WO2014133189A1 - Laminate and method of producing same - Google Patents

Laminate and method of producing same Download PDF

Info

Publication number
WO2014133189A1
WO2014133189A1 PCT/JP2014/055526 JP2014055526W WO2014133189A1 WO 2014133189 A1 WO2014133189 A1 WO 2014133189A1 JP 2014055526 W JP2014055526 W JP 2014055526W WO 2014133189 A1 WO2014133189 A1 WO 2014133189A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
insulating layer
metal plate
repeating unit
metal
Prior art date
Application number
PCT/JP2014/055526
Other languages
French (fr)
Japanese (ja)
Inventor
剛司 近藤
亮 宮越
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2015503080A priority Critical patent/JP6385917B2/en
Priority to KR1020157026239A priority patent/KR20150122720A/en
Priority to CN201480010195.6A priority patent/CN105075404B/en
Publication of WO2014133189A1 publication Critical patent/WO2014133189A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • C08G63/605Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/44Polyester-amides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles

Definitions

  • the present invention relates to a laminate and a method for manufacturing the same.
  • circuit boards are required to easily dissipate heat generated from mounted elements, that is, to have excellent heat dissipation.
  • a metal base circuit board having a metal plate, an insulating layer provided thereon, and a circuit pattern provided thereon has been studied.
  • the metal base circuit board is obtained by patterning a metal foil from a laminated board having a metal plate, an insulating layer provided thereon, and a metal foil provided thereon (for example, (See Patent Documents 1 to 8).
  • an object of the present invention is to provide a laminate having excellent punching workability and bending workability, and to provide a metal base circuit board having excellent punching workability and bending workability.
  • the present invention provides a laminate comprising a metal plate obtained by a rolling method, an insulating layer provided on the metal plate and containing a resin, and a metal foil provided on the insulating layer.
  • the metal plate has a ten-point average roughness Rz (MD) in a rolling direction and a ten-point average roughness Rz (TD) in a direction perpendicular to the rolling direction on a surface in contact with the insulating layer, respectively.
  • a laminated plate which is a metal plate having a size of 4 to 20 ⁇ m and a ratio of Rz (TD) to Rz (MD) (Rz (TD) / Rz (MD)) being 1.5 or less.
  • the laminated board which has the process of obtaining the said metal plate by roughening the at least one surface of the raw material metal plate obtained by the rolling method Is also provided.
  • the laminate of the present invention is excellent in punching workability and bending workability, and is excellent in heat dissipation.
  • the laminated board of this invention is a laminated board which has a metal plate, the insulating layer provided on it, and the metal foil provided on it.
  • the metal plate is a metal plate obtained by a rolling method, and at least one of the surfaces has independent 10-point average roughness in the rolling direction and 10-point average roughness in the direction perpendicular to the rolling direction.
  • the ratio of the ten-point average roughness in the direction perpendicular to the rolling direction to the ten-point average roughness in the rolling direction (ten-point average roughness in the direction perpendicular to the rolling direction / tenth in the rolling direction).
  • a metal plate having a rough surface with a point average roughness of 1.5 or less is used, and lamination is performed so that the rough surface is in contact with the insulating layer. That is, on the surface in contact with the insulating layer of the metal plate, when the ten-point average roughness in the rolling direction is Rz (MD) and the ten-point average roughness in the direction perpendicular to the rolling direction is Rz (TD), Rz (TD) MD) and Rz (TD) are each independently 4 to 20 ⁇ m, and Rz (TD) / Rz (MD) is 1.5 or less.
  • Rz (MD) ten-point average roughness in the rolling direction
  • TD ten-point average roughness in the direction perpendicular to the rolling direction
  • Rz (TD) MD) and Rz (TD) are each independently 4 to 20 ⁇ m
  • Rz (TD) / Rz (MD) is 1.5 or less.
  • the other surface of the metal plate that is, the surface opposite to the surface in contact with the insulating layer may be a mirror surface or a rough surface, and if it is a rough surface, the surface in contact with the insulating layer
  • the ten-point average roughness in the rolling direction and the ten-point average roughness in the direction perpendicular to the rolling direction are each independently 4 to 20 ⁇ m, and the direction perpendicular to the rolling direction with respect to the ten-point average roughness in the rolling direction
  • the ten-point average roughness ratio (ten-point average roughness in the direction perpendicular to the rolling direction / ten-point average roughness in the rolling direction) of 1.5 or less may be a rough surface. It may be a rough surface.
  • Rz (MD) and Rz (TD) are preferably each independently 4 to 10 ⁇ m, and Rz (TD) / Rz (MD) is preferably 1.2 or less.
  • Punching workability and bending workability are further improved.
  • the ten-point average roughness of the surface of the metal plate is measured according to JIS B0601: 1994.
  • Such a metal plate can be obtained by roughening at least one surface of the raw metal plate obtained by the rolling method uniformly and appropriately so as to be the predetermined rough surface.
  • the roughening may be performed on both surfaces or only on one surface, but is preferably performed on both surfaces because the punching workability and bending workability of the laminate are further improved.
  • the roughening may be performed by a dry surface roughening method such as blasting or polishing, or by a wet surface roughening method such as anodizing or etching. Among these, it is preferable to roughen the surface by blasting, whereby the punching workability and bending workability of the laminate are further improved.
  • the blast treatment is a method of roughening the metal plate by spraying an abrasive such as alumina, steel grains, sand, glass beads or the like onto the metal plate by air pressure or centrifugal force.
  • the material of the metal plate include aluminum, iron, and copper, and may be an alloy such as an aluminum alloy or stainless steel. Of these, copper and aluminum alloys are preferred.
  • the metal plate may contain a nonmetal such as carbon, and may contain, for example, aluminum combined with carbon.
  • the metal plate preferably has a high thermal conductivity, and the thermal conductivity is preferably 60 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more.
  • the thickness of the metal plate is usually 0.2 mm or more, preferably 0.5 mm or more, and this facilitates improving the heat dissipation of the laminated plate.
  • the thickness of a metal plate is 5 mm or less normally, Preferably it is 1.5 mm or less, and it becomes easy to improve the punching workability and bending workability of a laminated board by this.
  • the metal plate may have flexibility or may not have flexibility.
  • the metal plate may have a single layer structure or a multilayer structure.
  • the insulating layer is provided on the metal plate and contains a resin.
  • the resin plays a role as an adhesive for bonding the metal plate and the metal foil and a function of flattening the surface of the insulating layer.
  • the resin include thermoplastic resins such as polypropylene, polyamide, polyesters other than liquid crystal polyester, liquid crystal polyester, polyphenylene sulfide, polyether ketone, polycarbonate, polyether sulfone, polyphenylene ether, polyether imide; and phenol resin, epoxy resin And thermosetting resins such as polyimide resins and cyanate resins, and two or more of them may be used.
  • liquid crystal polyester is preferable because of its high heat resistance and low dielectric loss.
  • the liquid crystalline polyester is a polyester that exhibits liquid crystallinity in a molten state, and is preferably a liquid crystalline polyester that melts at a temperature of 450 ° C. or lower.
  • the liquid crystal polyester may be a liquid crystal polyester amide, a liquid crystal polyester ether, a liquid crystal polyester carbonate, or a liquid crystal polyester imide.
  • the liquid crystal polyester is preferably a wholly aromatic liquid crystal polyester using only an aromatic compound as a raw material monomer.
  • a typical example of the liquid crystal polyester is polymerization (polycondensation) of an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, and at least one compound selected from the group consisting of an aromatic diol, an aromatic hydroxyamine, and an aromatic diamine.
  • At least one selected from the group consisting of aromatic dicarboxylic acids and aromatic diols, aromatic hydroxyamines and aromatic diamines include a liquid crystal polyester obtained by polymerizing a compound and a liquid crystal polyester obtained by polymerizing a polyester such as polyethylene terephthalate and an aromatic hydroxycarboxylic acid.
  • the aromatic hydroxycarboxylic acid, the aromatic dicarboxylic acid, the aromatic diol, the aromatic hydroxyamine, and the aromatic diamine are each independently replaced with a part or all of the polymerizable derivative. Also good.
  • Examples of polymerizable derivatives of a compound having a carboxyl group such as aromatic hydroxycarboxylic acid and aromatic dicarboxylic acid include derivatives (esters) obtained by converting a carboxyl group into an alkoxycarbonyl group or an aryloxycarbonyl group, carboxyl Derivatives obtained by converting a group into a haloformyl group (acid halide) and derivatives obtained by converting a carboxyl group into an acyloxycarbonyl group (an acid anhydride) are included.
  • polymerizable derivatives of hydroxyl group-containing compounds such as aromatic hydroxycarboxylic acids, aromatic diols and aromatic hydroxyamines include derivatives obtained by acylating hydroxyl groups and converting them into acyloxyl groups (acylated products) ).
  • polymerizable derivatives of amino group-containing compounds such as aromatic hydroxyamines and aromatic diamines include derivatives (acylated products) obtained by acylating amino groups and converting them to acylamino groups.
  • the liquid crystalline polyester preferably has a repeating unit represented by the following formula (1) (hereinafter sometimes referred to as “repeating unit (1)”), and the repeating unit (1) and the following formula (2)
  • Ar 2 and Ar 3 each independently represent a phenylene group, a naphthylene group, a biphenylylene group, or a group represented by the following formula (4).
  • X And Y each independently represents an oxygen atom or an imino group (—NH—), and each hydrogen atom in the group represented by Ar 1 , Ar 2 or Ar 3 is independently a halogen atom or an alkyl group. Alternatively, it may be substituted with an aryl group.
  • (4) -Ar 4 -Z-Ar 5- Ar 4 and Ar 5 each independently represent a phenylene group or a naphthylene group.
  • Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group, or an alkylidene group.
  • halogen atom a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-hexyl group, 2-ethylhexyl group, Examples thereof include n-octyl group and n-decyl group, and the carbon number thereof is usually 1-10.
  • aryl group examples include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a 1-naphthyl group, and a 2-naphthyl group, and the number of carbon atoms is usually 6 to 20. .
  • the hydrogen atom is substituted with these groups, the number is usually 2 or less for each of the groups represented by Ar 1 , Ar 2 or Ar 3 , and preferably 1 It is as follows.
  • the alkylidene group examples include a methylene group, an ethylidene group, an isopropylidene group, an n-butylidene group, and a 2-ethylhexylidene group, and the number of carbon atoms is usually 1 to 10.
  • the repeating unit (1) is a repeating unit derived from a predetermined aromatic hydroxycarboxylic acid.
  • the repeating unit (1) includes a repeating unit (1) in which Ar 1 is a p-phenylene group (a repeating unit derived from p-hydroxybenzoic acid), and a repeating unit in which Ar 1 is a 2,6-naphthylene group ( 1) (Repeating unit derived from 6-hydroxy-2-naphthoic acid) is preferred.
  • the repeating unit (2) is a repeating unit derived from a predetermined aromatic dicarboxylic acid.
  • the repeating unit (2) (repeating unit derived from diphenyl ether-4,4′-dicarboxylic acid) is preferred.
  • the repeating unit (3) is a repeating unit derived from a predetermined aromatic diol, aromatic hydroxylamine or aromatic diamine.
  • a repeating unit (3) in which Ar 3 is a p-phenylene group (a repeating unit derived from hydroquinone, p-aminophenol or p-phenylenediamine) is preferable.
  • the content of the repeating unit (1) is the total amount of all repeating units (the mass equivalent amount of each repeating unit (moles by dividing the mass of each repeating unit constituting the liquid crystal polyester by the formula amount of each repeating unit). Is usually 30 mol% or more, preferably 30 to 80 mol%, more preferably 30 to 60 mol%, still more preferably 30 to 40 mol%.
  • the content of the repeating unit (2) is usually 35 mol% or less, preferably 10 to 35 mol%, more preferably 20 to 35 mol%, still more preferably 30 to 35 mol, based on the total amount of all repeating units. %.
  • the content of the repeating unit (3) is usually 35 mol% or less, preferably 10 to 35 mol%, more preferably 20 to 35 mol%, still more preferably 30 to 35 mol, based on the total amount of all repeating units. %.
  • the content of the repeating unit (1) is increased, the heat resistance, strength and rigidity are likely to be improved. However, if the content is too large, the solubility in a solvent is likely to be lowered.
  • the ratio between the content of the repeating unit (2) and the content of the repeating unit (3) is expressed as [content of repeating unit (2)] / [content of repeating unit (3)] (mol / mol). In general, it is 0.9 / 1 to 1 / 0.9, preferably 0.95 / 1 to 1 / 0.95, and more preferably 0.98 / 1 to 1 / 0.98.
  • the liquid crystal polyester may have two or more repeating units (1) to (3) independently.
  • the liquid crystalline polyester may have repeating units other than the repeating units (1) to (3), and the content thereof is usually 10 mol% or less, preferably with respect to the total amount of all repeating units. 5 mol% or less.
  • the liquid crystalline polyester has a repeating unit (3) in which X and / or Y is an imino group as the repeating unit (3), that is, a repeating unit derived from a predetermined aromatic hydroxylamine and / or an aromatic diamine. Having the repeating unit derived from is preferable because it has excellent solubility in a solvent, and it is more preferable that the repeating unit (3) has only the repeating unit (3) in which X and / or Y is an imino group.
  • the liquid crystal polyester is preferably produced by melt polymerization of raw material monomers corresponding to the repeating units constituting the liquid crystal polyester, and solid-phase polymerization of the obtained polymer (prepolymer).
  • melt polymerization may be carried out in the presence of a catalyst.
  • this catalyst include metal compounds such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, and antimony trioxide,
  • nitrogen-containing heterocyclic compounds such as 4- (dimethylamino) pyridine and 1-methylimidazole, and nitrogen-containing heterocyclic compounds are preferably used.
  • the flow starting temperature of the liquid crystalline polyester is usually 250 ° C. or higher, preferably 250 ° C. to 350 ° C., more preferably 260 ° C. to 330 ° C.
  • the flow start temperature is also called flow temperature or flow temperature, and the temperature is raised at a rate of 4 ° C./min under a load of 9.8 MPa (100 kg / cm 2 ) using a capillary rheometer while liquid crystal polyester is used.
  • the proportion of the resin in the insulating layer is preferably 30 to 60% by volume, more preferably 35 to 55% by volume. If this ratio is too small, the adhesion between the insulating layer and the metal plate or the metal foil is lowered, or the surface flatness of the insulating layer is lowered.
  • the insulating layer preferably further contains at least one inorganic filler selected from the group consisting of aluminum oxide, silicon oxide, boron nitride, and aluminum nitride.
  • the inorganic filler By including the inorganic filler in the insulating layer, the heat dissipation of the laminate is improved.
  • a surface-treated inorganic filler may be used in order to improve adhesion with a resin and dispersibility in a liquid composition described later.
  • Examples of surface treatment agents that can be used for this surface treatment include silane coupling agents, titanium coupling agents, aluminum coupling agents, zirconium coupling agents, long chain fatty acids, isocyanate compounds, and epoxy groups and methoxysilyl groups. And polymers having an amino group or a hydroxyl group.
  • the proportion of the inorganic filler in the insulating layer is preferably 40 to 70% by volume, more preferably 45 to 65% by volume. If this ratio is too small, the heat dissipation of the laminate will decrease. On the other hand, if this ratio is too large, the punching workability and bending workability of the laminate will be reduced.
  • the insulating layer may contain components other than the resin and the inorganic filler, for example, organic fillers and additives.
  • the proportion of the insulating layer in the insulating layer is usually 0 to 10 in total when plural types are included. % By volume.
  • organic fillers include cured epoxy resins, crosslinked benzoguanamine resins, and crosslinked acrylic resins.
  • additives include leveling agents, antifoaming agents, antioxidants, ultraviolet absorbers, flame retardants, and colorants.
  • the insulating layer may contain inorganic fillers other than aluminum oxide, silicon oxide, boron nitride, and aluminum nitride as inorganic fillers, but the proportion of the inorganic fillers is plural. In some cases, the total amount is usually 0 to 10% by volume.
  • the metal foil is provided on the insulating layer and faces the metal plate with the insulating layer interposed therebetween.
  • the metal foil material include copper and aluminum, and may be an alloy.
  • the thickness of the metal foil is usually 10 to 500 ⁇ m.
  • Production of the laminated board of the present invention is as follows. (A): First, a laminated intermediate of a metal foil and an insulating layer is produced, and then this laminated intermediate is used as a roughened surface of the metal plate with the insulating layer surface as a bonding surface.
  • the insulating layer is preferably formed by applying a liquid composition containing a resin and a solvent to a support and drying (solvent removal) the resulting coating film.
  • the laminated intermediate body of the metal foil and insulating layer in said (A) can be manufactured by using metal foil as a support body.
  • the laminated intermediate body of the metal plate and insulating layer in said (B) can be manufactured by using a metal plate as a support body.
  • a support other than the metal foil and the metal plate as the support for example, a resin film such as a polyester film, a polypropylene film, a fluororesin film, a nylon film, or a polymethylpentene film, the support was formed on the support.
  • a laminated intermediate of the metal foil and the insulating layer in (A) can be produced, and the insulating layer formed on the support is
  • a laminated intermediate of the metal plate and the insulating layer in (B) can be produced, and the insulating layer formed on the support is removed from the support.
  • the insulating film in (C) can be produced.
  • the solvent a solvent that can dissolve the resin to be used, specifically, a solvent that can be dissolved at a concentration of 1% by mass or more at 50 ° C.
  • solvents include halogenated hydrocarbons such as dichloromethane, chloroform, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, o-dichlorobenzene; p-chlorophenol, pentachlorophenol, pentafluorophenol Halogenated phenols such as diethyl ether, tetrahydrofuran, 1,4-dioxane, etc .; ketones such as acetone and cyclohexanone; esters such as ethyl acetate and ⁇ -butyrolactone; carbonates such as ethylene carbonate and propylene carbonate; amines such as triethylamine Nitrogen-containing heteroaromatic compounds such as pyridine; nitriles such as acetonitrile and succinonitrile; amides such as N, N-dimethylform
  • an aprotic compound particularly a solvent mainly comprising an aprotic compound having no halogen atom, is preferred, and the proportion of the aprotic compound in the entire solvent is:
  • the content is preferably 50 to 100% by mass, more preferably 70 to 100% by mass, and still more preferably 90 to 100% by mass.
  • an amide such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like because the resin is easily dissolved.
  • the solvent is preferably a solvent mainly composed of a compound having a dipole moment of 3 to 5 because the resin is easily dissolved, and the ratio of the compound having a dipole moment of 3 to 5 in the entire solvent is Preferably, it is 50 to 100% by mass, more preferably 70 to 100% by mass, and still more preferably 90 to 100% by mass, and a compound having a dipole moment of 3 to 5 is used as the aprotic compound. preferable.
  • the solvent which has as a main component the compound whose boiling point in 1 atmosphere is 220 degrees C or less is preferable, and the ratio of the compound whose boiling point in 1 atmosphere in the whole solvent is 220 degrees C or less Is preferably 50 to 100% by mass, more preferably 70 to 100% by mass, and still more preferably 90 to 100% by mass.
  • the aprotic compound a compound having a boiling point at 1 atm of 220 ° C. or less is used. It is preferable.
  • the content of the resin in the liquid composition is usually 5 to 60% by mass, preferably 10 to 50% by mass, more preferably 15 to 45% by mass with respect to the total amount of the resin and the solvent, and a desired viscosity.
  • the liquid composition is preferably prepared by dispersing the inorganic filler and, if necessary, other components in a solution obtained by dissolving the resin and other components, if necessary, in a solvent.
  • the inorganic filler may be dispersed in the solution while being pulverized by a ball mill, three rolls, a centrifugal stirrer, a bead mill or the like.
  • Examples of the method of applying the liquid composition to the support include a roll coating method, a bar coating method, a screen printing method, a die coater method, and a comma coater method. Plate type).
  • the coating film is preferably dried by evaporating the solvent from the coating film.
  • drying the coating film formed on the support, and transferring the resulting dried film from the support to the metal foil or metal plate by thermocompression bonding or the like Is preferably performed so that a part of the solvent remains in the dry film.
  • the amount of solvent in the dry film is preferably 1 to 25% by mass.
  • the drying temperature is usually 50 to 180 ° C, preferably 80 to 150 ° C.
  • the dry film formed on the support or the dry film transferred to the metal foil or metal plate is preferably heat-treated when a thermoplastic resin is used as the resin, thereby adjusting its molecular weight and crystallinity. Therefore, an insulating layer having excellent adhesion and thermal conductivity can be obtained.
  • the heat treatment is usually performed at 250 to 350 ° C., preferably 270 to 320 ° C. in an inert gas atmosphere such as nitrogen gas.
  • an inert gas atmosphere such as nitrogen gas.
  • the laminated sheet of the present invention can be obtained by laminating with a metal foil by thermocompression bonding or the like.
  • the insulating layer formed on the support is peeled from the support to obtain an insulating film, as described in (C) above, the insulating film is used as a metal plate with the rough surface of the metal plate as a bonding surface.
  • the laminate of the present invention can be obtained by sandwiching between metal foils and bonding them together by thermocompression bonding or the like.
  • a metal base circuit board is formed by patterning the metal foil from the laminate thus obtained, forming a circuit pattern, and performing a punching process such as a cutting process or a drilling process or a bending process as necessary. Is obtained.
  • the patterning of the metal foil is performed, for example, by forming a mask pattern on the metal foil and removing the exposed portion of the metal foil by etching.
  • Thickness of the metal plate obtained by the rolling method is a mirror surface (ten-point average roughness in the rolling direction: 1.2 ⁇ m, ten-point average roughness in the direction perpendicular to the rolling direction: 2.4 ⁇ m)
  • a metal plate obtained by roughening one surface of a 0 mm aluminum alloy plate by blasting, wherein one surface is a rough surface having the ten-point average roughness shown in Table 1, and the other surface Metal plates (1) to (4) having a thickness of 1.0 mm and having a mirror surface were used.
  • the said aluminum alloy plate was used as a metal plate (5) as it was.
  • a press machine (“80 ton press” from Aida Engineering Co., Ltd.) under the conditions of a holder pressure of 20 kN, a knockout force of 59 kN, and a press speed of 60 SPN using a total punching die for an aluminum plate
  • the presence or absence of chipping of the insulating layer on the cut surface was confirmed with an optical microscope.
  • a transistor (“C2233” manufactured by Toshiba Corporation) is attached to this land using solder, and the obtained laminated plate with the transistor is attached to the water cooling device, and the metal plate is connected to the cooling surface of the water cooling device via the silicone grease layer. Set to face each other. Next, the power P of 30 W is supplied to the transistor, the temperature T1 of the transistor and the temperature T2 of the cooling surface of the water cooling device are measured, and the value of the ratio T1-T2 between the temperature T1 and the temperature T2 with respect to the power P (T1-T2) / P was defined as thermal resistance.
  • the liquid crystal polyester had a flow start temperature of 270 ° C.
  • [Preparation of liquid crystal polyester solution] 2200 g of liquid crystal polyester was added to 7800 g of N, N-dimethylacetamide and heated at 100 ° C. for 2 hours to obtain a liquid crystal polyester solution. The viscosity of this solution was 400 cP.
  • Boron nitride and aluminum oxide were added to the liquid crystal polyester solution, and the mixture was stirred for 5 minutes with a centrifugal stirring deaerator to obtain a liquid composition.
  • the liquid composition was applied to a polyester film having a thickness of 100 ⁇ m so that the thickness of the coating film was about 90 ⁇ m, and then dried at 100 ° C. for 20 minutes.
  • the obtained intermediate laminate of the polyester film and the dried film is passed between a pair of hot rolls heated to 150 ° C., with the copper foil having a thickness of 35 ⁇ m overlapped so that the dried film is in contact with the copper foil.
  • the dry film and the copper foil were thermocompression bonded.
  • the polyester film was peeled off, and the resulting laminated intermediate of the copper foil and the dried film was heat treated at 290 ° C. for 3 hours to obtain a laminated intermediate of the copper foil and the insulating layer.
  • the laminated intermediate body of copper foil and an insulating layer was piled up with the metal plate.
  • the metal plate (1) to (4) is used as the metal plate, the rough surface of the metal plate is brought into contact with the insulating layer, and when the metal plate (5) is used as the metal plate, the metal plate One side of the plate was in contact with the insulating layer.
  • heat treatment was performed at 340 ° C. for 20 minutes while applying a pressure of 20 MPa, and the insulating layer and the metal plate were thermocompression bonded.
  • the obtained laminated plate was evaluated for punching workability and bending workability, and the thermal resistance of the insulating layer was measured and shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Polyamides (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

Provided is a metal-base circuit board superior in stamping workability and bending workability. The present invention is a laminate having a metal plate obtained by a rolling method, an insulating layer provided upon the metal plate and including resin, and a metal foil provided upon the insulating layer, the metal plate being a metal plate such that, on a surface in contact with the insulating layer, ten-point mean roughness Rz (MD) in a direction of rolling and ten-point mean roughness Rz (TD) in a direction perpendicular to the direction of rolling are independently 4 to 20 μm, and the ratio of the Rz (TD) with respect to the Rz (MD) (Rz (TD)/Rz (MD)) is less than or equal to 1.5.

Description

積層板及びその製造方法Laminate and manufacturing method thereof
 本発明は、積層板及びその製造方法に関する。 The present invention relates to a laminate and a method for manufacturing the same.
 近年、電気・電子機器の小型化、高性能化及びハイパワー化に伴い、回路基板には、実装された素子から発生する熱が放散し易いこと、すなわち放熱性に優れることが求められている。この要求に対応しうる回路基板として、金属板と、その上に設けられた絶縁層と、その上に設けられた回路パターンとを有する金属ベース回路基板が検討されている。この金属ベース回路基板は、金属板と、その上に設けられた絶縁層と、その上に設けられた金属箔とを有する積層板から、その金属箔をパターン化することにより、得られる(例えば特許文献1~8参照)。 In recent years, with the miniaturization, high performance and high power of electric / electronic devices, circuit boards are required to easily dissipate heat generated from mounted elements, that is, to have excellent heat dissipation. . As a circuit board capable of meeting this requirement, a metal base circuit board having a metal plate, an insulating layer provided thereon, and a circuit pattern provided thereon has been studied. The metal base circuit board is obtained by patterning a metal foil from a laminated board having a metal plate, an insulating layer provided thereon, and a metal foil provided thereon (for example, (See Patent Documents 1 to 8).
特開平5−167212号公報Japanese Patent Laid-Open No. 5-167212 国際公開第2010/117023号International Publication No. 2010/117033 特開2011−32316号公報JP 2011-32316 A 特開2011−77270号公報JP 2011-77270 A 特開2011−181833号公報JP 2011-181833 A 特開2011−219749号公報JP 2011-219749 A 特開2011−249606号公報JP 2011-249606 A 特開2012−4323号公報JP 2012-4323 A
 前記従来の金属ベース回路基板は、打抜き加工する際、絶縁層が欠け易いことがある。また、曲げ加工する際、絶縁層が金属板から剥がれ易いことがある。そこで、本発明の目的は、打抜き加工性及び曲げ加工性に優れる積層板を提供し、延いては打抜き加工性及び曲げ加工性に優れる金属ベース回路基板を提供することにある。 In the conventional metal base circuit board, the insulating layer may be easily chipped when punching. Further, when bending, the insulating layer may be easily peeled off from the metal plate. Therefore, an object of the present invention is to provide a laminate having excellent punching workability and bending workability, and to provide a metal base circuit board having excellent punching workability and bending workability.
 前記目的を達成するため、本発明は、圧延法により得られた金属板と、前記金属板上に設けられ、樹脂を含む絶縁層と、前記絶縁層上に設けられた金属箔とを有する積層板であって、前記金属板は、前記絶縁層に接する面における圧延方向の十点平均粗さRz(MD)及び前記圧延方向に垂直な方向の十点平均粗さRz(TD)が、それぞれ独立に、4~20μmであり、前記Rz(MD)に対する前記Rz(TD)の割合(Rz(TD)/Rz(MD))が1.5以下である金属板である積層板を提供する。また、本発明によれば、前記積層板の製造方法であって、圧延法により得られた原料金属板の少なくとも一方の面を粗面化することにより、前記金属板を得る工程を有する積層板の製造方法も提供される。 In order to achieve the above object, the present invention provides a laminate comprising a metal plate obtained by a rolling method, an insulating layer provided on the metal plate and containing a resin, and a metal foil provided on the insulating layer. The metal plate has a ten-point average roughness Rz (MD) in a rolling direction and a ten-point average roughness Rz (TD) in a direction perpendicular to the rolling direction on a surface in contact with the insulating layer, respectively. Independently, there is provided a laminated plate which is a metal plate having a size of 4 to 20 μm and a ratio of Rz (TD) to Rz (MD) (Rz (TD) / Rz (MD)) being 1.5 or less. Moreover, according to this invention, it is a manufacturing method of the said laminated board, Comprising: The laminated board which has the process of obtaining the said metal plate by roughening the at least one surface of the raw material metal plate obtained by the rolling method Is also provided.
 本発明の積層板は、打抜き加工性及び曲げ加工性に優れ、放熱性にも優れている。 The laminate of the present invention is excellent in punching workability and bending workability, and is excellent in heat dissipation.
 本発明の積層板は、金属板と、その上に設けられた絶縁層と、その上に設けられた金属箔とを有する積層板である。
 本発明では、金属板として、圧延法により得られた金属板であって、少なくとも一方の面は、圧延方向の十点平均粗さ及び圧延方向に垂直な方向の十点平均粗さがそれぞれ独立に4~20μmであり、かつ、圧延方向の十点平均粗さに対する圧延方向に垂直な方向の十点平均粗さの割合(圧延方向に垂直な方向の十点平均粗さ/圧延方向の十点平均粗さ)が1.5以下である粗面である金属板を用い、この粗面が絶縁層に接するように積層する。すなわち、金属板の絶縁層に接する面において、圧延方向の十点平均粗さをRz(MD)とし、圧延方向に垂直な方向の十点平均粗さをRz(TD)としたとき、Rz(MD)及びRz(TD)がそれぞれ独立に4~20μmであり、かつ、Rz(TD)/Rz(MD)が1.5以下であるようにする。これにより、打抜き加工性及び曲げ加工性に優れ、放熱性にも優れる積層板を得ることができる。
 金属板のもう一方の面、すなわち、絶縁層に接する面と反対側の面は、鏡面であってもよいし、粗面であってもよく、粗面である場合、絶縁層に接する面と同様、圧延方向の十点平均粗さ及び圧延方向に垂直な方向の十点平均粗さがそれぞれ独立に4~20μmであり、かつ、圧延方向の十点平均粗さに対する圧延方向に垂直な方向の十点平均粗さの割合(圧延方向に垂直な方向の十点平均粗さ/圧延方向の十点平均粗さ)が1.5以下である粗面であってもよいし、これ以外の粗面であってもよい。
 Rz(MD)及びRz(TD)は、それぞれ独立に、4~10μmであることが好ましく、Rz(TD)/Rz(MD)は1.2以下であることが好ましく、これにより、積層板の打抜き加工性や曲げ加工性がより向上する。
 金属板の面の十点平均粗さは、JIS B0601:1994に準拠して測定される。
 このような金属板は、圧延法により得られた原料金属板の少なくとも一方の面を、前記所定の粗面になるように、均一かつ適度に粗面化することにより、得ることができる。粗面化は、両面に行ってもよいし、一方の面のみに行ってもよいが、積層板の打抜き加工性や曲げ加工性がより向上することから、両面に行うことが好ましい。
 粗面化は、ブラスト処理、研磨処理等の乾式の粗面化方法により行ってもよいし、陽極酸化処理、エッチング処理等の湿式の粗面化方法により行ってもよい。中でも、ブラスト処理により粗面化することが好ましく、これにより、積層板の打抜き加工性や曲げ加工性がより向上する。ブラスト処理は、アルミナ、鋼粒、砂、ガラスビーズ等の研磨剤を、空気圧又は遠心力によって金属板に吹き付けることにより、金属板を粗面化する方法である。
 金属板の材料としては、例えば、アルミニウム、鉄及び銅が挙げられ、アルミニウム合金やステンレス等の合金であってもよい。中でも、銅及びアルミニウム合金が好ましい。金属板は、炭素等の非金属を含んでいてもよく、例えば、炭素と複合化したアルミニウムを含んでいてもよい。金属板は、高い熱伝導率を有していることが好ましく、その熱伝導率は、60W・m−1・K−1以上であることが好ましい。
 金属板の厚さは、通常0.2mm以上、好ましくは0.5mm以上であり、これにより、積層板の放熱性が向上し易くなる。また、金属板の厚さは、通常5mm以下、好ましくは1.5mm以下であり、これにより、積層板の打抜き加工性や曲げ加工性が向上し易くなる。金属板は、可撓性を有していてもよいし、可撓性を有していなくてもよい。金属板は、単層構造を有していてもよいし、多層構造を有していてもよい。
 絶縁層は、金属板上に設けられており、樹脂を含む。樹脂は、金属板と金属箔とを接着する接着剤としての役割と、絶縁層の表面を平坦にする役割とを果たしている。
 樹脂としては、例えば、ポリプロピレン、ポリアミド、液晶ポリエステル以外のポリエステル、液晶ポリエステル、ポリフェニレンスルフィド、ポリエーテルケトン、ポリカーボネート、ポリエーテルスルホン、ポリフェニレンエーテル、ポリエーテルイミド等の熱可塑性樹脂;及びフェノール樹脂、エポキシ樹脂、ポリイミド樹脂、シアネート樹脂等の熱硬化性樹脂が挙げられ、それらの2種以上を用いてもよい。中でも、耐熱性が高く、誘電損失が低いことから、液晶ポリエステルが好ましい。
 液晶ポリエステルは、溶融状態で液晶性を示すポリエステルであり、450℃以下の温度で溶融する液晶ポリエステルであることが好ましい。なお、液晶ポリエステルは、液晶ポリエステルアミドであってもよいし、液晶ポリエステルエーテルであってもよいし、液晶ポリエステルカーボネートであってもよいし、液晶ポリエステルイミドであってもよい。液晶ポリエステルは、原料モノマーとして芳香族化合物のみを用いてなる全芳香族液晶ポリエステルであることが好ましい。
 液晶ポリエステルの典型的な例としては、芳香族ヒドロキシカルボン酸と芳香族ジカルボン酸と芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物とを重合(重縮合)させてなる液晶ポリエステル、複数種の芳香族ヒドロキシカルボン酸を重合させてなる液晶ポリエステル、芳香族ジカルボン酸と芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物とを重合させてなる液晶ポリエステル、及びポリエチレンテレフタレート等のポリエステルと芳香族ヒドロキシカルボン酸とを重合させてなる液晶ポリエステルが挙げられる。ここで、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンは、それぞれ独立に、その一部又は全部に代えて、その重合可能な誘導体が用いられてもよい。
 芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸のようなカルボキシル基を有する化合物の重合可能な誘導体の例としては、カルボキシル基をアルコキシカルボニル基又はアリールオキシカルボニル基に変換してなる誘導体(エステル)、カルボキシル基をハロホルミル基に変換してなる誘導体(酸ハロゲン化物)、及びカルボキシル基をアシルオキシカルボニル基に変換してなる誘導体(酸無水物)が挙げられる。芳香族ヒドロキシカルボン酸、芳香族ジオール及び芳香族ヒドロキシアミンのようなヒドロキシル基を有する化合物の重合可能な誘導体の例としては、ヒドロキシル基をアシル化してアシルオキシル基に変換してなる誘導体(アシル化物)が挙げられる。芳香族ヒドロキシアミン及び芳香族ジアミンのようなアミノ基を有する化合物の重合可能な誘導体の例としては、アミノ基をアシル化してアシルアミノ基に変換してなる誘導体(アシル化物)が挙げられる。
 液晶ポリエステルは、下記式(1)で表される繰返し単位(以下、「繰返し単位(1)」ということがある。)を有することが好ましく、繰返し単位(1)と、下記式(2)で表される繰返し単位(以下、「繰返し単位(2)」ということがある。)と、下記式(3)で表される繰返し単位(以下、「繰返し単位(3)」ということがある。)とを有することがより好ましい。
(1)−O−Ar−CO−
(2)−CO−Ar−CO−
(3)−X−Ar−Y−
(Arは、フェニレン基、ナフチレン基又はビフェニリレン基を表す。Ar及びArは、それぞれ独立に、フェニレン基、ナフチレン基、ビフェニリレン基又は下記式(4)で表される基を表す。X及びYは、それぞれ独立に、酸素原子又はイミノ基(−NH−)を表す。Ar、Ar又はArで表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基又はアリール基で置換されていてもよい。)
(4)−Ar−Z−Ar
(Ar及びArは、それぞれ独立に、フェニレン基又はナフチレン基を表す。Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキリデン基を表す。)
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。前記アルキル基の例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、s−ブチル基、t−ブチル基、n−ヘキシル基、2−エチルヘキシル基、n−オクチル基及びn−デシル基が挙げられ、その炭素数は、通常1~10である。前記アリール基の例としては、フェニル基、o−トリル基、m−トリル基、p−トリル基、1−ナフチル基及び2−ナフチル基が挙げられ、その炭素数は、通常6~20である。前記水素原子がこれらの基で置換されている場合、その数は、Ar、Ar又はArで表される前記基毎に、それぞれ独立に、通常2個以下であり、好ましくは1個以下である。
 前記アルキリデン基の例としては、メチレン基、エチリデン基、イソプロピリデン基、n−ブチリデン基及び2−エチルヘキシリデン基が挙げられ、その炭素数は通常1~10である。
 繰返し単位(1)は、所定の芳香族ヒドロキシカルボン酸に由来する繰返し単位である。繰返し単位(1)としては、Arがp−フェニレン基である繰返し単位(1)(p−ヒドロキシ安息香酸に由来する繰返し単位)、及びArが2,6−ナフチレン基である繰返し単位(1)(6−ヒドロキシ−2−ナフトエ酸に由来する繰返し単位)が好ましい。
 繰返し単位(2)は、所定の芳香族ジカルボン酸に由来する繰返し単位である。繰返し単位(2)としては、Arがp−フェニレン基である繰返し単位(2)(テレフタル酸に由来する繰返し単位)、Arがm−フェニレン基である繰返し単位(2)(イソフタル酸に由来する繰返し単位)、Arが2,6−ナフチレン基である繰返し単位(2)(2,6−ナフタレンジカルボン酸に由来する繰返し単位)、及びArがジフェニルエーテル−4,4’−ジイル基である繰返し単位(2)(ジフェニルエーテル−4,4’−ジカルボン酸に由来する繰返し単位)が好ましい。
 繰返し単位(3)は、所定の芳香族ジオール、芳香族ヒドロキシルアミン又は芳香族ジアミンに由来する繰返し単位である。繰返し単位(3)としては、Arがp−フェニレン基である繰返し単位(3)(ヒドロキノン、p−アミノフェノール又はp−フェニレンジアミンに由来する繰返し単位)が好ましい。
 繰返し単位(1)の含有量は、全繰返し単位の合計量(液晶ポリエステルを構成する各繰返し単位の質量をその各繰返し単位の式量で割ることにより、各繰返し単位の物質量相当量(モル)を求め、それらを合計した値)に対して、通常30モル%以上、好ましくは30~80モル%、より好ましくは30~60モル%、さらに好ましくは30~40モル%である。繰返し単位(2)の含有量は、全繰返し単位の合計量に対して、通常35モル%以下、好ましくは10~35モル%、より好ましくは20~35モル%、さらに好ましくは30~35モル%である。繰返し単位(3)の含有量は、全繰返し単位の合計量に対して、通常35モル%以下、好ましくは10~35モル%、より好ましくは20~35モル%、さらに好ましくは30~35モル%である。繰返し単位(1)の含有量が多いほど、耐熱性や強度・剛性が向上し易いが、あまり多いと、溶媒に対する溶解性が低くなり易い。
 繰返し単位(2)の含有量と繰返し単位(3)の含有量との割合は、[繰返し単位(2)の含有量]/[繰返し単位(3)の含有量](モル/モル)で表して、通常0.9/1~1/0.9、好ましくは0.95/1~1/0.95、より好ましくは0.98/1~1/0.98である。
 なお、液晶ポリエステルは、繰返し単位(1)~(3)を、それぞれ独立に、2種以上有してもよい。また、液晶ポリエステルは、繰返し単位(1)~(3)以外の繰返し単位を有してもよいが、その含有量は、全繰返し単位の合計量に対して、通常10モル%以下、好ましくは5モル%以下である。
 液晶ポリエステルは、繰返し単位(3)として、X及び/又はYがイミノ基である繰返し単位(3)を有すること、すなわち、所定の芳香族ヒドロキシルアミンに由来する繰返し単位及び/又は芳香族ジアミンに由来する繰返し単位を有することが、溶媒に対する溶解性が優れるので、好ましく、繰返し単位(3)として、X及び/又はYがイミノ基である繰返し単位(3)のみを有することが、より好ましい。
 液晶ポリエステルは、それを構成する繰返し単位に対応する原料モノマーを溶融重合させ、得られた重合物(プレポリマー)を固相重合させることにより、製造することが好ましい。これにより、耐熱性や強度・剛性が高い高分子量の液晶ポリエステルを操作性良く製造することができる。溶融重合は、触媒の存在下に行ってもよく、この触媒の例としては、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、三酸化アンチモン等の金属化合物や、4−(ジメチルアミノ)ピリジン、1−メチルイミダゾール等の含窒素複素環式化合物が挙げられ、含窒素複素環式化合物が好ましく用いられる。
 液晶ポリエステルは、その流動開始温度が、通常250℃以上、好ましくは250℃~350℃、より好ましくは260℃~330℃である。流動開始温度が高いほど、耐熱性や強度・剛性が向上し易いが、あまり高いと、溶媒に対する溶解性が低くなり易かったり、液状組成物の粘度が高くなり易かったりする。
 なお、流動開始温度は、フロー温度又は流動温度とも呼ばれ、毛細管レオメーターを用いて、9.8MPa(100kg/cm)の荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、内径1mm及び長さ10mmのノズルから押し出すときに、4800Pa・s(48000ポイズ)の粘度を示す温度であり、液晶ポリエステルの分子量の目安となる(小出直之編、「液晶ポリマー−合成・成形・応用−」、株式会社シーエムシー、1987年6月5日、p.95参照)。
 絶縁層に占める樹脂の割合は、好ましくは30~60体積%、より好ましくは35~55体積%である。この割合をあまり小さくすると、絶縁層と金属板又は金属箔との密着性が低下したり、絶縁層の表面平坦性が低下したりする。また、この割合をあまり大きくすると、積層板の放熱性が低下する。
 絶縁層は、さらに酸化アルミニウム、酸化ケイ素、窒化ホウ素及び窒化アルミニウムからなる群から選ばれる少なくとも1種の無機充填材を含むことが好ましい。絶縁層に前記無機充填材が含まれることにより、積層板の放熱性が向上する。
 前記無機充填材の少なくとも一部として、樹脂との密着性や後述の液状組成物中での分散性を向上させるべく、表面処理を施した無機充填材を用いてもよい。この表面処理に使用可能な表面処理剤としては、例えば、シランカップリング剤、チタンカップリング剤、アルミニウムカップリング剤、ジルコニウムカップリング剤、長鎖脂肪酸、イソシアネート化合物、及び、エポキシ基、メトキシシリル基、アミノ基又はヒドロキシル基を有する高分子が挙げられる。
 絶縁層に占める前記無機充填材の割合は、好ましくは40~70体積%、より好ましくは45~65体積%である。この割合をあまり小さくすると、積層板の放熱性が低下する。また、この割合をあまり大きくすると、積層板の打抜き加工性や曲げ加工性が低下する。
 なお、絶縁層は、樹脂及び前記無機充填材以外の成分、例えば有機充填材や添加剤を含んでもよいが、その絶縁層に占める割合は、複数種含まれる場合は合計で、通常0~10体積%である。有機充填材の例としては、硬化エポキシ樹脂、架橋ベンゾグアナミン樹脂及び架橋アクリル樹脂が挙げられる。添加剤の例としては、レベリング剤、消泡剤、酸化防止剤、紫外線吸収剤、難燃剤及び着色剤が挙げられる。
 また、絶縁層には、無機充填材として、酸化アルミニウム、酸化ケイ素、窒化ホウ素及び窒化アルミニウム以外の無機充填材が含まれていてもよいが、その無機充填材に占める割合は、複数種含まれる場合は合計で、通常0~10体積%である。
 金属箔は、絶縁層上に設けられており、絶縁層を間に挟んで金属板と向き合っている。金属箔の材料としては、例えば、銅及びアルミニウムが挙げられ、合金であってもよい。金属箔の厚さは、通常10~500μmである。
 本発明の積層板の製造は、(A):まず、金属箔と絶縁層との積層中間体を製造し、次いで、この積層中間体を、その絶縁層面を貼合面として、金属板の粗面と熱圧着等により貼り合わせることにより行ってもよいし、(B):まず、金属板の粗面を貼合面として、金属板と絶縁層との積層中間体を製造し、次いで、この積層中間体を、その絶縁層面を貼合面として、金属箔と熱圧着等により貼り合わせることにより行ってもよいし、(C):まず、絶縁層となる絶縁フィルムを製造し、次いで、この絶縁フィルムを、金属板の粗面を貼合面として、金属板と金属箔とで挟んで、これらを熱圧着等により貼り合わせることにより行ってもよい。
 絶縁層の形成は、樹脂と溶媒とを含む液状組成物を、支持体に塗布し、得られた塗膜を乾燥(溶媒除去)することにより行うことが好ましい。その際、支持体として金属箔を用いることにより、前記(A)における金属箔と絶縁層との積層中間体を製造することができる。また、支持体として金属板を用いることにより、前記(B)における金属板と絶縁層との積層中間体を製造することができる。また、支持体として金属箔及び金属板以外の支持体、例えば、ポリエステルフィルム、ポリプロピレンフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルペンテンフィルム等の樹脂フィルムを用いる場合は、支持体上に形成された絶縁層を支持体から金属箔に熱圧着等により転写することにより、前記(A)における金属箔と絶縁層との積層中間体を製造することができ、支持体上に形成された絶縁層を支持体から金属板に熱圧着等により転写することにより、前記(B)における金属板と絶縁層との積層中間体を製造することができ、支持体上に形成された絶縁層を支持体から剥がすことにより、前記(C)における絶縁フィルムを製造することができる。
 溶媒としては、用いる樹脂が溶解可能な溶媒、具体的には50℃にて1質量%以上の濃度([樹脂]/[樹脂+溶媒])で溶解可能な溶媒が、適宜選択して用いられる。
 溶媒の例としては、ジクロロメタン、クロロホルム、1,2−ジクロロエタン、1,1,2,2−テトラクロロエタン、o−ジクロロベンゼン等のハロゲン化炭化水素;p−クロロフェノール、ペンタクロロフェノール、ペンタフルオロフェノール等のハロゲン化フェノール;ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサン等のエーテル;アセトン、シクロヘキサノン等のケトン;酢酸エチル、γ−ブチロラクトン等のエステル;エチレンカーボネート、プロピレンカーボネート等のカーボネート;トリエチルアミン等のアミン;ピリジン等の含窒素複素環芳香族化合物;アセトニトリル、スクシノニトリル等のニトリル;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等のアミド、テトラメチル尿素等の尿素化合物;ニトロメタン、ニトロベンゼン等のニトロ化合物;ジメチルスルホキシド、スルホラン等の硫黄化合物;及びヘキサメチルリン酸アミド、トリ−n−ブチルリン酸等のリン化合物が挙げられ、それらの2種以上を用いてもよい。
 溶媒としては、腐食性が低く、取り扱い易いことから、非プロトン性化合物、特にハロゲン原子を有しない非プロトン性化合物を主成分とする溶媒が好ましく、溶媒全体に占める非プロトン性化合物の割合は、好ましくは50~100質量%、より好ましくは70~100質量%、さらに好ましくは90~100質量%である。また、前記非プロトン性化合物としては、樹脂を溶解し易いことから、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等のアミドを用いることが好ましい。
 また、溶媒としては、樹脂を溶解し易いことから、双極子モーメントが3~5である化合物を主成分とする溶媒が好ましく、溶媒全体に占める双極子モーメントが3~5である化合物の割合は、好ましくは50~100質量%、より好ましくは70~100質量%、さらに好ましくは90~100質量%であり、前記非プロトン性化合物として、双極子モーメントが3~5である化合物を用いることが好ましい。
 また、溶媒としては、除去し易いことから、1気圧における沸点が220℃以下である化合物を主成分とするとする溶媒が好ましく、溶媒全体に占める1気圧における沸点が220℃以下である化合物の割合は、好ましくは50~100質量%、より好ましくは70~100質量%、さらに好ましくは90~100質量%であり、前記非プロトン性化合物として、1気圧における沸点が220℃以下である化合物を用いることが好ましい。
 液状組成物中の樹脂の含有量は、樹脂及び溶媒の合計量に対して、通常5~60質量%、好ましくは10~50質量%、より好ましくは15~45質量%であり、所望の粘度の液状組成物が得られるように、適宜調整される。
 液状組成物の調製は、樹脂及び必要に応じて他の成分を溶媒に溶解させてなる溶液に、無機充填材及び必要に応じて他の成分を分散させることにより行うことが好ましい。無機充填材は、ボールミル、3本ロール、遠心攪拌機、ビーズミル等により粉砕しつつ、前記溶液に分散させてもよい。
 液状組成物を支持体に塗布する方法としては、例えば、ロールコート法、バーコート法、スクリーン印刷法、ダイスコーター法及びコンマコータ法が挙げられ、連続式であってもよいし、回分式(単板式)であってもよい。
 塗膜の乾燥は、塗膜から溶媒を蒸発させることにより行うことが好ましい。支持体として金属箔及び金属板以外の支持体を用い、支持体上に形成された塗膜を乾燥し、得られた乾燥膜を支持体から金属箔又は金属板に熱圧着等により転写する場合は、溶媒の一部が乾燥膜中に残存するように行うことが好ましい。この場合、乾燥膜中の溶媒量は、好ましくは1~25質量%である。乾燥温度は、通常50~180℃、好ましくは80~150℃である。
 支持体上に形成された乾燥膜や金属箔又は金属板に転写された乾燥膜は、樹脂として熱可塑性樹脂を用いる場合は、熱処理することが好ましく、これにより、その分子量や結晶化度を調節することができ、接着性や熱伝導性に優れる絶縁層が得られる。熱処理は、窒素ガス等の不活性ガス雰囲気下、通常250~350℃、好ましくは270~320℃で行われる。
 こうして金属箔と絶縁層との積層中間体を得た場合、前記(A)のとおり、この積層中間体を、その絶縁層面を貼合面として、金属板の粗面と熱圧着等により貼り合わせることにより、本発明の積層板が得られる。また、金属板の粗面を貼合面として、金属板と絶縁層との積層中間体を得た場合、前記(B)のとおり、この積層中間体を、その絶縁層面を貼合面として、金属箔と熱圧着等により貼り合わせることにより、本発明の積層板が得られる。また、支持体上に形成された絶縁層を支持体から剥がして絶縁フィルムを得た場合、前記(C)のとおり、この絶縁フィルムを、金属板の粗面を張合面として、金属板と金属箔とで挟んで、これらを熱圧着等により貼り合わせることにより、本発明の積層板が得られる。
 こうして得られる積層板から、その金属箔をパターン化して、回路パターンを形成し、必要に応じて、切断加工、穴あけ加工の如き打抜き加工、曲げ加工等の加工を行うことにより、金属ベース回路基板が得られる。金属箔のパターン化は、例えば、金属箔上にマスクパターンを形成し、金属箔の露出部をエッチングで除去することにより行われる。
The laminated board of this invention is a laminated board which has a metal plate, the insulating layer provided on it, and the metal foil provided on it.
In the present invention, the metal plate is a metal plate obtained by a rolling method, and at least one of the surfaces has independent 10-point average roughness in the rolling direction and 10-point average roughness in the direction perpendicular to the rolling direction. The ratio of the ten-point average roughness in the direction perpendicular to the rolling direction to the ten-point average roughness in the rolling direction (ten-point average roughness in the direction perpendicular to the rolling direction / tenth in the rolling direction). A metal plate having a rough surface with a point average roughness of 1.5 or less is used, and lamination is performed so that the rough surface is in contact with the insulating layer. That is, on the surface in contact with the insulating layer of the metal plate, when the ten-point average roughness in the rolling direction is Rz (MD) and the ten-point average roughness in the direction perpendicular to the rolling direction is Rz (TD), Rz (TD) MD) and Rz (TD) are each independently 4 to 20 μm, and Rz (TD) / Rz (MD) is 1.5 or less. Thereby, the laminated board which is excellent in punch workability and bending workability, and is excellent also in heat dissipation can be obtained.
The other surface of the metal plate, that is, the surface opposite to the surface in contact with the insulating layer may be a mirror surface or a rough surface, and if it is a rough surface, the surface in contact with the insulating layer Similarly, the ten-point average roughness in the rolling direction and the ten-point average roughness in the direction perpendicular to the rolling direction are each independently 4 to 20 μm, and the direction perpendicular to the rolling direction with respect to the ten-point average roughness in the rolling direction The ten-point average roughness ratio (ten-point average roughness in the direction perpendicular to the rolling direction / ten-point average roughness in the rolling direction) of 1.5 or less may be a rough surface. It may be a rough surface.
Rz (MD) and Rz (TD) are preferably each independently 4 to 10 μm, and Rz (TD) / Rz (MD) is preferably 1.2 or less. Punching workability and bending workability are further improved.
The ten-point average roughness of the surface of the metal plate is measured according to JIS B0601: 1994.
Such a metal plate can be obtained by roughening at least one surface of the raw metal plate obtained by the rolling method uniformly and appropriately so as to be the predetermined rough surface. The roughening may be performed on both surfaces or only on one surface, but is preferably performed on both surfaces because the punching workability and bending workability of the laminate are further improved.
The roughening may be performed by a dry surface roughening method such as blasting or polishing, or by a wet surface roughening method such as anodizing or etching. Among these, it is preferable to roughen the surface by blasting, whereby the punching workability and bending workability of the laminate are further improved. The blast treatment is a method of roughening the metal plate by spraying an abrasive such as alumina, steel grains, sand, glass beads or the like onto the metal plate by air pressure or centrifugal force.
Examples of the material of the metal plate include aluminum, iron, and copper, and may be an alloy such as an aluminum alloy or stainless steel. Of these, copper and aluminum alloys are preferred. The metal plate may contain a nonmetal such as carbon, and may contain, for example, aluminum combined with carbon. The metal plate preferably has a high thermal conductivity, and the thermal conductivity is preferably 60 W · m −1 · K −1 or more.
The thickness of the metal plate is usually 0.2 mm or more, preferably 0.5 mm or more, and this facilitates improving the heat dissipation of the laminated plate. Moreover, the thickness of a metal plate is 5 mm or less normally, Preferably it is 1.5 mm or less, and it becomes easy to improve the punching workability and bending workability of a laminated board by this. The metal plate may have flexibility or may not have flexibility. The metal plate may have a single layer structure or a multilayer structure.
The insulating layer is provided on the metal plate and contains a resin. The resin plays a role as an adhesive for bonding the metal plate and the metal foil and a function of flattening the surface of the insulating layer.
Examples of the resin include thermoplastic resins such as polypropylene, polyamide, polyesters other than liquid crystal polyester, liquid crystal polyester, polyphenylene sulfide, polyether ketone, polycarbonate, polyether sulfone, polyphenylene ether, polyether imide; and phenol resin, epoxy resin And thermosetting resins such as polyimide resins and cyanate resins, and two or more of them may be used. Among these, liquid crystal polyester is preferable because of its high heat resistance and low dielectric loss.
The liquid crystalline polyester is a polyester that exhibits liquid crystallinity in a molten state, and is preferably a liquid crystalline polyester that melts at a temperature of 450 ° C. or lower. The liquid crystal polyester may be a liquid crystal polyester amide, a liquid crystal polyester ether, a liquid crystal polyester carbonate, or a liquid crystal polyester imide. The liquid crystal polyester is preferably a wholly aromatic liquid crystal polyester using only an aromatic compound as a raw material monomer.
A typical example of the liquid crystal polyester is polymerization (polycondensation) of an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, and at least one compound selected from the group consisting of an aromatic diol, an aromatic hydroxyamine, and an aromatic diamine. At least one selected from the group consisting of aromatic dicarboxylic acids and aromatic diols, aromatic hydroxyamines and aromatic diamines. Examples thereof include a liquid crystal polyester obtained by polymerizing a compound and a liquid crystal polyester obtained by polymerizing a polyester such as polyethylene terephthalate and an aromatic hydroxycarboxylic acid. Here, the aromatic hydroxycarboxylic acid, the aromatic dicarboxylic acid, the aromatic diol, the aromatic hydroxyamine, and the aromatic diamine are each independently replaced with a part or all of the polymerizable derivative. Also good.
Examples of polymerizable derivatives of a compound having a carboxyl group such as aromatic hydroxycarboxylic acid and aromatic dicarboxylic acid include derivatives (esters) obtained by converting a carboxyl group into an alkoxycarbonyl group or an aryloxycarbonyl group, carboxyl Derivatives obtained by converting a group into a haloformyl group (acid halide) and derivatives obtained by converting a carboxyl group into an acyloxycarbonyl group (an acid anhydride) are included. Examples of polymerizable derivatives of hydroxyl group-containing compounds such as aromatic hydroxycarboxylic acids, aromatic diols and aromatic hydroxyamines include derivatives obtained by acylating hydroxyl groups and converting them into acyloxyl groups (acylated products) ). Examples of polymerizable derivatives of amino group-containing compounds such as aromatic hydroxyamines and aromatic diamines include derivatives (acylated products) obtained by acylating amino groups and converting them to acylamino groups.
The liquid crystalline polyester preferably has a repeating unit represented by the following formula (1) (hereinafter sometimes referred to as “repeating unit (1)”), and the repeating unit (1) and the following formula (2) A repeating unit represented (hereinafter sometimes referred to as “repeating unit (2)”) and a repeating unit represented by the following formula (3) (hereinafter sometimes referred to as “repeating unit (3)”). It is more preferable to have.
(1) —O—Ar 1 —CO—
(2) —CO—Ar 2 —CO—
(3) -X-Ar 3 -Y-
(Ar 1 represents a phenylene group, a naphthylene group, or a biphenylylene group. Ar 2 and Ar 3 each independently represent a phenylene group, a naphthylene group, a biphenylylene group, or a group represented by the following formula (4). X And Y each independently represents an oxygen atom or an imino group (—NH—), and each hydrogen atom in the group represented by Ar 1 , Ar 2 or Ar 3 is independently a halogen atom or an alkyl group. Alternatively, it may be substituted with an aryl group.)
(4) -Ar 4 -Z-Ar 5-
(Ar 4 and Ar 5 each independently represent a phenylene group or a naphthylene group. Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group, or an alkylidene group.)
As said halogen atom, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned. Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-hexyl group, 2-ethylhexyl group, Examples thereof include n-octyl group and n-decyl group, and the carbon number thereof is usually 1-10. Examples of the aryl group include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a 1-naphthyl group, and a 2-naphthyl group, and the number of carbon atoms is usually 6 to 20. . When the hydrogen atom is substituted with these groups, the number is usually 2 or less for each of the groups represented by Ar 1 , Ar 2 or Ar 3 , and preferably 1 It is as follows.
Examples of the alkylidene group include a methylene group, an ethylidene group, an isopropylidene group, an n-butylidene group, and a 2-ethylhexylidene group, and the number of carbon atoms is usually 1 to 10.
The repeating unit (1) is a repeating unit derived from a predetermined aromatic hydroxycarboxylic acid. The repeating unit (1) includes a repeating unit (1) in which Ar 1 is a p-phenylene group (a repeating unit derived from p-hydroxybenzoic acid), and a repeating unit in which Ar 1 is a 2,6-naphthylene group ( 1) (Repeating unit derived from 6-hydroxy-2-naphthoic acid) is preferred.
The repeating unit (2) is a repeating unit derived from a predetermined aromatic dicarboxylic acid. As the repeating unit (2), a repeating unit (2) in which Ar 2 is a p-phenylene group (a repeating unit derived from terephthalic acid), a repeating unit (2) in which Ar 2 is an m-phenylene group (in isophthalic acid) Derived repeating unit), Ar 2 is a 2,6-naphthylene group repeating unit (2) (a repeating unit derived from 2,6-naphthalenedicarboxylic acid), and Ar 2 is a diphenyl ether-4,4′-diyl group. The repeating unit (2) (repeating unit derived from diphenyl ether-4,4′-dicarboxylic acid) is preferred.
The repeating unit (3) is a repeating unit derived from a predetermined aromatic diol, aromatic hydroxylamine or aromatic diamine. As the repeating unit (3), a repeating unit (3) in which Ar 3 is a p-phenylene group (a repeating unit derived from hydroquinone, p-aminophenol or p-phenylenediamine) is preferable.
The content of the repeating unit (1) is the total amount of all repeating units (the mass equivalent amount of each repeating unit (moles by dividing the mass of each repeating unit constituting the liquid crystal polyester by the formula amount of each repeating unit). Is usually 30 mol% or more, preferably 30 to 80 mol%, more preferably 30 to 60 mol%, still more preferably 30 to 40 mol%. The content of the repeating unit (2) is usually 35 mol% or less, preferably 10 to 35 mol%, more preferably 20 to 35 mol%, still more preferably 30 to 35 mol, based on the total amount of all repeating units. %. The content of the repeating unit (3) is usually 35 mol% or less, preferably 10 to 35 mol%, more preferably 20 to 35 mol%, still more preferably 30 to 35 mol, based on the total amount of all repeating units. %. As the content of the repeating unit (1) is increased, the heat resistance, strength and rigidity are likely to be improved. However, if the content is too large, the solubility in a solvent is likely to be lowered.
The ratio between the content of the repeating unit (2) and the content of the repeating unit (3) is expressed as [content of repeating unit (2)] / [content of repeating unit (3)] (mol / mol). In general, it is 0.9 / 1 to 1 / 0.9, preferably 0.95 / 1 to 1 / 0.95, and more preferably 0.98 / 1 to 1 / 0.98.
The liquid crystal polyester may have two or more repeating units (1) to (3) independently. The liquid crystalline polyester may have repeating units other than the repeating units (1) to (3), and the content thereof is usually 10 mol% or less, preferably with respect to the total amount of all repeating units. 5 mol% or less.
The liquid crystalline polyester has a repeating unit (3) in which X and / or Y is an imino group as the repeating unit (3), that is, a repeating unit derived from a predetermined aromatic hydroxylamine and / or an aromatic diamine. Having the repeating unit derived from is preferable because it has excellent solubility in a solvent, and it is more preferable that the repeating unit (3) has only the repeating unit (3) in which X and / or Y is an imino group.
The liquid crystal polyester is preferably produced by melt polymerization of raw material monomers corresponding to the repeating units constituting the liquid crystal polyester, and solid-phase polymerization of the obtained polymer (prepolymer). Thereby, high molecular weight liquid crystal polyester having high heat resistance, strength and rigidity can be produced with good operability. Melt polymerization may be carried out in the presence of a catalyst. Examples of this catalyst include metal compounds such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, and antimony trioxide, And nitrogen-containing heterocyclic compounds such as 4- (dimethylamino) pyridine and 1-methylimidazole, and nitrogen-containing heterocyclic compounds are preferably used.
The flow starting temperature of the liquid crystalline polyester is usually 250 ° C. or higher, preferably 250 ° C. to 350 ° C., more preferably 260 ° C. to 330 ° C. As the flow start temperature is higher, the heat resistance, strength, and rigidity are more likely to be improved. However, if the flow start temperature is too high, the solubility in a solvent tends to be low, and the viscosity of the liquid composition tends to be high.
The flow start temperature is also called flow temperature or flow temperature, and the temperature is raised at a rate of 4 ° C./min under a load of 9.8 MPa (100 kg / cm 2 ) using a capillary rheometer while liquid crystal polyester is used. Is a temperature showing a viscosity of 4800 Pa · s (48000 poise) when extruded from a nozzle having an inner diameter of 1 mm and a length of 10 mm, and is a measure of the molecular weight of the liquid crystal polyester (Naoki Koide, “Liquid Crystal Polymer— "Synthesis / Molding / Application-", CMC Co., Ltd., June 5, 1987, p. 95).
The proportion of the resin in the insulating layer is preferably 30 to 60% by volume, more preferably 35 to 55% by volume. If this ratio is too small, the adhesion between the insulating layer and the metal plate or the metal foil is lowered, or the surface flatness of the insulating layer is lowered. Moreover, if this ratio is too large, the heat dissipation of the laminate will be reduced.
The insulating layer preferably further contains at least one inorganic filler selected from the group consisting of aluminum oxide, silicon oxide, boron nitride, and aluminum nitride. By including the inorganic filler in the insulating layer, the heat dissipation of the laminate is improved.
As at least a part of the inorganic filler, a surface-treated inorganic filler may be used in order to improve adhesion with a resin and dispersibility in a liquid composition described later. Examples of surface treatment agents that can be used for this surface treatment include silane coupling agents, titanium coupling agents, aluminum coupling agents, zirconium coupling agents, long chain fatty acids, isocyanate compounds, and epoxy groups and methoxysilyl groups. And polymers having an amino group or a hydroxyl group.
The proportion of the inorganic filler in the insulating layer is preferably 40 to 70% by volume, more preferably 45 to 65% by volume. If this ratio is too small, the heat dissipation of the laminate will decrease. On the other hand, if this ratio is too large, the punching workability and bending workability of the laminate will be reduced.
The insulating layer may contain components other than the resin and the inorganic filler, for example, organic fillers and additives. However, the proportion of the insulating layer in the insulating layer is usually 0 to 10 in total when plural types are included. % By volume. Examples of organic fillers include cured epoxy resins, crosslinked benzoguanamine resins, and crosslinked acrylic resins. Examples of additives include leveling agents, antifoaming agents, antioxidants, ultraviolet absorbers, flame retardants, and colorants.
The insulating layer may contain inorganic fillers other than aluminum oxide, silicon oxide, boron nitride, and aluminum nitride as inorganic fillers, but the proportion of the inorganic fillers is plural. In some cases, the total amount is usually 0 to 10% by volume.
The metal foil is provided on the insulating layer and faces the metal plate with the insulating layer interposed therebetween. Examples of the metal foil material include copper and aluminum, and may be an alloy. The thickness of the metal foil is usually 10 to 500 μm.
Production of the laminated board of the present invention is as follows. (A): First, a laminated intermediate of a metal foil and an insulating layer is produced, and then this laminated intermediate is used as a roughened surface of the metal plate with the insulating layer surface as a bonding surface. (B): First, using the rough surface of the metal plate as the bonding surface, a laminated intermediate of the metal plate and the insulating layer is manufactured, and then this The laminated intermediate may be performed by bonding the metal layer to the metal foil by thermocompression bonding using the insulating layer surface as a bonding surface. (C): First, an insulating film to be an insulating layer is manufactured, and then this The insulating film may be formed by sandwiching the rough surface of the metal plate between the metal plate and the metal foil and bonding them by thermocompression bonding or the like.
The insulating layer is preferably formed by applying a liquid composition containing a resin and a solvent to a support and drying (solvent removal) the resulting coating film. In that case, the laminated intermediate body of the metal foil and insulating layer in said (A) can be manufactured by using metal foil as a support body. Moreover, the laminated intermediate body of the metal plate and insulating layer in said (B) can be manufactured by using a metal plate as a support body. In addition, when using a support other than the metal foil and the metal plate as the support, for example, a resin film such as a polyester film, a polypropylene film, a fluororesin film, a nylon film, or a polymethylpentene film, the support was formed on the support. By transferring the insulating layer from the support to the metal foil by thermocompression bonding or the like, a laminated intermediate of the metal foil and the insulating layer in (A) can be produced, and the insulating layer formed on the support is By transferring from the support to the metal plate by thermocompression bonding or the like, a laminated intermediate of the metal plate and the insulating layer in (B) can be produced, and the insulating layer formed on the support is removed from the support. By peeling off, the insulating film in (C) can be produced.
As the solvent, a solvent that can dissolve the resin to be used, specifically, a solvent that can be dissolved at a concentration of 1% by mass or more at 50 ° C. ([resin] / [resin + solvent]) is appropriately selected and used. .
Examples of solvents include halogenated hydrocarbons such as dichloromethane, chloroform, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, o-dichlorobenzene; p-chlorophenol, pentachlorophenol, pentafluorophenol Halogenated phenols such as diethyl ether, tetrahydrofuran, 1,4-dioxane, etc .; ketones such as acetone and cyclohexanone; esters such as ethyl acetate and γ-butyrolactone; carbonates such as ethylene carbonate and propylene carbonate; amines such as triethylamine Nitrogen-containing heteroaromatic compounds such as pyridine; nitriles such as acetonitrile and succinonitrile; amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; Examples include urea compounds such as tramethylurea; nitro compounds such as nitromethane and nitrobenzene; sulfur compounds such as dimethyl sulfoxide and sulfolane; and phosphorus compounds such as hexamethylphosphoric acid amide and tri-n-butylphosphoric acid. May be used.
As the solvent, since it is low in corrosivity and easy to handle, an aprotic compound, particularly a solvent mainly comprising an aprotic compound having no halogen atom, is preferred, and the proportion of the aprotic compound in the entire solvent is: The content is preferably 50 to 100% by mass, more preferably 70 to 100% by mass, and still more preferably 90 to 100% by mass. As the aprotic compound, it is preferable to use an amide such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like because the resin is easily dissolved.
The solvent is preferably a solvent mainly composed of a compound having a dipole moment of 3 to 5 because the resin is easily dissolved, and the ratio of the compound having a dipole moment of 3 to 5 in the entire solvent is Preferably, it is 50 to 100% by mass, more preferably 70 to 100% by mass, and still more preferably 90 to 100% by mass, and a compound having a dipole moment of 3 to 5 is used as the aprotic compound. preferable.
Moreover, as a solvent, since it is easy to remove, the solvent which has as a main component the compound whose boiling point in 1 atmosphere is 220 degrees C or less is preferable, and the ratio of the compound whose boiling point in 1 atmosphere in the whole solvent is 220 degrees C or less Is preferably 50 to 100% by mass, more preferably 70 to 100% by mass, and still more preferably 90 to 100% by mass. As the aprotic compound, a compound having a boiling point at 1 atm of 220 ° C. or less is used. It is preferable.
The content of the resin in the liquid composition is usually 5 to 60% by mass, preferably 10 to 50% by mass, more preferably 15 to 45% by mass with respect to the total amount of the resin and the solvent, and a desired viscosity. It adjusts suitably so that the liquid composition of this may be obtained.
The liquid composition is preferably prepared by dispersing the inorganic filler and, if necessary, other components in a solution obtained by dissolving the resin and other components, if necessary, in a solvent. The inorganic filler may be dispersed in the solution while being pulverized by a ball mill, three rolls, a centrifugal stirrer, a bead mill or the like.
Examples of the method of applying the liquid composition to the support include a roll coating method, a bar coating method, a screen printing method, a die coater method, and a comma coater method. Plate type).
The coating film is preferably dried by evaporating the solvent from the coating film. When using a support other than metal foil and metal plate as the support, drying the coating film formed on the support, and transferring the resulting dried film from the support to the metal foil or metal plate by thermocompression bonding or the like Is preferably performed so that a part of the solvent remains in the dry film. In this case, the amount of solvent in the dry film is preferably 1 to 25% by mass. The drying temperature is usually 50 to 180 ° C, preferably 80 to 150 ° C.
The dry film formed on the support or the dry film transferred to the metal foil or metal plate is preferably heat-treated when a thermoplastic resin is used as the resin, thereby adjusting its molecular weight and crystallinity. Therefore, an insulating layer having excellent adhesion and thermal conductivity can be obtained. The heat treatment is usually performed at 250 to 350 ° C., preferably 270 to 320 ° C. in an inert gas atmosphere such as nitrogen gas.
When a laminated intermediate body of a metal foil and an insulating layer is thus obtained, as shown in (A), the laminated intermediate body is bonded to the rough surface of the metal plate by thermocompression bonding or the like with the insulating layer surface as the bonding surface. Thereby, the laminated board of this invention is obtained. Moreover, when the laminated surface of the metal plate and the insulating layer was obtained with the rough surface of the metal plate as the bonding surface, as described in (B), the laminated intermediate was used with the insulating layer surface as the bonding surface, The laminated sheet of the present invention can be obtained by laminating with a metal foil by thermocompression bonding or the like. Moreover, when the insulating layer formed on the support is peeled from the support to obtain an insulating film, as described in (C) above, the insulating film is used as a metal plate with the rough surface of the metal plate as a bonding surface. The laminate of the present invention can be obtained by sandwiching between metal foils and bonding them together by thermocompression bonding or the like.
A metal base circuit board is formed by patterning the metal foil from the laminate thus obtained, forming a circuit pattern, and performing a punching process such as a cutting process or a drilling process or a bending process as necessary. Is obtained. The patterning of the metal foil is performed, for example, by forming a mask pattern on the metal foil and removing the exposed portion of the metal foil by etching.
〔液晶ポリエステルの流動開始温度の測定〕
 フローテスター((株)島津製作所の「CFT−500型」)を用いて、液晶ポリエステル約2gを、内径1mm及び長さ10mmのノズルを有するダイを取り付けたシリンダーに充填し、9.8MPa(100kg/cm)の荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、ノズルから押し出し、4800Pa・s(48000P)の粘度を示す温度を測定した。
〔液晶ポリエステル溶液の粘度の測定〕
 B型粘度計(東機産業(株)の「TVL−20型」)を用いて、No.21のローターにより、回転数20rpmで測定した。
〔金属板の面の十点平均粗さの測定〕
 表面粗さ測定装置(ケーエルエー・テンコール(株)、算出規格JIS B0601−1994)を用いて、JIS B0601:1994に準拠して、測定速度:5μm/秒、評価長さ:1.0mmの条件下で測定した。
〔金属板〕
 金属板として、圧延法により得られた両面が鏡面(圧延方向の十点平均粗さ:1.2μm、圧延方向に垂直な方向の十点平均粗さ:2.4μm)である厚さ1.0mmのアルミニウム合金板の一方の面を、ブラスト処理により粗面化して得られた金属板であって、一方の面が表1に示す十点平均粗さを有する粗面であり、もう一方の面が鏡面のままである厚さ1.0mmの金属板(1)~(4)を用いた。また、前記アルミニウム合金板を、そのまま金属板(5)として用いた。
Figure JPOXMLDOC01-appb-T000001
〔打抜き加工性〕
 アルミニウム板用の総抜き型を用いて、積層板をプレス機(アイダエンジニアリング(株)の「80トンプレス」)により、ホルダ圧力20kN、ノックアウト力59kN、プレス速度60SPNの条件下で打抜き加工した後、その切削面の絶縁層の欠けの有無を光学顕微鏡により確認した。
〔曲げ加工性〕
 10mm×30mmの寸法に切断した積層板の金属箔をエッチングにより除去し、得られた金属板と絶縁層との積層体を、絶縁層を外側として、曲げ部が直径15mmとなるように180°に曲げ加工した後、金属板からの絶縁層の剥れの有無を目視で観察した。
〔絶縁層の放熱性〕
 30mm×40mmの寸法に切断した積層板の金属箔をエッチングにより部分的に除去して、14mm×10mmのランドを形成した。このランドに半田を用いてトランジスタ((株)東芝の「C2233」)を取り付け、得られたトランジスタ付き積層板を、水冷却装置に、金属板がシリコーングリース層を介して水冷却装置の冷却面と向き合うように、セットした。次いで、トランジスタに30Wの電力Pを供給して、トランジスタの温度T1と水冷却装置の冷却面の温度T2とを測定し、電力Pに対する温度T1と温度T2との差T1−T2の比の値(T1−T2)/Pを熱抵抗とした。
実施例1及び2並びに比較例1~3
〔液晶ポリエステルの製造〕
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、6−ヒドロキシ−2−ナフトエ酸1976g(10.5モル)、4−ヒドロキシアセトアニリド1474g(9.75モル)、イソフタル酸1620g(9.75モル)及び無水酢酸2374g(23.25モル)を入れ、反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、攪拌しながら、室温から150℃まで15分かけて昇温し、150℃で3時間還流させた。次いで、副生酢酸及び未反応の無水酢酸を留去しながら、150℃から300℃まで2時間50分かけて昇温し、300℃で1時間保持した後、反応器から内容物を取り出し、室温まで冷却した。得られた固形物を、粉砕機で粉砕して、粉末状のプレポリマーを得た。このプレポリマーの流動開始温度は、235℃であった。次いで、このプレポリマーを、窒素雰囲気下、室温から223℃まで6時間かけて昇温し、223℃で3時間保持することにより、固相重合させた後、冷却して、粉末状の液晶ポリエステルを得た。この液晶ポリエステルの流動開始温度は、270℃であった。
〔液晶ポリエステル溶液の調製〕
 液晶ポリエステル2200gを、N,N−ジメチルアセトアミド7800gに加え、100℃で2時間加熱して、液晶ポリエステル溶液を得た。この溶液の粘度は400cPであった。
〔液状組成物の調製〕
 液晶ポリエステル溶液に、窒化ホウ素及び酸化アルミニウムを加え、遠心攪拌脱泡機で5分間攪拌して、液状組成物を得た。ここで、液晶ポリエステルと窒化ホウ素と酸化アルミニウムとの割合は、それぞれの比重(液晶ポリエステル1.37g/cm、酸化アルミニウム3.98g/cm、窒化ホウ素2.28g/cm)から、液晶ポリエステル50体積%、酸化アルミニウム25体積%、窒化ホウ素25体積%となるように、質量基準で調整した。
〔銅箔と絶縁層との積層中間体の製造〕
 厚さ100μmのポリエステルフィルムに、液状組成物をその塗膜の厚さが約90μmになるように塗布した後、100℃で20分乾燥した。得られたポリエステルフィルムと乾燥膜との積層中間体を、厚さ35μmの銅箔と、乾燥膜が銅箔に接触するように、重ね合わせ、150℃に加熱した一対の熱ロール間に通過させて、乾燥膜と銅箔とを熱圧着した。次いで、ポリエステルフィルムを剥がし、得られた銅箔と乾燥膜との積層中間体を、290℃で3時間熱処理して、銅箔と絶縁層との積層中間体を得た。
〔積層板の製造〕
 銅箔と絶縁層との積層中間体を、金属板と重ね合わせた。その際、金属板として金属板(1)~(4)を用いた場合は、金属板の粗面が絶縁層に接触するようにし、金属板として金属板(5)を用いた場合は、金属板の一方の面が絶縁層に接触するようにした。次いで、20MPaの圧力を加えながら340℃で20分熱処理して、絶縁層と金属板とを熱圧着した。得られた積層板について、打抜き加工性及び曲げ加工性の評価、並びに絶縁層の熱抵抗の測定をし、表2に示した。
Figure JPOXMLDOC01-appb-T000002
[Measurement of flow start temperature of liquid crystalline polyester]
Using a flow tester (“CFT-500 type” manufactured by Shimadzu Corporation), about 2 g of liquid crystalline polyester was filled into a cylinder attached with a die having a nozzle having an inner diameter of 1 mm and a length of 10 mm, and 9.8 MPa (100 kg). The liquid crystal polyester was melted while being heated at a rate of 4 ° C./min under a load of / cm 2 ), extruded from a nozzle, and a temperature showing a viscosity of 4800 Pa · s (48000 P) was measured.
[Measurement of viscosity of liquid crystal polyester solution]
Using a B-type viscometer (“TVL-20” from Toki Sangyo Co., Ltd.) The measurement was performed at a rotation speed of 20 rpm using 21 rotors.
(Measurement of ten-point average roughness of metal plate surface)
Using a surface roughness measuring device (KLA Tencor Corporation, calculation standard JIS B0601-1994), in accordance with JIS B0601: 1994, measurement speed: 5 μm / second, evaluation length: 1.0 mm Measured with
[Metal plate]
Thickness of the metal plate obtained by the rolling method is a mirror surface (ten-point average roughness in the rolling direction: 1.2 μm, ten-point average roughness in the direction perpendicular to the rolling direction: 2.4 μm) A metal plate obtained by roughening one surface of a 0 mm aluminum alloy plate by blasting, wherein one surface is a rough surface having the ten-point average roughness shown in Table 1, and the other surface Metal plates (1) to (4) having a thickness of 1.0 mm and having a mirror surface were used. Moreover, the said aluminum alloy plate was used as a metal plate (5) as it was.
Figure JPOXMLDOC01-appb-T000001
[Punching workability]
After punching the laminated plate with a press machine (“80 ton press” from Aida Engineering Co., Ltd.) under the conditions of a holder pressure of 20 kN, a knockout force of 59 kN, and a press speed of 60 SPN using a total punching die for an aluminum plate The presence or absence of chipping of the insulating layer on the cut surface was confirmed with an optical microscope.
[Bending workability]
The metal foil of the laminated plate cut to a size of 10 mm × 30 mm was removed by etching, and the resulting laminate of the metal plate and the insulating layer was 180 ° so that the bent portion had a diameter of 15 mm with the insulating layer as the outside. After bending, the presence or absence of peeling of the insulating layer from the metal plate was visually observed.
[Heat dissipation of insulation layer]
The metal foil of the laminated plate cut to a size of 30 mm × 40 mm was partially removed by etching to form a land of 14 mm × 10 mm. A transistor ("C2233" manufactured by Toshiba Corporation) is attached to this land using solder, and the obtained laminated plate with the transistor is attached to the water cooling device, and the metal plate is connected to the cooling surface of the water cooling device via the silicone grease layer. Set to face each other. Next, the power P of 30 W is supplied to the transistor, the temperature T1 of the transistor and the temperature T2 of the cooling surface of the water cooling device are measured, and the value of the ratio T1-T2 between the temperature T1 and the temperature T2 with respect to the power P (T1-T2) / P was defined as thermal resistance.
Examples 1 and 2 and Comparative Examples 1 to 3
[Production of liquid crystalline polyester]
In a reactor equipped with a stirrer, a torque meter, a nitrogen gas introduction tube, a thermometer and a reflux condenser, 1976 g (10.5 mol) of 6-hydroxy-2-naphthoic acid and 1474 g (9.75 mol) of 4-hydroxyacetanilide were added. ), 1620 g (9.75 mol) of isophthalic acid and 2374 g (23.25 mol) of acetic anhydride, and after replacing the gas in the reactor with nitrogen gas, the mixture was stirred at room temperature to 150 ° C. under a nitrogen gas stream. The mixture was heated up to 15 minutes and refluxed at 150 ° C. for 3 hours. Next, while distilling off by-product acetic acid and unreacted acetic anhydride, the temperature was raised from 150 ° C. to 300 ° C. over 2 hours and 50 minutes, held at 300 ° C. for 1 hour, and then the contents were taken out from the reactor, Cooled to room temperature. The obtained solid was pulverized with a pulverizer to obtain a powdery prepolymer. The flow initiation temperature of this prepolymer was 235 ° C. Next, the prepolymer was heated from room temperature to 223 ° C. over 6 hours under a nitrogen atmosphere and held at 223 ° C. for 3 hours to solid-phase polymerize, and then cooled to powdery liquid crystalline polyester Got. The liquid crystal polyester had a flow start temperature of 270 ° C.
[Preparation of liquid crystal polyester solution]
2200 g of liquid crystal polyester was added to 7800 g of N, N-dimethylacetamide and heated at 100 ° C. for 2 hours to obtain a liquid crystal polyester solution. The viscosity of this solution was 400 cP.
(Preparation of liquid composition)
Boron nitride and aluminum oxide were added to the liquid crystal polyester solution, and the mixture was stirred for 5 minutes with a centrifugal stirring deaerator to obtain a liquid composition. The ratio between the liquid crystal polyester and the boron nitride and aluminum oxide, from each of the specific gravity (liquid crystal polyester 1.37 g / cm 3, aluminum oxide 3.98 g / cm 3, boron nitride 2.28 g / cm 3), the liquid crystal Adjustments were made on a mass basis so as to be 50% by volume of polyester, 25% by volume of aluminum oxide, and 25% by volume of boron nitride.
[Production of laminated intermediate of copper foil and insulating layer]
The liquid composition was applied to a polyester film having a thickness of 100 μm so that the thickness of the coating film was about 90 μm, and then dried at 100 ° C. for 20 minutes. The obtained intermediate laminate of the polyester film and the dried film is passed between a pair of hot rolls heated to 150 ° C., with the copper foil having a thickness of 35 μm overlapped so that the dried film is in contact with the copper foil. The dry film and the copper foil were thermocompression bonded. Next, the polyester film was peeled off, and the resulting laminated intermediate of the copper foil and the dried film was heat treated at 290 ° C. for 3 hours to obtain a laminated intermediate of the copper foil and the insulating layer.
[Manufacture of laminates]
The laminated intermediate body of copper foil and an insulating layer was piled up with the metal plate. At that time, when the metal plate (1) to (4) is used as the metal plate, the rough surface of the metal plate is brought into contact with the insulating layer, and when the metal plate (5) is used as the metal plate, the metal plate One side of the plate was in contact with the insulating layer. Next, heat treatment was performed at 340 ° C. for 20 minutes while applying a pressure of 20 MPa, and the insulating layer and the metal plate were thermocompression bonded. The obtained laminated plate was evaluated for punching workability and bending workability, and the thermal resistance of the insulating layer was measured and shown in Table 2.
Figure JPOXMLDOC01-appb-T000002

Claims (7)

  1.  圧延法により得られた金属板と、前記金属板上に設けられ、樹脂を含む絶縁層と、前記絶縁層上に設けられた金属箔とを有する積層板であって、前記金属板は、前記絶縁層に接する面における圧延方向の十点平均粗さRz(MD)及び前記圧延方向に垂直な方向の十点平均粗さRz(TD)が、それぞれ独立に、4~20μmであり、前記Rz(MD)に対する前記Rz(TD)の割合(Rz(TD)/Rz(MD))が1.5以下である金属板である積層板。 A metal plate obtained by a rolling method, an insulating layer provided on the metal plate and including a resin, and a metal foil provided on the insulating layer, wherein the metal plate is The ten-point average roughness Rz (MD) in the rolling direction and the ten-point average roughness Rz (TD) in the direction perpendicular to the rolling direction on the surface in contact with the insulating layer are each independently 4 to 20 μm, and the Rz The laminated board which is a metal plate whose ratio (Rz (TD) / Rz (MD)) of said Rz (TD) with respect to (MD) is 1.5 or less.
  2.  前記樹脂が液晶ポリエステルである請求項1に記載の積層板。 The laminate according to claim 1, wherein the resin is liquid crystal polyester.
  3.  前記液晶ポリエステルが、下記式(1)で表される繰返し単位と、下記式(2)で表される繰返し単位と、下記式(3)で表される繰返し単位とを有する液晶ポリエステルである請求項2に記載の積層板。
    (1)−O−Ar−CO−
    (2)−CO−Ar−CO−
    (3)−X−Ar−Y−
    (Arは、フェニレン基、ナフチレン基又はビフェニリレン基を表す。Ar及びArは、それぞれ独立に、フェニレン基、ナフチレン基、ビフェニリレン基又は下記式(4)で表される基を表す。X及びYは、それぞれ独立に、酸素原子又はイミノ基を表す。Ar、Ar又はArで表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基又はアリール基で置換されていてもよい。)
    (4)−Ar−Z−Ar
    (Ar及びArは、それぞれ独立に、フェニレン基又はナフチレン基を表す。Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキリデン基を表す。)
    The liquid crystalline polyester is a liquid crystalline polyester having a repeating unit represented by the following formula (1), a repeating unit represented by the following formula (2), and a repeating unit represented by the following formula (3). Item 3. The laminated sheet according to item 2.
    (1) —O—Ar 1 —CO—
    (2) —CO—Ar 2 —CO—
    (3) -X-Ar 3 -Y-
    (Ar 1 represents a phenylene group, a naphthylene group, or a biphenylylene group. Ar 2 and Ar 3 each independently represent a phenylene group, a naphthylene group, a biphenylylene group, or a group represented by the following formula (4). X And Y each independently represents an oxygen atom or an imino group, and each hydrogen atom in the group represented by Ar 1 , Ar 2 or Ar 3 is independently substituted with a halogen atom, an alkyl group or an aryl group. May be.)
    (4) -Ar 4 -Z-Ar 5-
    (Ar 4 and Ar 5 each independently represent a phenylene group or a naphthylene group. Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group, or an alkylidene group.)
  4.  前記液晶ポリエステルが、それを構成する全繰返し単位の合計量に対して、前記式(1)で表される繰返し単位を30~80モル%、前記式(2)で表される繰返し単位を10~35モル%、前記式(3)で示される繰返し単位を10~35モル%有する液晶ポリエステルである請求項3に記載の積層板。 The liquid crystalline polyester has a repeating unit represented by the formula (1) of 30 to 80 mol% and a repeating unit represented by the formula (2) of 10 with respect to the total amount of all the repeating units constituting the liquid crystalline polyester. 4. The laminate according to claim 3, which is a liquid crystal polyester having 35 to 35 mol% and 10 to 35 mol% of the repeating unit represented by the formula (3).
  5.  X及び/又はYがそれぞれイミノ基である請求項3又は4に記載の積層板。 The laminate according to claim 3 or 4, wherein X and / or Y are each an imino group.
  6.  前記絶縁層が、さらに酸化アルミニウム、酸化ケイ素、窒化ホウ素及び窒化アルミニウムからなる群から選ばれる少なくとも1種の無機充填材を含む絶縁層である請求項1~5のいずれかに記載の積層板。 The laminate according to any one of claims 1 to 5, wherein the insulating layer is an insulating layer further containing at least one inorganic filler selected from the group consisting of aluminum oxide, silicon oxide, boron nitride, and aluminum nitride.
  7.  請求項1~6のいずれかに記載の積層板の製造方法であって、圧延法により得られた原料金属板の少なくとも一方の面を粗面化することにより、前記金属板を得る工程を有する積層板の製造方法。 The method for producing a laminated sheet according to any one of claims 1 to 6, comprising a step of obtaining the metal sheet by roughening at least one surface of a raw metal sheet obtained by a rolling method. A manufacturing method of a laminated board.
PCT/JP2014/055526 2013-02-28 2014-02-26 Laminate and method of producing same WO2014133189A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015503080A JP6385917B2 (en) 2013-02-28 2014-02-26 Laminate and manufacturing method thereof
KR1020157026239A KR20150122720A (en) 2013-02-28 2014-02-26 Laminate and method of producing same
CN201480010195.6A CN105075404B (en) 2013-02-28 2014-02-26 Plywood and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013038431 2013-02-28
JP2013-038431 2013-02-28

Publications (1)

Publication Number Publication Date
WO2014133189A1 true WO2014133189A1 (en) 2014-09-04

Family

ID=51428445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055526 WO2014133189A1 (en) 2013-02-28 2014-02-26 Laminate and method of producing same

Country Status (5)

Country Link
JP (1) JP6385917B2 (en)
KR (1) KR20150122720A (en)
CN (1) CN105075404B (en)
TW (1) TWI622492B (en)
WO (1) WO2014133189A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105711207A (en) * 2014-12-18 2016-06-29 住友化学株式会社 Three-layer film, method for producing three-layer film, laminated plate and printed circuit board

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015111667A1 (en) * 2015-07-17 2017-01-19 Rogers Germany Gmbh Substrate for electrical circuits and method for producing such a substrate
CN109041445A (en) * 2018-08-10 2018-12-18 四川海英电子科技有限公司 A kind of high-effect high-quality drying-plate method of HID circuit board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086999A (en) * 2006-09-29 2008-04-17 Hitachi Cable Ltd Rolled copper foil, its manufacturing method, and flexible printed board using the rolled copper foil
JP2008159827A (en) * 2006-12-25 2008-07-10 Sumitomo Metal Mining Co Ltd Heat dissipation substrate for electric circuit and its manufacturing method
JP2008205302A (en) * 2007-02-21 2008-09-04 Furukawa Electric Co Ltd:The Printed wiring board and its manufacturing method
WO2011148805A1 (en) * 2010-05-27 2011-12-01 日本発條株式会社 Laminate for circuit boards and metal-based circuit boards
WO2012090360A1 (en) * 2010-12-28 2012-07-05 住友ベークライト株式会社 Metal base circuit board, and method for producing metal base circuit board
JP2012151176A (en) * 2011-01-17 2012-08-09 Meito Densan Kk Printed wiring board using aluminum as conductive pattern and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345895A (en) * 1986-08-12 1988-02-26 昭和アルミニウム株式会社 Manufacture of aluminium circuit substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086999A (en) * 2006-09-29 2008-04-17 Hitachi Cable Ltd Rolled copper foil, its manufacturing method, and flexible printed board using the rolled copper foil
JP2008159827A (en) * 2006-12-25 2008-07-10 Sumitomo Metal Mining Co Ltd Heat dissipation substrate for electric circuit and its manufacturing method
JP2008205302A (en) * 2007-02-21 2008-09-04 Furukawa Electric Co Ltd:The Printed wiring board and its manufacturing method
WO2011148805A1 (en) * 2010-05-27 2011-12-01 日本発條株式会社 Laminate for circuit boards and metal-based circuit boards
WO2012090360A1 (en) * 2010-12-28 2012-07-05 住友ベークライト株式会社 Metal base circuit board, and method for producing metal base circuit board
JP2012151176A (en) * 2011-01-17 2012-08-09 Meito Densan Kk Printed wiring board using aluminum as conductive pattern and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105711207A (en) * 2014-12-18 2016-06-29 住友化学株式会社 Three-layer film, method for producing three-layer film, laminated plate and printed circuit board
JP2016117281A (en) * 2014-12-18 2016-06-30 住友化学株式会社 Three-layer film, method of producing three-layer film, laminate and printed circuit board

Also Published As

Publication number Publication date
JPWO2014133189A1 (en) 2017-02-09
CN105075404A (en) 2015-11-18
CN105075404B (en) 2018-07-20
TWI622492B (en) 2018-05-01
TW201437009A (en) 2014-10-01
KR20150122720A (en) 2015-11-02
JP6385917B2 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
JP2018029187A (en) Laminated plate and metal base circuit board
JP5427884B2 (en) Metal base circuit board and manufacturing method thereof
WO2011148805A1 (en) Laminate for circuit boards and metal-based circuit boards
US9538648B2 (en) Liquid composition and metal-based circuit board
JP5899887B2 (en) Method for producing liquid crystal polyester film
JP2013087264A (en) Method for producing laminate, laminate, and circuit board
JP6385917B2 (en) Laminate and manufacturing method thereof
TW201402327A (en) Manufacturing method of laminated base material
US20130052336A1 (en) Method of manufacturing laminated base material and method of manufacturing liquid crystal polyester film
WO2013061975A1 (en) Laminated board for circuit boards and metal base circuit board
JP2014165485A (en) Laminate board and metal base circuit board
JP2022126429A (en) Polymer film and laminate
JP6025247B2 (en) Laminated plate and metal base circuit board
JP5834367B2 (en) Method for manufacturing metal-based circuit board
JP2014154660A (en) Laminate and metal base circuit board
JP6086206B2 (en) Metal base substrate and manufacturing method thereof
JP2014076555A (en) Method of manufacturing metal laminate
US20230083002A1 (en) Polymer film and method of producing same, and laminate
JP5975258B2 (en) Method for producing liquid crystal polyester film
JP5967524B2 (en) Manufacturing method of metal base substrate
JP2014116544A (en) Method of manufacturing multilayer metal-based circuit board
KR20140004927A (en) Laminate of metal foil, and method for manufacturing of thereof
TW202249544A (en) Wiring board and method for manufacturing wiring board
JP2010129420A (en) Membrane circuit board
JP2013048155A (en) Method for manufacturing metal base substrate and method for manufacturing liquid crystal polyester film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480010195.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015503080

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157026239

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14756845

Country of ref document: EP

Kind code of ref document: A1