main reason for the use of a third component having a benzophenone structure.
구체적으로, 본 발명의 폴리아믹산 조성물은, 벤조페논 구조를 갖는 제3 성분에 의해 폴리아믹산의 고분자 사슬이 벤조페논 구조를 포함할 수 있고, 이 벤조페논 구조는 폴리아믹산 고분자 사슬이 변환된 폴리이미드 고분자 사슬에도 유지될 수 있다. 상기 벤조페논 구조는 비정질 또는 결정질 실리콘 기판의 표면에 존재하는 하이드록시기와 같은 극성 작용기와 상호작용을 통해 접착력을 향상시킬 수 있으며, 제3 성분의 구조와 이의 함량이 본 발명의 범위를 만족하는 경우에 비로소 비정질 또는 결정질 실리콘 기판과 같은 접착 대상체와의 접착력이 소망하는 수준으로 발현되는데 주요하게 작용할 수 있다.Specifically, in the polyamic acid composition of the present invention, the polymer chain of the polyamic acid may include a benzophenone structure by a third component having a benzophenone structure, and the benzophenone structure is a polyimide in which the polyamic acid polymer chain is converted. It can also be retained in the polymer chain. The benzophenone structure may improve adhesion through interaction with a polar functional group such as a hydroxy group present on the surface of an amorphous or crystalline silicon substrate, and the structure of the third component and its content satisfy the scope of the present invention Finally, the adhesive force with an object to be adhered, such as an amorphous or crystalline silicon substrate, can be mainly expressed in a desired level.
통상적인 폴리이미드 수지의 접착력이 극히 낮은 편에 속하며, 예를 들어, 비정질 또는 결정질 실리콘 기판에 대해서는 0.05 N/cm 미만의 낮은 접착력을 가질 수 있다. 이는 폴리이미드 수지가 비정질 또는 결정질 실리콘 기판과의 접촉 계면에 표면 취약층(WBL; Weak Boundary Layer)을 포함하는 것이 한 원인이라 할 수 있다. 표면 취약층은 여러 가지 형태가 있지만, 그 중 하나는 접촉 계면에서 폴리이미드 수지의 적어도 일부가 비정질 또는 결정질 실리콘 기판을 지지하지 못하고, 들뜬 형태일 수 있다.The adhesive strength of a conventional polyimide resin belongs to an extremely low side, and for example, it may have a lower adhesive strength of less than 0.05 N/cm for an amorphous or crystalline silicon substrate. This may be attributed to the fact that the polyimide resin includes a Weak Boundary Layer (WBL) at a contact interface with an amorphous or crystalline silicon substrate. The surface vulnerable layer has various forms, but one of them may be in an excited form, at least part of the polyimide resin does not support the amorphous or crystalline silicon substrate at the contact interface.
상기 들뜬 형태는, 예를 들어, 폴리이미드 수지와 비정질 또는 결정질 실리콘 기판 사이의 계면에서 작용하는 인력이 약하거나 폴리아믹산 조성물에서 폴리이미드 수지로 변환될 때 휘발되는 수분 및/또는 유기용매 등에 의해 발생될 수 있다. The excited form is generated by, for example, moisture and/or organic solvents that volatilize when the attractive force acting at the interface between the polyimide resin and the amorphous or crystalline silicon substrate is weak or is converted from the polyamic acid composition to the polyimide resin. Can be.
상기 제3 성분은 벤조페논 구조가 비정질 또는 결정질 실리콘 기판에 존재하는 극성 작용기와 상호작용을 통해 폴리이미드 수지의 접착 수준을 향상시킬 수 있다. The third component may improve the adhesion level of the polyimide resin through interaction with a polar functional group in which the benzophenone structure is present on the amorphous or crystalline silicon substrate.
또한, 제3 성분의 벤조페논 구조는 폴리아믹산 조성물에서 폴리이미드 수지로 변환되는 초기 시점에 수분 및/또는 유기용매의 휘발이 용이하게 이루어지는데 유리할 수 있으며 이에 따라 제3 성분은 변환이 완료된 폴리이미드 수지가 비정질 또는 결정질 실리콘 기판으로부터 들뜨는 현상을 억제하는데 이롭게 작용할 수 있다. In addition, the benzophenone structure of the third component may be advantageous in that volatilization of moisture and/or an organic solvent is easily achieved at an initial point in time when the polyamic acid composition is converted to a polyimide resin. The resin can advantageously act to suppress the excitation from an amorphous or crystalline silicon substrate.
결과적으로, 제3 성분은 폴리이미드 수지에서 이러한 표면 취약층이 형성되는 것을 최소화하는데 유리하게 작용하여, 폴리이미드 수지가 소망하는 수준의 접착력을 갖는데 관계될 수 있다.As a result, the third component advantageously acts to minimize the formation of this surface fragile layer in the polyimide resin, which may be related to the polyimide resin having a desired level of adhesion.
다만, 상술한 이점만을 고려하여 제3 성분을 일정량 이상으로 이용하는 것은 바람직하지 않은데, 비정질 또는 결정질 실리콘 기판에 대한 폴리이미드 수지의 접착력이 현저하게 증가되어 0.1 N/cm을 쉽게 초과할 수 있기 때문이다.However, it is not preferable to use the third component in a predetermined amount or more in consideration of only the above-mentioned advantages, because the adhesion of the polyimide resin to the amorphous or crystalline silicon substrate is significantly increased, so that it can easily exceed 0.1 N/cm. .
또한, 제3 성분의 사용은, 폴리이미드 수지의 유리전이온도 저하 및 열팽창계수를 과도하게 증가시킬 수 있으며, 이는, 예를 들어 무기물과의 화학적/물리적 상호작용으로 제조되는 디스플레이 기판의 제조에 바람직하지 않다In addition, the use of the third component can excessively increase the glass transition temperature and the coefficient of thermal expansion of the polyimide resin, which is desirable for the production of display substrates, for example, produced by chemical/physical interactions with inorganic materials. Do not
따라서, 상기 제3 성분의 함량은 폴리이미드 수지의 접착력이 0.05 내지 0.1 N/cm의 범위에 속할 수 있으며, 유리전이온도와 열팽창계수가 비-바람직한 양태로 구현되지 않는 범위에서 특히 신중하게 선택되어야 한다. Therefore, the content of the third component should be particularly carefully selected in a range in which the adhesive strength of the polyimide resin may fall within the range of 0.05 to 0.1 N/cm, and the glass transition temperature and the coefficient of thermal expansion are not realized in a non-desirable manner. do.
이에 대한 하나의 예에서, 상기 방향족 디안하이드라이드계 단량체 전체 몰수 대비, 상기 제3 성분의 함량은 1 몰% 초과 내지 7 몰% 미만일 수 있고, 2 몰% 내지 5 몰%일 수 있으며, 3 몰 내지 5 몰%일 수 있다.In one example, the content of the third component, compared to the total number of moles of the aromatic dianhydride monomer, may be greater than 1 mol% to less than 7 mol%, and may be 2 mol% to 5 mol%, 3 mol To 5 mol%.
본 발명에서 벤조페논 구조를 갖는 상기 제3 성분은 3,3',4,4'-벤조페논테트라카르복실릭 디안하이드라이드(BTDA)일 수 있다.In the present invention, the third component having a benzophenone structure may be 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA).
<기타 물성><Other physical properties>
벤조페논 구조를 갖는 제3 성분은 카르보닐기를 기준으로 한 쌍의 벤젠 고리가 굴곡될 수 있어서 분자 구조 측면에서 상대적으로 유연한 단량체일 수 있으며, 유연한 단량체는 폴리아믹산 조성물에서 유래되는 폴리이미드 수지의 열팽창계수를 증가하는데 도움을 줄 수 있다. The third component having a benzophenone structure may be a pair of benzene rings curved based on a carbonyl group, and thus may be a relatively flexible monomer in terms of molecular structure, and the flexible monomer is a thermal expansion coefficient of a polyimide resin derived from a polyamic acid composition. It can help increase.
그러나, 비정질 또는 결정질 실리콘을 포함하여, 대부분의 무기계 물질의 열팽창계수는 9 ppm/℃ 이하 또는 8 ppm/℃ 이하로 작은 편에 속하여, 무기계 물질에 접착될 수 있는 폴리이미드 수지가 너무 큰 열팽창계수를 갖는 것은 치수 안정성 측면에서 상당히 바람직하지 않을 수 있다.However, the thermal expansion coefficient of most inorganic materials, including amorphous or crystalline silicon, is less than 9 ppm/°C or 8 ppm/°C or less, so that the polyimide resin capable of being adhered to the inorganic material is too large. Having may be quite undesirable in terms of dimensional stability.
열팽창계수는 일반적으로, 분자 구조 측면에서 강직한 단량체를 사용할 때 감소될 수 있다. 분자 구조 측면에서 강직하다는 것은, 디아민기 또는 카르복실기 사이의 주쇄가 1 개의 벤젠 고리로 이루어져서, 주쇄가 굴곡되기 어려운 분자 구조를 의미할 수 있다.The coefficient of thermal expansion can generally be reduced when using rigid monomers in terms of molecular structure. The rigidity in terms of molecular structure may mean a molecular structure in which the main chain between diamine groups or carboxyl groups is composed of one benzene ring, and thus the main chain is difficult to bend.
상기 제2 성분은 이와 같이 1 개의 벤젠 고리를 갖는 성분, 피로멜리틱 디안하이드라이드(PMDA)일 수 있으며, 본 발명의 폴리아믹산 조성물로부터 유래되는 폴리이미드 수지가 낮은 열팽창계수를 갖는데 유리하게 작용할 수 있다.The second component may be a component having one benzene ring, pyromellitic dianhydride (PMDA), and the polyimide resin derived from the polyamic acid composition of the present invention may advantageously function to have a low coefficient of thermal expansion. have.
다만, 이러한 강직한 구조를 가지는 피로멜리틱 디안하이드라이드만을 제3 성분과 조합하여 사용하는 경우, 폴리이미드 필름의 열팽창계수가 6 ppm/℃ 미만 또는 1 ppm/℃ 이하로 지나치게 낮아질 수 있고, 폴리아믹산 조성물로부터 변환된 폴리이미드 수지가 부서지기 쉬운 브리틀(brittle)한 특성을 보일 수 있으며, 상대적으로 낮은 신율을 가질 수 있다. However, when only the pyromellitic dianhydride having such a rigid structure is used in combination with the third component, the thermal expansion coefficient of the polyimide film may be lowered to less than 6 ppm/°C or 1 ppm/°C or less, and polya The polyimide resin converted from the mixed acid composition may exhibit brittle brittle characteristics and may have a relatively low elongation.
이에 본 발명에서는 방향족 디안하이드라이드계 단량체로서, 제2 성분 및 제3 성분과 함께 제1 성분을 더 포함하는 점에 주목해야 한다.Therefore, in the present invention, it should be noted that as the aromatic dianhydride-based monomer, the first component is further included together with the second component and the third component.
바이페닐 구조를 갖는 상기 제1 성분은 제2 성분에 비해 강직한 분자 구조는 아니지만 더 유연한 구조이면서 제3 성분에 대해서는 더 강직한 분자 구조를 가진다고 볼 수 있고, 결과적으로 강직하거나 유연함에 대한 분자 구조적 측면에서, 제1 성분은 제2 성분과 제3 성분의 사이에 있는 물질일 수 있다.The first component having a biphenyl structure is not a rigid molecular structure compared to the second component, but it can be considered to have a more flexible molecular structure and a more rigid molecular structure for the third component, and consequently the molecular structure for rigidity or flexibility. In aspect, the first component can be a material between the second component and the third component.
본 발명의 폴리아믹산 조성물은 상기 제1 성분으로 인해, 20 % 이상의 신율을 가질 수 있고, 이러한 신율은 예를 들어, 박막 트랜지스터 소자 구조를 형성시키는 공정에 바람직하게 작용할 수 있다.The polyamic acid composition of the present invention, due to the first component, may have an elongation of 20% or more, and the elongation may preferably act, for example, in a process of forming a thin film transistor device structure.
또한, 제1 성분, 제2 성분 및 제3 성분이 조합됨에 따라 본 발명의 폴리아믹산 조성물로부터 유래된 폴리이미드 수지는 8 ppm/℃ 이하, 7.7 ppm/℃ 이하 또는 6 ppm/℃ 내지 7 ppm/℃ 의 적정한 열팽창계수를 가질 수 있고, 490 ℃ 이상의 우수한 유리전이온도 또는 500 ℃ 내지 550 ℃의 유리전이온도를 가지며 350 MPa 이상의 인장강도 또는 370 MPa 이상의 인장강도를 가질 수 있다.In addition, as the first component, the second component, and the third component are combined, the polyimide resin derived from the polyamic acid composition of the present invention is 8 ppm/°C or less, 7.7 ppm/°C or less, or 6 ppm/°C to 7 ppm/ It may have an appropriate coefficient of thermal expansion of ℃, may have an excellent glass transition temperature of 490 ℃ or more or a glass transition temperature of 500 ℃ to 550 ℃ or more tensile strength of 350 MPa or more or 370 MPa or more.
상술한 바가 구현되기 위해서는 제1 성분 및 제2 성분이 바람직한 함량으로 조합되는 것이 특히 중요하고, 이에 본 발명은 상기 제1 성분과 제2 성분의 바람직한 함량을 제공한다.In order to realize the above, it is particularly important that the first component and the second component are combined in a desirable amount, and thus the present invention provides the preferred contents of the first component and the second component.
이에 대한 하나의 예에서, 상기 방향족 디안하이드라이드계 단량체 전체 몰수 대비, 제1 성분의 함량은 50 몰% 내지 70 몰%, 55 몰% 내지 65 몰%, 57 몰% 내지 62 몰% 또는 58 몰% 내지 60 몰%일 수 있다.In one example, the content of the first component relative to the total number of moles of the aromatic dianhydride monomer is 50 mol% to 70 mol%, 55 mol% to 65 mol%, 57 mol% to 62 mol% or 58 mol % To 60 mol%.
상기 방향족 디안하이드라이드계 단량체 전체 몰수 대비, 상기 제2 성분의 함량은 20 몰% 내지 40 몰%, 30 몰% 내지 40 몰%, 32 몰% 내지 38 몰% 또는 35 몰% 내지 38 몰%일 수 있다.Compared to the total number of moles of the aromatic dianhydride-based monomer, the content of the second component is 20 mol% to 40 mol%, 30 mol% to 40 mol%, 32 mol% to 38 mol%, or 35 mol% to 38 mol%. Can.
상기 제1 성분의 함량이 상기 범위를 만족하면, 폴리이미드 수지는 적정 수준의 신율, 열팽창계수 및 유리전이온도를 나타낼 수 있다.If the content of the first component satisfies the above range, the polyimide resin may exhibit an appropriate level of elongation, thermal expansion coefficient, and glass transition temperature.
상기 방향족 디안하이드라이드계 단량체는 이상 설명한 제1 성분 내지 제3 성분 외에도 다른 디안하이드라이드 성분을 일부 더 포함할 수도 있다.The aromatic dianhydride-based monomer may further include some other dianhydride components in addition to the first to third components described above.
이러한 디안하이드라이드 성분은, 비제한적으로, 2,3,3',4'-바이페닐테트라카르복실릭 디안하이드라이드(a-BPDA), 옥시디프탈릭 디안하이드라이드(ODPA), 디페닐설폰-3,4,3',4'-테트라카르복실릭 디안하이드라이드(DSDA), 비스(3,4-디카르복시페닐)설파이드 디안하이드라이드, 2,2-비스(3,4-디카르복시페닐)-1,1,1,3,3,3-헥사플루오로프로판 디안하이드라이드, 2,3,3',4'- 벤조페논테트라카르복실릭 디안하이드라이드, 비스(3,4-디카르복시페닐)메탄 디안하이드라이드, 2,2-비스(3,4-디카르복시페닐)프로판 디안하이드라이드, p-페닐렌비스(트라이멜리틱 모노에스터 애시드 안하이드라이드), p-바이페닐렌비스(트라이멜리틱 모노에스터 애시드 안하이드라이드), m-터페닐-3,4,3',4'-테트라카르복실릭 디안하이드라이드, p-터페닐-3,4,3',4'-테트라카르복실릭 디안하이드라이드, 1,3-비스(3,4-디카르복시페녹시)벤젠 디안하이드라이드, 1,4-비스(3,4-디카르복시페녹시)벤젠 디안하이드라이드, 1,4-비스(3,4-디카르복시페녹시)바이페닐 디안하이드라이드, 2,2-비스〔(3,4-디카르복시 페녹시)페닐〕프로판 디안하이드라이드(BPADA), 2,3,6,7-나프탈렌테트라카복실산 디안하이드라이드, 1,4,5,8-나프탈렌테트라카르복실릭 디안하이드라이드, 4,4'-(2,2-헥사플루오로아이소프로필리덴)디프탈산 디안하이드라이드 등을 예로 들 수 있다.These dianhydride components include, but are not limited to, 2,3,3',4'-biphenyltetracarboxylic dianhydride (a-BPDA), oxydiphthalic dianhydride (ODPA), diphenylsulfone- 3,4,3',4'-tetracarboxylic dianhydride (DSDA), bis(3,4-dicarboxyphenyl)sulfide dianhydride, 2,2-bis(3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2,3,3',4'- benzophenonetetracarboxylic dianhydride, bis(3,4-dicarboxyphenyl )Methane dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, p-phenylenebis (trimeric monoester acid anhydride), p-biphenylenebis (tri Mellitic monoester acid anhydride), m-terphenyl-3,4,3',4'-tetracarboxylic dianhydride, p-terphenyl-3,4,3',4'-tetracar Bisilic dianhydride, 1,3-bis(3,4-dicarboxyphenoxy)benzene dianhydride, 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride, 1,4- Bis(3,4-dicarboxyphenoxy)biphenyl dianhydride, 2,2-bis[(3,4-dicarboxy phenoxy)phenyl]propane dianhydride (BPADA), 2,3,6,7 -Naphthalenetetracarboxylic acid dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 4,4'-(2,2-hexafluoroisopropylidene)diphthalic acid dianhydride, etc. Can be lifted.
한편, 상기 1 개의 벤젠 고리를 갖는 디아민 성분은 디아민기 사이의 주쇄가 1 개의 벤젠 고리로 이루어져서, 주쇄가 굴곡되기 어려운 분자 구조를 가질 수 있다. Meanwhile, the diamine component having one benzene ring may have a molecular structure in which the main chain between diamine groups is composed of one benzene ring, so that the main chain is difficult to bend.
앞서 설명한 바와 같이, 비정질 또는 결정질 실리콘을 포함하여, 대부분의 무기계 물질의 열팽창계수가 상대적으로 작은 편이고, 이에 적용되는 폴리이미드 수지는 무기계 물질과 유사한 열팽창계수를 갖는 것이 바람직하다. As described above, the thermal expansion coefficient of most inorganic materials, including amorphous or crystalline silicon, is relatively small, and it is preferable that the polyimide resin applied thereto has a thermal expansion coefficient similar to that of inorganic materials.
상기 1 개의 벤젠 고리를 갖는 디아민 성분은 열팽창계수를 저하시킬 수 있는 점에서 바람직할 수 있으며, 다른 측면에서, 폴리이미드 수지의 유리전이온도 향상에도 유리하게 작용할 수 있다. 또한, 상대적으로 저 함량 사용되는 제2 성분으로 인한 열팽창계수 상승을 상기 디아민 성분이 상쇄할 수 있는 측면 또한 바람직한 인자로서 인식될 수 있다.The diamine component having one benzene ring may be preferable in that it can lower the coefficient of thermal expansion, and in another aspect, it may advantageously act to improve the glass transition temperature of the polyimide resin. In addition, an aspect in which the diamine component can compensate for an increase in the coefficient of thermal expansion due to the second component used in a relatively low content can also be recognized as a desirable factor.
상기 1 개의 벤젠 고리를 갖는 디아민 성분은 1,4-디아미노벤젠(PPD), 1,3-디아미노벤젠(MPD), 2,4-디아미노톨루엔, 2,6-디아미노톨루엔 및 3,5-디아미노벤조익 애시드에서 선택되는 1 종 이상을 포함하는 성분이 상기 디아민 성분으로 선택될 수 있다.The diamine component having one benzene ring is 1,4-diaminobenzene (PPD), 1,3-diaminobenzene (MPD), 2,4-diaminotoluene, 2,6-diaminotoluene and 3, A component comprising at least one member selected from 5-diaminobenzoic acid may be selected as the diamine component.
이중에서도, 인장강도 향상에 유리하며 상기 피로멜리틱 디안하이드라이드와 조합되어 열팽창계수를 바람직한 수준으로 유도하는데 유리하게 작용할 수 있는 1,4-디아미노벤젠이 상기 1 개의 벤젠 고리를 갖는 디아민 성분으로 바람직할 수 있다.Among them, 1,4-diaminobenzene, which is advantageous for improving tensile strength and can be advantageously combined with the pyromellitic dianhydride to induce a thermal expansion coefficient to a desired level, is a diamine component having one benzene ring. It may be desirable.
상기 방향족 디아민계 단량체는 1 개의 벤젠 고리를 갖는 디아민 성분을 그것의 전체 몰수에 대해 50 몰% 초과, 60 몰% 이상 또는 70 몰% 내지 100 몰%로 포함할 수 있다.The aromatic diamine-based monomer may include a diamine component having one benzene ring in an amount greater than 50 mol%, 60 mol% or more, or 70 mol% to 100 mol% based on the total number of moles thereof.
상기 디아민 성분의 함량이 상기 범위를 만족하면, 폴리이미드 수지는 적정 수준의 신율, 열팽창계수 및 유리전이온도를 나타낼 수 있다.When the content of the diamine component satisfies the above range, the polyimide resin may exhibit an appropriate level of elongation, thermal expansion coefficient, and glass transition temperature.
상기 방향족 디아민계 단량체는 이상 설명한 디아민 성분 외에도 다른 디안하이드라이드 성분을 일부 더 포함할 수도 있다. The aromatic diamine-based monomer may further include some other dianhydride components in addition to the diamine components described above.
이러한 디아민 성분은, 비제한적으로, 4,4'-디아미노디페닐에테르(또는 옥시디아닐린, ODA), 3,4'-디아미노디페닐에테르 등의 디아미노디페닐에테르, 4,4'-디아미노디페닐메탄(또는 메틸렌디아닐린, MDA), 3,3'-디메틸-4,4'-디아미노바이페닐, 2,2'-디메틸-4,4'-디아미노바이페닐, 2,2'-비스(트라이플루오로메틸)-4,4'-디아미노바이페닐, 3,3'-디메틸-4,4'-디아미노디페닐메탄, 3,3'-디카르복시-4,4'-디아미노디페닐메탄, 3,3',5,5'-테트라메틸-4,4'-디아미노디페닐메탄, 비스(4-아미노페닐)설파이드, 4,4'-디아미노벤즈아닐라이드, 3,3'-디메틸벤지딘(또는 o-톨리딘), 2,2'-디메틸벤지딘(또는 m-톨리딘), 3,3'-디메톡시벤지딘, 2,2'-디메톡시벤지딘, 3,3'-디아미노디페닐에테르, 3,4'-디아미노디페닐에테르, 4,4'-디아미노디페닐에테르, 3,3'-디아미노디페닐설파이드, 3,4'-디아미노디페닐설파이드, 4,4'-디아미노디페닐설파이드, 3,3'-디아미노디페닐설폰, 3,4'-디아미노디페닐설폰, 4,4'-디아미노디페닐설폰, 3,3'-디아미노벤조페논, 4,4'-디아미노벤조페논, 3,3'-디아미노-4,4'-디클로로벤조페논, 3,3'-디아미노-4,4'-디메톡시벤조페논, 3,3'-디아미노디페닐메탄, 3,4'-디아미노디페닐메탄, 4,4'-디아미노디페닐메탄, 2,2-비스(3-아미노페닐)프로판, 2,2-비스(4-아미노페닐)프로판, 2,2-비스(3-아미노페닐)-1,1,1,3,3,3-헥사플루오로프로판, 2,2-비스(4-아미노페닐)-1,1,1,3,3,3-헥사플루오로프로판, 3,3'-디아미노디페닐설폭사이드, 3,4'-디아미노디페닐설폭사이드, 4,4'-디아미노디페닐설폭사이드 1,3-비스(3-아미노페닐)벤젠, 1,3-비스(4-아미노페닐)벤젠, 1,4-비스(3-아미노페닐)벤젠, 1,4-비스(4-아미노 페닐)벤젠, 1,3-비스(4-아미노페녹시)벤젠(또는 TPE-R), 1,4-비스(3-아미노페녹시)벤젠(또는 TPE-Q) 1,3-비스(3-아미노페녹시)-4-트라이플루오로메틸벤젠, 3,3'-디아미노-4-(4-페닐)페녹시벤조페논, 3,3'-디아미노-4,4'-디(4-페닐페녹시)벤조페논, 1,3-비스(3-아미노페닐설파이드)벤젠, 1,3-비스(4-아미노페닐설파이 드)벤젠, 1,4-비스(4-아미노페닐설파이드)벤젠, 1,3-비스(3-아미노페닐설폰)벤젠, 1,3-비스(4-아미노페닐설폰)벤젠, 1,4-비스(4-아미노페닐설폰)벤젠, 1,3-비스〔2-(4-아미노페닐)아이소프로필〕벤젠, 1,4-비스〔2-(3-아미노페닐)아이소프로필〕벤젠, 1,4-비스〔2-(4-아미노페닐)아이소프로필〕벤젠, 3,3'-비스(3-아미노페녹시)바이페닐, 3,3'-비스(4-아미노페녹시)바이페닐, 4,4'-비스(3-아미노페녹시)바이페닐, 4,4'-비스(4-아미노페녹시)바이페닐, 비스〔3-(3-아미노페녹시)페닐〕에테르, 비스〔3-(4-아미노페녹시)페닐〕에테르, 비스〔4-(3-아미노페녹시)페닐〕에테르, 비스〔4-(4-아미노페녹시)페닐〕에테르, 비스〔3-(3-아미노페녹시)페닐〕케톤, 비스〔3-(4-아미노페녹시)페닐〕케톤, 비스〔4-(3-아미노페녹시)페닐〕케톤, 비스〔4-(4-아미노 페녹시)페닐〕케톤, 비스〔3-(3-아미노페녹시)페닐〕설파이드, 비스〔3-(4-아미노페녹시)페닐〕설파이드, 비스 〔4-(3-아미노페녹시)페닐〕설파이드, 비스〔4-(4-아미노페녹시)페닐〕설파이드, 비스〔3-(3-아미노페녹시)페닐〕설폰, 비스〔3-(4-아미노페녹시)페닐〕설폰, 비스〔4-(3-아미노페녹시)페닐〕설폰, 비스〔4-(4-아미노페녹시)페닐〕설폰, 비스〔3-(3-아미노페녹시)페닐〕메탄, 비스〔3-(4-아미노페녹시)페닐〕메탄, 비스〔4-(3-아미노페녹시)페닐〕메탄, 비스〔4-(4-아미노페녹시)페닐〕메탄, 2,2-비스〔3-(3-아미노페녹시)페닐〕프로판, 2,2-비스〔3-(4-아미노페녹시)페닐〕프로판, 2,2-비스〔4-(3-아미노페녹시)페닐〕프로판, 2,2-비스〔4-(4-아미노페녹시)페닐〕프로판(BAPP), 2,2-비스〔3-(3-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로판, 2,2-비스〔3-(4-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로판, 2,2-비스〔4-(3-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로판 및 2,2-비스〔4-(4-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로판을 예로 들 수 있다.Such diamine components include, but are not limited to, diaminodiphenyl ethers such as 4,4'-diaminodiphenyl ether (or oxidianiline, ODA), 3,4'-diaminodiphenyl ether, and 4,4'. -Diaminodiphenylmethane (or methylenedianiline, MDA), 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2 ,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-dicarboxy-4, 4'-diaminodiphenylmethane, 3,3',5,5'-tetramethyl-4,4'-diaminodiphenylmethane, bis(4-aminophenyl)sulfide, 4,4'-diaminobenz Anilide, 3,3'-dimethylbenzidine (or o-tolidine), 2,2'-dimethylbenzidine (or m-tolidine), 3,3'-dimethoxybenzidine, 2,2'-dimethoxybenzidine , 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenylsulfide, 3,4'- Diaminodiphenylsulfide, 4,4'-diaminodiphenylsulfide, 3,3'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, 4,4'-diaminobenzophenone, 3,3'-diamino-4,4'-dichlorobenzophenone, 3,3'-diamino-4,4'- Dimethoxybenzophenone, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 2,2-bis(3-aminophenyl)propane , 2,2-bis(4-aminophenyl)propane, 2,2-bis(3-aminophenyl)-1,1,1,3,3,3-hexafluoropropane, 2,2-bis(4 -Aminophenyl)-1,1,1,3,3,3-hexafluoropropane, 3,3'-diaminodiphenylsulfoxide, 3,4'-diaminodiphenylsulfoxide, 4,4' -Diaminodiphenyl sulfoxide 1,3-bis(3-aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 1,4-bis(3-aminophenyl)benzene, 1,4- Bis(4-amino phenyl)benzene, 1,3-bis(4-aminophenoxy)benzene (or TPE-R), 1,4-bis(3-aminophenoxy)benzene (or TPE-Q) 1, 3-bis(3-aminophenoxy) -4-trifluoromethylbenzene, 3,3'-diamino-4-(4-phenyl)phenoxybenzophenone, 3,3'-diamino-4,4'-di(4-phenylphenoxy) Benzophenone, 1,3-bis(3-aminophenylsulfide)benzene, 1,3-bis(4-aminophenylsulfide)benzene, 1,4-bis(4-aminophenylsulfide)benzene, 1,3- Bis(3-aminophenylsulfone)benzene, 1,3-bis(4-aminophenylsulfone)benzene, 1,4-bis(4-aminophenylsulfone)benzene, 1,3-bis[2-(4-amino Phenyl)isopropyl]benzene, 1,4-bis[2-(3-aminophenyl)isopropyl]benzene, 1,4-bis[2-(4-aminophenyl)isopropyl]benzene, 3,3'- Bis(3-aminophenoxy)biphenyl, 3,3'-bis(4-aminophenoxy)biphenyl, 4,4'-bis(3-aminophenoxy)biphenyl, 4,4'-bis( 4-aminophenoxy)biphenyl, bis[3-(3-aminophenoxy)phenyl]ether, bis[3-(4-aminophenoxy)phenyl]ether, bis[4-(3-aminophenoxy) Phenyl] ether, bis [4-(4-aminophenoxy)phenyl] ether, bis [3-(3-aminophenoxy)phenyl] ketone, bis [3-(4-aminophenoxy)phenyl] ketone, bis [4-(3-aminophenoxy)phenyl]ketone, bis[4-(4-aminophenoxy)phenyl]ketone, bis[3-(3-aminophenoxy)phenyl]sulfide, bis[3-(4 -Aminophenoxy)phenyl]sulfide, bis[4-(3-aminophenoxy)phenyl]sulfide, bis[4-(4-aminophenoxy)phenyl]sulfide, bis[3-(3-aminophenoxy) Phenyl] sulfone, bis [3-(4-aminophenoxy)phenyl] sulfone, bis [4-(3-aminophenoxy)phenyl] sulfone, bis [4-(4-aminophenoxy)phenyl] sulfone, bis [3-(3-aminophenoxy)phenyl]methane, bis[3-(4-aminophenoxy)phenyl]methane, bis[4-(3-aminophenoxy)phenyl]methane, bis[4-(4 -Aminophenoxy)phenyl]methane, 2,2-bis[3-(3-aminophenoxy)phenyl]propane, 2,2-bis[3-(4-aminophenoxy)phenyl]propane, 2,2 -Bis[4-(3-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP), 2,2-bis[3-(3-amino Phenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 2,2-bis[3-(4-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 2,2-bis[4-(3-aminophenoxy) Phenyl]-1,1,1,3,3,3-hexafluoropropane and 2,2-bis[4-(4-aminophenoxy)phenyl]-1,1,1,3,3,3- Hexafluoropropane is exemplified.
이상 설명한 바와 같이, 본 발명에 따른 폴리아믹산 조성물은 제3 성분으로 인해 디스플레이 기판을 구현하는데 바람직한 접착력을 가지며, 이에 더해 제1 성분과 제2 성분이 조합됨에 따라, 폴리이미드에 요구되는 다양한 특성들이 적정한 수준일 수 있다.As described above, the polyamic acid composition according to the present invention has a desirable adhesion to implement a display substrate due to the third component, and in addition, as the first component and the second component are combined, various characteristics required for the polyimide It may be a reasonable level.
<첨가물><additive>
본 발명에 따른 폴리아믹산 조성물은 실란계 커플링제 및 실리콘계 계면활성제 중 적어도 하나를 더 포함할 수 있다.The polyamic acid composition according to the present invention may further include at least one of a silane-based coupling agent and a silicone-based surfactant.
상기 실란계 커플링제는 그것의 일부가 폴리아믹산 조성물의 아믹산기 또는 아믹산기가 변환된 폴리이미드 수지의 이미드기에 결합되고, 다른 일부가 무기계 물질, 예를 들어 실리콘계 물질, 예를 들어, 비정질 또는 결정질 실리콘 기판에 존재하는 산소 또는 규소와 결합될 수 있다.The silane-based coupling agent is a part of which is bonded to the imide group of the polyimide resin in which the amic acid group or the amic acid group of the polyamic acid composition is converted, and the other part is an inorganic material, for example, a silicon-based material, for example, amorphous or It can be combined with oxygen or silicon present in a crystalline silicon substrate.
이러한 작용에 의해, 상기 실란계 커플링제는 0.05 내지 0.1 N/cm 범위 내에서, 폴리아믹산 조성물의 경화로 유래된 폴리이미드 수지의 접착력을 상승시킬 수 있다.By this action, the silane coupling agent can increase the adhesion of the polyimide resin derived from curing of the polyamic acid composition within the range of 0.05 to 0.1 N/cm.
다만, 상기 실란계 커플링제의 과량 사용은 폴리아믹산 조성물에서 유래된 폴리이미드 수지의 물성 저하를 유발할 수 있으므로, 극히 제한적인 함량으로 사용되는 것이 바람직할 수 있다. However, the excessive use of the silane-based coupling agent may cause deterioration in the physical properties of the polyimide resin derived from the polyamic acid composition, and thus it may be preferable to use an extremely limited content.
이에 대한 예로서, 상기 실란계 커플링제는 폴리아믹산 조성물의 폴리아믹산 고형분 중량에 대해 0.01 내지 0.05 중량%, 0.01 내지 0.03 중량% 또는 0.018 내지 0.022 중량%로 상기 폴리아믹산 조성물에 포함될 수 있다.As an example for this, the silane coupling agent may be included in the polyamic acid composition in an amount of 0.01 to 0.05% by weight, 0.01 to 0.03% by weight, or 0.018 to 0.022% by weight based on the weight of the polyamic acid solid content of the polyamic acid composition.
본 발명의 폴리아믹산 조성물에 바람직하게 포함될 수 있는 실란계 커플링제는 비제한적으로, 3-아미노프로필트리메톡시실란((3-Aminopropyl)trimethoxysilane, APTMS), 아미노프로필트리에톡시실란(Aminopropyltriethoxysilane), 3-(2-아미노에틸아미노)프로필-디메톡시메틸실란(3-(2-aminoethylamino)propyl-dimethoxymethylsilane), 3-글리시독시프로필디메톡메틸실란(3-Glycidoxypropyldimethoxymethylsilane) 및 2-(3,4-에폭시사이클로헥실) 트리메톡시실란(2-(3,4-epoxycyclohexyl)trimethoxysilane)으로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있고, 특히 바람직하게는, 아민기를 포함하여, 폴리아믹산 조성물의 아믹산기 또는 아믹산기가 변환된 폴리이미드 수지의 이미드기에 결합되기 용이한 3-아미노프로필트리메톡시실란, 아미노프로필트리에톡시실란 및 3-(2-아미노에틸아미노)프로필-디메톡시메틸실란으로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있으며, 가장 바람직하게는 폴리아믹산 조성물에서 유래된 폴리이미드 수지의 물성 저하를 방지하는데 유리할 수 있는 3-아미노프로필트리메톡시실란일 수 있다.The silane-based coupling agent that can be preferably included in the polyamic acid composition of the present invention is not limited to, 3-aminopropyl trimethoxysilane ((3-Aminopropyl)trimethoxysilane, APTMS), aminopropyl triethoxysilane (Aminopropyltriethoxysilane), 3-(2-aminoethylamino)propyl-dimethoxymethylsilane, 3-glycidoxypropyldimethoxymethylsilane and 2-(3,4 -Epoxycyclohexyl) trimethoxysilane (2-(3,4-epoxycyclohexyl) trimethoxysilane) may include one or more selected from the group consisting of, particularly preferably, including an amine group, polyamic acid composition of 3-Aminopropyl trimethoxysilane, aminopropyl triethoxysilane and 3-(2-aminoethylamino)propyl-dimethoxymethylsilane which are easy to be bonded to the imide group of the polyimide resin in which the amic acid group or the amic acid group is converted. It may include one or more selected from the group consisting of, most preferably 3-aminopropyl trimethoxysilane which may be advantageous in preventing deterioration of the physical properties of the polyimide resin derived from the polyamic acid composition.
상기 실리콘계 계면활성제는 예를 들어, 폴리아믹산 조성물을 무기계 기판 등에 도포할 때, 유동성을 갖는 상기 폴리아믹산 조성물이 기판상에 잘 퍼지도록 하여 균일한 두께로 제막되도록 하는데 바람직하게 작용할 수 있다.The silicone-based surfactant, for example, when the polyamic acid composition is applied to an inorganic substrate or the like, may preferably act to make the polyamic acid composition having fluidity spread well on the substrate to form a uniform thickness.
그러나, 상기 계면활성제가 과도한 함량으로 포함되면, 폴리아믹산 조성물의 적어도 일부가 뭉치는 현상이 발생하여 제막을 어렵게 할 수 있고, 상기 폴리아믹산 조성물의 경화로 유래된 폴리이미드 수지의 물성 저하를 유발할 수 있으며, 반대로 소량 포함된 계면활성제는, 앞선 제막관련 이점에 도움이 되지 않으므로 바람직하지 않다.However, when the surfactant is included in an excessive amount, at least a part of the polyamic acid composition may be agglomerated to make film formation difficult, and may cause deterioration in physical properties of the polyimide resin derived from curing the polyamic acid composition. On the contrary, surfactants contained in small amounts are not preferable because they do not help with the advantages related to the previous film formation.
이에 바람직한 계면활성제의 함량은 폴리아믹산 조성물의 폴리아믹산 고형분 중량에 대해 0.001 내지 0.02 중량%일 수 있고, 0.005 내지 0.015 중량% 또는 0.008 내지 0.012 중량%일 수 있다.The preferred surfactant content may be 0.001 to 0.02% by weight, and 0.005 to 0.015% by weight or 0.008 to 0.012% by weight based on the polyamic acid solids weight of the polyamic acid composition.
상기 계면활성제의 종류는 특별히 한정되지는 않으나 실리콘계 계면활성제가 바람직할 수 있다. 상기 실리콘계 계면활성제는 상업적으로 용이하게 입수할 수 있으며, 예를 들어, BYK 사의 'BYK-378'가 실리콘계 계면활성제로 사용될 수 있다. 다만 상기 예시는 발명의 실시를 돕기 위한 것으로, 본 발명에 사용될 수 있는 계면활성제가 이상의 예시로 한정되는 것은 아니다.The type of the surfactant is not particularly limited, but a silicone-based surfactant may be preferable. The silicone surfactant can be easily obtained commercially, for example, BYK's'BYK-378' can be used as a silicone surfactant. However, the above examples are intended to help the practice of the invention, and the surfactant that can be used in the present invention is not limited to the above examples.
상기 폴리아믹산 조성물은 또한, 아세틱 안하이드라이드(AA), 프로피온 애시드 안하이드라이드, 및 락틱 애시드 안하이드라이드, 퀴놀린, 이소퀴놀린, β-피콜린(BP) 및 피리딘에서 선택되는 적어도 1 종의 경화 촉진제를 더 포함할 수 있다.The polyamic acid composition may also include at least one selected from acetic anhydride (AA), propionic acid anhydride, and lactic acid anhydride, quinoline, isoquinoline, β-picoline (BP), and pyridine. A curing accelerator may be further included.
이러한 경화 촉진제는 폴리아믹산 조성물을 제막한 후, 폴리이미드 수지로 변환할 때, 폴리아믹산에 대한 탈수 작용을 통해 폐환 반응을 촉진하여, 소망하는 폴리이미드 수지를 수득하는데 도움을 줄 수 있다.Such a curing accelerator may assist in obtaining a desired polyimide resin by promoting the cyclization reaction through dehydration of the polyamic acid when forming a polyamic acid composition and converting it into a polyimide resin.
상기 경화 촉진제는 폴리아믹산 중 아믹산기 1 몰에 대하여 0.05 몰 내지 20 몰로 포함될 수 있다.The curing accelerator may be included in an amount of 0.05 to 20 mol with respect to 1 mol of the amic acid group in the polyamic acid.
상기 경화 촉진제가 상기 범위를 만족하면 탈수 및/또는 폐환 반응을 촉진하여 얇은 박막의 형태로 캐스팅할 수 있고, 강도가 우수한 폴리이미드 수지를 제조할 수 있다.When the curing accelerator satisfies the above range, dehydration and/or cyclization can be promoted to be cast in the form of a thin film, and an excellent strength polyimide resin can be produced.
상기 폴리아믹산 조성물로부터 유래되는 폴리이미드 수지의 접동성, 열전도성, 루프 경도 등의 폴리이미드 수지의 여러 가지 특성을 개선할 목적으로 폴리아믹산 조성물은 충전재를 더 포함할 수 있다.The polyamic acid composition may further include a filler for the purpose of improving various properties of the polyimide resin such as sliding property, thermal conductivity, and loop hardness of the polyimide resin derived from the polyamic acid composition.
상기 충전재는 특별히 한정되는 것은 아니지만, 바람직한 예로는 실리카, 산화티탄, 알루미나, 질화규소, 질화붕소, 인산수소칼슘, 인산칼슘, 운모 등을 들 수 있다.The filler is not particularly limited, and preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, and mica.
상기 충전재의 평균 입경은 특별히 한정되는 것은 아니고, 개질하고자 하는 폴리이미드 수지 특성과 첨가하는 충전재의 종류에 따라서 결정할 수 있다. 하나의 예에서, 상기 충전재의 평균 입경은 0.05 ㎛ 내지 100 ㎛, 0.1 ㎛ 내지 75 ㎛, 0.1 ㎛ 내지 50 ㎛ 또는 0.1 ㎛ 내지 25 ㎛일 수 있다.The average particle diameter of the filler is not particularly limited, and can be determined according to the characteristics of the polyimide resin to be modified and the type of filler to be added. In one example, the average particle diameter of the filler may be 0.05 μm to 100 μm, 0.1 μm to 75 μm, 0.1 μm to 50 μm, or 0.1 μm to 25 μm.
평균 입경이 이 범위를 만족하면 개질 효과가 우수하고, 폴리이미드 수지의 표면성 및 이의 기계적 특성를 유발할 수 있다.If the average particle diameter satisfies this range, the modification effect is excellent, and the surface properties of the polyimide resin and its mechanical properties can be induced.
또한, 충전재의 첨가량에 대해서도 특별히 한정되는 것은 아니고, 개질하고자 하는 폴리이미드 수지 특성이나 충전재 입경 등에 의해 결정할 수 있다.In addition, the addition amount of the filler is not particularly limited, and can be determined by the characteristics of the polyimide resin to be modified, the particle size of the filler, and the like.
하나의 예에서, 충전재의 첨가량은 폴리아믹산 조성물 100 중량부에 대하여 0.01 중량부 내지 100 중량부, 0.01 중량부 내지 90 중량부 또는 0.02 중량부 내지 80 중량부이다.In one example, the amount of the filler added is 0.01 to 100 parts by weight, 0.01 to 90 parts by weight, or 0.02 to 80 parts by weight based on 100 parts by weight of the polyamic acid composition.
충전재 첨가량이 이 범위를 만족하면, 충전재에 의한 개질 효과가 우수하고, 폴리이미드 수지의 기계적 특성이 향상될 수 있다. 충전재의 첨가 방법은 특별히 한정되는 것은 아니고, 공지된 어떠한 방법을 이용할 수 있음은 물론이다.If the amount of the filler added satisfies this range, the modification effect by the filler is excellent, and the mechanical properties of the polyimide resin can be improved. The method for adding the filler is not particularly limited, and any known method can be used.
<폴리아믹산 조성물의 제조방법><Method for preparing polyamic acid composition>
상기 폴리아믹산 조성물을 이루는 폴리아믹산을 제조하는 방법은 예를 들어,The method for producing the polyamic acid constituting the polyamic acid composition is, for example,
(1) 디아민계 단량체 전량을 유기용매 중에 넣고, 그 후 디안하이드라이드계 단량체를 디아민계 단량체와 실질적으로 등몰이 되도록 첨가하여 중합하는 방법;(1) a method in which the total amount of the diamine-based monomer is put in an organic solvent, and then the dianhydride-based monomer is added to be substantially equimolar with the diamine-based monomer and polymerized;
(2) 디안하이드라이드계 단량체 전량을 유기용매 중에 넣고, 그 후 디아민계 단량체를 디안하이드라이드계 단량체와 실질적으로 등몰이 되도록 첨가하여 중합하는 방법; (2) a method in which the total amount of the dianhydride-based monomer is placed in an organic solvent, and thereafter the diamine-based monomer is added to be substantially equimolar with the dianhydride-based monomer and polymerized;
(3) 디아민계 단량체 중 일부 성분을 유기용매 중에 넣은 후, 반응 성분에 대해서 디안하이드라이드계 단량체 중 일부 성분을 약 95 몰% 내지 105 몰%의 비율로 혼합한 후, 나머지 디아민계 단량체 성분을 첨가하고 이에 연속해서 나머지 디안하이드라이드계 단량체 성분을 첨가하여, 디아민계 단량체 및 디안하이드라이드계 단량체가 실질적으로 등몰이 되도록 하여 중합하는 방법; (3) After adding some components of the diamine-based monomer in an organic solvent, after mixing some components of the dianhydride-based monomer with respect to the reaction component in a ratio of about 95 mol% to 105 mol%, the remaining diamine-based monomer components A method of polymerization by adding and subsequently adding the remaining dianhydride-based monomer components such that the diamine-based monomer and the dianhydride-based monomer become substantially equimolar;
(4) 디안하이드라이드계 단량체를 유기용매 중에 넣은 후, 반응 성분에 대해서 디아민 화합물 중 일부 성분을 95 몰% 내지 105 몰의 비율로 혼합한 후, 다른 디안하이드라이드계 단량체 성분을 첨가하고 연속해서 나머지 디아민계 단량체 성분을 첨가하여, 디아민계 단량체 및 디안하이드라이드계 단량체가 실질적으로 등몰이 되도록 하여 중합하는 방법; 및(4) After adding the dianhydride-based monomer in an organic solvent, after mixing some components of the diamine compound in a ratio of 95 mol% to 105 mol with respect to the reaction component, another dianhydride-based monomer component is added and continuously A method in which the remaining diamine-based monomer component is added to polymerize the diamine-based monomer and the dianhydride-based monomer to become substantially equimolar; And
(5) 유기용매 중에서 일부 디아민계 단량체 성분과 일부 디안하이드라이드계 단량체 성분을 어느 하나가 과량이 되도록 반응시켜, 제1 중합물을 형성하고, 또 다른 유기용매 중에서 일부 디아민계 단량체 성분과 일부 디안하이드라이드계 단량체 성분을 어느 하나가 과량이 되도록 반응시켜 제2 중합물을 형성한 후, 제1, 제2 중합물들을 혼합하고, 중합을 완결하는 방법으로서, 이 때 제1 중합물을 형성할 때 디아민계 단량체 성분이 과잉일 경우, 제2 중합물에서는 디안하이드라이드계 단량체 성분을 과량으로 하고, 제1 중합물에서 디안하이드라이드계 단량체 성분이 과잉일 경우, 제2 중합물에서는 디아민계 단량체 성분을 과량으로 하여, 제1, 제2 중합물들을 혼합하여 이들 반응에 사용되는 전체 디아민계 단량체 성분과 디안하이드라이드계 단량체 성분이 실질적으로 등몰이 되도록 하여 중합하는 방법 등을 들 수 있다.(5) Some diamine-based monomer components and some dianhydride-based monomer components are reacted so as to be in excess in one of the organic solvents to form a first polymerization product, and some diamine-based monomer components and some dianhydrides in another organic solvent. As a method of reacting a ride-based monomer component so that either one is in excess, forming a second polymer, mixing the first and second polymers and completing the polymerization, wherein a diamine-based monomer is used to form the first polymer. When the component is excessive, the second polymer is an excess of the dianhydride-based monomer component, and when the first polymer is the excess of the dianhydride-based monomer component, the second polymerization product is an excess of the diamine-based monomer component. And a method in which 1, the second polymerized materials are mixed and the total diamine-based monomer component and the dianhydride-based monomer component used in these reactions are substantially equimolar.
다만, 상기 방법은 본 발명의 실시를 돕기 위한 예시로서, 본 발명의 범주가 이들로서 한정되는 것은 아니며, 공지된 어떠한 방법을 사용할 수 있음은 물론이다.However, the above method is an example for helping the implementation of the present invention, and the scope of the present invention is not limited to them, and it is of course possible to use any known method.
상기 유기용매는 폴리아믹산이 용해될 수 있는 용매라면 특별히 한정되지는 않으나, 하나의 예로서, 비양성자성 극성 용매(aprotic polar solvent)일 수 있다.The organic solvent is not particularly limited as long as it is a solvent in which the polyamic acid can be dissolved, but as an example, the organic solvent may be an aprotic polar solvent.
상기 비양성자성 극성 용매의 비제한적인 예로서, N,N'-디메틸포름아미드(DMF), N,N'-디메틸아세트아미드(DMAc) 등의 아미드계 용매, p-클로로페놀, o-클로로페놀 등의 페놀계 용매, N-메틸-피롤리돈(NMP), 감마 브티로 락톤(GBL) 및 디그림(Diglyme) 등을 들 수 있고, 이들은 단독으로 또는 2종 이상 조합되어 사용될 수 있다. As a non-limiting example of the aprotic polar solvent, amide solvents such as N,N'-dimethylformamide (DMF), N,N'-dimethylacetamide (DMAc), p-chlorophenol, o-chloro And phenol-based solvents such as phenol, N-methyl-pyrrolidone (NMP), gamma brotirolactone (GBL), and digrime, and these may be used alone or in combination of two or more.
경우에 따라서는 톨루엔, 테트라히드로푸란, 아세톤, 메틸에틸케톤, 메탄올, 에탄올, 물 등의 보조적 용매를 사용하여, 폴리아믹산의 용해도를 조절할 수도 있다. In some cases, the solubility of the polyamic acid may be controlled by using auxiliary solvents such as toluene, tetrahydrofuran, acetone, methyl ethyl ketone, methanol, ethanol, and water.
하나의 예에서, 본 발명의 폴리아믹산 조성물 제조에 특히 바람직하게 사용될 수 있는 유기용매는 N-메틸-피롤리돈, N,N'-디메틸포름아미드 및 N,N'-디메틸아세트아미드일 수 있다.In one example, organic solvents that can be particularly preferably used for preparing the polyamic acid composition of the present invention may be N-methyl-pyrrolidone, N,N'-dimethylformamide and N,N'-dimethylacetamide. .
이와 같이 제조된 폴리아믹산 조성물은 23 ℃에서 측정한 점도가 3,000 cP 내지 7,000 cP, 3,500 cP 내지 6,500 cP 또는 4,000 cP 내지 5,500 cP일 수 있다. 상기 점도는 23℃ 온도 및 0.5 rpm의 회전속도 조건으로 RV-7번 스핀들에서 브룩필드 점도계로 측정한 점도일 수 있다. 본 출원에서 상기 폴리아믹산 조성물은 고형분 함량이 5 내지 30%, 10 내지 25% 또는 12 내지 20%의 범위 내일 수 있다. 폴리아믹산 조성물의 점도가 상기 범위를 만족할 경우, 폴리아믹산 조성물의 유동성을 향상시켜 도포 공정을 원활하게 하고, 폴리이미드 수지의 접착력을 향상시킬 수 있다. The polyamic acid composition thus prepared may have a viscosity measured at 23°C of 3,000 cP to 7,000 cP, 3,500 cP to 6,500 cP, or 4,000 cP to 5,500 cP. The viscosity may be a viscosity measured with a Brookfield viscometer on the spindle RV-7 under conditions of a temperature of 23° C. and a rotation speed of 0.5 rpm. In the present application, the polyamic acid composition may have a solid content of 5 to 30%, 10 to 25%, or 12 to 20%. When the viscosity of the polyamic acid composition satisfies the above range, the fluidity of the polyamic acid composition can be improved to smooth the coating process and improve the adhesion of the polyimide resin.
폴리아믹산 조성물을 이용한 디스플레이 기판의 제조방법Method for manufacturing display substrate using polyamic acid composition
본 발명은 앞선 실시양태의 폴리아믹산 조성물을 이용하여 디스플레이 기판을 제조하는 방법을 제공한다. The present invention provides a method of manufacturing a display substrate using the polyamic acid composition of the preceding embodiment.
구체적으로 상기 방법은, Specifically, the method,
비정질 또는 결정질 실리콘 기판상에 상기 폴리아믹산 조성물을 도포하는 단계를 포함할 수 있다.And coating the polyamic acid composition on an amorphous or crystalline silicon substrate.
또한, 본 출원의 제조방법은 상기 폴리아믹산 조성물을 20 ℃ 내지 40 ℃에서 제1 열처리하는 단계; In addition, the manufacturing method of the present application comprises the steps of first heat-treating the polyamic acid composition at 20°C to 40°C;
상기 폴리아믹산 조성물을 40 ℃ 내지 200 ℃에서 제2 열처리하는 단계; 및A second heat treatment of the polyamic acid composition at 40°C to 200°C; And
상기 폴리아믹산 조성물을 200 ℃ 내지 500 ℃에서 제3 열처리하는 단계를 포함할 수 있다.The polyamic acid composition may include a third heat treatment at 200°C to 500°C.
상기 제1 열처리, 제2 열처리 및 제3 열처리 단계를 통해, 상기 폴리아믹산 조성물은 폴리아믹산의 아믹산기가 폐환, 탈수 반응된 이미드기를 포함하는 폴리이미드 수지를 생성하고 유기용매가 휘발되어 경화되고, 상기 제3 열처리가 완료되면, 상기 폴리이미드 수지가 상기 비정질 또는 결정질 실리콘 기판 상에서 경화되어 접착될 수 있다.Through the first heat treatment, the second heat treatment, and the third heat treatment step, the polyamic acid composition produces a polyimide resin containing an imide group in which the amic acid group of polyamic acid is closed and dehydrated, and an organic solvent is volatilized and cured. , When the third heat treatment is completed, the polyimide resin may be cured and adhered on the amorphous or crystalline silicon substrate.
하나의 구체적인 예에서, 상기 비정질 또는 결정질 실리콘 기판상에 상기 폴리아믹산 조성물을 도포하는 단계는, 상기 폴리아믹산 조성물이 경화된 후에 생성되는 폴리이미드 수지의 두께가 0.5 ㎛ 내지 20 ㎛, 2 ㎛ 내지 18 ㎛ 또는 2 내지 5 ㎛가 되도록 상기 폴리아믹산 조성물을 도포할 수 있다. In one specific example, in the step of applying the polyamic acid composition on the amorphous or crystalline silicon substrate, the thickness of the polyimide resin produced after the polyamic acid composition is cured is 0.5 μm to 20 μm, 2 μm to 18 The polyamic acid composition may be applied so as to be µm or 2 to 5 µm.
하나의 구체적인 예에서, 상기 제1 열처리, 제2 열처리 및 제3 열처리 단계는, 각각 독립적으로, 3 ℃/min 내지 7 ℃/min의 범위에서 선택되는 둘 이상의 가변적인 승온 속도, 또는 상기 범위에서 선택되는 하나의 불변적인 승온속도로 수행될 수 있다.In one specific example, the first heat treatment, the second heat treatment, and the third heat treatment step, respectively, independently, 3 °C / min to 7 °C / min, two or more variable heating rate selected from the range, or in the above range It can be carried out at a single constant heating rate selected.
본 발명에 따른 제조방법은, Manufacturing method according to the invention,
상기 폴리이미드 수지 상에 박막 트랜지스터(TFT)를 형성시키는 단계 및 Forming a thin film transistor (TFT) on the polyimide resin, and
상기 비정질 또는 결정질 실리콘 기판에 레이저를 소정의 시간 동안 조사하여, 상기 폴리이미드 수지로부터 상기 비정질 또는 결정질 실리콘 기판을 제거하는 단계를 더 포함할 수 있고,The method may further include removing the amorphous or crystalline silicon substrate from the polyimide resin by irradiating the amorphous or crystalline silicon substrate with a laser for a predetermined time.
상기 레이저 조사 후 측정된 폴리이미드 수지와 비정질 또는 결정질 실리콘 기판 사이의 0.01 N/cm 이하일 수 있다.It may be 0.01 N/cm or less between the polyimide resin and the amorphous or crystalline silicon substrate measured after the laser irradiation.
상기 레이저 조사 후의 접착력은 매우 미미한 수준으로 비정질 또는 결정질 실리콘 기판과 접착 상태가 실질적으로 유지될 수 없는 수준일 수 있으며, 이에 따라 예를 들어, 박막 트랜지스터 소자 구조를 형성시키는 공정 이후에 상기 폴리아믹산 조성물 유래의 폴리이미드 수지가 비정질 또는 결정질 실리콘 기판으로부터 쉽게 박리될 수 있고, 그 형태도 온전히 유지될 수 있다.The adhesive strength after the laser irradiation may be a level that the adhesion state with the amorphous or crystalline silicon substrate at a very small level cannot be substantially maintained, and thus, for example, the polyamic acid composition after the process of forming a thin film transistor device structure. The resulting polyimide resin can be easily peeled from the amorphous or crystalline silicon substrate, and its shape can be maintained intact.
상기 비정질 또는 결정질 실리콘 기판을 제거하는 단계에서, 레이저는 LLO(laser lift off, 레이저 박리)법에 의해 수행될 수 있다. In the step of removing the amorphous or crystalline silicon substrate, the laser may be performed by a laser lift off (LLO) method.
상기 레이저의 에너지 밀도(E/D)가 180 mJ/cm2 이하일 수 있고, 바람직하게는 150 mJ/cm2 이하일 수 있다.The energy density (E/D) of the laser may be 180 mJ/cm 2 or less, and preferably 150 mJ/cm 2 or less.
이상 설명한 바와 같이, 본 발명에 따른 폴리아믹산 조성물은 벤조페논 구조를 갖는 제3 성분에 의해, 비정질 또는 결정질 실리콘 기판에 가장 바람직한 접착력을 발현할 수 있다.As described above, the polyamic acid composition according to the present invention can express the most desirable adhesion to an amorphous or crystalline silicon substrate by a third component having a benzophenone structure.
본 발명에 따른 폴리아믹산 조성물은 또한, 특정 성분을 포함하는 디안하이드라이드계 단량체와 디아민계 단량체의 조합에 의해, 예를 들어 디스플레이 기판의 제조에 요구되는 다양한 물성들이 적정한 수준으로 내재된 폴리이미드 수지를 구현할 수 있다.The polyamic acid composition according to the present invention is also a polyimide resin in which various properties required for the production of a display substrate are incorporated at an appropriate level by a combination of a diamine-based monomer and a diamine-based monomer containing a specific component. You can implement
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다. Hereinafter, the operation and effects of the invention will be described in more detail through specific examples of the invention. However, these examples are only presented as examples of the invention, and the scope of the invention is not thereby determined.
<실시예 1><Example 1>
NMP가 채워진 40 ℃의 반응기에 방향족 디안하이드라이드계 단량체로서 BPDA(제1 성분), PMDA(제2 성분), BTDA(제3 성분) 및 방향족 디아민계 단량체로서 PPD를 하기 표 1에 나타낸 몰비로 첨가하고 약 30 분간 교반하여 폴리아믹산을 중합하였다.In an NMP-filled reactor at 40° C., PPD as the aromatic dianhydride-based monomer as BPDA (first component), PMDA (second component), BTDA (third component) and aromatic diamine-based monomer is shown in the molar ratio shown in Table 1 below. It was added and stirred for about 30 minutes to polymerize the polyamic acid.
여기에, 하기의 물질을 첨가하고, 약 2 시간 동안 숙성 공정을 진행하여 최종 폴리아믹산 조성물을 제조하였다. 이때 폴리아믹산 조성물의 점도는 약 5,100 cP 였다.Here, the following materials were added, and the aging process was performed for about 2 hours to prepare a final polyamic acid composition. At this time, the viscosity of the polyamic acid composition was about 5,100 cP.
- 실란계 커플링제: 3-아미노프로필트리메톡시실란 0.02 중량%(폴리아믹산 고형분 중량 기준)-Silane coupling agent: 0.02% by weight of 3-aminopropyl trimethoxysilane (based on the weight of solid polyamic acid)
- 실리콘계 계면활성제: BYK 사의 'BYK-378' 0.01 중량%(폴리아믹산 고형분 중량 기준)-Silicone surfactant: 0.01% by weight of BYK's'BYK-378' (based on the weight of solid polyamic acid)
- 첨가제: 이소퀴놀린 10 중량%(폴리아믹산 고형분 중량 기준)-Additive: 10% by weight of isoquinoline (based on the weight of solid polyamic acid)
<실시예 2><Example 2>
BPDA(제1 성분), PMDA(제2 성분) 및 BTDA(제3 성분)의 몰비를 하기 표 1에 나타낸 몰비로 변경하여 첨가한 것을 제외하면 실시예 1과 동일한 방법으로 점도가 약 5,000 cP인 폴리아믹산 조성물을 제조하였다.The viscosity was about 5,000 cP in the same manner as in Example 1, except that the molar ratios of BPDA (first component), PMDA (second component), and BTDA (third component) were changed and added to the molar ratios shown in Table 1 below. A polyamic acid composition was prepared.
<실시예 3> <Example 3>
BPDA(제1 성분), PMDA(제2 성분) 및 BTDA(제3 성분)의 몰비를 하기 표 1에 나타낸 몰비로 변경하여 첨가한 것을 제외하면 실시예 1과 동일한 방법으로 점도가 약 5,100 cP인 폴리아믹산 조성물을 제조하였다.The viscosity was about 5,100 cP in the same manner as in Example 1, except that the molar ratios of BPDA (first component), PMDA (second component), and BTDA (third component) were changed and added to the molar ratios shown in Table 1 below. A polyamic acid composition was prepared.
<실시예 4> <Example 4>
BPDA(제1 성분), PMDA(제2 성분) 및 BTDA(제3 성분)의 몰비를 하기 표 1에 나타낸 몰비로 변경하여 첨가한 것을 제외하면 실시예 1과 동일한 방법으로 점도가 약 4,800 cP인 폴리아믹산 조성물을 제조하였다.The viscosity was about 4,800 cP in the same manner as in Example 1, except that the molar ratios of BPDA (first component), PMDA (second component), and BTDA (third component) were changed and added to the molar ratios shown in Table 1 below. A polyamic acid composition was prepared.
<비교예 1><Comparative Example 1>
방향족 디안하이드라이드계 단량체의 성분으로 BTDA(제3 성분)를 제외하였고, BPDA(제1 성분) 및 PMDA(제2 성분)의 몰비를 하기 표 1에 나타낸 몰비로 변경하여 첨가한 것을 제외하면 실시예 1과 동일한 방법으로 점도가 약 4,800 cP인 폴리아믹산 조성물을 제조하였다.BTDA (third component) was excluded as a component of the aromatic dianhydride-based monomer, except that the molar ratio of BPDA (first component) and PMDA (second component) was changed to and added to the molar ratio shown in Table 1 below. A polyamic acid composition having a viscosity of about 4,800 cP was prepared in the same manner as in Example 1.
<비교예 2><Comparative Example 2>
방향족 디안하이드라이드계 단량체의 성분으로 BTDA(제3 성분)를 제외하였고, BPDA(제1 성분) 및 PMDA(제2 성분)의 몰비를 하기 표 1에 나타낸 몰비로 변경하여 첨가한 것을 제외하면 실시예 1과 동일한 방법으로 점도가 약 5,300 cP인 폴리아믹산 조성물을 제조하였다.BTDA (third component) was excluded as a component of the aromatic dianhydride-based monomer, except that the molar ratio of BPDA (first component) and PMDA (second component) was changed to and added to the molar ratio shown in Table 1 below. A polyamic acid composition having a viscosity of about 5,300 cP was prepared in the same manner as in Example 1.
<비교예 3><Comparative Example 3>
방향족 디안하이드라이드계 단량체의 성분으로 BTDA(제3 성분)를 제외하였고, BPDA(제1 성분) 및 PMDA(제2 성분)의 몰비를 하기 표 1에 나타낸 몰비로 변경하여 첨가한 것을 제외하면 실시예 1과 동일한 방법으로 점도가 약 4,750 cP인 폴리아믹산 조성물을 제조하였다.BTDA (third component) was excluded as a component of the aromatic dianhydride-based monomer, except that the molar ratio of BPDA (first component) and PMDA (second component) was changed to and added to the molar ratio shown in Table 1 below. A polyamic acid composition having a viscosity of about 4,750 cP was prepared in the same manner as in Example 1.
<비교예 4><Comparative Example 4>
방향족 디안하이드라이드계 단량체의 성분으로 BTDA(제3 성분)를 제외하였고, BPDA(제1 성분) 및 PMDA(제2 성분)의 몰비를 하기 표 1에 나타낸 몰비로 변경하여 첨가한 것을 제외하면 실시예 1과 동일한 방법으로 점도가 약 4,950 cP인 폴리아믹산 조성물을 제조하였다.BTDA (third component) was excluded as a component of the aromatic dianhydride-based monomer, except that the molar ratio of BPDA (first component) and PMDA (second component) was changed to and added to the molar ratio shown in Table 1 below. A polyamic acid composition having a viscosity of about 4,950 cP was prepared in the same manner as in Example 1.
<비교예 5> <Comparative Example 5>
BPDA(제1 성분), PMDA(제2 성분) 및 BTDA(제3 성분)의 몰비를 하기 표 1에 나타낸 몰비로 변경하여 첨가한 것을 제외하면 실시예 1과 동일한 방법으로 점도가 약 5,100 cP인 폴리아믹산 조성물을 제조하였다.The viscosity was about 5,100 cP in the same manner as in Example 1, except that the molar ratios of BPDA (first component), PMDA (second component), and BTDA (third component) were changed and added to the molar ratios shown in Table 1 below. A polyamic acid composition was prepared.
<비교예 6><Comparative Example 6>
BPDA(제1 성분), PMDA(제2 성분) 및 BTDA(제3 성분)의 몰비를 하기 표 1에 나타낸 몰비로 변경하여 첨가한 것을 제외하면 실시예 1과 동일한 방법으로 약 5,100 cP인 폴리아믹산 조성물을 제조하였다.A polyamic acid of about 5,100 cP in the same manner as in Example 1, except that the molar ratios of BPDA (first component), PMDA (second component), and BTDA (third component) were changed and added to the molar ratios shown in Table 1 below. The composition was prepared.
조성Furtherance 몰비Mole ratio
디안하이드라이드계 단량체Dianhydride monomer 디아민계 단량체Diamine monomer 디안하이드라이드계 단량체Dianhydride monomer 디아민계 단량체Diamine monomer
제1성분1st ingredient 제2성분Second ingredient 제3성분Third component 제1성분1st ingredient 제2성분Second ingredient 제3성분Third component
실시예 1Example 1 BPDABPDA PMDAPMDA BTDABTDA PPDPPD 6060 3838 22 100100
실시예 2Example 2 BPDABPDA PMDAPMDA BTDABTDA PPDPPD 6060 3535 55 100100
실시예 3Example 3 BPDABPDA PMDAPMDA BTDABTDA PPDPPD 5555 4040 55 100100
실시예 4Example 4 BPDABPDA PMDAPMDA BTDABTDA PPDPPD 6565 3232 33 100100
비교예 1Comparative Example 1 BPDABPDA PMDAPMDA -- PPDPPD 6060 4040 -- 100100
비교예 2Comparative Example 2 BPDABPDA PMDAPMDA -- PPDPPD 7070 3030 -- 100100
비교예 3Comparative Example 3 BPDABPDA PMDAPMDA -- PPDPPD 8080 2020 -- 100100
비교예 4Comparative Example 4 BPDABPDA PMDAPMDA -- PPDPPD 5050 5050 -- 100100
비교예 5Comparative Example 5 BPDABPDA PMDAPMDA BTDABTDA PPDPPD 6060 3939 1One 100100
비교예 6Comparative Example 6 BPDABPDA PMDAPMDA BTDABTDA PPDPPD 6060 3333 77 100100
<실험예 1: 폴리이미드 수지의 접착력 테스트><Experimental Example 1: Adhesion test of polyimide resin>
실시예 1 내지 4 및 비교예 1 내지 6에서 제조된 폴리아믹산 조성물을 가로 1 cm * 세로 10 cm의 비정질 실리콘 기판에 30 ㎛로 캐스팅하고 20 ℃ 내지 460 ℃의 온도범위에서 건조시켜, 평균두께가 약 15 내지 17 ㎛인 박막 형태의 폴리이미드 수지 및 비정질 실리콘 기판이 접착된 적층체를 제조하였다.The polyamic acid compositions prepared in Examples 1 to 4 and Comparative Examples 1 to 6 were cast to 30 μm on an amorphous silicon substrate having a width of 1 cm*10 cm and dried in a temperature range of 20° C. to 460° C., resulting in an average thickness. A laminate in which a polyimide resin in the form of a thin film having a thickness of about 15 to 17 μm and an amorphous silicon substrate was adhered was prepared.
이와 같이 제조된 적층체에 대해 하기 방법을 이용하여 폴리이미드 수지의 제1 접착력(레이저 처리 전), 컬(curl) 테스트 및 제2 접착력(레이저 처리 후)을 평가하였다.The first adhesive strength (before laser treatment), curl test, and second adhesive strength (after laser treatment) of the polyimide resin were evaluated for the laminate thus prepared.
- 제1 접착력: 폴리이미드 수지의 끝 부분에 폭 1 cm의 테이프를 부착하고 이 테이프를 이용하여 기판으로부터 폴리이미드 수지를 박리하면서 이에 요구된 힘을 측정한다.-First adhesive force: A tape having a width of 1 cm is attached to the end of the polyimide resin, and the required force is measured while peeling the polyimide resin from the substrate using the tape.
- 컬 테스트: 제조된 적층체를 약 400 ℃의 온도하에 약 1 시간 동안 열처리 한 다음, 비정질 실리콘 기판상에서 폴리이미드 수지의 모서리 부위에 컬이 발생하는지 확인하였다.-Curl test: The prepared laminate was heat-treated at a temperature of about 400° C. for about 1 hour, and then, it was confirmed whether curls were generated at the corners of the polyimide resin on the amorphous silicon substrate.
- 제2 접착력: 비정질 실리콘 기판에 308 nm의 파장의 레이저를 150mJ/cm2로 조사한 후, 폴리이미드 수지의 끝 부분에 폭 1 cm의 테이프를 부착하고 이 테이프를 이용하여 기판으로부터 폴리이미드 수지를 박리하면서 이에 요구된 힘을 측정한다.-Second adhesive force: After irradiating an amorphous silicon substrate with a laser having a wavelength of 308 nm at 150 mJ/cm 2 , a tape having a width of 1 cm is attached to the end of the polyimide resin and the polyimide resin is used from the substrate using this tape. While peeling, the force required for this is measured.
- 상기 접착력은 ASTM D 3359에 따라, 20mm/min의 박리 속도 및 180°의 박리 각도로 박리하면서 측정하였다.-The adhesive force was measured according to ASTM D 3359, peeling at a peeling rate of 20 mm/min and a peeling angle of 180°.
제1 접착력(N/cm)First adhesive force (N/cm) 컬 발생 여부(O, X)Whether curl occurs (O, X) 제2 접착력(N/cm)Second adhesive force (N/cm)
실시예 1Example 1 0.070.07 XX 0.01이하0.01 or less
실시예 2Example 2 0.080.08 XX 0.01이하0.01 or less
실시예 3Example 3 0.070.07 XX 0.01이하0.01 or less
실시예 4Example 4 0.070.07 XX 0.01이하0.01 or less
비교예 1Comparative Example 1 0.030.03 OO 0.01이하0.01 or less
비교예 2Comparative Example 2 0.030.03 OO 0.01이하0.01 or less
비교예 3Comparative Example 3 0.030.03 OO 0.01이하0.01 or less
비교예 4Comparative Example 4 0.030.03 OO 0.01이하0.01 or less
비교예 5Comparative Example 5 0.030.03 OO 0.01이하0.01 or less
비교예 6Comparative Example 6 0.120.12 XX 0.050.05
<실험예 2: 폴리이미드 수지의 물성 테스트><Experimental Example 2: Property test of polyimide resin>
실시예 1 내지 5 및 비교예 1 내지 6에서 제조된 폴리아믹산 조성물을 스테인레스계 지지체에 박막의 형태로 도포 후 20 ℃ 내지 350 ℃의 온도범위에서 열처리하였고, 이어서 지지체로부터 박리하여 평균두께가 각각, 약 15 내지 17 ㎛인 필름 형태의 폴리이미드 수지를 제조하였다.The polyamic acid compositions prepared in Examples 1 to 5 and Comparative Examples 1 to 6 were applied to a stainless steel support in the form of a thin film, and then heat treated at a temperature range of 20°C to 350°C, and then peeled from the support to obtain an average thickness, respectively. A polyimide resin in the form of a film of about 15 to 17 μm was prepared.
이와 같이 제조된 폴리이미드 수지에 대해 하기와 같은 방법으로 물성을 테스트하고, 그 결과를 하기 표 3에 나타내었다.The physical properties of the polyimide resin thus prepared were tested in the following manner, and the results are shown in Table 3 below.
(1) 열팽창계수(CTE)(1) Coefficient of thermal expansion (CTE)
열팽창계수는 TMA를 이용하여 100 내지 350 ℃ 범위에서 측정하였다.The coefficient of thermal expansion was measured in the range of 100 to 350°C using TMA.
(2) 유리전이온도(Tg)(2) Glass transition temperature (T g )
유리전이온도는 TMA를 이용하여 각 폴리이미드 수지의 손실 탄성률과 저장 탄성률을 구하고, 이들의 탄젠트 그래프에서 변곡점을 유리전이온도로 측정하였다.The glass transition temperature was obtained by using TMA to obtain the loss modulus and storage modulus of each polyimide resin, and the inflection point was measured as the glass transition temperature in their tangent graph.
(3) 열분해온도(Td)(3) Pyrolysis temperature (T d )
열중량 분석 장치(TG-DTA2000)를 이용하여, 질소 중 승온 속도 10 ℃/분으로의 승온하면서 폴리이미드 수지의 초기 중량이 1% 감소했을 때의 온도를 측정하였다.A thermogravimetric analyzer (TG-DTA2000) was used to measure the temperature when the initial weight of the polyimide resin decreased by 1% while heating at a heating rate of 10°C/min in nitrogen.
(4) 인장강도(4) Tensile strength
인장강도는 KS6518 에 제시된 방법에 의해 측정하였다.Tensile strength was measured by the method presented in KS6518.
(5) 신율(5) Elongation
신율은 ASTM D1708에 제시된 방법에 의해 측정하였다.Elongation was measured by the method set forth in ASTM D1708.
(6) 투과율(6) transmittance
HunterLab사의 ColorQuesetXE 모델을 이용하여 가시광 영역에서 ASTM D1003 에 제시된 방법에 의해 550 nm파장의 투과율을 측정하였다.By using the ColorQuesetXE model of HunterLab, the transmittance of 550 nm wavelength was measured by the method presented in ASTM D1003 in the visible light region.
CTE(ppm/℃)CTE (ppm/℃) Tg (℃)T g (℃) Td (℃)T d (℃) 인장강도(MPa)Tensile strength (MPa) 신율(%)Elongation (%) 투과율(%)Transmittance (%)
실시예 1Example 1 6.26.2 507507 567567 385385 23.823.8 60.860.8
실시예 2Example 2 6.46.4 509509 563563 388388 23.423.4 61.061.0
실시예 3Example 3 6.76.7 506506 561561 382382 22.722.7 60.760.7
실시예 4Example 4 7.77.7 495495 559559 374374 24.824.8 61.361.3
비교예 1Comparative Example 1 6.36.3 508508 566566 382382 23.823.8 60.760.7
비교예 2Comparative Example 2 11.811.8 481481 569569 347347 27.927.9 62.162.1
비교예 3Comparative Example 3 14.114.1 435435 565565 324324 34.834.8 65.765.7
비교예 4Comparative Example 4 5.85.8 521521 556556 398398 15.215.2 57.157.1
비교예 5Comparative Example 5 6.16.1 508508 563563 378378 22.822.8 60.460.4
비교예 6Comparative Example 6 9.59.5 489489 561561 382382 17.517.5 61.861.8
실험예 1의 결과로부터, 실시예는 비정질 실리콘 기판에 대해 적정 수준의 접착력, 즉, 0.05 내지 0.1 N/cm에 속하는 제1 접착력을 발현하였다.상기 범위에 속하는 제1 접착력의 이점은 컬 발생 여부를 통해 간접적으로 확인할 수 있다. 표 2에 따르면, 실시예는 400 ℃의 고온에서 소정의 시간 동안 열처리하더라도 컬이 전혀 발생되지 않았다. 만약 접착력이 낮을 경우, 400 ℃의 고온에서 폴리이미드 수지와 비정질 실리콘 기판의 접착 상태 해제되어 폴리이미드 수지의 끝 부분이 안쪽으로 말리는 컬이 발생될 수 있다. 실제로 비교예 대부분은 실시예에 비해 낮은 제1 접착력을 나타내었고, 모두 컬이 발생되었다.From the results of Experimental Example 1, the Examples expressed an appropriate level of adhesion to the amorphous silicon substrate, that is, a first adhesion belonging to 0.05 to 0.1 N/cm. The advantage of the first adhesion belonging to the above range is whether curling occurs or not Can be confirmed indirectly through. According to Table 2, in the embodiment, curling did not occur at all even when heat treatment was performed at a high temperature of 400° C. for a predetermined time. If the adhesive strength is low, the adhesive state between the polyimide resin and the amorphous silicon substrate is released at a high temperature of 400° C., and curls may be generated where the ends of the polyimide resin are dried inward. In fact, most of the comparative examples exhibited a lower first adhesive force than the examples, and curls were all generated.
이러한 결과는, 고온에서 수행되는 TFT 공정에 적어도 0.05 N/cm의 접착력이 요구됨을 시사하고, 본 발명에 따른 실시예는 TFT 공정에 바람직한 접착력을 발현함을 알 수 있다. 다른 측면에서, 실시예는, 비정질 실리콘 기판의 제거를 위해 레이저로 처리한 이후에, 극히 미미한 접착력(제2 접착력)을 나타내었고, 이로부터 상기 제1 접착력이 충족되면 폴리이미드 수지로부터 비정질 실리콘 기판이 잘 박리될 수 있음을 예상할 수 있다.These results suggest that an adhesive force of at least 0.05 N/cm is required for the TFT process performed at a high temperature, and it can be seen that the embodiment according to the present invention expresses a desirable adhesive force for the TFT process. In another aspect, the embodiment showed an extremely slight adhesion (second adhesion) after treatment with a laser for removal of the amorphous silicon substrate, from which the amorphous silicon substrate from the polyimide resin once the first adhesion was met It can be expected that this can peel off well.
한편, 비교예 1 내지 5는 제1 접착력이 0.05 내지 0.1 N/cm의 범위를 벗어났음을 확인할 수 있다. 이와 같이 낮은 제1 접착력으로 인해 해당 비교예들은 고온에서 컬이 발생되었으며, 고온의 공정이 요구되는 디스플레이 기판의 제조에 부적합함을 예상할 수 있다. On the other hand, Comparative Examples 1 to 5 can be confirmed that the first adhesive force is out of the range of 0.05 to 0.1 N/cm. Due to the low first adhesive force, the comparative examples can generate curl at high temperature, and it can be expected that it is unsuitable for manufacturing a display substrate requiring a high temperature process.
비교예 6은 제1 접착력이 과도한 경우로서, 특히 레이저 처리 이후의 제2 접착력 역시 상당히 높은 수준임을 확인할 수 있으며, 이는 실시예와 달리 레이저 조사 이후에 폴리이미드 수지로부터 비정질 실리콘 기판이 잘 박리되기 어려울 것임을 시사한다.Comparative Example 6 is a case where the first adhesive strength is excessive, and in particular, it can be confirmed that the second adhesive strength after laser treatment is also very high, which is unlikely to be difficult to separate the amorphous silicon substrate from the polyimide resin after laser irradiation unlike the example. Suggests
실험예 2의 결과는 본 발명에 따라 구현된 폴리이미드 수지가 디스플레이 기판의 제조에 요구되는 다양한 특성들을 모두 만족함을 보여주고 있고 실험예 1의 결과와 연계할 때, 실시예 모두, 상기 특성들과 함께 바람직한 수준의 접착력을 발현한다. The results of Experimental Example 2 show that the polyimide resin implemented according to the present invention satisfies all the various characteristics required for the manufacture of the display substrate, and when linking with the results of Experimental Example 1, all of the Examples, Together they express the desired level of adhesion.
반대로 비교예는 불량한 접착력과 함께, 적어도 하나의 특성이 충족되지 않는 바, 디스플레이 기판으로 활용되기에 무리가 있음을 알 수 있다.On the contrary, it can be seen that the comparative example has poor adhesion, and at least one property is not satisfied, so that it is difficult to be used as a display substrate.
따라서, 표 3의 결과로부터 폴리아믹산 조성물의 구현에 본 발명의 단량체 조합과 조합비가 유효한 것임을 알 수 있다.Therefore, it can be seen from the results of Table 3 that the monomer combination and the combination ratio of the present invention are effective for the implementation of the polyamic acid composition.
이상 본 발명의 실시예들을 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕을 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.Although described above with reference to embodiments of the present invention, those of ordinary skill in the art to which the present invention pertains will be able to make various applications and modifications within the scope of the present invention based on the above.

Claims (20)

  1. 방향족 디안하이드라이드계 단량체 및 방향족 디아민계 단량체가 중합된 폴리아믹산 중합체를 포함하고,An aromatic dianhydride-based monomer and a polyamic acid polymer in which an aromatic diamine-based monomer is polymerized,
    상기 방향족 디안하이드라이드계 단량체는 벤조페논 구조를 갖는 제3 성분을 포함하며,The aromatic dianhydride-based monomer includes a third component having a benzophenone structure,
    방향족 디안하이드라이드계 단량체 전체 몰수 대비 상기 벤조페논 구조를 갖는 성분의 함량이 1 몰% 초과 내지 7 몰% 미만이며,The content of the component having the benzophenone structure relative to the total number of moles of the aromatic dianhydride monomer is greater than 1 mol% and less than 7 mol%,
    상기 폴리아믹산 조성물은, 비정질 또는 결정질 실리콘 기판 상에서 경화된 상태에서, 상기 비정질 또는 결정질 실리콘과의 접착력이 0.05 내지 0.1 N/cm인 폴리아믹산 조성물.The polyamic acid composition, in a state cured on an amorphous or crystalline silicon substrate, the polyamic acid composition having an adhesive strength with the amorphous or crystalline silicon of 0.05 to 0.1 N/cm.
  2. 제1항에 있어서,According to claim 1,
    방향족 디안하이드라이드계 단량체는 바이페닐 구조를 갖는 제1 성분, 및 1개 벤젠고리를 갖는 제2 성분을 추가로 포함하는 폴리아믹산 조성물.The aromatic dianhydride-based monomer further comprises a first component having a biphenyl structure and a second component having one benzene ring.
  3. 제2항에 있어서,According to claim 2,
    상기 방향족 디안하이드라이드계 단량체 전체 몰수 대비, 제1 성분의 함량이 50 몰% 내지 70 몰%이고, 상기 제2 성분의 함량이 20 몰% 내지 40 몰%인 폴리아믹산 조성물.The polyamic acid composition in which the content of the first component is 50 mol% to 70 mol%, and the content of the second component is 20 mol% to 40 mol%, relative to the total number of moles of the aromatic dianhydride monomer.
  4. 제2항에 있어서,According to claim 2,
    상기 제1 성분은 3,3',4,4'-바이페닐테트라카르복실릭 디안하이드라이드(BPDA) 및 2,3,3',4'-바이페닐테트라카르복실릭 디안하이드라이드(a-BPDA)로 이루어진 군에서 선택되는 1종 이상인 폴리아믹산 조성물.The first component is 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) and 2,3,3',4'-biphenyltetracarboxylic dianhydride (a- BPDA) at least one polyamic acid composition selected from the group consisting of.
  5. 제2항에 있어서,According to claim 2,
    상기 제2 성분은 피로멜리틱 디안하이드라이드(PMDA)인 폴리아믹산 조성물.The second component is a pyromellitic dianhydride (PMDA) polyamic acid composition.
  6. 제2항에 있어서,According to claim 2,
    상기 제3 성분은 3,3',4,4'-벤조페논테트라카르복실릭 디안하이드라이드(BTDA)인 폴리아믹산 조성물.The third component is a 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA) polyamic acid composition.
  7. 제1항에 있어서,According to claim 1,
    상기 방향족 디아민계 단량체는 1 개의 벤젠 고리를 갖는 디아민 성분을 그것의 전체 몰수에 대해 50 몰% 초과로 포함하는 폴리아믹산 조성물.The aromatic diamine-based monomer is a polyamic acid composition comprising a diamine component having one benzene ring in an amount greater than 50 mol% based on the total number of moles thereof.
  8. 제7항에 있어서,The method of claim 7,
    상기 1 개의 벤젠 고리를 갖는 디아민 성분은 1,4-디아미노벤젠(PPD), 1,3-디아미노벤젠(MPD), 2,4-디아미노톨루엔, 2,6-디아미노톨루엔 및 3,5-디아미노벤조익 애시드로 이루어진 군에서 선택되는 1 종 이상인 폴리아믹산 조성물.The diamine component having one benzene ring is 1,4-diaminobenzene (PPD), 1,3-diaminobenzene (MPD), 2,4-diaminotoluene, 2,6-diaminotoluene and 3, At least one polyamic acid composition selected from the group consisting of 5-diaminobenzoic acid.
  9. 제7항에 있어서,The method of claim 7,
    상기 1 개의 벤젠 고리를 갖는 디아민 성분은 1,4-디아미노벤젠인 폴리아믹산 조성물.The diamine component having one benzene ring is 1,4-diaminobenzene.
  10. 제1항에 있어서, According to claim 1,
    비정질 또는 결정질 실리콘 기판 상에서 경화된 상태에서, 레이저 조사 후 측정된 접착력이 0.01 N/cm이하인 폴리아믹산 조성물.A polyamic acid composition having an adhesive strength of 0.01 N/cm or less measured after laser irradiation in a cured state on an amorphous or crystalline silicon substrate.
  11. 제1항에 있어서,According to claim 1,
    실란계 커플링제 및 실리콘계 계면활성제 중 적어도 하나를 더 포함하는 폴리아믹산 조성물.A polyamic acid composition further comprising at least one of a silane coupling agent and a silicone surfactant.
  12. 제11항에 있어서,The method of claim 11,
    상기 실란계 커플링제는, The silane coupling agent,
    폴리아믹산 조성물의 폴리아믹산 고형분 중량에 대해 0.01 내지 0.05 중량%로 포함되고; 0.01 to 0.05% by weight based on the weight of the polyamic acid solids of the polyamic acid composition;
    3-아미노프로필트리메톡시실란((3-Aminopropyl)trimethoxysilane, APTMS), 아미노프로필트리에톡시실란(Aminopropyltriethoxysilane), 3-(2-아미노에틸아미노)프로필-디메톡시메틸실란(3-(2-aminoethylamino)propyl-dimethoxymethylsilane), 3-글리시독시프로필디메톡메틸실란(3-Glycidoxypropyldimethoxymethylsilane) 및 2-(3,4-에폭시사이클로헥실) 트리메톡시실란(2-(3,4-epoxycyclohexyl)trimethoxysilane)으로 이루어진 군에서 선택되는 1종 이상을 포함하는 폴리아믹산 조성물.3-aminopropyltrimethoxysilane (APTMS), aminopropyltriethoxysilane, 3-(2-aminoethylamino)propyl-dimethoxymethylsilane (3-(2- aminoethylamino)propyl-dimethoxymethylsilane, 3-glycidoxypropyldimethoxymethylsilane and 2-(3,4-epoxycyclohexyl) trimethoxysilane (2-(3,4-epoxycyclohexyl)trimethoxysilane) A polyamic acid composition comprising one or more selected from the group consisting of.
  13. 제11항에 있어서,The method of claim 11,
    상기 실리콘계 계면활성제는 폴리아믹산 조성물의 폴리아믹산 고형분 중량에 대해 0.001 내지 0.02 중량%로 포함되는 폴리아믹산 조성물.The silicone-based surfactant is a polyamic acid composition contained in an amount of 0.001 to 0.02% by weight relative to the polyamic acid solids weight of the polyamic acid composition.
  14. 제1항에 있어서,According to claim 1,
    폴리아믹산 조성물의 폴리아믹산 23 ℃에서 측정한 점도가 3,000 내지 7,000 cP인 폴리아믹산 조성물.A polyamic acid composition having a viscosity of 3,000 to 7,000 cP measured at 23° C. of the polyamic acid composition.
  15. 제1항에 있어서,According to claim 1,
    상기 폴리아믹산 조성물이 20 ℃ 내지 400 ℃에서 열처리되어 제조된 폴리이미드 수지는,The polyimide resin prepared by heat-treating the polyamic acid composition at 20°C to 400°C,
    유리전이온도가 490 ℃ 이상이며, Glass transition temperature is 490 ℃ or higher,
    열분해온도가 555 ℃ 이상이고,Pyrolysis temperature is 555 ℃ or higher,
    열팽창계수가 8 ppm/℃ 이하인 폴리아믹산 조성물.A polyamic acid composition having a thermal expansion coefficient of 8 ppm/℃ or less.
  16. 제15항에 있어서,The method of claim 15,
    상기 폴리이미드 수지는 인장강도가 350 MPa 이상이고, 신율이 20 % 이상이며, 투과율이 60 % 이상인 폴리아믹산 조성물.The polyimide resin is a polyamic acid composition having a tensile strength of 350 MPa or more, an elongation of 20% or more, and a transmittance of 60% or more.
  17. 비정질 또는 결정질 실리콘 기판 상에 제 1 항에 따른 폴리아믹산 조성물을 도포하는 단계를 포함하는 디스플레이 기판의 제조방법.A method of manufacturing a display substrate comprising the step of applying the polyamic acid composition according to claim 1 on an amorphous or crystalline silicon substrate.
  18. 제 17 항에 있어서, 상기 폴리아믹산 조성물을 20 ℃ 내지 40 ℃에서 제1 열처리하는 단계; The method of claim 17, further comprising: subjecting the polyamic acid composition to a first heat treatment at 20°C to 40°C;
    상기 폴리아믹산 조성물을 40 ℃ 내지 200 ℃에서 제2 열처리하는 단계; 및A second heat treatment of the polyamic acid composition at 40°C to 200°C; And
    상기 폴리아믹산 조성물을 200 ℃ 내지 500 ℃에서 제3 열처리하는 단계를 포함하고,And a third heat treatment of the polyamic acid composition at 200°C to 500°C,
    상기 제1 열처리, 제2 열처리 및 제3 열처리 단계를 통해, 상기 폴리아믹산 조성물은 폴리아믹산의 아믹산기가 폐환, 탈수 반응된 이미드기를 포함하는 폴리이미드 수지를 생성하고 유기용매가 휘발되어 경화되고,Through the first heat treatment, the second heat treatment, and the third heat treatment step, the polyamic acid composition produces a polyimide resin containing an imide group in which the amic acid group of polyamic acid is closed and dehydrated, and an organic solvent is volatilized and cured. ,
    상기 제3 열처리가 완료되면, 상기 폴리이미드 수지가 상기 비정질 또는 결정질 실리콘 기판 상에서 경화되어 접착되는 디스플레이 기판의 제조방법.When the third heat treatment is completed, a method of manufacturing a display substrate to which the polyimide resin is cured and adhered on the amorphous or crystalline silicon substrate.
  19. 제18항에 있어서,The method of claim 18,
    상기 제1 열처리, 제2 열처리 및 제3 열처리 단계는, 각각 독립적으로, 3 ℃/min 내지 7℃/min의 범위에서 선택되는 둘 이상의 가변적인 승온 속도, 또는 상기 범위에서 선택되는 하나의 불변적인 승온속도로 수행되는 제조방법.Each of the first heat treatment, the second heat treatment, and the third heat treatment step is independently, two or more variable heating rates selected from the range of 3°C/min to 7°C/min, or one constant selected from the range. Manufacturing method performed at a heating rate.
  20. 제18항에 있어서,The method of claim 18,
    상기 폴리이미드 수지 상에 박막 트랜지스터(TFT)를 형성시키는 단계 및 Forming a thin film transistor (TFT) on the polyimide resin, and
    상기 비정질 또는 결정질 실리콘 기판에 레이저를 소정의 시간 동안 조사하여, 상기 폴리이미드 수지로부터 상기 비정질 또는 결정질 실리콘 기판을 제거하는 단계를 포함하고, And irradiating the amorphous or crystalline silicon substrate with a laser for a predetermined time to remove the amorphous or crystalline silicon substrate from the polyimide resin,
    상기 레이저 조사 후 측정된 폴리이미드 수지와 비정질 또는 결정질 실리콘 기판 사이의 접착력이 0.01 N/cm이하인 제조방법.A manufacturing method in which the adhesive force between the polyimide resin and the amorphous or crystalline silicon substrate measured after the laser irradiation is 0.01 N/cm or less.
PCT/KR2019/014503 2018-12-24 2019-10-30 Polyamic acid composition for manufacturing display substrate and method for manufacturing display substrate by using same WO2020138687A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0168515 2018-12-24
KR1020180168515A KR102013534B1 (en) 2018-12-24 2018-12-24 Polyamic Acid Composition for Display Substrate and Method for Manufacturing Display Substrate by Using the Same

Publications (1)

Publication Number Publication Date
WO2020138687A1 true WO2020138687A1 (en) 2020-07-02

Family

ID=67767129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014503 WO2020138687A1 (en) 2018-12-24 2019-10-30 Polyamic acid composition for manufacturing display substrate and method for manufacturing display substrate by using same

Country Status (2)

Country Link
KR (1) KR102013534B1 (en)
WO (1) WO2020138687A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7235356B2 (en) * 2018-12-24 2023-03-08 ピーアイ・アドバンスド・マテリアルズ・カンパニー・リミテッド Polyamic acid composition for manufacturing display substrate and method for manufacturing display substrate using the same
KR102013534B1 (en) * 2018-12-24 2019-08-22 에스케이씨코오롱피아이 주식회사 Polyamic Acid Composition for Display Substrate and Method for Manufacturing Display Substrate by Using the Same
KR102347593B1 (en) * 2019-11-21 2022-01-10 피아이첨단소재 주식회사 Polyimide film and method for preparing the same
KR102346581B1 (en) * 2019-11-22 2022-01-05 피아이첨단소재 주식회사 Method for preparing polyimide film and polyimide film prepared thereby
CN115551713A (en) * 2020-05-29 2022-12-30 东洋纺株式会社 Laminate comprising transparent highly heat-resistant film
EP4159440A1 (en) * 2020-05-29 2023-04-05 Toyobo Co., Ltd. Layered product including high temperature-resistant transparent film
WO2023200156A1 (en) * 2022-04-15 2023-10-19 피아이첨단소재 주식회사 Polyimide precursor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070059582A (en) * 2005-12-07 2007-06-12 마이크로코즘 테크놀리지 씨오.,엘티디 Polyamic acid composition and laminate made using the same
KR20110079810A (en) * 2008-10-31 2011-07-08 우베 고산 가부시키가이샤 Polyimide precursor solution composition
KR20160030889A (en) * 2013-07-05 2016-03-21 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polyimide resin
KR20170010380A (en) * 2014-05-24 2017-01-31 가부시키가이샤 가네카 Alkoxysilane-modified polyamic acid solution, laminate and flexible device using same, polyimide film, and production method for laminate
KR20190003328A (en) * 2017-06-30 2019-01-09 에스케이씨코오롱피아이 주식회사 Polyimide precursor composition, preparation method thereof and polyimide substrate prepared from the composition
KR102013534B1 (en) * 2018-12-24 2019-08-22 에스케이씨코오롱피아이 주식회사 Polyamic Acid Composition for Display Substrate and Method for Manufacturing Display Substrate by Using the Same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100710099B1 (en) * 2002-09-13 2007-04-20 카네카 코포레이션 Polyimide Film, Manufacturing Method of Same, and Usage of Same
KR20150062668A (en) * 2013-11-29 2015-06-08 삼성디스플레이 주식회사 Material for sacrificial layer and method for preparing flexible display using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070059582A (en) * 2005-12-07 2007-06-12 마이크로코즘 테크놀리지 씨오.,엘티디 Polyamic acid composition and laminate made using the same
KR20110079810A (en) * 2008-10-31 2011-07-08 우베 고산 가부시키가이샤 Polyimide precursor solution composition
KR20160030889A (en) * 2013-07-05 2016-03-21 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polyimide resin
KR20170010380A (en) * 2014-05-24 2017-01-31 가부시키가이샤 가네카 Alkoxysilane-modified polyamic acid solution, laminate and flexible device using same, polyimide film, and production method for laminate
KR20190003328A (en) * 2017-06-30 2019-01-09 에스케이씨코오롱피아이 주식회사 Polyimide precursor composition, preparation method thereof and polyimide substrate prepared from the composition
KR102013534B1 (en) * 2018-12-24 2019-08-22 에스케이씨코오롱피아이 주식회사 Polyamic Acid Composition for Display Substrate and Method for Manufacturing Display Substrate by Using the Same

Also Published As

Publication number Publication date
KR102013534B1 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
WO2020138687A1 (en) Polyamic acid composition for manufacturing display substrate and method for manufacturing display substrate by using same
WO2014168400A1 (en) Laminate, and element comprising substrate manufactured using same
WO2020091432A1 (en) Polyimide precursor composition for enhancing adhesiveness of polyimide film and polyimide film manufactured therefrom
WO2020096259A1 (en) Ultra-thin polyimide film having improved dimensional stability and manufacturing method therefor
WO2019093669A2 (en) Ultra-thin black polyimide film and manufacturing method therefor
WO2020111399A1 (en) Polyimide film comprising two or more fillers with different particle diameters and electronic apparatus comprising same
WO2019160218A1 (en) Polyamic acid composition having improved storage stability, manufacturing method for polyimide film using same, and polyimide film manufactured by means of same
WO2020017697A1 (en) Polyimide film including fluorine-containing silane additive and carbon black, and method for producing same
WO2020096363A1 (en) Polyimide composite film having excellent dielectic characteristics and method for forming same
WO2016140559A1 (en) Composition for polyimide film for flexible substrate of optoelectronic device
WO2019103274A1 (en) Polyimide film for display substrate
WO2020101225A1 (en) Polyimide precursor composition containing crosslinkable dianhydride-based compound and antioxidant, and polyimide film produced therefrom
WO2020080598A1 (en) Thick polyimide film having improved surface quality and method for manufacturing same
WO2020141713A1 (en) Method for preparing polyamic acid composition containing novel dicarbonyl compound, polyamic acid composition, method for manufacturing polyamide-imide film using same, and polyamide-imide film produced by same manufacturing method
WO2020105893A1 (en) Polyamic acid composition for packaging electronic components, and method for packaging electronic components using same
WO2020096410A1 (en) Polyimide composite film having improved adhesion to metal layer and method for manufacturing same
WO2018021747A1 (en) Polyimide precursor solution and method for producing same
WO2020017692A1 (en) Polyimide film comprising clay particles and carbon black and manufacturing method therefor
WO2020040527A1 (en) Polyimide film comprising crystalline polyimide resin and thermal conductive filler and manufacturing method therefor
WO2017018753A1 (en) Method for fabricating flexible substrate
WO2020159184A1 (en) Polyimide-based polymer film, substrate for display apparatus using same, and optical apparatus
WO2019182224A1 (en) Polyimide film comprising omnidirectional polymer chain, method for manufacturing same, and graphite sheet manufactured using same
WO2020138743A1 (en) Polyamic acid composition for manufacturing display substrate and method for manufacturing substrate for display by using same
WO2020071588A1 (en) Method for producing polyamideimide film, and polyamideimide film produced therefrom
WO2020040347A1 (en) Polyimide film having improved alkali resistance and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905844

Country of ref document: EP

Kind code of ref document: A1