WO2020040527A1 - Polyimide film comprising crystalline polyimide resin and thermal conductive filler and manufacturing method therefor - Google Patents

Polyimide film comprising crystalline polyimide resin and thermal conductive filler and manufacturing method therefor Download PDF

Info

Publication number
WO2020040527A1
WO2020040527A1 PCT/KR2019/010587 KR2019010587W WO2020040527A1 WO 2020040527 A1 WO2020040527 A1 WO 2020040527A1 KR 2019010587 W KR2019010587 W KR 2019010587W WO 2020040527 A1 WO2020040527 A1 WO 2020040527A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide film
polyimide
dianhydride
polyamic acid
film
Prior art date
Application number
PCT/KR2019/010587
Other languages
French (fr)
Korean (ko)
Inventor
김기훈
이길남
최정열
Original Assignee
에스케이씨코오롱피아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨코오롱피아이 주식회사 filed Critical 에스케이씨코오롱피아이 주식회사
Priority to CN201980055154.1A priority Critical patent/CN112585198B/en
Publication of WO2020040527A1 publication Critical patent/WO2020040527A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to a polyimide film comprising a crystalline polyimide resin and a thermally conductive filler and a method for producing the same.
  • the polyimide (PI) resin refers to a high heat-resistant resin prepared by solution polymerization of an aromatic dianhydride and an aromatic diamine or an aromatic diisocyanate to prepare a polyamic acid derivative, and then imidization by cyclization of the ring at a high temperature.
  • Polyimide resin is an insoluble and insoluble ultra high heat resistant resin that has excellent properties such as heat oxidation resistance, heat resistance, radiation resistance, low temperature, chemical resistance, and so on. It is used for electronic materials in a wide range of fields such as coatings, insulating films, semiconductors, and electrode protective films for TFT-LCDs.
  • the polyimide resin used in electronic devices for accumulating a large amount of information and processing and transmitting such information at high speed has to have high electrical insulation and to effectively release heat generated from electronic devices.
  • To improve the thermal conductivity is required.
  • the polyimide resin is different from other configurations, but generally has an amorphous structure, so the thermal conductivity is not high.
  • a method for improving the thermal conductivity of such a polyimide resin a method is known in which a thermally conductive filler is dispersed in a precursor solution and then a film is formed using the dispersion.
  • the polyimide film is configured to include a first polyimide resin, a second polyimide resin having a higher crystallinity and a thermally conductive filler than the first polyimide resin, thereby forming a planar surface of the polyimide film
  • a first polyimide resin a second polyimide resin having a higher crystallinity and a thermally conductive filler than the first polyimide resin, thereby forming a planar surface of the polyimide film
  • Directional thermal conductivity and thickness direction thermal conductivity can be improved.
  • the viscosity of the second polyamic acid which is a precursor of the second polyimide resin it is possible to improve the crystallinity of the polyimide film produced therefrom.
  • the present invention has a practical purpose to provide a specific embodiment thereof.
  • the present invention 100 parts by weight of the first polyimide resin,
  • the second polyimide resin is more crystalline than the first polyimide resin
  • the present invention has found that the thermal conductivity of the polyimide film is improved by the second polyimide resin and the thermally conductive filler having greater crystallinity than the first polyimide resin.
  • dianhydride is intended to include precursors or derivatives thereof, which technically may not be dianhydride, but nevertheless will react with the diamine to form a polyamic acid. This polyamic acid can be converted back to polyimide.
  • diamine is intended to include precursors or derivatives thereof, which may not technically be diamines, but will nevertheless react with dianhydrides to form polyamic acids, which in turn Can be converted to mid.
  • any pair of any upper range thresholds whether or not a range is disclosed separately, or It is to be understood that this disclosure specifically discloses all ranges formed with a desired value and any lower range limit or desired value.
  • Polyimide film according to the present invention 100 parts by weight of the first polyimide resin,
  • the second polyimide resin is more crystalline than the first polyimide resin
  • the polyimide film has a crystallinity of 50% or more, a thickness direction thermal conductivity of 0.8 W / m ⁇ K or more, and a planar direction thermal conductivity of 3.2 W / m ⁇ K or more.
  • polyimide resins are amorphous polymers, and polyimide films prepared therefrom also exhibit low or no crystallinity.
  • the polyimide film comprises a second polyimide resin having a higher crystallinity than the first polyimide resin in the polyimide film so as to exhibit crystallinity.
  • the crystallinity may be at least 50%.
  • the crystallinity of the polyimide resin is greatly influenced by the composition of the monomers constituting the polyimide resin, but the crystallinity may vary depending on the polymerization method in addition to the composition.
  • the crystallinity may vary depending on the polymerization method in addition to the composition.
  • some molecular structures may be arranged in a regular state depending on the viscosity to form a degree of crystal formation.
  • the crystallinity of the polyimide film may vary according to the content of the second polyimide resin in the polyimide film, and also according to the viscosity of the second polyamic acid which is a precursor of the second polyimide resin.
  • the degree of crystallinity of the polyimide film produced from may vary.
  • the second polyimide resin may form a crystal
  • the crystal and the thermally conductive filler may have a structure of forming a heat transfer path in a thickness direction and / or a planar direction in the film.
  • the crystal is a structure in which a part of the polyimide chain included in the second polyimide resin is regularly arranged, for example, radially regular arrangements in the two-dimensional or three-dimensional direction from the central nucleus of the crystal
  • a structure in which the polyimide chain is regularly arranged in the form of a circle or sphere in the form of a crystal is grown, but a specific shape or form is not limited.
  • Such a crystal may be present in a myriad of numbers in the polyimide film, may include a portion of the amorphous portion between the crystalline portion and the crystalline portion, it is also possible that the amorphous portion, the crystal portion may be present separately.
  • This structure is different from the structure of a general polyimide film in which a thermally conductive filler is dispersed between amorphous polyimide resins in a polyimide film, and the crystals have a thickness as well as the planar direction of the thermally conductive filler and film in the polyimide film.
  • the heat transfer path can also be formed in the direction, and thus the planar thermal conductivity and / or thickness thermal conductivity of the polyimide film according to the present invention can be improved.
  • the second polyimide resin is unconditionally contained in the polyimide film unconditionally.
  • the above advantages may be expressed when the content of the second polyimide resin in the polyimide film is a certain level, but if it exceeds this, the advantages in terms of improving the thermal conductivity may be enhanced, but as described above in the polyimide film It is because elongation of a polyimide film may fall rapidly because too much crystal
  • the polyimide film contains an appropriate amount of the first polyimide resin and the second polyimide resin so that the mechanical properties and the thermal conductivity of the polyimide film are compatible.
  • the polyimide film of the present invention comprises 100 parts by weight of the first polyimide resin, 3 to 10 parts by weight of the second polyimide resin, and 2 to 8 parts by weight of the thermally conductive filler and the crystallinity of the polyimide film Is 50% or more, the thickness thermal conductivity is 0.8 W / m ⁇ K or more, and the planar thermal conductivity may be 3.2 W / m ⁇ K or more.
  • the polyimide film of the present invention may include 5 to 10 parts by weight of the second polyimide resin.
  • the first polyimide resin may be prepared by imidizing the first polyamic acid formed by the reaction of the first dianhydride and the first diamine.
  • the first dianhydride that may be used to prepare the first polyamic acid of the present invention may be an aromatic tetracarboxylic dianhydride.
  • the aromatic tetracarboxylic dianhydride is pyromellitic dianhydride (or PMDA), oxydiphthalic dianhydride (or ODPA), diphenylsulfone-3,4,3 ', 4'-tetracarboxylic Dianhydride (or DSDA), bis (3,4-dicarboxyphenyl) sulfide dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3- Hexafluoropropane dianhydride, 2,3,3 ', 4'- benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic dianhydride (or BTDA), bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, p-phenylenebis (trimelitic monoester Acid
  • dianhydrides which may be particularly preferably used as the first dianhydride in the present invention are pyromellitic dianhydride (PMDA), oxydiphthalic Anhydride (ODPA) and benzophenone tetracarboxylic dianhydride (BTDA) may be one or more selected from the group consisting of.
  • PMDA pyromellitic dianhydride
  • ODPA oxydiphthalic Anhydride
  • BTDA benzophenone tetracarboxylic dianhydride
  • the 1st diamine which can be used for manufacture of the 1st polyamic-acid solution of this invention is an aromatic diamine, classified as follows, for example.
  • 1,4-diaminobenzene or paraphenylenediamine, PDA
  • 1,3-diaminobenzene 2,4-diaminotoluene
  • 2,6-diaminotoluene 3,5-diaminobenzo Diamines having one benzene nucleus in structure, such as Ik acid (or DABA) and the like, diamines having a relatively rigid structure
  • Ik acid or DABA
  • diaminodiphenyl ethers such as 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane (methylenediamine), 3,3'-dimethyl-4,4'-diamino Biphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 3,3'-dimethyl- 4,4'-diaminodiphenylmethane, 3,3'-dicarboxy-4,4'-diaminodiphenylmethane, 3,3 ', 5,5'-tetramethyl-4,4'- Diaminodiphenylmethane, bis (4-aminophenyl) sulfide, 4,4'-diaminobenzanilide, 3,3'-dichlorobenzidine, 3,3'-dimethylbenzidine (or
  • diamines which may be particularly preferably used as the first diamine in the present invention include phenylenediamine (PPD), 2,2-bis [4 '-( 4-aminophenoxy) phenyl] propane (BAPP) and methylenedianiline (MDA) may be one or more selected from the group consisting of.
  • PPD phenylenediamine
  • BAPP 2,2-bis [4 '-( 4-aminophenoxy) phenyl] propane
  • MDA methylenedianiline
  • the second polyimide resin may be prepared by imidizing the second polyamic acid formed by the reaction of the second dianhydride and the second diamine.
  • the second dianhydride may include biphenyltetracarboxylic dianhydride (BPDA), and the second diamine may be oxydianiline (ODA), 1,3-bis (4-aminophenoxy).
  • ODA oxydianiline
  • TPE-R 1,4-bis (3-aminophenoxy) benzene
  • TPE-Q 1,4-bis (3-aminophenoxy) benzene
  • the second diamine may be used alone or in combination of two or more as desired, but the diamine which may be particularly preferably used as the second diamine is 1,3-bis (4-aminophenoxy) benzene. (TPE-R).
  • the thermally conductive filler may include one or more selected from the group consisting of graphene, alumina, boron nitride, but is not limited thereto.
  • the thermally conductive filler may include 1 to 3 parts by weight of graphene and 1 to 5 parts by weight of alumina.
  • the desired level of thermal conductivity cannot be achieved.
  • the graphene or alumina content is above the above range, the excess graphene or alumina particles form agglomerates so that the particle agglomerates can be formed. It is not preferable because it may protrude from the surface of the film, resulting in a poor appearance, a problem that the mechanical properties of the produced polyimide film may be degraded or the film forming process itself is impossible.
  • the thermally conductive filler particle size can be appropriately adjusted to achieve the effect of the present invention, for example, the average long diameter of the graphene may be 5 to 15 ⁇ m, the average particle diameter of the alumina is 5 to 25 ⁇ m Can be.
  • the size of the graphene or alumina particles is less than the range, a desired level of thermal conductivity may not be achieved.
  • the size of the graphene or alumina particles is larger than the range, When mixed with the first polyamic acid or the second polyamic acid, the dispersibility is low, and the particles may protrude from the surface of the film, causing appearance defects.
  • the polyimide film of the present invention may have a crystallinity of 50% or more, a thickness thermal conductivity of 0.8 W / m ⁇ K or more, a planar thermal conductivity of 3.2 W / m ⁇ K or more, and an elongation of 30% or more. .
  • Preparing a precursor composition by mixing the first polyamic acid, the second polyamic acid, and the thermally conductive filler;
  • Production of the polyamic acid in the present invention is, for example,
  • the solvent is not particularly limited as long as it is an organic solvent in which the polyamic acid may be dissolved.
  • the solvent may be an aprotic polar solvent.
  • Non-limiting examples of the aprotic polar solvent include amide solvents such as N, N'-dimethylformamide (DMF) and N, N'-dimethylacetamide (DMAc), p-chlorophenol, o-chloro Phenol solvents such as phenol, N-methyl-pyrrolidone (NMP), gamma butyrolactone (GBL), diglyme, and the like, and the like, and these may be used alone or in combination of two or more thereof.
  • amide solvents such as N, N'-dimethylformamide (DMF) and N, N'-dimethylacetamide (DMAc)
  • p-chlorophenol o-chloro Phenol solvents
  • o-chloro Phenol solvents such as phenol, N-methyl-pyrrolidone (NMP), gamma butyrolactone (GBL), diglyme, and the like, and the like, and these may be used alone or in
  • the solubility of the polyamic acid may be adjusted by using auxiliary solvents such as toluene, tetrahydrofuran, acetone, methyl ethyl ketone, methanol, ethanol and water.
  • auxiliary solvents such as toluene, tetrahydrofuran, acetone, methyl ethyl ketone, methanol, ethanol and water.
  • the organic solvents that can be particularly preferably used for preparing the precursor compositions of the present invention may be amide solvents N, N'-dimethylformamide and N, N'-dimethylacetamide.
  • the polymerization method is not limited only to the above examples, and any known method may be used.
  • the polymerization method may be applied to the first polyamic acid and the second polyamic acid polymerization, respectively.
  • the second polyamic acid when the solid content is 15% by weight, may have a viscosity measured at 23 ° C. from 100,000 cP to 150,000 cP.
  • the viscosity of the second polyamic acid exceeds the above range, a higher pressure must be applied by friction with the pipe when the second polyamic acid is moved through the pipe during the manufacturing process of the polyimide film, so that the process cost This may increase and the handleability may decrease.
  • the higher the viscosity the more time and cost the mixing process can take.
  • the filming process itself may be impossible due to the excessively high viscosity, and even if the filming process is possible, the elongation of the polyimide film produced therefrom may be lowered, which is not preferable.
  • the viscosity of the said second polyamic acid is less than the said range, the crystallinity of the 2nd polyimide resin contained in the polyimide film manufactured from this will fall, and the crystal and thermoelectric of a 2nd polyimide resin will fall.
  • the conductive filler cannot exert the effect of the present invention to form a heat transfer path in the film to improve the thermal conductivity.
  • the obtaining of the polyimide film may include forming a polyimide film by imidating the gel film after preparing the gel film by forming the precursor composition on a support and drying the film.
  • thermal imidation method As a specific method of such imidation, the thermal imidation method, the chemical imidation method, or the composite imidation method which uses the said thermal imidation method and the chemical imidation method together is mentioned as an example, About these the following non-limiting examples It will be described in more detail through.
  • the thermal imidization method is a method of excluding an chemical catalyst and inducing an imidization reaction with a heat source such as a hot air or an infrared dryer.
  • the gel film may be heat-treated to obtain a polyimide film.
  • a gel film can be understood as a film intermediate which has self-support at an intermediate stage with respect to the conversion from polyamic acid to polyimide.
  • the precursor composition is cast in the form of a film on a support such as glass plate, aluminum foil, endless stainless belt, or stainless drum, and then the precursor composition on the support 50 °C to 200 °C, Specifically, the drying may be performed at a variable temperature ranging from 80 ° C to 150 ° C.
  • a process of stretching the gel film may be performed to adjust the thickness and size of the polyimide film obtained in the subsequent heat treatment process and to improve orientation, and the stretching may be performed in the machine transport direction (MD) and the machine transport direction. It may be performed in at least one direction of the transverse direction (TD) with respect to.
  • MD machine transport direction
  • TD transverse direction
  • the gel film thus obtained is fixed in a tenter and then heat-treated at a variable temperature in the range of 50 ° C to 500 ° C, specifically 150 ° C to 500 ° C, to remove water, residual solvents, and the like remaining in the gel film. Nearly all amic acid groups can be imidated to obtain the polyimide film of the present invention.
  • the polyimide film obtained as described above may be heated to a temperature of 400 ° C. to 650 ° C. for 5 seconds to 400 seconds to further cure the polyimide film, and may remain in the obtained polyimide film. This may be done under a predetermined tension to relieve stress.
  • the chemical imidization method is a method of promoting imidization of an amic acid group by adding a dehydrating agent and / or an imidizing agent to the precursor composition.
  • the term "dehydrating agent” refers to a substance that promotes a ring-closure reaction through dehydration to polyamic acid, and includes, but is not limited to, aliphatic acid anhydrides, aromatic acid anhydrides, and N, N '. -Dialkylcarbodiimide, halogenated lower aliphatic, halogenated lower patty acid anhydride, aryl phosphonic dihalide, thionyl halide and the like. Of these, aliphatic acid anhydrides may be preferred in view of ease of availability and cost, and non-limiting examples thereof include acetic anhydride (AA), propion acid anhydride, and lactic acid anhydride. These etc. are mentioned, These can be used individually or in mixture of 2 or more types.
  • imidizing agent means a substance having an effect of promoting a ring closure reaction to polyamic acid, and may be an imine-based component such as aliphatic tertiary amine, aromatic tertiary amine, and heterocyclic tertiary amine. Can be. Of these, heterocyclic tertiary amines may be preferable in view of reactivity as a catalyst. Non-limiting examples of heterocyclic tertiary amines include quinoline, isoquinoline, ⁇ -picolin (BP), pyridine, and the like, and these may be used alone or in combination of two or more thereof.
  • imine-based component such as aliphatic tertiary amine, aromatic tertiary amine, and heterocyclic tertiary amine.
  • heterocyclic tertiary amines may be preferable in view of reactivity as a catalyst.
  • Non-limiting examples of heterocyclic tertiary amines include quinoline, iso
  • the addition amount of a dehydrating agent exists in the range of 0.5-5 mol with respect to 1 mol of amic acid groups in polyamic acid, and it is especially preferable to exist in the range of 1.0 mol-4 mol.
  • the addition amount of the imidizing agent is preferably in the range of 0.05 mol to 2 mol, and particularly preferably in the range of 0.2 mol to 1 mol with respect to 1 mol of the amic acid group in the polyamic acid.
  • the dehydrating agent and the imidating agent are less than the above range, chemical imidization is insufficient, cracks may be formed in the polyimide film to be produced, and the mechanical strength of the film may be lowered.
  • the imidization may proceed excessively rapidly, and in this case, it is difficult to cast in the form of a film or the produced polyimide film may exhibit brittle characteristics, which is not preferable. not.
  • the composite imidation method which further performs the thermal imidation method can be used for manufacture of a polyimide film.
  • the complex imidization method includes a chemical imidization method of adding a dehydrating agent and / or an imidizing agent to the precursor composition at a low temperature; And a thermal imidization process of drying the precursor composition to form a gel film and heat treating the gel film.
  • the type and amount of the dehydrating agent and the imidizing agent may be appropriately selected according to the above-described chemical imidization method.
  • the precursor composition containing the dehydrating agent and / or the imidizing agent is cast in a film form on a support such as a glass plate, an aluminum foil, an endless stainless belt, or a stainless drum, and then onto the support.
  • the precursor composition is dried at a variable temperature ranging from 50 ° C. to 200 ° C., in particular 80 ° C. to 200 ° C.
  • chemical converting agents and / or imidating agents can act as catalysts so that amic acid groups can be rapidly converted to imide groups.
  • a process of stretching the gel film may be performed to adjust the thickness and size of the polyimide film obtained in the subsequent heat treatment process and to improve orientation, and the stretching may be performed in the machine transport direction (MD) and the machine transport direction. It may be performed in at least one direction of the transverse direction (TD) with respect to.
  • MD machine transport direction
  • TD transverse direction
  • the gel film thus obtained is fixed in a tenter and then heat treated at a variable temperature ranging from 50 ° C. to 600 ° C., specifically 150 ° C. to 500 ° C. to remove water, catalyst, residual solvent, etc. remaining in the gel film, Nearly all remaining amic acid groups can be imidated to obtain the polyimide film of the present invention.
  • the dehydrating agent and / or the imidating agent may act as a catalyst, thereby rapidly converting the amic acid group into the imide group, thereby enabling high imidization rate.
  • the polyimide film obtained as described above may be heated to a temperature of 400 ° C. to 650 ° C. for 5 seconds to 400 seconds to further cure the polyimide film, and may remain in the obtained polyimide film. This may be done under a predetermined tension to relieve stress.
  • the present invention can also provide an electronic device including the polyimide film.
  • the precursor composition was bubbled through a high speed rotation of at least 1,500 rpm. Thereafter, the degassed polyimide precursor composition was applied to the glass substrate using a spin coater. After drying for 30 minutes in a nitrogen atmosphere and at a temperature of 120 °C to prepare a gel film, the gel film is heated to 450 °C at a rate of 2 °C / min, heat treatment at 450 °C 60 minutes, up to 30 °C Cooling at a rate of 2 ° C./min gave a polyimide film. Thereafter, the polyimide film was peeled off from the glass substrate by dipping in distilled water.
  • the polyimide film prepared contained 100 parts by weight of the first polyimide resin, 3 parts by weight of the second polyimide resin, 1 part by weight of graphene and 5 parts by weight of alumina and had a thickness of 15 ⁇ m.
  • the thickness of the produced polyimide film was measured using an Anritsu Electric Film thickness tester.
  • a polyimide film was prepared in the same manner as in Example 1, except that the viscosity of the second polyamic acid solution was changed as in Table 1 below.
  • Preparation Example 3 a polyimide film was prepared in the same manner as in Example 1, except that the amount of the polyamic acid solution was changed to have a content of the polyimide resin of Table 1 below.
  • Preparation Example 2 except that the viscosity of the second polyamic acid solution was changed as shown in Table 1, and in Preparation Example 3, the amount of the polyamic acid solution was changed to have a content of the polyimide resin of Table 1 below.
  • a polyimide film was prepared in the same manner as in Example 1.
  • Preparation Example 3 a polyimide film was prepared in the same manner as in Example 1, except that the amount of the polyamic acid solution was changed to have a content of the polyimide resin of Table 1 below.
  • Preparation Example 2 except that the viscosity of the second polyamic acid solution was changed as shown in Table 1, and in Preparation Example 3, the amount of the polyamic acid solution was changed to have a content of the polyimide resin of Table 1 below.
  • a polyimide film was prepared in the same manner as in Example 1.
  • a polyimide film was prepared in the same manner as in Example 1 except that 30.51 g of ODA was added instead of TPE-R.
  • a polyimide film was prepared in the same manner as in Example 1, except that no second polyamic acid was added.
  • Preparation Example 3 a polyimide film was prepared in the same manner as in Example 1, except that the amount of the polyamic acid solution was changed to have a content of the polyimide resin of Table 1 below.
  • Preparation Example 3 a polyimide film was prepared in the same manner as in Example 1, except that the amount of the polyamic acid solution was changed to have a content of the polyimide resin of Table 1 below.
  • a polyimide film was prepared in the same manner as in Example 1, except that the viscosity of the second polyamic acid solution was changed as in Table 1 below.
  • Preparation Example 2 except that the viscosity of the second polyamic acid solution was changed as shown in Table 1, and in Preparation Example 3, the amount of the polyamic acid solution was changed to have a content of the polyimide resin of Table 1 below.
  • a polyimide film was prepared in the same manner as in Example 1.
  • Preparation Example 2 except that the viscosity of the second polyamic acid solution was changed as shown in Table 1, and in Preparation Example 3, the amount of the polyamic acid solution was changed to have a content of the polyimide resin of Table 1 below.
  • a polyimide film was prepared in the same manner as in Example 1.
  • a polyimide film was prepared in the same manner as in Example 1 except that a second polyamic acid was prepared using 29.40 g of MDA instead of TPE-R and 44.63 g of ODPA instead of BPDA. Prepared.
  • Example 1 One 5 3 BPDA; TPE-R 130,000 Example 2 One 5 3 BPDA; TPE-R 150,000 Example 3 One 5 5 BPDA; TPE-R 130,000 Example 4 One 5 5 BPDA; TPE-R 150,000 Example 5 One 5 10 BPDA; TPE-R 130,000 Example 6 One 5 10 BPDA; TPE-R 150,000 Example 7 One 5 3 BPDA; ODA 130,000 Comparative Example 1 One 5 - - - Comparative Example 2 One 5 One BPDA; TPE-R 130,000 Comparative Example 3 One 5 13 BPDA; TPE-R 130,000 Comparative Example 4 One 5 3 BPDA; TPE-R 80,000 Comparative Example 5 One 5 3 BPDA; TPE-R 170,000 Comparative Example 6 One 5 3 BPDA; TPE-R 200,000
  • X c is the degree of crystallinity (%)
  • I a is the area of amorphous scattering
  • I c is the area of crystalline scattering peaks.
  • the crystallinity of the polyimide film is included by including 3 to 10 parts by weight of the second polyimide resin with respect to 100 parts by weight of the first polyimide resin. It can be confirmed that 50% or more are satisfied.
  • Comparative Examples 1 and 2 in which the content of the second polyimide resin is lower than the range of the present invention it can be seen that the crystallinity is lower than the polyimide film of the examples, the viscosity is lower than the range of the present invention in the manufacturing process Comparative Example 4 in which the second polyamic acid was added, Comparative Example 7 in which the second polyamic acid without the crystalline monomer was added, it was also confirmed that the crystallinity is lower than the polyimide film of the examples.
  • the crystallinity of the polyimide film varies according to the content of the second polyimide resin included in the polyimide film, and in the case of using a second polyamic acid having a relatively low viscosity in the manufacturing process, the polyimide film Although manufactured to include the same amount of the second polyimide resin, it can be seen that the crystallinity of the polyimide film is different.
  • each polyimide film was cut into a width of 10 mm and a length of 40 mm, followed by Instron 5564 UTM equipment of Instron. Elongation was measured using ASTM D-882 method, and the results are shown in Table 3 below.
  • the thermal conductivity in the planar direction is 3.2 W / m ⁇ K or more
  • the thermal conductivity in the thickness direction is 0.8 W / m ⁇ K or more
  • the elongation is 30%. It can be confirmed that the above are satisfied.
  • Comparative Examples 1 and 2 in which the content of the second polyimide resin is lower than the range of the present invention, and Comparative Example 4 in which a second polyamic acid having a viscosity lower than the range of the present invention are used in the preparation process are used.
  • Comparative Example 7 in which a second polyamic acid was added it was confirmed that the thermal conductivity, in particular, the thermal conductivity in the thickness direction was less than 0.8 W / m ⁇ K.
  • the polyimide film according to the present invention includes a first polyimide resin, a second polyimide resin having a higher crystallinity than the first polyimide resin, and a thermally conductive filler, so that the crystals and the thermal conductivity of the second polyimide resin are By forming the heat transfer path in the film in the thickness direction and / or the planar direction in the film, the planar thermal conductivity and the thickness direction thermal conductivity of the polyimide film can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

The present invention provides a polyimide film, comprising: 100 parts by weight of a first polyimide resin; 3-10 parts by weight of a second polyimide resin; and 2-8 parts by weight of a thermal conductive filler, wherein the second polyimide resin has higher crystallinity than the first polyimide resin and the polyimide film has a degree of crystallization of 50% or higher, a thermal conductivity of 0.8 W/m•K or higher in the thickness direction, and a thermal conductivity of 3.2 W/m•K or higher in the plane direction.

Description

결정성 폴리이미드 수지 및 열전도성 필러를 포함하는 폴리이미드 필름 및 이의 제조방법Polyimide film comprising crystalline polyimide resin and thermally conductive filler and method for preparing same
본 발명은 결정성 폴리이미드 수지 및 열전도성 필러를 포함하는 폴리이미드 필름 및 이의 제조방법에 관한 것이다.The present invention relates to a polyimide film comprising a crystalline polyimide resin and a thermally conductive filler and a method for producing the same.
일반적으로 폴리이미드(PI) 수지라 함은 방향족 이무수물과 방향족 디아민 또는 방향족 디이소시아네이트를 용액 중합하여 폴리아믹산 유도체를 제조한 후, 고온에서 폐환 탈수시켜 이미드화하여 제조되는 고내열 수지를 일컫는다.In general, the polyimide (PI) resin refers to a high heat-resistant resin prepared by solution polymerization of an aromatic dianhydride and an aromatic diamine or an aromatic diisocyanate to prepare a polyamic acid derivative, and then imidization by cyclization of the ring at a high temperature.
폴리이미드 수지는 불용, 불융의 초고내열성 수지로서 내열산화성, 내열특성, 내방사선성, 저온특성, 내약품성 등이 우수한 특성을 가지고 있어, 자동차 재료, 항공소재, 우주선 소재 등의 내열 첨단소재 및 절연코팅제, 절연막, 반도체, TFT-LCD의 전극 보호막 등 광범위한 분야의 전자재료에 사용되고 있다.Polyimide resin is an insoluble and insoluble ultra high heat resistant resin that has excellent properties such as heat oxidation resistance, heat resistance, radiation resistance, low temperature, chemical resistance, and so on. It is used for electronic materials in a wide range of fields such as coatings, insulating films, semiconductors, and electrode protective films for TFT-LCDs.
최근 고도 정보화 추세에 따라 대량의 정보를 축적하고, 이러한 정보를 고속으로 처리 및 전달하기 위한 전자기기에 사용되는 폴리이미드 수지는 전기 절연성이 높아야 함은 물론, 전자기기에서 발생하는 열을 효과적으로 방출하기 위해 열전도성 향상이 요구되고 있다.In accordance with the recent trend of high informatization, the polyimide resin used in electronic devices for accumulating a large amount of information and processing and transmitting such information at high speed has to have high electrical insulation and to effectively release heat generated from electronic devices. To improve the thermal conductivity is required.
상세하게는, 방열성능을 더욱 향상시키기 위하여 폴리이미드 필름의 평면방향뿐만 아니라 두께방향에 대해서도 소망하는 정도의 열전도성을 확보하는 것이 필요하다.In detail, in order to further improve heat dissipation performance, it is necessary to ensure the desired thermal conductivity not only in the planar direction but also in the thickness direction of the polyimide film.
그런데, 폴리이미드 수지는 기타 구성에 따라서 차이가 발생하기는 하나 일반적으로 무정형 구조를 가지므로 열전도율은 높지 않다. 이러한 폴리이미드 수지의 열전도성을 개선하기 위한 방법으로 전구체 용액 중에 열전도성 필러를 분산시킨 후, 이 분산액을 이용하여 필름을 형성하는 방법이 알려져 있다.By the way, the polyimide resin is different from other configurations, but generally has an amorphous structure, so the thermal conductivity is not high. As a method for improving the thermal conductivity of such a polyimide resin, a method is known in which a thermally conductive filler is dispersed in a precursor solution and then a film is formed using the dispersion.
그러나, 이와 같이 열전도성 필러를 첨가하는 것만으로는 소망하는 정도의 열전도성을 달성하기 어려우며, 열전도성 향상을 위하여 필러의 함량을 지나치게 많이 투여하는 경우에는, 과량의 필러가 응집체를 형성하여 필러 응집체가 필름 표면으로부터 돌출하여 외관 불량이 발생할 수 있다.However, it is difficult to achieve a desired degree of thermal conductivity only by adding a thermally conductive filler in this way, and in the case where the content of the filler is excessively administered to improve the thermal conductivity, an excess of filler forms an aggregate to form a filler aggregate. Protruding from the film surface may cause a poor appearance.
뿐만 아니라, 필름 내에 필러의 함량이 증가함에 따라, 폴리이미드 필름의 기계적 특성이 저하되거나 필름화 공정 자체가 불가능한 문제도 발생할 수 있다.In addition, as the content of the filler in the film is increased, a problem may occur that the mechanical properties of the polyimide film are degraded or the filming process itself is impossible.
따라서, 이러한 문제점을 근본적으로 해결할 수 있는 기술에 대한 필요성이 높은 실정이다.Therefore, there is a high need for a technology that can fundamentally solve these problems.
본 발명의 목적은 결정성 폴리이미드 수지 및 열전도성 필러를 포함하는 폴리이미드 필름을 제공하는 것이다.It is an object of the present invention to provide a polyimide film comprising a crystalline polyimide resin and a thermally conductive filler.
본 발명의 일 측면에 따르면, 폴리이미드 필름에 제1 폴리이미드 수지, 상기 제1 폴리이미드 수지에 비해 결정성이 큰 제2 폴리이미드 수지 및 열전도성 필러를 포함하도록 구성함으로써, 폴리이미드 필름의 평면방향 열전도율 및 두께방향 열전도율을 향상시킬 수 있다.According to an aspect of the present invention, the polyimide film is configured to include a first polyimide resin, a second polyimide resin having a higher crystallinity and a thermally conductive filler than the first polyimide resin, thereby forming a planar surface of the polyimide film Directional thermal conductivity and thickness direction thermal conductivity can be improved.
본 발명의 또 다른 측면에 따르면, 제2 폴리이미드 수지의 전구체인 제2 폴리아믹산의 점도를 조절하여, 이로부터 제조되는 폴리이미드 필름의 결정화도를 향상시킬 수 있다.According to another aspect of the present invention, by adjusting the viscosity of the second polyamic acid which is a precursor of the second polyimide resin, it is possible to improve the crystallinity of the polyimide film produced therefrom.
이에 본 발명은 이의 구체적 실시예를 제공하는데 실질적인 목적이 있다.Therefore, the present invention has a practical purpose to provide a specific embodiment thereof.
본 발명은, 100 중량부의 제1 폴리이미드 수지,The present invention, 100 parts by weight of the first polyimide resin,
3 내지 10중량부의 제2 폴리이미드 수지, 및3 to 10 parts by weight of the second polyimide resin, and
2 내지 8 중량부의 열전도성 필러를 포함하고,2 to 8 parts by weight of the thermally conductive filler,
상기 제2 폴리이미드 수지는 제1 폴리이미드 수지에 비해 결정성이 크고,The second polyimide resin is more crystalline than the first polyimide resin,
폴리이미드 필름의 결정화도가 50 % 이상이고, 두께방향 열전도율이 0.8 W/m·K 이상이고, 평면방향 열전도율이 3.2 W/m·K 이상인, 폴리이미드 필름을 제공한다.The polyimide film whose crystallinity of a polyimide film is 50% or more, thickness direction thermal conductivity is 0.8 W / m * K or more, and planar direction thermal conductivity is 3.2 W / m * K or more.
본 발명은 상기 제1 폴리이미드 수지에 비해 결정성이 큰 제2 폴리이미드 수지 및 열전도성 필러에 의해 폴리이미드 필름의 열전도성이 향상됨을 발견하였다.The present invention has found that the thermal conductivity of the polyimide film is improved by the second polyimide resin and the thermally conductive filler having greater crystallinity than the first polyimide resin.
따라서, 이의 구현을 위한 구체적인 내용을 본 명세서에서 설명한다.Therefore, specific content for implementation thereof is described herein.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to this, terms or words used in the present specification and claims should not be construed as having a conventional or dictionary meaning, and the inventors should properly explain the concept of terms in order to best explain their own invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that it can be defined.
따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 하나의 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 존재할 수 있음을 이해하여야 한다.Therefore, the configuration of the embodiments described herein is only one of the most preferred embodiments of the present invention and does not represent all of the technical idea of the present invention, various equivalents and modifications that can replace them at the time of the present application It should be understood that examples may exist.
본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.As used herein, the singular forms "a", "an" and "the" include plural forms unless the context clearly indicates otherwise. As used herein, the terms "comprise", "comprise" or "have" are intended to indicate that there is a feature, number, step, component, or combination thereof, that is, one or more other features, It is to be understood that the present invention does not exclude the possibility of adding or presenting numbers, steps, components, or combinations thereof.
본 명세서에서 "디안하이드라이드(이무수물; dianhydride)"는 그 전구체 또는 유도체를 포함하는 것으로 의도되는데, 이들은 기술적으로는 디안하이드라이드가 아닐 수 있지만, 그럼에도 불구하고 디아민과 반응하여 폴리아믹산을 형성할 것이며, 이 폴리아믹산은 다시 폴리이미드로 변환될 수 있다.As used herein, "dianhydride" is intended to include precursors or derivatives thereof, which technically may not be dianhydride, but nevertheless will react with the diamine to form a polyamic acid. This polyamic acid can be converted back to polyimide.
본 명세서에서 "디아민"은 그의 전구체 또는 유도체를 포함하는 것으로 의도되는데, 이들은 기술적으로는 디아민이 아닐 수 있지만, 그럼에도 불구하고 디안하이드라이드와 반응하여 폴리아믹산을 형성할 것이며, 이 폴리아믹산은 다시 폴리이미드로 변환될 수 있다.As used herein, "diamine" is intended to include precursors or derivatives thereof, which may not technically be diamines, but will nevertheless react with dianhydrides to form polyamic acids, which in turn Can be converted to mid.
본 명세서에서 양, 농도, 또는 다른 값 또는 파라미터가 범위, 바람직한 범위 또는 바람직한 상한 값 및 바람직한 하한 값의 열거로서 주어지는 경우, 범위가 별도로 개시되는 지에 상관없이 임의의 한 쌍의 임의의 위쪽 범위 한계치 또는 바람직한 값 및 임의의 아래쪽 범위 한계치 또는 바람직한 값으로 형성된 모든 범위를 구체적으로 개시하는 것으로 이해되어야 한다.Where an amount, concentration, or other value or parameter is given herein as an enumeration of ranges, preferred ranges, or preferred upper and preferred lower values, any pair of any upper range thresholds, whether or not a range is disclosed separately, or It is to be understood that this disclosure specifically discloses all ranges formed with a desired value and any lower range limit or desired value.
수치 값의 범위가 본 명세서에서 언급될 경우, 달리 기술되지 않는다면, 그 범위는 그 종점 및 그 범위 내의 모든 정수와 분수를 포함하는 것으로 의도된다.When a range of numerical values is mentioned herein, unless stated otherwise, the range is intended to include the endpoint and all integers and fractions within that range.
본 발명의 범주는 범위를 정의할 때 언급되는 특정 값으로 한정되지 않는 것으로 의도된다.It is intended that the scope of the invention not be limited to the particular values mentioned when defining the range.
제1 양태: 폴리이미드 필름First Embodiment: Polyimide Film
본 발명에 따른 폴리이미드 필름은, 100 중량부의 제1 폴리이미드 수지,Polyimide film according to the present invention, 100 parts by weight of the first polyimide resin,
3 내지 10 중량부의 제2 폴리이미드 수지, 및3 to 10 parts by weight of the second polyimide resin, and
2 내지 8 중량부의 열전도성 필러를 포함하고,2 to 8 parts by weight of the thermally conductive filler,
상기 제2 폴리이미드 수지는 제1 폴리이미드 수지에 비해 결정성이 크고,The second polyimide resin is more crystalline than the first polyimide resin,
폴리이미드 필름의 결정화도가 50 % 이상이고, 두께방향 열전도율이 0.8 W/m·K 이상이고, 평면방향 열전도율이 3.2 W/m·K 이상인 것을 특징으로 한다.The polyimide film has a crystallinity of 50% or more, a thickness direction thermal conductivity of 0.8 W / m · K or more, and a planar direction thermal conductivity of 3.2 W / m · K or more.
일반적으로 사용되는 폴리이미드 수지는 무정형의 고분자로써 이로부터 제조되는 폴리이미드 필름 역시 결정성이 나타나지 않거나 매우 낮다. 이와 달리, 본 발명에서는 폴리이미드 필름 내에 상기 제1 폴리이미드 수지에 비해 결정성이 큰 제2 폴리이미드 수지를 포함하여 폴리이미드 필름이 결정성을 나타내도록 구성하며, 상세하게는 상기 폴리이미드 필름의 결정화도가 50 % 이상일 수 있다.Generally used polyimide resins are amorphous polymers, and polyimide films prepared therefrom also exhibit low or no crystallinity. In contrast, in the present invention, the polyimide film comprises a second polyimide resin having a higher crystallinity than the first polyimide resin in the polyimide film so as to exhibit crystallinity. The crystallinity may be at least 50%.
상기 폴리이미드 필름 내에 조성이 상이한 각각의 폴리이미드 수지들의 결정화도를 구분하여 측정하고 폴리이미드 수지간의 결정성의 크기를 비교하는 것은 용이하지 않지만, 폴리이미드 필름 자체의 결정화도를 측정하는 것은 가능하다. 따라서, 상기 폴리이미드 필름 내에서 제2 폴리이미드 수지의 함량이 증가할수록 폴리이미드 필름의 결정화도가 상승하는 경우, 상기 제2 폴리이미드 수지가 제1 폴리이미드 수지에 비해 결정성이 크다는 점을 확인할 수 있다.Although it is not easy to measure the crystallinity of each polyimide resin having a different composition in the polyimide film and compare the size of the crystallinity between the polyimide resins, it is possible to measure the crystallinity of the polyimide film itself. Therefore, when the crystallinity of the polyimide film increases as the content of the second polyimide resin increases in the polyimide film, it can be confirmed that the second polyimide resin has greater crystallinity than the first polyimide resin. have.
폴리이미드 수지의 결정성은 이를 구성하는 단량체의 조성에 많은 영향을 받지만, 조성 이외에 중합 방법에 따라서도 결정성이 달라질 수 있다. 예를 들어, 폴리이미드 수지의 제조 과정에서 그 전구체인 폴리아믹산을 중합하는 과정에서 점도에 따라 일부 분자구조가 규칙적인 상태로 배열되어 결정을 형성하는 정도에 차이가 발생할 수 있다.The crystallinity of the polyimide resin is greatly influenced by the composition of the monomers constituting the polyimide resin, but the crystallinity may vary depending on the polymerization method in addition to the composition. For example, in the process of preparing a polyimide resin, in the process of polymerizing a polyamic acid as its precursor, some molecular structures may be arranged in a regular state depending on the viscosity to form a degree of crystal formation.
요약하면, 본 발명에서는 폴리이미드 필름 내의 상기 제2 폴리이미드 수지의 함량에 따라 폴리이미드 필름의 결정화도가 달라질 수 있으며, 또한, 상기 제2 폴리이미드 수지의 전구체인 제2 폴리아믹산의 점도에 따라서 이로부터 제조되는 폴리이미드 필름의 결정화도가 달리질 수 있다.In summary, in the present invention, the crystallinity of the polyimide film may vary according to the content of the second polyimide resin in the polyimide film, and also according to the viscosity of the second polyamic acid which is a precursor of the second polyimide resin. The degree of crystallinity of the polyimide film produced from may vary.
한편, 상기 제2 폴리이미드 수지의 적어도 일부는 결정을 형성하고, 상기 결정과 상기 열전도성 필러는 필름 내에서 두께방향 및/또는 평면방향에 대해 열 전달 경로를 형성하는 구조일 수 있다.Meanwhile, at least a part of the second polyimide resin may form a crystal, and the crystal and the thermally conductive filler may have a structure of forming a heat transfer path in a thickness direction and / or a planar direction in the film.
본 발명에서, 상기 결정은 제2 폴리이미드 수지에 포함되는 폴리이미드 사슬의 일부가 규칙적으로 배열되는 구조로서, 예를 들어, 결정의 중심 핵으로부터 방사형으로 규칙적인 배열들이 2차원 또는 3차원 방향으로 성장하고, 결정의 모양이 원 형태 또는 구 형태로 폴리이미드 사슬이 규칙적으로 배열되는 구조를 예로 들 수 있으나, 구체적인 모양 또는 형태가 한정되는 것은 아니다.In the present invention, the crystal is a structure in which a part of the polyimide chain included in the second polyimide resin is regularly arranged, for example, radially regular arrangements in the two-dimensional or three-dimensional direction from the central nucleus of the crystal A structure in which the polyimide chain is regularly arranged in the form of a circle or sphere in the form of a crystal is grown, but a specific shape or form is not limited.
상기와 같은 결정은 폴리이미드 필름 내에 무수히 많은 숫자로 존재할 수 있고, 결정 부분과 결정 부분 사이에 무정형 부분을 일부 포함할 수 있으며, 독립적으로 무정형 부분, 결정 부분이 각각 구분되어 존재하는 것도 가능하다.Such a crystal may be present in a myriad of numbers in the polyimide film, may include a portion of the amorphous portion between the crystalline portion and the crystalline portion, it is also possible that the amorphous portion, the crystal portion may be present separately.
이러한 구조는 폴리이미드 필름 내에서 무정형 폴리이미드 수지 사이에 열전도성 필러가 분산되어 있는 일반적인 폴리이미드 필름의 구조와 달리, 상기 결정이 폴리이미드 필름 내에서 열전도성 필러와 필름의 평면방향뿐만 아니라, 두께방향으로도 열 전달 경로를 형성할 수 있는 바, 본 발명에 따른 폴리이미드 필름의 평면방향 열전도율 및/또는 두께방향 열전도율을 향상시킬 수 있다.This structure is different from the structure of a general polyimide film in which a thermally conductive filler is dispersed between amorphous polyimide resins in a polyimide film, and the crystals have a thickness as well as the planar direction of the thermally conductive filler and film in the polyimide film. The heat transfer path can also be formed in the direction, and thus the planar thermal conductivity and / or thickness thermal conductivity of the polyimide film according to the present invention can be improved.
다만 이상의 이점에도 불구하고 제2 폴리이미드 수지가 폴리이미드 필름에 무조건적으로 많이 포함되는 것은 바람직하지 않다.However, despite the above advantages, it is not preferable that the second polyimide resin is unconditionally contained in the polyimide film unconditionally.
구체적으로, 폴리이미드 필름에서 제2 폴리이미드 수지의 함량이 일정 수준일 때 앞선 이점이 발현될 수 있지만, 이를 넘어서는 경우, 열전도율 향상 측면에서의 이점이 강화될 순 있으나, 폴리이미드 필름 내에 상기와 같은 결정이 지나치게 많이 존재하여 폴리이미드 필름의 신율이 급격하게 저하될 수 있기 때문이다.Specifically, the above advantages may be expressed when the content of the second polyimide resin in the polyimide film is a certain level, but if it exceeds this, the advantages in terms of improving the thermal conductivity may be enhanced, but as described above in the polyimide film It is because elongation of a polyimide film may fall rapidly because too much crystal | crystallization exists.
즉, 폴리이미드 필름의 기계적 물성과 열전도율이 양립 가능하도록, 폴리이미드 필름은 적정량의 제1 폴리이미드 수지 및 제2 폴리이미드 수지를 포함하는 것이 중요하다.That is, it is important that the polyimide film contains an appropriate amount of the first polyimide resin and the second polyimide resin so that the mechanical properties and the thermal conductivity of the polyimide film are compatible.
이에 앞서 설명한 바와 같이, 본 발명의 폴리이미드 필름은 100 중량부의 제1 폴리이미드 수지, 3 내지 10 중량부의 제2 폴리이미드 수지, 및 2 내지 8 중량부의 열전도성 필러를 포함하고 폴리이미드 필름의 결정화도가 50 % 이상이고, 두께방향 열전도율이 0.8 W/m·K 이상이고, 평면방향 열전도율이 3.2 W/m·K 이상일 수 있다.As described above, the polyimide film of the present invention comprises 100 parts by weight of the first polyimide resin, 3 to 10 parts by weight of the second polyimide resin, and 2 to 8 parts by weight of the thermally conductive filler and the crystallinity of the polyimide film Is 50% or more, the thickness thermal conductivity is 0.8 W / m · K or more, and the planar thermal conductivity may be 3.2 W / m · K or more.
더욱 상세하게는, 본 발명의 폴리이미드 필름은 5 내지 10 중량부의 제2 폴리이미드 수지를 포함할 수 있다.More specifically, the polyimide film of the present invention may include 5 to 10 parts by weight of the second polyimide resin.
한편, 상기 제1 폴리이미드 수지는 제1 디안하이드라이드 및 제1 디아민의 반응에 의해 형성된 제1 폴리아믹산을 이미드화하여 제조되될 수 있다.On the other hand, the first polyimide resin may be prepared by imidizing the first polyamic acid formed by the reaction of the first dianhydride and the first diamine.
본 발명의 제1 폴리아믹산 제조에 사용될 수 있는 제1 디안하이드라이드는 방향족 테트라카르복실릭 디안하이드라이드일 수 있다.The first dianhydride that may be used to prepare the first polyamic acid of the present invention may be an aromatic tetracarboxylic dianhydride.
상기 방향족 테트라카르복실릭 디안하이드라이드는 피로멜리틱 디안하이드라이드(또는 PMDA), 옥시디프탈릭 디안하이드라이드(또는 ODPA), 디페닐설폰-3,4,3',4'-테트라카르복실릭 디안하이드라이드(또는 DSDA), 비스(3,4-디카르복시페닐)설파이드 디안하이드라이드, 2,2-비스(3,4-디카르복시페닐)-1,1,1,3,3,3-헥사플루오로프로페인 디안하이드라이드, 2,3,3',4'- 벤조페논테트라카르복실릭 디안하이드라이드, 3,3',4,4'-벤조페논테트라카르복실릭 디안하이드라이드(또는 BTDA), 비스(3,4-디카르복시페닐)메테인 디안하이드라이드, 2,2-비스(3,4-디카르복시페닐)프로페인 디안하이드라이드, p-페닐렌비스(트라이멜리틱 모노에스터 애시드 안하이드라이드), p-바이페닐렌비스(트라이멜리틱 모노에스터 애시드 안하이드라이드), m-터페닐-3,4,3',4'-테트라카르복실릭 디안하이드라이드, p-터페닐-3,4,3',4'-테트라카르복실릭 디안하이드라이드, 1,3-비스(3,4-디카르복시페녹시)벤젠 디안하이드라이드, 1,4-비스(3,4-디카르복시페녹시)벤젠 디안하이드라이드, 1,4-비스(3,4-디카르복시페녹시)바이페닐 디안하이드라이드, 2,2-비스〔(3,4-디카르복시 페녹시)페닐〕프로페인 디안하이드라이드(BPADA), 2,3,6,7-나프탈렌테트라카복실산 디안하이드라이드, 1,4,5,8-나프탈렌테트라카르복실릭 디안하이드라이드, 4,4'-(2,2-헥사플루오로아이소프로필리덴)디프탈산 디안하이드라이드 등을 예로 들 수 있다. 이들은 소망하는 바에 따라 단독 또는 2 종 이상을 조합하여 이용할 수 있다.The aromatic tetracarboxylic dianhydride is pyromellitic dianhydride (or PMDA), oxydiphthalic dianhydride (or ODPA), diphenylsulfone-3,4,3 ', 4'-tetracarboxylic Dianhydride (or DSDA), bis (3,4-dicarboxyphenyl) sulfide dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3- Hexafluoropropane dianhydride, 2,3,3 ', 4'- benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic dianhydride (or BTDA), bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, p-phenylenebis (trimelitic monoester Acid anhydride), p-biphenylenebis (trimelitic monoester acid anhydride), m-terphenyl-3,4,3 ', 4'-tetracarboxylic dianhydride Id, p-terphenyl-3,4,3 ', 4'-tetracarboxylic dianhydride, 1,3-bis (3,4-dicarboxyphenoxy) benzene dianhydride, 1,4-bis (3,4-dicarboxyphenoxy) benzene dianhydride, 1,4-bis (3,4-dicarboxyphenoxy) biphenyl dianhydride, 2,2-bis [(3,4-dicarboxy phenoxy Phenyl] propane dianhydride (BPADA), 2,3,6,7-naphthalenetetracarboxylic acid dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 4,4'- (2,2-hexafluoroisopropylidene) diphthalic acid dianhydride etc. are mentioned. These can be used individually or in combination of 2 or more types as desired.
이들은 소망하는 바에 따라 단독 또는 2 종 이상을 조합하여 이용할 수 있지만, 본 발명에서 제1 디안하이드라이드로 특히 바람직하게 이용될 수 있는 디안하이드라이드는 피로멜리틱디안하이드라이드(PMDA), 옥시디프탈릭안하이드라이드(ODPA) 및 벤조페논테트라카르복실릭디안하이드라이드(BTDA)로 이루어진 군에서 선택되는 1종 이상 일 수 있다.These may be used alone or in combination of two or more as desired, but dianhydrides which may be particularly preferably used as the first dianhydride in the present invention are pyromellitic dianhydride (PMDA), oxydiphthalic Anhydride (ODPA) and benzophenone tetracarboxylic dianhydride (BTDA) may be one or more selected from the group consisting of.
본 발명의 제1 폴리아믹산 용액의 제조에 사용될 수 있는 제1 디아민은 방향족 디아민으로서, 이하와 같이 분류하여 예를 들 수 있다.The 1st diamine which can be used for manufacture of the 1st polyamic-acid solution of this invention is an aromatic diamine, classified as follows, for example.
1) 1,4-디아미노벤젠(또는 파라페닐렌디아민, PDA), 1,3-디아미노벤젠, 2,4-디아미노톨루엔, 2,6-디아미노톨루엔, 3,5-디아미노벤조익 애시드(또는 DABA) 등과 같이, 구조 상 벤젠 핵 1개를 갖는 디아민으로서, 상대적으로 강직한 구조의 디아민;1) 1,4-diaminobenzene (or paraphenylenediamine, PDA), 1,3-diaminobenzene, 2,4-diaminotoluene, 2,6-diaminotoluene, 3,5-diaminobenzo Diamines having one benzene nucleus in structure, such as Ik acid (or DABA) and the like, diamines having a relatively rigid structure;
2) 3,4'-디아미노디페닐에테르 등의 디아미노디페닐에테르, 4,4'-디아미노디페닐메테인(메틸렌디아민), 3,3'-디메틸-4,4'-디아미노바이페닐, 2,2'-디메틸-4,4'-디아미노바이페닐, 2,2'-비스(트라이플루오로메틸)-4,4'-디아미노바이페닐, 3,3'-디메틸-4,4'-디아미노디페닐메테인, 3,3'-디카복시-4,4'-디아미노디페닐메테인, 3,3',5,5'-테트라메틸-4,4'-디아미노디페닐메테인, 비스(4-아미노페닐)설파이드, 4,4'-디아미노벤즈아닐라이드, 3,3'-디클로로벤지딘, 3,3'-디메틸벤지딘(또는 o-톨리딘), 2,2'-디메틸벤지딘(또는 m-톨리딘), 3,3'-디메톡시벤지딘, 2,2'-디메톡시벤지딘, 3,3'-디아미노디페닐에테르, 3,4'-디아미노디페닐에테르, 4,4'-디아미노디페닐에테르, 3,3'-디아미노디페닐설파이드, 3,4'-디아미노디페닐설파이드, 4,4'-디아미노디페닐설파이드, 3,3'-디아미노디페닐설폰, 3,4'-디아미노디페닐설폰, 4,4'-디아미노디페닐설폰, 3,3'-디아미노벤조페논, 4,4'-디아미노벤조페논, 3,3'-디아미노-4,4'-디클로로벤조페논, 3,3'-디아미노-4,4'-디메톡시벤조페논, 3,3'-디아미노디페닐메테인, 3,4'-디아미노디페닐메테인, 4,4'-디아미노디페닐메테인, 2,2-비스(3-아미노페닐)프로페인, 2,2-비스(4-아미노페닐)프로페인, 2,2-비스(3-아미노페닐)-1,1,1,3,3,3-헥사플루오로프로페인, 2,2-비스(4-아미노페닐)-1,1,1,3,3,3-헥사플루오로프로페인, 3,3'-디아미노디페닐설폭사이드, 3,4'-디아미노디페닐설폭사이드, 4,4'-디아미노디페닐설폭사이드 등과 같이, 구조 상 벤젠 핵 2개를 갖는 디아민;2) diaminodiphenyl ethers such as 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane (methylenediamine), 3,3'-dimethyl-4,4'-diamino Biphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 3,3'-dimethyl- 4,4'-diaminodiphenylmethane, 3,3'-dicarboxy-4,4'-diaminodiphenylmethane, 3,3 ', 5,5'-tetramethyl-4,4'- Diaminodiphenylmethane, bis (4-aminophenyl) sulfide, 4,4'-diaminobenzanilide, 3,3'-dichlorobenzidine, 3,3'-dimethylbenzidine (or o-tolidine), 2,2'-dimethylbenzidine (or m-tolidine), 3,3'-dimethoxybenzidine, 2,2'-dimethoxybenzidine, 3,3'-diaminodiphenylether, 3,4'-dia Minodiphenylether, 4,4'-diaminodiphenylether, 3,3'-diaminodiphenylsulfide, 3,4'-diaminodiphenylsulfide, 4,4'-diaminodiphenylsulfide, 3 , 3'-diaminodiphenylsulfone, 3,4'-dia Nodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, 4,4'-diaminobenzophenone, 3,3'-diamino-4,4'-dichlorobenzo Phenone, 3,3'-diamino-4,4'-dimethoxybenzophenone, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-dia Minodiphenylmethane, 2,2-bis (3-aminophenyl) propane, 2,2-bis (4-aminophenyl) propane, 2,2-bis (3-aminophenyl) -1,1, 1,3,3,3-hexafluoropropane, 2,2-bis (4-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 3,3'-dia Diamines having two benzene nuclei in structure, such as minodiphenylsulfoxide, 3,4'-diaminodiphenylsulfoxide, 4,4'-diaminodiphenylsulfoxide and the like;
3) 1,3-비스(3-아미노페닐)벤젠, 1,3-비스(4-아미노페닐)벤젠, 1,4-비스(3-아미노페닐)벤젠, 1,4-비스(4-아미노 페닐)벤젠, 1,3-비스(3-아미노페녹시)-4-트라이플루오로메틸벤젠, 3,3'-디아미노-4-(4-페닐)페녹시벤조페논, 3,3'-디아미노-4,4'-디(4-페닐페녹시)벤조페논, 1,3-비스(3-아미노페닐설파이드)벤젠, 1,3-비스(4-아미노페닐설파이 드)벤젠, 1,4-비스(4-아미노페닐설파이드)벤젠, 1,3-비스(3-아미노페닐설폰)벤젠, 1,3-비스(4-아미노페닐설폰)벤젠, 1,4-비스(4-아미노페닐설폰)벤젠, 1,3-비스〔2-(4-아미노페닐)아이소프로필〕벤젠, 1,4-비스〔2-(3-아미노페닐)아이소프로필〕벤젠, 1,4-비스〔2-(4-아미노페닐)아이소프로필〕벤젠 등과 같이, 구조 상 벤젠 핵 3개를 갖는 디아민;3) 1,3-bis (3-aminophenyl) benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (3-aminophenyl) benzene, 1,4-bis (4-amino Phenyl) benzene, 1,3-bis (3-aminophenoxy) -4-trifluoromethylbenzene, 3,3'-diamino-4- (4-phenyl) phenoxybenzophenone, 3,3'- Diamino-4,4'-di (4-phenylphenoxy) benzophenone, 1,3-bis (3-aminophenylsulfide) benzene, 1,3-bis (4-aminophenylsulfide) benzene, 1, 4-bis (4-aminophenylsulfide) benzene, 1,3-bis (3-aminophenylsulfone) benzene, 1,3-bis (4-aminophenylsulfone) benzene, 1,4-bis (4-aminophenyl Sulfone) benzene, 1,3-bis [2- (4-aminophenyl) isopropyl] benzene, 1,4-bis [2- (3-aminophenyl) isopropyl] benzene, 1,4-bis [2- Diamines having three benzene nuclei in structure, such as (4-aminophenyl) isopropyl] benzene;
4) 3,3'-비스(3-아미노페녹시)바이페닐, 3,3'-비스(4-아미노페녹시)바이페닐, 4,4'-비스(3-아미노페녹시)바이페닐, 4,4'-비스(4-아미노페녹시)바이페닐, 비스〔3-(3-아미노페녹시)페닐〕에테르, 비스〔3-(4-아미노페녹시)페닐〕에테르, 비스〔4-(3-아미노페녹시)페닐〕에테르, 비스〔4-(4-아미노페녹시)페닐〕에테르, 비스〔3-(3-아미노페녹시)페닐〕케톤, 비스〔3-(4-아미노페녹시)페닐〕케톤, 비스〔4-(3-아미노페녹시)페닐〕케톤, 비스〔4-(4-아미노 페녹시)페닐〕케톤, 비스〔3-(3-아미노페녹시)페닐〕설파이드, 비스〔3-(4-아미노페녹시)페닐〕설파이드, 비스 〔4-(3-아미노페녹시)페닐〕설파이드, 비스〔4-(4-아미노페녹시)페닐〕설파이드, 비스〔3-(3-아미노페녹시)페닐〕설폰, 비스〔3-(4-아미노페녹시)페닐〕설폰, 비스〔4-(3-아미노페녹시)페닐〕설폰, 비스〔4-(4-아미노페녹시)페닐〕설폰, 비스〔3-(3-아미노페녹시)페닐〕메테인, 비스〔3-(4-아미노페녹시)페닐〕메테인, 비스〔4-(3-아미노페녹시)페닐〕메테인, 비스〔4-(4-아미노페녹시)페닐〕메테인, 2,2-비스〔3-(3-아미노페녹시)페닐〕프로페인, 2,2-비스〔3-(4-아미노페녹시)페닐〕프로페인, 2,2-비스〔4-(3-아미노페녹시)페닐〕프로페인, 2,2-비스〔4-(4-아미노페녹시)페닐〕프로페인(BAPP), 2,2-비스〔3-(3-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로페인, 2,2-비스〔3-(4-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로페인, 2,2-비스〔4-(3-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로페인, 2,2-비스〔4-(4-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로페인 등과 같이, 구조 상 벤젠 핵 4개를 갖는 디아민.4) 3,3'-bis (3-aminophenoxy) biphenyl, 3,3'-bis (4-aminophenoxy) biphenyl, 4,4'-bis (3-aminophenoxy) biphenyl, 4,4'-bis (4-aminophenoxy) biphenyl, bis [3- (3-aminophenoxy) phenyl] ether, bis [3- (4-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether, bis [3- (3-aminophenoxy) phenyl] ketone, bis [3- (4-aminophenoxy Phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (4-amino phenoxy) phenyl] ketone, bis [3- (3-amino phenoxy) phenyl] sulfide , Bis [3- (4-aminophenoxy) phenyl] sulfide, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [4- (4-aminophenoxy) phenyl] sulfide, bis [3- (3-aminophenoxy) phenyl] sulfone, bis [3- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-ami) Phenoxy) phenyl] sulfone, bis [3- (3-aminophenoxy) phenyl] methane, bis [3- (4-aminophenoxy) phenyl] methane, bis [4- (3-aminophenoxy) Phenyl] methane, bis [4- (4-aminophenoxy) phenyl] methane, 2,2-bis [3- (3-aminophenoxy) phenyl] propane, 2,2-bis [3- ( 4-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP), 2,2-bis [3- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 2,2-bis [3- (4 -Aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 2,2-bis [4- (3-aminophenoxy) phenyl] -1,1,1, Like 3,3,3-hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, and the like, Diamine with four benzene nuclei in structure.
이들은 소망하는 바에 따라 단독 또는 2 종 이상을 조합하여 이용할 수 있지만, 본 발명에서 제1 디아민으로 특히 바람직하게 이용될 수 있는 디아민은 페닐렌디아민(PPD), 2,2-비스[4'-(4-아미노페녹시)페닐]프로판(BAPP) 및 메틸렌디아닐린(MDA)로 이루어진 군으로부터 선택된 1종 이상 일 수 있다.These may be used alone or in combination of two or more as desired, but diamines which may be particularly preferably used as the first diamine in the present invention include phenylenediamine (PPD), 2,2-bis [4 '-( 4-aminophenoxy) phenyl] propane (BAPP) and methylenedianiline (MDA) may be one or more selected from the group consisting of.
한편, 상기 제2 폴리이미드 수지는 제2 디안하이드라이드 및 제2 디아민의 반응에 의해 형성된 제2 폴리아믹산을 이미드화하여 제조될 수 있다.On the other hand, the second polyimide resin may be prepared by imidizing the second polyamic acid formed by the reaction of the second dianhydride and the second diamine.
구체적으로, 상기 제2 디안하이드라이드는 바이페닐테트라카르복실릭 디안하이드라이드(BPDA)를 포함할 수 있고, 상기 제2 디아민은 옥시디아닐린(ODA), 1,3-비스(4-아미노페녹시)벤젠(TPE-R), 1,4-비스(3-아미노페녹시)벤젠(TPE-Q)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.Specifically, the second dianhydride may include biphenyltetracarboxylic dianhydride (BPDA), and the second diamine may be oxydianiline (ODA), 1,3-bis (4-aminophenoxy). C) benzene (TPE-R) and 1,4-bis (3-aminophenoxy) benzene (TPE-Q).
본 발명에서 상기 제2 디아민은 소망하는 바에 따라 단독 또는 2 종 이상을 조합하여 이용할 수 있으나, 제2 디아민으로서 특히 바람직하게 이용될 수 있는 디아민은 1,3-비스(4-아미노페녹시)벤젠(TPE-R)일 수 있다.In the present invention, the second diamine may be used alone or in combination of two or more as desired, but the diamine which may be particularly preferably used as the second diamine is 1,3-bis (4-aminophenoxy) benzene. (TPE-R).
한편, 상기 열전도성 필러는 그래핀, 알루미나, 질화붕소로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있으나, 이것만으로 한정되는 것은 아니다.On the other hand, the thermally conductive filler may include one or more selected from the group consisting of graphene, alumina, boron nitride, but is not limited thereto.
구체적으로, 상기 열전도성 필러는 1 내지 3 중량부의 그래핀 및 1 내지 5 중량부의 알루미나를 포함할 수 있다.Specifically, the thermally conductive filler may include 1 to 3 parts by weight of graphene and 1 to 5 parts by weight of alumina.
상기 그래핀 또는 알루미나의 함량이 상기 범위를 하회하는 경우, 소망하는 수준의 열전도율을 달성할 수 없으며, 반대로, 상기 범위를 상회하는 경우, 과량의 그래핀 또는 알루미나 입자가 응집체를 형성하여 입자 응집체가 필름 표면으로부터 돌출하여 외관 불량이 발생할 수 있고, 제조된 폴리이미드 필름의 기계적 특성이 저하되거나 필름화 공정 자체가 불가능한 문제도 발생할 수 있으므로 바람직하지 않다.If the graphene or alumina content is less than the above range, the desired level of thermal conductivity cannot be achieved. On the contrary, if the graphene or alumina content is above the above range, the excess graphene or alumina particles form agglomerates so that the particle agglomerates can be formed. It is not preferable because it may protrude from the surface of the film, resulting in a poor appearance, a problem that the mechanical properties of the produced polyimide film may be degraded or the film forming process itself is impossible.
상기 열전도성 필러 입자 크기는 본 발명의 효과를 달성하기 위해 적절히 조절될 수 있고, 예를 들어, 상기 그래핀의 평균 장경이 5 내지 15 ㎛일 수 있고, 상기 알루미나의 평균 입경이 5 내지 25 ㎛일 수 있다.The thermally conductive filler particle size can be appropriately adjusted to achieve the effect of the present invention, for example, the average long diameter of the graphene may be 5 to 15 ㎛, the average particle diameter of the alumina is 5 to 25 ㎛ Can be.
상기 그래핀 또는 알루미나 입자의 크기가 상기 범위를 하회하는 경우, 소망하는 수준의 열전도율을 달성할 수 없으며, 반대로, 상기 그래핀 또는 알루미나 입자의 크기가 상기 범위를 상회하는 경우, 제조하는 과정에서 제1 폴리아믹산 또는 제2 폴리아믹산과 혼합시 분산도가 낮아지고 상기 입자들이 필름 표면으로부터 돌출하여 외관 불량이 발생할 수 있다.When the size of the graphene or alumina particles is less than the range, a desired level of thermal conductivity may not be achieved. On the contrary, when the size of the graphene or alumina particles is larger than the range, When mixed with the first polyamic acid or the second polyamic acid, the dispersibility is low, and the particles may protrude from the surface of the film, causing appearance defects.
이상과 같은 본 발명의 폴리이미드 필름은 결정화도가 50 % 이상이고, 두께방향 열전도율이 0.8 W/m·K 이상이고, 평면방향 열전도율이 3.2 W/m·K 이상이며, 신율이 30 %이상일 수 있다.As described above, the polyimide film of the present invention may have a crystallinity of 50% or more, a thickness thermal conductivity of 0.8 W / m · K or more, a planar thermal conductivity of 3.2 W / m · K or more, and an elongation of 30% or more. .
제2 양태: 폴리이미드 필름의 제조방법Second Embodiment: Manufacturing Method of Polyimide Film
본 발명에 따른 폴리이미드 필름의 제조방법은,Method for producing a polyimide film according to the present invention,
제1 디안하이드라이드 및 제1 디아민으로부터 제1 폴리아믹산을 중합하는 단계;Polymerizing a first polyamic acid from the first dianhydride and the first diamine;
제2 디안하이드라이드 및 제2 디아민으로부터 제2 폴리아믹산을 중합하는 단계;Polymerizing a second polyamic acid from a second dianhydride and a second diamine;
상기 제1 폴리아믹산, 제2 폴리아믹산 및 열전도성 필러를 혼합하여 전구체 조성물을 제조하는 단계; 및Preparing a precursor composition by mixing the first polyamic acid, the second polyamic acid, and the thermally conductive filler; And
상기 전구체 조성물을 이미드화하여 폴리이미드 필름을 수득하는 단계를 포함할 수 있다.It may include the step of imidating the precursor composition to obtain a polyimide film.
본 발명에서 폴리아믹산의 제조는 예를 들어,Production of the polyamic acid in the present invention is, for example,
(1) 디아민 단량체 전량을 용매 중에 넣고, 그 후 디안하이드라이드 단량체를 디아민 단량체와 실질적으로 등몰이 되도록 첨가하여 중합하는 방법;(1) a method in which the entire amount of the diamine monomer is placed in a solvent, and then the dianhydride monomer is added to be substantially equimolar with the diamine monomer and polymerized;
(2) 디안하이드라이드 단량체 전량을 용매 중에 넣고, 그 후 디아민 단량체를 디안하이드라이드 단량체와 실질적으로 등몰이 되도록 첨가하여 중합하는 방법;(2) a method in which the entire amount of the dianhydride monomer is placed in a solvent, and then the diamine monomer is added to be substantially equimolar with the dianhydride monomer and polymerized;
(3) 디아민 단량체 중 일부 성분을 용매 중에 넣은 후, 반응 성분에 대해서 디안하이드라이드 단량체 중 일부 성분을 약 95~105 몰%의 비율로 혼합한 후, 나머지 디아민 단량체 성분을 첨가하고 이에 연속해서 나머지 디안하이드라이드 단량체 성분을 첨가하여, 디아민 단량체 및 디안하이드라이드 단량체가 실질적으로 등몰이 되도록 하여 중합하는 방법;(3) After putting some components of the diamine monomer in the solvent, and mixing some components of the dianhydride monomer in the ratio of about 95 to 105 mol% with respect to the reaction component, the remaining diamine monomer component is added and the rest Adding a dianhydride monomer component so that the diamine monomer and the dianhydride monomer are substantially equimolar and polymerized;
(4) 디안하이드라이드 단량체를 용매 중에 넣은 후, 반응 성분에 대해서 디아민 화합물 중 일부 성분을 95~105 몰%의 비율로 혼합한 후, 다른 디안하이드라이드 단량체 성분을 첨가하고 계속되어 나머지 디아민 단량체 성분을 첨가하여, 디아민 단량체 및 디안하이드라이드 단량체가 실질적으로 등몰이 되도록 하여 중합하는 방법;(4) After putting the dianhydride monomer in a solvent, after mixing some components of a diamine compound in the ratio of 95-105 mol% with respect to a reaction component, another dianhydride monomer component is added and it continues, and the remaining diamine monomer component is carried out. Adding a diamine monomer and a dianhydride monomer to substantially equimolar polymerization;
(5) 용매 중에서 일부 디아민 단량체 성분과 일부 디안하이드라이드 단량체 성분을 어느 하나가 과량이도록 반응시켜, 제1 조성물을 형성하고, 또 다른 용매 중에서 일부 디아민 단량체 성분과 일부 디안하이드라이드 단량체 성분을 어느 하나가 과량이도록 반응시켜 제2 조성물을 형성한 후, 제1, 제2 조성물들을 혼합하고, 중합을 완결하는 방법으로서, 이 때 제1 조성물을 형성할 때 디아민 단량체 성분이 과잉일 경우, 제 2조성물에서는 디안하이드라이드 단량체 성분을 과량으로 하고, 제1 조성물에서 디안하이드라이드 단량체 성분이 과잉일 경우, 제2 조성물에서는 디아민 단량체 성분을 과량으로 하여, 제1, 제2 조성물들을 혼합하여 이들 반응에 사용되는 전체 디아민 단량체 성분과 디안하이드라이드 단량체 성분이 실질적으로 등몰이 되도록 하여 중합하는 방법 등을 들 수 있다.(5) Some of the diamine monomer component and some of the dianhydride monomer component are reacted to an excess in one solvent to form a first composition, and some of the diamine monomer component and some dianhydride monomer component in another solvent are either Reacting with excess to form a second composition, and then mixing the first and second compositions and completing the polymerization, wherein the second composition is excessive when the diamine monomer component is excessive when the first composition is formed. In the case where the dianhydride monomer component is in excess and the dianhydride monomer component in the first composition is in excess, in the second composition, the diamine monomer component is in excess, and the first and second compositions are mixed and used for these reactions. The total diamine monomer component and the dianhydride monomer component to be substantially equimolar It can be joined to the methods.
상기 용매는 폴리아믹산이 용해될 수 있는 유기 용매라면 특별히 한정되지는 않으나, 하나의 예로서, 비양성자성 극성 용매(aprotic polar solvent)일 수 있다.The solvent is not particularly limited as long as it is an organic solvent in which the polyamic acid may be dissolved. However, the solvent may be an aprotic polar solvent.
상기 비양성자성 극성 용매의 비제한적인 예로서, N,N'-디메틸포름아미드(DMF), N,N'-디메틸아세트아미드(DMAc) 등의 아미드계 용매, p-클로로페놀, o-클로로페놀 등의 페놀계 용매, N-메틸-피롤리돈(NMP), 감마 브티로 락톤(GBL) 및 디그림(Diglyme) 등을 들 수 있고, 이들은 단독으로 또는 2종 이상 조합되어 사용될 수 있다.Non-limiting examples of the aprotic polar solvent include amide solvents such as N, N'-dimethylformamide (DMF) and N, N'-dimethylacetamide (DMAc), p-chlorophenol, o-chloro Phenol solvents such as phenol, N-methyl-pyrrolidone (NMP), gamma butyrolactone (GBL), diglyme, and the like, and the like, and these may be used alone or in combination of two or more thereof.
경우에 따라서는 톨루엔, 테트라히드로푸란, 아세톤, 메틸에틸케톤, 메탄올, 에탄올, 물 등의 보조적 용매를 사용하여, 폴리아믹산의 용해도를 조절할 수도 있다.In some cases, the solubility of the polyamic acid may be adjusted by using auxiliary solvents such as toluene, tetrahydrofuran, acetone, methyl ethyl ketone, methanol, ethanol and water.
하나의 예에서, 본 발명의 전구체 조성물 제조에 특히 바람직하게 사용될 수 있는 유기 용매는 아미드계 용매인 N,N'-디메틸포름아미드 및 N,N'-디메틸아세트아미드일 수 있다.In one example, the organic solvents that can be particularly preferably used for preparing the precursor compositions of the present invention may be amide solvents N, N'-dimethylformamide and N, N'-dimethylacetamide.
상기 중합 방법이 이상의 예들로만 한정되는 것은 아니며, 공지된 어떠한 방법을 사용할 수 있음은 물론이다.The polymerization method is not limited only to the above examples, and any known method may be used.
또한, 상기 중합 방법은 제1 폴리아믹산 및 제2 폴리아믹산 중합에 각각 적용될 수 있다.In addition, the polymerization method may be applied to the first polyamic acid and the second polyamic acid polymerization, respectively.
상기 제2 폴리아믹산을 중합하는 단계에서, 상기 제2 폴리아믹산은 고형분 함량이 15 중량% 일 때, 23℃에서 측정한 점도가 100,000 cP 내지 150,000 cP일 수 있다.In the step of polymerizing the second polyamic acid, when the solid content is 15% by weight, the second polyamic acid may have a viscosity measured at 23 ° C. from 100,000 cP to 150,000 cP.
상기 제2 폴리아믹산의 점도가 상기 범위를 상회하는 경우에는, 폴리이미드 필름의 제조 과정 중에 제2 폴리아믹산을 파이프를 통해 이동시킬 때 파이프와의 마찰에 의해 더 높은 압력을 인가해야만 하므로, 공정 비용이 증가되고 취급성이 저하될 수 있다. 또한, 점도가 높을수록 혼합 공정에 더 많은 시간과 비용이 소요될 수 있다.If the viscosity of the second polyamic acid exceeds the above range, a higher pressure must be applied by friction with the pipe when the second polyamic acid is moved through the pipe during the manufacturing process of the polyimide film, so that the process cost This may increase and the handleability may decrease. In addition, the higher the viscosity, the more time and cost the mixing process can take.
더욱이, 지나치게 높은 점도로 인해 필름화 공정 자체가 불가능할 수 있고, 필름화 공정이 가능하더라도 이로부터 제조되는 폴리이미드 필름의 신율이 저하될 수 있으므로 바람직하지 않다.Moreover, the filming process itself may be impossible due to the excessively high viscosity, and even if the filming process is possible, the elongation of the polyimide film produced therefrom may be lowered, which is not preferable.
반면에, 상기 제2 폴리아믹산의 점도가 상기 범위를 하회하는 경우에는, 이로부터 제조되는 폴리이미드 필름에 포함되는 제2 폴리이미드 수지의 결정성이 저하되어, 제2 폴리이미드 수지의 결정과 열전도성 필러가 필름 내에서 열 전달 경로를 형성하여 열전도율을 향상시키는 본 발명의 효과를 발휘할 수 없다.On the other hand, when the viscosity of the said second polyamic acid is less than the said range, the crystallinity of the 2nd polyimide resin contained in the polyimide film manufactured from this will fall, and the crystal and thermoelectric of a 2nd polyimide resin will fall. The conductive filler cannot exert the effect of the present invention to form a heat transfer path in the film to improve the thermal conductivity.
한편, 상기 폴리이미드 필름을 수득하는 단계는 상기 전구체 조성물을 지지체에 제막하고 건조하여 겔 필름을 제조한 후, 상기 겔 필름을 이미드화하여 폴리이미드 필름을 형성하는 단계를 포함할 수 있다.Meanwhile, the obtaining of the polyimide film may include forming a polyimide film by imidating the gel film after preparing the gel film by forming the precursor composition on a support and drying the film.
이러한 이미드화의 구체적인 방법으로는 열 이미드화법, 화학 이미드화법 또는 상기 열 이미드화법과 화학 이미드화법을 병용하는 복합 이미드화법을 예로 들 수 있으며, 이들에 대해서는 이하의 비제한적인 예를 통해 보다 구체적으로 설명한다.As a specific method of such imidation, the thermal imidation method, the chemical imidation method, or the composite imidation method which uses the said thermal imidation method and the chemical imidation method together is mentioned as an example, About these the following non-limiting examples It will be described in more detail through.
<열 이미드화법> <Thermal imidization method>
상기 열 이미드화 법은, 화학적 촉매를 배제하고, 열풍이나 적외선 건조기 등의 열원으로 이미드화 반응을 유도하는 방법으로서, The thermal imidization method is a method of excluding an chemical catalyst and inducing an imidization reaction with a heat source such as a hot air or an infrared dryer.
상기 전구체 조성물을 건조하여 겔 필름을 형성하는 과정; 및 Drying the precursor composition to form a gel film; And
상기 겔 필름을 열처리하여 폴리이미드 필름을 수득하는 과정을 포함할 수 있다.The gel film may be heat-treated to obtain a polyimide film.
여기서, 겔 필름이란, 폴리아믹산으로부터 폴리이미드로의 변환에 대해 중간 단계에서 자기 지지성을 가지는 필름 중간체라 이해할 수 있다. Here, a gel film can be understood as a film intermediate which has self-support at an intermediate stage with respect to the conversion from polyamic acid to polyimide.
상기 겔 필름을 형성하는 과정은, 전구체 조성물을 유리판, 알루미늄 박, 무단(endless) 스테인레스 벨트, 또는 스테인레스 드럼 등의 지지체 상에 필름형으로 캐스팅하고, 이후 지지체 상의 전구체 조성물을 50℃ 내지 200℃, 상세하게는 80℃ 내지 150℃ 범위의 가변적인 온도에서 건조하는 것일 수 있다. Forming the gel film, the precursor composition is cast in the form of a film on a support such as glass plate, aluminum foil, endless stainless belt, or stainless drum, and then the precursor composition on the support 50 ℃ to 200 ℃, Specifically, the drying may be performed at a variable temperature ranging from 80 ° C to 150 ° C.
이에 따라 전구체 조성물에 부분적인 경화 및/또는 건조가 일어남으로써 겔 필름이 형성될 수 있다. 그 다음에 지지체로부터 박리하여 겔 필름을 얻을 수 있다.This may result in the formation of a gel film by partial curing and / or drying of the precursor composition. It can then peel off from the support to obtain a gel film.
경우에 따라서는 이후 열처리 과정에서 수득되는 폴리이미드 필름의 두께 및 크기를 조절하고 배향성을 향상시키기 위하여 상기 겔 필름을 연신시키는 공정이 수행될 수 있으며, 연신은 기계반송방향(MD) 및 기계반송방향에 대한 횡방향(TD) 중 적어도 하나의 방향으로 수행될 수 있다.In some cases, a process of stretching the gel film may be performed to adjust the thickness and size of the polyimide film obtained in the subsequent heat treatment process and to improve orientation, and the stretching may be performed in the machine transport direction (MD) and the machine transport direction. It may be performed in at least one direction of the transverse direction (TD) with respect to.
이와 같이 수득한 겔 필름을, 텐터에 고정한 다음 50℃ 내지 500℃, 상세하게는 150℃ 내지 500℃ 범위의 가변적인 온도에서 열처리하여 겔 필름에 잔존하는 물, 잔류 용매 등을 제거하고, 남아 있는 거의 모든 아믹산기를 이미드화하여, 본 발명의 폴리이미드 필름을 수득할 수 있다.The gel film thus obtained is fixed in a tenter and then heat-treated at a variable temperature in the range of 50 ° C to 500 ° C, specifically 150 ° C to 500 ° C, to remove water, residual solvents, and the like remaining in the gel film. Nearly all amic acid groups can be imidated to obtain the polyimide film of the present invention.
경우에 따라서는 상기와 같이 수득한 폴리이미드 필름을 400℃ 내지 650℃의 온도로 5 초 내지 400 초간 가열 마감하여 폴리이미드 필름을 더욱 경화시킬 수도 있으며, 수득한 폴리이미드 필름에 잔류할 수도 있는 내부 응력을 완화시키기 위해서 소정의 장력 하에서 이를 수행할 수도 있다.In some cases, the polyimide film obtained as described above may be heated to a temperature of 400 ° C. to 650 ° C. for 5 seconds to 400 seconds to further cure the polyimide film, and may remain in the obtained polyimide film. This may be done under a predetermined tension to relieve stress.
<화학 이미드화법><Chemical imidization method>
상기 화학 이미드화법은 전구체 조성물에 탈수제 및/또는 이미드화제를 첨가하여 아믹산기의 이미드화를 촉진하는 방법이다.The chemical imidization method is a method of promoting imidization of an amic acid group by adding a dehydrating agent and / or an imidizing agent to the precursor composition.
여기서 "탈수제"란, 폴리아믹산에 대한 탈수 작용을 통해 폐환 반응을 촉진하는 물질을 의미하고, 이에 대한 비제한적인 예로서, 지방족의 애시드 안하이드라이드, 방향족의 애시드 안하이드라이드, N,N'-디알킬카르보디이미드, 할로겐화 저급 지방족, 할로겐화 저급 패티 애시드 안하이드라이드, 아릴 포스포닉 디할라이드, 및 티오닐 할라이드 등을 들 수 있다. 이중에서도 입수의 용이성, 및 비용의 관점에서 지방족 애시드 안하이드라이드가 바람직할 수 있고, 이의 비제한적인 예로서, 아세틱 안하이드라이드(AA), 프로피온 애시드 안하이드라이드, 및 락틱 애시드 안하이드라이드 등을 들 수 있으며, 이들을 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.As used herein, the term "dehydrating agent" refers to a substance that promotes a ring-closure reaction through dehydration to polyamic acid, and includes, but is not limited to, aliphatic acid anhydrides, aromatic acid anhydrides, and N, N '. -Dialkylcarbodiimide, halogenated lower aliphatic, halogenated lower patty acid anhydride, aryl phosphonic dihalide, thionyl halide and the like. Of these, aliphatic acid anhydrides may be preferred in view of ease of availability and cost, and non-limiting examples thereof include acetic anhydride (AA), propion acid anhydride, and lactic acid anhydride. These etc. are mentioned, These can be used individually or in mixture of 2 or more types.
또한, "이미드화제"란 폴리아믹산에 대한 폐환 반응을 촉진하는 효과를 갖는 물질을 의미하고, 예를 들어 지방족 3급 아민, 방향족 3급 아민, 및 복소환식 3급 아민 등의 이민계 성분일 수 있다. 이중에서도 촉매로서의 반응성의 관점에서 복소환식 3급 아민이 바람직할 수 있다. 복소환식 3급 아민의 비제한적인 예로서, 퀴놀린, 이소퀴놀린, β-피콜린(BP), 피리딘 등을 들 수 있으며, 이들을 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.In addition, "imidizing agent" means a substance having an effect of promoting a ring closure reaction to polyamic acid, and may be an imine-based component such as aliphatic tertiary amine, aromatic tertiary amine, and heterocyclic tertiary amine. Can be. Of these, heterocyclic tertiary amines may be preferable in view of reactivity as a catalyst. Non-limiting examples of heterocyclic tertiary amines include quinoline, isoquinoline, β-picolin (BP), pyridine, and the like, and these may be used alone or in combination of two or more thereof.
탈수제의 첨가량은 폴리아믹산 중 아믹산기 1 몰에 대하여 0.5 내지 5 몰의 범위 내인 것이 바람직하고, 1.0 몰 내지 4 몰의 범위 내인 것이 특히 바람직하다. 또한, 이미드화제의 첨가량은 폴리아믹산 중 아믹산기 1 몰에 대하여 0.05 몰 내지 2 몰의 범위 내인 것이 바람직하고, 0.2 몰 내지 1 몰의 범위 내인 것이 특히 바람직할 수 있다.It is preferable that the addition amount of a dehydrating agent exists in the range of 0.5-5 mol with respect to 1 mol of amic acid groups in polyamic acid, and it is especially preferable to exist in the range of 1.0 mol-4 mol. In addition, the addition amount of the imidizing agent is preferably in the range of 0.05 mol to 2 mol, and particularly preferably in the range of 0.2 mol to 1 mol with respect to 1 mol of the amic acid group in the polyamic acid.
상기 탈수제 및 이미드화제가 상기 범위를 하회하면 화학적 이미드화가 불충분하고, 제조되는 폴리이미드 필름에 크랙이 형성될 수 있고, 필름의 기계적 강도도 저하될 수 있다. 또한, 이들 첨가량이 상기 범위를 상회하면 이미드화가 과도하게 빠르게 진행될 수 있으며, 이 경우, 필름 형태로 캐스팅하기 어렵거나 제조된 폴리이미드 필름이 브리틀(brittle)한 특성을 보일 수 있어, 바람직하지 않다.When the dehydrating agent and the imidating agent are less than the above range, chemical imidization is insufficient, cracks may be formed in the polyimide film to be produced, and the mechanical strength of the film may be lowered. In addition, if the amount of these additions exceeds the above range, the imidization may proceed excessively rapidly, and in this case, it is difficult to cast in the form of a film or the produced polyimide film may exhibit brittle characteristics, which is not preferable. not.
<복합 이미드화법><Complex imidation method>
이상의 화학 이미드화법에 연계하여, 열 이미드화법을 추가로 수행하는 복합 이미드화법이 폴리이미드 필름의 제조에 이용될 수 있다.In connection with the above-mentioned chemical imidation method, the composite imidation method which further performs the thermal imidation method can be used for manufacture of a polyimide film.
구체적으로 복합 이미드화법은, 저온에서 전구체 조성물에 탈수제 및/또는 이미드화제를 첨가하는 화학 이미드화법 과정; 및 상기 전구체 조성물을 건조하여 겔 필름을 형성하고, 상기 겔 필름을 열처리하는 열 이미드화법 과정을 포함할 수 있다.Specifically, the complex imidization method includes a chemical imidization method of adding a dehydrating agent and / or an imidizing agent to the precursor composition at a low temperature; And a thermal imidization process of drying the precursor composition to form a gel film and heat treating the gel film.
상기 화학 이미드화법 과정의 수행 시, 탈수제와 이미드화제의 종류 및 첨가량은 앞선 화학 이미드화법에 설명한 바에 따라 적절하게 선택될 수 있다.In performing the chemical imidization process, the type and amount of the dehydrating agent and the imidizing agent may be appropriately selected according to the above-described chemical imidization method.
상기 겔 필름을 형성하는 과정에서는 탈수제 및/또는 이미드화제를 함유하는 전구체 조성물을 유리판, 알루미늄 박, 무단(endless) 스테인레스 벨트, 또는 스테인레스 드럼 등의 지지체 상에 필름형으로 캐스팅하고, 이후 지지체 상의 전구체 조성물을 50℃ 내지 200℃, 상세하게는 80℃ 내지 200℃ 범위의 가변적인 온도에서 건조한다. 이러한 과정에서, 화학 전환제 및/또는 이미드화제가 촉매로 작용하여 아믹산기가 이미드기로 빠르게 변환될 수 있다.In the process of forming the gel film, the precursor composition containing the dehydrating agent and / or the imidizing agent is cast in a film form on a support such as a glass plate, an aluminum foil, an endless stainless belt, or a stainless drum, and then onto the support. The precursor composition is dried at a variable temperature ranging from 50 ° C. to 200 ° C., in particular 80 ° C. to 200 ° C. In this process, chemical converting agents and / or imidating agents can act as catalysts so that amic acid groups can be rapidly converted to imide groups.
경우에 따라서는 이후 열처리 과정에서 수득되는 폴리이미드 필름의 두께 및 크기를 조절하고 배향성을 향상시키기 위하여 상기 겔 필름을 연신시키는 공정이 수행될 수 있으며, 연신은 기계반송방향(MD) 및 기계반송방향에 대한 횡방향(TD) 중 적어도 하나의 방향으로 수행될 수 있다.In some cases, a process of stretching the gel film may be performed to adjust the thickness and size of the polyimide film obtained in the subsequent heat treatment process and to improve orientation, and the stretching may be performed in the machine transport direction (MD) and the machine transport direction. It may be performed in at least one direction of the transverse direction (TD) with respect to.
이와 같이 수득한 겔 필름을, 텐터에 고정한 다음 50℃ 내지 600℃, 상세하게는 150℃ 내지 500℃ 범위의 가변적인 온도에서 열처리하여 겔 필름에 잔존하는 물, 촉매, 잔류 용매 등을 제거하고, 남아 있는 거의 모든 아믹산기를 이미드화하여, 본 발명의 폴리이미드 필름을 수득할 수 있다. 이와 같은 열처리 과정에서도 탈수제 및/또는 이미드화제가 촉매로서 작용하여 아믹산기가 이미드기로 빠르게 전환될 수 있어 높은 이미드화율의 구현이 가능할 수 있다.The gel film thus obtained is fixed in a tenter and then heat treated at a variable temperature ranging from 50 ° C. to 600 ° C., specifically 150 ° C. to 500 ° C. to remove water, catalyst, residual solvent, etc. remaining in the gel film, Nearly all remaining amic acid groups can be imidated to obtain the polyimide film of the present invention. In such a heat treatment process, the dehydrating agent and / or the imidating agent may act as a catalyst, thereby rapidly converting the amic acid group into the imide group, thereby enabling high imidization rate.
경우에 따라서는 상기와 같이 수득한 폴리이미드 필름을 400℃ 내지 650℃의 온도로 5 초 내지 400 초간 가열 마감하여 폴리이미드 필름을 더욱 경화시킬 수도 있으며, 수득한 폴리이미드 필름에 잔류할 수도 있는 내부 응력을 완화시키기 위해서 소정의 장력 하에서 이를 수행할 수도 있다.In some cases, the polyimide film obtained as described above may be heated to a temperature of 400 ° C. to 650 ° C. for 5 seconds to 400 seconds to further cure the polyimide film, and may remain in the obtained polyimide film. This may be done under a predetermined tension to relieve stress.
본 발명은 또한, 상기 폴리이미드 필름을 포함하는 전자 장치를 제공할 수 있다.The present invention can also provide an electronic device including the polyimide film.
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.Hereinafter, the operation and effects of the invention will be described in more detail with reference to specific examples of the invention. However, these embodiments are only presented as an example of the invention, whereby the scope of the invention is not determined.
<실시예 1> <Example 1>
제조예 1: 제1 폴리아믹산 용액의 제조Preparation Example 1 Preparation of First Polyamic Acid Solution
교반기 및 질소 주입·배출관을 구비한 500 ㎖ 반응기에 질소를 주입시키면서 407.5 g의 DMF을 투입하고 반응기의 온도를 25℃로 설정한 후 35.1 g의 ODA 및 6.3 g의 PPD를 투입고 완전히 용해된 것을 확인한 뒤에 PMDA를 51.0 g 분할 투입하고 고형분 함량이 18.5 중량%, 23℃에서의 점도가 250,000만 내지 300,000 cP를 나타내는 제1 폴리아믹산 용액을 제조하였다.407.5 g of DMF was added to a 500 ml reactor equipped with a stirrer and a nitrogen inlet / outlet tube, and the temperature of the reactor was set at 25 ° C., followed by 35.1 g of ODA and 6.3 g of PPD. After confirming, 51.0 g of PMDA was added in portions, and a first polyamic acid solution having a solid content of 18.5 wt% and a viscosity at 23 ° C. of 250,000 to 300,000 cP was prepared.
제조예 2: 제2 폴리아믹산 용액의 제조Preparation Example 2 Preparation of Second Polyamic Acid Solution
교반기 및 질소 주입·배출관을 구비한 500 ㎖ 반응기에 질소를 주입시키면서 425 g의 DMF을 투입하고 반응기의 온도를 30℃로 설정한 후 37.53 g의 TPE-R 및 97 g의 BPDA를 투입하여 완전히 용해된 것을 확인하였다. 질소 분위기하에 40℃로 온도를 올려 가열하면서 120 분간 교반을 계속한 후, 고형 함량이 15 중량%, 23℃에서의 점도가 130,000 내지 150,000 cP를 나타내는 제2 폴리아믹산 용액을 제조하였다.425 g of DMF was added to a 500 ml reactor equipped with a stirrer and a nitrogen inlet / outlet tube, and the temperature of the reactor was set at 30 ° C., followed by 37.53 g of TPE-R and 97 g of BPDA to dissolve completely. It was confirmed. After stirring was continued for 120 minutes while heating to 40 ° C. under a nitrogen atmosphere, a second polyamic acid solution having a solid content of 15 wt% and a viscosity at 23 ° C. of 130,000 to 150,000 cP was prepared.
제조예 3: 전구체 조성물 및 폴리이미드 필름의 제조Preparation Example 3 Preparation of Precursor Composition and Polyimide Film
반응기의 온도를 50℃로 설정한 후 상기 제조예 1의 폴리아믹산 용액 30 g 및 제조예 2의 폴리아믹산 용액 1.04 g에 열전도성 필러로서 장경이 10 ㎛인 그래핀을 0.05 g 투입하고, 평균 입경이 16 ㎛인 알루미나를 0.26 g 투입한 이후 온도를 유지하면서 1시간 동안 교반하여 전구체 조성물을 제조하였다.After setting the temperature of the reactor at 50 ° C., 0.05 g of graphene having a long diameter of 10 μm was added to 30 g of the polyamic acid solution of Preparation Example 1 and 1.04 g of the polyamic acid solution of Preparation Example 2 as a thermally conductive filler. 0.26 g of this 16 μm alumina was added, followed by stirring for 1 hour while maintaining the temperature to prepare a precursor composition.
전구체 조성물을 1,500 rpm 이상의 고속 회전을 통해 기포를 제거하였다. 이후 스핀 코터를 이용하여 유리 기판에 탈포된 폴리이미드 전구체 조성물을 도포하였다. 이후 질소 분위기하 및 120℃의 온도에서 30 분 동안 건조하여 겔 필름을 제조하고, 상기 겔 필름을 450℃까지 2℃/분의 속도로 승온하고, 450℃에서 60 분 동안 열처리하고, 30℃까지 2℃/분의 속도로 냉각하여 폴리이미드 필름을 수득하였다. 이후 증류수에 디핑(dipping)하여 유리 기판에서 폴리이미드 필름을 박리시켰다.The precursor composition was bubbled through a high speed rotation of at least 1,500 rpm. Thereafter, the degassed polyimide precursor composition was applied to the glass substrate using a spin coater. After drying for 30 minutes in a nitrogen atmosphere and at a temperature of 120 ℃ to prepare a gel film, the gel film is heated to 450 ℃ at a rate of 2 ℃ / min, heat treatment at 450 ℃ 60 minutes, up to 30 ℃ Cooling at a rate of 2 ° C./min gave a polyimide film. Thereafter, the polyimide film was peeled off from the glass substrate by dipping in distilled water.
제조된 폴리이미드 필름은 100 중량부의 제1 폴리이미드 수지, 3 중량부의 제2 폴리이미드 수지, 1 중량부의 그래핀 및 5 중량부의 알루미나를 포함하고 두께는 15 ㎛였다.The polyimide film prepared contained 100 parts by weight of the first polyimide resin, 3 parts by weight of the second polyimide resin, 1 part by weight of graphene and 5 parts by weight of alumina and had a thickness of 15 μm.
제조된 폴리이미드 필름의 두께는 Anritsu사의 필름 두께 측정기(Electric Film thickness tester)를 사용하여 측정하였다.The thickness of the produced polyimide film was measured using an Anritsu Electric Film thickness tester.
<실시예 2><Example 2>
제조예 2에서, 제2 폴리아믹산 용액의 점도를 하기 표 1과 같이 변경한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.In Preparation Example 2, a polyimide film was prepared in the same manner as in Example 1, except that the viscosity of the second polyamic acid solution was changed as in Table 1 below.
<실시예 3><Example 3>
제조예 3에서, 하기 표 1의 폴리이미드 수지의 함량을 가지도록 폴리아믹산 용액의 투입량을 변경한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.In Preparation Example 3, a polyimide film was prepared in the same manner as in Example 1, except that the amount of the polyamic acid solution was changed to have a content of the polyimide resin of Table 1 below.
<실시예 4><Example 4>
제조예 2에서, 제2 폴리아믹산 용액의 점도를 하기 표 1과 같이 변경하고, 제조예 3에서, 하기 표 1의 폴리이미드 수지의 함량을 가지도록 폴리아믹산 용액의 투입량을 변경한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.In Preparation Example 2, except that the viscosity of the second polyamic acid solution was changed as shown in Table 1, and in Preparation Example 3, the amount of the polyamic acid solution was changed to have a content of the polyimide resin of Table 1 below. A polyimide film was prepared in the same manner as in Example 1.
<실시예 5>Example 5
제조예 3에서, 하기 표 1의 폴리이미드 수지의 함량을 가지도록 폴리아믹산 용액의 투입량을 변경한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.In Preparation Example 3, a polyimide film was prepared in the same manner as in Example 1, except that the amount of the polyamic acid solution was changed to have a content of the polyimide resin of Table 1 below.
<실시예 6><Example 6>
제조예 2에서, 제2 폴리아믹산 용액의 점도를 하기 표 1과 같이 변경하고, 제조예 3에서, 하기 표 1의 폴리이미드 수지의 함량을 가지도록 폴리아믹산 용액의 투입량을 변경한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.In Preparation Example 2, except that the viscosity of the second polyamic acid solution was changed as shown in Table 1, and in Preparation Example 3, the amount of the polyamic acid solution was changed to have a content of the polyimide resin of Table 1 below. A polyimide film was prepared in the same manner as in Example 1.
<실시예 7><Example 7>
제조예 2에서, TPE-R 대신 ODA를 30.51 g 투입한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.In Preparation Example 2, a polyimide film was prepared in the same manner as in Example 1 except that 30.51 g of ODA was added instead of TPE-R.
<비교예 1>Comparative Example 1
제2 폴리아믹산을 투입하지 않은 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.A polyimide film was prepared in the same manner as in Example 1, except that no second polyamic acid was added.
<비교예 2>Comparative Example 2
제조예 3에서, 하기 표 1의 폴리이미드 수지의 함량을 가지도록 폴리아믹산 용액의 투입량을 변경한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.In Preparation Example 3, a polyimide film was prepared in the same manner as in Example 1, except that the amount of the polyamic acid solution was changed to have a content of the polyimide resin of Table 1 below.
<비교예 3>Comparative Example 3
제조예 3에서, 하기 표 1의 폴리이미드 수지의 함량을 가지도록 폴리아믹산 용액의 투입량을 변경한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.In Preparation Example 3, a polyimide film was prepared in the same manner as in Example 1, except that the amount of the polyamic acid solution was changed to have a content of the polyimide resin of Table 1 below.
<비교예 4><Comparative Example 4>
제조예 2에서, 제2 폴리아믹산 용액의 점도를 하기 표 1과 같이 변경한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.In Preparation Example 2, a polyimide film was prepared in the same manner as in Example 1, except that the viscosity of the second polyamic acid solution was changed as in Table 1 below.
<비교예 5><Comparative Example 5>
제조예 2에서, 제2 폴리아믹산 용액의 점도를 하기 표 1과 같이 변경하고, 제조예 3에서, 하기 표 1의 폴리이미드 수지의 함량을 가지도록 폴리아믹산 용액의 투입량을 변경한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.In Preparation Example 2, except that the viscosity of the second polyamic acid solution was changed as shown in Table 1, and in Preparation Example 3, the amount of the polyamic acid solution was changed to have a content of the polyimide resin of Table 1 below. A polyimide film was prepared in the same manner as in Example 1.
<비교예 6>Comparative Example 6
제조예 2에서, 제2 폴리아믹산 용액의 점도를 하기 표 1과 같이 변경하고, 제조예 3에서, 하기 표 1의 폴리이미드 수지의 함량을 가지도록 폴리아믹산 용액의 투입량을 변경한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.In Preparation Example 2, except that the viscosity of the second polyamic acid solution was changed as shown in Table 1, and in Preparation Example 3, the amount of the polyamic acid solution was changed to have a content of the polyimide resin of Table 1 below. A polyimide film was prepared in the same manner as in Example 1.
<비교예 7> Comparative Example 7
제조예 2에서, TPE-R 대신 29.40 g의 MDA를 사용하고, BPDA 대신 44.63 g의 를 ODPA를 사용하여, 제2 폴리아믹산을 제조한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.In Preparation Example 2, a polyimide film was prepared in the same manner as in Example 1 except that a second polyamic acid was prepared using 29.40 g of MDA instead of TPE-R and 44.63 g of ODPA instead of BPDA. Prepared.
그래핀 함량(중량부)Graphene content (parts by weight) 알루미나 함량(중량부)Alumina content (parts by weight) 제2 폴리이미드 수지 함량(중량부)Second polyimide resin content (parts by weight) 제2 폴리아믹산에 사용된 단량체Monomer used in the second polyamic acid 제2 폴리아믹산 점도(cP)Second polyamic acid viscosity (cP)
실시예 1Example 1 1One 55 33 BPDA; TPE-RBPDA; TPE-R 130,000130,000
실시예 2Example 2 1One 55 33 BPDA; TPE-RBPDA; TPE-R 150,000150,000
실시예 3Example 3 1One 55 55 BPDA; TPE-RBPDA; TPE-R 130,000130,000
실시예 4Example 4 1One 55 55 BPDA; TPE-RBPDA; TPE-R 150,000150,000
실시예 5Example 5 1One 55 1010 BPDA; TPE-RBPDA; TPE-R 130,000130,000
실시예 6Example 6 1One 55 1010 BPDA; TPE-RBPDA; TPE-R 150,000150,000
실시예 7Example 7 1One 55 33 BPDA; ODABPDA; ODA 130,000130,000
비교예 1Comparative Example 1 1One 55 -- -- --
비교예 2Comparative Example 2 1One 55 1One BPDA; TPE-RBPDA; TPE-R 130,000130,000
비교예 3Comparative Example 3 1One 55 1313 BPDA; TPE-RBPDA; TPE-R 130,000130,000
비교예 4Comparative Example 4 1One 55 33 BPDA; TPE-RBPDA; TPE-R 80,00080,000
비교예 5Comparative Example 5 1One 55 33 BPDA; TPE-RBPDA; TPE-R 170,000170,000
비교예 6Comparative Example 6 1One 55 33 BPDA; TPE-RBPDA; TPE-R 200,000200,000
비교예 7Comparative Example 7 1One 55 33 ODPA; MDAODPA; MDA 130,000130,000
실험예 1: 결정화도 평가Experimental Example 1: Evaluation of Crystallinity
실시예 1 내지 실시예 7, 비교예 1 내지 비교예 7에서 각각 제조한 폴리이미드 필름에 대해서, XRD(Rigaku Corporation, Ultima IV)를 이용하여 결정화도를 분석하였다.About the polyimide films produced in Examples 1 to 7, and Comparative Examples 1 to 7, respectively, the crystallinity was analyzed using XRD (Rigaku Corporation, Ultima IV).
이때, 결정화도는 하기 수학식 (1)에 의해 계산하였으며, 그 결과를 하기 표 2에 나타내었다.At this time, the degree of crystallinity was calculated by the following equation (1), the results are shown in Table 2 below.
Figure PCTKR2019010587-appb-I000001
(1)
Figure PCTKR2019010587-appb-I000001
(One)
상기 수학식 (1)에서 Xc는 결정화도(%)이고, In Formula (1), X c is the degree of crystallinity (%),
Ia는 무정형 산란 면적(Area of amorphous scattering)이고,I a is the area of amorphous scattering,
Ic는 결정형 산란 피크의 면적(Area of crystalline scattering peaks)이다.I c is the area of crystalline scattering peaks.
결정화도(%)Crystallinity (%)
실시예 1Example 1 5353
실시예 2Example 2 5656
실시예 3Example 3 5858
실시예 4Example 4 6060
실시예 5Example 5 6363
실시예 6Example 6 6666
실시예 7Example 7 5252
비교예 1Comparative Example 1 1515
비교예 2Comparative Example 2 2020
비교예 3Comparative Example 3 8080
비교예 4Comparative Example 4 3030
비교예 5Comparative Example 5 6262
비교예 6Comparative Example 6 6565
비교예 7Comparative Example 7 3535
표 2를 참조하면, 실시예 1 내지 실시예 7의 폴리이미드 필름의 경우, 제1 폴리이미드 수지 100 중량부에 대해서 3 내지 10 중량부의 제2 폴리이미드 수지를 포함함으로써, 폴리이미드 필름의 결정화도가 50 % 이상을 만족하는 것을 확인할 수 있다.Referring to Table 2, in the case of the polyimide film of Examples 1 to 7, the crystallinity of the polyimide film is included by including 3 to 10 parts by weight of the second polyimide resin with respect to 100 parts by weight of the first polyimide resin. It can be confirmed that 50% or more are satisfied.
반면에, 제2 폴리이미드 수지의 함량이 본 발명의 범위보다 낮은 비교예 1 및 2는 결정화도가 실시예들의 폴리이미드 필름에 비해 낮은 것을 확인할 수 있으며, 제조 과정에서 점도가 본 발명의 범위보다 낮은 제2 폴리아믹산을 투입한 비교예 4, 결정성 단량체를 사용하지 않는 제2 폴리아믹산을 투입한 비교예 7 또한 결정화도가 실시예들의 폴리이미드 필름에 비해 낮은 것을 확인할 수 있다.On the other hand, Comparative Examples 1 and 2 in which the content of the second polyimide resin is lower than the range of the present invention, it can be seen that the crystallinity is lower than the polyimide film of the examples, the viscosity is lower than the range of the present invention in the manufacturing process Comparative Example 4 in which the second polyamic acid was added, Comparative Example 7 in which the second polyamic acid without the crystalline monomer was added, it was also confirmed that the crystallinity is lower than the polyimide film of the examples.
이로부터 폴리이미드 필름에 포함되는 제2 폴리이미드 수지의 함량에 따라 폴리이미드 필름의 결정화도가 달라지는 것을 확인할 수 있으며, 제조 과정에서 상대적으로 낮은 점도의 제2 폴리아믹산을 사용하는 경우에는, 폴리이미드 필름에 동일한 함량의 제2 폴리이미드 수지를 포함하도록 제조했음에도 불구하고, 폴리이미드 필름의 결정화도가 달라지는 것을 확인할 수 있다.From this, it can be seen that the crystallinity of the polyimide film varies according to the content of the second polyimide resin included in the polyimide film, and in the case of using a second polyamic acid having a relatively low viscosity in the manufacturing process, the polyimide film Although manufactured to include the same amount of the second polyimide resin, it can be seen that the crystallinity of the polyimide film is different.
실험예 2: 열전도율 평가Experimental Example 2: Evaluation of Thermal Conductivity
실시예 1 내지 실시예 7, 비교예 1 내지 비교예 7에서 각각 제조한 폴리이미드 필름에 대해서, 열확산율 측정 장비(모델명 LFA 447, Netsch 사)를 사용하여 laser flash 법으로 폴리이미드 필름의 두께방향 및 평면방향에 대한 열확산율을 측정하였으며, 상기 열확산율 측정값에 밀도(중량/부피) 및 비열(DSC를 사용한 비열 측정값)을 곱하여 열전도율을 산출하고, 그 결과를 하기 표 3에 나타내었다.About the polyimide films produced in Examples 1 to 7, and Comparative Examples 1 to 7, respectively, the thickness direction of the polyimide film by the laser flash method using a thermal diffusivity measuring instrument (Model LFA 447, Netsch) And the thermal diffusivity in the planar direction was measured, and the thermal conductivity was calculated by multiplying the measured thermal diffusivity by density (weight / volume) and specific heat (specific heat measured value using DSC), and the results are shown in Table 3 below.
실험예 3: 신율 평가Experimental Example 3: Elongation Evaluation
실시예 1 내지 실시예 7, 비교예 1 내지 비교예 7에서 각각 제조한 폴리이미드 필름에 대해서, 각각의 폴리이미드 필름을 폭 10 mm, 길이 40 mm로 자른 후 인스트론(Instron)사의 Instron5564 UTM 장비를 사용하여 ASTM D-882 방법으로 신율을 측정하고, 그 결과를 하기 표 3에 나타내었다.For the polyimide films prepared in Examples 1 to 7, and Comparative Examples 1 to 7, respectively, each polyimide film was cut into a width of 10 mm and a length of 40 mm, followed by Instron 5564 UTM equipment of Instron. Elongation was measured using ASTM D-882 method, and the results are shown in Table 3 below.
열전도율(W/m·K)Thermal Conductivity (W / mK) 신율(%)% Elongation
두께방향Thickness direction 평면방향Planar direction
실시예 1Example 1 0.90.9 3.53.5 3737
실시예 2Example 2 1.01.0 3.93.9 3636
실시예 3Example 3 1.151.15 4.34.3 3535
실시예 4Example 4 1.251.25 4.64.6 3434
실시예 5Example 5 1.351.35 5.55.5 3333
실시예 6Example 6 1.51.5 6.36.3 3131
실시예 7Example 7 0.850.85 3.23.2 4040
비교예 1Comparative Example 1 0.650.65 2.42.4 4545
비교예 2Comparative Example 2 0.690.69 2.52.5 4545
비교예 3Comparative Example 3 1.71.7 7.57.5 1515
비교예 4Comparative Example 4 0.660.66 2.452.45 4646
비교예 5Comparative Example 5 1.301.30 5.355.35 2222
비교예 6Comparative Example 6 1.431.43 5.925.92 1919
비교예 7Comparative Example 7 0.650.65 2.42.4 4747
표 3을 참조하면, 실시예 1 내지 실시예 7의 폴리이미드 필름의 경우, 평면방향의 열전도율이 3.2 W/m·K 이상, 두께방향의 열전도율이 0.8 W/m·K 이상, 신율이 30% 이상을 만족하는 것을 확인할 수 있다.Referring to Table 3, in the case of the polyimide films of Examples 1 to 7, the thermal conductivity in the planar direction is 3.2 W / m · K or more, the thermal conductivity in the thickness direction is 0.8 W / m · K or more, and the elongation is 30%. It can be confirmed that the above are satisfied.
반면에, 제2 폴리이미드 수지의 함량이 본 발명의 범위보다 낮은 비교예 1 및 2, 제조 과정에서 점도가 본 발명의 범위보다 낮은 제2 폴리아믹산을 투입한 비교예 4, 결정성 단량체를 사용하지 않는 제2 폴리아믹산을 투입한 비교예 7의 경우, 열전도율, 특히, 두께방향의 열전도율이 0.8 W/m·K 미만으로 우수하지 못한 것을 확인할 수 있다.On the other hand, Comparative Examples 1 and 2 in which the content of the second polyimide resin is lower than the range of the present invention, and Comparative Example 4 in which a second polyamic acid having a viscosity lower than the range of the present invention are used in the preparation process are used. In the case of Comparative Example 7 in which a second polyamic acid was added, it was confirmed that the thermal conductivity, in particular, the thermal conductivity in the thickness direction was less than 0.8 W / m · K.
한편, 제2 폴리이미드 수지의 함량이 본 발명의 범위보다 높은 비교예 3, 제조 과정에서 점도가 본 발명의 범위보다 높은 제2 폴리아믹산을 투입한 비교예 5 및 6의 경우, 두께방향의 열전도율이 0.8 W/m·K 이상으로 우수하지만, 신율이 30 % 이하로 실시예들에 비해 저하된 것을 확인할 수 있다.On the other hand, in the case of Comparative Example 3 in which the content of the second polyimide resin is higher than the range of the present invention, and Comparative Examples 5 and 6 in which the second polyamic acid having a viscosity higher than the range of the present invention is added in the manufacturing process, the thermal conductivity in the thickness direction Although it is excellent in 0.8 W / m * K or more, it can be confirmed that elongation is 30% or less compared with the Example.
이상 본 발명의 실시예들을 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕을 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.Although described above with reference to embodiments of the present invention, those of ordinary skill in the art, it will be possible to perform various applications and modifications within the scope of the present invention based on the above contents.
본 발명에 따른 폴리이미드 필름은 제1 폴리이미드 수지, 상기 제1 폴리이미드 수지에 비해 결정성이 큰 제2 폴리이미드 수지 및 열전도성 필러를 포함하여, 상기 제2 폴리이미드 수지의 결정과 열전도성 필러가 필름 내에서 두께방향 및/또는 평면방향에 대해 열 전달 경로를 형성함으로써, 폴리이미드 필름의 평면방향 열전도율 및 두께방향 열전도율을 향상시킬 수 있다.The polyimide film according to the present invention includes a first polyimide resin, a second polyimide resin having a higher crystallinity than the first polyimide resin, and a thermally conductive filler, so that the crystals and the thermal conductivity of the second polyimide resin are By forming the heat transfer path in the film in the thickness direction and / or the planar direction in the film, the planar thermal conductivity and the thickness direction thermal conductivity of the polyimide film can be improved.
본 발명에 따른 제조방법은, 제2 폴리이미드 수지의 전구체인 제2 폴리아믹산의 점도를 조절하여, 이로부터 제조되는 폴리이미드 필름의 결정화도를 상승시킬 수 있다.In the production method according to the present invention, by adjusting the viscosity of the second polyamic acid that is a precursor of the second polyimide resin, it is possible to increase the crystallinity of the polyimide film produced therefrom.

Claims (15)

100 중량부의 제1 폴리이미드 수지,100 parts by weight of the first polyimide resin,
3 내지 10 중량부의 제2 폴리이미드 수지, 및3 to 10 parts by weight of the second polyimide resin, and
2 내지 8 중량부의 열전도성 필러를 포함하고,2 to 8 parts by weight of the thermally conductive filler,
상기 제2 폴리이미드 수지는 제1 폴리이미드 수지에 비해 결정성이 크고,The second polyimide resin is more crystalline than the first polyimide resin,
폴리이미드 필름의 결정화도가 50 % 이상이고, 두께방향 열전도율이 0.8 W/m·K 이상이고, 평면방향 열전도율이 3.2 W/m·K 이상인, 폴리이미드 필름.The polyimide film whose crystallinity of a polyimide film is 50% or more, thickness direction thermal conductivity is 0.8 W / m * K or more, and planar direction thermal conductivity is 3.2 W / m * K or more.
제1항에 있어서,The method of claim 1,
상기 제1 폴리이미드 수지는 제1 디안하이드라이드 및 제1 디아민의 반응에 의해 형성된 제1 폴리아믹산을 이미드화하여 제조되고,The first polyimide resin is prepared by imidating a first polyamic acid formed by the reaction of a first dianhydride and a first diamine,
상기 제2 폴리이미드 수지는 제2 디안하이드라이드 및 제2 디아민의 반응에 의해 형성된 제2 폴리아믹산을 이미드화하여 제조되는, 폴리이미드 필름.The second polyimide resin is produced by imidating a second polyamic acid formed by the reaction of a second dianhydride and a second diamine.
제2항에 있어서,The method of claim 2,
상기 제1 디안하이드라이드는 피로멜리틱디안하이드라이드(PMDA), 옥시디프탈릭안하이드라이드(ODPA) 및 벤조페논테트라카르복실릭디안하이드라이드(BTDA)으로 이루어진 군으로부터 선택된 1종 이상을 포함하고,The first dianhydride comprises one or more selected from the group consisting of pyromellitic dianhydride (PMDA), oxydiphthalic hydride (ODPA) and benzophenone tetracarboxylic dianhydride (BTDA) ,
상기 제1 디아민은 페닐렌디아민(PPD), 2,2-비스[4'-(4-아미노페녹시)페닐]프로판(BAPP) 및 메틸렌디아닐린(MDA)로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 폴리이미드 필름.The first diamine is at least one selected from the group consisting of phenylenediamine (PPD), 2,2-bis [4 '-(4-aminophenoxy) phenyl] propane (BAPP) and methylenedianiline (MDA). Polyimide film containing.
제2항에 있어서,The method of claim 2,
상기 제2 디안하이드라이드는 바이페닐테트라카르복실릭 디안하이드라이드(BPDA)를 포함하고,The second dianhydride comprises biphenyltetracarboxylic dianhydride (BPDA),
상기 제2 디아민은 옥시디아닐린(ODA), 1,3-비스(4-아미노페녹시)벤젠(TPE-R), 1,4-비스(3-아미노페녹시)벤젠(TPE-Q)로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 폴리이미드 필름.The second diamine is oxydianiline (ODA), 1,3-bis (4-aminophenoxy) benzene (TPE-R), 1,4-bis (3-aminophenoxy) benzene (TPE-Q) Polyimide film containing one or more selected from the group consisting of.
제4항에 있어서,The method of claim 4, wherein
상기 제2 디아민은 1,3-비스(4-아미노페녹시)벤젠(TPE-R)을 포함하는, 폴리이미드 필름.Wherein said second diamine comprises 1,3-bis (4-aminophenoxy) benzene (TPE-R).
제1항에 있어서,The method of claim 1,
상기 열전도성 필러는 그래핀, 알루미나, 질화붕소로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 폴리이미드 필름.The thermally conductive filler includes at least one selected from the group consisting of graphene, alumina and boron nitride, polyimide film.
제6항에 있어서,The method of claim 6,
상기 열전도성 필러는 1 내지 3 중량부의 그래핀 및 1 내지 5 중량부의 알루미나를 포함하는, 폴리이미드 필름.The thermally conductive filler includes 1 to 3 parts by weight of graphene and 1 to 5 parts by weight of alumina, polyimide film.
제6항에 있어서,The method of claim 6,
상기 그래핀은 평균 장경이 5 내지 15 ㎛인, 폴리이미드 필름.The graphene is an average long diameter of 5 to 15 ㎛ polyimide film.
제6항에 있어서,The method of claim 6,
상기 알루미나는 평균 입경이 5 내지 25 ㎛인, 폴리이미드 필름.The alumina has a mean particle size of 5 to 25 ㎛ polyimide film.
제1항에 있어서,The method of claim 1,
상기 제2 폴리이미드 수지의 적어도 일부는 결정을 형성하고, 상기 결정과 상기 열전도성 필러는 필름 내에서 두께방향 및/또는 평면방향에 대해 열 전달 경로를 형성하는, 폴리이미드 필름.At least a portion of the second polyimide resin forms a crystal, and the crystal and the thermally conductive filler form a heat transfer path in a thickness direction and / or in a planar direction in the film.
제1항에 있어서,The method of claim 1,
상기 폴리이미드 필름은 신율이 30 % 이상인, 폴리이미드 필름.The polyimide film, the polyimide film, the elongation is 30% or more.
제1항에 따른 폴리이미드 필름을 제조하는 방법으로서, As a method of manufacturing the polyimide film according to claim 1,
제1 디안하이드라이드 및 제1 디아민으로부터 제1 폴리아믹산을 중합하는 단계;Polymerizing a first polyamic acid from the first dianhydride and the first diamine;
제2 디안하이드라이드 및 제2 디아민으로부터 제2 폴리아믹산을 중합하는 단계;Polymerizing a second polyamic acid from a second dianhydride and a second diamine;
상기 제1 폴리아믹산, 제2 폴리아믹산 및 열전도성 필러를 혼합하여 전구체 조성물을 제조하는 단계; 및Preparing a precursor composition by mixing the first polyamic acid, the second polyamic acid, and the thermally conductive filler; And
상기 전구체 조성물을 이미드화하여 폴리이미드 필름을 수득하는 단계를 포함하는, 제조방법.Imidizing the precursor composition to obtain a polyimide film.
제12항에 있어서,The method of claim 12,
상기 폴리이미드 필름을 수득하는 단계는 상기 전구체 조성물을 지지체에 제막하고 건조하여 겔 필름을 제조한 후, 상기 겔 필름을 이미드화하여 폴리이미드 필름을 형성하는 단계를 포함하는, 제조방법.Obtaining the polyimide film includes forming a polyimide film by forming the precursor composition on a support and drying to prepare a gel film, and then imidating the gel film.
제12항에 있어서, The method of claim 12,
상기 제2 폴리아믹산은 고형분 함량이 15 중량%일 때 23℃에서 측정한 점도가 100,000 cP 내지 150,000 cP인, 제조방법.The second polyamic acid has a viscosity of 100,000 cP to 150,000 cP measured at 23 ° C. when the solid content is 15% by weight.
제1항에 따른 폴리이미드 필름을 포함하는, 전자 장치.An electronic device comprising the polyimide film of claim 1.
PCT/KR2019/010587 2018-08-24 2019-08-20 Polyimide film comprising crystalline polyimide resin and thermal conductive filler and manufacturing method therefor WO2020040527A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980055154.1A CN112585198B (en) 2018-08-24 2019-08-20 Polyimide film containing crystalline polyimide resin and thermally conductive filler, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180099114A KR102153508B1 (en) 2018-08-24 2018-08-24 Polyimide Film Comprising Crystalline Polyimide Resin and Thermal Conductive Filler and Method for Preparing The Same
KR10-2018-0099114 2018-08-24

Publications (1)

Publication Number Publication Date
WO2020040527A1 true WO2020040527A1 (en) 2020-02-27

Family

ID=69593149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010587 WO2020040527A1 (en) 2018-08-24 2019-08-20 Polyimide film comprising crystalline polyimide resin and thermal conductive filler and manufacturing method therefor

Country Status (3)

Country Link
KR (1) KR102153508B1 (en)
CN (1) CN112585198B (en)
WO (1) WO2020040527A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116496528A (en) * 2023-06-25 2023-07-28 苏州尊尔光电科技有限公司 High-strength heat-conducting composite polyimide film and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102447652B1 (en) * 2020-11-24 2022-09-28 피아이첨단소재 주식회사 Polyimide film with improved dielectric properties and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004123867A (en) * 2002-10-01 2004-04-22 Kanegafuchi Chem Ind Co Ltd Polyimide resin composition, polyimide film, and polyimide tube
KR20070059582A (en) * 2005-12-07 2007-06-12 마이크로코즘 테크놀리지 씨오.,엘티디 Polyamic acid composition and laminate made using the same
KR20110010009A (en) * 2009-07-23 2011-01-31 코오롱인더스트리 주식회사 Manufacturing method of polyimide, polyimide manufactured by thereof and film manufactured using said polyimide
KR101501957B1 (en) * 2008-09-08 2015-03-12 신닛테츠 수미킨 가가쿠 가부시키가이샤 Highly heat conductive polyimide film, highly heat conductive metal-clad laminate and method for producing same
KR20150113472A (en) * 2014-03-31 2015-10-08 코오롱인더스트리 주식회사 Polyimide Resin and Film Thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004123867A (en) * 2002-10-01 2004-04-22 Kanegafuchi Chem Ind Co Ltd Polyimide resin composition, polyimide film, and polyimide tube
KR20070059582A (en) * 2005-12-07 2007-06-12 마이크로코즘 테크놀리지 씨오.,엘티디 Polyamic acid composition and laminate made using the same
KR101501957B1 (en) * 2008-09-08 2015-03-12 신닛테츠 수미킨 가가쿠 가부시키가이샤 Highly heat conductive polyimide film, highly heat conductive metal-clad laminate and method for producing same
KR20110010009A (en) * 2009-07-23 2011-01-31 코오롱인더스트리 주식회사 Manufacturing method of polyimide, polyimide manufactured by thereof and film manufactured using said polyimide
KR20150113472A (en) * 2014-03-31 2015-10-08 코오롱인더스트리 주식회사 Polyimide Resin and Film Thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116496528A (en) * 2023-06-25 2023-07-28 苏州尊尔光电科技有限公司 High-strength heat-conducting composite polyimide film and preparation method thereof
CN116496528B (en) * 2023-06-25 2023-09-22 苏州尊尔光电科技有限公司 High-strength heat-conducting composite polyimide film and preparation method thereof

Also Published As

Publication number Publication date
CN112585198A (en) 2021-03-30
KR20200022902A (en) 2020-03-04
KR102153508B1 (en) 2020-09-09
CN112585198B (en) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2019088454A1 (en) Ultra-thin black polyimide film and manufacturing method therefor
WO2020096259A1 (en) Ultra-thin polyimide film having improved dimensional stability and manufacturing method therefor
WO2019093669A2 (en) Ultra-thin black polyimide film and manufacturing method therefor
WO2019164068A1 (en) Graphite sheet polyimide film comprising spherical pi-based filler, manufacturing method therefor, and graphite sheet manufactured using same
WO2020091432A1 (en) Polyimide precursor composition for enhancing adhesiveness of polyimide film and polyimide film manufactured therefrom
WO2020054912A1 (en) Polyimide film having improved surface quality and method for manufacturing same
WO2020017697A1 (en) Polyimide film including fluorine-containing silane additive and carbon black, and method for producing same
WO2020111399A1 (en) Polyimide film comprising two or more fillers with different particle diameters and electronic apparatus comprising same
WO2019160218A1 (en) Polyamic acid composition having improved storage stability, manufacturing method for polyimide film using same, and polyimide film manufactured by means of same
WO2019143000A1 (en) Highly thermally conductive polyimide film comprising two or more types of fillers
WO2020080598A1 (en) Thick polyimide film having improved surface quality and method for manufacturing same
WO2021096245A2 (en) Polyimide film having improved dimensional stability and manufacturing method thereof
WO2020091147A1 (en) Conductor-coating polyimide varnish for improving heat resistance of polyimide-coated product, and polyimide-coated product manufactured therefrom
WO2020040356A1 (en) Polyimide varnish comprising aromatic carboxylic acid for conductor coating and manufacturing method therefor
WO2020101225A1 (en) Polyimide precursor composition containing crosslinkable dianhydride-based compound and antioxidant, and polyimide film produced therefrom
WO2020040527A1 (en) Polyimide film comprising crystalline polyimide resin and thermal conductive filler and manufacturing method therefor
WO2021006427A1 (en) Polyamic acid composition, preparation method for polyamic acid composition, and polyimide comprising same
WO2020040347A1 (en) Polyimide film having improved alkali resistance and method for manufacturing same
WO2019182224A1 (en) Polyimide film comprising omnidirectional polymer chain, method for manufacturing same, and graphite sheet manufactured using same
WO2020096410A1 (en) Polyimide composite film having improved adhesion to metal layer and method for manufacturing same
WO2020017692A1 (en) Polyimide film comprising clay particles and carbon black and manufacturing method therefor
WO2020071588A1 (en) Method for producing polyamideimide film, and polyamideimide film produced therefrom
WO2020022564A1 (en) Polyimide precursor composition comprising aromatic carboxylic acid and polyimide film manufactured using same
WO2020141708A1 (en) Polyamic acid composition and preparation method thereof
WO2020122410A1 (en) Polyimide film having improved thermal conductivity and preparation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851841

Country of ref document: EP

Kind code of ref document: A1