JP2015150544A - Surface treatment agent, surface-treated polyamide reverse osmosis membrane and production method of the same - Google Patents

Surface treatment agent, surface-treated polyamide reverse osmosis membrane and production method of the same Download PDF

Info

Publication number
JP2015150544A
JP2015150544A JP2014029492A JP2014029492A JP2015150544A JP 2015150544 A JP2015150544 A JP 2015150544A JP 2014029492 A JP2014029492 A JP 2014029492A JP 2014029492 A JP2014029492 A JP 2014029492A JP 2015150544 A JP2015150544 A JP 2015150544A
Authority
JP
Japan
Prior art keywords
reverse osmosis
polyamide reverse
osmosis membrane
surface treatment
treatment agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014029492A
Other languages
Japanese (ja)
Other versions
JP6158720B2 (en
Inventor
秀人 松山
Hideto Matsuyama
秀人 松山
大輔 佐伯
Daisuke Saeki
大輔 佐伯
光康 中島
Mitsuyasu Nakajima
光康 中島
秀幸 野村
Hideyuki Nomura
秀幸 野村
山田 智
Satoshi Yamada
智 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
NOF Corp
Original Assignee
Kobe University NUC
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC, NOF Corp filed Critical Kobe University NUC
Priority to JP2014029492A priority Critical patent/JP6158720B2/en
Publication of JP2015150544A publication Critical patent/JP2015150544A/en
Application granted granted Critical
Publication of JP6158720B2 publication Critical patent/JP6158720B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface treatment agent for a polyamide reverse osmosis membrane which can effectively suppress fouling on the polyamide reverse osmosis membrane for a long term, does not substantially contain an organic solvent and is environmentally excellent, a surface-treated polyamide reverse osmosis membrane treated with the surface treatment agent and a production method of the same.SOLUTION: A surface treatment agent for a polyamide reverse osmosis membrane is the copolymer having a weight average molecular weight of 5,000-150,000 of a monomer composition including a monomer expressed by formula (1) of 10-80 mol% and a cationic (meth)acrylamide of 20-90 mol%. The surface of a surface-treated polyamide reverse osmosis membrane is treated with the surface treatment agent. A production method of the surface-treated polyamide reverse osmosis membrane includes a surface treatment step.

Description

本発明は、ポリアミド逆浸透膜のファウリング抑制に効果的な表面処理剤、並びに該表面処理剤で表面処理された表面処理ポリアミド逆浸透膜及びその製造方法に関する。   The present invention relates to a surface treatment agent effective for suppressing fouling of a polyamide reverse osmosis membrane, a surface-treated polyamide reverse osmosis membrane surface-treated with the surface treatment agent, and a method for producing the same.

最近、精密濾過、限外濾過、逆浸透などの濾過膜は、例えば、飲料水製造、上下水道処理、あるいは廃液処理など、多くの産業分野で利用されている。
このような濾過膜の中で、逆浸透膜は海水の淡水化、純水の製造などに用いられている。逆浸透膜の材料としては、一般にポリアミドが用いられているが、ファウリングしやすいことが問題となっている。
ファウリングとは原水に含まれるファウラントと呼ばれる原因物質、例えば、難溶性成分、蛋白質、多糖類などの高分子の溶質、コロイド、微小固形物、微生物などが膜に付着して透過流速を低下させる現象であり、膜劣化の主要原因として知られている。
このようなファウリング対策としては、定期的に界面活性剤や逆洗と呼ばれる通常とは逆向きに水流を流すなどの方法で濾過膜を洗浄して、ファウラントを除去する方法がある。また、ファウリング抑制のための前処理剤などを使用する方法なども検討されてきた。これらの方法は、ファウリングを抑制する方法としては一定の効果はあるものの、蛋白質や微生物を原因とするファウリングに対する効果は十分とは言えなかった。また、前処理剤には、これを使用し続けなければいけないという問題がある。
Recently, filtration membranes such as microfiltration, ultrafiltration, and reverse osmosis have been used in many industrial fields such as drinking water production, water and sewage treatment, and wastewater treatment.
Among such filtration membranes, reverse osmosis membranes are used for desalination of seawater, production of pure water, and the like. Polyamide is generally used as the material for the reverse osmosis membrane, but it has a problem that it easily fouls.
Fouling is a causative substance called foulant contained in raw water, for example, poorly soluble components, proteins, high molecular solutes such as polysaccharides, colloids, micro solids, microorganisms, etc., adhere to the membrane and reduce the permeation flow rate. This phenomenon is known as the main cause of film deterioration.
As a countermeasure against such fouling, there is a method of periodically removing a foulant by washing the filtration membrane by a method of periodically flowing a water flow called a surfactant or backwashing in a reverse direction. In addition, a method using a pretreatment agent for suppressing fouling has been studied. Although these methods have a certain effect as a method for suppressing fouling, they have not been sufficiently effective for fouling caused by proteins and microorganisms. In addition, the pretreatment agent has a problem that it must be used continuously.

このような蛋白質や微生物を原因とするファウリングに対する比較的効果の高い方法としては、蛋白質や微生物などのファウラントを吸着抑制できる素材を逆浸透膜表面に吸着処理する方法が知られている。蛋白質や微生物などのファウラントを吸着抑制できる素材としては、例えば、ホスホリルコリン類似基を有するモノマーを構成単位として含む重合体が知られている(特許文献1等)。また、特許文献1及び2には、前述のホスホリルコリン類似基を有するモノマーを構成単位として含む重合体を吸着処理した逆浸透膜が開示されている。さらに、特許文献3には、ホスホリルコリン類似基を有するモノマーを構成単位として含む重合体を含有するファウリング防止剤が開示されている。
上記ホスホリルコリン類似基を有するモノマーを構成単位として含む共重合体を用いて、ポリアミド逆浸透膜のファウリングを抑制する方法としては、ホスホリルコリン類似基含有モノマーと有機ケイ素含有モノマーとを重合させた共重合体を、有機溶剤を含む溶液に溶解し、この溶液に逆浸透膜を浸漬させ吸着させる方法がある。しかし、このような有機溶剤を含む溶液を用いる方法は、該有機溶剤を後処理する工程や設備が必要となり、環境的に問題がある。
As a method having a relatively high effect on fouling caused by such proteins and microorganisms, a method of adsorbing a material capable of suppressing adsorption of foulants such as proteins and microorganisms on the surface of the reverse osmosis membrane is known. As a material capable of suppressing adsorption of foulants such as proteins and microorganisms, for example, a polymer containing a monomer having a phosphorylcholine-like group as a structural unit is known (Patent Document 1, etc.). Patent Documents 1 and 2 disclose reverse osmosis membranes in which a polymer containing a monomer having a phosphorylcholine-like group as a constituent unit is adsorbed. Furthermore, Patent Document 3 discloses an antifouling agent containing a polymer containing a monomer having a phosphorylcholine-like group as a structural unit.
As a method for suppressing fouling of a polyamide reverse osmosis membrane using a copolymer containing a monomer having a phosphorylcholine-like group as a structural unit, a copolymer obtained by polymerizing a phosphorylcholine-like group-containing monomer and an organosilicon-containing monomer is used. There is a method in which the coalescence is dissolved in a solution containing an organic solvent, and a reverse osmosis membrane is immersed in this solution and adsorbed. However, the method using a solution containing such an organic solvent requires a process and equipment for post-processing the organic solvent, and is environmentally problematic.

特開平3−39309号公報JP-A-3-39309 特開平5−177119号公報JP-A-5-177119 特開2006−239636号公報JP 2006-239636 A

本発明の課題は、ポリアミド逆浸透膜のファウリングを長期にわたって効果的に抑制することが可能であり、しかも有機溶剤を実質的に含まず、環境的にも優れたポリアミド逆浸透膜用の表面処理剤を提供することにある。さらに、該表面処理剤で処理された表面処理ポリアミド逆浸透膜とその製造方法を提供することにある。   An object of the present invention is to provide a surface for a polyamide reverse osmosis membrane that can effectively suppress fouling of a polyamide reverse osmosis membrane over a long period of time and that is substantially free from organic solvents and environmentally superior. It is to provide a treatment agent. Furthermore, it is providing the surface treatment polyamide reverse osmosis membrane processed with this surface treating agent, and its manufacturing method.

本発明者らは、上記課題を解決するため鋭意研究した結果、特定のポリマーでポリアミド逆浸透膜の表面を処理することにより上記課題を解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by treating the surface of the polyamide reverse osmosis membrane with a specific polymer, and have completed the present invention.

すなわち、本発明によれば、式(1)で表されるモノマー10〜80モル%、及びカチオン性(メタ)アクリルアミド20〜90モル%を含むモノマー組成物の、重量平均分子量が5,000〜150,000の共重合体である、ポリアミド逆浸透膜用の表面処理剤が提供される。さらに水を含み、水溶液状であることが好ましい。

Figure 2015150544
(式中、R1は水素原子又はメチル基を示し、R2及びR3はそれぞれ独立に炭素数1〜4のアルキレン基を示し、R4、R5及びR6はそれぞれ独立に炭素数1〜4のアルキル基を示す。) That is, according to the present invention, the monomer composition containing 10 to 80 mol% of the monomer represented by the formula (1) and 20 to 90 mol% of cationic (meth) acrylamide has a weight average molecular weight of 5,000 to 5,000. A surface treatment agent for a polyamide reverse osmosis membrane, which is a 150,000 copolymer, is provided. Further, it preferably contains water and is in the form of an aqueous solution.
Figure 2015150544
(Wherein R 1 represents a hydrogen atom or a methyl group, R 2 and R 3 each independently represents an alkylene group having 1 to 4 carbon atoms, and R 4 , R 5 and R 6 each independently represents 1 carbon atom) Represents an alkyl group of ˜4.)

さらに、水溶液状の当該表面処理剤で、表面を処理された表面処理ポリアミド逆浸透膜、及び当該表面処理工程を有するその製造方法が提供される。   Furthermore, a surface-treated polyamide reverse osmosis membrane whose surface is treated with the surface treatment agent in the form of an aqueous solution, and a production method thereof having the surface treatment step are provided.

本発明の表面処理剤は、上記式(1)で表されるモノマーとカチオン性(メタ)アクリルアミドとを所定の割合で含むモノマー組成物の共重合体を含有するものであり、ポリアミド逆浸透膜の表面を効果的に改質して、ファウリングの発生を長期にわたり効果的に抑制することができる。さらに、実質的に有機溶剤を含まないので、有機溶剤を除去する設備を必要とせず、環境にも安全である。
本発明の表面処理ポリアミド逆浸透膜は、ファウリングが高度に抑制されるので、長期間透水量の低下を防止できる。また、本発明の製造方法により、良透水性と環境安全性を両立できる優れた表面処理ポリアミド逆浸透膜を製造することができる。
The surface treating agent of the present invention contains a copolymer of a monomer composition containing a monomer represented by the above formula (1) and cationic (meth) acrylamide in a predetermined ratio, and is a polyamide reverse osmosis membrane. By effectively modifying the surface of the film, generation of fouling can be effectively suppressed over a long period of time. Further, since it does not substantially contain an organic solvent, it does not require equipment for removing the organic solvent and is safe for the environment.
In the surface-treated polyamide reverse osmosis membrane of the present invention, fouling is highly suppressed, so that it is possible to prevent a decrease in water permeability for a long period. Moreover, the surface treatment polyamide reverse osmosis membrane which can make good water permeability and environmental safety compatible can be manufactured with the manufacturing method of this invention.

実施例及び比較例においてファウリング抑制効果確認試験を行った試験装置の概略図である。It is the schematic of the test apparatus which performed the fouling suppression effect confirmation test in the Example and the comparative example. 実施例及び比較例におけるファウリング抑制効果確認試験の結果を示すグラフである。It is a graph which shows the result of the fouling suppression effect confirmation test in an example and a comparative example.

以下本発明を詳細に説明する。
本発明の表面処理剤は、上記式(1)で表されるモノマー(以下、モノマー(1)と略すことがある)、及びカチオン性(メタ)アクリルアミドを含むモノマー組成物の共重合体からなる表面処理剤であり、水溶液形態でポリアミド逆浸透膜を処理することにより、当該ポリアミド逆浸透膜のファウリングを抑制することができる。
式(1)において、R1は水素原子又はメチル基を示す。R2及びR3はそれぞれ独立に炭素数1〜4のアルキレン基を示す。R4、R5及びR6はそれぞれ独立に炭素数1〜4のアルキル基を示す。
The present invention will be described in detail below.
The surface treatment agent of the present invention comprises a copolymer of a monomer composition containing a monomer represented by the above formula (1) (hereinafter sometimes abbreviated as monomer (1)) and cationic (meth) acrylamide. By treating the polyamide reverse osmosis membrane in the form of an aqueous solution, which is a surface treatment agent, fouling of the polyamide reverse osmosis membrane can be suppressed.
In the formula (1), R 1 represents a hydrogen atom or a methyl group. R 2 and R 3 each independently represents an alkylene group having 1 to 4 carbon atoms. R 4 , R 5 and R 6 each independently represents an alkyl group having 1 to 4 carbon atoms.

モノマー(1)としては、例えば、2−メタクリロイルオキシエチルホスホリルコリン(以下、MPCと略記する)、3−メタクリロイルオキシプロピルホスホリルコリン、4−メタクリロイルオキシブチルホスホリルコリン、2−メタクリロイルオキシエチル−2'−トリエチルアンモニオエチルホスフェート、2−メタクリロイルオキシエチル−2'−トリブチルアンモニオエチルホスフェートが挙げられる。入手性の点からはMPCが好ましい。   Examples of the monomer (1) include 2-methacryloyloxyethyl phosphorylcholine (hereinafter abbreviated as MPC), 3-methacryloyloxypropyl phosphorylcholine, 4-methacryloyloxybutylphosphorylcholine, 2-methacryloyloxyethyl-2′-triethylammonio. Examples thereof include ethyl phosphate and 2-methacryloyloxyethyl-2′-tributylammonioethyl phosphate. MPC is preferable from the viewpoint of availability.

カチオン性(メタ)アクリルアミドとしては、例えば、アクリロイルアミノプロピルトリメチルアンモニウムクロライド(以下、AAPTACと略記する)、メタクリロイルアミノプロピルトリメチルアンモニウムクロライド(以下、MAPTACと略記する)、メタクリロイルアミノプロピルトリメチルアンモニウムメチルサルフェート、メタクリロイルアミノプロピルジメチルベンジルアンモニウムクロライド、メタクリロイルアミノプロピルジメチルエチルサルフェート、メタクリロイルアミノプロピルトリメチルアンモニウムp-トルエンサルフェート等を挙げることができる。
汎用品で安価に入手しやすい点で、好ましくはAAPTAC及び/又はMAPTACが好ましい。
ここで、カチオン性(メタ)アクリルアミドとは、カチオン性アクリルアミド、カチオン性メタクリルアミド、又はこの両者を意味するものとする。
Examples of the cationic (meth) acrylamide include acryloylaminopropyltrimethylammonium chloride (hereinafter abbreviated as AAPTAC), methacryloylaminopropyltrimethylammonium chloride (hereinafter abbreviated as MAPTAC), methacryloylaminopropyltrimethylammonium methyl sulfate, and methacryloyl. Examples thereof include aminopropyldimethylbenzylammonium chloride, methacryloylaminopropyldimethylethyl sulfate, methacryloylaminopropyltrimethylammonium p-toluene sulfate, and the like.
AAPTAC and / or MAPTAC are preferable because they are general-purpose products and easily available at low cost.
Here, the cationic (meth) acrylamide means cationic acrylamide, cationic methacrylamide, or both.

本発明の共重合体を調製するためのモノマー組成物は、本発明の効果を損なわない範囲で、上記必須のモノマー以外のモノマーを含んでもよい。必須モノマー以外の使用可能なモノマーとしては、ラジカル重合可能なものが好ましく、例えば、メタクリル酸n−ブチル等の(メタ)アクリレートが挙げられる。
ファウリング抑制効果の点で、不可避的に混入する他モノマーを除いて、実質的にモノマー(1)及びカチオン性(メタ)アクリルアミドからなる共重合体が好ましい。
The monomer composition for preparing the copolymer of the present invention may contain a monomer other than the essential monomers as long as the effects of the present invention are not impaired. As the usable monomer other than the essential monomers, those capable of radical polymerization are preferable, and examples thereof include (meth) acrylates such as n-butyl methacrylate.
From the viewpoint of the fouling suppression effect, a copolymer consisting essentially of the monomer (1) and the cationic (meth) acrylamide is preferred except for other monomers inevitably mixed.

モノマー組成物中のモノマー(1)の含有量は、10〜80モル%である。すなわち、共重合体中のモノマー(1)由来部(対応部)の構成割合が10〜80モル%である。なお、以後、共重合体中のモノマー由来部、及びその構成割合の説明については便宜上モノマー名で示すものとする。共重合体中のモノマー(1)は、好ましくは30モル%以上、70モル%以下である。
共重合体中のカチオン性(メタ)アクリルアミドは20〜90モル%であり、好ましくは30モル%以上、70モル%以下である。
共重合体中のモノマー(1)の構成割合が80モル%を超え、カチオン性(メタ)アクリルアミドの構成割合が20モル%未満である場合には、ポリアミド逆浸透膜と相互作用するカチオン性(メタ)アクリルアミドの割合が小さくなって、ポリアミド逆浸透膜との相互作用が不十分となり、ファウリング抑制効果が低下するおそれがある。モノマー(1)の構成割合が10モル%未満で、カチオン性(メタ)アクリルアミドの構成割合が90モル%を超える場合には、十分なファウリング抑制効果を示さないおそれがある。
ここで、カチオン性(メタ)アクリルアミドとポリアミド逆浸透膜との相互作用とは、静電相互作用により、当該カチオン性(メタ)アクリルアミド部位がポリアミド逆浸透膜の表面に吸着することを意味する。
Content of the monomer (1) in a monomer composition is 10-80 mol%. That is, the constituent ratio of the monomer (1) -derived part (corresponding part) in the copolymer is 10 to 80 mol%. In the following description, the monomer-derived part in the copolymer and the constituent ratio thereof will be indicated by the monomer name for convenience. The monomer (1) in the copolymer is preferably 30 mol% or more and 70 mol% or less.
The cationic (meth) acrylamide in the copolymer is 20 to 90 mol%, preferably 30 mol% or more and 70 mol% or less.
When the constituent ratio of the monomer (1) in the copolymer exceeds 80 mol% and the constituent ratio of the cationic (meth) acrylamide is less than 20 mol%, the cationic property that interacts with the polyamide reverse osmosis membrane ( The proportion of (meth) acrylamide becomes small, the interaction with the polyamide reverse osmosis membrane becomes insufficient, and the fouling suppressing effect may be lowered. When the constituent ratio of the monomer (1) is less than 10 mol% and the constituent ratio of the cationic (meth) acrylamide exceeds 90 mol%, there is a possibility that a sufficient fouling suppressing effect is not exhibited.
Here, the interaction between the cationic (meth) acrylamide and the polyamide reverse osmosis membrane means that the cationic (meth) acrylamide site is adsorbed on the surface of the polyamide reverse osmosis membrane by electrostatic interaction.

本発明に用いる共重合体の分子量は、表面処理剤の溶媒として使用する水に溶解する分子量とする必要がある。該分子量としては、ゲルパーミエーションクロマトグラフィー(GPC)により、標準ポリエチレングリコールを用いて換算した重量平均分子量で、5,000〜150,000であり、好ましくは10,000〜100,000である。該分子量が5,000未満の場合には、得られる共重合体がポリアミド逆浸透膜表面に吸着しにくいおそれがあり、該分子量が150,000以上の場合には、溶媒である水に溶解せず、ポリアミド逆浸透膜に吸着することができないおそれがある。   The molecular weight of the copolymer used in the present invention needs to be a molecular weight that dissolves in water used as a solvent for the surface treatment agent. The molecular weight is 5,000 to 150,000, preferably 10,000 to 100,000, in terms of weight average molecular weight calculated by gel permeation chromatography (GPC) using standard polyethylene glycol. When the molecular weight is less than 5,000, the resulting copolymer may be difficult to adsorb on the surface of the polyamide reverse osmosis membrane. When the molecular weight is 150,000 or more, the copolymer may be dissolved in water as a solvent. Therefore, there is a possibility that the polyamide reverse osmosis membrane cannot be adsorbed.

本発明に係る共重合体の重合方法としては、溶液重合、塊状重合、乳化重合、懸濁重合等の公知の方法を用いることができ、例えば、モノマー組成物を溶媒中で開始剤の存在下、重合反応させる方法を採用することができる。
前記重合反応に用いる溶媒としては、モノマー組成物が溶解する溶媒であれば良く、例えば、水、メタノール、エタノール、プロパノール、ジメチルホルムアミド、テトラヒドロフラン、クロロホルム等が挙げられ、2種以上を混合してもよい。
前記重合反応に用いる開始剤としては、通常の開始剤ならばいずれを用いてもよく、例えば、ラジカル重合の場合は脂肪族アゾ化合物や有機過酸化物を用いることができる。
As a polymerization method of the copolymer according to the present invention, known methods such as solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization and the like can be used. For example, the monomer composition is used in a solvent in the presence of an initiator. A polymerization reaction method can be employed.
The solvent used in the polymerization reaction may be any solvent that dissolves the monomer composition, and examples thereof include water, methanol, ethanol, propanol, dimethylformamide, tetrahydrofuran, chloroform, and the like. Good.
Any initiator can be used as the initiator used in the polymerization reaction. For example, in the case of radical polymerization, an aliphatic azo compound or an organic peroxide can be used.

当該重合反応により得られる共重合体は、重合溶媒が水の場合は精製後、共重合体の濃度を調整することでそのまま表面処理剤として用いることができる。溶媒が有機溶媒の場合は、アセトンによる再沈あるいは濾過精製することによって共重合体を単離した後、水に溶解させ、共重合体の濃度を調整することで表面処理剤を得ることができる。   When the polymerization solvent is water, the copolymer obtained by the polymerization reaction can be used as it is as a surface treatment agent by adjusting the concentration of the copolymer after purification. If the solvent is an organic solvent, the surface treatment agent can be obtained by isolating the copolymer by reprecipitation with acetone or filtering and then dissolving it in water and adjusting the concentration of the copolymer. .

本発明の表面処理剤でポリアミド逆浸透膜を処理する場合、該表面処理剤を水溶液形態とし、該水溶液中の共重合体の濃度を、0.001〜10質量%とするのが好ましく、0.01〜1質量%とするのがより好ましい。0.001質量%未満の場合は、ファウリング抑制効果を示さないおそれがあり、10質量%を超える場合は、ポリアミド逆浸透膜の孔が閉塞され十分な濾過水を得ることができなくなるおそれがある。   When a polyamide reverse osmosis membrane is treated with the surface treatment agent of the present invention, the surface treatment agent is preferably in the form of an aqueous solution, and the concentration of the copolymer in the aqueous solution is preferably 0.001 to 10% by mass. More preferably, the content is 0.01 to 1% by mass. If the amount is less than 0.001% by mass, the fouling suppressing effect may not be exhibited. If the amount exceeds 10% by mass, the pores of the polyamide reverse osmosis membrane may be blocked and sufficient filtered water may not be obtained. is there.

本発明の表面処理剤用溶媒に使用する水としては、純水、精製水等を用いることができる。   As water used for the solvent for a surface treating agent of the present invention, pure water, purified water, or the like can be used.

また、ポリアミド逆浸透膜には、抗菌剤をコートするなどの他の表面処理が施されていても良い。該抗菌剤としては、塩化ベンザルコニウムなどの界面活性剤、銅、銀、錫などの無機化合物からなる金属系抗菌剤が挙げられる。   The polyamide reverse osmosis membrane may be subjected to other surface treatment such as coating with an antibacterial agent. Examples of the antibacterial agent include surfactants such as benzalkonium chloride, and metal antibacterial agents composed of inorganic compounds such as copper, silver, and tin.

本発明の表面処理剤で表面処理される、表面処理ポリアミド逆浸透質膜は以下の工程を実施することにより製造される。
(1)表面処理工程:ポリアミド逆浸透膜を濾過装置にセットし、5〜35℃、0.05〜30atm、流速3〜100mL/分で、1〜30分間、表面処理剤を通過させて表面処理する工程。このとき、表面処理剤は、好ましくは0.001〜10質量%、より好ましくは0.01〜1質量%の水溶液とする。
(2)水洗工程:表面処理後のポリアミド逆浸透膜を純水で水洗する工程。
なお、工程(1)については、表面処理剤にポリアミド逆浸透膜を浸漬する方法、又はポリアミド逆浸透膜に表面処理剤をスプレーコートする方法を採用することもできる。
The surface-treated polyamide reverse osmosis membrane which is surface-treated with the surface treatment agent of the present invention is produced by carrying out the following steps.
(1) Surface treatment step: A polyamide reverse osmosis membrane is set in a filtration device, and the surface treatment agent is passed through the surface at 5 to 35 ° C., 0.05 to 30 atm, and a flow rate of 3 to 100 mL / min for 1 to 30 minutes. Process to process. At this time, the surface treatment agent is preferably an aqueous solution of 0.001 to 10% by mass, more preferably 0.01 to 1% by mass.
(2) Washing step: A step of washing the polyamide reverse osmosis membrane after the surface treatment with pure water.
In addition, about a process (1), the method of immersing a polyamide reverse osmosis membrane in a surface treating agent, or the method of spray-coating a surface treating agent on a polyamide reverse osmosis membrane is also employable.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれらに限定されない。
各実施例及び比較例に使用した各共重合体及び単独重合体の組成、及び性状を表1に示す。
Hereinafter, although an example and a comparative example explain the present invention still in detail, the present invention is not limited to these.
Table 1 shows the composition and properties of each copolymer and homopolymer used in each Example and Comparative Example.

実施例1−1
<表面処理剤1の製造>
(1)共重合体1;MPC/AAPTAC=70/30(モル比)の合成
MPC(日油株式会社製)36.92g、AAPTAC(MRCユニテック株式会社製)11.08g及び水190.00gを500mLの四つ口フラスコに入れ、30分間窒素を吹き込んだ。次に、2,2'−アゾビス(2−メチルプロピオンアミジン)二塩酸塩(和光純薬工業株式会社製のV−50)0.36gと水2.00gとからなる溶液を添加し、70℃で2時間攪拌重合した後、室温に冷却し、共重合体溶液を得た。続いて、透析膜(分画分子量3500)に共重合体溶液を入れ水中に浸漬させることにより精製し、共重合体1を得た。
(2)共重合体1の分子量測定
共重合体1のGPCによる、標準ポリエチレングリコールを用いて換算した重量平均分子量は73,000であった。共重合体1の重量平均分子量測定方法を以下に示す。
(分子量測定方法)
共重合体水溶液を1.0w/v%になるよう20mMリン酸バッファー(pH7.4)で希釈し、この溶液を0.45μmのメンブランフィルターでろ過して試験溶液とし、GPCにより重量平均分子量を測定・算出した。なお、GPC分析の測定条件は次の通りである。
(GPC分析の測定条件)
カラム;TSKgel PWXL-CP(東ソー株式会社製)、溶離溶媒;20mMリン酸バッファー(pH7.4)、標準物質;ポリエチレングリコール(Polymer Laboratories Ltd.製)、検出;示差屈折計RI−8020(東ソー株式会社製)、流速;0.5mL/分、試料溶液使用量;10μL、カラム温度;45℃。
(3)表面処理剤1の調製
共重合体1をその濃度が0.1質量%となるように水に溶解し、表面処理剤1を調製した。
Example 1-1
<Manufacture of surface treatment agent 1>
(1) Copolymer 1; Synthesis of MPC / AAPTAC = 70/30 (molar ratio) 36.92 g of MPC (manufactured by NOF Corporation), 11.08 g of AAPTAC (manufactured by MRC Unitech Co., Ltd.) and 190.00 g of water It put into a 500 mL four necked flask, and nitrogen was blown in for 30 minutes. Next, a solution composed of 0.36 g of 2,2′-azobis (2-methylpropionamidine) dihydrochloride (V-50 manufactured by Wako Pure Chemical Industries, Ltd.) and 2.00 g of water was added, and 70 ° C. And stirred for 2 hours, and then cooled to room temperature to obtain a copolymer solution. Subsequently, the copolymer solution was placed in a dialysis membrane (fractionated molecular weight 3500) and immersed in water for purification, whereby a copolymer 1 was obtained.
(2) Measurement of molecular weight of copolymer 1 The weight average molecular weight of the copolymer 1 converted by standard polyethylene glycol by GPC was 73,000. The method for measuring the weight average molecular weight of copolymer 1 is shown below.
(Molecular weight measurement method)
The aqueous copolymer solution is diluted with 20 mM phosphate buffer (pH 7.4) to 1.0 w / v%, and this solution is filtered through a 0.45 μm membrane filter to obtain a test solution. The weight average molecular weight is determined by GPC. Measured and calculated. The measurement conditions for GPC analysis are as follows.
(GPC analysis measurement conditions)
Column: TSKgel PWXL-CP (manufactured by Tosoh Corporation), elution solvent: 20 mM phosphate buffer (pH 7.4), standard substance: polyethylene glycol (manufactured by Polymer Laboratories Ltd.), detection; differential refractometer RI-8020 (Tosoh Corporation) (Manufactured by company), flow rate: 0.5 mL / min, sample solution usage: 10 μL, column temperature: 45 ° C.
(3) Preparation of surface treatment agent 1 Copolymer 1 was dissolved in water so that the concentration thereof was 0.1% by mass to prepare surface treatment agent 1.

実施例1−2
<表面処理剤2の製造>
MPCの使用量を28.24g、及びAAPTACの使用量を19.76gに変更した以外は、実施例1−1と同様にして、共重合体2の合成及び重量平均分子量の測定を実施し、次いで、共重合体2を使用して表面処理剤2を調製した。
Example 1-2
<Manufacture of surface treatment agent 2>
Except having changed the usage-amount of MPC to 28.24g and the usage-amount of AAPTAC to 19.76g, it implemented the synthesis | combination of the copolymer 2, and the measurement of the weight average molecular weight similarly to Example 1-1, Subsequently, surface treating agent 2 was prepared using copolymer 2.

実施例1−3
<表面処理剤3の製造>
MPCの使用量を12.15g、及びAAPTACの使用量を34.03gに変更した以外は、実施例1−1と同様にして、共重合体3の合成及び重量平均分子量の測定を実施し、次いで、共重合体3を使用して表面処理剤3を調製した。
Example 1-3
<Manufacture of surface treatment agent 3>
Except having changed the usage-amount of MPC to 12.15g and the usage-amount of AAPTAC to 34.03g, it implemented the synthesis | combination of the copolymer 3, and the measurement of the weight average molecular weight similarly to Example 1-1, Subsequently, surface treating agent 3 was prepared using copolymer 3.

実施例1−4
<表面処理剤4の製造>
(1)共重合体4;MPC/MAPTAC=50/50(モル比)の合成
MPC27.47g、MAPTAC(MRCユニテック株式会社製)20.54g及び水166gを500mLの四つ口フラスコに入れ、30分間窒素を吹き込んだ。次に、2,2'−アゾビス(2−メチルプロピオンアミジン)二塩酸塩(和光純薬工業社製のV−50)0.36gと水2.00gとからなる溶液を添加し、70℃で2時間攪拌重合した後、室温に冷却し、共重合体溶液を得た。続いて、透析膜(分画分子量3500)に共重合体溶液を入れ水中に浸漬させることにより精製し、共重合体4を得た。
(2)共重合体4の分子量測定
実施例1−1と同様にして、共重合体4の重量平均分子量を測定した。
(3)表面処理剤4の調製
共重合体4を使用し、実施例1−1と同様にして表面処理剤4を調製した。
Example 1-4
<Manufacture of surface treatment agent 4>
(1) Copolymer 4; Synthesis of MPC / MAPTAC = 50/50 (molar ratio) 27.47 g of MPC, 20.54 g of MAPTAC (manufactured by MRC Unitech Co., Ltd.) and 166 g of water were placed in a 500 mL four-necked flask, 30 Nitrogen was blown for a minute. Next, a solution composed of 0.36 g of 2,2′-azobis (2-methylpropionamidine) dihydrochloride (V-50 manufactured by Wako Pure Chemical Industries, Ltd.) and 2.00 g of water was added, After stirring and polymerizing for 2 hours, the mixture was cooled to room temperature to obtain a copolymer solution. Subsequently, the copolymer solution was put in a dialysis membrane (fractionated molecular weight 3500) and immersed in water for purification to obtain a copolymer 4.
(2) Measurement of molecular weight of copolymer 4 The weight average molecular weight of copolymer 4 was measured in the same manner as in Example 1-1.
(3) Preparation of surface treatment agent 4 Surface treatment agent 4 was prepared using copolymer 4 in the same manner as in Example 1-1.

比較例1−1
<表面処理剤5の製造>
(1)共重合体5;MPC/ブチルメタクリレート(BMA)=30/70(モル比)の合成
MPC8.0g、BMA(和光純薬工業社製)9.0g及びエタノール153gを300mLの四つ口フラスコに入れ、30分間窒素を吹き込んだ。次に、パーブチル−ND(登録商標)(日油株式会社製)0.06gを添加し、60℃で3時間攪拌重合した後、室温に冷却し、アセトンによる再沈することで精製して共重合体5を得た。
(2)共重合体5の分子量測定
実施例1−1と同様にして、共重合体5の重量平均分子量を測定した。
(3)表面処理剤5の調製
共重合体5を使用し、実施例1−1と同様にして表面処理剤5を調製した。
Comparative Example 1-1
<Manufacture of surface treatment agent 5>
(1) Copolymer 5: Synthesis of MPC / butyl methacrylate (BMA) = 30/70 (molar ratio) MPC 8.0 g, BMA (manufactured by Wako Pure Chemical Industries, Ltd.) 9.0 g, and ethanol 153 g in four-necked 300 mL Nitrogen was bubbled through the flask for 30 minutes. Next, 0.06 g of perbutyl-ND (registered trademark) (manufactured by NOF Corporation) is added, and after stirring and polymerization at 60 ° C. for 3 hours, the mixture is cooled to room temperature and purified by reprecipitation with acetone. A polymer 5 was obtained.
(2) Molecular weight measurement of the copolymer 5 The weight average molecular weight of the copolymer 5 was measured like Example 1-1.
(3) Preparation of surface treatment agent 5 Surface treatment agent 5 was prepared using copolymer 5 in the same manner as in Example 1-1.

比較例1−2
<表面処理剤6の製造>
(1)単独重合体1;MPCの単独重合体(ホモポリマー)の合成
MPC20g及び水180gを300mLの四つ口フラスコに入れ、30分間窒素を吹き込んだ。次に、パーロイルSA(登録商標)(日油株式会社製)0.9gを添加し、70℃で6時間攪拌重合した後、室温に冷却し、重合体溶液を得た。続いて、透析膜(分画分子量3500)に共重合体溶液を入れ水中に浸漬させることにより精製し、単独重合体1を得た。
(2)単独共重合体1の分子量測定
実施例1−1と同様にして、単独重合体1の重量平均分子量を測定した。
(3)表面処理剤6の調製
単独共重合体1を使用し、実施例1−1と同様にして表面処理剤6を調製した。
Comparative Example 1-2
<Manufacture of surface treatment agent 6>
(1) Homopolymer 1; Synthesis of MPC Homopolymer (Homopolymer) 20 g of MPC and 180 g of water were placed in a 300 mL four-necked flask, and nitrogen was blown for 30 minutes. Next, 0.9 g of Parroyl SA (registered trademark) (manufactured by NOF Corporation) was added and subjected to stirring polymerization at 70 ° C. for 6 hours, and then cooled to room temperature to obtain a polymer solution. Subsequently, the copolymer solution was placed in a dialysis membrane (fractionated molecular weight 3500) and immersed in water for purification to obtain a homopolymer 1.
(2) Molecular weight measurement of homopolymer 1 The weight average molecular weight of the homopolymer 1 was measured in the same manner as in Example 1-1.
(3) Preparation of surface treatment agent 6 Surface treatment agent 6 was prepared in the same manner as in Example 1-1 using homopolymer 1.

上記各実施例1及び各比較例1で調製した表面処理剤を用い、ポリアミド逆浸透膜の表面を処理し、各表面処理ポリアミド逆浸透膜について、ファウリング抑制効果を測定した。詳細について以下に説明する。   The surface treatment agent prepared in each Example 1 and each Comparative Example 1 was used to treat the surface of the polyamide reverse osmosis membrane, and the fouling suppression effect was measured for each surface-treated polyamide reverse osmosis membrane. Details will be described below.

実施例2−1
<表面処理ポリアミド逆浸透膜1(以下、処理膜1と略称する)の製造>
(1)表面処理工程
図1に示す平膜試験装置に、ポリアミド逆浸透膜(以下、未処理のポリアミド逆浸透膜をRO膜と称する)として、東レ株式会社製の逆浸透膜SU700(膜表面積40cm2)をセットした。次いで、表面処理剤1をクロスフロー方式、圧力7.5atm、25℃、流速50mL/分で15分間流し続けた。
(2)水洗工程
表面処理剤1をフローした後、純水を平膜試験装置に15分間流し続けることにより水洗し、処理膜1を得た。
Example 2-1
<Manufacture of surface-treated polyamide reverse osmosis membrane 1 (hereinafter abbreviated as treatment membrane 1)>
(1) Surface treatment process In the flat membrane test apparatus shown in FIG. 1, as a polyamide reverse osmosis membrane (hereinafter, an untreated polyamide reverse osmosis membrane is referred to as an RO membrane), a reverse osmosis membrane SU700 (membrane surface area) manufactured by Toray Industries, Inc. 40 cm 2 ) was set. Subsequently, the surface treatment agent 1 was continuously supplied for 15 minutes at a cross flow method, a pressure of 7.5 atm, 25 ° C., and a flow rate of 50 mL / min.
(2) Washing step After the surface treatment agent 1 was flowed, the membrane was washed with water by continuously flowing pure water through the flat membrane test apparatus for 15 minutes, whereby a treated membrane 1 was obtained.

次に、処理膜1の表面にMPCが存在することを以下のようにして確認した。
<X線光電子分光測定(XPS測定)>
処理膜1を、カッターで適度な大きさに切った後、両面カーボンテープを用いて試料台に貼り付けた。続いて、処理膜1について、XPS測定装置JPS−9200 (日本電子株式会社製)を用いてMPCに含まれるリン元素の有無を定性分析した。なお、XPS測定条件は以下の通りである。XPS測定の結果、処理膜1にリン元素が検出され、MPCが存在することを確認した。
(XPS測定条件)X線源 :MgKa、X線出力:100W。
Next, the presence of MPC on the surface of the treatment film 1 was confirmed as follows.
<X-ray photoelectron spectroscopy measurement (XPS measurement)>
The treatment film 1 was cut into an appropriate size with a cutter and then attached to a sample table using a double-sided carbon tape. Then, the presence or absence of the phosphorus element contained in MPC was qualitatively analyzed about the processing film 1 using XPS measuring apparatus JPS-9200 (made by JEOL Ltd.). The XPS measurement conditions are as follows. As a result of XPS measurement, phosphorus element was detected in the treatment film 1 and it was confirmed that MPC was present.
(XPS measurement conditions) X-ray source: MgKa, X-ray output: 100 W.

当該処理膜1のファウリング抑制効果を次のようにして測定した。
<ファウリング抑制試験>
タンパクの1種である牛血清アルブミン含有液に対するファウリング抑制試験を実施した。ファウリング抑制試験の概略を図1に示す。
具体的には、「処理膜1」2に、牛血清アルブミン(和光純薬株式会社製)を100ppmとなるように溶解した液(ファウラント原液1)をクロスフロー方式、圧力7.5atm、流速50mL/分で48時間送液・通過させた。このとき、測定開始直後、及び所定時間(測定時間;表2に示す0.1hr〜48hr)ごとのろ過水3の体積w(L)を測定し、下記数式1に従って絶対透水量(L/m2/h/atm)を算出した。測定開始直後の絶対透水量は250(L/m2/h/atm)であった。そして次に、この測定開始直後の絶対透水量で、各測定時間での絶対透水量を除した相対透水量を算出した。処理膜1による各測定時間の相対透水量の変化を表2及び図2に示す。
The fouling suppression effect of the treatment film 1 was measured as follows.
<Fouling suppression test>
A fouling suppression test was performed on a bovine serum albumin-containing solution, which is a kind of protein. An outline of the fouling suppression test is shown in FIG.
Specifically, a solution (foulant stock solution 1) in which bovine serum albumin (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in “treated membrane 1” 2 to a concentration of 100 ppm is a cross flow method, pressure 7.5 atm, flow rate 50 mL. The solution was sent and passed at a rate of 48 minutes per minute. At this time, the volume w (L) of the filtered water 3 is measured immediately after the start of measurement and every predetermined time (measurement time; 0.1 hr to 48 hr shown in Table 2), and the absolute water permeability (L / m) according to the following formula 1. 2 / h / atm) was calculated. The absolute water permeability immediately after the start of measurement was 250 (L / m 2 / h / atm). Then, the relative water permeation amount obtained by dividing the absolute water permeation amount at each measurement time by the absolute water permeation amount immediately after the start of the measurement was calculated. Table 2 and FIG. 2 show changes in the relative water permeability of each measurement time by the treatment membrane 1.

Figure 2015150544
(数式1中、wはろ過水体積(L)、pは入口圧力(atm)、tはろ過水回収時間(h)、Sはポリアミド逆浸透膜の膜表面積(m2)を示す。)
Figure 2015150544
(Wherein, w is the filtrate volume (L), p is the inlet pressure (atm), t is the filtrate recovery time (h), and S is the membrane surface area (m 2 ) of the polyamide reverse osmosis membrane.

実施例2−2〜実施例2−4
実施例2−1と同様にして、各々、表面処理剤2〜4でRO膜を処理し、表面処理ポリアミド逆浸透膜2〜4(以下、各々、処理膜2〜4と称する)を製造した。続いて、実施例2−1と同様に、XPS測定によって、処理膜2〜4にMPCが存在することを確認した。さらに、実施例2−1と同様にファウリング抑制試験を行った。測定開始直後の絶対透水量は処理膜2が、240(L/m2/h/atm)、処理膜3が、270(L/m2/h/atm)、処理膜4が、260(L/m2/h/atm)であった。相対透水量の変化を表2及び図2に示す。
Example 2-2 to Example 2-4
In the same manner as in Example 2-1, each of the RO membranes was treated with surface treatment agents 2 to 4 to produce surface treated polyamide reverse osmosis membranes 2 to 4 (hereinafter referred to as treatment membranes 2 to 4, respectively). . Subsequently, as in Example 2-1, it was confirmed by XPS measurement that MPC was present in the treatment films 2 to 4. Further, a fouling suppression test was conducted in the same manner as in Example 2-1. The absolute water permeation amount immediately after the start of the measurement is 240 (L / m 2 / h / atm) for the treatment film 2 , 270 (L / m 2 / h / atm) for the treatment film 3, and 260 (L / m for the treatment film 4). / M 2 / h / atm). Changes in the relative water permeability are shown in Table 2 and FIG.

比較例2−1〜比較例2−2
実施例2−1と同様にして、各々、表面処理剤5及び6でRO膜を処理し、表面処理ポリアミド逆浸透膜5及び6(以下、各々、処理膜5、6と称する)を製造した。続いて、実施例2−1と同様に、XPS測定によって、処理膜5及び6にMPCが存在することを確認した。さらに、実施例2−1と同様にファウリング抑制試験を行った。測定開始直後の絶対透水量はいずれも265(L/m2/h/atm)であった。相対透水量の変化を表2及び図2に示す。
Comparative Example 2-1 to Comparative Example 2-2
In the same manner as in Example 2-1, the RO membranes were treated with the surface treatment agents 5 and 6, respectively, to produce surface-treated polyamide reverse osmosis membranes 5 and 6 (hereinafter referred to as treatment membranes 5 and 6, respectively). . Subsequently, as in Example 2-1, it was confirmed by XPS measurement that MPC was present in the treatment films 5 and 6. Further, a fouling suppression test was conducted in the same manner as in Example 2-1. The absolute water permeability immediately after the start of measurement was 265 (L / m 2 / h / atm). Changes in the relative water permeability are shown in Table 2 and FIG.

比較例2−3
表面処理剤で表面処理を行わないRO膜を使用した以外は、実施例2−1と同様にファウリング抑制試験を行った。測定開始直後の絶対透水量は280(L/m2/h/atm)であった。相対透水量の変化を表2及び図2に示す。
Comparative Example 2-3
A fouling suppression test was conducted in the same manner as in Example 2-1, except that an RO membrane that was not surface-treated with a surface treatment agent was used. The absolute water permeability immediately after the start of measurement was 280 (L / m 2 / h / atm). Changes in the relative water permeability are shown in Table 2 and FIG.

Figure 2015150544
Figure 2015150544

Figure 2015150544
Figure 2015150544

表2及び図2の結果より、いずれの実施例の場合も、相対透水量はいずれの比較例と比較しても高かった。相対透水量が高く維持されることはファウリングに対して抵抗性があることを示す。つまり、表面処理剤1〜4で表面処理された表面処理ポリアミド逆浸透膜である処理膜1〜4は、比較例2−3のRO膜と比較して、いずれも顕著なファウリング抑制効果が認められた。
また、処理膜1〜4は、相対透水量が高く維持されたのに対し、比較例である表面処理剤5又は6で表面処理された処理膜5及び6は徐々に透水量の減少が見られた。このことより、式(1)で表されるモノマーの例であるMPCを有するが、カチオン性(メタ)アクリルアミドを有さないモノマー組成の共重合体、及びMPCの単独重合体からなる各表面処理剤と比較して、本発明の実施形態例である各実施例の表面処理剤は、ファウリング抑制効果が優れていることが判る。
From the results shown in Table 2 and FIG. 2, the relative water permeation amount was higher in any of the examples than in any of the comparative examples. The fact that the relative water permeability is kept high indicates that it is resistant to fouling. That is, the treated membranes 1 to 4 which are surface-treated polyamide reverse osmosis membranes surface-treated with the surface treating agents 1 to 4 have a remarkable fouling suppressing effect as compared with the RO membrane of Comparative Example 2-3. Admitted.
In addition, while the treatment films 1 to 4 maintained a high relative water permeability, the treatment films 5 and 6 surface-treated with the surface treatment agent 5 or 6 as a comparative example gradually decreased in the water permeability. It was. Thus, each surface treatment comprising a copolymer of a monomer composition having MPC as an example of the monomer represented by the formula (1) but not having cationic (meth) acrylamide, and a homopolymer of MPC. It can be seen that the surface treatment agent of each example, which is an embodiment of the present invention, is superior in the fouling suppressing effect as compared with the agent.

1:ファウラント原液
2:表面処理ポリアミド逆浸透膜(処理膜1〜6)又はRO膜
3:ろ過水
1: Foulant stock solution 2: Surface-treated polyamide reverse osmosis membrane (treated membranes 1-6) or RO membrane 3: Filtered water

Claims (5)

式(1)で表されるモノマー10〜80モル%、及びカチオン性(メタ)アクリルアミド20〜90モル%を含むモノマー組成物の、重量平均分子量が5,000〜150,000の共重合体である、
ポリアミド逆浸透膜用の表面処理剤。
Figure 2015150544
(1)
(式中、R1は水素原子又はメチル基を示し、R2及びR3はそれぞれ独立に炭素数1〜4のアルキレン基を示し、R4、R5及びR6はそれぞれ独立に炭素数1〜4のアルキル基を示す。)
A copolymer having a weight average molecular weight of 5,000 to 150,000, which is a monomer composition containing 10 to 80 mol% of the monomer represented by formula (1) and 20 to 90 mol% of cationic (meth) acrylamide. is there,
Surface treatment agent for polyamide reverse osmosis membranes.
Figure 2015150544
(1)
(Wherein R 1 represents a hydrogen atom or a methyl group, R 2 and R 3 each independently represents an alkylene group having 1 to 4 carbon atoms, and R 4 , R 5 and R 6 each independently represents 1 carbon atom) Represents an alkyl group of ˜4.)
前記式(1)で表されるモノマーが、2−メタクリロイルオキシエチルホスホリルコリンであり、前記カチオン性(メタ)アクリルアミドが、アクリロイルアミノプロピルトリメチルアンモニウムクロライド、メタクリロイルアミノプロピルトリメチルアンモニウムクロライド、又はこの両者である、
請求項1に記載のポリアミド逆浸透膜用の表面処理剤。
The monomer represented by the formula (1) is 2-methacryloyloxyethyl phosphorylcholine, and the cationic (meth) acrylamide is acryloylaminopropyltrimethylammonium chloride, methacryloylaminopropyltrimethylammonium chloride, or both.
The surface treating agent for polyamide reverse osmosis membranes according to claim 1.
さらに水を含み、前記共重合体の水溶液である、
請求項1又は2に記載のポリアミド逆浸透膜用の表面処理剤。
Further containing water, an aqueous solution of the copolymer.
The surface treating agent for polyamide reverse osmosis membranes according to claim 1 or 2.
請求項3に記載の表面処理剤で表面を処理された、
表面処理ポリアミド逆浸透膜。
The surface was treated with the surface treatment agent according to claim 3,
Surface treated polyamide reverse osmosis membrane.
請求項3に記載の表面処理剤をポリアミド逆浸透膜に表面処理する工程と
前記表面処理後のポリアミド逆浸透膜を純水で水洗する工程と、を有する、
表面処理ポリアミド逆浸透膜の製造方法。
The surface treatment agent according to claim 3 is subjected to a surface treatment on a polyamide reverse osmosis membrane, and the surface of the polyamide reverse osmosis membrane after the surface treatment is washed with pure water.
A method for producing a surface-treated polyamide reverse osmosis membrane.
JP2014029492A 2014-02-19 2014-02-19 Surface treatment agent, surface-treated polyamide reverse osmosis membrane and method for producing the same Active JP6158720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014029492A JP6158720B2 (en) 2014-02-19 2014-02-19 Surface treatment agent, surface-treated polyamide reverse osmosis membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014029492A JP6158720B2 (en) 2014-02-19 2014-02-19 Surface treatment agent, surface-treated polyamide reverse osmosis membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015150544A true JP2015150544A (en) 2015-08-24
JP6158720B2 JP6158720B2 (en) 2017-07-05

Family

ID=53893362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014029492A Active JP6158720B2 (en) 2014-02-19 2014-02-19 Surface treatment agent, surface-treated polyamide reverse osmosis membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP6158720B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6264624B1 (en) * 2016-08-24 2018-01-24 株式会社ファインテック Antibacterial / mold / deodorant, vaporizing humidifier using the same, and antibacterial / mold / deodorant method
KR20190096347A (en) 2016-12-26 2019-08-19 도레이 카부시키가이샤 Composite Semipermeable Membrane and Manufacturing Method Thereof
EP3965921A4 (en) * 2019-05-10 2022-12-28 Trustees Of Tufts College Zwitterionic charged copolymer membranes
US11952396B1 (en) 2021-05-27 2024-04-09 Metro International Biotech, Llc Crystalline solids of nicotinic acid mononucleotide and esters thereof and methods of making and use

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002009757A1 (en) * 2000-08-01 2002-02-07 Shionogi & Co., Ltd. Preventives or remedies for obesity or fatty liver
US20040045897A1 (en) * 2000-07-27 2004-03-11 Nobuo Nakabayashi Modified hollow-fiber membrane
JP2006239636A (en) * 2005-03-04 2006-09-14 Kazuhiko Ishihara Fouling prevention material and separation membrane having surface treated with the fouling prevention material
WO2013141050A1 (en) * 2012-03-23 2013-09-26 テルモ株式会社 Permselective membrane and method for manufacturing same
JP2014008479A (en) * 2012-07-02 2014-01-20 Kobe Univ Surface treatment agent for polyamide reverse osmosis membrane
WO2014133132A1 (en) * 2013-02-28 2014-09-04 東レ株式会社 Composite semipermeable membrane

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040045897A1 (en) * 2000-07-27 2004-03-11 Nobuo Nakabayashi Modified hollow-fiber membrane
WO2002009757A1 (en) * 2000-08-01 2002-02-07 Shionogi & Co., Ltd. Preventives or remedies for obesity or fatty liver
JP2006239636A (en) * 2005-03-04 2006-09-14 Kazuhiko Ishihara Fouling prevention material and separation membrane having surface treated with the fouling prevention material
WO2013141050A1 (en) * 2012-03-23 2013-09-26 テルモ株式会社 Permselective membrane and method for manufacturing same
JP2014008479A (en) * 2012-07-02 2014-01-20 Kobe Univ Surface treatment agent for polyamide reverse osmosis membrane
WO2014133132A1 (en) * 2013-02-28 2014-09-04 東レ株式会社 Composite semipermeable membrane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6264624B1 (en) * 2016-08-24 2018-01-24 株式会社ファインテック Antibacterial / mold / deodorant, vaporizing humidifier using the same, and antibacterial / mold / deodorant method
JP2018030805A (en) * 2016-08-24 2018-03-01 株式会社ファインテック Antibacterial, mildew-proofing, and deodorizing agent, vaporizing humidifier using the same, and antibacterial, mildew-proofing, and deodorizing method
KR20190096347A (en) 2016-12-26 2019-08-19 도레이 카부시키가이샤 Composite Semipermeable Membrane and Manufacturing Method Thereof
EP3965921A4 (en) * 2019-05-10 2022-12-28 Trustees Of Tufts College Zwitterionic charged copolymer membranes
US11952396B1 (en) 2021-05-27 2024-04-09 Metro International Biotech, Llc Crystalline solids of nicotinic acid mononucleotide and esters thereof and methods of making and use

Also Published As

Publication number Publication date
JP6158720B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP6022827B2 (en) Surface treatment agent for polyamide reverse osmosis membrane
Lu et al. In situ surface chemical modification of thin-film composite forward osmosis membranes for enhanced organic fouling resistance
JP6140689B2 (en) Improved membrane with polydopamine coating
JP5524779B2 (en) Process for producing polyvinylidene fluoride porous filtration membrane
Ba et al. Using polyelectrolyte coatings to improve fouling resistance of a positively charged nanofiltration membrane
Mansouri et al. Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities
JP6174808B2 (en) Surface-modified separation membrane and surface modification method for separation membrane
TWI446956B (en) Method of improving performance of ultrafiltration or microfiltration membrane processes in backwash water treatment
WO2014115631A1 (en) Fouling inhibitor, filtration membrane and method for producing same
JP6158720B2 (en) Surface treatment agent, surface-treated polyamide reverse osmosis membrane and method for producing the same
Shen et al. Enhancing the antifouling properties of poly (vinylidene fluoride)(PVDF) membrane through a novel blending and surface-grafting modification approach
JP2019537510A (en) Manufacturing method, regeneration method and application of chelate microfiltration membrane
Gao et al. Enhanced wettability and transport control of ultrafiltration and reverse osmosis membranes with grafted polyelectrolytes
KR102141265B1 (en) Water-treatment membrane and method for manufacturing the same
JP6303837B2 (en) Anti-contamination treatment method for reverse osmosis membranes
TW201941820A (en) Fine particle removing membrane, fine particle removing device, and fine particle removing method
JP6464866B2 (en) Surface-modified substrate, polymer-coated substrate, and production method thereof
JP6667217B2 (en) Fouling inhibitor, porous filtration membrane for water treatment, and method for producing the same
Zainol Abidin et al. Fouling prevention in polymeric membranes by radiation induced graft copolymerization
KR101890020B1 (en) Fouling inhibitor, filtration membrane and method for producing same
JP2011156519A (en) Polymer water treatment film, water treatment method, and method for maintaining polymer water treatment film
JP6767141B2 (en) Polyvinylidene fluoride porous membrane and its manufacturing method
AU2013365015B2 (en) Method for hydrophilizing reverse osmosis membrane
Akamatsu et al. Plasma Graft Polymerization and Surface-Initiated Atom Transfer Radical Polymerization: Characteristics of Low-Fouling Membranes Obtained by Surface Modification with Poly (2-methoxyethyl Acrylate)
JP6106016B2 (en) Polyamide reverse osmosis membrane and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170608

R150 Certificate of patent or registration of utility model

Ref document number: 6158720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150