WO2013002614A2 - Polyamic acid, polyamic acid solution, polyimide protective layer, and polyimide film - Google Patents

Polyamic acid, polyamic acid solution, polyimide protective layer, and polyimide film Download PDF

Info

Publication number
WO2013002614A2
WO2013002614A2 PCT/KR2012/005230 KR2012005230W WO2013002614A2 WO 2013002614 A2 WO2013002614 A2 WO 2013002614A2 KR 2012005230 W KR2012005230 W KR 2012005230W WO 2013002614 A2 WO2013002614 A2 WO 2013002614A2
Authority
WO
WIPO (PCT)
Prior art keywords
polyamic acid
acid solution
polyimide
mol
protective layer
Prior art date
Application number
PCT/KR2012/005230
Other languages
French (fr)
Korean (ko)
Other versions
WO2013002614A3 (en
Inventor
박상윤
정학기
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to CN201280032811.9A priority Critical patent/CN103649175B/en
Publication of WO2013002614A2 publication Critical patent/WO2013002614A2/en
Publication of WO2013002614A3 publication Critical patent/WO2013002614A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1085Polyimides with diamino moieties or tetracarboxylic segments containing heterocyclic moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/22Polybenzoxazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a polyamic acid, a polyamic acid solution, a polyimide protective layer and a polyimide film.
  • the type of flexible display currently developed is being developed in the same manner as LCD, OLED, and EPD based on passive or active driving elements. These are methods in which a display is driven by mounting a passive or active driving element on a flexible polymer substrate as a structure, and attention is gradually shifting to active type with precise pixel implementation rather than passive type.
  • the active flexible display constitutes a unit device of a display by structuring a gate, an insulating film, a source, and a drain on a polymer material substrate and finally mounting an electrode and a display element.
  • the active display device since most of the manufacturing processes are often performed at high temperature, if a polymer substrate material having no heat resistance is used, the dimensions of the polymer substrate are easily deformed and thermally deformed during device fabrication. There is a problem in that the alignment of the pattern does not match or changes in the surface properties of the polymer substrate, so that the pattern may be used as a display substrate.
  • typical heat-resistant plastic materials include polyethylene naphthalate (PEN) and polyether sulfone (PES) polycarbonate (PC).
  • PEN polyethylene naphthalate
  • PES polyether sulfone
  • PC polycarbonate
  • Tg glass transition temperature
  • Tg coefficient of thermal expansion
  • Possible adverse effects on quality John Scheirs and Timothy E. Long, Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters, 2004); And Sumilite® FS-1300, Sumitomo Bakelite Catalog 4).
  • the display element is manufactured by adhering on the metal foil or the glass plate.
  • the adhesive film and the metal foil or the glass plate are further bonded and peeled off by using the adhesive. If the adhesion is not smooth, there may be a problem in the smoothness.
  • the present invention provides a polyamic acid and a polyamic acid solution that can produce a substrate or a protective layer of a flexible display having excellent thermal stability even at a high temperature of 500 ° C. or higher and having excellent thermal expansion in the temperature range of 50 to 450 ° C. after film formation.
  • a polyimide protective layer and a polyimide film are examples of polyimide film.
  • the polyamic acid of the present invention is polymerized from an aromatic diamine monomer and an aromatic dianhydride monomer, and the aromatic diamine monomer comprises 2- (4-aminophenyl) -5-aminobenzoxazole.
  • the aromatic dianhydride-based monomer may include pyromellitic anhydride alone, or 70 mol% or more of pyromellitic anhydride and 30 mol% or less of biphenyltetracarbosyl anhydride.
  • the polyamic acid solution of the present invention includes the polyamic acid, and has a viscosity of 50 to 5,000 poise.
  • the polyimide protective layer of the present invention is characterized in that the polyamic acid solution of claim 3 is coated on a laminated component of a display device, and is produced by imidization thereof.
  • the polyimide film of the present invention comprises a unit structure derived from an aromatic diamine monomer and a unit structure derived from an aromatic dianhydride monomer, wherein the aromatic monomer is 2- (4-aminophenyl) -5-aminobenzoxazole
  • the aromatic dianhydride-based monomer comprises pyromellitic anhydride alone, or more than 70 mol% of pyromellitic anhydride and 30 mol% or less of biphenyltetracarbolic acid anhydride It is desirable to.
  • the present invention is a polyamic acid, polya which can manufacture a substrate or a protective layer of a flexible display having excellent thermal stability even at a high temperature of 500 °C or more, and excellent thermal expansion coefficient in the temperature range of 50 ⁇ 450 °C after film formation
  • a mixed acid solution, a polyimide protective layer, and a polyimide film were provided.
  • the polyamic acid, the polyamic acid solution, the polyimide film, and the protective layer of the present invention are aromatic diamine-based monomers and aromatic dianhydrides in order to have excellent thermal stability and thermal expansion coefficient when the final product is made of a substrate or a protective layer. It superposes
  • the pyrolysis temperature at which TGA 1% weight loss occurs may be 500 ° C or higher, and in the temperature range of 50 to 450 ° C.
  • Thermal expansion coefficient may be 20 ppm / degrees C or less.
  • the polyamic acid of the present invention contains 2- (4-aminophenyl) -5-aminobenzoxazole as an aromatic diamine monomer, and at this time, 70 mol% of pyromellitic anhydride as the aromatic dianhydride monomer.
  • the thermal stability and thermal expansion rate of the polyimide after imidation can be made excellent.
  • the polyamic acid to be provided in the present invention may be provided in a liquid form, which is provided in the form of a film, and thus, the film itself does not have a supporting force capable of maintaining its shape.
  • the adhesive and peeling process of the polymer film and the metal foil or the glass plate using the adhesive is additionally generated, and when the adhesion is not smooth, a problem may occur in the smoothness, so the polyamic acid to be provided in the present invention is in the form of a film. It is provided in a liquid form instead of being applied to the pretreated ceramic support and dried to form an imidization film, which is an advantage that can be easily used a process for manufacturing a display device while maintaining the form of the pretreated ceramic support Because of this.
  • the polyamic acid solution of the present invention contains 2- (4-aminophenyl) -5-aminobenzoxazole as the aromatic diamine monomer in order to ensure uniformity of the coating, and the like as the aromatic dianhydride monomer It is preferable that the polyamic acid contains 70 mol% or more of pyromellitic anhydrides, and 30 mol% or less of biphenyl tetracarbosyl anhydride, or contains pyromellitic anhydride independently, and it is preferable that a viscosity is 50-5,000 poise.
  • the protective layer of the present invention contains 2- (4-aminophenyl) -5-aminobenzoxazole as an aromatic diamine monomer on the laminated component of the display device, and at this time, the aromatic dianhydride monomer A polyamic acid solution containing not less than 70 mol% of pyromellitic anhydride and not more than 30 mol% of biphenyltetracarbosilic anhydride, or containing pyromellitic anhydride alone, having a viscosity of 50 to 5,00 poise, is already applied. It is preferable to make it and to produce it.
  • the polyimide film of the present invention comprises 2- (4-aminophenyl) -5-aminobenzoxazole as an aromatic diamine monomer, wherein at least 70 mol% of pyromellitic anhydride as the aromatic dianhydride monomer and By containing 30 mol% or less of biphenyl tetracarbosyl anhydride or containing pyromellitic anhydride alone, it can be used as a material of a board
  • the dianhydride component and the diamine component are dissolved in a substantially equimolar amount to react with each other to prepare a polyamic acid.
  • the reaction temperature is preferably -20 to 80 ° C, and the reaction time is preferably 2 to 48 hours. Moreover, it is more preferable that it is inert atmosphere, such as argon and nitrogen, at the time of reaction.
  • the organic solvent for the polymerization of the polyamic acid is not particularly limited as long as it is a solvent that dissolves the polyamic acid, and known reaction solvents include m-cresol, N-methyl-2-pyrrolidone (NMP), and dimethylformamide ( One or more polar solvents selected from DMF), dimethylacetamide (DMAc), dimethylsulfoxide (DMSO), acetone and diethyl acetate.
  • DMF dimethylacetamide
  • DMSO dimethylsulfoxide
  • acetone and diethyl acetate acetone and diethyl acetate.
  • low boiling point solutions such as tetrahydrofuran (THF), chloroform or low absorbing solvents such as ⁇ -butyrolactone may be used.
  • the content of the organic solvent is not particularly limited, but in order to obtain appropriate molecular weight and viscosity of the polyamic acid, the organic solvent is preferably 50 to 95% by weight of the total polyamic acid solution, and more preferably 70 to 90% by weight. More preferred.
  • a filler may be added to the polyamic acid solution for the purpose of improving various properties such as surface properties and thermal conductivity of the polyimide coating layer.
  • a filler As a preferable specific example, a silica, titanium oxide, layered silica, carbon nanotube, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica, etc. are mentioned.
  • the particle diameter of the filler may vary depending on the characteristics of the coating layer to be modified and the type of filler to be added, but is not particularly limited. In general, the average particle diameter is preferably 0.001 to 50 ⁇ m, and preferably 0.005 to 25 ⁇ m. It is more preferable, More preferably, it is good that it is 0.01-10 micrometers. In this case, the effect of modifying the polyimide coating layer is likely to appear, and good surface property, insulation, conductivity and mechanical properties can be obtained in the polyimide coating layer.
  • the amount of the filler added may vary depending on the characteristics of the coating layer to be modified, the filler particle size, and the like.
  • the content of the filler is preferably 0.001 to 20 parts by weight, more preferably 0.01 to 15 parts by weight, based on 100 parts by weight of the polyamic acid solution in order to exhibit properties to be modified without disturbing the bonding structure of the polymer resin. It is good that it is a weight part.
  • the addition method of a filler is not specifically limited, For example, the method of adding to a polyamic-acid solution before superposition
  • the method which simulates the flexible display manufacturing process can be used,
  • coating a polyamic acid solution uniformly to a support body is mentioned. That is, the display device manufacturing process generally proceeds in the order of sequentially stacking electrodes and display parts on the upper surface of the substrate layer.
  • the polyamic acid solution may be formed on a separate support (ceramic support, etc.).
  • the polyimide coating layer imidized by applying the polyamic acid solution on a component laminated on the display device may be applied as a protective layer.
  • the chemical imidization method is a method of imidizing a polyamic acid solution by imidating a dehydrating agent represented by an acid anhydride such as acetic anhydride and an imidization catalyst represented by tertiary amines such as isoquinoline, ⁇ -picolin and pyridine.
  • a dehydrating agent represented by an acid anhydride such as acetic anhydride
  • an imidization catalyst represented by tertiary amines such as isoquinoline, ⁇ -picolin and pyridine.
  • the heating conditions of the polyamic acid solution may vary depending on the kind of the polyamic acid solution, the required imidization film thickness, and the like.
  • the imidization film formation method After the dehydrating agent and the imidization catalyst are added to the polyamic acid solution and cast on a separate support, 80 to 200
  • the imidized film can be obtained by heating at 100 ° C, preferably 100-180 ° C, activating the dehydrating agent and the imidization catalyst, partially curing and drying, and then heating at 200-400 ° C for 1-120 minutes.
  • the display device components and the like may be sequentially stacked on the imidization film as described above, and a solution in which a dehydrating agent and an imidization catalyst is added to the polyamic acid solution is applied onto the display device components, and then an imidization film is formed. It can also be applied as a protective layer.
  • the polyamic acid solution As described above, by applying the polyamic acid solution to the display device, a display device having excellent thermal stability and appropriate flexibility and mechanical strength can be provided.
  • a method of producing a polyimide film as a flexible display substrate after applying a solution containing the polyamic acid of the present invention on the support for forming a film, the thermal imidization method and / or chemical imidization method It can also imide using and manufacture a polyimide film.
  • the obtained polyamic acid solution was vacuum degassed, cooled to room temperature, cast to a thickness of 60-100 ⁇ m on a stainless plate and dried for 10 minutes with hot air at 150 ° C. Then, the mixture was heated up to 450 ° C., heated for 30 minutes, and slowly cooled to separate from the support to obtain a polyimide membrane having a thickness of 12 ⁇ m.
  • the obtained polyamic acid solution was vacuum degassed, cooled to room temperature, cast to a thickness of 60-100 ⁇ m on a stainless plate and dried for 10 minutes with hot air at 150 ° C. Then, the mixture was heated up to 450 ° C., heated for 30 minutes, and gradually cooled to separate from the support to obtain a polyimide membrane having a thickness of 12 ⁇ m.
  • the polyamic acid solution and the polyimide coating layer were obtained in the same manner as in Example 2, except that the components and amounts of diamine and dianhydride were changed as shown in the following molar ratio of Table 1, and the thickness of the polyimide membrane was adjusted. It was.
  • the reactor was filled with 500 g of N, N-dimethylacetamide (DMAc) while passing nitrogen through a 1 L reactor equipped with a stirrer, a nitrogen injection device, a dropping funnel, a temperature controller, and a cooler. 3,3-Oxydianilne] 24.86 g (0.2299 mol) was dissolved to maintain this solution at 25 ° C. PMDA 50.14 g (0.2299 mol) was added thereto and stirred for 24 hours to obtain a polyamic acid solution having a viscosity of 760 Poise.
  • DMAc N, N-dimethylacetamide
  • the obtained polyamic acid solution was vacuum degassed, cooled to room temperature, cast to a thickness of 60-100 ⁇ m on a stainless plate and dried for 10 minutes with hot air at 150 ° C. Then, the mixture was heated up to 450 ° C., heated for 30 minutes, and slowly cooled to separate from the support to obtain a polyimide membrane having a thickness of 11 ⁇ m.
  • the obtained polyamic acid solution was vacuum degassed, cooled to room temperature, cast to a thickness of 60-100 ⁇ m on a stainless plate and dried for 10 minutes with hot air at 150 ° C. Then, the mixture was heated up to 450 ° C., heated for 30 minutes, and slowly cooled to separate from the support to obtain a polyimide membrane having a thickness of 11 ⁇ m.
  • Comparative Example 2 the component and the amount of the diamine and dianhydride were changed as shown in Table 1 below and the molar ratio of the component, and the polyamic acid solution and the polyimide coating layer in the same manner except that the thickness of the polyimide film was adjusted. Obtained.
  • the sample Prior to measuring the thermal expansion rate, the sample was annealed at 450 ° C. for 10 minutes.
  • the method of measuring the coefficient of thermal expansion was performed by cutting a portion of the polyimide coating layer sample into a width of 4mm ⁇ length 24mm and measuring the coefficient of thermal expansion (Coefficient of thermal expansion) using a Thermo Mechanical Apparatus of TA.
  • the sample was placed on a support and subjected to a force of 50 mN, and then heated at a temperature increase rate of 5 ° C./min from 50 ° C. to 450 ° C. in a nitrogen atmosphere to measure thermal expansion rate.
  • the coefficient of thermal expansion was calculated to the first decimal place in the range of 50 ° C to 450 ° C, and the unit is expressed in [° C / ppm].
  • Pyrolysis temperature was measured by using a TGA measuring device of Perkin Elmer. After cutting the imide membrane into 3mm x 3mm size and placing it on a pre-treated and weighed fan, heat insulation was performed at 110 ° C for 30 minutes, cooled to room temperature, and then heated again at 600 ° C at a rate of 5 ° C per minute to measure the weight loss. . The pyrolysis temperature was calculated by setting the weight reduction ratio to 1% of the weight of the first loaded imide membrane.
  • the polyamic acid solution according to the embodiment of the present invention had no problem in imidization and coating.
  • the polyimide coating layer obtained from the polyamic acid solution according to Examples 1 to 7 had excellent thermal stability with a thermal decomposition temperature of 500 ° C. or higher, and a thermal expansion coefficient measurement result in Examples 5 to 7 at 20 ppm / 50 ° C. Below 2 ° C, Examples 2 to 4 were below 10 ppm / ° C.
  • Example 1 which contains pyromellitic anhydride alone as an aromatic anhydride monomer, showed a very good thermal expansion rate of 0.01 ppm / ° C.
  • the polyimide coating layer formed of the polyamic acid solution according to the comparative example has satisfactory thermal decomposition temperature, but the thermal expansion rate is much higher than 20 ppm / ° C., thus forming the base layer or the protective layer of the display device as compared to the polyamic acid solution according to the embodiments. It can be seen that the coefficient of thermal expansion is low when used in.

Abstract

The present invention relates to a polyamic acid and a display device, and more specifically to a display device including a polyamic acid and an imidized film thereof which can be used as a base layer or protective layer of the display device. Furthermore, the display device includes a polyamic acid and an imidized film formed therefrom which can be applied as the base layer or protective layer of the display device due to excellent thermal properties by a low thermal expansion rate and a high pyrolysis temperature.

Description

폴리아믹산, 폴리아믹산 용액, 폴리이미드 보호층 및 폴리이미드 필름Polyamic acid, polyamic acid solution, polyimide protective layer and polyimide film
본 발명은 폴리아믹산, 폴리아믹산 용액, 폴리이미드 보호층 및 폴리이미드 필름에 관한 것이다. The present invention relates to a polyamic acid, a polyamic acid solution, a polyimide protective layer and a polyimide film.
최근에는 전자 정보 기기와 인간의 인터페이스 역할을 하는 디스플레이(display)의 중요성이 더욱 커지고 있고, 이와 아울러 고해상도를 가지면서도 고휘도, 고선명한 화상정보에 대한 요구가 더욱 강해지고 있으며, 이에 부합되는 대화면의 액정디스플레이(Liquid crystal display), 플라즈마 디스플레이(plasma display), 유기발광다이오드(OLED) 등이 경쟁하고 있다.In recent years, the importance of display, which serves as an interface between electronic information devices and humans, has become more important, and the demand for high-brightness and high-definition image information while having high resolution has become stronger. Liquid crystal displays, plasma displays, and organic light emitting diodes (OLEDs) are competing.
최근에는 휴대를 목적으로 하는 차세대 디스플레이 중 하나로 휘거나 구부릴 수 있는 디스플레이(Flexible Display)가 주목을 받고 있다. 이러한 구부리거나 휘는 타입의 디스플레이가 가능하기 위해서는 기존의 유리 기판을 대신하여 유연성을 지닌 새로운 소재의 기판이 요구되고 있다.Recently, a flexible display that can bend or bend as one of the next-generation displays for portable purposes has attracted attention. In order to enable such bend or bend type display, a substrate of a new material having flexibility is required in place of the existing glass substrate.
현재 개발된 플렉서블 디스플레이의 형태는 수동형 또는 능동형 구동소자를 기반으로 하여 LCD, OLED, EPD와 같은 방식으로 발전되고 있다. 이들은 플렉서블(flexible)한 고분자 소재 기판 상에 수동형 또는 능동형 구동소자를 구조물로 얹어서 디스플레이가 구동되는 방식이며 점차 수동형 보다는 화소구현이 정밀한 능동형으로 관심이 옮겨가고 있는 중이다. 특히 능동형 플렉서블 디스플레이는 고분자 소재 기판 상에 게이트, 절연막, 소스, 드레인을 구조화시키고 최종적으로 전극과 표시소자를 장착함으로써 디스플레이의 단위 소자를 구성한다. 그러나 상기의 능동형 디스플레이 소자를 제작하기 위해서는 대부분의 제조 공정이 고온에서 수행되는 경우가 많으므로 내열성이 없는 고분자 기판 소재를 사용한다면 소자 제작시 고분자 소재 기판의 치수가 변형되기 쉽고 열적 변성을 일으키므로 회로 패턴의 얼라인먼트가 맞지 않는다거나, 고분자 기판의 표면 특성에 변화를 일으키므로 디스플레이용 기판으로 사용하기에 문제가 있었다. The type of flexible display currently developed is being developed in the same manner as LCD, OLED, and EPD based on passive or active driving elements. These are methods in which a display is driven by mounting a passive or active driving element on a flexible polymer substrate as a structure, and attention is gradually shifting to active type with precise pixel implementation rather than passive type. In particular, the active flexible display constitutes a unit device of a display by structuring a gate, an insulating film, a source, and a drain on a polymer material substrate and finally mounting an electrode and a display element. However, in order to manufacture the active display device, since most of the manufacturing processes are often performed at high temperature, if a polymer substrate material having no heat resistance is used, the dimensions of the polymer substrate are easily deformed and thermally deformed during device fabrication. There is a problem in that the alignment of the pattern does not match or changes in the surface properties of the polymer substrate, so that the pattern may be used as a display substrate.
따라서, 플렉서블 디스플레이용으로 여러 가지 고내열 플라스틱 소재의 개발이 시도되고 있고, 대표적인 내열성 플라스틱 소재로서 폴리에틸렌나프탈레이트(PEN), 폴리에테르술폰(PES) 폴리카보네이트(PC)등이 있으나, 이들 플라스틱 소재도 역시 유리전이온도(Tg)가 300℃ 미만 수준이며 Tg까지 열팽창율(Coefficient of Thermal Expansion)이 20∼60ppm/℃이므로 300℃이상의 고온에서 치수 안정성이 좋지 않고, 이를 바탕으로 소자를 제작할 시에는 디스플레이 품질에 좋지 않은 영향을 끼칠 가능성이 있다 (John Scheirs and Timothy E. Long, Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters, 2004); 및 Sumiliteㄾ FS-1300, Sumitomo Bakelite Catalogue4).Accordingly, various high heat-resistant plastic materials have been attempted for flexible displays, and typical heat-resistant plastic materials include polyethylene naphthalate (PEN) and polyether sulfone (PES) polycarbonate (PC). Also, the glass transition temperature (Tg) is less than 300 ℃ and the coefficient of thermal expansion (Tg) is 20 ~ 60ppm / ℃, so the dimensional stability is not good at high temperatures above 300 ℃. Possible adverse effects on quality (John Scheirs and Timothy E. Long, Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters, 2004); And Sumilite® FS-1300, Sumitomo Bakelite Catalog 4).
또한 상기 소재의 플라스틱 필름을 사용할 경우 자체에 지지력이 없으므로 금속박 또는 유리판 위에 접착시켜서 디스플레이 소자를 제작하여야 하며 이 경우 접착제를 이용하여 플라스틱 필름과 금속박 또는 유리판과의 접착을 접착 및 박리공정이 추가로 발생하는 단점이 있고 접착이 원만하게 되지 않을 경우 평활도에 문제가 생길 수도 있다. In addition, when the plastic film of the material is used, since there is no supporting force, the display element is manufactured by adhering on the metal foil or the glass plate. In this case, the adhesive film and the metal foil or the glass plate are further bonded and peeled off by using the adhesive. If the adhesion is not smooth, there may be a problem in the smoothness.
본 발명은 500℃ 이상의 고온에서도 열안정성이 우수하고, 필름 형성 후 50~450℃의 온도범위에서 열팽창율이 우수한 특성을 가지는 플렉서블 디스플레이의 기판 또는 보호층을 제조할 수 있는 폴리아믹산, 폴리아믹산 용액, 폴리이미드 보호층 및 폴리이미드필름을 제공하고자 한다.The present invention provides a polyamic acid and a polyamic acid solution that can produce a substrate or a protective layer of a flexible display having excellent thermal stability even at a high temperature of 500 ° C. or higher and having excellent thermal expansion in the temperature range of 50 to 450 ° C. after film formation. To provide a polyimide protective layer and a polyimide film.
본 발명의 폴리아믹산은 방향족 디아민계 모노머 및 방향족 디안하이드라이드계 모노머로부터 중합되고, 상기 방향족 디아민계 모노머는 2-(4-아미노페닐)-5-아미노벤족사졸을 포함하는 것을 특징으로 하고, 이 때, 상기 방향족 디안하이드라이드계 모노머는 피로멜리트산 무수물을 단독으로 포함하거나, 피로멜리트산 무수물 70몰%이상 및 비페닐테트라카보실산무수물 30몰%이하 포함하는 것이 바람직하다.The polyamic acid of the present invention is polymerized from an aromatic diamine monomer and an aromatic dianhydride monomer, and the aromatic diamine monomer comprises 2- (4-aminophenyl) -5-aminobenzoxazole. In this case, the aromatic dianhydride-based monomer may include pyromellitic anhydride alone, or 70 mol% or more of pyromellitic anhydride and 30 mol% or less of biphenyltetracarbosyl anhydride.
본 발명의 폴리아믹산 용액은 상기 폴리아믹산을 포함하고, 점도가 50~5,000poise인 것을 특징으로 한다. The polyamic acid solution of the present invention includes the polyamic acid, and has a viscosity of 50 to 5,000 poise.
또, 본 발명의 폴리이미드 보호층은 표시소자의 적층된 부품상에 제3항의 폴리아믹산 용액을 도포하고, 이를 이미드화 하여 제조되는 것이 특징이다. In addition, the polyimide protective layer of the present invention is characterized in that the polyamic acid solution of claim 3 is coated on a laminated component of a display device, and is produced by imidization thereof.
본 발명의 폴리이미드 필름은 방향족 디아민계 모노머로부터 유래된 단위구조와 방향족 디안하이드라이드계 모노머로부터 유래된 단위구조를 포함하고, 상기 방향족 모노머는 2-(4-아미노페닐)-5-아미노벤족사졸을 포함하는 것을 특징으로 하고, 이 때, 상기 방향족 디안하이드라이드계 모노머는 피로멜리트산 무수물을 단독으로 포함하거나, 피로멜리트산 무수물 70몰%이상 및 비페닐테트라카보실산무수물 30몰%이하 포함하는 것이 바람직하다. The polyimide film of the present invention comprises a unit structure derived from an aromatic diamine monomer and a unit structure derived from an aromatic dianhydride monomer, wherein the aromatic monomer is 2- (4-aminophenyl) -5-aminobenzoxazole In this case, the aromatic dianhydride-based monomer comprises pyromellitic anhydride alone, or more than 70 mol% of pyromellitic anhydride and 30 mol% or less of biphenyltetracarbolic acid anhydride It is desirable to.
이로써, 본 발명은 500℃ 이상의 고온에서도 열안정성이 우수하고, 필름 형성 후 50~450℃의 온도범위에서 열팽창율이 우수한 특성을 가지는 플렉서블 디스플레이의 기판 또는 보호층을 제조할 수 있는 폴리아믹산, 폴리아믹산 용액, 폴리이미드 보호층 및 폴리이미드필름을 제공하였다.Accordingly, the present invention is a polyamic acid, polya which can manufacture a substrate or a protective layer of a flexible display having excellent thermal stability even at a high temperature of 500 ℃ or more, and excellent thermal expansion coefficient in the temperature range of 50 ~ 450 ℃ after film formation A mixed acid solution, a polyimide protective layer, and a polyimide film were provided.
본 발명의 폴리아믹산, 폴리아믹산 용액, 폴리이미드 필름 및 보호층은 최종 제품으로서 기판 또는 보호층으로 제조되었을 때, 열안정성 및 열팽창율이 우수한 특성을 가지기 위하여, 방향족 디아민계 모노머 및 방향족 디안하이드라이드계 모노머로부터 중합되고, 이 때, 방향족 디아민게 모노머로서 2-(4-아미노페닐)-5-아미노벤족사졸을 포함하는 것을 특징으로 한다. The polyamic acid, the polyamic acid solution, the polyimide film, and the protective layer of the present invention are aromatic diamine-based monomers and aromatic dianhydrides in order to have excellent thermal stability and thermal expansion coefficient when the final product is made of a substrate or a protective layer. It superposes | polymerizes from a system monomer, At this time, it is characterized by including 2- (4-aminophenyl) -5-aminobenzoxazole as an aromatic diamine crab monomer.
이와 같이 방향족 디아민계 모노머로서 2-(4-아미노페닐)-5-아미노벤족사졸을 포함함으로써, TGA 1% 중량감소가 일어나는 열분해 온도가 500℃이상일 수 있고, 또한 50~450℃의 온도범위에서 열팽창율이 20ppm/℃이하가 될 수 있다. As such, by including 2- (4-aminophenyl) -5-aminobenzoxazole as the aromatic diamine monomer, the pyrolysis temperature at which TGA 1% weight loss occurs may be 500 ° C or higher, and in the temperature range of 50 to 450 ° C. Thermal expansion coefficient may be 20 ppm / degrees C or less.
또, 방향족 디안하이드라이드계 모노머로서 피로멜리트산 무수물 70몰%이상 및 비페닐테트라카보실산무수물 30몰%이하 포함함으로써, 또한 50~450℃의 온도범위에서 열팽창율이 10ppm/℃이하가 되도록 더욱 향상시킬 수 있으며, 더욱 바람직하게는 방향족 디안하이드라이드계 모노머로서 피로멜리트산 무수물을 단독으로 포함하는 것이 가장 바람직 할 수 있다. Moreover, by containing 70 mol% or more of pyromellitic anhydrides and 30 mol% or less of biphenyl tetracarbosyl anhydrides as an aromatic dianhydride type monomer, in order to make thermal expansion coefficient 10 ppm / degrees C or less in the temperature range of 50-450 degreeC. It may be further improved, and more preferably it may be most preferable to include pyromellitic anhydride alone as the aromatic dianhydride monomer.
이와 같이, 본 발명의 폴리아믹산은 방향족 디아민계 모노머로서 2-(4-아미노페닐)-5-아미노벤족사졸을 포함하고, 이 때, 상기 방향족 디안하이드라이드계 모노머로서 피로멜리트산 무수물 70몰%이상 및 비페닐테트라카보실산무수물 30몰%이하 포함하거나, 피로멜리트산 무수물을 단독으로 포함함으로써, 이미드화 후의 폴리이미드의 열안정과 열팽창율이 우수하도록 할 수 있는 것이다. As described above, the polyamic acid of the present invention contains 2- (4-aminophenyl) -5-aminobenzoxazole as an aromatic diamine monomer, and at this time, 70 mol% of pyromellitic anhydride as the aromatic dianhydride monomer. By containing 30 mol% or less of biphenyl tetracarbo dianhydride or less, or including pyromellitic anhydride alone, the thermal stability and thermal expansion rate of the polyimide after imidation can be made excellent.
또, 본 발명에서 제공하고자 하는 폴리아믹산은 액상형태로 제공될 수 있는데, 이것은 필름 형태로 제공 될 경우 필름 자체에는 형태를 유지할 수 있는 지지력이 없으므로 금속박 또는 유리판 위에 접착시켜서 디스플레이 소자를 제작하여야 하며 이 경우 접착제를 이용하여 고분자 필름과 금속박 또는 유리판과의 접착 및 박리 공정이 추가로 발생하는 단점이 있고 접착이 원만치 않을 경우 평활도에 문제가 생길 수 있기 때문에, 본 발명에서 제공하고자 하는 폴리아믹산은 필름형태가 아닌 액상 형태로 제공하여 전처리된 세라믹 지지체상에 도포되어 건조된 후 이미드화막을 형성하게 되고, 이것은 전처리된 세라믹 지지체의 형태를 유지하면서 표시소자를 제조하기 위한 공정을 용이하게 이용될 수 있는 장점이 있기 때문이다. 이 때, 본 발명의 폴리아믹산 용액은 코팅의 균일성 등을 확보하기 위하여 방향족 디아민계 모노머로서 2-(4-아미노페닐)-5-아미노벤족사졸을 포함하고, 상기 방향족 디안하이드라이드계 모노머로서 피로멜리트산 무수물 70몰%이상 및 비페닐테트라카보실산무수물 30몰%이하 포함하거나, 피로멜리트산 무수물을 단독으로 포함하는 폴리아믹산을 포함하고, 점도가 50~5,000poise인 것이 바람직하다. In addition, the polyamic acid to be provided in the present invention may be provided in a liquid form, which is provided in the form of a film, and thus, the film itself does not have a supporting force capable of maintaining its shape. In this case, the adhesive and peeling process of the polymer film and the metal foil or the glass plate using the adhesive is additionally generated, and when the adhesion is not smooth, a problem may occur in the smoothness, so the polyamic acid to be provided in the present invention is in the form of a film. It is provided in a liquid form instead of being applied to the pretreated ceramic support and dried to form an imidization film, which is an advantage that can be easily used a process for manufacturing a display device while maintaining the form of the pretreated ceramic support Because of this. At this time, the polyamic acid solution of the present invention contains 2- (4-aminophenyl) -5-aminobenzoxazole as the aromatic diamine monomer in order to ensure uniformity of the coating, and the like as the aromatic dianhydride monomer It is preferable that the polyamic acid contains 70 mol% or more of pyromellitic anhydrides, and 30 mol% or less of biphenyl tetracarbosyl anhydride, or contains pyromellitic anhydride independently, and it is preferable that a viscosity is 50-5,000 poise.
또, 본 발명의 보호층은 표시소자의 적층된 부품상에 방향족 디아민계 모노머로서 2-(4-아미노페닐)-5-아미노벤족사졸을 포함하고, 이 때, 상기 방향족 디안하이드라이드계 모노머로서 피로멜리트산 무수물 70몰%이상 및 비페닐테트라카보실산무수물 30몰%이하 포함하거나, 피로멜리트산 무수물을 단독으로 포함하고, 점도가 50~5,00poise인 폴리아믹산 용액을 도포하고, 이를 이미드화 하여 제조되는 것이 바람직하다. In addition, the protective layer of the present invention contains 2- (4-aminophenyl) -5-aminobenzoxazole as an aromatic diamine monomer on the laminated component of the display device, and at this time, the aromatic dianhydride monomer A polyamic acid solution containing not less than 70 mol% of pyromellitic anhydride and not more than 30 mol% of biphenyltetracarbosilic anhydride, or containing pyromellitic anhydride alone, having a viscosity of 50 to 5,00 poise, is already applied. It is preferable to make it and to produce it.
본 발명의 폴리이미드 필름은 방향족 디아민계 모노머로서 2-(4-아미노페닐)-5-아미노벤족사졸을 포함하고, 이 때, 상기 방향족 디안하이드라이드계 모노머로서 피로멜리트산 무수물 70몰%이상 및 비페닐테트라카보실산무수물 30몰%이하 포함하거나, 피로멜리트산 무수물을 단독으로 포함함으로써, 열안정성 및 열팽창율이 우수한 기판의 재료로 사용될 수 있는 것이다. The polyimide film of the present invention comprises 2- (4-aminophenyl) -5-aminobenzoxazole as an aromatic diamine monomer, wherein at least 70 mol% of pyromellitic anhydride as the aromatic dianhydride monomer and By containing 30 mol% or less of biphenyl tetracarbosyl anhydride or containing pyromellitic anhydride alone, it can be used as a material of a board | substrate excellent in thermal stability and thermal expansion rate.
폴리이미드의 전구체인 폴리아믹산을 중합할 때는 유기용매 중에 디안하이드라이드 성분과 디아민 성분을 거의 등몰량이 되도록 하여 용해하여 반응시켜 폴리아믹산을 제조한다. 반응시의 조건은 특별히 한정되지 않지만 반응 온도는 -20~80℃가 바람직하고, 반응시간은 2~48시간이 바람직하다. 또한 반응시 아르곤이나 질소 등의 불활성 분위기인 것이 보다 바람직하다.When polymerizing the polyamic acid which is a precursor of the polyimide, the dianhydride component and the diamine component are dissolved in a substantially equimolar amount to react with each other to prepare a polyamic acid. Although the conditions at the time of reaction are not specifically limited, The reaction temperature is preferably -20 to 80 ° C, and the reaction time is preferably 2 to 48 hours. Moreover, it is more preferable that it is inert atmosphere, such as argon and nitrogen, at the time of reaction.
상기 폴리아믹산의 중합반응을 위한 유기용매는 폴리아믹산을 용해하는 용매이면 특별히 한정되지 않고, 공지된 반응 용매로는 m-크레졸, N-메틸-2-피롤리돈(NMP), 디메틸포름아미드(DMF), 디메틸아세트아미드(DMAc), 디메틸설폭사이드(DMSO), 아세톤, 디에틸아세테이트 중에서 선택된 하나 이상의 극성용매를 사용한다. 이외에도 테트라하이드로퓨란(THF), 클로로포름과 같은 저비점 용액 또는 γ-부티로락톤과 같은 저흡수성 용매를 사용할 수도 있다.The organic solvent for the polymerization of the polyamic acid is not particularly limited as long as it is a solvent that dissolves the polyamic acid, and known reaction solvents include m-cresol, N-methyl-2-pyrrolidone (NMP), and dimethylformamide ( One or more polar solvents selected from DMF), dimethylacetamide (DMAc), dimethylsulfoxide (DMSO), acetone and diethyl acetate. In addition, low boiling point solutions such as tetrahydrofuran (THF), chloroform or low absorbing solvents such as γ-butyrolactone may be used.
상기 유기용매의 함량에 대하여 특별히 한정되지는 않으나, 적절한 폴리아믹산의 분자량과 점도를 얻기 위하여 유기용매는 전체 폴리아믹산 용액 중 50~95중량%가 바람직하고, 더욱 좋게는 70~90중량%인 것이 보다 바람직하다. The content of the organic solvent is not particularly limited, but in order to obtain appropriate molecular weight and viscosity of the polyamic acid, the organic solvent is preferably 50 to 95% by weight of the total polyamic acid solution, and more preferably 70 to 90% by weight. More preferred.
아울러 폴리아믹산 용액을 이용하여 폴리이미드 코팅층으로 제조시에는 폴리이미드 코팅층의 표면특성, 열전도성과 같은 여러 가지 특성을 개선시킬 목적으로 폴리아믹산 용액에 충전제를 첨가할 수 있다. 충전제로는 특별히 한정되지 않지만, 바람직한 구체예로는 실리카, 산화티탄, 층상실리카, 카본나노튜브, 알루미나, 질화규소, 질화붕소, 인산수소칼슘, 인산칼슘, 운모 등을 들 수 있다. In addition, when manufacturing a polyimide coating layer using a polyamic acid solution, a filler may be added to the polyamic acid solution for the purpose of improving various properties such as surface properties and thermal conductivity of the polyimide coating layer. Although it does not specifically limit as a filler, As a preferable specific example, a silica, titanium oxide, layered silica, carbon nanotube, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica, etc. are mentioned.
상기 충전제의 입경은 개질하여야 할 코팅층의 특성과 첨가하는 충전제의 종류에 따라서 변동될 수 있는 것으로, 특별히 한정되지 않으나, 일반적으로는 평균 입경이 0.001~50㎛인 것이 바람직하고, 0.005~25㎛인 것이 보다 바람직하며, 더욱 바람직하게는 0.01~10㎛인 것이 좋다. 이 경우 폴리이미드 코팅층의 개질효과가 나타나기 쉽고, 폴리이미드 코팅층에 있어서 양호한 표면성, 절연성, 도전성 및 기계적 특성을 얻을 수 있다.The particle diameter of the filler may vary depending on the characteristics of the coating layer to be modified and the type of filler to be added, but is not particularly limited. In general, the average particle diameter is preferably 0.001 to 50 μm, and preferably 0.005 to 25 μm. It is more preferable, More preferably, it is good that it is 0.01-10 micrometers. In this case, the effect of modifying the polyimide coating layer is likely to appear, and good surface property, insulation, conductivity and mechanical properties can be obtained in the polyimide coating layer.
또한 상기 충전제의 첨가량에 대해서도 개질해야 할 코팅층의 특성이나 충전제 입경 등에 따라 변동할 수 있는 것으로 특별히 한정되는 것은 아니다. 일반적으로 충전제의 함량은, 고분자 수지의 결합구조를 방해하지 않으면서 개질하고자 하는 특성을 나타내기 위하여, 폴리아믹산 용액 100중량부에 대하여 0.001~20중량부인 것이 바람직하고, 더욱 바람직하게는 0.01~15중량부인 것이 좋다.In addition, the amount of the filler added may vary depending on the characteristics of the coating layer to be modified, the filler particle size, and the like. In general, the content of the filler is preferably 0.001 to 20 parts by weight, more preferably 0.01 to 15 parts by weight, based on 100 parts by weight of the polyamic acid solution in order to exhibit properties to be modified without disturbing the bonding structure of the polymer resin. It is good that it is a weight part.
충전제의 첨가 방법은 특별히 한정되는 것은 아니지만, 예를 들면, 중합 전 또는 중합 후에 폴리아믹산 용액에 첨가하는 방법, 충전제를 포함하는 분산액을 준비하여 이것을 폴리아믹산 용액에 혼합하는 방법 등을 들 수 있다.Although the addition method of a filler is not specifically limited, For example, the method of adding to a polyamic-acid solution before superposition | polymerization or after superposition | polymerization, the method of preparing the dispersion liquid containing a filler, and mixing this into a polyamic-acid solution etc. are mentioned.
폴리아믹산 용액으로부터 이미드화막(보호층)을 제조하는 방법은 플렉시블 디스플레이 제조공정을 모사한 방법을 사용할 수 있는데, 폴리아믹산 용액을 지지체에 균일하게 도포한 후 이미드화하는 방법을 들 수 있다. 즉, 디스플레이 소자 제조공정은 일반적으로 기재층 윗면에 전극 및 표시부 등이 순차적으로 적층되는 순서로 진행되는바 폴리아믹산 용액을 기재층으로 적용하는 일 방법으로는 별도의 지지체(세라믹 지지체 등) 위에 폴리아믹산 용액을 코팅하고 이미드화하여 이미드화막을 제조하고 이미드화막 상에 통상의 방법에 따른 표시소자 적층 공정을 수행한 후 최종적으로 지지체를 박리해내는 방법 등을 들 수 있다. 이런 경우라면 필름형태의 플라스틱 소재를 기판으로 적용한 것에 비해 기재층의 평탄성을 높일 수 있는 측면에서 유리할 수 있다.As a method of manufacturing an imidation film (protective layer) from a polyamic acid solution, the method which simulates the flexible display manufacturing process can be used, The method of imidating after apply | coating a polyamic acid solution uniformly to a support body is mentioned. That is, the display device manufacturing process generally proceeds in the order of sequentially stacking electrodes and display parts on the upper surface of the substrate layer. In one method of applying a polyamic acid solution to the substrate layer, the polyamic acid solution may be formed on a separate support (ceramic support, etc.). A method of coating and imidizing a mixed acid solution to produce an imidized film, and performing a display device lamination process according to a conventional method on the imidized film, and finally peeling off the support. In this case, it may be advantageous in terms of improving the flatness of the base layer compared to the case of applying the plastic material of the film form as a substrate.
또한 상기 폴리아믹산 용액을 표시소자에 적층된 부품상에 도포하여 이미드화한 폴리이미드 코팅층을 보호층으로 적용할 수도 있다. In addition, the polyimide coating layer imidized by applying the polyamic acid solution on a component laminated on the display device may be applied as a protective layer.
이미드화막 형성시 적용가능한 이미드화법으로는 열이미드화법, 화학이미드화법, 또는 열이미드화법과 화학이미드화법을 병용하여 적용할 수 있다. 화학이미드화법은 폴리아믹산 용액에 아세트산무수물 등의 산무수물로 대표되는 탈수제와 이소퀴놀린, β-피콜린, 피리딘 등의 3급 아민류 등으로 대표되는 이미드화 촉매를 투입하여 이미드화하는 방법이다. 열이미드화법 또는 열이미드화법과 화학이미드화법을 병용하는 경우 폴리아믹산 용액의 가열 조건은 폴리아믹산 용액의 종류, 요구되는 이미드화막 두께 등에 의하여 변동될 수 있다.As an imidation method which can be applied at the time of forming an imidation film, it can apply in combination with the thermal imidation method, the chemical imidation method, or the thermal imidation method and the chemical imidation method. The chemical imidization method is a method of imidizing a polyamic acid solution by imidating a dehydrating agent represented by an acid anhydride such as acetic anhydride and an imidization catalyst represented by tertiary amines such as isoquinoline, β-picolin and pyridine. In the case of using the thermal imidization method or the thermal imidization method together with the chemical imidization method, the heating conditions of the polyamic acid solution may vary depending on the kind of the polyamic acid solution, the required imidization film thickness, and the like.
열이미드화법과 화학이미드화법을 병용하는 경우 이미드화막 형성방법의 예를 보다 구체적으로 설명하면, 폴리아믹산 용액에 탈수제 및 이미드화 촉매를 투입하여 별도의 지지체상에 캐스팅한 후 80~200℃, 바람직하게는 100~180℃에서 가열하여 탈수제 및 이미드화 촉매를 활성화함으로써 부분적으로 경화 및 건조한 후 200∼400℃에서 1∼120분간 가열함으로써 이미드화막을 얻을 수 있다. In the case of using the thermal imidization method and the chemical imidization method together, an example of the imidization film formation method will be described in more detail. After the dehydrating agent and the imidization catalyst are added to the polyamic acid solution and cast on a separate support, 80 to 200 The imidized film can be obtained by heating at 100 ° C, preferably 100-180 ° C, activating the dehydrating agent and the imidization catalyst, partially curing and drying, and then heating at 200-400 ° C for 1-120 minutes.
이와 같은 이미드화막 상에 전술한 방법으로 표시소자 부품 등을 순차적으로 적층할 수도 있고, 폴리아믹산 용액에 탈수제 및 이미드화 촉매를 투입한 용액을 표시소자 부품상에 도포한 다음 이미드화막을 형성하여 보호층으로 적용할 수도 있다.The display device components and the like may be sequentially stacked on the imidization film as described above, and a solution in which a dehydrating agent and an imidization catalyst is added to the polyamic acid solution is applied onto the display device components, and then an imidization film is formed. It can also be applied as a protective layer.
이상 설명한 바와 같이 폴리아믹산 용액을 표시소자에 적용함으로써 열적 안정성이 우수하며 적절한 유연성과 기계적 강도를 지닌 표시소자를 제공할 수 있다.As described above, by applying the polyamic acid solution to the display device, a display device having excellent thermal stability and appropriate flexibility and mechanical strength can be provided.
또, 일반적으로 플렉서블 디스플레이 기판으로서 폴리이미드 필름을 제조하는 방법으로 본 발명의 폴리아믹산을 포함하는 용액을 필름 형성용 지지체 상에 유연 도포한 후, 이를 열적 이미드화법 및/또는 화학적 이미드화법을 이용하여 이미드화하여 폴리이미드 필름을 제조할 수도 있다. In general, a method of producing a polyimide film as a flexible display substrate, after applying a solution containing the polyamic acid of the present invention on the support for forming a film, the thermal imidization method and / or chemical imidization method It can also imide using and manufacture a polyimide film.
이하, 본 발명을 실시예를 통하여 보다 상세히 설명하나, 본 발명의 범위가 하기 실시예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited to the following Examples.
<실시예 1> <Example 1>
반응기로써 교반기, 질소주입장치, 적하깔때기, 온도조절기 및 냉각기를 부착한 1L 반응기에 질소를 통과시키면서 N,N-디메틸아세트아미드(DMAc) 500g을 채운 후, 반응기의 온도를 25℃로 맞추고 2-(4-아미노페닐)-5-아미노벤족사졸 [2-(4-aminophenyl)-5-aminobenzoxazole] 38.1g(0.169mol)을 용해하여 이 용액을 25℃로 유지하였다. 여기에 PMDA[Pyromellitic Dianhydride] 36.5g(0.169mol) 을 첨가하고, 24시간동안 교반하여 점도 500 poise의 폴리아믹산 용액을 얻었다. 이때 폴리아믹산 용액의 점도측정은 브룩필드 비스코미터를 이용하여 측정한 값이다.After the reactor was filled with 500 g of N, N-dimethylacetamide (DMAc) while passing nitrogen through a 1 L reactor equipped with a stirrer, a nitrogen injection device, a dropping funnel, a temperature controller and a cooler, the temperature of the reactor was adjusted to 25 ° C. and 2- 38.1 g (0.169 mol) of (4-aminophenyl) -5-aminobenzoxazole [2- (4-aminophenyl) -5-aminobenzoxazole] was dissolved to maintain this solution at 25 ° C. 36.5 g (0.169 mol) of PMDA [Pyromellitic Dianhydride] was added to this, and it stirred for 24 hours, and obtained the polyamic-acid solution of the viscosity 500 poise. In this case, the viscosity of the polyamic acid solution is measured using a Brookfield bismeter.
플렉시블 디스플레이용 기재층 또는 보호층으로 사용됨을 모사하고 평가하기 위하여, 얻어진 폴리아믹산 용액을 진공 탈포한 후 상온으로 냉각하고 스테인레스판에 60~100㎛의 두께로 캐스팅하여 150℃의 열풍으로 10분간 건조한 후, 450℃까지 승온하여 30분간 가열한 다음 서서히 냉각해 지지체로부터 분리하여 두께 12㎛의 폴리이미드 막을 수득하였다.In order to simulate and evaluate the use as a substrate or protective layer for a flexible display, the obtained polyamic acid solution was vacuum degassed, cooled to room temperature, cast to a thickness of 60-100 μm on a stainless plate and dried for 10 minutes with hot air at 150 ° C. Then, the mixture was heated up to 450 ° C., heated for 30 minutes, and slowly cooled to separate from the support to obtain a polyimide membrane having a thickness of 12 μm.
<실시예 2> <Example 2>
반응기로써 교반기, 질소주입장치, 적하깔때기, 온도조절기 및 냉각기를 부착한 1L 반응기에 질소를 통과시키면서 N,N-디메틸아세트아미드(DMAc) 500g을 채운 후, 반응기의 온도를 25℃로 맞추고 APAB [2-(4-aminophenyl)-5-aminobenzoxazole] 38.1g (0.1663mol)을 용해하여 이 용액을 25℃로 유지하였다. 여기에 BPDA [3,3′,4,4′-Biphenyltetracarboxylic Dianhydride] 4.86g (0.0166mol)을 첨가하고 2시간동안 교반한 뒤, PMDA 32.65g(0.1497mol) 을 첨가하고, 24시간동안 교반하여 점도 220 poise의 폴리아믹산 용액을 얻었다. 이때 폴리아믹산 용액의 점도측정은 브룩필드 비스코미터를 이용하여 측정한 값이다.After the reactor was filled with 500 g of N, N-dimethylacetamide (DMAc) while passing nitrogen through a 1L reactor equipped with a stirrer, a nitrogen injection device, a dropping funnel, a temperature controller and a cooler, the temperature of the reactor was adjusted to 25 ° C. and APAB [ 38.1 g (0.1663 mol) of 2- (4-aminophenyl) -5-aminobenzoxazole] was dissolved to maintain this solution at 25 ° C. 4.86 g (0.0166 mol) of BPDA [3,3 ', 4,4'-Biphenyltetracarboxylic Dianhydride] was added thereto, stirred for 2 hours, and then 32.65 g (0.1497 mol) of PMDA was added thereto, followed by stirring for 24 hours. A 220 poise polyamic acid solution was obtained. In this case, the viscosity of the polyamic acid solution is measured using a Brookfield bismeter.
플렉시블 디스플레이용 기재층 또는 보호층으로 사용됨을 모사하고 평가하기 위하여, 얻어진 폴리아믹산 용액을 진공 탈포한 후 상온으로 냉각하고 스테인레스판에 60~100㎛의 두께로 캐스팅하여 150℃의 열풍으로 10분간 건조한 후, 450℃까지 승온하여 30분간 가열한 다음 서서히 냉각해 지지체로부터 분리하여 두께 12㎛의 폴리이미드 막을 수득하였다.In order to simulate and evaluate the use as a substrate or protective layer for a flexible display, the obtained polyamic acid solution was vacuum degassed, cooled to room temperature, cast to a thickness of 60-100 μm on a stainless plate and dried for 10 minutes with hot air at 150 ° C. Then, the mixture was heated up to 450 ° C., heated for 30 minutes, and gradually cooled to separate from the support to obtain a polyimide membrane having a thickness of 12 μm.
<실시예 3~7> <Examples 3-7>
상기 실시예 2에서 디아민과 디안하이드라이드의 성분 및 투입량을 다음 표 1의 투입 몰비율과 같이 변량하고, 폴리이미드 막의 두께를 조절한 것을 제외하고는 같은 방법으로 폴리아믹산 용액 및 폴리이미드 코팅층을 수득하였다. The polyamic acid solution and the polyimide coating layer were obtained in the same manner as in Example 2, except that the components and amounts of diamine and dianhydride were changed as shown in the following molar ratio of Table 1, and the thickness of the polyimide membrane was adjusted. It was.
<비교예 1>Comparative Example 1
반응기로써 교반기, 질소주입장치, 적하깔때기, 온도조절기 및 냉각기를 부착한 1L 반응기에 질소를 통과시키면서 N,N-디메틸아세트아미드(DMAc) 500g을 채운 후, 반응기의 온도를 25℃로 맞추고 ODA[3,3-Oxydianilne] 24.86g(0.2299mol)을 용해하여 이 용액을 25℃로 유지하였다. 여기에 PMDA 50.14g(0.2299mol)을 첨가하고 24시간동안 교반하여 점도 760 Poise의 폴리아믹산 용액을 얻었다.The reactor was filled with 500 g of N, N-dimethylacetamide (DMAc) while passing nitrogen through a 1 L reactor equipped with a stirrer, a nitrogen injection device, a dropping funnel, a temperature controller, and a cooler. 3,3-Oxydianilne] 24.86 g (0.2299 mol) was dissolved to maintain this solution at 25 ° C. PMDA 50.14 g (0.2299 mol) was added thereto and stirred for 24 hours to obtain a polyamic acid solution having a viscosity of 760 Poise.
플렉시블 디스플레이용 기재층 또는 보호층으로 사용됨을 모사하고 평가하기 위하여, 얻어진 폴리아믹산 용액을 진공 탈포한 후 상온으로 냉각하고 스테인레스판에 60~100㎛의 두께로 캐스팅하여 150℃의 열풍으로 10분간 건조한 후, 450℃까지 승온하여 30분간 가열한 다음 서서히 냉각해 지지체로부터 분리하여 두께 11㎛의 폴리이미드 막을 수득하였다.In order to simulate and evaluate the use as a substrate or protective layer for a flexible display, the obtained polyamic acid solution was vacuum degassed, cooled to room temperature, cast to a thickness of 60-100 μm on a stainless plate and dried for 10 minutes with hot air at 150 ° C. Then, the mixture was heated up to 450 ° C., heated for 30 minutes, and slowly cooled to separate from the support to obtain a polyimide membrane having a thickness of 11 μm.
<비교예 2>Comparative Example 2
반응기로써 교반기, 질소주입장치, 적하깔때기, 온도조절기 및 냉각기를 부착한 1L 반응기에 질소를 통과시키면서 N,N-디메틸아세트아미드(DMAc) 500g을 채운 후, 반응기의 온도를 25℃로 맞추고 ODA [3,3-Oxydianilne] 24.86g(0.2299mol)을 용해하여 이 용액을 25℃로 유지하였다. 여기에 BPDA 6.41g(0.0225mol)을 첨가하고, 2시간동안 교반하여 BPDA를 완전히 용해시켰다. 이 때 용액의 온도는 25℃로 유지하였다. 마지막으로 PMDA를 44.10g(0.2022mol)을 첨가하여 점도 570 poise의 폴리아믹산 용액을 얻었다.After the reactor was filled with 500 g of N, N-dimethylacetamide (DMAc) while passing nitrogen through a 1L reactor equipped with a stirrer, a nitrogen injection device, a dropping funnel, a temperature controller and a cooler, the temperature of the reactor was adjusted to 25 ° C. and the ODA [ 3,3-Oxydianilne] 24.86 g (0.2299 mol) was dissolved to maintain this solution at 25 ° C. 6.41 g (0.0225 mol) of BPDA was added thereto and stirred for 2 hours to completely dissolve BPDA. At this time, the temperature of the solution was maintained at 25 ℃. Finally, 44.10 g (0.2022 mol) of PMDA was added to obtain a polyamic acid solution having a viscosity of 570 poise.
플렉시블 디스플레이용 기재층 또는 보호층으로 사용됨을 모사하고 평가하기 위하여, 얻어진 폴리아믹산 용액을 진공 탈포한 후 상온으로 냉각하고 스테인레스판에 60~100㎛의 두께로 캐스팅하여 150℃의 열풍으로 10분간 건조한 후, 450℃까지 승온하여 30분간 가열한 다음 서서히 냉각해 지지체로부터 분리하여 두께 11㎛의 폴리이미드 막을 수득하였다.In order to simulate and evaluate the use as a substrate or protective layer for a flexible display, the obtained polyamic acid solution was vacuum degassed, cooled to room temperature, cast to a thickness of 60-100 μm on a stainless plate and dried for 10 minutes with hot air at 150 ° C. Then, the mixture was heated up to 450 ° C., heated for 30 minutes, and slowly cooled to separate from the support to obtain a polyimide membrane having a thickness of 11 μm.
<비교예 3~10><Comparative Example 3 ~ 10>
상기 비교예 2에서 디아민과 디안하이드라이드의 성분 및 투입량을 다음 표 1의 성분 및 투입 몰비율과 같이 변량고, 폴리이미드 막의 두께를 조절한 것을 제외하고는 같은 방법으로 폴리아믹산 용액 및 폴리이미드 코팅층을 수득하였다. In Comparative Example 2, the component and the amount of the diamine and dianhydride were changed as shown in Table 1 below and the molar ratio of the component, and the polyamic acid solution and the polyimide coating layer in the same manner except that the thickness of the polyimide film was adjusted. Obtained.
그리고, 얻어진 이미드화 막에 대하여 하기와 같이 열팽창율과 열분해온도를 측정하였으며, 그 결과는 하기 표 1과 같다. And the thermal expansion rate and thermal decomposition temperature were measured about the obtained imidation film | membrane as follows, and the result is as Table 1 below.
(1) 열팽창율(Coefficient of Thermal Expansion)(1) Coefficient of Thermal Expansion
열팽창율의 측정에 앞서서 해당샘플은 450℃에서 10분간 어닐링을 실시하였다. 열팽창율의 측정방법은 폴리이미드 코팅층 샘플의 일부를 폭 4mm ㅧ 길 24mm로 잘라 TA사의 열기계 분석장치(Thermal Mechanical Apparatus)를 이용해 열팽창계수값(Coefficient of thermal expansion)을 측정함으로써 실시하였다. 샘플을 지지대에 걸고 50mN의 힘을 가한 뒤에 질소분위기에서 50℃에서 450℃까지 승온속도 5℃/min으로 가열하여 열팽창율을 측정하였다. 열팽창율은 50℃에서 450℃ 범위 내에서 소수점 첫째자리까지 구하였으며 단위는 [℃/ppm] 으로 표현된다.Prior to measuring the thermal expansion rate, the sample was annealed at 450 ° C. for 10 minutes. The method of measuring the coefficient of thermal expansion was performed by cutting a portion of the polyimide coating layer sample into a width of 4mm ㅧ length 24mm and measuring the coefficient of thermal expansion (Coefficient of thermal expansion) using a Thermo Mechanical Apparatus of TA. The sample was placed on a support and subjected to a force of 50 mN, and then heated at a temperature increase rate of 5 ° C./min from 50 ° C. to 450 ° C. in a nitrogen atmosphere to measure thermal expansion rate. The coefficient of thermal expansion was calculated to the first decimal place in the range of 50 ° C to 450 ° C, and the unit is expressed in [° C / ppm].
(2) 열분해온도(2) pyrolysis temperature
열분해온도는 퍼킨엘머사의 TGA 측정장치를 사용하여 열분해온도를 측정하였다. 3mm x 3mm의 크기로 이미드막을 잘게 자르고 전처리 및 칭량된 Fan에 얹은 후 110℃에서 30분간 단열처리하고 상온으로 냉각한 뒤, 다시 600℃까지 분당 5℃의 속도로 가열하여 중량감소를 측정하였다. 열분해온도는 중량감소비율이 최초 로딩한 이미드막의 무게대비 1%로 정하여 계산하였다. Pyrolysis temperature was measured by using a TGA measuring device of Perkin Elmer. After cutting the imide membrane into 3mm x 3mm size and placing it on a pre-treated and weighed fan, heat insulation was performed at 110 ° C for 30 minutes, cooled to room temperature, and then heated again at 600 ° C at a rate of 5 ° C per minute to measure the weight loss. . The pyrolysis temperature was calculated by setting the weight reduction ratio to 1% of the weight of the first loaded imide membrane.
표 1
구분 조성(몰비%) 두께[㎛] 열팽창율[ppm/℃] 열분해온도[℃]
디안하이드라이드 디아민
PMDA BPDA PMDA BPDA
실시예1 100 0 100 0 12 0.01 525
실시예2 90 10 100 0 12 1.20 533
실시예3 80 20 100 0 10 4.00 535
실시예4 70 30 100 0 11 9.88 540
실시예5 60 40 100 0 11 14.89 535
실시예6 50 50 100 0 10 14.99 528
실시예7 0 100 100 0 11 15.70 534
비교예1 100 0 0 100 11 37.74 505
비교예2 90 10 0 100 11 41.25 522
비교예3 80 20 0 100 12 46.85 541
비교예4 70 30 0 100 12 50.33 525
비교예5 60 40 0 100 11 58.24 541
비교예6 50 50 0 100 12 66.23 535
비교예7 0 100 0 100 11 88.70 548
Table 1
division Composition (% molar ratio) Thickness [㎛] Thermal expansion rate [ppm / ℃] Pyrolysis Temperature [℃]
Dianhydride Diamine
PMDA BPDA PMDA BPDA
Example 1 100 0 100 0 12 0.01 525
Example 2 90 10 100 0 12 1.20 533
Example 3 80 20 100 0 10 4.00 535
Example 4 70 30 100 0 11 9.88 540
Example 5 60 40 100 0 11 14.89 535
Example 6 50 50 100 0 10 14.99 528
Example 7 0 100 100 0 11 15.70 534
Comparative Example 1 100 0 0 100 11 37.74 505
Comparative Example 2 90 10 0 100 11 41.25 522
Comparative Example 3 80 20 0 100 12 46.85 541
Comparative Example 4 70 30 0 100 12 50.33 525
Comparative Example 5 60 40 0 100 11 58.24 541
Comparative Example 6 50 50 0 100 12 66.23 535
Comparative Example 7 0 100 0 100 11 88.70 548
상기 물성 평가 결과, 본 발명의 실시예에 의한 폴리아믹산 용액은 이미드화 및 코팅하는 데는 문제가 없었다. 또, 실시예 1 내지 7에 의한 폴리아믹산 용액으로부터 얻어지는 폴리이미드 코팅층은 열분해온도가 500℃이상으로 열안정성이 우수하였고, 50~450℃ 온도범위에서 열팽창율 측정 결과 실시예 5 내지 7은 20ppm/℃이하, 실시예 2 내지 4는 10ppm/℃이하였으며, 특히, 방향족 안하이드라이드계 모노머로서 피로멜리트산 무수물을 단독으로 포함한 경우인 실시예 1은 0.01ppm/℃의 아주 우수한 열팽창율을 보였다. As a result of evaluating the physical properties, the polyamic acid solution according to the embodiment of the present invention had no problem in imidization and coating. In addition, the polyimide coating layer obtained from the polyamic acid solution according to Examples 1 to 7 had excellent thermal stability with a thermal decomposition temperature of 500 ° C. or higher, and a thermal expansion coefficient measurement result in Examples 5 to 7 at 20 ppm / 50 ° C. Below 2 ° C, Examples 2 to 4 were below 10 ppm / ° C. In particular, Example 1, which contains pyromellitic anhydride alone as an aromatic anhydride monomer, showed a very good thermal expansion rate of 0.01 ppm / ° C.
이에 비하여, 비교예에 의한 폴리아믹산 용액으로 형성된 폴리이미드 코팅층은 열분해온도는 만족스러우나 열팽창율이 20ppm/℃을 훨씬 초과하므로 실시예들에 의한 폴리아믹산 용액에 비해 표시소자의 기재층이나 보호층 형성에 사용시 열팽창율이 저조함을 알 수 있다. On the other hand, the polyimide coating layer formed of the polyamic acid solution according to the comparative example has satisfactory thermal decomposition temperature, but the thermal expansion rate is much higher than 20 ppm / ° C., thus forming the base layer or the protective layer of the display device as compared to the polyamic acid solution according to the embodiments. It can be seen that the coefficient of thermal expansion is low when used in.

Claims (6)

  1. 방향족 디아민계 모노머 및 방향족 디안하이드라이드계 모노머로부터 중합되고, 상기 방향족 디아민계 모노머는 2-(4-아미노페닐)-5-아미노벤족사졸(2-(4-aminophenyl)-5-aminobenzoxazole)을 포함하는 것인 폴리아믹산.Polymerized from an aromatic diamine monomer and an aromatic dianhydride monomer, the aromatic diamine monomer comprising 2- (4-aminophenyl) -5-aminobenzoxazole (2- (4-aminophenyl) -5-aminobenzoxazole) Polyamic acid.
  2. 제1항에 있어서, 상기 방향족 디안하이드라이드계 모노머는 피로멜리트산 무수물(Pyromellitic Dianhydride)을 단독으로 포함하거나, 피로멜리트산 무수물(Pyromellitic Dianhydride) 70몰%이상 및 비페닐테트라카보실산무수물(3,3′,4,4′-Biphenyltetracarboxylic Dianhydride) 30몰%이하 포함하는 것을 특징으로 하는 폴리아믹산.The method of claim 1, wherein the aromatic dianhydride monomer comprises pyromellitic dianhydride alone, or 70 mol% or more of pyromellitic dianhydride and biphenyltetracarboic anhydride (3). , 3 ′, 4,4′-Biphenyltetracarboxylic Dianhydride) Polyamic acid, characterized in that it contains 30 mol% or less.
  3. 제1항 또는 제2항의 폴리아믹산을 포함하고, 점도가 50~5,000poise인 것을 특징으로 하는 폴리아믹산 용액.A polyamic acid solution comprising the polyamic acid of claim 1 or 2 and having a viscosity of 50 to 5,000 poise.
  4. 표시소자의 적층된 부품상에 제3항의 폴리아믹산 용액을 도포하고, 이를 이미드화 하여 제조되는 것을 특징으로 하는 폴리이미드 보호층.A polyimide protective layer, which is prepared by applying the polyamic acid solution of claim 3 onto a laminated component of a display element and imidating it.
  5. 방향족 디아민계 모노머로부터 유래된 단위구조와 방향족 디안하이드라이드계 모노머로부터 유래된 단위구조를 포함하고, 상기 방향족 모노머는 2-(4-아미노페닐)-5-아미노벤족사졸을 포함하는 것인 폴리이미드 필름.A polyimide comprising a unit structure derived from an aromatic diamine monomer and a unit structure derived from an aromatic dianhydride monomer, wherein the aromatic monomer comprises 2- (4-aminophenyl) -5-aminobenzoxazole film.
  6. 제5항에 있어서, 상기 방향족 디안하이드라이드계 모노머는 피로멜리트산 무수물을 단독으로 포함하거나, 피로멜리트산 무수물 70몰%이상 및 비페닐테트라카보실산무수물 30몰%이하 포함하는 것을 특징으로 하는 폴리이미드 필름.The method of claim 5, wherein the aromatic dianhydride monomer comprises pyromellitic anhydride alone, or 70 mol% or more of pyromellitic anhydride and 30 mol% or less of biphenyltetracarbosilic anhydride. Polyimide film.
PCT/KR2012/005230 2011-06-30 2012-07-02 Polyamic acid, polyamic acid solution, polyimide protective layer, and polyimide film WO2013002614A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280032811.9A CN103649175B (en) 2011-06-30 2012-07-02 Polyamic acid, polyamic acid solution, polyimide covercoat and polyimide film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110064665A KR101531737B1 (en) 2011-06-30 2011-06-30 Polyamic acid and Polyamic acid solution, Polyimide protecive layer, Polyimide film
KR10-2011-0064665 2011-06-30

Publications (2)

Publication Number Publication Date
WO2013002614A2 true WO2013002614A2 (en) 2013-01-03
WO2013002614A3 WO2013002614A3 (en) 2013-04-04

Family

ID=47424715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005230 WO2013002614A2 (en) 2011-06-30 2012-07-02 Polyamic acid, polyamic acid solution, polyimide protective layer, and polyimide film

Country Status (3)

Country Link
KR (1) KR101531737B1 (en)
CN (1) CN103649175B (en)
WO (1) WO2013002614A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133297A1 (en) * 2013-02-27 2014-09-04 한국과학기술원 Method for producing colorless and transparent polyimide film impregnated with glass fabric and planarizing surface thereof
US9469735B2 (en) 2013-02-27 2016-10-18 Korea Advanced Institute Of Science And Technology Method of manufacturing colorless transparent polyimide film having impregnated glass fabric and of flattening surface thereof
JPWO2014129464A1 (en) * 2013-02-19 2017-02-02 新日鉄住金化学株式会社 LAMINATE, SOLAR CELL MEMBER, SOLAR CELL, DISPLAY DEVICE MEMBER, DISPLAY DEVICE AND LAMINATE MANUFACTURING METHOD

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101650223B1 (en) * 2013-06-11 2016-08-30 주식회사 엘지화학 Polyimide precursor composition
KR102047345B1 (en) * 2013-06-28 2019-11-21 코오롱인더스트리 주식회사 Polyimide and Methods for Preparing the Same
CN104512075B (en) 2013-10-04 2017-06-23 财团法人工业技术研究院 Release layer, substrate structure and flexible electronic element process
CN106405758B (en) * 2016-06-12 2023-06-23 中国电子科技集团公司第八研究所 Outdoor irradiation-resistant optical cable and manufacturing method thereof
KR101912737B1 (en) * 2017-05-23 2018-10-30 주식회사 대림코퍼레이션 Method of manufacturing for polyamic acid resin having easily laser Ablation and high heat resistant and polyimide film using the same
KR102153507B1 (en) * 2018-08-22 2020-09-09 피아이첨단소재 주식회사 Polyimide Film with Improved Base Resistance and Method for Preparing The Same
CN109796761A (en) * 2018-12-25 2019-05-24 努比亚技术有限公司 Display screen component, preparation method and display terminal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670262A (en) * 1995-05-09 1997-09-23 The Dow Chemical Company Printing wiring board(s) having polyimidebenzoxazole dielectric layer(s) and the manufacture thereof
US5919892A (en) * 1994-10-31 1999-07-06 The Dow Chemical Company Polyamic acids and methods to convert polyamic acids into polyimidebenzoxazole films
KR20070058812A (en) * 2005-12-05 2007-06-11 주식회사 코오롱 Polyimide film
KR20090013921A (en) * 2007-08-03 2009-02-06 에스케이씨 주식회사 Polyimide film for electronic device component

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100519627C (en) * 2007-02-07 2009-07-29 哈尔滨工业大学 Method of preparing polybenzoxazole-imide and its fiber
CN101225166B (en) * 2007-12-14 2010-12-08 哈尔滨工业大学 Sulfonated naphthalene polyimide containing oxazole ring and preparation of proton exchange membrane thereof
CN101407588A (en) * 2008-11-26 2009-04-15 哈尔滨工业大学 Preparation of polyimide film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919892A (en) * 1994-10-31 1999-07-06 The Dow Chemical Company Polyamic acids and methods to convert polyamic acids into polyimidebenzoxazole films
US5670262A (en) * 1995-05-09 1997-09-23 The Dow Chemical Company Printing wiring board(s) having polyimidebenzoxazole dielectric layer(s) and the manufacture thereof
KR20070058812A (en) * 2005-12-05 2007-06-11 주식회사 코오롱 Polyimide film
KR20090013921A (en) * 2007-08-03 2009-02-06 에스케이씨 주식회사 Polyimide film for electronic device component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014129464A1 (en) * 2013-02-19 2017-02-02 新日鉄住金化学株式会社 LAMINATE, SOLAR CELL MEMBER, SOLAR CELL, DISPLAY DEVICE MEMBER, DISPLAY DEVICE AND LAMINATE MANUFACTURING METHOD
WO2014133297A1 (en) * 2013-02-27 2014-09-04 한국과학기술원 Method for producing colorless and transparent polyimide film impregnated with glass fabric and planarizing surface thereof
US9469735B2 (en) 2013-02-27 2016-10-18 Korea Advanced Institute Of Science And Technology Method of manufacturing colorless transparent polyimide film having impregnated glass fabric and of flattening surface thereof

Also Published As

Publication number Publication date
KR20130003358A (en) 2013-01-09
CN103649175B (en) 2015-11-25
KR101531737B1 (en) 2015-06-25
WO2013002614A3 (en) 2013-04-04
CN103649175A (en) 2014-03-19

Similar Documents

Publication Publication Date Title
WO2013002614A2 (en) Polyamic acid, polyamic acid solution, polyimide protective layer, and polyimide film
EP2342266B1 (en) Polyimide film
KR102302417B1 (en) Polyamic acid, polyamic acid solution, polyimide, polyimide film, laminate and flexible device, and method for producing polyimide film
KR100895848B1 (en) Polyimide, polyimide film and laminated body
CN110621721B (en) Polyamic acid, polyimide film, laminate, flexible device, and method for producing polyimide film
KR20130075423A (en) Polyamic acid solution
JP2022008353A (en) Method for producing electronic device
WO2010035999A2 (en) Transparent electrode
WO2020101383A1 (en) Polyimide-based film, polyimide-based composition, and film manufacturing method using same
WO2013162238A1 (en) Flexible metal clad laminate
KR20210037331A (en) Polyamic acid composition, method for preparing the same and polyimide film comprising the same
WO2012153901A1 (en) Wholly aromatic polyester amide copolymer resin, polymer film including the wholly aromatic polyester amide copolymer resin, flexible metal-clad laminate including the polymer film, and flexible printed circuit board including the flexible metal-clad laminate
KR100362544B1 (en) Polyimide Varnish
WO2011049357A2 (en) Polyamic acid solution, polyimide resin, and flexible copper clad laminate using same
KR101288724B1 (en) Polyamic acid and polyimide coating layer
KR101284397B1 (en) Polyamic acid and display device
JP4974068B2 (en) Polyimide film, method for producing the same, and flexible circuit board
JP3590902B2 (en) Polyimide film with improved adhesion and method for producing the same
WO2022220286A1 (en) Imide-amic acid copolymer and production method therefor, varnish, and polyimide film
EP2938653A1 (en) Polyamic acid solution, imidization film, and display device
KR102047345B1 (en) Polyimide and Methods for Preparing the Same
JP2005054172A (en) Polyamic acid, polyimide film formed out of the same, method for producing the same, and flexible circuit board
JP2018080344A (en) Polyimide precursor composition, method for producing polyimide, polyimide, polyimide film, and substrate
JP2006137868A (en) Polyimide film and flexible circuit board
WO2022107966A1 (en) Polyamic acid composition, and polyimide comprising same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12805218

Country of ref document: EP

Kind code of ref document: A2