WO2014133132A1 - Composite semipermeable membrane - Google Patents

Composite semipermeable membrane Download PDF

Info

Publication number
WO2014133132A1
WO2014133132A1 PCT/JP2014/055061 JP2014055061W WO2014133132A1 WO 2014133132 A1 WO2014133132 A1 WO 2014133132A1 JP 2014055061 W JP2014055061 W JP 2014055061W WO 2014133132 A1 WO2014133132 A1 WO 2014133132A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite semipermeable
semipermeable membrane
functional layer
separation functional
membrane
Prior art date
Application number
PCT/JP2014/055061
Other languages
French (fr)
Japanese (ja)
Inventor
淳 岡部
宏治 中▲辻▼
佐々木 崇夫
将弘 木村
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201480010817.5A priority Critical patent/CN105008031A/en
Priority to JP2014514973A priority patent/JP6481366B2/en
Priority to KR1020157022927A priority patent/KR102172598B1/en
Publication of WO2014133132A1 publication Critical patent/WO2014133132A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00933Chemical modification by addition of a layer chemically bonded to the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/26Electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration

Definitions

  • the present invention relates to a composite semipermeable membrane that can achieve a high amount of permeated water and that can be stably operated for a long time.
  • the composite semipermeable membrane obtained by the present invention can be suitably used for desalination of brine, for example.
  • membrane separation method As an energy saving and resource saving process has been expanded.
  • membranes used in the membrane separation method include microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, and reverse osmosis membranes. These membranes are used, for example, in the case of obtaining drinking water from seawater, brine, water containing harmful substances, etc., in the production of industrial ultrapure water, wastewater treatment, recovery of valuable materials, and the like.
  • a composite semipermeable membrane obtained by coating a support membrane with a separation functional layer made of a crosslinked polyamide obtained by polycondensation reaction of a polyfunctional amine and a polyfunctional acid halide has a permeated water amount and a selective separation property. Widely used as a high separation membrane.
  • Patent Literature 1 a method of bringing a composite semipermeable membrane containing a cross-linked polyamide polymer into a separation active layer into contact with an aqueous solution containing nitrous acid (see Patent Literature 1) or a method of bringing into contact with an aqueous solution containing chlorine (Patent Literature) 2) is known.
  • a reverse osmosis membrane significantly reduces the amount of permeated water due to fouling.
  • a method of neutralizing the charged state by coating polyvinyl alcohol on the surface of the separation functional layer and suppressing fouling has been proposed.
  • Japanese Unexamined Patent Publication No. 2011-125856 Japanese Unexamined Patent Publication No. 63-54905 International Publication No. 97/34686 Japanese Unexamined Patent Publication No. 2006-102624 Japanese Unexamined Patent Publication No. 2010-234284
  • the performance required for the reverse osmosis membrane is required not only to remove the salt and the amount of permeated water but also to be able to operate stably for a long period of time.
  • the membranes described in Patent Document 1 and Patent Document 2 can increase the amount of permeated water, but have a problem of low fouling resistance.
  • the amount of permeated water may be reduced by coating.
  • the composite semipermeable membranes described in Patent Document 4 and Patent Document 5 may have chemical resistance of the composite semipermeable membrane, but may require frequent chemical cleaning to eliminate fouling. There was room for study in terms of stable driving performance.
  • An object of the present invention is to provide a composite semipermeable membrane that can achieve a high amount of permeated water and that can be stably operated for a long period of time.
  • the present invention has the following configuration.
  • a composite semipermeable membrane comprising a support membrane comprising a substrate and a porous support layer, and a separation functional layer provided on the porous support layer,
  • the surface zeta potential A of the separation functional layer under the measurement conditions of pH 6 and NaCl 10 mM is within ⁇ 15 mV, and the potential difference between the surface zeta potential B of the separation functional layer and the surface zeta potential A under the measurement conditions of pH 6 and NaCl 1 mM.
  • F1 / F1 is 0.80 or more when F1 is the amount of permeated water when filtered for 1 hour at a pressure of F2 and F2 is the amount of permeated water after the surface of the separation functional layer is coated with the crosslinked polymer.
  • the present invention can provide a composite semipermeable membrane capable of achieving a high permeated water amount and capable of stable operation for a long period of time.
  • a composite semipermeable membrane capable of achieving a high permeated water amount and capable of stable operation for a long period of time.
  • the composite semipermeable membrane of the present invention includes a support membrane including a base material and a porous support layer, and a polyamide separation functional layer formed on the porous support layer of the support membrane.
  • the surface zeta potential of the separation functional layer is controlled within ⁇ 15 mV when measured under the conditions of pH 6 and NaCl 10 mM, and the surface when measured under the conditions of pH 6 and NaCl 1 mM.
  • the zeta potential difference is ⁇ 10 mV or more.
  • the separation function layer is a layer that plays a role of separating the solute in the composite semipermeable membrane.
  • the composition such as the composition and thickness of the separation functional layer is set in accordance with the intended use of the composite semipermeable membrane.
  • the separation functional layer is made of a crosslinked polyamide obtained by interfacial polycondensation of a polyfunctional amine and a polyfunctional acid halide.
  • the separation functional layer in the present invention is also referred to as “polyamide separation functional layer”.
  • the polyfunctional amine is preferably composed of at least one component selected from an aromatic polyfunctional amine and an aliphatic polyfunctional amine.
  • the aromatic polyfunctional amine is an aromatic amine having two or more amino groups in one molecule, and is not particularly limited, but includes metaphenylenediamine, paraphenylenediamine, 1,3,5-triamine. Examples include aminobenzene.
  • Examples of the N-alkylated product include N, N-dimethylmetaphenylenediamine, N, N-diethylmetaphenylenediamine, N, N-dimethylparaphenylenediamine, and N, N-diethylparaphenylenediamine. In view of stability of performance, metaphenylenediamine or 1,3,5-triaminobenzene is particularly preferable.
  • the aliphatic polyfunctional amine is an aliphatic amine having two or more amino groups in one molecule, preferably a piperazine-based amine or a derivative thereof.
  • piperazine or 2,5-dimethylpiperazine is preferable from the viewpoint of stability of performance expression.
  • polyfunctional amines may be used alone or in combination of two or more.
  • the polyfunctional acid halide is an acid halide having two or more carbonyl halide groups in one molecule, and is not particularly limited as long as it gives a polyamide by reaction with the polyfunctional amine.
  • Examples of the polyfunctional acid halide include oxalic acid, malonic acid, maleic acid, fumaric acid, glutaric acid, 1,3,5-cyclohexanetricarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid.
  • 1,3,5-benzenetricarboxylic acid, 1,2,4-benzenetricarboxylic acid, 1,3-benzenedicarboxylic acid, 1,4-benzenedicarboxylic acid and other halides can be used.
  • acid halides acid chlorides are preferred, and are acid halides of 1,3,5-benzenetricarboxylic acid, particularly in terms of economy, availability, ease of handling, and ease of reactivity.
  • Trimesic acid halide is preferred.
  • the said polyfunctional acid halide may be used individually by 1 type, or may mix and use 2 or more types.
  • the surface zeta potential of the separation functional layer is closely related to the amount of permeated water of the composite semipermeable membrane and the detachability of membrane contaminants attached to the membrane surface. I found it.
  • the zeta potential is a measure of the net fixed charge on the surface of the ultrathin film layer, and the zeta potential on the surface of the thin film layer of the present invention is calculated from the electric mobility according to Helmholtz-Smolchowski as shown in the following formula (1). It can be calculated by the following formula.
  • U is an electric mobility
  • epsilon is a dielectric constant of a solution
  • eta is a viscosity of a solution.
  • the dielectric constant of a solution and a viscosity used the literature value in measurement temperature.
  • the principle of measuring the zeta potential will be described.
  • the zeta potential is the potential for the solution at the interface (slip surface) between the stationary and fluidized layers of the material.
  • the quartz surface since the quartz surface is normally negatively charged, positively charged ions and particles gather near the cell surface.
  • negatively charged ions and particles increase in the center of the cell, and ion distribution occurs in the cell.
  • the ion distribution is reflected in the cell, and ions move at different migration speeds at positions in the cell (referred to as electroosmotic flow). Since the migration speed reflects the charge on the cell surface, the charge (surface potential) on the cell surface can be evaluated by obtaining this migration speed distribution.
  • zeta potential is measured using a membrane sample having a size of 20 mm ⁇ 30 mm, and standard particles for electrophoresis are NaCl aqueous solutions in which polystyrene particles whose surface is coated with hydroxypropylcellulose (particle size: 520 nm) are adjusted to a predetermined concentration. It can be dispersed and measured.
  • an electrophoretic light scattering photometer ELS-8000 manufactured by Otsuka Electronics Co., Ltd. can be used.
  • the surface zeta potential of the separation functional layer is controlled within ⁇ 15 mV when measured under the conditions of pH 6 and NaCl 10 mM (surface zeta potential A), and measured under the condition of NaCl 1 mM.
  • the difference between the surface zeta potential B and the surface zeta potential A must be ⁇ 10 mV or more.
  • the polyamide separation functional layer contains unreacted amino groups and carboxyl groups derived from polyfunctional amines and polyfunctional acid halides, and the value of zeta potential varies depending on the degree of dissociation of these functional groups.
  • the zeta potential at pH 6 of the separation functional layer is related to the adsorptivity of membrane contaminants.
  • the zeta potential is controlled within ⁇ 15 mV under the condition of NaCl 10 mM, the interaction between membrane contaminants and membrane surface materials is affected. Can be suppressed. If the zeta potential is controlled within ⁇ 15 mV, it indicates that the membrane surface is electrically neutral and suppresses the electrical interaction of membrane contaminants with charged groups present in water. Because. When the zeta potential is ⁇ 15 mV or more, an electrical bias occurs on the film surface, so that an electrical interaction of a film contaminant having a charged group is likely to occur.
  • the degree of dissociation of the functional group is high, the salt removal performance and the amount of permeated water of the composite semipermeable membrane increase. This is presumably because the electrostatic repulsion increases or the hydrophilicity increases as the functional group amount of the separation functional layer increases.
  • the potential difference between the zeta potential A when measured with NaCl 10 mM and the surface zeta potential B when measured with NaCl 1 mM is ⁇ 10 mV or more, desorption of membrane contaminants at a high salt concentration
  • high salt removal performance and permeated water can be satisfied at the same time.
  • the potential difference is less than ⁇ 10 mV, the amount of permeated water is greatly reduced or the interaction with membrane contaminants is strengthened.
  • the potential difference between the surface zeta potential C of the separation functional layer under pH 3 and NaCl 1 mM measurement conditions and the surface zeta potential D of the separation functional layer under pH 10 and NaCl 1 mM measurement conditions is related to the performance stability of the composite semipermeable membrane. It is preferable that it is 40 mV or less from the viewpoint of high releasability of contaminants when washing the composite semipermeable membrane, and more preferably 25 mV or less.
  • the functional group ratio “(molar equivalent of amino group) / (molar equivalent of amide group)” in the separation functional layer is preferably 0.2 or more, more preferably 0.6. That's it. If the ratio of “(mol equivalent of amino group) / (mole equivalent of amide group)” is 0.2 or more, the amount of functional groups in the polyamide separation functional layer is sufficient, so that the hydrophilicity of the membrane can be maintained and the amount of permeated water In addition, a high effect can be obtained in fixing the coating layer to the separation functional layer described later.
  • the functional group amount in the polyamide separation functional layer for example, a 13 C solid state NMR method can be used. Specifically, the base material is peeled from the composite semipermeable membrane to obtain a polyamide separation functional layer and a porous support layer, and then the porous support layer is dissolved and removed to obtain a polyamide separation functional layer.
  • the obtained polyamide separation functional layer was measured by DD / MAS- 13 C solid state NMR method, and the ratio of each functional group was calculated from the comparison of the integrated value of the carbon peak of each functional group or the carbon peak to which each functional group was bonded. Can be calculated.
  • the element ratio of the polyamide separation functional layer can be analyzed using, for example, X-ray photoelectron spectroscopy (XPS). Specifically, “Journal of Polymer Science”, Vol. 26, 559-572 (1988) and “Journal of the Adhesion Society of Japan”, Vol. 27, no. 4 (1991), X-ray photoelectron spectroscopy (XPS) can be used.
  • XPS X-ray photoelectron spectroscopy
  • a method of controlling the zeta potential of the separation functional layer a method of controlling the separation functional layer so that the amount of the functional group of the separation functional layer is reduced when forming the separation functional layer, and the functional group of the separation functional layer having another structure.
  • a method of coating the surface of the separation functional layer with a polymer These methods may be used alone or a plurality of methods may be used in combination. However, the method of simply coating the polymer reduces the interaction between the separation functional layer and the membrane contaminant, but is not preferable because the amount of permeated water of the membrane is reduced.
  • the polymer is preferably a hydrophilic compound.
  • the hydrophilic compound it is possible to reduce a decrease in the amount of permeated water of the composite semipermeable membrane due to the coating treatment.
  • the polymer is a crosslinked polymer.
  • peeling of the coating layer can be suppressed when the composite semipermeable membrane is used continuously or washed with a chemical solution, and stable performance is exhibited for a long time. be able to.
  • the hydrophilic compound of the present invention preferably has at least one reactive group that reacts with a functional group on the film surface.
  • the reactive group may be any as long as it forms a covalent bond with the functional group on the film surface.
  • Examples of the reactive group that binds to the acid halide on the film surface include a hydroxyl group, an amino group, and an epoxy group.
  • Specific examples of hydrophilic compounds include polyvinyl alcohol, partially saponified polyvinyl acetate, polyethyleneimine, polyallylamine, polyepiaminohydrin, amine-modified polyepichlorohydrin, polyoxyethylenedipropylamine, amino group or hydroxyl group.
  • a partially saponified product of vinyl acetate and a methacrylate ester copolymer a partially saponified product of vinyl acetate and 2-methacryloyloxyethyl phosphorylcholine copolymer, and the like.
  • These may be used alone or in combination.
  • a primary or secondary amino compound or a polymer having a hydroxyl group is preferably used.
  • the amino group reacts with the acid halide
  • an amide bond is formed between the crosslinked polyamide separation functional layer and the hydrophilic compound.
  • the hydroxyl group reacts with the acid halide
  • the crosslinked polyamide separation functional layer reacts with the hydrophilic property.
  • An ester bond is formed with the compound.
  • the hydrophilic compound having at least one reactive group that reacts with the functional group on the film surface further has a hydrophilic group that does not react with the functional group on the film surface.
  • hydrophilic groups include ether groups, amide groups, ester groups, tertiary amino groups, quaternary ammonium groups, cyano groups, nitro groups, alkoxy groups, carboxyl groups, carbonyl groups, keto groups, alkoxycarbonyl groups, amides.
  • cyano group formyl group, mercapto group, imino group, alkylthio group, sulfinyl group, sulfonyl group, sulfo group, nitroso group, phosphate group, phosphorylcholine group and the like.
  • an electrically neutral hydrophilic group such as an ether group, an amide group or an ester group is preferred.
  • An amphoteric charged polymer containing the same amount of positively charged groups and negatively charged groups is also preferable in controlling the zeta potential of the present invention.
  • a hydrophilic compound having at least one reactive group that reacts with a functional group on the membrane surface reacts with a functional group on the surface of the crosslinkable polyamide separation functional layer to form a covalent bond and fix it on the membrane surface. Compared to the case of just adsorbing, stable performance can be expressed for a long time.
  • the functional group present in the separation functional layer can be converted into a different functional group by an appropriately selected chemical reaction.
  • an aromatic amino group causes a diazo coupling reaction via an aromatic diazonium salt by using dinitrogen tetroxide, nitrous acid, nitric acid, sodium hydrogen sulfite, sodium hypochlorite, or the like as a reagent.
  • An amino group can also be converted to an azo group by reaction of an amino group with a nitroso compound.
  • the zeta potential of the separation functional layer can be controlled by changing the concentration of the reagent to be reacted and the temperature and time for the reaction.
  • the amount of the functional group before the reaction also affects the zeta potential of the obtained separation functional layer. Therefore, by reducing the thickness of the porous support layer, the unreacted substance remains at the time of production.
  • the zeta potential of the separation functional layer can also be controlled by a method of reducing the amount or a method of removing the compound having a functional group by hot water washing after forming the separation functional layer.
  • the yellowness of the separation functional layer is preferably 15 or more and 50 or less, and more preferably 20 or more and 45 or less.
  • the yellowness varies depending on the amount of the azo compound and azo group in the separation functional layer, and when it is within the above range, the zeta potential of the present invention and the stability of the hydrophilic compound can be obtained.
  • the yellowness of the separation functional layer is less than 15, the amount of the azo compound in the separation functional layer is small, so that the zeta potential of the present invention cannot be obtained. If the yellowness exceeds 50, the amount of azo compound is large and the amount of permeated water is low.
  • An azo compound is an organic compound having an azo group (—N ⁇ N—), and is produced and retained in the separation functional layer when the separation functional layer is brought into contact with a reagent that reacts with an amino group or a carboxyl group. Is done.
  • the yellowness degree is a degree defined by Japanese Industrial Standards JIS K7373 (2006), which is the degree to which the hue of the polymer is separated from colorless or white in the yellow direction, and is expressed as a positive value.
  • the yellowness of the separation functional layer can be measured with a color meter. For example, when measuring yellowness in a composite semipermeable membrane in which a separation functional layer is provided on a support membrane, the reflection measurement method is simple. Also, after placing the composite semipermeable membrane on the glass plate so that the separation functional layer is on the bottom, dissolve and remove the support membrane with a solvent that dissolves only the support membrane, and remove the separation functional layer sample remaining on the glass plate. It can also be measured by a transmission measurement method.
  • SM color computer SM-7 manufactured by Suga Test Instruments Co., Ltd. can be used.
  • the polyamide separation functional layer has an amide group, an azo group, and a phenolic hydroxyl group, and the ratio of the phenolic hydroxyl group / amide group is 0.10 or less, so that even after contact with acid or alkali This is preferable because a composite semipermeable membrane with high chemical resistance and a small change in the amount of permeated water and low fouling property can be obtained. Since the phenolic hydroxyl group is protonated or deprotonated as the pH of the solution changes, the charge state of the polyamide chain constituting the separation functional layer changes and the higher order structure of the polyamide chain changes. There is concern that the amount of water and salt removal performance will change.
  • Crosslinked aromatic polyamides formed by interfacial polycondensation of polyfunctional aromatic amines and polyfunctional acid halides do not have phenolic hydroxyl groups, but dinitrogen tetroxide, nitrous acid,
  • a reagent such as nitric acid, sodium hydrogen sulfite or sodium hypochlorite
  • the aromatic amino group is converted into an aromatic diazonium salt.
  • the reaction which an aromatic diazonium salt is converted into a phenolic hydroxyl group arises by contacting with water.
  • the lower limit of the phenolic hydroxyl group / amide group ratio is not particularly limited, but this ratio may be, for example, 0.005 or more, or 0.01 or more.
  • an aromatic diazonium salt produced by post-treatment of a crosslinked aromatic polyamide is reacted with an aromatic compound having an electron donating group or a carbon acid having a highly acidic proton.
  • the diazo coupling reaction is preferentially generated, and the generation of phenolic hydroxyl groups caused by the reaction with water is suppressed.
  • the electron donating group include a hydroxy group, an amino group, and an alkoxy group.
  • the root mean square surface roughness (Rms) of the separation functional layer is preferably 60 nm or more.
  • the root mean square surface roughness is 60 nm or more, the surface area of the separation functional layer is increased and the amount of permeated water is increased.
  • the coating layer is thick and the root mean square surface roughness is less than 60 nm, the amount of permeated water is greatly reduced.
  • the root mean square roughness of the separation functional layer can be controlled by the monomer concentration and temperature when the separation functional layer is formed by interfacial polycondensation. For example, when the temperature during interfacial polycondensation is low, the root mean square roughness decreases, and when the temperature is high, the root mean square roughness increases. In addition, when the polymer is coated on the surface of the separation functional layer, the root mean square roughness becomes small if the coating layer is thick.
  • the root mean square surface roughness can be measured with an atomic force microscope (AFM).
  • the root mean square surface roughness is the square root of the value obtained by averaging the squares of deviations from the reference plane to the specified plane.
  • the measurement surface is the surface indicated by all measurement data
  • the specified surface is the surface that is subject to roughness measurement
  • the specific portion specified by the clip of the measurement surface and the reference surface is the specified surface
  • the average height is Z0
  • Z0 Z0.
  • the AFM for example, NanoScope IIIa manufactured by Digital Instruments can be used.
  • the support membrane is for imparting strength to the polyamide separation functional layer having separation performance and itself has substantially no separation performance for ions and the like.
  • a support membrane consists of a base material and a porous support layer.
  • the size and distribution of pores in the support membrane are not particularly limited. For example, uniform and fine pores, or gradually having larger fine pores from the surface on the side where the separation functional layer is formed to the other surface, and separation.
  • a support membrane in which the size of the micropores on the surface on which the functional layer is formed is 0.1 nm or more and 100 nm or less is preferable.
  • the support membrane can be obtained, for example, by forming a porous support layer on the base material by casting a polymer on the base material.
  • the material used for the support membrane and its shape are not particularly limited.
  • the base material examples include a fabric made of at least one selected from polyester and aromatic polyamide. Particular preference is given to using polyesters which are highly mechanically and thermally stable.
  • a long fiber nonwoven fabric or a short fiber nonwoven fabric can be preferably used.
  • a polymer solution is cast on a substrate, it penetrates by over-penetration, the substrate and the porous support layer peel off, and the membrane is non-uniform due to fluffing of the substrate.
  • the long fiber nonwoven fabric can be more preferably used because excellent film-forming properties that do not cause defects such as crystallization and pinholes are required.
  • Examples of the long fiber nonwoven fabric include a long fiber nonwoven fabric composed of a thermoplastic continuous filament.
  • the base material is made of a long-fiber nonwoven fabric
  • the orientation of the fiber disposed on the side opposite to the porous support layer of the base material is the vertical orientation with respect to the film forming direction, the strength of the base material can be maintained and film breakage and the like can be prevented. Therefore, it is preferable.
  • the vertical orientation means that the orientation direction of the fibers is parallel to or close to the film forming direction.
  • the orientation direction of the fiber is perpendicular to the film forming direction or close to a right angle, the orientation is called horizontal orientation.
  • the fiber orientation degree of the nonwoven fabric substrate is preferably such that the fiber orientation degree on the side opposite to the porous support layer is in the range of 0 ° to 25 °.
  • the degree of fiber orientation is an index indicating the direction of the fibers of the nonwoven fabric substrate constituting the support membrane, and the direction of film formation during continuous film formation is 0 °, that is, the direction perpendicular to the film formation direction, that is, the nonwoven fabric.
  • the average angle of the fibers constituting the nonwoven fabric substrate when the width direction of the substrate is 90 °. Accordingly, the fiber orientation degree is closer to 0 °, and the fiber orientation is closer to 90 °.
  • the manufacturing process of the composite semipermeable membrane and the manufacturing process of the element include a heating step, but a phenomenon occurs in which the support membrane or the composite semipermeable membrane contracts due to heating.
  • a phenomenon occurs in which the support membrane or the composite semipermeable membrane contracts due to heating.
  • the film tends to shrink in the width direction. Since the support membrane or the composite semipermeable membrane shrinks, a problem arises in dimensional stability and the like, and therefore, a substrate having a low rate of thermal dimensional change is desired.
  • the orientation degree difference between the fiber arranged on the opposite side of the porous support layer and the fiber arranged on the porous support layer side is 10 ° to 90 °, the change in the width direction due to heat is suppressed. This is preferable.
  • the air permeability of the substrate is preferably 2.0 cc / cm 2 / sec or more.
  • the air permeability is within this range, the amount of permeated water of the composite semipermeable membrane increases. This is a process of forming a support film.
  • a high molecular weight polymer is cast on a base material and immersed in a coagulation bath, the non-solvent replacement rate from the base material side is increased, thereby increasing the porous support layer. This is thought to be because the internal structure of the resin changes and affects the retention amount and diffusion rate of the monomer in the subsequent step of forming the separation functional layer.
  • the air permeability can be measured by a Frazier type tester based on JIS L1096 (2010). For example, a base material is cut out to a size of 200 mm ⁇ 200 mm and used as a sample. This sample is attached to the Frazier type tester, and the suction fan and air hole are adjusted so that the inclined barometer has a pressure of 125 Pa. Based on the pressure indicated by the vertical barometer and the type of air hole used, The amount of air passing through the material, that is, the air permeability can be calculated. As the Frazier type tester, KES-F8-AP1 manufactured by Kato Tech Co., Ltd. can be used.
  • the thickness of the substrate is preferably in the range of 10 ⁇ m to 200 ⁇ m, more preferably in the range of 30 ⁇ m to 120 ⁇ m.
  • the support membrane includes a base material and a porous support layer, and has substantially no separation performance for ions or the like, and gives strength to the separation functional layer having separation performance substantially. Is.
  • vinyl polymer polyphenylene sulfide, polyphenylene sulfide sulfone, polyphenylene sulfone, polyphenylene oxide, and the like homopolymers or copolymers alone or blended.
  • cellulose acetate and cellulose nitrate can be used as the cellulose polymer
  • polyethylene, polypropylene, polyvinyl chloride, polyacrylonitrile and the like can be used as the vinyl polymer.
  • homopolymers or copolymers such as polysulfone, polyamide, polyester, cellulose acetate, cellulose nitrate, polyvinyl chloride, polyacrylonitrile, polyphenylene sulfide, and polyphenylene sulfide sulfone are preferable. More preferred is cellulose acetate, polysulfone, polyphenylene sulfide sulfone, or polyphenylene sulfone.
  • polysulfone is highly stable chemically, mechanically and thermally, and is easy to mold. Can be used generally.
  • polysulfone composed of repeating units represented by the following chemical formula because the pore diameter of the support membrane can be easily controlled and the dimensional stability is high.
  • the N, N-dimethylformamide (DMF) solution of the above polysulfone is cast on a densely woven polyester fabric or polyester nonwoven fabric to a certain thickness, and wet coagulated in water, so that the surface It is possible to obtain a support membrane having fine pores mostly having a diameter of several tens of nm or less.
  • DMF dimethylformamide
  • the thickness of the above support membrane affects the strength of the resulting composite semipermeable membrane and the packing density when it is used as an element.
  • the thickness of the support film is preferably in the range of 30 ⁇ m to 300 ⁇ m, more preferably in the range of 100 ⁇ m to 220 ⁇ m.
  • the morphology of the porous support layer can be observed with a scanning electron microscope, a transmission electron microscope, or an atomic microscope.
  • a scanning electron microscope after peeling off the porous support layer from the substrate, it is cut by the freeze cleaving method to obtain a sample for cross-sectional observation.
  • the sample is thinly coated with platinum or platinum-palladium or ruthenium tetrachloride, preferably ruthenium tetrachloride, and observed with a high resolution field emission scanning electron microscope (UHR-FE-SEM) at an acceleration voltage of 3 to 15 kV.
  • UHR-FE-SEM high resolution field emission scanning electron microscope
  • an S-900 electron microscope manufactured by Hitachi, Ltd. can be used.
  • the support membrane used in the present invention can be selected from various commercially available materials such as “Millipore Filter VSWP” (trade name) manufactured by Millipore, and “Ultra Filter UK10” (trade name) manufactured by Toyo Roshi Kaisha, “Office of Saleen Water Research and Development Progress Report” No. 359 (1968).
  • the thickness of the porous support layer is preferably in the range of 20 ⁇ m to 100 ⁇ m. Since the porous support layer has a thickness of 20 ⁇ m or more, good pressure resistance can be obtained and a uniform support film having no defects can be obtained. Therefore, a composite semipermeable membrane provided with such a porous support layer Can exhibit good salt removal performance. When the thickness of the porous support layer exceeds 100 ⁇ m, the remaining amount of unreacted substances at the time of production increases, thereby reducing the amount of permeated water and chemical resistance.
  • the thickness of the base material and the thickness of the composite semipermeable membrane can be measured with a digital thickness gauge. Moreover, since the thickness of the separation functional layer is very thin compared with the support membrane, the thickness of the composite semipermeable membrane can be regarded as the thickness of the support membrane. Therefore, the thickness of the porous support layer can be easily calculated by measuring the thickness of the composite semipermeable membrane with a digital thickness gauge and subtracting the thickness of the substrate from the thickness of the composite semipermeable membrane. As the digital thickness gauge, PEACOCK manufactured by Ozaki Manufacturing Co., Ltd. can be used. When a digital thickness gauge is used, the average value is calculated by measuring the thickness at 20 locations.
  • the thickness may be measured with a scanning electron microscope. Thickness is calculated
  • the manufacturing method includes a support film forming step and a separation functional layer forming step.
  • the support film forming step includes a step of applying a polymer solution to a substrate and a step of immersing the substrate coated with the solution in a coagulation bath to coagulate the polymer. .
  • the polymer solution is prepared by dissolving a polymer that is a component of the porous support layer in a good solvent for the polymer.
  • the temperature of the polymer solution during application of the polymer solution is preferably in the range of 10 ° C. to 60 ° C. when polysulfone is used as the polymer. If the temperature of the polymer solution is within this range, the polymer does not precipitate, and the polymer solution is sufficiently impregnated between the fibers of the base material and then solidified. As a result, the porous support layer is firmly bonded to the substrate by the anchor effect, and a good support film can be obtained.
  • the preferred temperature range of the polymer solution can be adjusted as appropriate depending on the type of polymer used, the desired solution viscosity, and the like.
  • the time from application of the polymer solution on the substrate to immersion in the coagulation bath is preferably in the range of 0.1 to 5 seconds. If the time until dipping in the coagulation bath is within this range, the organic solvent solution containing the polymer is sufficiently impregnated between the fibers of the base material and then solidified.
  • the preferable range of time until it immerses in a coagulation bath can be suitably adjusted with the kind of polymer solution to be used, desired solution viscosity, etc.
  • the coagulation bath water is usually used, but any solid can be used as long as it does not dissolve the polymer that is a component of the porous support layer.
  • the membrane form of the support membrane obtained by the composition of the coagulation bath changes, and the resulting composite semipermeable membrane also changes.
  • the temperature of the coagulation bath is preferably ⁇ 20 ° C. to 100 ° C. More preferably, it is 10 ° C to 50 ° C. When the temperature of the coagulation bath is higher than this range, the vibration of the coagulation bath surface becomes intense due to thermal motion, and the smoothness of the film surface after film formation tends to decrease. On the other hand, if the temperature is too low, the coagulation rate becomes slow and the film-forming property is lowered.
  • the support membrane thus obtained is washed with hot water in order to remove the solvent remaining in the membrane.
  • the temperature of the hot water at this time is preferably 40 ° C. to 100 ° C., more preferably 60 ° C. to 95 ° C. Within this range, the shrinkage of the support membrane does not increase and the amount of permeated water is good. Conversely, if the temperature is too low, the cleaning effect is small.
  • Any organic solvent that dissolves the polyfunctional acid halide can be used as long as it is immiscible with water, does not destroy the support membrane, and does not inhibit the formation reaction of the crosslinked polyamide. May be.
  • Typical examples include liquid hydrocarbons and halogenated hydrocarbons such as trichlorotrifluoroethane.
  • hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, heptadecane A simple substance such as hexadecane, cyclooctane, ethylcyclohexane, 1-octene, 1-decene or a mixture thereof is preferably used.
  • acylation catalyst for organic solvent solution containing polyfunctional amine aqueous solution or polyfunctional acid halide, acylation catalyst, polar solvent, acid scavenger, surface activity, if necessary, as long as they do not interfere with the reaction between both components
  • a compound such as an agent and an antioxidant may be contained.
  • the surface of the support membrane is coated with a polyfunctional amine aqueous solution.
  • concentration of the aqueous solution containing the polyfunctional amine is preferably 0.1% by weight or more and 20% by weight or less, more preferably 0.5% by weight or more and 15% by weight or less.
  • the surface of the supporting membrane may be uniformly and continuously coated with this aqueous solution, and a known coating means, for example, an aqueous solution is coated on the surface of the supporting membrane.
  • a method, a method of immersing the support film in an aqueous solution, or the like may be performed.
  • the contact time between the support membrane and the polyfunctional amine aqueous solution is preferably in the range of 5 seconds to 10 minutes, and more preferably in the range of 10 seconds to 3 minutes.
  • a method for draining liquid for example, there is a method in which the film surface is allowed to flow naturally while being held in a vertical direction. After draining, the membrane surface may be dried to remove all or part of the water in the aqueous solution.
  • an organic solvent solution containing the above-mentioned polyfunctional acid halide is applied to a support film coated with an aqueous polyfunctional amine solution, and a separation functional layer of crosslinked polyamide is formed by interfacial polycondensation.
  • the time for performing the interfacial polycondensation is preferably from 0.1 second to 3 minutes, and more preferably from 0.1 second to 1 minute.
  • the concentration of the polyfunctional acid halide in the organic solvent solution is not particularly limited. However, if it is too low, formation of the separation functional layer as an active layer may be insufficient, which may be a disadvantage. Therefore, it is preferably about 0.01% by weight or more and 1.0% by weight or less.
  • the organic solvent solution after the reaction by a liquid draining step.
  • a method of removing the excess organic solvent by naturally flowing it by holding the film in the vertical direction can be used.
  • the time for gripping in the vertical direction is preferably between 1 minute and 5 minutes, and more preferably between 1 minute and 3 minutes.
  • the holding time is 1 minute or longer, it is easy to obtain a separation functional layer having the desired function, and when it is 3 minutes or shorter, generation of defects due to over-drying of the organic solvent can be suppressed, thereby suppressing deterioration in performance. Can do.
  • the composite semipermeable membrane obtained by the above-described method is further added with a process of washing with hot water for 1 minute to 60 minutes within the range of 25 ° C to 90 ° C, so that the solute blocking performance of the composite semipermeable membrane is added. And the amount of permeated water can be further improved.
  • the hot water cleaning is preferably performed within the range of 25 ° C to 60 ° C.
  • it is preferable to cool slowly after the hot water cleaning process for example, there is a method of cooling to room temperature by contacting with low temperature hot water stepwise.
  • acid or alcohol may be contained in the hot water.
  • the acid include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, and organic acids such as citric acid and oxalic acid.
  • the acid concentration is preferably adjusted to be pH 2 or less, more preferably pH 1 or less.
  • the alcohol include monohydric alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol, and polyhydric alcohols such as ethylene glycol and glycerin.
  • the concentration of the alcohol is preferably 10 to 100% by weight, more preferably 10 to 50% by weight.
  • the reagent that reacts the separation functional layer with an unreacted functional group contained in the separation functional layer is not particularly limited, and examples thereof include aqueous solutions of nitrous acid and salts thereof, nitrosyl compounds, etc. that react with primary amino groups in the separation functional layer to form a diazonium salt or a derivative thereof. It is done. Since an aqueous solution of nitrous acid or a nitrosyl compound easily generates gas and decomposes, it is preferable to sequentially generate nitrous acid by, for example, a reaction between nitrite and an acidic solution.
  • nitrite reacts with hydrogen ions to produce nitrous acid (HNO 2 ), but is efficiently produced when the aqueous solution has a pH of 7 or less, preferably pH 5 or less, more preferably pH 4 or less.
  • aqueous solution of sodium nitrite reacted with hydrochloric acid or sulfuric acid in an aqueous solution is particularly preferable because of easy handling.
  • the concentration of nitrous acid or nitrite in the reagent that reacts with the primary amino group to produce a diazonium salt or a derivative thereof is preferably in the range of 0.01 to 1% by weight. When the concentration is 0.01% by weight or more, it is easy to obtain a sufficient effect. When the concentration of nitrous acid or nitrite is 1% by weight or less, handling of the solution becomes easy.
  • the temperature of the nitrous acid aqueous solution is preferably 15 ° C to 45 ° C.
  • the reaction takes time, and when it exceeds 45 ° C, decomposition of nitrous acid is quick and difficult to handle.
  • the contact time with the nitrous acid aqueous solution may be a time for forming a diazonium salt and / or a derivative thereof, and can be processed in a short time at a high concentration, but a long time is required at a low concentration. Therefore, in the solution having the above concentration, the contact time is preferably within 10 minutes, and more preferably within 3 minutes.
  • the contacting method is not particularly limited, and the composite semipermeable membrane may be immersed in the reagent solution even if the reagent solution is applied.
  • any solvent may be used as long as the reagent can be dissolved and the composite semipermeable membrane is not eroded.
  • the solution may contain a surfactant, an acidic compound, an alkaline compound, or the like as long as it does not interfere with the reaction between the primary amino group and the reagent.
  • a part of the diazonium salt produced by contact or a derivative thereof is converted into a phenolic hydroxyl group by reacting with water. Moreover, it reacts with the aromatic ring in the material forming the support membrane or the separation functional layer or the aromatic ring of the compound contained in the separation functional layer to form an azo group.
  • the composite semipermeable membrane formed with the diazonium salt or derivative thereof may be further contacted with a reagent that reacts with the diazonium salt or derivative thereof.
  • Reagents used here are chloride ion, bromide ion, cyanide ion, iodide ion, boron fluoride, hypophosphorous acid, sodium bisulfite, sulfite ion, aromatic amine, phenols, hydrogen sulfide, thiocyanate.
  • An acid etc. are mentioned.
  • halogen can be introduced by reacting with copper (I) chloride, copper (I) bromide, potassium iodide, or the like.
  • a diazo coupling reaction occurs by making it contact with an aromatic amine and phenols, and it becomes possible to introduce
  • these reagents may be used alone, may be used by mixing a plurality, or may be brought into contact with different reagents a plurality of times.
  • a reagent that causes a diazo coupling reaction is preferably used because it effectively works to improve the boron removal rate of the composite semipermeable membrane. This is presumably because the substituent introduced instead of the amino group by the diazo coupling reaction is bulky, and the effect of closing the pores existing in the separation functional layer was obtained.
  • Examples of the reagent that causes the diazo coupling reaction include compounds having an electron-rich aromatic ring or heteroaromatic ring.
  • Examples of the compound having an electron-rich aromatic ring or heteroaromatic ring include aromatic amine derivatives, heteroaromatic amine derivatives, phenol derivatives, and hydroxyheteroaromatic ring derivatives.
  • Specific examples of the above compounds include, for example, aniline, methoxyaniline bonded to the benzene ring in any positional relationship of ortho position, meta position, and para position, and two amino groups in the ortho position, meta position, and para position.
  • the concentration and time of the reagent reacted with these diazonium salts or derivatives thereof can be adjusted as appropriate in order to obtain the desired effect.
  • the contacting temperature is preferably 10 to 90 ° C, more preferably 20 to 60 ° C. When the contact temperature is less than 10 ° C, the reaction is difficult to proceed, and the desired effect may not be obtained, and may be converted to a phenolic hydroxyl group by reaction with water. At temperatures higher than 90 ° C, the polymer shrinks and permeates. The amount of water may decrease.
  • the concentration of the reagent is preferably 0.01 to 10% by weight, more preferably 0.05 to 1% by weight.
  • the concentration is lower than 0.01% by weight, the reaction with the diazonium salt or a derivative thereof may take a long time.
  • the concentration is higher than 10% by weight, it is difficult to control the reaction with the diazonium salt or the derivative thereof. It may become.
  • the hydrophilic compound is formed by coating a solution containing a compound having a hydrophilic group on the separation functional layer and then heating.
  • the hydrophilic compounds may be used alone or in combination.
  • the hydrophilic compound is preferably used as a solution having a weight concentration of 10 ppm to 1%. If the concentration of the hydrophilic compound is less than 10 ppm, the separation functional layer is not sufficiently coated, and the adhesion of the membrane contaminants becomes remarkable, so that it is difficult to desorb the membrane contaminants during the cleaning. Since the coating layer becomes thicker than 1%, the surface zeta potential A that reflects the potential of the outermost surface of the membrane and the surface zeta potential B that is considered to reflect the potential of the separation functional layer with little influence of ions liberated in water. The potential difference of ⁇ 10 mV or more cannot be achieved.
  • the solvent used in the solution containing the hydrophilic compound water, lower alcohol, halogenated hydrocarbon, acetone, acetonitrile, or the like is preferably used. These may be used alone or in combination of two or more. Other compounds may be mixed in the solution as necessary.
  • an alkaline metal compound such as sodium carbonate, sodium hydroxide, or sodium phosphate may be added, or the remaining water-immiscible solvent, free polyfunctional acid halide and amine
  • a surfactant such as sodium dodecyl sulfate or sodium benzenesulfonate.
  • the method for crosslinking the hydrophilic compound is not particularly limited, but preferably thermal crosslinking is performed.
  • a heating method when performing thermal crosslinking for example, a method of blowing hot air can be used.
  • the heating temperature is preferably within the range of 30 to 150 ° C., more preferably within the range of 30 to 130 ° C., and even more preferably within the range of 60 to 100 ° C.
  • the heating temperature is lower than 30 ° C, sufficient heating is not performed and the crosslinking reaction rate tends to decrease.
  • the heating temperature is higher than 150 ° C, the side reaction tends to proceed.
  • thermal crosslinking is performed at a temperature exceeding 150 ° C., the thermal shrinkage of the composite semipermeable membrane may increase, and the amount of permeated water tends to decrease.
  • a crosslinking agent for crosslinking of the hydrophilic compound.
  • the crosslinking agent include the aldehydes having at least two functional groups in one molecule, such as the acid or alkali, glyoxal, and glutaraldehyde described above.
  • the raw material of the crosslinked polymer is preferably polyvinyl alcohol
  • the crosslinking agent is glutaraldehyde
  • the crosslinked polymer preferably contains a reaction product of polyvinyl alcohol and glutaraldehyde.
  • the addition concentration of the crosslinking agent is preferably in the range of 0.01 to 5.0% by weight, more preferably in the range of 0.01 to 1.0% by weight, and 0.01 to 0.00%. More preferably, it is in the range of 5% by weight.
  • concentration is less than 0.01% by weight, the crosslinking density is lowered and the water insolubility of the crosslinked polymer tends to be insufficient.
  • concentration is more than 5.0% by weight, the crosslinking density is increased and the amount of permeated water tends to decrease. Furthermore, there is a tendency that the cross-linking reaction rate is increased, gelation is likely to occur, and uniform coating becomes difficult.
  • the reaction time for the crosslinking reaction is preferably 10 seconds to 3 minutes. If it is less than 10 seconds, the reaction may not proceed sufficiently, and if it exceeds 3 minutes, it is difficult to adjust to the zeta potential of the present invention.
  • the composite semipermeable membrane of the present invention is coated with a cross-linked polymer, it is preferable that the amount of permeated water hardly decreases before and after that. That is, using a composite semipermeable membrane before the surface of the separation functional layer is coated with a cross-linked polymer, an aqueous solution having a pH of 6.5 mg and a NaCl concentration of 2,000 mg / l at a pressure of 1.55 MPa is 1
  • the permeated water amount after time filtration is F1
  • the permeated water amount after coating the surface of the separation functional layer with a crosslinked polymer is F2
  • the value of F2 / F1 is preferably 0.80 or more. More preferably, it is 0.90 or more.
  • the composite semipermeable membrane of the present invention comprises a plurality of pores together with a raw water channel material such as a plastic net, a permeate channel material such as tricot, and a film for increasing pressure resistance as required. Is wound around a cylindrical water collecting pipe and is suitably used as a spiral composite semipermeable membrane element. Furthermore, a composite semipermeable membrane module in which these elements are connected in series or in parallel and accommodated in a pressure vessel can be obtained.
  • the above-described composite semipermeable membrane, its elements, and modules can be combined with a pump for supplying raw water to them, a device for pretreating the raw water, and the like to constitute a fluid separation device.
  • a separation device By using this separation device, raw water can be separated into permeated water such as drinking water and concentrated water that has not permeated through the membrane, and water suitable for the purpose can be obtained.
  • a high permeated water amount can be maintained in a low pressure region such as an operating pressure within a range of 0.1 to 3 MPa, more preferably within a range of 0.1 to 1.5 MPa.
  • a composite semipermeable membrane or a fluid separation element can be used. Since the operating pressure can be lowered, the capacity of a pump to be used can be reduced, power consumption can be reduced, and the cost of water production can be reduced. When the operating pressure is less than 0.1 MPa, the amount of permeated water tends to decrease, and when it exceeds 3 MPa, the power consumption of the pump and the like increases and the membrane is easily clogged by fouling.
  • the composite semipermeable membrane of the present invention uses a sodium chloride aqueous solution having a pH of 6.5 and a concentration of 2,000 mg / l, and the permeated water amount when filtered at 25 ° C. with an operating pressure of 1.0 MPa for 1 hour is 0.5 to 0.5%. It is preferable that it is 3m ⁇ 3 > / m ⁇ 2 > / d.
  • Such a composite semipermeable membrane can be produced, for example, by appropriately selecting the production method described above. By setting the amount of water permeation in the range of 0.5 to 3 m 3 / m 2 / d, generation of fouling can be moderately suppressed and water can be formed stably.
  • a hardly biodegradable organic substance such as a surfactant may be contained without being completely decomposed by biological treatment.
  • the surfactant is adsorbed on the membrane surface, and the amount of permeated water is reduced.
  • the composite semipermeable membrane of the present invention has a high amount of permeated water and a high detachability with respect to membrane contaminants, it can exhibit stable performance.
  • the composite semipermeable membrane of the present invention is highly detachable from membrane contaminants. That is, the amount of permeated water when an aqueous solution having a pH of 6.5 mg and a NaCl concentration of 2,000 mg / l was filtered at a pressure of 1.55 MPa for 1 hour was defined as F3, followed by polyoxyethylene (10) octylphenyl ether Is added to the aqueous solution to a concentration of 100 mg / l, filtered for 1 hour, and washed with an aqueous solution having a NaCl concentration of 500 mg / l for 1 hour, where the amount of permeate is F4, the value of F4 / F3 is It is preferably 0.85 or more.
  • the permeated water amount F3 is the same as the aforementioned permeated water amount F2.
  • NaCl removal rate 100 ⁇ ⁇ 1 ⁇ (NaCl concentration in permeated water / NaCl concentration in feed water) ⁇
  • the amount of permeated water when an aqueous solution of 2,000 mg / l was filtered at a pressure of 1.55 MPa for 1 hour was defined as F1
  • the amount of permeated water after being coated with the crosslinked polymer was defined as F2
  • the value of F2 / F1 was calculated.
  • the amount of permeated water when an aqueous solution having a pH of 6.5 and a NaCl concentration of 2,000 mg / l at 25 ° C. was filtered at a pressure of 1.55 MPa for 1 hour was defined as F3.
  • Oxyethylene (10) octylphenyl ether was added to the aqueous solution to a concentration of 100 mg / l, filtered for 1 hour, and then washed with an aqueous solution having a NaCl concentration of 500 mg / l for 1 hour. The value of / F3 was calculated.
  • the composite semipermeable membrane is washed with ultrapure water, set in a flat sample cell so that the separation functional layer surface of the composite semipermeable membrane is in contact with the monitor particle solution, and an electrophoretic light scattering photometer (ELS) manufactured by Otsuka Electronics Co., Ltd. -8000).
  • ELS electrophoretic light scattering photometer
  • As the monitor particle solution a measurement solution in which polystyrene latex monitor particles were dispersed in an aqueous NaCl solution adjusted to pH 6, pH 10, or pH 3, respectively was used.
  • the surface zeta potential A (pH 6, NaCl 10 mM), surface zeta potential B (pH 6, NaCl 1 mM), surface zeta potential C (pH 3, NaCl 1 mM), surface zeta potential D (pH 10, NaCl 1 mM) of the separation function layer are used. Each was measured.
  • the amount of functional groups in the polyamide separation functional layer is determined by separating the substrate from the composite semipermeable membrane, obtaining the polyamide separation functional layer and the porous support layer, and then dissolving and removing the porous support layer with dichloromethane to separate the polyamide. A functional layer was obtained.
  • the obtained polyamide separation functional layer was measured by DD / MAS- 13C solid state NMR method, and the amount of each functional group was determined by comparing the carbon peak of each functional group or the integrated value of the carbon peak to which each functional group was bonded. Calculated.
  • Root mean square roughness A composite semipermeable membrane washed with ultrapure water and air-dried is cut into 1 cm squares, attached to a slide glass with double-sided tape, and the root mean square roughness (RMS) of the separation functional layer is measured with an atomic force microscope.
  • RMS root mean square roughness
  • cantilever Veeco Instruments NCHV-1 was used, and measurement was performed at normal temperature and pressure. The scan speed was 1 Hz, and the number of sampling points was 512 pixels square. Gwydion was used as the analysis software.
  • the measurement results were subjected to one-dimensional baseline correction (tilt correction) for both the X axis and the Y axis.
  • Air permeability The air permeability was measured by a fragile type tester based on JIS L1096 (2010). The base material is cut into a size of 200 mm ⁇ 200 mm, attached to a Frazier type tester, the suction fan and air hole are adjusted so that the inclined barometer has a pressure of 125 Pa, and the pressure indicated by the vertical barometer at this time The air permeability was determined from the type of air holes used.
  • Frazier type tester KES-F8-AP1 manufactured by Kato Tech Co., Ltd. was used.
  • this support membrane was immersed in a 3.5% by weight aqueous solution of metaphenylenediamine, and then the excess aqueous solution was removed, and further, trimesic acid halide was dissolved in n-decane to a concentration of 0.14% by weight. The solution was applied so that the surface of the porous support layer was completely wetted.
  • the membrane was vertically drained and dried by blowing air at 20 ° C. using a blower. Then, it wash
  • Example 1 The composite semipermeable membrane obtained in Comparative Example 1 was used as an acid catalyst in an aqueous solution containing 0.5% by weight of polyvinyl alcohol (degree of saponification 88%, weight average molecular weight 2,000) and 0.2% by weight of glutaraldehyde. It was immersed for 1 minute in the aqueous solution which added hydrochloric acid so that it might become 0.1 mol / l. After holding for 1 minute vertically and cutting off excess liquid, it was dried in a hot air dryer at 90 ° C. for 30 seconds to obtain a composite semipermeable membrane having a separation functional layer coated with polyvinyl alcohol. The composite semipermeable membrane was hydrophilized by immersing in a 10% aqueous isopropanol solution for 10 minutes before evaluation. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
  • Example 2 The composite semipermeable membrane obtained in Comparative Example 1 was used as an acid catalyst in an aqueous solution containing 0.5% by weight of polyvinyl alcohol (degree of saponification 88%, weight average molecular weight 2,000) and 0.2% by weight of glutaraldehyde. It was immersed for 1 minute in the aqueous solution which added hydrochloric acid so that it might become 0.1 mol / l. After maintaining for 1 minute vertically and cutting off excess liquid, it was dried in a hot air dryer at 90 ° C. for 1 minute to obtain a composite semipermeable membrane having a separation functional layer coated with polyvinyl alcohol. The composite semipermeable membrane was hydrophilized by immersing in a 10% aqueous isopropanol solution for 10 minutes before evaluation. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
  • Comparative Example 2 The composite semipermeable membrane obtained in Comparative Example 1 was used as an acid catalyst in an aqueous solution containing 0.5% by weight of polyvinyl alcohol (degree of saponification 88%, weight average molecular weight 2,000) and 0.2% by weight of glutaraldehyde. It was immersed for 2 minutes in an aqueous solution to which hydrochloric acid was added to a concentration of 0.1 mol / liter. After maintaining for 1 minute vertically and cutting off excess liquid, it was dried in a hot air dryer at 90 ° C. for 4 minutes to obtain a composite semipermeable membrane having a separation functional layer coated with polyvinyl alcohol. The composite semipermeable membrane was hydrophilized by immersing in a 10% aqueous isopropanol solution for 10 minutes before evaluation. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
  • Comparative Example 3 The composite semipermeable membrane obtained in Comparative Example 1 was immersed in an aqueous solution containing 0.5% by weight of polyvinyl alcohol (degree of saponification 99%, average degree of polymerization 500) for 2 minutes. After maintaining for 1 minute vertically and cutting off excess liquid, it was dried in a hot air dryer at 90 ° C. for 4 minutes to obtain a composite semipermeable membrane having a separation functional layer coated with polyvinyl alcohol. The composite semipermeable membrane was hydrophilized by immersing in a 10% aqueous isopropanol solution for 10 minutes before evaluation. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
  • Comparative Example 4 The composite semipermeable membrane obtained in Comparative Example 1 was treated with a 0.3 wt% aqueous sodium nitrite solution adjusted to pH 3 with sulfuric acid at 30 ° C. for 1 minute. The composite semipermeable membrane was taken out from the nitrous acid aqueous solution and then washed with pure water at 20 ° C. to obtain a composite semipermeable membrane. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
  • Example 3 The composite semipermeable membrane obtained in Comparative Example 4 was used as an acid catalyst in an aqueous solution containing 0.5% by weight of polyvinyl alcohol (degree of saponification 88%, weight average molecular weight 2,000) and 0.2% by weight of glutaraldehyde. It was immersed for 1 minute in the aqueous solution which added hydrochloric acid so that it might become 0.1 mol / l. After maintaining for 1 minute vertically and cutting off excess liquid, it was dried in a hot air dryer at 90 ° C. for 45 seconds to obtain a composite semipermeable membrane having a separation functional layer coated with polyvinyl alcohol. The composite semipermeable membrane was hydrophilized by immersing in a 10% aqueous isopropanol solution for 10 minutes before evaluation. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
  • Example 4 The composite semipermeable membrane obtained in Comparative Example 4 was used as an acid catalyst in an aqueous solution containing 0.5% by weight of polyvinyl alcohol (degree of saponification 88%, weight average molecular weight 2,000) and 0.2% by weight of glutaraldehyde. It was immersed for 1 minute in the aqueous solution which added hydrochloric acid so that it might become 0.1 mol / l. After maintaining for 1 minute vertically and cutting off excess liquid, it was dried in a hot air dryer at 90 ° C. for 1 minute to obtain a composite semipermeable membrane having a separation functional layer coated with polyvinyl alcohol. The composite semipermeable membrane was hydrophilized by immersing in a 10% aqueous isopropanol solution for 10 minutes before evaluation. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
  • Comparative Example 5 The composite semipermeable membrane obtained in Comparative Example 4 was used as an acid catalyst in an aqueous solution containing 0.5% by weight of polyvinyl alcohol (degree of saponification 88%, weight average molecular weight 2,000) and 0.2% by weight of glutaraldehyde. It was immersed for 2 minutes in an aqueous solution to which hydrochloric acid was added to a concentration of 0.1 mol / liter. After holding for 1 minute vertically and cutting off excess liquid, it was dried in a hot air dryer at 90 ° C. for 3 minutes to obtain a composite semipermeable membrane having a separation functional layer coated with polyvinyl alcohol. The composite semipermeable membrane was hydrophilized by immersing in a 10% aqueous isopropanol solution for 10 minutes before evaluation. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
  • Example 5 The composite semipermeable membrane obtained in Comparative Example 4 was immersed in an 80 ° C. aqueous solution containing 1% by weight of polyvinyl alcohol (degree of saponification 88%, weight average molecular weight 2,000) for 2 minutes. After maintaining for 1 minute vertically and cutting off excess liquid, it was dried in a hot air dryer at 90 ° C. for 1 minute to obtain a composite semipermeable membrane having a separation functional layer coated with polyvinyl alcohol. The composite semipermeable membrane was hydrophilized by immersing in a 10% aqueous isopropanol solution for 10 minutes before evaluation. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
  • Comparative Example 6 The composite semipermeable membrane obtained in Comparative Example 1 was treated with a 0.4 wt% sodium nitrite aqueous solution adjusted to pH 3 with sulfuric acid at 30 ° C. for 1 minute. After removing the composite semipermeable membrane from the nitrous acid aqueous solution, it was immersed in a 0.1% aniline aqueous solution at 30 ° C. for 1 minute. Subsequently, it was immersed in a 0.1 wt% aqueous sodium sulfite solution for 2 minutes. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
  • Example 6 The composite semipermeable membrane obtained in Comparative Example 6 was immersed in an aqueous solution containing 0.5% by weight of polyvinyl alcohol (degree of saponification 88%, weight average molecular weight 2,000) and 0.2% by weight of glutaraldehyde for 1 minute. . After holding for 1 minute vertically and cutting off excess liquid, it was dried in a hot air dryer at 90 ° C. for 30 seconds to obtain a composite semipermeable membrane having a separation functional layer coated with polyvinyl alcohol. The composite semipermeable membrane was hydrophilized by immersing in a 10% aqueous isopropanol solution for 10 minutes before evaluation. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
  • Example 7 The composite semipermeable membrane obtained in Comparative Example 6 was used as an acid catalyst in an aqueous solution containing 0.5% by weight of polyvinyl alcohol (degree of saponification 88%, weight average molecular weight 2,000) and 0.2% by weight of glutaraldehyde. It was immersed for 1 minute in the aqueous solution which added hydrochloric acid so that it might become 0.1 mol / l. After holding for 1 minute vertically and cutting off excess liquid, it was dried in a hot air dryer at 90 ° C. for 30 seconds to obtain a composite semipermeable membrane having a separation functional layer coated with polyvinyl alcohol. The composite semipermeable membrane was hydrophilized by immersing in a 10% aqueous isopropanol solution for 10 minutes before evaluation. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
  • Comparative Example 7 The composite semipermeable membrane obtained in Comparative Example 6 was used as an acid catalyst in an aqueous solution containing 0.5% by weight of polyvinyl alcohol (degree of saponification 88%, weight average molecular weight 2,000) and 0.2% by weight of glutaraldehyde. It was immersed for 2 minutes in an aqueous solution to which hydrochloric acid was added to a concentration of 0.1 mol / liter. After holding for 1 minute vertically and cutting off excess liquid, it was dried in a hot air dryer at 90 ° C. for 3 minutes to obtain a composite semipermeable membrane having a separation functional layer coated with polyvinyl alcohol. The composite semipermeable membrane was hydrophilized by immersing in a 10% aqueous isopropanol solution for 10 minutes before evaluation. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
  • the composite semipermeable membrane of the present invention has a high amount of permeated water and a high detachability with respect to membrane contaminants, and can maintain stable performance for a long period of time.
  • raw water can be separated into permeated water such as drinking water and concentrated water that has not permeated through the membrane, and water suitable for the purpose can be obtained.
  • the composite semipermeable membrane of the present invention can be particularly suitably used for brine or seawater desalination.

Abstract

The present invention provides a composite semipermeable membrane, which is capable of achieving a high permeate volume and has high desorption properties with respect to membrane-fouling substances. This composite semipermeable membrane is provided with a support membrane comprising a base material and a porous support layer, and a separation function layer provided on the porous support layer. The surface zeta potential (A) of the separation function layer under measurement conditions of pH 6 and 10 mM NaCl is in the range of ±15 mV, and the potential difference between the surface zeta potential (B) of the separation function layer under measurement conditions of pH 6 and 1 mM NaCl and the surface zeta potential (A) is ±10 mV or more.

Description

複合半透膜Composite semipermeable membrane
 本発明は、高い透過水量を達成でき、かつ、長期間の安定運転が可能な複合半透膜に関するものである。本発明によって得られる複合半透膜は、例えばかん水の淡水化に好適に用いることができる。 The present invention relates to a composite semipermeable membrane that can achieve a high amount of permeated water and that can be stably operated for a long time. The composite semipermeable membrane obtained by the present invention can be suitably used for desalination of brine, for example.
 混合物の分離に関して、溶媒(例えば水)に溶解した物質(例えば塩類)を除くための技術には様々なものがある。近年、省エネルギーおよび省資源のためのプロセスとして膜分離法の利用が拡大している。膜分離法に使用される膜には、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜などがある。これらの膜は、例えば海水、かん水、有害物を含んだ水などから飲料水を得る場合や、工業用超純水の製造、廃水処理、有価物の回収などに用いられている。
 現在市販されている逆浸透膜およびナノろ過膜の大部分は複合半透膜であり、支持膜上にゲル層と重合体を架橋した活性層を有するものと、支持膜上でモノマーを重縮合して形成された活性層を有するものとの2種類がある。なかでも、多官能アミンと多官能酸ハロゲン化物との重縮合反応によって得られる架橋ポリアミドからなる分離機能層を支持膜上に被覆して得られる複合半透膜は、透過水量や選択分離性の高い分離膜として広く用いられている。
There are a variety of techniques for removing substances (eg, salts) dissolved in a solvent (eg, water) with respect to separation of the mixture. In recent years, the use of a membrane separation method as an energy saving and resource saving process has been expanded. Examples of membranes used in the membrane separation method include microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, and reverse osmosis membranes. These membranes are used, for example, in the case of obtaining drinking water from seawater, brine, water containing harmful substances, etc., in the production of industrial ultrapure water, wastewater treatment, recovery of valuable materials, and the like.
Most of the reverse osmosis membranes and nanofiltration membranes currently on the market are composite semipermeable membranes, which have an active layer in which a gel layer and a polymer are cross-linked on a support membrane, and polycondensation of monomers on the support membrane There are two types, one having an active layer formed. In particular, a composite semipermeable membrane obtained by coating a support membrane with a separation functional layer made of a crosslinked polyamide obtained by polycondensation reaction of a polyfunctional amine and a polyfunctional acid halide has a permeated water amount and a selective separation property. Widely used as a high separation membrane.
 逆浸透膜を用いる造水プラントではランニングコストの一層の低減を図るため、より高い透過水量が求められている。このような要求に対し、分離活性層に架橋ポリアミド重合体を含む複合半透膜について、亜硝酸を含む水溶液に接触させる方法(特許文献1参照)や塩素を含む水溶液に接触させる方法(特許文献2参照)などが知られている。 In desalination plants that use reverse osmosis membranes, a higher permeate flow rate is required to further reduce running costs. In response to such demands, a method of bringing a composite semipermeable membrane containing a cross-linked polyamide polymer into a separation active layer into contact with an aqueous solution containing nitrous acid (see Patent Literature 1) or a method of bringing into contact with an aqueous solution containing chlorine (Patent Literature) 2) is known.
 また、逆浸透膜を用いる造水プラントで起こる問題の一つに、無機物や有機物といった膜汚染物質によるファウリングがある。逆浸透膜はファウリングによって透過水量が著しく低下する。これを改善する方法として、ポリビニルアルコールを分離機能層表面にコーティングすることで荷電状態を中性にして、ファウリングを抑制する方法(特許文献3参照)などが提案されている。 Also, one of the problems that occur in desalination plants using reverse osmosis membranes is fouling caused by membrane contaminants such as inorganic and organic substances. A reverse osmosis membrane significantly reduces the amount of permeated water due to fouling. As a method for improving this, a method of neutralizing the charged state by coating polyvinyl alcohol on the surface of the separation functional layer and suppressing fouling (see Patent Document 3) has been proposed.
 また、ファウリングを解消するためには、一定期間の運転後にアルカリや酸などによる薬液洗浄を行うことが一般的である。このため長期間にわたって安定な運転を継続するには、複合半透膜のアルカリや酸への耐久性、つまり薬品接触前後での膜性能変化が小さいことが必要とされる。複合半透膜の耐アルカリ性を向上させるために、複合半透膜にpH9~13の水素イオン濃度水溶液を接触させる方法(特許文献4参照)が開示されている。また、複合半透膜の耐酸性を向上させるために、複合半透膜に環状硫酸エステルを接触させる方法(特許文献5参照)が開示されている。 In order to eliminate fouling, it is common to perform chemical cleaning with alkali or acid after a certain period of operation. For this reason, in order to continue stable operation over a long period of time, durability of the composite semipermeable membrane to alkali or acid, that is, a change in membrane performance before and after chemical contact is required to be small. In order to improve the alkali resistance of the composite semipermeable membrane, a method is disclosed in which a hydrogen ion concentration aqueous solution having a pH of 9 to 13 is brought into contact with the composite semipermeable membrane (see Patent Document 4). Moreover, in order to improve the acid resistance of a composite semipermeable membrane, a method of bringing a cyclic sulfate ester into contact with the composite semipermeable membrane (see Patent Document 5) is disclosed.
日本国特開2011-125856号公報Japanese Unexamined Patent Publication No. 2011-125856 日本国特開昭63-54905号公報Japanese Unexamined Patent Publication No. 63-54905 国際公開第97/34686号International Publication No. 97/34686 日本国特開2006-102624号公報Japanese Unexamined Patent Publication No. 2006-102624 日本国特開2010-234284号公報Japanese Unexamined Patent Publication No. 2010-234284
 このように、逆浸透膜に要求される性能には、塩除去性能や透過水量だけでなく、長期間安定して運転可能であることが求められる。特許文献1や特許文献2に記載の膜は、透過水量を高くすることができるが、耐ファウリング性が低いという問題があった。一方、特許文献3に記載の膜ではコーティングにより透過水量が低下することがあった。また、特許文献4や特許文献5に記載の複合半透膜は、複合半透膜の耐薬品性は得られるものの、ファウリングを解消するために高頻度の薬液洗浄を必要とする場合があり、安定運転性の点で検討の余地があった。
 本発明の目的は、高い透過水量を達成でき、かつ、長期間の安定運転が可能な複合半透膜を提供することである。
Thus, the performance required for the reverse osmosis membrane is required not only to remove the salt and the amount of permeated water but also to be able to operate stably for a long period of time. The membranes described in Patent Document 1 and Patent Document 2 can increase the amount of permeated water, but have a problem of low fouling resistance. On the other hand, in the film described in Patent Document 3, the amount of permeated water may be reduced by coating. In addition, the composite semipermeable membranes described in Patent Document 4 and Patent Document 5 may have chemical resistance of the composite semipermeable membrane, but may require frequent chemical cleaning to eliminate fouling. There was room for study in terms of stable driving performance.
An object of the present invention is to provide a composite semipermeable membrane that can achieve a high amount of permeated water and that can be stably operated for a long period of time.
 上記目的を達成するための本発明は、以下の構成をとる。
(1)基材および多孔性支持層を含む支持膜と、前記多孔性支持層上に設けられた分離機能層とを備える複合半透膜であって、
 pH6、NaCl10mMの測定条件における前記分離機能層の表面ゼータ電位Aが±15mV以内であり、かつ
 pH6、NaCl1mMの測定条件における前記分離機能層の表面ゼータ電位Bと、前記表面ゼータ電位Aとの電位差が±10mV以上である複合半透膜。
(2)前記分離機能層の表面の自乗平均面粗さが60nm以上である上記(1)に記載の複合半透膜。
(3)前記分離機能層が、多官能アミンと多官能酸ハロゲン化物との重合反応により得られたポリアミドから形成される上記(1)または(2)に記載の複合半透膜。
(4)pH3、NaCl1mMの測定条件における前記分離機能層の表面ゼータ電位Cと、pH10、NaCl1mMの測定条件における前記分離機能層の表面ゼータ電位Dとの電位差が、40mV以下である上記(1)~(3)いずれか1に記載の複合半透膜。
(5)前記分離機能層がアミノ基およびアミド基を含み、アミノ基のモル当量/アミド基のモル当量の比が0.2以上である上記(1)~(4)いずれか1に記載の複合半透膜。
(6)前記分離機能層がアミド基、アゾ基およびフェノール性水酸基を有し、フェノール性水酸基/アミド基の比が0.1以下である上記(1)~(5)いずれか1に記載の複合半透膜。
(7)前記分離機能層の表面が架橋重合体により被覆されている上記(1)~(6)いずれか1に記載の複合半透膜。
(8)前記架橋重合体が親水性化合物の架橋体である上記(7)に記載の複合半透膜。
(9)前記架橋重合体が、前記分離機能層の表面と共有結合を形成している上記(7)または(8)に記載の複合半透膜。
(10)前記分離機能層の表面が前記架橋重合体により被覆される前の複合半透膜を用いて、25℃、pH6.5、NaCl濃度が2,000mg/lである水溶液を1.55MPaの圧力で1時間ろ過したときの透過水量をF1とし、前記分離機能層の表面が前記架橋重合体により被覆された後の透過水量をF2としたとき、F2/F1の値が0.80以上である上記(7)~(9)いずれか1に記載の複合半透膜。
(11)25℃において、pH6.5、NaCl濃度が2,000mg/lである水溶液を1.55MPaの圧力で1時間ろ過したときの透過水量をF3とし、続いてポリオキシエチレン(10)オクチルフェニルエーテルを100mg/lの濃度となるように前記水溶液に加えて1時間ろ過後、NaCl濃度が500mg/lである水溶液で1時間洗浄したときの透過水量をF4としたとき、F4/F3の値が0.85以上である上記(1)~(10)いずれか1に記載の複合半透膜。
To achieve the above object, the present invention has the following configuration.
(1) A composite semipermeable membrane comprising a support membrane comprising a substrate and a porous support layer, and a separation functional layer provided on the porous support layer,
The surface zeta potential A of the separation functional layer under the measurement conditions of pH 6 and NaCl 10 mM is within ± 15 mV, and the potential difference between the surface zeta potential B of the separation functional layer and the surface zeta potential A under the measurement conditions of pH 6 and NaCl 1 mM. Is a composite semipermeable membrane having a value of ± 10 mV or more.
(2) The composite semipermeable membrane according to (1), wherein the root mean square roughness of the surface of the separation functional layer is 60 nm or more.
(3) The composite semipermeable membrane according to (1) or (2), wherein the separation functional layer is formed from a polyamide obtained by a polymerization reaction of a polyfunctional amine and a polyfunctional acid halide.
(4) The above (1), wherein the potential difference between the surface zeta potential C of the separation functional layer under pH 3 and NaCl 1 mM measurement conditions and the surface zeta potential D of the separation functional layer under pH 10 and NaCl 1 mM measurement conditions is 40 mV or less. (3) The composite semipermeable membrane according to any one of (1) to (3).
(5) The separation function layer according to any one of (1) to (4), wherein the separation functional layer contains an amino group and an amide group, and the ratio of the molar equivalent of the amino group to the molar equivalent of the amide group is 0.2 or more. Composite semipermeable membrane.
(6) The separation function layer according to any one of (1) to (5) above, wherein the separation functional layer has an amide group, an azo group, and a phenolic hydroxyl group, and the ratio of the phenolic hydroxyl group / amide group is 0.1 or less. Composite semipermeable membrane.
(7) The composite semipermeable membrane according to any one of (1) to (6), wherein the surface of the separation functional layer is coated with a crosslinked polymer.
(8) The composite semipermeable membrane according to (7), wherein the crosslinked polymer is a crosslinked compound of a hydrophilic compound.
(9) The composite semipermeable membrane according to (7) or (8), wherein the crosslinked polymer forms a covalent bond with the surface of the separation functional layer.
(10) Using the composite semipermeable membrane before the surface of the separation functional layer is coated with the cross-linked polymer, an aqueous solution having a pH of 6.5 and an NaCl concentration of 2,000 mg / l is 1.55 MPa. F1 / F1 is 0.80 or more when F1 is the amount of permeated water when filtered for 1 hour at a pressure of F2 and F2 is the amount of permeated water after the surface of the separation functional layer is coated with the crosslinked polymer. The composite semipermeable membrane according to any one of (7) to (9), wherein
(11) At 25 ° C., when the aqueous solution having a pH of 6.5 and a NaCl concentration of 2,000 mg / l is filtered at a pressure of 1.55 MPa for 1 hour, the amount of permeate is F3, followed by polyoxyethylene (10) octyl When phenyl ether is added to the aqueous solution to a concentration of 100 mg / l and filtered for 1 hour and then washed with an aqueous solution having a NaCl concentration of 500 mg / l for 1 hour, the amount of permeated water is F4. The composite semipermeable membrane according to any one of (1) to (10), wherein the value is 0.85 or more.
 本発明は、高い透過水量を達成でき、かつ、長期間の安定運転が可能な複合半透膜を提供することができる。この複合半透膜を用いることで、品質の高い透過水を省エネルギーかつ安定して得ることができるようになる。 The present invention can provide a composite semipermeable membrane capable of achieving a high permeated water amount and capable of stable operation for a long period of time. By using this composite semipermeable membrane, high quality permeated water can be obtained in an energy saving and stable manner.
1.複合半透膜
 本発明の複合半透膜は、基材および多孔性支持層を含む支持膜と、該支持膜の多孔性支持層上に形成されたポリアミド分離機能層とを備える。本発明の複合半透膜は、分離機能層の表面ゼータ電位が、pH6、NaCl10mMの条件において測定したときに±15mV以内に制御されており、かつpH6、NaCl1mMの条件で測定したときとの表面ゼータ電位差が±10mV以上であることを特徴とする。
1. Composite Semipermeable Membrane The composite semipermeable membrane of the present invention includes a support membrane including a base material and a porous support layer, and a polyamide separation functional layer formed on the porous support layer of the support membrane. In the composite semipermeable membrane of the present invention, the surface zeta potential of the separation functional layer is controlled within ± 15 mV when measured under the conditions of pH 6 and NaCl 10 mM, and the surface when measured under the conditions of pH 6 and NaCl 1 mM. The zeta potential difference is ± 10 mV or more.
(1-1)分離機能層
 分離機能層は、複合半透膜において溶質の分離機能を担う層である。分離機能層の組成および厚み等の構成は、複合半透膜の使用目的に合わせて設定される。
 分離機能層は、具体的には、多官能アミンと多官能酸ハロゲン化物との界面重縮合によって得られる架橋ポリアミドからなる。以下、本発明における分離機能層を「ポリアミド分離機能層」とも記載する。
(1-1) Separation Function Layer The separation function layer is a layer that plays a role of separating the solute in the composite semipermeable membrane. The composition such as the composition and thickness of the separation functional layer is set in accordance with the intended use of the composite semipermeable membrane.
Specifically, the separation functional layer is made of a crosslinked polyamide obtained by interfacial polycondensation of a polyfunctional amine and a polyfunctional acid halide. Hereinafter, the separation functional layer in the present invention is also referred to as “polyamide separation functional layer”.
 ここで多官能アミンは、芳香族多官能アミンおよび脂肪族多官能アミンから選ばれた少なくとも1つの成分からなることが好ましい。
 芳香族多官能アミンとは、一分子中に2個以上のアミノ基を有する芳香族アミンであり、特に限定されるものではないが、メタフェニレンジアミン、パラフェニレンジアミン、1,3,5-トリアミノベンゼンなどが例示される。また、そのN-アルキル化物として、N,N-ジメチルメタフェニレンジアミン、N,N-ジエチルメタフェニレンジアミン、N,N-ジメチルパラフェニレンジアミン、N,N-ジエチルパラフェニレンジアミンなどが例示される。性能発現の安定性から、特にメタフェニレンジアミンまたは1,3,5-トリアミノベンゼンが好ましい。
Here, the polyfunctional amine is preferably composed of at least one component selected from an aromatic polyfunctional amine and an aliphatic polyfunctional amine.
The aromatic polyfunctional amine is an aromatic amine having two or more amino groups in one molecule, and is not particularly limited, but includes metaphenylenediamine, paraphenylenediamine, 1,3,5-triamine. Examples include aminobenzene. Examples of the N-alkylated product include N, N-dimethylmetaphenylenediamine, N, N-diethylmetaphenylenediamine, N, N-dimethylparaphenylenediamine, and N, N-diethylparaphenylenediamine. In view of stability of performance, metaphenylenediamine or 1,3,5-triaminobenzene is particularly preferable.
 また、脂肪族多官能アミンとは、一分子中に2個以上のアミノ基を有する脂肪族アミンであり、好ましくはピペラジン系アミンおよびその誘導体である。例えば、ピペラジン、2,5-ジメチルピペラジン、2-メチルピペラジン、2,6-ジメチルピペラジン、2,3,5-トリメチルピペラジン、2,5-ジエチルピペラジン、2,3,5-トリエチルピペラジン、2-n-プロピルピペラジン、2,5-ジ-n-ブチルピペラジン、エチレンジアミンなどが例示される。性能発現の安定性から、特に、ピペラジンまたは2,5-ジメチルピペラジンが好ましい。 Further, the aliphatic polyfunctional amine is an aliphatic amine having two or more amino groups in one molecule, preferably a piperazine-based amine or a derivative thereof. For example, piperazine, 2,5-dimethylpiperazine, 2-methylpiperazine, 2,6-dimethylpiperazine, 2,3,5-trimethylpiperazine, 2,5-diethylpiperazine, 2,3,5-triethylpiperazine, 2- Examples thereof include n-propylpiperazine, 2,5-di-n-butylpiperazine, ethylenediamine and the like. In particular, piperazine or 2,5-dimethylpiperazine is preferable from the viewpoint of stability of performance expression.
 これらの多官能アミンは、1種を単独で用いても、2種類以上を混合して用いてもよい。 These polyfunctional amines may be used alone or in combination of two or more.
 多官能酸ハロゲン化物とは、一分子中に2個以上のハロゲン化カルボニル基を有する酸ハロゲン化物であり、上記多官能アミンとの反応によりポリアミドを与えるものであれば特に限定されない。多官能酸ハロゲン化物としては、例えば、シュウ酸、マロン酸、マレイン酸、フマル酸、グルタル酸、1,3,5-シクロヘキサントリカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3,5-ベンゼントリカルボン酸、1,2,4-ベンゼントリカルボン酸、1,3-ベンゼンジカルボン酸、1,4-ベンゼンジカルボン酸等のハロゲン化物を用いることができる。酸ハロゲン化物の中でも、酸塩化物が好ましく、特に経済性、入手の容易さ、取り扱い易さ、反応性の容易さ等の点から、1,3,5-ベンゼントリカルボン酸の酸ハロゲン化物であるトリメシン酸ハロゲン化物が好ましい。上記多官能酸ハロゲン化物は1種を単独で用いても、2種類以上を混合して用いてもよい。 The polyfunctional acid halide is an acid halide having two or more carbonyl halide groups in one molecule, and is not particularly limited as long as it gives a polyamide by reaction with the polyfunctional amine. Examples of the polyfunctional acid halide include oxalic acid, malonic acid, maleic acid, fumaric acid, glutaric acid, 1,3,5-cyclohexanetricarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid. 1,3,5-benzenetricarboxylic acid, 1,2,4-benzenetricarboxylic acid, 1,3-benzenedicarboxylic acid, 1,4-benzenedicarboxylic acid and other halides can be used. Among acid halides, acid chlorides are preferred, and are acid halides of 1,3,5-benzenetricarboxylic acid, particularly in terms of economy, availability, ease of handling, and ease of reactivity. Trimesic acid halide is preferred. The said polyfunctional acid halide may be used individually by 1 type, or may mix and use 2 or more types.
 本願発明者らは鋭意検討を行った結果、分離機能層の表面ゼータ電位と、複合半透膜の透過水量および膜表面に付着した膜汚染物質の脱離性とが密接な関係があることを見出した。
 ゼータ電位とは超薄膜層表面の正味の固定電荷の尺度であり、本発明の薄膜層表面のゼータ電位は、電気移動度から、下記数式(1)に示すヘルムホルツ・スモルコフスキー(Helmholtz-Smoluchowski)の式によって求めることができる。
As a result of intensive studies, the inventors of the present application have found that the surface zeta potential of the separation functional layer is closely related to the amount of permeated water of the composite semipermeable membrane and the detachability of membrane contaminants attached to the membrane surface. I found it.
The zeta potential is a measure of the net fixed charge on the surface of the ultrathin film layer, and the zeta potential on the surface of the thin film layer of the present invention is calculated from the electric mobility according to Helmholtz-Smolchowski as shown in the following formula (1). It can be calculated by the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
(式(1)中、Uは電気移動度、εは溶液の誘電率、ηは溶液の粘度である。ここで、溶液の誘電率、粘度は、測定温度での文献値を使用した。) (In Formula (1), U is an electric mobility, (epsilon) is a dielectric constant of a solution, (eta) is a viscosity of a solution. Here, the dielectric constant of a solution and a viscosity used the literature value in measurement temperature.)
 ゼータ電位の測定原理について説明する。材料に接した(水)溶液には、材料表面の電荷の影響で、表面の近傍に流動できない静止層が存在する。ゼータ電位は、材料の静止層と流動層の境界面(すべり面)での溶液に対する電位である。
 ここで、石英ガラスセル中の水溶液を考えると、石英表面は通常マイナスに荷電されているため、セル表面付近にプラス荷電のイオンや粒子が集まる。一方、セル中心部にはマイナス荷電のイオンや粒子が多くなり、セル内でイオン分布が生じている。この状態で電場をかけると、セル内ではイオン分布を反映し、セル内の位置で異なる泳動速度でイオンが動く(電気浸透流という)。泳動速度はセル表面の電荷を反映したものであるので、この泳動速度分布を求めることにより、セル表面の電荷(表面電位)を評価することができる。
The principle of measuring the zeta potential will be described. In the (water) solution in contact with the material, there exists a stationary layer that cannot flow in the vicinity of the surface due to the influence of the charge on the surface of the material. The zeta potential is the potential for the solution at the interface (slip surface) between the stationary and fluidized layers of the material.
Here, considering the aqueous solution in the quartz glass cell, since the quartz surface is normally negatively charged, positively charged ions and particles gather near the cell surface. On the other hand, negatively charged ions and particles increase in the center of the cell, and ion distribution occurs in the cell. When an electric field is applied in this state, the ion distribution is reflected in the cell, and ions move at different migration speeds at positions in the cell (referred to as electroosmotic flow). Since the migration speed reflects the charge on the cell surface, the charge (surface potential) on the cell surface can be evaluated by obtaining this migration speed distribution.
 通常ゼータ電位の測定は、大きさ20mm×30mmの膜試料を用い、電気泳動させるための標準粒子は表面をヒドロキシプロピルセルロースでコーティングしたポリスチレン粒子(粒径520nm)を所定濃度に調整したNaCl水溶液に分散させて測定することができる。測定装置は例えば大塚電子株式会社製電気泳動光散乱光度計ELS-8000などが使用できる。 Usually, zeta potential is measured using a membrane sample having a size of 20 mm × 30 mm, and standard particles for electrophoresis are NaCl aqueous solutions in which polystyrene particles whose surface is coated with hydroxypropylcellulose (particle size: 520 nm) are adjusted to a predetermined concentration. It can be dispersed and measured. For example, an electrophoretic light scattering photometer ELS-8000 manufactured by Otsuka Electronics Co., Ltd. can be used.
 本発明の複合半透膜は、分離機能層の表面ゼータ電位が、pH6、NaCl10mMの条件において測定されたときに±15mV以内に制御されており(表面ゼータ電位A)、かつNaCl1mMの条件で測定したとき(表面ゼータ電位B)と表面ゼータ電位Aとの電位差が±10mV以上であることが必要である。 In the composite semipermeable membrane of the present invention, the surface zeta potential of the separation functional layer is controlled within ± 15 mV when measured under the conditions of pH 6 and NaCl 10 mM (surface zeta potential A), and measured under the condition of NaCl 1 mM. The difference between the surface zeta potential B and the surface zeta potential A must be ± 10 mV or more.
 ポリアミド分離機能層には、多官能アミンと多官能酸ハロゲン化物に由来する未反応のアミノ基とカルボキシル基が含まれ、それら官能基の解離度によってゼータ電位の値が変化する。分離機能層のpH6におけるゼータ電位は、膜汚染物質の吸着性に関係しており、ゼータ電位がNaCl10mMの条件において±15mV以内に制御されていると膜汚染物質と膜表面素材との相互作用を抑制することができる。ゼータ電位が±15mV以内に制御されていれば膜表面は電気的に中性であることを示しており、水中に存在している荷電基を有する膜汚染物質の電気的な相互作用を抑制するからである。ゼータ電位が±15mV以上の場合には、膜表面に電気的な偏りが生じるため、荷電基を有する膜汚染物質の電気的な相互作用が起こりやすくなる。 The polyamide separation functional layer contains unreacted amino groups and carboxyl groups derived from polyfunctional amines and polyfunctional acid halides, and the value of zeta potential varies depending on the degree of dissociation of these functional groups. The zeta potential at pH 6 of the separation functional layer is related to the adsorptivity of membrane contaminants. When the zeta potential is controlled within ± 15 mV under the condition of NaCl 10 mM, the interaction between membrane contaminants and membrane surface materials is affected. Can be suppressed. If the zeta potential is controlled within ± 15 mV, it indicates that the membrane surface is electrically neutral and suppresses the electrical interaction of membrane contaminants with charged groups present in water. Because. When the zeta potential is ± 15 mV or more, an electrical bias occurs on the film surface, so that an electrical interaction of a film contaminant having a charged group is likely to occur.
 一方、官能基の解離度が高いと、複合半透膜の塩除去性能および透過水量は高くなる。これは、分離機能層の官能基量が多くなることで、静電反発が大きくなったり、親水性が高くなったりするためと考えられる。本発明においては、NaCl10mMで測定したときのゼータ電位Aと、NaCl1mMの条件で測定したときの表面ゼータ電位Bとの電位差が±10mV以上であることにより、高塩濃度における膜汚染物質の脱離性に加え、高い塩除去性能、透過水量を同時に満たすことができる。かかる電位差が±10mV未満の場合には、透過水量が大幅に低下する、もしくは膜汚染物質との相互作用が強くなる。 On the other hand, when the degree of dissociation of the functional group is high, the salt removal performance and the amount of permeated water of the composite semipermeable membrane increase. This is presumably because the electrostatic repulsion increases or the hydrophilicity increases as the functional group amount of the separation functional layer increases. In the present invention, since the potential difference between the zeta potential A when measured with NaCl 10 mM and the surface zeta potential B when measured with NaCl 1 mM is ± 10 mV or more, desorption of membrane contaminants at a high salt concentration In addition to the properties, high salt removal performance and permeated water can be satisfied at the same time. When the potential difference is less than ± 10 mV, the amount of permeated water is greatly reduced or the interaction with membrane contaminants is strengthened.
 pH3、NaCl1mMの測定条件における前記分離機能層の表面ゼータ電位Cと、pH10、NaCl1mMの測定条件における前記分離機能層の表面ゼータ電位Dとの電位差は、複合半透膜の性能安定性と関係しており、40mV以下であることが複合半透膜を洗浄する際に汚染物質の剥離性が高いことから好ましく、より好ましくは25mV以下である。 The potential difference between the surface zeta potential C of the separation functional layer under pH 3 and NaCl 1 mM measurement conditions and the surface zeta potential D of the separation functional layer under pH 10 and NaCl 1 mM measurement conditions is related to the performance stability of the composite semipermeable membrane. It is preferable that it is 40 mV or less from the viewpoint of high releasability of contaminants when washing the composite semipermeable membrane, and more preferably 25 mV or less.
 上記ゼータ電位の範囲を満たすため、分離機能層中の官能基割合「(アミノ基のモル当量)/(アミド基のモル当量)」は好ましくは0.2以上であり、より好ましくは0.6以上である。「(アミノ基のモル当量)/(アミド基のモル当量)」の比が0.2以上であれば、ポリアミド分離機能層中の官能基量が十分なため膜の親水性を維持でき透過水量が向上するほか、後述する分離機能層へのコーティング層固定化に高い効果が得られる。 In order to satisfy the above zeta potential range, the functional group ratio “(molar equivalent of amino group) / (molar equivalent of amide group)” in the separation functional layer is preferably 0.2 or more, more preferably 0.6. That's it. If the ratio of “(mol equivalent of amino group) / (mole equivalent of amide group)” is 0.2 or more, the amount of functional groups in the polyamide separation functional layer is sufficient, so that the hydrophilicity of the membrane can be maintained and the amount of permeated water In addition, a high effect can be obtained in fixing the coating layer to the separation functional layer described later.
 ポリアミド分離機能層中の官能基量は、例えば、13C固体NMR法を用いることができる。具体的には、複合半透膜から基材を剥離し、ポリアミド分離機能層と多孔性支持層を得た後、多孔性支持層を溶解・除去し、ポリアミド分離機能層を得る。得られたポリアミド分離機能層をDD/MAS-13C固体NMR法により測定を行い、各官能基の炭素ピークまたは各官能基が結合している炭素ピークの積分値の比較から各官能基比を算出することができる。 For the functional group amount in the polyamide separation functional layer, for example, a 13 C solid state NMR method can be used. Specifically, the base material is peeled from the composite semipermeable membrane to obtain a polyamide separation functional layer and a porous support layer, and then the porous support layer is dissolved and removed to obtain a polyamide separation functional layer. The obtained polyamide separation functional layer was measured by DD / MAS- 13 C solid state NMR method, and the ratio of each functional group was calculated from the comparison of the integrated value of the carbon peak of each functional group or the carbon peak to which each functional group was bonded. Can be calculated.
 また、ポリアミド分離機能層の元素比率は、例えば、X線光電子分光法(XPS)を用いて分析することができる。具体的には、「Journal of Polymer Science」,Vol.26,559-572(1988)および「日本接着学会誌」,Vol.27,No.4(1991)で例示されているX線光電子分光法(XPS)を用いることにより求めることができる。 Further, the element ratio of the polyamide separation functional layer can be analyzed using, for example, X-ray photoelectron spectroscopy (XPS). Specifically, “Journal of Polymer Science”, Vol. 26, 559-572 (1988) and “Journal of the Adhesion Society of Japan”, Vol. 27, no. 4 (1991), X-ray photoelectron spectroscopy (XPS) can be used.
 分離機能層のゼータ電位をコントロールする方法としては、分離機能層を形成する際に分離機能層が有する官能基の量が少なくなるように制御する方法、分離機能層が有する官能基を他の構造に変換させる方法、分離機能層の表面に重合体をコーティング(被覆)する方法などがある。これらの方法を単独で使用しても、複数の方法を組み合わせて使用してもよい。しかし、単に重合体をコーティングする方法では、分離機能層と膜汚染物質の相互作用を低減させるが、膜の透過水量が低下するため、好ましくない。 As a method of controlling the zeta potential of the separation functional layer, a method of controlling the separation functional layer so that the amount of the functional group of the separation functional layer is reduced when forming the separation functional layer, and the functional group of the separation functional layer having another structure. And a method of coating the surface of the separation functional layer with a polymer. These methods may be used alone or a plurality of methods may be used in combination. However, the method of simply coating the polymer reduces the interaction between the separation functional layer and the membrane contaminant, but is not preferable because the amount of permeated water of the membrane is reduced.
 分離機能層の表面に重合体をコーティングする方法では、重合体が親水性化合物であることが好ましい。親水性化合物を用いることで被覆処理による複合半透膜の透過水量の低下を軽減できる。また、上記重合体が架橋重合体であることも好ましい。被覆する重合体が架橋重合体であると、複合半透膜を連続して使用した際や、薬液で洗浄した際に被覆層の剥離を抑制することができ、長期間安定した性能を発現することができる。 In the method of coating a polymer on the surface of the separation functional layer, the polymer is preferably a hydrophilic compound. By using the hydrophilic compound, it is possible to reduce a decrease in the amount of permeated water of the composite semipermeable membrane due to the coating treatment. It is also preferred that the polymer is a crosslinked polymer. When the polymer to be coated is a crosslinked polymer, peeling of the coating layer can be suppressed when the composite semipermeable membrane is used continuously or washed with a chemical solution, and stable performance is exhibited for a long time. be able to.
 本発明の親水性化合物は、膜表面の官能基と反応する反応性基を少なくとも1個有することが好ましい。反応性基は膜表面の官能基と共有結合を形成すればいずれでもよく、例えば、膜表面の酸ハロゲン化物と結合する反応性基としては、水酸基、アミノ基、エポキシ基などが挙げられる。具体的な親水性化合物の例としては、ポリビニルアルコール、ポリ酢酸ビニルの部分ケン化物、ポリエチレンイミン、ポリアリルアミン、ポリエピアミノヒドリン、アミン変性ポリエピクロルヒドリン、ポリオキシエチレンジプロピルアミン、アミノ基または水酸基を含むモノマーを用いた共重合体、酢酸ビニルとメタクリル酸エステル共重合体の部分ケン化物、酢酸ビニルと2-メタクリロイルオキシエチルホスホリルコリン共重合体の部分ケン化物などが挙げられる。これらは、単独で用いてもよいし、混合して用いてもよい。これらの中では、反応性、得られた膜の性能の点から、1級または2級アミノ化合物または水酸基を有する重合体が好ましく用いられる。アミノ基と酸ハロゲン化物が反応した場合は、架橋ポリアミド分離機能層と親水性化合物との間でアミド結合が形成され、水酸基と酸ハロゲン化物が反応した場合は、架橋ポリアミド分離機能層と親水性化合物との間でエステル結合が形成される。 The hydrophilic compound of the present invention preferably has at least one reactive group that reacts with a functional group on the film surface. The reactive group may be any as long as it forms a covalent bond with the functional group on the film surface. Examples of the reactive group that binds to the acid halide on the film surface include a hydroxyl group, an amino group, and an epoxy group. Specific examples of hydrophilic compounds include polyvinyl alcohol, partially saponified polyvinyl acetate, polyethyleneimine, polyallylamine, polyepiaminohydrin, amine-modified polyepichlorohydrin, polyoxyethylenedipropylamine, amino group or hydroxyl group. And a partially saponified product of vinyl acetate and a methacrylate ester copolymer, a partially saponified product of vinyl acetate and 2-methacryloyloxyethyl phosphorylcholine copolymer, and the like. These may be used alone or in combination. Among these, from the viewpoint of reactivity and the performance of the obtained film, a primary or secondary amino compound or a polymer having a hydroxyl group is preferably used. When the amino group reacts with the acid halide, an amide bond is formed between the crosslinked polyamide separation functional layer and the hydrophilic compound. When the hydroxyl group reacts with the acid halide, the crosslinked polyamide separation functional layer reacts with the hydrophilic property. An ester bond is formed with the compound.
 また、膜表面の官能基と反応する反応性基を少なくとも1個有する親水性化合物が、さらに膜表面の官能基と反応しない親水性基を有していることも好ましい態様である。親水性基としては、例えば、エーテル基、アミド基、エステル基、3級アミノ基、4級アンモニウム基、シアノ基、ニトロ基、アルコキシ基、カルボキシル基、カルボニル基、ケト基、アルコキシカルボニル基、アミド基、シアノ基、ホルミル基、メルカプト基、イミノ基、アルキルチオ基、スルフィニル基、スルホニル基、スルホ基、ニトロソ基、リン酸基、ホスホリルコリン基などが挙げられる。特に、エーテル基、アミド基、エステル基などの電気的に中性の親水性基が好ましい。また正荷電基と負荷電基を同量含む両性荷電ポリマーも本発明のゼータ電位を制御する上で好ましい。 It is also a preferred aspect that the hydrophilic compound having at least one reactive group that reacts with the functional group on the film surface further has a hydrophilic group that does not react with the functional group on the film surface. Examples of hydrophilic groups include ether groups, amide groups, ester groups, tertiary amino groups, quaternary ammonium groups, cyano groups, nitro groups, alkoxy groups, carboxyl groups, carbonyl groups, keto groups, alkoxycarbonyl groups, amides. Group, cyano group, formyl group, mercapto group, imino group, alkylthio group, sulfinyl group, sulfonyl group, sulfo group, nitroso group, phosphate group, phosphorylcholine group and the like. In particular, an electrically neutral hydrophilic group such as an ether group, an amide group or an ester group is preferred. An amphoteric charged polymer containing the same amount of positively charged groups and negatively charged groups is also preferable in controlling the zeta potential of the present invention.
 このような膜表面の官能基と反応する反応性基を少なくとも1個有する親水性化合物を、架橋性ポリアミド分離機能層表面の官能基と反応させ共有結合を形成して膜表面に固定することにより、吸着しているだけの場合に比べ、長期間安定した性能を発現することができる。 A hydrophilic compound having at least one reactive group that reacts with a functional group on the membrane surface reacts with a functional group on the surface of the crosslinkable polyamide separation functional layer to form a covalent bond and fix it on the membrane surface. Compared to the case of just adsorbing, stable performance can be expressed for a long time.
 前記分離機能層に存在する官能基は、適宜選択した化学反応によって、異なる官能基へ変換することが可能である。例えば、芳香族アミノ基は、四酸化二窒素や亜硝酸、硝酸、亜硫酸水素ナトリウム、次亜塩素酸ナトリウム等を試薬として用いることで、芳香族ジアゾニウム塩を経由したジアゾカップリング反応を起こす。またアミノ基とニトロソ化合物との反応等によってもアミノ基をアゾ基に変換することができる。反応する試薬の濃度や反応させるときの温度および時間を変えることで、前記分離機能層のゼータ電位をコントロールできる。また、官能基を変換させるに際して、反応前の官能基の量も得られる分離機能層のゼータ電位に影響を与えるので、多孔性支持層の厚みを薄くすることにより製造時の未反応物質の残存量を低下させる方法や、分離機能層を形成した後に熱水洗浄によって官能基を有する化合物を除去する方法などによっても、分離機能層のゼータ電位をコントロールできる。 The functional group present in the separation functional layer can be converted into a different functional group by an appropriately selected chemical reaction. For example, an aromatic amino group causes a diazo coupling reaction via an aromatic diazonium salt by using dinitrogen tetroxide, nitrous acid, nitric acid, sodium hydrogen sulfite, sodium hypochlorite, or the like as a reagent. An amino group can also be converted to an azo group by reaction of an amino group with a nitroso compound. The zeta potential of the separation functional layer can be controlled by changing the concentration of the reagent to be reacted and the temperature and time for the reaction. In addition, when the functional group is converted, the amount of the functional group before the reaction also affects the zeta potential of the obtained separation functional layer. Therefore, by reducing the thickness of the porous support layer, the unreacted substance remains at the time of production. The zeta potential of the separation functional layer can also be controlled by a method of reducing the amount or a method of removing the compound having a functional group by hot water washing after forming the separation functional layer.
 分離機能層を、アミノ基やカルボキシル基と反応する試薬に接触させた場合、分離機能層の黄色度は、15以上50以下であることが好ましく、20以上45以下であることがより好ましい。黄色度は分離機能層中のアゾ化合物およびアゾ基の量によって変化し、上記範囲内であると本発明のゼータ電位および親水性化合物の安定性を得ることができる。分離機能層の黄色度が15未満であると、分離機能層中におけるアゾ化合物の量が少ないため、本発明のゼータ電位を得ることができない。黄色度が、50を超えるとアゾ化合物の量が多いため透過水量が低くなる。 When the separation functional layer is brought into contact with a reagent that reacts with an amino group or a carboxyl group, the yellowness of the separation functional layer is preferably 15 or more and 50 or less, and more preferably 20 or more and 45 or less. The yellowness varies depending on the amount of the azo compound and azo group in the separation functional layer, and when it is within the above range, the zeta potential of the present invention and the stability of the hydrophilic compound can be obtained. When the yellowness of the separation functional layer is less than 15, the amount of the azo compound in the separation functional layer is small, so that the zeta potential of the present invention cannot be obtained. If the yellowness exceeds 50, the amount of azo compound is large and the amount of permeated water is low.
 アゾ化合物とは、アゾ基(-N=N-)を有する有機化合物であり、分離機能層を、アミノ基やカルボキシル基と反応する試薬に接触させた際に、分離機能層内で生成および保持される。 An azo compound is an organic compound having an azo group (—N═N—), and is produced and retained in the separation functional layer when the separation functional layer is brought into contact with a reagent that reacts with an amino group or a carboxyl group. Is done.
 黄色度とは、日本工業規格JIS K7373(2006)に規定される、重合体の色相が無色または白色から黄方向に離れる度合いのことで、プラスの値として表される。
 分離機能層の黄色度は、カラーメーターにより測定できる。例えば、支持膜上に分離機能層が設けられた複合半透膜において黄色度を測定する場合であれば、反射測定方法が簡便である。また、複合半透膜を分離機能層が下になるようにガラス板に乗せてから、支持膜のみを溶解する溶媒にて支持膜を溶解および除去し、ガラス板上に残る分離機能層試料を透過測定方法によって測定することもできる。なお、複合半透膜をガラス板に乗せる際、支持膜の基材は、あらかじめ剥離しておくことが好ましい。カラーメーターは、スガ試験器株式会社製SMカラーコンピュータSM-7などが使用できる。
The yellowness degree is a degree defined by Japanese Industrial Standards JIS K7373 (2006), which is the degree to which the hue of the polymer is separated from colorless or white in the yellow direction, and is expressed as a positive value.
The yellowness of the separation functional layer can be measured with a color meter. For example, when measuring yellowness in a composite semipermeable membrane in which a separation functional layer is provided on a support membrane, the reflection measurement method is simple. Also, after placing the composite semipermeable membrane on the glass plate so that the separation functional layer is on the bottom, dissolve and remove the support membrane with a solvent that dissolves only the support membrane, and remove the separation functional layer sample remaining on the glass plate. It can also be measured by a transmission measurement method. In addition, when putting a composite semipermeable membrane on a glass plate, it is preferable to peel beforehand the base material of a support film. As the color meter, SM color computer SM-7 manufactured by Suga Test Instruments Co., Ltd. can be used.
 本発明では、ポリアミド分離機能層がアミド基、アゾ基およびフェノール性水酸基を有し、かつ、フェノール性水酸基/アミド基の比を0.10以下とすることで、酸やアルカリとの接触後も透過水量および低ファウリング性の変化が小さい、耐薬品性の高い複合半透膜が得られるため好ましい。フェノール性水酸基は溶液のpHの変化に伴ってプロトン化、もしくは脱プロトン化を起こすため、分離機能層を構成するポリアミド鎖の荷電状態が変化し、ポリアミド鎖の高次構造が変化することで造水量や塩除去性能が変化することが懸念される。多官能芳香族アミンと多官能酸ハロゲン化物の界面重縮合で形成される架橋芳香族ポリアミドには、フェノール性水酸基は存在しないが、界面重縮合後の後処理で四酸化二窒素や亜硝酸、硝酸、亜硫酸水素ナトリウム、次亜塩素酸ナトリウム等の試薬と反応させることで、芳香族アミノ基が芳香族ジアゾニウム塩へと変換される。その後、水と接触することで芳香族ジアゾニウム塩がフェノール性水酸基へと変換される反応が生じる。また、芳香族ジアゾニウム塩に対してフェノール類を反応させる、ジアゾカップリング反応によっても、界面重縮合直後の架橋芳香族ポリアミドにはないフェノール性水酸基が導入される。 In the present invention, the polyamide separation functional layer has an amide group, an azo group, and a phenolic hydroxyl group, and the ratio of the phenolic hydroxyl group / amide group is 0.10 or less, so that even after contact with acid or alkali This is preferable because a composite semipermeable membrane with high chemical resistance and a small change in the amount of permeated water and low fouling property can be obtained. Since the phenolic hydroxyl group is protonated or deprotonated as the pH of the solution changes, the charge state of the polyamide chain constituting the separation functional layer changes and the higher order structure of the polyamide chain changes. There is concern that the amount of water and salt removal performance will change. Crosslinked aromatic polyamides formed by interfacial polycondensation of polyfunctional aromatic amines and polyfunctional acid halides do not have phenolic hydroxyl groups, but dinitrogen tetroxide, nitrous acid, By reacting with a reagent such as nitric acid, sodium hydrogen sulfite or sodium hypochlorite, the aromatic amino group is converted into an aromatic diazonium salt. Then, the reaction which an aromatic diazonium salt is converted into a phenolic hydroxyl group arises by contacting with water. Further, even by a diazo coupling reaction in which a phenol is reacted with an aromatic diazonium salt, a phenolic hydroxyl group that is not present in the crosslinked aromatic polyamide immediately after interfacial polycondensation is introduced.
 なお、フェノール性水酸基/アミド基の比の下限は特に限定されないが、この比は、例えば0.005以上、または0.01以上であってもよい。 The lower limit of the phenolic hydroxyl group / amide group ratio is not particularly limited, but this ratio may be, for example, 0.005 or more, or 0.01 or more.
 本発明の複合半透膜においては、架橋芳香族ポリアミドの後処理によって生じた芳香族ジアゾニウム塩に対して、電子供与基を持つ芳香族化合物、もしくは酸性度の高いプロトンを有する炭素酸を反応させることで、ジアゾカップリング反応を優先的に生じさせ、水との反応で生じるフェノール性水酸基の発生を抑制する。電子供与基とは、例えば、ヒドロキシ基、アミノ基、アルコキシ基が挙げられるが、上述した通りヒドロキシ基を持つフェノール性化合物を用いることは好ましくなく、水溶性を考慮すると芳香族アミノ基を持つ化合物を使用することが望ましい。 In the composite semipermeable membrane of the present invention, an aromatic diazonium salt produced by post-treatment of a crosslinked aromatic polyamide is reacted with an aromatic compound having an electron donating group or a carbon acid having a highly acidic proton. Thus, the diazo coupling reaction is preferentially generated, and the generation of phenolic hydroxyl groups caused by the reaction with water is suppressed. Examples of the electron donating group include a hydroxy group, an amino group, and an alkoxy group. However, as described above, it is not preferable to use a phenolic compound having a hydroxy group, and a compound having an aromatic amino group in consideration of water solubility. It is desirable to use
 分離機能層の自乗平均面粗さ(Rms)は、60nm以上であることが好ましい。自乗平均面粗さが60nm以上であることで、分離機能層の表面積が大きくなり、透過水量が高くなる。一方、コーティング層が厚く、自乗平均面粗さが60nm未満の場合には透過水量が大幅に低下する。 The root mean square surface roughness (Rms) of the separation functional layer is preferably 60 nm or more. When the root mean square surface roughness is 60 nm or more, the surface area of the separation functional layer is increased and the amount of permeated water is increased. On the other hand, when the coating layer is thick and the root mean square surface roughness is less than 60 nm, the amount of permeated water is greatly reduced.
 分離機能層の自乗平均面粗さは、界面重縮合によって分離機能層を形成する時のモノマー濃度や温度によって制御できる。例えば、界面重縮合時の温度が低いと自乗平均面粗さは小さくなり、温度が高いと自乗平均面粗さは大きくなる。また、分離機能層表面に重合体のコーティングを行う場合は、コーティング層が厚いと自乗平均面粗さは小さくなる。 The root mean square roughness of the separation functional layer can be controlled by the monomer concentration and temperature when the separation functional layer is formed by interfacial polycondensation. For example, when the temperature during interfacial polycondensation is low, the root mean square roughness decreases, and when the temperature is high, the root mean square roughness increases. In addition, when the polymer is coated on the surface of the separation functional layer, the root mean square roughness becomes small if the coating layer is thick.
 なお、自乗平均面粗さは原子間力顕微鏡(AFM)で測定できる。自乗平均面粗さは基準面から指定面までの偏差の自乗を平均した値の平方根である。ここで測定面とは全測定データの示す面をいい、指定面とは粗さ計測の対象となる面で、測定面のうちクリップで指定した特定の部分をいい、基準面とは指定面の高さの平均値をZ0とするとき、Z=Z0で表される平面をいう。AFMは、例えばデジタル・インスツルメンツ社製NanoScope IIIaが使用できる。 The root mean square surface roughness can be measured with an atomic force microscope (AFM). The root mean square surface roughness is the square root of the value obtained by averaging the squares of deviations from the reference plane to the specified plane. Here, the measurement surface is the surface indicated by all measurement data, the specified surface is the surface that is subject to roughness measurement, the specific portion specified by the clip of the measurement surface, and the reference surface is the specified surface When the average height is Z0, it means a plane represented by Z = Z0. As the AFM, for example, NanoScope IIIa manufactured by Digital Instruments can be used.
(1-2)支持膜
 支持膜は、分離性能を有するポリアミド分離機能層に強度を与えるためのものであり、それ自体は、実質的にイオン等の分離性能を有さない。支持膜は、基材と多孔性支持層からなる。
(1-2) Support Membrane The support membrane is for imparting strength to the polyamide separation functional layer having separation performance and itself has substantially no separation performance for ions and the like. A support membrane consists of a base material and a porous support layer.
 支持膜における孔のサイズや分布は特に限定されないが、例えば、均一で微細な孔、あるいは分離機能層が形成される側の表面からもう一方の面まで徐々に大きな微細孔をもち、かつ、分離機能層が形成される側の表面における微細孔の大きさが0.1nm以上100nm以下であるような支持膜が好ましい。 The size and distribution of pores in the support membrane are not particularly limited. For example, uniform and fine pores, or gradually having larger fine pores from the surface on the side where the separation functional layer is formed to the other surface, and separation. A support membrane in which the size of the micropores on the surface on which the functional layer is formed is 0.1 nm or more and 100 nm or less is preferable.
 支持膜は、例えば基材上に高分子重合体を流延することで、基材上に多孔性支持層を形成することにより得ることができる。支持膜に使用する材料やその形状は特に限定されない。 The support membrane can be obtained, for example, by forming a porous support layer on the base material by casting a polymer on the base material. The material used for the support membrane and its shape are not particularly limited.
 基材としては、ポリエステルおよび芳香族ポリアミドから選ばれる少なくとも一種からなる布帛が例示される。機械的および熱的に安定性の高いポリエステルを使用するのが特に好ましい。 Examples of the base material include a fabric made of at least one selected from polyester and aromatic polyamide. Particular preference is given to using polyesters which are highly mechanically and thermally stable.
 基材に用いられる布帛としては、長繊維不織布や短繊維不織布を好ましく用いることができる。基材上に高分子重合体の溶液を流延した際にそれが過浸透により裏抜けしたり、基材と多孔性支持層が剥離したり、さらには基材の毛羽立ち等により膜の不均一化やピンホール等の欠点が生じたりすることがないような優れた製膜性が要求されることから、長繊維不織布をより好ましく用いることができる。長繊維不織布としては、熱可塑性連続フィラメントより構成される長繊維不織布などが挙げられる。基材が長繊維不織布からなることにより、短繊維不織布を用いたときに起こる、毛羽立ちによって生じる高分子溶液流延時の不均一化や、膜欠点を抑制することができる。また、複合半透膜を連続製膜する工程においては、基材の製膜方向に張力がかけられることからも、基材としては、寸法安定性に優れる長繊維不織布を用いることが好ましい。特に、基材の多孔性支持層と反対側に配置される繊維の配向が、製膜方向に対してたて配向であることにより、基材の強度を保ち、膜破れ等を防ぐことができるので好ましい。ここで、たて配向とは、繊維の配向方向が製膜方向と平行であるか、または平行に近いことを言う。逆に、繊維の配向方向が製膜方向と直角であるか、または直角に近い場合は、よこ配向と言う。 As the fabric used for the substrate, a long fiber nonwoven fabric or a short fiber nonwoven fabric can be preferably used. When a polymer solution is cast on a substrate, it penetrates by over-penetration, the substrate and the porous support layer peel off, and the membrane is non-uniform due to fluffing of the substrate. The long fiber nonwoven fabric can be more preferably used because excellent film-forming properties that do not cause defects such as crystallization and pinholes are required. Examples of the long fiber nonwoven fabric include a long fiber nonwoven fabric composed of a thermoplastic continuous filament. When the base material is made of a long-fiber nonwoven fabric, it is possible to suppress non-uniformity and membrane defects caused by fluffing caused by fluffing, which occurs when a short-fiber nonwoven fabric is used. Further, in the step of continuously forming the composite semipermeable membrane, it is preferable to use a long-fiber non-woven fabric having excellent dimensional stability because the tension is applied in the film forming direction of the substrate. In particular, since the orientation of the fiber disposed on the side opposite to the porous support layer of the base material is the vertical orientation with respect to the film forming direction, the strength of the base material can be maintained and film breakage and the like can be prevented. Therefore, it is preferable. Here, the vertical orientation means that the orientation direction of the fibers is parallel to or close to the film forming direction. On the contrary, when the orientation direction of the fiber is perpendicular to the film forming direction or close to a right angle, the orientation is called horizontal orientation.
 不織布基材の繊維配向度としては、多孔性支持層と反対側における繊維の配向度が0°~25°の範囲にあることが好ましい。ここで繊維配向度とは、支持膜を構成する不織布基材の繊維の向きを示す指標であり、連続製膜を行う際の製膜方向を0°とし、製膜方向と直角方向、すなわち不織布基材の幅方向を90°としたときの、不織布基材を構成する繊維の平均の角度のことを言う。よって、繊維配向度が0°に近いほどたて配向であり、90°に近いほどよこ配向であることを示す。 The fiber orientation degree of the nonwoven fabric substrate is preferably such that the fiber orientation degree on the side opposite to the porous support layer is in the range of 0 ° to 25 °. Here, the degree of fiber orientation is an index indicating the direction of the fibers of the nonwoven fabric substrate constituting the support membrane, and the direction of film formation during continuous film formation is 0 °, that is, the direction perpendicular to the film formation direction, that is, the nonwoven fabric. The average angle of the fibers constituting the nonwoven fabric substrate when the width direction of the substrate is 90 °. Accordingly, the fiber orientation degree is closer to 0 °, and the fiber orientation is closer to 90 °.
 複合半透膜の製造工程やエレメントの製造工程には、加熱工程が含まれるが、加熱により支持膜または複合半透膜が収縮する現象が起きる。特に連続製膜において、幅方向には張力が付与されていないので、幅方向に収縮しやすい。支持膜または複合半透膜が収縮することにより、寸法安定性等に問題が生じるため、基材としては熱寸法変化率が小さいものが望まれる。 The manufacturing process of the composite semipermeable membrane and the manufacturing process of the element include a heating step, but a phenomenon occurs in which the support membrane or the composite semipermeable membrane contracts due to heating. In particular, in continuous film formation, since no tension is applied in the width direction, the film tends to shrink in the width direction. Since the support membrane or the composite semipermeable membrane shrinks, a problem arises in dimensional stability and the like, and therefore, a substrate having a low rate of thermal dimensional change is desired.
 不織布基材において多孔性支持層と反対側に配置される繊維と多孔性支持層側に配置される繊維との配向度差が10°~90°であると、熱による幅方向の変化を抑制することができ好ましい。 In the nonwoven fabric substrate, if the orientation degree difference between the fiber arranged on the opposite side of the porous support layer and the fiber arranged on the porous support layer side is 10 ° to 90 °, the change in the width direction due to heat is suppressed. This is preferable.
 基材の通気度は2.0cc/cm/sec以上であることが好ましい。通気度がこの範囲だと、複合半透膜の透過水量が高くなる。これは、支持膜を形成する工程で、基材上に高分子重合体を流延し、凝固浴に浸漬した際に、基材側からの非溶媒置換速度が速くなることで多孔性支持層の内部構造が変化し、その後の分離機能層を形成する工程においてモノマーの保持量や拡散速度に影響を及ぼすためと考えられる。 The air permeability of the substrate is preferably 2.0 cc / cm 2 / sec or more. When the air permeability is within this range, the amount of permeated water of the composite semipermeable membrane increases. This is a process of forming a support film. When a high molecular weight polymer is cast on a base material and immersed in a coagulation bath, the non-solvent replacement rate from the base material side is increased, thereby increasing the porous support layer. This is thought to be because the internal structure of the resin changes and affects the retention amount and diffusion rate of the monomer in the subsequent step of forming the separation functional layer.
 なお、通気度はJIS L1096(2010)に基づき、フラジール形試験機によって測定できる。例えば、200mm×200mmの大きさに基材を切り出し、サンプルとする。このサンプルをフラジール形試験機に取り付け、傾斜形気圧計が125Paの圧力になるように吸込みファンおよび空気孔を調整し、このときの垂直形気圧計の示す圧力と使用した空気孔の種類から基材を通過する空気量、すなわち通気度を算出することができる。フラジール形試験機は、カトーテック株式会社製KES-F8-AP1などが使用できる。 The air permeability can be measured by a Frazier type tester based on JIS L1096 (2010). For example, a base material is cut out to a size of 200 mm × 200 mm and used as a sample. This sample is attached to the Frazier type tester, and the suction fan and air hole are adjusted so that the inclined barometer has a pressure of 125 Pa. Based on the pressure indicated by the vertical barometer and the type of air hole used, The amount of air passing through the material, that is, the air permeability can be calculated. As the Frazier type tester, KES-F8-AP1 manufactured by Kato Tech Co., Ltd. can be used.
 また、基材の厚みは、10μm以上200μm以下の範囲内にあることが好ましく、より好ましくは30μm以上120μm以下の範囲内である。 The thickness of the substrate is preferably in the range of 10 μm to 200 μm, more preferably in the range of 30 μm to 120 μm.
 本発明において支持膜は、基材と多孔性支持層とを備えるものであり、実質的にイオン等の分離性能を有さず、実質的に分離性能を有する分離機能層に強度を与えるためのものである。 In the present invention, the support membrane includes a base material and a porous support layer, and has substantially no separation performance for ions or the like, and gives strength to the separation functional layer having separation performance substantially. Is.
 多孔性支持層の素材にはポリスルホン、ポリエーテルスルホン、ポリアミド、ポリエステル、セルロース系ポリマー、ビニルポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルホン、ポリフェニレンオキシドなどのホモポリマーあるいはコポリマーを単独であるいはブレンドして使用することができる。ここでセルロース系ポリマーとしては酢酸セルロース、硝酸セルロースなど、ビニルポリマーとしてはポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリアクリロニトリルなどが使用できる。中でもポリスルホン、ポリアミド、ポリエステル、酢酸セルロース、硝酸セルロース、ポリ塩化ビニル、ポリアクリロニトリル、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホンなどのホモポリマーまたはコポリマーが好ましい。より好ましくは酢酸セルロース、ポリスルホン、ポリフェニレンスルフィドスルホン、またはポリフェニレンスルホンが挙げられ、さらに、これらの素材の中では化学的、機械的、熱的に安定性が高く、成型が容易であることからポリスルホンが一般的に使用できる。 For the material of the porous support layer, polysulfone, polyethersulfone, polyamide, polyester, cellulosic polymer, vinyl polymer, polyphenylene sulfide, polyphenylene sulfide sulfone, polyphenylene sulfone, polyphenylene oxide, and the like homopolymers or copolymers alone or blended. Can be used. Here, cellulose acetate and cellulose nitrate can be used as the cellulose polymer, and polyethylene, polypropylene, polyvinyl chloride, polyacrylonitrile and the like can be used as the vinyl polymer. Among them, homopolymers or copolymers such as polysulfone, polyamide, polyester, cellulose acetate, cellulose nitrate, polyvinyl chloride, polyacrylonitrile, polyphenylene sulfide, and polyphenylene sulfide sulfone are preferable. More preferred is cellulose acetate, polysulfone, polyphenylene sulfide sulfone, or polyphenylene sulfone. Among these materials, polysulfone is highly stable chemically, mechanically and thermally, and is easy to mold. Can be used generally.
 具体的には、次の化学式に示す繰り返し単位からなるポリスルホンを用いると、支持膜の孔径が制御しやすく、寸法安定性が高いため好ましい。 Specifically, it is preferable to use polysulfone composed of repeating units represented by the following chemical formula because the pore diameter of the support membrane can be easily controlled and the dimensional stability is high.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 例えば、上記ポリスルホンのN,N-ジメチルホルムアミド(DMF)溶液を、密に織ったポリエステル布あるいはポリエステル不織布の上に一定の厚さに流延し、それを水中で湿式凝固させることによって、表面の大部分が直径数10nm以下の微細な孔を有した支持膜を得ることができる。 For example, the N, N-dimethylformamide (DMF) solution of the above polysulfone is cast on a densely woven polyester fabric or polyester nonwoven fabric to a certain thickness, and wet coagulated in water, so that the surface It is possible to obtain a support membrane having fine pores mostly having a diameter of several tens of nm or less.
 上記の支持膜の厚みは、得られる複合半透膜の強度およびそれをエレメントにしたときの充填密度に影響を与える。支持膜の厚みは、十分な機械的強度および充填密度を得るためには、30μm以上300μm以下の範囲内にあることが好ましく、より好ましくは100μm以上220μm以下の範囲内である。 The thickness of the above support membrane affects the strength of the resulting composite semipermeable membrane and the packing density when it is used as an element. In order to obtain sufficient mechanical strength and packing density, the thickness of the support film is preferably in the range of 30 μm to 300 μm, more preferably in the range of 100 μm to 220 μm.
 多孔性支持層の形態は、走査型電子顕微鏡や透過型電子顕微鏡、原子間顕微鏡により観察できる。例えば走査型電子顕微鏡で観察するのであれば、基材から多孔性支持層を剥がした後、これを凍結割断法で切断して断面観察のサンプルとする。このサンプルに白金または白金-パラジウムまたは四塩化ルテニウム、好ましくは四塩化ルテニウムを薄くコーティングして3~15kVの加速電圧で高分解能電界放射型走査電子顕微鏡(UHR-FE-SEM)によって観察する。高分解能電界放射型走査電子顕微鏡は、株式会社日立製作所製S-900型電子顕微鏡などが使用できる。 The morphology of the porous support layer can be observed with a scanning electron microscope, a transmission electron microscope, or an atomic microscope. For example, when observing with a scanning electron microscope, after peeling off the porous support layer from the substrate, it is cut by the freeze cleaving method to obtain a sample for cross-sectional observation. The sample is thinly coated with platinum or platinum-palladium or ruthenium tetrachloride, preferably ruthenium tetrachloride, and observed with a high resolution field emission scanning electron microscope (UHR-FE-SEM) at an acceleration voltage of 3 to 15 kV. As the high resolution field emission scanning electron microscope, an S-900 electron microscope manufactured by Hitachi, Ltd. can be used.
 本発明に使用する支持膜は、ミリポア社製“ミリポアフィルターVSWP”(商品名)や、東洋濾紙社製“ウルトラフィルターUK10”(商品名)のような各種市販材料から選択することもできるし、“オフィス・オブ・セイリーン・ウォーター・リサーチ・アンド・ディベロップメント・プログレス・レポート”No.359(1968)に記載された方法などに従って製造することもできる。 The support membrane used in the present invention can be selected from various commercially available materials such as “Millipore Filter VSWP” (trade name) manufactured by Millipore, and “Ultra Filter UK10” (trade name) manufactured by Toyo Roshi Kaisha, “Office of Saleen Water Research and Development Progress Report” No. 359 (1968).
 多孔性支持層の厚みは、20μm以上100μm以下の範囲内にあることが好ましい。多孔性支持層の厚みが20μm以上であることで、良好な耐圧性が得られると共に、欠点のない均一な支持膜を得ることができるので、このような多孔性支持層を備える複合半透膜は、良好な塩除去性能を示すことができる。多孔性支持層の厚みが100μmを超えると、製造時の未反応物質の残存量が増加し、それにより透過水量が低下するとともに、耐薬品性が低下する。 The thickness of the porous support layer is preferably in the range of 20 μm to 100 μm. Since the porous support layer has a thickness of 20 μm or more, good pressure resistance can be obtained and a uniform support film having no defects can be obtained. Therefore, a composite semipermeable membrane provided with such a porous support layer Can exhibit good salt removal performance. When the thickness of the porous support layer exceeds 100 μm, the remaining amount of unreacted substances at the time of production increases, thereby reducing the amount of permeated water and chemical resistance.
 なお、基材の厚みおよび複合半透膜の厚みは、デジタルシックネスゲージによって測定することができる。また、分離機能層の厚みは支持膜と比較して非常に薄いので、複合半透膜の厚みを支持膜の厚みとみなすことができる。従って、複合半透膜の厚みをデジタルシックネスゲージで測定し、複合半透膜の厚みから基材の厚みを引くことで、多孔性支持層の厚みを簡易的に算出することができる。デジタルシックネスゲージとしては、尾崎製作所株式会社のPEACOCKなどが使用できる。デジタルシックネスゲージを用いる場合は、20箇所について厚みを測定して平均値を算出する。 The thickness of the base material and the thickness of the composite semipermeable membrane can be measured with a digital thickness gauge. Moreover, since the thickness of the separation functional layer is very thin compared with the support membrane, the thickness of the composite semipermeable membrane can be regarded as the thickness of the support membrane. Therefore, the thickness of the porous support layer can be easily calculated by measuring the thickness of the composite semipermeable membrane with a digital thickness gauge and subtracting the thickness of the substrate from the thickness of the composite semipermeable membrane. As the digital thickness gauge, PEACOCK manufactured by Ozaki Manufacturing Co., Ltd. can be used. When a digital thickness gauge is used, the average value is calculated by measuring the thickness at 20 locations.
 なお、基材の厚みもしくは複合半透膜の厚みをシックネスゲージによって測定することが困難な場合、走査型電子顕微鏡で測定してもよい。1つのサンプルについて任意の5箇所における断面観察の電子顕微鏡写真から厚みを測定し、平均値を算出することで厚みが求められる。 In addition, when it is difficult to measure the thickness of the substrate or the thickness of the composite semipermeable membrane with a thickness gauge, the thickness may be measured with a scanning electron microscope. Thickness is calculated | required by measuring thickness from the electron micrograph of the cross-sectional observation in arbitrary five places about one sample, and calculating an average value.
2.製造方法
 次に、上記複合半透膜の製造方法について説明する。製造方法は、支持膜の形成工程および分離機能層の形成工程を含む。
2. Manufacturing method Next, the manufacturing method of the said composite semipermeable membrane is demonstrated. The manufacturing method includes a support film forming step and a separation functional layer forming step.
(2-1)支持膜の形成工程
 支持膜の形成工程は、基材に高分子溶液を塗布する工程および溶液を塗布した前記基材を凝固浴に浸漬させて高分子を凝固させる工程を含む。
 基材に高分子溶液を塗布する工程において、高分子溶液は、多孔性支持層の成分である高分子を、その高分子の良溶媒に溶解して調製する。
(2-1) Support film forming step The support film forming step includes a step of applying a polymer solution to a substrate and a step of immersing the substrate coated with the solution in a coagulation bath to coagulate the polymer. .
In the step of applying the polymer solution to the substrate, the polymer solution is prepared by dissolving a polymer that is a component of the porous support layer in a good solvent for the polymer.
 高分子溶液塗布時の高分子溶液の温度は、高分子としてポリスルホンを用いる場合、10℃~60℃の範囲が好ましい。高分子溶液の温度が、この範囲内であれば、高分子が析出することがなく、高分子溶液が基材の繊維間にまで充分含浸したのち固化される。その結果、アンカー効果により多孔性支持層が基材に強固に接合し、良好な支持膜を得ることができる。なお、高分子溶液の好ましい温度範囲は、用いる高分子の種類や、所望の溶液粘度などによって適宜調整することができる。 The temperature of the polymer solution during application of the polymer solution is preferably in the range of 10 ° C. to 60 ° C. when polysulfone is used as the polymer. If the temperature of the polymer solution is within this range, the polymer does not precipitate, and the polymer solution is sufficiently impregnated between the fibers of the base material and then solidified. As a result, the porous support layer is firmly bonded to the substrate by the anchor effect, and a good support film can be obtained. The preferred temperature range of the polymer solution can be adjusted as appropriate depending on the type of polymer used, the desired solution viscosity, and the like.
 基材上に高分子溶液を塗布した後、凝固浴に浸漬させるまでの時間は、0.1~5秒間の範囲であることが好ましい。凝固浴に浸漬するまでの時間がこの範囲であれば、高分子を含む有機溶媒溶液が基材の繊維間にまで充分含浸したのち固化される。なお、凝固浴に浸漬するまでの時間の好ましい範囲は、用いる高分子溶液の種類や、所望の溶液粘度などによって適宜調整することができる。 The time from application of the polymer solution on the substrate to immersion in the coagulation bath is preferably in the range of 0.1 to 5 seconds. If the time until dipping in the coagulation bath is within this range, the organic solvent solution containing the polymer is sufficiently impregnated between the fibers of the base material and then solidified. In addition, the preferable range of time until it immerses in a coagulation bath can be suitably adjusted with the kind of polymer solution to be used, desired solution viscosity, etc.
 凝固浴としては、通常水が使われるが、多孔性支持層の成分である高分子を溶解しないものであればよい。凝固浴の組成によって得られる支持膜の膜形態が変化し、それによって得られる複合半透膜も変化する。凝固浴の温度は、-20℃~100℃が好ましい。さらに好ましくは10℃~50℃である。凝固浴の温度がこの範囲より高いと、熱運動により凝固浴面の振動が激しくなり、膜形成後の膜表面の平滑性が低下しやすい。逆に温度が低すぎると凝固速度が遅くなり、製膜性が低下する。 As the coagulation bath, water is usually used, but any solid can be used as long as it does not dissolve the polymer that is a component of the porous support layer. The membrane form of the support membrane obtained by the composition of the coagulation bath changes, and the resulting composite semipermeable membrane also changes. The temperature of the coagulation bath is preferably −20 ° C. to 100 ° C. More preferably, it is 10 ° C to 50 ° C. When the temperature of the coagulation bath is higher than this range, the vibration of the coagulation bath surface becomes intense due to thermal motion, and the smoothness of the film surface after film formation tends to decrease. On the other hand, if the temperature is too low, the coagulation rate becomes slow and the film-forming property is lowered.
 次に、このようにして得られた支持膜を、膜中に残存する溶媒を除去するために熱水洗浄する。このときの熱水の温度は40℃~100℃が好ましく、さらに好ましくは60℃~95℃である。この範囲内であれば、支持膜の収縮度が大きくならず、透過水量が良好である。逆に、温度が低すぎると洗浄効果が小さい。 Next, the support membrane thus obtained is washed with hot water in order to remove the solvent remaining in the membrane. The temperature of the hot water at this time is preferably 40 ° C. to 100 ° C., more preferably 60 ° C. to 95 ° C. Within this range, the shrinkage of the support membrane does not increase and the amount of permeated water is good. Conversely, if the temperature is too low, the cleaning effect is small.
(2-2)分離機能層の形成工程
 次に、複合半透膜を構成する分離機能層の形成工程を説明する。ポリアミド分離機能層の形成工程では、前述の多官能アミンを含有する水溶液と、前述の多官能酸ハロゲン化物を含有する有機溶媒溶液とを用い、支持膜の表面で界面重縮合を行うことにより、ポリアミド分離機能層を形成する。
(2-2) Formation Process of Separation Function Layer Next, the formation process of the separation function layer constituting the composite semipermeable membrane will be described. In the formation process of the polyamide separation functional layer, by performing interfacial polycondensation on the surface of the support membrane using the aqueous solution containing the polyfunctional amine described above and the organic solvent solution containing the polyfunctional acid halide described above, A polyamide separation functional layer is formed.
 多官能酸ハロゲン化物を溶解する有機溶媒としては、水と非混和性のものであって、支持膜を破壊しないものであり、かつ、架橋ポリアミドの生成反応を阻害しないものであればいずれであってもよい。代表例としては、液状の炭化水素、トリクロロトリフルオロエタンなどのハロゲン化炭化水素が挙げられる。オゾン層を破壊しない物質であることや入手のしやすさ、取り扱いの容易さ、取り扱い上の安全性を考慮すると、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ヘプタデカン、ヘキサデカン、シクロオクタン、エチルシクロヘキサン、1-オクテン、1-デセンなどの単体あるいはこれらの混合物が好ましく用いられる。 Any organic solvent that dissolves the polyfunctional acid halide can be used as long as it is immiscible with water, does not destroy the support membrane, and does not inhibit the formation reaction of the crosslinked polyamide. May be. Typical examples include liquid hydrocarbons and halogenated hydrocarbons such as trichlorotrifluoroethane. In consideration of being a substance that does not destroy the ozone layer, availability, ease of handling, and safety in handling, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, heptadecane, A simple substance such as hexadecane, cyclooctane, ethylcyclohexane, 1-octene, 1-decene or a mixture thereof is preferably used.
 多官能アミン水溶液や多官能酸ハロゲン化物を含有する有機溶媒溶液には、両成分間の反応を妨害しないものであれば、必要に応じて、アシル化触媒や極性溶媒、酸捕捉剤、界面活性剤、酸化防止剤等の化合物が含まれていてもよい。 For organic solvent solution containing polyfunctional amine aqueous solution or polyfunctional acid halide, acylation catalyst, polar solvent, acid scavenger, surface activity, if necessary, as long as they do not interfere with the reaction between both components A compound such as an agent and an antioxidant may be contained.
 界面重縮合を支持膜上で行うために、まず、多官能アミン水溶液で支持膜表面を被覆する。ここで、多官能アミンを含有する水溶液の濃度は、0.1重量%以上20重量%以下が好ましく、より好ましくは0.5重量%以上15重量%以下である。 In order to perform interfacial polycondensation on the support membrane, first, the surface of the support membrane is coated with a polyfunctional amine aqueous solution. Here, the concentration of the aqueous solution containing the polyfunctional amine is preferably 0.1% by weight or more and 20% by weight or less, more preferably 0.5% by weight or more and 15% by weight or less.
 多官能アミン水溶液で支持膜表面を被覆する方法としては、支持膜の表面がこの水溶液によって均一にかつ連続的に被覆されればよく、公知の塗布手段、例えば、水溶液を支持膜表面にコーティングする方法、支持膜を水溶液に浸漬する方法等で行えばよい。支持膜と多官能アミン水溶液との接触時間は、5秒以上10分以下の範囲内であることが好ましく、10秒以上3分以下の範囲内であるとさらに好ましい。次いで、過剰に塗布された水溶液を液切り工程により除去することが好ましい。液切りの方法としては、例えば膜面を垂直方向に保持して自然流下させる方法等がある。液切り後、膜面を乾燥させ、水溶液の水の全部あるいは一部を除去してもよい。 As a method for coating the surface of the supporting membrane with the polyfunctional amine aqueous solution, the surface of the supporting membrane may be uniformly and continuously coated with this aqueous solution, and a known coating means, for example, an aqueous solution is coated on the surface of the supporting membrane. A method, a method of immersing the support film in an aqueous solution, or the like may be performed. The contact time between the support membrane and the polyfunctional amine aqueous solution is preferably in the range of 5 seconds to 10 minutes, and more preferably in the range of 10 seconds to 3 minutes. Next, it is preferable to remove the excessively applied aqueous solution by a liquid draining step. As a method for draining liquid, for example, there is a method in which the film surface is allowed to flow naturally while being held in a vertical direction. After draining, the membrane surface may be dried to remove all or part of the water in the aqueous solution.
 その後、多官能アミン水溶液で被覆した支持膜に、前述の多官能酸ハロゲン化物を含有する有機溶媒溶液を塗布し、界面重縮合により架橋ポリアミドの分離機能層を形成させる。界面重縮合を実施する時間は、0.1秒以上3分以下が好ましく、0.1秒以上1分以下であるとより好ましい。 Thereafter, an organic solvent solution containing the above-mentioned polyfunctional acid halide is applied to a support film coated with an aqueous polyfunctional amine solution, and a separation functional layer of crosslinked polyamide is formed by interfacial polycondensation. The time for performing the interfacial polycondensation is preferably from 0.1 second to 3 minutes, and more preferably from 0.1 second to 1 minute.
 有機溶媒溶液における多官能酸ハロゲン化物の濃度は、特に限定されないが、低すぎると活性層である分離機能層の形成が不十分となり欠点になる可能性があり、高すぎるとコスト面から不利になるため、0.01重量%以上1.0重量%以下程度が好ましい。 The concentration of the polyfunctional acid halide in the organic solvent solution is not particularly limited. However, if it is too low, formation of the separation functional layer as an active layer may be insufficient, which may be a disadvantage. Therefore, it is preferably about 0.01% by weight or more and 1.0% by weight or less.
 次に、反応後の有機溶媒溶液を液切り工程により除去することが好ましい。有機溶媒の除去は、例えば、膜を垂直方向に把持して過剰の有機溶媒を自然流下して除去する方法を用いることができる。この場合、垂直方向に把持する時間としては、1分以上5分以下の間にあることが好ましく、1分以上3分以下の間であるとより好ましい。把持する時間が1分間以上であることで目的の機能を有する分離機能層を得やすく、3分間以下であることで有機溶媒の過乾燥による欠点の発生を抑制できるので、性能低下を抑制することができる。 Next, it is preferable to remove the organic solvent solution after the reaction by a liquid draining step. For removing the organic solvent, for example, a method of removing the excess organic solvent by naturally flowing it by holding the film in the vertical direction can be used. In this case, the time for gripping in the vertical direction is preferably between 1 minute and 5 minutes, and more preferably between 1 minute and 3 minutes. When the holding time is 1 minute or longer, it is easy to obtain a separation functional layer having the desired function, and when it is 3 minutes or shorter, generation of defects due to over-drying of the organic solvent can be suppressed, thereby suppressing deterioration in performance. Can do.
 上述の方法により得られた複合半透膜は、さらに、25℃~90℃の範囲内で1分間~60分間熱水で洗浄処理する工程を付加することで、複合半透膜の溶質阻止性能や透過水量をより一層向上させることができる。ただし、熱水の温度が高すぎた場合、熱水洗浄処理後に急激に冷却すると耐薬品性が低下する。そのため、熱水洗浄は、25℃~60℃の範囲内で行うことが好ましい。また、60℃を超えて90℃以下の高温で熱水洗浄処理する際には、熱水洗浄処理後は、緩やかに冷却することが好ましい。例えば、段階的に低い温度の熱水と接触させて室温まで冷却させる方法等がある。 The composite semipermeable membrane obtained by the above-described method is further added with a process of washing with hot water for 1 minute to 60 minutes within the range of 25 ° C to 90 ° C, so that the solute blocking performance of the composite semipermeable membrane is added. And the amount of permeated water can be further improved. However, if the temperature of the hot water is too high, the chemical resistance decreases if it is cooled rapidly after the hot water washing treatment. Therefore, the hot water cleaning is preferably performed within the range of 25 ° C to 60 ° C. In addition, when the hot water cleaning process is performed at a high temperature exceeding 60 ° C. and not higher than 90 ° C., it is preferable to cool slowly after the hot water cleaning process. For example, there is a method of cooling to room temperature by contacting with low temperature hot water stepwise.
 また、上記の熱水洗浄する工程において、熱水中に酸またはアルコールが含まれていてもよい。酸またはアルコールを含むことで、分離機能層における水素結合の形成をより制御しやすくなる。酸としては、塩酸、硫酸、リン酸などの無機酸や、クエン酸、シュウ酸などの有機酸などが挙げられる。酸の濃度は、pH2以下となるように調整することが好ましく、pH1以下であるとより好ましい。アルコールとしては、メチルアルコール、エチルアルコール、イソプロピルアルコールなどの1価アルコールや、エチレングリコール、グリセリンなどの多価アルコールが挙げられる。アルコールの濃度は、好ましくは10~100重量%であり、より好ましくは10~50重量%である。 In the hot water washing step, acid or alcohol may be contained in the hot water. By containing an acid or alcohol, it becomes easier to control the formation of hydrogen bonds in the separation functional layer. Examples of the acid include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, and organic acids such as citric acid and oxalic acid. The acid concentration is preferably adjusted to be pH 2 or less, more preferably pH 1 or less. Examples of the alcohol include monohydric alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol, and polyhydric alcohols such as ethylene glycol and glycerin. The concentration of the alcohol is preferably 10 to 100% by weight, more preferably 10 to 50% by weight.
 分離機能層が有する官能基を変換させる方法により分離機能層のゼータ電位をコントロールする場合は、次に、上記の分離機能層を、分離機能層中に含まれる未反応の官能基と反応する試薬に接触させる。反応する試薬は、特に限定されるものではないが、例えば分離機能層中の第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生成する亜硝酸およびその塩、ニトロシル化合物などの水溶液が挙げられる。亜硝酸やニトロシル化合物の水溶液は気体を発生して分解しやすいので、例えば、亜硝酸塩と酸性溶液との反応によって亜硝酸を逐次生成するのが好ましい。一般に、亜硝酸塩は水素イオンと反応して亜硝酸(HNO)を生成するが、水溶液のpHが7以下、好ましくはpH5以下、さらに好ましくはpH4以下で効率よく生成する。中でも、取り扱いの簡便性から水溶液中で塩酸または硫酸と反応させた亜硝酸ナトリウムの水溶液が特に好ましい。 When the zeta potential of the separation functional layer is controlled by a method for converting the functional group of the separation functional layer, the reagent that reacts the separation functional layer with an unreacted functional group contained in the separation functional layer. Contact. The reagent to be reacted is not particularly limited, and examples thereof include aqueous solutions of nitrous acid and salts thereof, nitrosyl compounds, etc. that react with primary amino groups in the separation functional layer to form a diazonium salt or a derivative thereof. It is done. Since an aqueous solution of nitrous acid or a nitrosyl compound easily generates gas and decomposes, it is preferable to sequentially generate nitrous acid by, for example, a reaction between nitrite and an acidic solution. In general, nitrite reacts with hydrogen ions to produce nitrous acid (HNO 2 ), but is efficiently produced when the aqueous solution has a pH of 7 or less, preferably pH 5 or less, more preferably pH 4 or less. Among these, an aqueous solution of sodium nitrite reacted with hydrochloric acid or sulfuric acid in an aqueous solution is particularly preferable because of easy handling.
 前記第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生成する試薬中の亜硝酸または亜硝酸塩の濃度は、好ましくは0.01~1重量%の範囲である。0.01重量%以上の濃度では十分な効果を得やすく、亜硝酸または亜硝酸塩濃度が1重量%以下である場合、溶液の取扱いが容易となる。 The concentration of nitrous acid or nitrite in the reagent that reacts with the primary amino group to produce a diazonium salt or a derivative thereof is preferably in the range of 0.01 to 1% by weight. When the concentration is 0.01% by weight or more, it is easy to obtain a sufficient effect. When the concentration of nitrous acid or nitrite is 1% by weight or less, handling of the solution becomes easy.
 亜硝酸水溶液の温度は15℃~45℃が好ましい。溶液の温度が15℃未満の温度であると反応に時間がかかり、45℃を超えると亜硝酸の分解が早く取り扱いが困難である。 The temperature of the nitrous acid aqueous solution is preferably 15 ° C to 45 ° C. When the temperature of the solution is lower than 15 ° C, the reaction takes time, and when it exceeds 45 ° C, decomposition of nitrous acid is quick and difficult to handle.
 亜硝酸水溶液との接触時間は、ジアゾニウム塩および/またはその誘導体が生成する時間であればよく、高濃度では短時間で処理が可能であるが、低濃度であると長時間必要である。そのため、上記濃度の溶液では、接触時間は10分間以内であることが好ましく、3分間以内であることがより好ましい。また、接触させる方法は特に限定されず、試薬の溶液を塗布しても、試薬の溶液に複合半透膜を浸漬させてもよい。試薬を溶かす溶媒は、試薬が溶解でき、かつ、複合半透膜が侵食されなければ、いかなる溶媒を用いてもかまわない。また、溶液には、第一級アミノ基と試薬との反応を妨害しないものであれば、界面活性剤や酸性化合物、アルカリ性化合物などが含まれていてもよい。 The contact time with the nitrous acid aqueous solution may be a time for forming a diazonium salt and / or a derivative thereof, and can be processed in a short time at a high concentration, but a long time is required at a low concentration. Therefore, in the solution having the above concentration, the contact time is preferably within 10 minutes, and more preferably within 3 minutes. The contacting method is not particularly limited, and the composite semipermeable membrane may be immersed in the reagent solution even if the reagent solution is applied. As the solvent for dissolving the reagent, any solvent may be used as long as the reagent can be dissolved and the composite semipermeable membrane is not eroded. The solution may contain a surfactant, an acidic compound, an alkaline compound, or the like as long as it does not interfere with the reaction between the primary amino group and the reagent.
 接触により生成したジアゾニウム塩またはその誘導体の一部は、水と反応することにより、フェノール性水酸基へと変換される。また、支持膜や分離機能層を形成する材料中の芳香環、または分離機能層に含まれる化合物の芳香環とも反応し、アゾ基を形成する。 A part of the diazonium salt produced by contact or a derivative thereof is converted into a phenolic hydroxyl group by reacting with water. Moreover, it reacts with the aromatic ring in the material forming the support membrane or the separation functional layer or the aromatic ring of the compound contained in the separation functional layer to form an azo group.
 次に、ジアゾニウム塩またはその誘導体が生成した複合半透膜を、ジアゾニウム塩またはその誘導体と反応する試薬とさらに接触させてもよい。ここで用いる試薬とは、塩化物イオン、臭化物イオン、シアン化物イオン、ヨウ化物イオン、フッ化ホウ素酸、次亜リン酸、亜硫酸水素ナトリウム、亜硫酸イオン、芳香族アミン、フェノール類、硫化水素、チオシアン酸等が挙げられる。
 例えば、塩化銅(I)、臭化銅(I)、ヨウ化カリウムなどと反応させることで、ハロゲンを導入することができる。また、芳香族アミン、フェノール類と接触させることでジアゾカップリング反応が起こり膜面に芳香族を導入することが可能となる。なお、これらの試薬は単一で用いてもよく、複数混合させて用いてもよく、異なる試薬に複数回接触させてもよい。これらの試薬の中でも、特にジアゾカップリング反応を起こす試薬が、複合半透膜のホウ素除去率向上に効果的に働くため好ましく利用される。これはジアゾカップリング反応によってアミノ基の代わりに導入される置換基がよりかさ高く、分離機能層内に存在する孔を塞ぐ効果が得られたためであると考えられる。
 ジアゾカップリング反応が生じる試薬としては、電子豊富な芳香環または複素芳香環を持つ化合物が挙げられる。電子豊富な芳香環または複素芳香環を持つ化合物としては、芳香族アミン誘導体、複素芳香族アミン誘導体、フェノール誘導体、ヒドロキシ複素芳香環誘導体が挙げられる。上記化合物の具体的な例としては、例えば、アニリン、オルト位やメタ位、パラ位のいずれかの位置関係でベンゼン環に結合したメトキシアニリン、2個のアミノ基がオルト位やメタ位、パラ位のいずれかの位置関係でベンゼン環に結合したフェニレンジアミン、アミノ基とヒドロキシ基がオルト位やメタ位、パラ位のいずれかの位置関係でベンゼン環に結合したアミノフェノール、1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、3,5-ジアミノ安息香酸、3-アミノベンジルアミン、4-アミノベンジルアミン、スルファニル酸、3,3’-ジヒドロキシベンジジン、1-アミノナフタレン、2-アミノナフタレン、1-アミノ-2-ナフトール-4-スルホン酸、2-アミノ-8-ナフトール-6-スルホン酸、2-アミノ-5-ナフトール-7-スルホン酸、またはそのN-アルキル化物、およびその塩類、フェノール、オルト位やメタ位、パラ位のいずれかのクレゾール、カテコール、レゾルシノール、ヒドロキノン、フロログルシノール、ヒドロキシキノール、ピロガロール、チロシン、1-ナフトール、2-ナフトールおよびその塩等が挙げられる。
Next, the composite semipermeable membrane formed with the diazonium salt or derivative thereof may be further contacted with a reagent that reacts with the diazonium salt or derivative thereof. Reagents used here are chloride ion, bromide ion, cyanide ion, iodide ion, boron fluoride, hypophosphorous acid, sodium bisulfite, sulfite ion, aromatic amine, phenols, hydrogen sulfide, thiocyanate. An acid etc. are mentioned.
For example, halogen can be introduced by reacting with copper (I) chloride, copper (I) bromide, potassium iodide, or the like. Moreover, a diazo coupling reaction occurs by making it contact with an aromatic amine and phenols, and it becomes possible to introduce | transduce an aromatic into a film surface. In addition, these reagents may be used alone, may be used by mixing a plurality, or may be brought into contact with different reagents a plurality of times. Among these reagents, a reagent that causes a diazo coupling reaction is preferably used because it effectively works to improve the boron removal rate of the composite semipermeable membrane. This is presumably because the substituent introduced instead of the amino group by the diazo coupling reaction is bulky, and the effect of closing the pores existing in the separation functional layer was obtained.
Examples of the reagent that causes the diazo coupling reaction include compounds having an electron-rich aromatic ring or heteroaromatic ring. Examples of the compound having an electron-rich aromatic ring or heteroaromatic ring include aromatic amine derivatives, heteroaromatic amine derivatives, phenol derivatives, and hydroxyheteroaromatic ring derivatives. Specific examples of the above compounds include, for example, aniline, methoxyaniline bonded to the benzene ring in any positional relationship of ortho position, meta position, and para position, and two amino groups in the ortho position, meta position, and para position. Phenylenediamine bonded to the benzene ring in any position of the position, aminophenol in which the amino group and hydroxy group are bonded to the benzene ring in any position of the ortho, meta, or para positions, 1, 3, 5 -Triaminobenzene, 1,2,4-triaminobenzene, 3,5-diaminobenzoic acid, 3-aminobenzylamine, 4-aminobenzylamine, sulfanilic acid, 3,3'-dihydroxybenzidine, 1-aminonaphthalene 2-aminonaphthalene, 1-amino-2-naphthol-4-sulfonic acid, 2-amino-8-naphthol-6-sulfonic acid, 2-amino-5-naphthol-7-sulfonic acid, or an N-alkylated product thereof, and salts thereof, phenol, cresol in any of ortho, meta, and para positions, catechol, resorcinol, hydroquinone, phloroglucinol, Examples thereof include hydroxyquinol, pyrogallol, tyrosine, 1-naphthol, 2-naphthol and salts thereof.
 これらのジアゾニウム塩またはその誘導体と反応させる試薬の濃度と時間は、目的の効果を得るために適宜調節することができる。接触させる温度は10~90℃が好ましく、20~60℃がより好ましい。接触温度が10℃未満の時には反応が進みにくく、望む効果が得られずに、水との反応によってフェノール性水酸基へと変換される場合があり、90℃より高温では重合体の収縮がおこり透過水量が低下してしまう場合がある。また、試薬の濃度は0.01~10重量%が好ましく、0.05~1重量%がより好ましい。濃度が0.01重量%よりも低いときはジアゾニウム塩またはその誘導体との反応に長時間を要する場合があり、10重量%よりも高いとジアゾニウム塩またはその誘導体との反応を制御することが困難となる場合がある。 The concentration and time of the reagent reacted with these diazonium salts or derivatives thereof can be adjusted as appropriate in order to obtain the desired effect. The contacting temperature is preferably 10 to 90 ° C, more preferably 20 to 60 ° C. When the contact temperature is less than 10 ° C, the reaction is difficult to proceed, and the desired effect may not be obtained, and may be converted to a phenolic hydroxyl group by reaction with water. At temperatures higher than 90 ° C, the polymer shrinks and permeates. The amount of water may decrease. The concentration of the reagent is preferably 0.01 to 10% by weight, more preferably 0.05 to 1% by weight. When the concentration is lower than 0.01% by weight, the reaction with the diazonium salt or a derivative thereof may take a long time. When the concentration is higher than 10% by weight, it is difficult to control the reaction with the diazonium salt or the derivative thereof. It may become.
 次に、上記分離機能層の上に親水性化合物を設ける工程について説明する。親水性化合物は、親水性基を有する化合物を含む溶液を分離機能層上に被覆した後、加熱することによって形成する。 Next, the process of providing a hydrophilic compound on the separation functional layer will be described. The hydrophilic compound is formed by coating a solution containing a compound having a hydrophilic group on the separation functional layer and then heating.
 親水性化合物は単独であっても数種混合して用いてもよい。親水性化合物は、重量濃度で10ppm~1%の溶液として使用するのが好ましい。親水性化合物の濃度が10ppm未満であれば、分離機能層の被覆が不十分であり、膜汚染物質の付着が顕著になるため洗浄時に膜汚染物質を脱離させることが困難となる。1%を超えるとコーティング層が厚くなるため、膜最表面の電位を反映する表面ゼータ電位Aと、水中に遊離するイオンの影響が少なく分離機能層の電位を反映すると考えられる表面ゼータ電位Bとの電位差±10mV以上を達成することができない。
 上記の親水性化合物を含む溶液に用いる溶媒としては、水や低級アルコール、ハロゲン化炭化水素、アセトン、アセトニトリルなどが好適に用いられる。これらは1種を単独で用いても2種以上を混合して用いてもよい。
 溶液には必要に応じて他の化合物を混合してもかまわない。たとえば、反応を促進するため、炭酸ナトリウム、水酸化ナトリウム、リン酸ナトリウムなどのアルカリ性金属化合物を添加してもよいし、残存する水と非混和性の溶媒や、遊離多官能酸ハロゲン化物とアミン化合物との反応生成物を除去するため、ドデシル硫酸ソーダ、ベンゼンスルホン酸ソーダなどの界面活性剤を添加することも好ましい。
The hydrophilic compounds may be used alone or in combination. The hydrophilic compound is preferably used as a solution having a weight concentration of 10 ppm to 1%. If the concentration of the hydrophilic compound is less than 10 ppm, the separation functional layer is not sufficiently coated, and the adhesion of the membrane contaminants becomes remarkable, so that it is difficult to desorb the membrane contaminants during the cleaning. Since the coating layer becomes thicker than 1%, the surface zeta potential A that reflects the potential of the outermost surface of the membrane and the surface zeta potential B that is considered to reflect the potential of the separation functional layer with little influence of ions liberated in water. The potential difference of ± 10 mV or more cannot be achieved.
As the solvent used in the solution containing the hydrophilic compound, water, lower alcohol, halogenated hydrocarbon, acetone, acetonitrile, or the like is preferably used. These may be used alone or in combination of two or more.
Other compounds may be mixed in the solution as necessary. For example, to accelerate the reaction, an alkaline metal compound such as sodium carbonate, sodium hydroxide, or sodium phosphate may be added, or the remaining water-immiscible solvent, free polyfunctional acid halide and amine In order to remove the reaction product with the compound, it is also preferable to add a surfactant such as sodium dodecyl sulfate or sodium benzenesulfonate.
 親水性化合物を架橋する方法は特に限定されるものではないが、好ましくは熱架橋を行う。熱架橋を行う際の加熱方法としては、たとえば、熱風を吹き付ける方法を用いることができる。その場合の加熱温度は、30~150℃の範囲内にあることが好ましく、30~130℃の範囲内にあるとより好ましく、60~100℃の範囲内にあるとさらに好ましい。加熱温度が30℃を下回ると、十分な加熱が行われず架橋反応速度が低下する傾向にあり、150℃を超えると副反応が進行しやすくなる。また、150℃を超えて熱架橋を行うと、複合半透膜の熱収縮が大きくなることがあり、透過水量が低くなる傾向にある。 The method for crosslinking the hydrophilic compound is not particularly limited, but preferably thermal crosslinking is performed. As a heating method when performing thermal crosslinking, for example, a method of blowing hot air can be used. In this case, the heating temperature is preferably within the range of 30 to 150 ° C., more preferably within the range of 30 to 130 ° C., and even more preferably within the range of 60 to 100 ° C. When the heating temperature is lower than 30 ° C, sufficient heating is not performed and the crosslinking reaction rate tends to decrease. When the heating temperature is higher than 150 ° C, the side reaction tends to proceed. Moreover, when thermal crosslinking is performed at a temperature exceeding 150 ° C., the thermal shrinkage of the composite semipermeable membrane may increase, and the amount of permeated water tends to decrease.
 親水性化合物の架橋には、架橋剤を用いることが好ましい。架橋剤としては例えば前述した、酸またはアルカリや、グリオキサールやグルタルアルデヒドなど、1分子中に少なくとも2個の官能基を有するアルデヒドなどを挙げることができる。特に、架橋重合体の原料がポリビニルアルコール、架橋剤がグルタルアルデヒドであり、架橋重合体がポリビニルアルコールとグルタルアルデヒドの反応物を含むことが好ましい。 It is preferable to use a crosslinking agent for crosslinking of the hydrophilic compound. Examples of the crosslinking agent include the aldehydes having at least two functional groups in one molecule, such as the acid or alkali, glyoxal, and glutaraldehyde described above. In particular, the raw material of the crosslinked polymer is preferably polyvinyl alcohol, the crosslinking agent is glutaraldehyde, and the crosslinked polymer preferably contains a reaction product of polyvinyl alcohol and glutaraldehyde.
 架橋剤の添加濃度としては、0.01~5.0重量%の範囲内にあることが好ましく、0.01~1.0重量%の範囲内にあるとより好ましく、0.01~0.5重量%の範囲内にあるとさらに好ましい。濃度が0.01重量%を下回ると、架橋密度が低くなり架橋重合体の水不溶性が不十分となりやすく、5.0重量%を上回ると、架橋密度が高くなり透過水量が低くなる傾向がみられ、さらに、架橋反応速度が速くなりゲル化が起こりやすく、均一塗布が難しくなる傾向がある。架橋反応の反応時間は10秒~3分が好ましい。10秒未満だと反応が十分に進行しないことがあり、3分を超えると本発明のゼータ電位に調整することが難しい。 The addition concentration of the crosslinking agent is preferably in the range of 0.01 to 5.0% by weight, more preferably in the range of 0.01 to 1.0% by weight, and 0.01 to 0.00%. More preferably, it is in the range of 5% by weight. When the concentration is less than 0.01% by weight, the crosslinking density is lowered and the water insolubility of the crosslinked polymer tends to be insufficient. When the concentration is more than 5.0% by weight, the crosslinking density is increased and the amount of permeated water tends to decrease. Furthermore, there is a tendency that the cross-linking reaction rate is increased, gelation is likely to occur, and uniform coating becomes difficult. The reaction time for the crosslinking reaction is preferably 10 seconds to 3 minutes. If it is less than 10 seconds, the reaction may not proceed sufficiently, and if it exceeds 3 minutes, it is difficult to adjust to the zeta potential of the present invention.
 ここで、本発明の複合半透膜は、架橋重合体で被覆してもその前後で透過水量が低下しにくいことが好ましい。すなわち、分離機能層の表面を架橋重合体で被覆する前の複合半透膜を用いて、25℃、pH6.5、NaCl濃度が2,000mg/lである水溶液を1.55MPaの圧力で1時間ろ過したときの透過水量をF1とし、分離機能層の表面を架橋重合体で被覆した後の透過水量をF2としたとき、F2/F1の値が0.80以上であることが好ましい。さらに好ましくは0.90以上である。このような複合半透膜を用いることにより、膜の透過水量を大きく低下させることなく、膜表面に膜汚染物質に対する高い脱離性を付与することができる。 Here, even if the composite semipermeable membrane of the present invention is coated with a cross-linked polymer, it is preferable that the amount of permeated water hardly decreases before and after that. That is, using a composite semipermeable membrane before the surface of the separation functional layer is coated with a cross-linked polymer, an aqueous solution having a pH of 6.5 mg and a NaCl concentration of 2,000 mg / l at a pressure of 1.55 MPa is 1 When the permeated water amount after time filtration is F1, and the permeated water amount after coating the surface of the separation functional layer with a crosslinked polymer is F2, the value of F2 / F1 is preferably 0.80 or more. More preferably, it is 0.90 or more. By using such a composite semipermeable membrane, it is possible to impart high detachability to membrane contaminants on the membrane surface without greatly reducing the amount of permeated water of the membrane.
3.複合半透膜の利用
 本発明の複合半透膜は、プラスチックネットなどの原水流路材と、トリコットなどの透過水流路材と、必要に応じて耐圧性を高めるためのフィルムと共に、多数の孔を穿設した筒状の集水管の周りに巻回され、スパイラル型の複合半透膜エレメントとして好適に用いられる。さらに、このエレメントを直列または並列に接続して圧力容器に収納した複合半透膜モジュールとすることもできる。
3. Utilization of Composite Semipermeable Membrane The composite semipermeable membrane of the present invention comprises a plurality of pores together with a raw water channel material such as a plastic net, a permeate channel material such as tricot, and a film for increasing pressure resistance as required. Is wound around a cylindrical water collecting pipe and is suitably used as a spiral composite semipermeable membrane element. Furthermore, a composite semipermeable membrane module in which these elements are connected in series or in parallel and accommodated in a pressure vessel can be obtained.
 また、上記の複合半透膜やそのエレメント、モジュールは、それらに原水を供給するポンプや、その原水を前処理する装置などと組み合わせて、流体分離装置を構成することができる。この分離装置を用いることにより、原水を飲料水などの透過水と膜を透過しなかった濃縮水とに分離して、目的にあった水を得ることができる。 Also, the above-described composite semipermeable membrane, its elements, and modules can be combined with a pump for supplying raw water to them, a device for pretreating the raw water, and the like to constitute a fluid separation device. By using this separation device, raw water can be separated into permeated water such as drinking water and concentrated water that has not permeated through the membrane, and water suitable for the purpose can be obtained.
 本発明の複合半透膜を使用することにより、たとえば、操作圧力が0.1~3MPaの範囲内、より好ましくは0.1~1.5MPaの範囲内といった低圧領域で、高い透過水量を維持しつつ、複合半透膜や流体分離素子を使用することができる。操作圧力を低くすることができるため、用いるポンプなどの容量を小さくすることができ、消費電力を抑え、造水のコストダウンを図ることができる。操作圧力が0.1MPaを下回ると、透過水量が減少する傾向があり、3MPaを超えるとポンプなどの消費電力が増加するとともに、ファウリングによる膜の目詰まりを起こしやすくなる。 By using the composite semipermeable membrane of the present invention, for example, a high permeated water amount can be maintained in a low pressure region such as an operating pressure within a range of 0.1 to 3 MPa, more preferably within a range of 0.1 to 1.5 MPa. However, a composite semipermeable membrane or a fluid separation element can be used. Since the operating pressure can be lowered, the capacity of a pump to be used can be reduced, power consumption can be reduced, and the cost of water production can be reduced. When the operating pressure is less than 0.1 MPa, the amount of permeated water tends to decrease, and when it exceeds 3 MPa, the power consumption of the pump and the like increases and the membrane is easily clogged by fouling.
 本発明の複合半透膜は、pH6.5、濃度が2,000mg/lの塩化ナトリウム水溶液を用い、25℃において、操作圧力1.0MPaで1時間ろ過したときの透過水量が0.5~3m/m/dであることが好ましい。このような複合半透膜は、例えば、前述した製造方法を適宜選択することで、製造することができる。水の透過量を0.5~3m/m/dの範囲とすることにより、ファウリングの発生を適度に抑え、造水を安定的に行うことができる。 The composite semipermeable membrane of the present invention uses a sodium chloride aqueous solution having a pH of 6.5 and a concentration of 2,000 mg / l, and the permeated water amount when filtered at 25 ° C. with an operating pressure of 1.0 MPa for 1 hour is 0.5 to 0.5%. It is preferable that it is 3m < 3 > / m < 2 > / d. Such a composite semipermeable membrane can be produced, for example, by appropriately selecting the production method described above. By setting the amount of water permeation in the range of 0.5 to 3 m 3 / m 2 / d, generation of fouling can be moderately suppressed and water can be formed stably.
 本発明の複合半透膜で処理する下水中には、界面活性剤などの難生分解性有機物が、生物処理で完全には分解されず含まれていることがある。従来の複合半透膜で処理を行うと界面活性剤が膜表面に吸着し、透過水量が低下してしまう。しかし、本発明の複合半透膜は、高い透過水量と膜汚染物質に対する高い脱離性を持つため、安定した性能を発現することが可能である。 In the sewage treated with the composite semipermeable membrane of the present invention, a hardly biodegradable organic substance such as a surfactant may be contained without being completely decomposed by biological treatment. When the treatment is performed with a conventional composite semipermeable membrane, the surfactant is adsorbed on the membrane surface, and the amount of permeated water is reduced. However, since the composite semipermeable membrane of the present invention has a high amount of permeated water and a high detachability with respect to membrane contaminants, it can exhibit stable performance.
 ここで、本発明の複合半透膜は、膜汚染物質に対する脱離性が高い。すなわち、25℃、pH6.5、NaCl濃度が2,000mg/lである水溶液を1.55MPaの圧力で1時間ろ過したときの透過水量をF3とし、続いてポリオキシエチレン(10)オクチルフェニルエーテルを100mg/lの濃度となるように前記水溶液に加えて1時間ろ過後、NaCl濃度が500mg/lである水溶液で1時間洗浄したときの透過水量をF4としたとき、F4/F3の値が0.85以上であることが好ましい。さらに好ましくは0.90以上である。このような複合半透膜を用いることにより、膜の表面にファウリングなどが生じた際にも、NaCl濃度が500mg/l以上の水溶液で洗浄することにより、膜と汚染物質の相互作用を抑制する効果があることから、容易に脱離することができる。従って、下水の高度処理等に用いても、長期間安定して運転することが可能となる。
 なお、本発明の複合半透膜の分離機能層の表面を架橋重合体で被覆した場合は、上記透過水量F3は前述の透過水量F2と同一となる。
Here, the composite semipermeable membrane of the present invention is highly detachable from membrane contaminants. That is, the amount of permeated water when an aqueous solution having a pH of 6.5 mg and a NaCl concentration of 2,000 mg / l was filtered at a pressure of 1.55 MPa for 1 hour was defined as F3, followed by polyoxyethylene (10) octylphenyl ether Is added to the aqueous solution to a concentration of 100 mg / l, filtered for 1 hour, and washed with an aqueous solution having a NaCl concentration of 500 mg / l for 1 hour, where the amount of permeate is F4, the value of F4 / F3 is It is preferably 0.85 or more. More preferably, it is 0.90 or more. By using such a composite semipermeable membrane, even when fouling occurs on the surface of the membrane, the interaction between the membrane and the contaminant is suppressed by washing with an aqueous solution having a NaCl concentration of 500 mg / l or more. Since it has the effect to do, it can detach | desorb easily. Therefore, even when used for advanced treatment of sewage, it is possible to operate stably for a long period of time.
In addition, when the surface of the separation functional layer of the composite semipermeable membrane of the present invention is coated with a crosslinked polymer, the permeated water amount F3 is the same as the aforementioned permeated water amount F2.
 以下に実施例を挙げて本発明を説明するが、本発明はこれらの実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
(NaCl除去率)
 複合半透膜に、温度25℃、pH7、塩化ナトリウム濃度2,000ppmに調整した評価水を操作圧力1.55MPaで供給して膜ろ過処理を行なった。供給水および透過水の電気伝導度を東亜電波工業株式会社製電気伝導度計で測定して、それぞれの実用塩分、すなわちNaCl濃度を得た。こうして得られたNaCl濃度および下記式に基づいて、NaCl除去率を算出した。
 NaCl除去率(%)=100×{1-(透過水中のNaCl濃度/供給水中のNaCl濃度)}
(NaCl removal rate)
The composite semipermeable membrane was subjected to membrane filtration by supplying evaluation water adjusted to a temperature of 25 ° C., pH 7, and a sodium chloride concentration of 2,000 ppm at an operating pressure of 1.55 MPa. The electric conductivity of the supplied water and the permeated water was measured with an electric conductivity meter manufactured by Toa Denpa Kogyo Co., Ltd. to obtain the respective practical salinities, that is, NaCl concentrations. Based on the NaCl concentration thus obtained and the following equation, the NaCl removal rate was calculated.
NaCl removal rate (%) = 100 × {1− (NaCl concentration in permeated water / NaCl concentration in feed water)}
(透過水量)
 前項の試験において、供給水(NaCl水溶液)の膜透過水量を測定し、膜面1平方メートル当たり、1日の透水量(立方メートル)に換算した値を膜透過流束(m/m/d)とした。
 なお、製膜時の透過水量評価においては、分離機能層表面が架橋重合体により被覆される場合は、被覆される前の複合半透膜を用いて、25℃、pH6.5、NaCl濃度が2,000mg/lである水溶液を1.55MPaの圧力で1時間ろ過したときの透過水量をF1とし、架橋重合体により被覆された後の透過水量をF2とし、F2/F1の値を算出した。
 洗浄後の透過水量評価においては、25℃において、pH6.5、NaCl濃度が2,000mg/lである水溶液を1.55MPaの圧力で1時間ろ過したときの透過水量をF3とし、続いてポリオキシエチレン(10)オクチルフェニルエーテルを100mg/lの濃度となるように水溶液に加えて1時間ろ過後、NaCl濃度が500mg/lである水溶液で1時間洗浄したときの透過水量をF4とし、F4/F3の値を算出した。
(Permeate amount)
In the test of the preceding paragraph, the amount of the permeated water of the supply water (NaCl aqueous solution) was measured, and the value converted into the daily permeated amount (cubic meter) per square meter of the membrane surface was the membrane permeation flux (m 3 / m 2 / d ).
In the evaluation of the amount of permeated water at the time of membrane formation, when the separation functional layer surface is coated with a crosslinked polymer, the composite semipermeable membrane before coating is used at 25 ° C., pH 6.5, NaCl concentration. The amount of permeated water when an aqueous solution of 2,000 mg / l was filtered at a pressure of 1.55 MPa for 1 hour was defined as F1, the amount of permeated water after being coated with the crosslinked polymer was defined as F2, and the value of F2 / F1 was calculated. .
In the evaluation of the amount of permeated water after washing, the amount of permeated water when an aqueous solution having a pH of 6.5 and a NaCl concentration of 2,000 mg / l at 25 ° C. was filtered at a pressure of 1.55 MPa for 1 hour was defined as F3. Oxyethylene (10) octylphenyl ether was added to the aqueous solution to a concentration of 100 mg / l, filtered for 1 hour, and then washed with an aqueous solution having a NaCl concentration of 500 mg / l for 1 hour. The value of / F3 was calculated.
(多孔性支持層厚み)
 多孔性支持層が形成される前の基材の厚み、および完成した複合半透膜の厚みを尾崎製作所株式会社製PEACOCKデジタルシックネスゲージにより測定して、その差を多孔性支持層厚みとした。基材の厚みおよび複合半透膜の厚みは、それぞれ幅方向に20点測定して平均値を算出した。
 多孔性支持層厚み(μm)=支持膜厚み(μm)-基材厚み(μm)
(Porous support layer thickness)
The thickness of the base material before the porous support layer was formed and the thickness of the completed composite semipermeable membrane were measured with a PEACOCK digital thickness gauge manufactured by Ozaki Seisakusho Co., Ltd., and the difference was defined as the thickness of the porous support layer. The thickness of the base material and the thickness of the composite semipermeable membrane were measured at 20 points in the width direction, and average values were calculated.
Porous support layer thickness (μm) = support film thickness (μm) −substrate thickness (μm)
(ゼータ電位)
 複合半透膜を超純水で洗浄し、平板試料用セルに、複合半透膜の分離機能層面がモニター粒子溶液に接するようにセットし、大塚電子株式会社製電気泳動光散乱光度計(ELS-8000)により測定した。モニター粒子溶液としては、pH6、pH10、またはpH3にそれぞれ濃度調整したNaCl水溶液にポリスチレンラテックスのモニター粒子を分散させた測定液を用いた。
 各測定液を用い、分離機能層の表面ゼータ電位A(pH6、NaCl10mM)、表面ゼータ電位B(pH6、NaCl1mM)、表面ゼータ電位C(pH3、NaCl1mM)、表面ゼータ電位D(pH10、NaCl1mM)をそれぞれ測定した。
(Zeta potential)
The composite semipermeable membrane is washed with ultrapure water, set in a flat sample cell so that the separation functional layer surface of the composite semipermeable membrane is in contact with the monitor particle solution, and an electrophoretic light scattering photometer (ELS) manufactured by Otsuka Electronics Co., Ltd. -8000). As the monitor particle solution, a measurement solution in which polystyrene latex monitor particles were dispersed in an aqueous NaCl solution adjusted to pH 6, pH 10, or pH 3, respectively was used.
Using each measurement solution, the surface zeta potential A (pH 6, NaCl 10 mM), surface zeta potential B (pH 6, NaCl 1 mM), surface zeta potential C (pH 3, NaCl 1 mM), surface zeta potential D (pH 10, NaCl 1 mM) of the separation function layer are used. Each was measured.
(官能基量)
 ポリアミド分離機能層中の官能基量は、複合半透膜から基材を剥離し、ポリアミド分離機能層と多孔性支持層を得た後、多孔性支持層をジクロロメタンで溶解・除去し、ポリアミド分離機能層を得た。得られたポリアミド分離機能層をDD/MAS-13C固体NMR法により測定を行い、各官能基の炭素ピークまたは各官能基が結合している炭素ピークの積分値の比較から各官能基量を算出した。
(Functional group amount)
The amount of functional groups in the polyamide separation functional layer is determined by separating the substrate from the composite semipermeable membrane, obtaining the polyamide separation functional layer and the porous support layer, and then dissolving and removing the porous support layer with dichloromethane to separate the polyamide. A functional layer was obtained. The obtained polyamide separation functional layer was measured by DD / MAS- 13C solid state NMR method, and the amount of each functional group was determined by comparing the carbon peak of each functional group or the integrated value of the carbon peak to which each functional group was bonded. Calculated.
(自乗平均面粗さ)
 複合半透膜を超純水で洗浄し、風乾させたものを、1cm角に切り出し、スライドグラスに両面テープで貼り付け、分離機能層の自乗平均面粗さ(RMS)を、原子間力顕微鏡(Nanoscope  IIIa:デジタル・インスツルメンツ社)を用い、タッピングモードで測定した。カンチレバーはVeeco  Instruments  NCHV-1を用い、常温常圧下で測定した。スキャンスピードは1Hz、サンプリング点数は512ピクセル四方であった。解析ソフトはGwyddionを用いた。測定結果について、X軸およびY軸ともに1次元のベースライン補正(傾き補正)を行った。
(Root mean square roughness)
A composite semipermeable membrane washed with ultrapure water and air-dried is cut into 1 cm squares, attached to a slide glass with double-sided tape, and the root mean square roughness (RMS) of the separation functional layer is measured with an atomic force microscope. (Nanoscope IIIa: Digital Instruments Co., Ltd.) was used for measurement in the tapping mode. As the cantilever, Veeco Instruments NCHV-1 was used, and measurement was performed at normal temperature and pressure. The scan speed was 1 Hz, and the number of sampling points was 512 pixels square. Gwydion was used as the analysis software. The measurement results were subjected to one-dimensional baseline correction (tilt correction) for both the X axis and the Y axis.
(通気度)
 通気度は、JIS L1096(2010)に基づき、フラジール形試験機によって測定した。基材を200mm×200mmの大きさに切り出し、フラジール形試験機に取り付け、傾斜形気圧計が125Paの圧力になるように吸込みファンおよび空気孔を調整し、このときの垂直形気圧計の示す圧力と使用した空気孔の種類から通気度を求めた。フラジール形試験機は、カトーテック株式会社製KES-F8-AP1を使用した。
(Air permeability)
The air permeability was measured by a fragile type tester based on JIS L1096 (2010). The base material is cut into a size of 200 mm × 200 mm, attached to a Frazier type tester, the suction fan and air hole are adjusted so that the inclined barometer has a pressure of 125 Pa, and the pressure indicated by the vertical barometer at this time The air permeability was determined from the type of air holes used. As the Frazier type tester, KES-F8-AP1 manufactured by Kato Tech Co., Ltd. was used.
(複合半透膜の作製)
(比較例1)
 抄紙法で製造されたポリエステル繊維からなる不織布(通気度1.0cc/cm/sec)上にポリスルホンの15.0重量%ジメチルホルムアミド(DMF)溶液を室温(25℃)でキャストした後、ただちに純水中に5分間浸漬することによって、多孔性支持層の厚みが40μmである支持膜を作製した。
 次に、この支持膜をメタフェニレンジアミンの3.5重量%水溶液に浸漬した後、余分な水溶液を除去し、さらにn-デカンにトリメシン酸ハロゲン化物を0.14重量%となるように溶解した溶液を多孔性支持層の表面が完全に濡れるように塗布した。次に膜から余分な溶液を除去するために、膜を垂直にして液切りを行って、送風機を使い20℃の空気を吹き付けて乾燥させた。その後、40℃の純水で洗浄し、複合半透膜を得た。このようにして得られた複合半透膜を評価したところ、膜性能は、表1に示す値であった。
(Production of composite semipermeable membrane)
(Comparative Example 1)
Immediately after casting a 15.0 wt% dimethylformamide (DMF) solution of polysulfone on a non-woven fabric (air permeability 1.0 cc / cm 2 / sec) made of polyester fiber produced by the papermaking method at room temperature (25 ° C.) By immersing in pure water for 5 minutes, a support membrane having a porous support layer thickness of 40 μm was produced.
Next, this support membrane was immersed in a 3.5% by weight aqueous solution of metaphenylenediamine, and then the excess aqueous solution was removed, and further, trimesic acid halide was dissolved in n-decane to a concentration of 0.14% by weight. The solution was applied so that the surface of the porous support layer was completely wetted. Next, in order to remove excess solution from the membrane, the membrane was vertically drained and dried by blowing air at 20 ° C. using a blower. Then, it wash | cleaned with the pure water of 40 degreeC, and obtained the composite semipermeable membrane. When the composite semipermeable membrane obtained in this way was evaluated, the membrane performance was the value shown in Table 1.
(実施例1)
 比較例1で得られた複合半透膜をポリビニルアルコール(けん化度88%、重量平均分子量2,000)0.5重量%と、グルタルアルデヒド0.2重量%とを含む水溶液に、酸触媒として塩酸を0.1モル/リットルとなるように添加した水溶液に1分間浸漬した。垂直で1分間保持し余分な液を切った後に熱風乾燥機で90℃、30秒間乾燥して、分離機能層がポリビニルアルコールでコーティングされた複合半透膜を得た。複合半透膜は、評価前に10%イソプロパノール水溶液に10分間浸漬し親水化処理を行った。このようにして得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(Example 1)
The composite semipermeable membrane obtained in Comparative Example 1 was used as an acid catalyst in an aqueous solution containing 0.5% by weight of polyvinyl alcohol (degree of saponification 88%, weight average molecular weight 2,000) and 0.2% by weight of glutaraldehyde. It was immersed for 1 minute in the aqueous solution which added hydrochloric acid so that it might become 0.1 mol / l. After holding for 1 minute vertically and cutting off excess liquid, it was dried in a hot air dryer at 90 ° C. for 30 seconds to obtain a composite semipermeable membrane having a separation functional layer coated with polyvinyl alcohol. The composite semipermeable membrane was hydrophilized by immersing in a 10% aqueous isopropanol solution for 10 minutes before evaluation. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
(実施例2)
 比較例1で得られた複合半透膜をポリビニルアルコール(けん化度88%、重量平均分子量2,000)0.5重量%と、グルタルアルデヒド0.2重量%とを含む水溶液に、酸触媒として塩酸を0.1モル/リットルとなるように添加した水溶液に1分間浸漬した。垂直で1分間保持し余分な液を切った後に熱風乾燥機で90℃、1分間乾燥して、分離機能層がポリビニルアルコールでコーティングされた複合半透膜を得た。複合半透膜は、評価前に10%イソプロパノール水溶液に10分間浸漬し親水化処理を行った。このようにして得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(Example 2)
The composite semipermeable membrane obtained in Comparative Example 1 was used as an acid catalyst in an aqueous solution containing 0.5% by weight of polyvinyl alcohol (degree of saponification 88%, weight average molecular weight 2,000) and 0.2% by weight of glutaraldehyde. It was immersed for 1 minute in the aqueous solution which added hydrochloric acid so that it might become 0.1 mol / l. After maintaining for 1 minute vertically and cutting off excess liquid, it was dried in a hot air dryer at 90 ° C. for 1 minute to obtain a composite semipermeable membrane having a separation functional layer coated with polyvinyl alcohol. The composite semipermeable membrane was hydrophilized by immersing in a 10% aqueous isopropanol solution for 10 minutes before evaluation. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
(比較例2)
 比較例1で得られた複合半透膜をポリビニルアルコール(けん化度88%、重量平均分子量2,000)0.5重量%と、グルタルアルデヒド0.2重量%とを含む水溶液に、酸触媒として塩酸を0.1モル/リットルとなるように添加した水溶液に2分間浸漬した。垂直で1分間保持し余分な液を切った後に熱風乾燥機で90℃、4分間乾燥して、分離機能層がポリビニルアルコールでコーティングされた複合半透膜を得た。複合半透膜は、評価前に10%イソプロパノール水溶液に10分間浸漬し親水化処理を行った。このようにして得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(Comparative Example 2)
The composite semipermeable membrane obtained in Comparative Example 1 was used as an acid catalyst in an aqueous solution containing 0.5% by weight of polyvinyl alcohol (degree of saponification 88%, weight average molecular weight 2,000) and 0.2% by weight of glutaraldehyde. It was immersed for 2 minutes in an aqueous solution to which hydrochloric acid was added to a concentration of 0.1 mol / liter. After maintaining for 1 minute vertically and cutting off excess liquid, it was dried in a hot air dryer at 90 ° C. for 4 minutes to obtain a composite semipermeable membrane having a separation functional layer coated with polyvinyl alcohol. The composite semipermeable membrane was hydrophilized by immersing in a 10% aqueous isopropanol solution for 10 minutes before evaluation. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
(比較例3)
 比較例1で得られた複合半透膜をポリビニルアルコール(けん化度99%、平均重合度500)0.5重量%を含む水溶液に2分間浸漬した。垂直で1分間保持し余分な液を切った後に熱風乾燥機で90℃、4分間乾燥して、分離機能層がポリビニルアルコールでコーティングされた複合半透膜を得た。複合半透膜は、評価前に10%イソプロパノール水溶液に10分間浸漬し親水化処理を行った。このようにして得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(Comparative Example 3)
The composite semipermeable membrane obtained in Comparative Example 1 was immersed in an aqueous solution containing 0.5% by weight of polyvinyl alcohol (degree of saponification 99%, average degree of polymerization 500) for 2 minutes. After maintaining for 1 minute vertically and cutting off excess liquid, it was dried in a hot air dryer at 90 ° C. for 4 minutes to obtain a composite semipermeable membrane having a separation functional layer coated with polyvinyl alcohol. The composite semipermeable membrane was hydrophilized by immersing in a 10% aqueous isopropanol solution for 10 minutes before evaluation. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
(比較例4)
 比較例1で得られた複合半透膜を、硫酸によりpH3に調整した0.3重量%の亜硝酸ナトリウム水溶液により30℃で1分間処理した。複合半透膜を亜硝酸水溶液から取り出した後、20℃の純水で洗浄して複合半透膜を得た。このようにして得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(Comparative Example 4)
The composite semipermeable membrane obtained in Comparative Example 1 was treated with a 0.3 wt% aqueous sodium nitrite solution adjusted to pH 3 with sulfuric acid at 30 ° C. for 1 minute. The composite semipermeable membrane was taken out from the nitrous acid aqueous solution and then washed with pure water at 20 ° C. to obtain a composite semipermeable membrane. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
(実施例3)
 比較例4で得られた複合半透膜をポリビニルアルコール(けん化度88%、重量平均分子量2,000)0.5重量%と、グルタルアルデヒド0.2重量%とを含む水溶液に、酸触媒として塩酸を0.1モル/リットルとなるように添加した水溶液に1分間浸漬した。垂直で1分間保持し余分な液を切った後に熱風乾燥機で90℃、45秒間乾燥して、分離機能層がポリビニルアルコールでコーティングされた複合半透膜を得た。複合半透膜は、評価前に10%イソプロパノール水溶液に10分間浸漬し親水化処理を行った。このようにして得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(Example 3)
The composite semipermeable membrane obtained in Comparative Example 4 was used as an acid catalyst in an aqueous solution containing 0.5% by weight of polyvinyl alcohol (degree of saponification 88%, weight average molecular weight 2,000) and 0.2% by weight of glutaraldehyde. It was immersed for 1 minute in the aqueous solution which added hydrochloric acid so that it might become 0.1 mol / l. After maintaining for 1 minute vertically and cutting off excess liquid, it was dried in a hot air dryer at 90 ° C. for 45 seconds to obtain a composite semipermeable membrane having a separation functional layer coated with polyvinyl alcohol. The composite semipermeable membrane was hydrophilized by immersing in a 10% aqueous isopropanol solution for 10 minutes before evaluation. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
(実施例4)
 比較例4で得られた複合半透膜をポリビニルアルコール(けん化度88%、重量平均分子量2,000)0.5重量%と、グルタルアルデヒド0.2重量%とを含む水溶液に、酸触媒として塩酸を0.1モル/リットルとなるように添加した水溶液に1分間浸漬した。垂直で1分間保持し余分な液を切った後に熱風乾燥機で90℃、1分間乾燥して、分離機能層がポリビニルアルコールでコーティングされた複合半透膜を得た。複合半透膜は、評価前に10%イソプロパノール水溶液に10分間浸漬し親水化処理を行った。このようにして得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
Example 4
The composite semipermeable membrane obtained in Comparative Example 4 was used as an acid catalyst in an aqueous solution containing 0.5% by weight of polyvinyl alcohol (degree of saponification 88%, weight average molecular weight 2,000) and 0.2% by weight of glutaraldehyde. It was immersed for 1 minute in the aqueous solution which added hydrochloric acid so that it might become 0.1 mol / l. After maintaining for 1 minute vertically and cutting off excess liquid, it was dried in a hot air dryer at 90 ° C. for 1 minute to obtain a composite semipermeable membrane having a separation functional layer coated with polyvinyl alcohol. The composite semipermeable membrane was hydrophilized by immersing in a 10% aqueous isopropanol solution for 10 minutes before evaluation. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
(比較例5)
 比較例4で得られた複合半透膜をポリビニルアルコール(けん化度88%、重量平均分子量2,000)0.5重量%と、グルタルアルデヒド0.2重量%とを含む水溶液に、酸触媒として塩酸を0.1モル/リットルとなるように添加した水溶液に2分間浸漬した。垂直で1分間保持し余分な液を切った後に熱風乾燥機で90℃、3分間乾燥して、分離機能層がポリビニルアルコールでコーティングされた複合半透膜を得た。複合半透膜は、評価前に10%イソプロパノール水溶液に10分間浸漬し親水化処理を行った。このようにして得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(Comparative Example 5)
The composite semipermeable membrane obtained in Comparative Example 4 was used as an acid catalyst in an aqueous solution containing 0.5% by weight of polyvinyl alcohol (degree of saponification 88%, weight average molecular weight 2,000) and 0.2% by weight of glutaraldehyde. It was immersed for 2 minutes in an aqueous solution to which hydrochloric acid was added to a concentration of 0.1 mol / liter. After holding for 1 minute vertically and cutting off excess liquid, it was dried in a hot air dryer at 90 ° C. for 3 minutes to obtain a composite semipermeable membrane having a separation functional layer coated with polyvinyl alcohol. The composite semipermeable membrane was hydrophilized by immersing in a 10% aqueous isopropanol solution for 10 minutes before evaluation. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
(実施例5)
 比較例4で得られた複合半透膜をポリビニルアルコール(けん化度88%、重量平均分子量2,000)1重量%を含む80℃水溶液に2分間浸漬した。垂直で1分間保持し余分な液を切った後に熱風乾燥機で90℃、1分間乾燥して、分離機能層がポリビニルアルコールでコーティングされた複合半透膜を得た。複合半透膜は、評価前に10%イソプロパノール水溶液に10分間浸漬し親水化処理を行った。このようにして得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(Example 5)
The composite semipermeable membrane obtained in Comparative Example 4 was immersed in an 80 ° C. aqueous solution containing 1% by weight of polyvinyl alcohol (degree of saponification 88%, weight average molecular weight 2,000) for 2 minutes. After maintaining for 1 minute vertically and cutting off excess liquid, it was dried in a hot air dryer at 90 ° C. for 1 minute to obtain a composite semipermeable membrane having a separation functional layer coated with polyvinyl alcohol. The composite semipermeable membrane was hydrophilized by immersing in a 10% aqueous isopropanol solution for 10 minutes before evaluation. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
(比較例6)
 比較例1で得られた複合半透膜を硫酸によりpH3に調整した0.4重量%の亜硝酸ナトリウム水溶液により30℃で1分間処理した。複合半透膜を亜硝酸水溶液から取り出した後、アニリン0.1%水溶液に30℃で1分間浸漬させた。続いて0.1重量%の亜硫酸ナトリウム水溶液に2分間浸漬した。このようにして得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(Comparative Example 6)
The composite semipermeable membrane obtained in Comparative Example 1 was treated with a 0.4 wt% sodium nitrite aqueous solution adjusted to pH 3 with sulfuric acid at 30 ° C. for 1 minute. After removing the composite semipermeable membrane from the nitrous acid aqueous solution, it was immersed in a 0.1% aniline aqueous solution at 30 ° C. for 1 minute. Subsequently, it was immersed in a 0.1 wt% aqueous sodium sulfite solution for 2 minutes. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
(実施例6)
 比較例6で得られた複合半透膜をポリビニルアルコール(けん化度88%、重量平均分子量2,000)0.5重量%と、グルタルアルデヒド0.2重量%とを含む水溶液に1分間浸漬した。垂直で1分間保持し余分な液を切った後に熱風乾燥機で90℃、30秒間乾燥して、分離機能層がポリビニルアルコールでコーティングされた複合半透膜を得た。複合半透膜は、評価前に10%イソプロパノール水溶液に10分間浸漬し親水化処理を行った。このようにして得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(Example 6)
The composite semipermeable membrane obtained in Comparative Example 6 was immersed in an aqueous solution containing 0.5% by weight of polyvinyl alcohol (degree of saponification 88%, weight average molecular weight 2,000) and 0.2% by weight of glutaraldehyde for 1 minute. . After holding for 1 minute vertically and cutting off excess liquid, it was dried in a hot air dryer at 90 ° C. for 30 seconds to obtain a composite semipermeable membrane having a separation functional layer coated with polyvinyl alcohol. The composite semipermeable membrane was hydrophilized by immersing in a 10% aqueous isopropanol solution for 10 minutes before evaluation. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
(実施例7)
 比較例6で得られた複合半透膜をポリビニルアルコール(けん化度88%、重量平均分子量2,000)0.5重量%と、グルタルアルデヒド0.2重量%とを含む水溶液に、酸触媒として塩酸を0.1モル/リットルとなるように添加した水溶液に1分間浸漬した。垂直で1分間保持し余分な液を切った後に熱風乾燥機で90℃、30秒間乾燥して、分離機能層がポリビニルアルコールでコーティングされた複合半透膜を得た。複合半透膜は、評価前に10%イソプロパノール水溶液に10分間浸漬し親水化処理を行った。このようにして得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(Example 7)
The composite semipermeable membrane obtained in Comparative Example 6 was used as an acid catalyst in an aqueous solution containing 0.5% by weight of polyvinyl alcohol (degree of saponification 88%, weight average molecular weight 2,000) and 0.2% by weight of glutaraldehyde. It was immersed for 1 minute in the aqueous solution which added hydrochloric acid so that it might become 0.1 mol / l. After holding for 1 minute vertically and cutting off excess liquid, it was dried in a hot air dryer at 90 ° C. for 30 seconds to obtain a composite semipermeable membrane having a separation functional layer coated with polyvinyl alcohol. The composite semipermeable membrane was hydrophilized by immersing in a 10% aqueous isopropanol solution for 10 minutes before evaluation. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
(比較例7)
 比較例6で得られた複合半透膜をポリビニルアルコール(けん化度88%、重量平均分子量2,000)0.5重量%と、グルタルアルデヒド0.2重量%とを含む水溶液に、酸触媒として塩酸を0.1モル/リットルとなるように添加した水溶液に2分間浸漬した。垂直で1分間保持し余分な液を切った後に熱風乾燥機で90℃、3分間乾燥して、分離機能層がポリビニルアルコールでコーティングされた複合半透膜を得た。複合半透膜は、評価前に10%イソプロパノール水溶液に10分間浸漬し親水化処理を行った。このようにして得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(Comparative Example 7)
The composite semipermeable membrane obtained in Comparative Example 6 was used as an acid catalyst in an aqueous solution containing 0.5% by weight of polyvinyl alcohol (degree of saponification 88%, weight average molecular weight 2,000) and 0.2% by weight of glutaraldehyde. It was immersed for 2 minutes in an aqueous solution to which hydrochloric acid was added to a concentration of 0.1 mol / liter. After holding for 1 minute vertically and cutting off excess liquid, it was dried in a hot air dryer at 90 ° C. for 3 minutes to obtain a composite semipermeable membrane having a separation functional layer coated with polyvinyl alcohol. The composite semipermeable membrane was hydrophilized by immersing in a 10% aqueous isopropanol solution for 10 minutes before evaluation. The composite semipermeable membrane thus obtained was evaluated. The membrane performance was as shown in Table 1.
 以上のように、本発明の複合半透膜は、高い透過水量と膜汚染物質に対する高い脱離性を持ち、長期間安定した性能を維持することができる。 As described above, the composite semipermeable membrane of the present invention has a high amount of permeated water and a high detachability with respect to membrane contaminants, and can maintain stable performance for a long period of time.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2013年2月28日出願の日本特許出願(特願2013-39605)および2013年2月28日出願の日本特許出願(特願2013-39648)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on February 28, 2013 (Japanese Patent Application No. 2013-39605) and a Japanese patent application filed on February 28, 2013 (Japanese Patent Application No. 2013-39648). Incorporated herein by reference.
 本発明の複合半透膜を用いれば、原水を飲料水などの透過水と膜を透過しなかった濃縮水とに分離して、目的にあった水を得ることができる。本発明の複合半透膜は、特に、かん水または海水の脱塩に好適に用いることができる。 If the composite semipermeable membrane of the present invention is used, raw water can be separated into permeated water such as drinking water and concentrated water that has not permeated through the membrane, and water suitable for the purpose can be obtained. The composite semipermeable membrane of the present invention can be particularly suitably used for brine or seawater desalination.

Claims (11)

  1.  基材および多孔性支持層を含む支持膜と、前記多孔性支持層上に設けられた分離機能層とを備える複合半透膜であって、
     pH6、NaCl10mMの測定条件における前記分離機能層の表面ゼータ電位Aが±15mV以内であり、かつ
     pH6、NaCl1mMの測定条件における前記分離機能層の表面ゼータ電位Bと、前記表面ゼータ電位Aとの電位差が±10mV以上である複合半透膜。
    A composite semipermeable membrane comprising a support membrane comprising a substrate and a porous support layer, and a separation functional layer provided on the porous support layer,
    The surface zeta potential A of the separation functional layer under the measurement conditions of pH 6 and NaCl 10 mM is within ± 15 mV, and the potential difference between the surface zeta potential B of the separation functional layer and the surface zeta potential A under the measurement conditions of pH 6 and NaCl 1 mM. Is a composite semipermeable membrane having a value of ± 10 mV or more.
  2.  前記分離機能層の表面の自乗平均面粗さが60nm以上である請求項1に記載の複合半透膜。 The composite semipermeable membrane according to claim 1, wherein the root mean square roughness of the surface of the separation functional layer is 60 nm or more.
  3.  前記分離機能層が、多官能アミンと多官能酸ハロゲン化物との重合反応により得られたポリアミドから形成される請求項1または請求項2に記載の複合半透膜。 The composite semipermeable membrane according to claim 1 or 2, wherein the separation functional layer is formed from a polyamide obtained by a polymerization reaction of a polyfunctional amine and a polyfunctional acid halide.
  4.  pH3、NaCl1mMの測定条件における前記分離機能層の表面ゼータ電位Cと、pH10、NaCl1mMの測定条件における前記分離機能層の表面ゼータ電位Dとの電位差が、40mV以下である請求項1~請求項3のいずれか1項に記載の複合半透膜。 The potential difference between the surface zeta potential C of the separation functional layer under pH 3 and NaCl 1 mM measurement conditions and the surface zeta potential D of the separation functional layer under pH 10 and NaCl 1 mM measurement conditions is 40 mV or less. The composite semipermeable membrane according to any one of the above.
  5.  前記分離機能層がアミノ基およびアミド基を含み、アミノ基のモル当量/アミド基のモル当量の比が0.2以上である請求項1~請求項4のいずれか1項に記載の複合半透膜。 The composite half layer according to any one of claims 1 to 4, wherein the separation functional layer includes an amino group and an amide group, and a ratio of a molar equivalent of the amino group to a molar equivalent of the amide group is 0.2 or more. Permeable membrane.
  6.  前記分離機能層がアミド基、アゾ基およびフェノール性水酸基を有し、フェノール性水酸基/アミド基の比が0.1以下である請求項1~請求項5のいずれか1項に記載の複合半透膜。 The composite half layer according to any one of claims 1 to 5, wherein the separation functional layer has an amide group, an azo group, and a phenolic hydroxyl group, and the ratio of the phenolic hydroxyl group / amide group is 0.1 or less. Permeable membrane.
  7.  前記分離機能層の表面が架橋重合体により被覆されている請求項1~請求項6のいずれか1項に記載の複合半透膜。 The composite semipermeable membrane according to any one of claims 1 to 6, wherein a surface of the separation functional layer is coated with a crosslinked polymer.
  8.  前記架橋重合体が親水性化合物の架橋体である請求項7に記載の複合半透膜。 The composite semipermeable membrane according to claim 7, wherein the crosslinked polymer is a crosslinked product of a hydrophilic compound.
  9.  前記架橋重合体が、前記分離機能層の表面と共有結合を形成している請求項7または請求項8に記載の複合半透膜。 The composite semipermeable membrane according to claim 7 or 8, wherein the cross-linked polymer forms a covalent bond with the surface of the separation functional layer.
  10.  前記分離機能層の表面が前記架橋重合体により被覆される前の複合半透膜を用いて、25℃、pH6.5、NaCl濃度が2,000mg/lである水溶液を1.55MPaの圧力で1時間ろ過したときの透過水量をF1とし、前記分離機能層の表面が前記架橋重合体により被覆された後の透過水量をF2としたとき、F2/F1の値が0.80以上である請求項7~請求項9のいずれか1項に記載の複合半透膜。 Using the composite semipermeable membrane before the surface of the separation functional layer is coated with the crosslinked polymer, an aqueous solution having a pH of 6.5 mg and a NaCl concentration of 2,000 mg / l at a pressure of 1.55 MPa is used. The value of F2 / F1 is 0.80 or more, where F1 is the amount of permeated water when filtered for 1 hour, and F2 is the amount of permeated water after the surface of the separation functional layer is coated with the crosslinked polymer. Item 10. The composite semipermeable membrane according to any one of Items 7 to 9.
  11.  25℃において、pH6.5、NaCl濃度が2,000mg/lである水溶液を1.55MPaの圧力で1時間ろ過したときの透過水量をF3とし、続いてポリオキシエチレン(10)オクチルフェニルエーテルを100mg/lの濃度となるように前記水溶液に加えて1時間ろ過後、NaCl濃度が500mg/lである水溶液で1時間洗浄したときの透過水量をF4としたとき、F4/F3の値が0.85以上である請求項1~請求項10のいずれか1項に記載の複合半透膜。 At 25 ° C., when the aqueous solution having a pH of 6.5 and a NaCl concentration of 2,000 mg / l was filtered at a pressure of 1.55 MPa for 1 hour, the amount of permeated water was F3, followed by polyoxyethylene (10) octylphenyl ether. In addition to the aqueous solution so as to have a concentration of 100 mg / l, after filtration for 1 hour, when the permeated water amount when washed with an aqueous solution having a NaCl concentration of 500 mg / l for 1 hour is F4, the value of F4 / F3 is 0. The composite semipermeable membrane according to any one of claims 1 to 10, which is 0.85 or more.
PCT/JP2014/055061 2013-02-28 2014-02-28 Composite semipermeable membrane WO2014133132A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480010817.5A CN105008031A (en) 2013-02-28 2014-02-28 Composite semipermeable membrane
JP2014514973A JP6481366B2 (en) 2013-02-28 2014-02-28 Composite semipermeable membrane
KR1020157022927A KR102172598B1 (en) 2013-02-28 2014-02-28 Composite semipermeable membrane

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-039648 2013-02-28
JP2013039648 2013-02-28
JP2013-039605 2013-02-28
JP2013039605 2013-02-28

Publications (1)

Publication Number Publication Date
WO2014133132A1 true WO2014133132A1 (en) 2014-09-04

Family

ID=51428390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055061 WO2014133132A1 (en) 2013-02-28 2014-02-28 Composite semipermeable membrane

Country Status (4)

Country Link
JP (1) JP6481366B2 (en)
KR (1) KR102172598B1 (en)
CN (2) CN105008031A (en)
WO (1) WO2014133132A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015150544A (en) * 2014-02-19 2015-08-24 国立大学法人神戸大学 Surface treatment agent, surface-treated polyamide reverse osmosis membrane and production method of the same
WO2016052669A1 (en) * 2014-09-30 2016-04-07 東レ株式会社 Composite semipermeable membrane
JP2016123899A (en) * 2014-12-26 2016-07-11 東レ株式会社 Composite semipermeable membrane
WO2017073698A1 (en) * 2015-10-27 2017-05-04 東レ株式会社 Composite semipermeable membrane and method for producing same
KR20180034457A (en) * 2015-07-31 2018-04-04 도레이 카부시키가이샤 Separation membrane, separation membrane element, water purifier and separation membrane production method
WO2018198679A1 (en) 2017-04-28 2018-11-01 東レ株式会社 Semipermeable composite membrane and method for producing same
CN108854564A (en) * 2018-08-21 2018-11-23 史怀国 A kind of low-phosphorus antiincrustation agent for Treated sewage reusing reverse osmosis membrane
JP2020179367A (en) * 2019-04-26 2020-11-05 東レ株式会社 Composite semi-permeable membrane

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102169137B1 (en) * 2017-11-15 2020-10-23 한국화학연구원 A polyamide composite membrane having improved salt and boron rejection and method for preparation thereof
KR102169136B1 (en) * 2017-11-15 2020-10-23 한국화학연구원 Membranes through crosslinking reaction and its preparation method
KR102196618B1 (en) * 2017-12-20 2020-12-30 주식회사 엘지화학 Method for preparing water treatment membrane and water treatment membrane prepared thereof
CN109550413B (en) * 2018-12-17 2020-09-25 中国科学院长春应用化学研究所 Anti-pollution membrane material and preparation method thereof
CN113463394B (en) * 2021-06-10 2023-06-06 阜阳和益鞋业有限公司 Deodorizing and antibacterial indoor cotton shoe and production process thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05253454A (en) * 1992-03-11 1993-10-05 Daicel Chem Ind Ltd New dual separating membrane and treatment of waste water using the membrane
JP2000176263A (en) * 1998-10-05 2000-06-27 Toray Ind Inc Composite semipermeable membrane and its production
JP2001286741A (en) * 2000-04-04 2001-10-16 Toray Ind Inc Reverse osmosis composite membrane and manufacturing method therefor
JP2003200026A (en) * 2002-01-08 2003-07-15 Toray Ind Inc Composite semipermeable membrane and method for manufacturing the same
JP2006198461A (en) * 2005-01-18 2006-08-03 Toray Ind Inc Compound reverse osmosis membrane, its manufacturing method and water-treating method using it

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354905A (en) 1986-08-25 1988-03-09 Toray Ind Inc Production of semiosmosis composite membrane
US4812238A (en) * 1987-01-15 1989-03-14 The Dow Chemical Company Membranes prepared via reaction of diazonium compounds or precursors
US6177011B1 (en) * 1996-03-18 2001-01-23 Nitto Denko Corporation Composite reverse osmosis membrane having a separation layer with polyvinyl alcohol coating and method of reverse osmotic treatment of water using the same
JP2011125856A (en) 2003-11-26 2011-06-30 Toray Ind Inc Method for manufacturing composite semipermeable membrane and polyamide composite semipermeable membrane
JP2006102624A (en) 2004-10-05 2006-04-20 Nitto Denko Corp Reverse osmosis membrane and its manufacturing method
DE102004050395A1 (en) * 2004-10-15 2006-04-27 Construction Research & Technology Gmbh Polycondensation product based on aromatic or heteroaromatic compounds, process for its preparation and its use
JP5177056B2 (en) 2009-03-31 2013-04-03 東レ株式会社 Composite semipermeable membrane
KR101876694B1 (en) * 2009-12-22 2018-07-09 도레이 카부시키가이샤 Semipermeable membrane and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05253454A (en) * 1992-03-11 1993-10-05 Daicel Chem Ind Ltd New dual separating membrane and treatment of waste water using the membrane
JP2000176263A (en) * 1998-10-05 2000-06-27 Toray Ind Inc Composite semipermeable membrane and its production
JP2001286741A (en) * 2000-04-04 2001-10-16 Toray Ind Inc Reverse osmosis composite membrane and manufacturing method therefor
JP2003200026A (en) * 2002-01-08 2003-07-15 Toray Ind Inc Composite semipermeable membrane and method for manufacturing the same
JP2006198461A (en) * 2005-01-18 2006-08-03 Toray Ind Inc Compound reverse osmosis membrane, its manufacturing method and water-treating method using it

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015150544A (en) * 2014-02-19 2015-08-24 国立大学法人神戸大学 Surface treatment agent, surface-treated polyamide reverse osmosis membrane and production method of the same
WO2016052669A1 (en) * 2014-09-30 2016-04-07 東レ株式会社 Composite semipermeable membrane
JP2016123899A (en) * 2014-12-26 2016-07-11 東レ株式会社 Composite semipermeable membrane
KR102564660B1 (en) * 2015-07-31 2023-08-09 도레이 카부시키가이샤 Method for manufacturing separation membrane, separation membrane element, water purifier and separation membrane
KR20180034457A (en) * 2015-07-31 2018-04-04 도레이 카부시키가이샤 Separation membrane, separation membrane element, water purifier and separation membrane production method
WO2017073698A1 (en) * 2015-10-27 2017-05-04 東レ株式会社 Composite semipermeable membrane and method for producing same
CN108348869A (en) * 2015-10-27 2018-07-31 东丽株式会社 Composite semipermeable membrane and its manufacturing method
JPWO2017073698A1 (en) * 2015-10-27 2018-08-16 東レ株式会社 Composite semipermeable membrane and method for producing the same
US20180311623A1 (en) * 2015-10-27 2018-11-01 Toray Industries, Inc. Composite semipermeable membrane and method for producing same
KR20180074694A (en) * 2015-10-27 2018-07-03 도레이 카부시키가이샤 Composite semipermeable membrane and method for its production
CN108348869B (en) * 2015-10-27 2021-11-30 东丽株式会社 Composite semipermeable membrane and method for producing same
KR101975155B1 (en) 2015-10-27 2019-05-03 도레이 카부시키가이샤 Composite semipermeable membrane and method for its production
US11045771B2 (en) 2015-10-27 2021-06-29 Toray Industries, Inc. Composite semipermeable membrane and method for producing same
CN110536743B (en) * 2017-04-28 2020-07-07 东丽株式会社 Composite semipermeable membrane and method for producing same
JPWO2018198679A1 (en) * 2017-04-28 2020-02-27 東レ株式会社 Composite semipermeable membrane and method for producing the same
CN110536743A (en) * 2017-04-28 2019-12-03 东丽株式会社 Composite semipermeable membrane and its manufacturing method
KR20190128241A (en) 2017-04-28 2019-11-15 도레이 카부시키가이샤 Composite Semipermeable Membrane and Manufacturing Method Thereof
JP7010216B2 (en) 2017-04-28 2022-01-26 東レ株式会社 Composite semipermeable membrane and its manufacturing method
WO2018198679A1 (en) 2017-04-28 2018-11-01 東レ株式会社 Semipermeable composite membrane and method for producing same
CN108854564A (en) * 2018-08-21 2018-11-23 史怀国 A kind of low-phosphorus antiincrustation agent for Treated sewage reusing reverse osmosis membrane
JP2020179367A (en) * 2019-04-26 2020-11-05 東レ株式会社 Composite semi-permeable membrane
JP7283207B2 (en) 2019-04-26 2023-05-30 東レ株式会社 composite semipermeable membrane

Also Published As

Publication number Publication date
CN105008031A (en) 2015-10-28
CN112870995A (en) 2021-06-01
JP6481366B2 (en) 2019-03-13
JPWO2014133132A1 (en) 2017-02-02
KR102172598B1 (en) 2020-11-02
KR20150124952A (en) 2015-11-06

Similar Documents

Publication Publication Date Title
JP6481366B2 (en) Composite semipermeable membrane
JP6032011B2 (en) Composite semipermeable membrane
JP6492663B2 (en) Composite semipermeable membrane and method for producing the same
JP5895838B2 (en) Separation membrane element and method for producing composite semipermeable membrane
KR102315570B1 (en) Composite Semipermeable Membrane and Method for Manufacturing Composite Semipermeable Membrane
JP6295949B2 (en) Composite semipermeable membrane and method for producing the same
JP7010216B2 (en) Composite semipermeable membrane and its manufacturing method
JPWO2014133133A1 (en) Composite semipermeable membrane
KR101975155B1 (en) Composite semipermeable membrane and method for its production
JP2018187533A (en) Composite semipermeable membrane
JP7167442B2 (en) Composite semipermeable membrane and manufacturing method thereof
JP2012143750A (en) Method for producing composite semi-permeable membrane
JP2013223861A (en) Composite diaphragm
WO2016136966A1 (en) Composite semipermeable membrane
JP2023050015A (en) Composite semipermeable membrane and production method of the same
JP2015116539A (en) Composite semipermeable membrane and method of producing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014514973

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756864

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157022927

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14756864

Country of ref document: EP

Kind code of ref document: A1