JP6767141B2 - Polyvinylidene fluoride porous membrane and its manufacturing method - Google Patents

Polyvinylidene fluoride porous membrane and its manufacturing method Download PDF

Info

Publication number
JP6767141B2
JP6767141B2 JP2016058121A JP2016058121A JP6767141B2 JP 6767141 B2 JP6767141 B2 JP 6767141B2 JP 2016058121 A JP2016058121 A JP 2016058121A JP 2016058121 A JP2016058121 A JP 2016058121A JP 6767141 B2 JP6767141 B2 JP 6767141B2
Authority
JP
Japan
Prior art keywords
porous membrane
hydrophilic
unit
hydrophilic polymer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016058121A
Other languages
Japanese (ja)
Other versions
JP2017170319A (en
Inventor
橋野 昌年
昌年 橋野
秀人 松山
秀人 松山
カナムイ サイード ラジャブザデ
カナムイ サイード ラジャブザデ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2016058121A priority Critical patent/JP6767141B2/en
Publication of JP2017170319A publication Critical patent/JP2017170319A/en
Application granted granted Critical
Publication of JP6767141B2 publication Critical patent/JP6767141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、ポリフッ化ビニリデン製多孔膜とその製造方法に関する。本発明は、具体的には、母材であるポリフッ化ビニリデン樹脂と、親水性ユニットと疎水性ユニットからなる親水性ポリマーとからなる多孔膜、およびその製造方法に関する。 The present invention relates to a polyvinylidene fluoride porous membrane and a method for producing the same. Specifically, the present invention relates to a porous membrane composed of a polyvinylidene fluoride resin as a base material, a hydrophilic polymer composed of a hydrophilic unit and a hydrophobic unit, and a method for producing the same.

近年、限外ろ過膜、精密ろ過膜などの多孔膜は、電着塗料の回収、超純水からの微粒子除去、パイロジェンフリー水の製造、酵素の濃縮、発酵液の除菌・清澄化、上水・下水・排水処理など、幅広い分野で用いられている。多孔膜を用いた分離法は、被処理液中の分離対象物質を細孔の大きさにより分離する篩い分けの原理にて分離するため、分離精度が高く、かつ、相変化を伴わないため、省エネルギーな分離方法である。 In recent years, porous membranes such as ultrafiltration membranes and microfiltration membranes have been used for recovery of electrodeposition paints, removal of fine particles from ultrapure water, production of pyrogen-free water, concentration of enzymes, sterilization and clarification of fermented liquids, etc. It is used in a wide range of fields such as water, sewage, and wastewater treatment. The separation method using a porous membrane separates the substances to be separated in the liquid to be treated by the principle of sieving, which separates the substances to be separated according to the size of the pores, so that the separation accuracy is high and no phase change is involved. It is an energy-saving separation method.

この様な限外ろ過膜や精密ろ過膜などの多孔膜を用いて、各種被処理液をろ過する場合、この被処理液に含まれる無機物および/または有機物の一部は、膜細孔内もしくは膜表面に吸着、閉塞または堆積し、いわゆる濃度分極層やケーク層を形成する。その結果、いわゆるファウリング現象が生じ、多孔膜のろ過性能は、純水をろ過した場合の透過流束に比べて、数分の1から数十分の1まで低下する。この様なファウリング現象によりろ過性能が低下すると、より多くの膜面積が必要となり、膜ろ過設備が大きくなるため、設備導入コストや運転コストが上昇し、大きな問題となっている。 When various liquids to be treated are filtered using a porous membrane such as an ultrafiltration membrane or a microfiltration membrane, some of the inorganic substances and / or organic substances contained in the liquid to be treated may be inside the membrane pores or It is adsorbed, blocked or deposited on the membrane surface to form a so-called concentration polarization layer or cake layer. As a result, a so-called fouling phenomenon occurs, and the filtration performance of the porous membrane is reduced from a fraction to a few tenths as compared with the permeation flux when pure water is filtered. When the filtration performance deteriorates due to such a fouling phenomenon, a larger membrane area is required and the membrane filtration equipment becomes large, so that the equipment introduction cost and the operation cost increase, which is a big problem.

この様なファウリング現象を抑制するため、通常、多孔膜を用いて被処理液をろ過する場合、アルカリ、酸、酸化剤などの薬品による化学的洗浄や、逆流洗浄やエアバブリングなどの物理的洗浄が併用される。このため、多孔膜の素材としては、化学的耐久性と機械的耐久性が求められ、ポリフッ化ビニリデン樹脂は耐久性に優れているため、広く用いられている。
一方で、ポリフッ化ビニリデン樹脂は疎水性素材であるため、膜ファウリングが発生し易い課題があった。
In order to suppress such a fouling phenomenon, when the liquid to be treated is usually filtered using a porous membrane, chemical cleaning with chemicals such as alkali, acid and oxidant, and physical cleaning such as backflow cleaning and air bubbling are performed. Washing is also used. Therefore, as a material for a porous membrane, chemical durability and mechanical durability are required, and polyvinylidene fluoride resin is widely used because it has excellent durability.
On the other hand, since the polyvinylidene fluoride resin is a hydrophobic material, there is a problem that membrane fouling is likely to occur.

この課題に対して、ポリフッ化ビニリデン樹脂に種々の方法で親水性を付与する検討が行われてきた。特許文献1、2では、アルカリや酸化剤などの薬剤を用いてポリフッ化ビニリデン製の多孔膜表面を改質することが開示されている。 In response to this problem, studies have been conducted to impart hydrophilicity to polyvinylidene fluoride resin by various methods. Patent Documents 1 and 2 disclose that the surface of a porous membrane made of polyvinylidene fluoride is modified by using an agent such as an alkali or an oxidizing agent.

また、特許文献3では、ポリビニルピロリドンなどの親水性ポリマーをポリフッ化ビニリデン製の多孔膜の表面にコーティングにより親水性を付与する方法が開示されている。
さらに、特許文献4では、ポリビニルピロリドンとポリフッ化ビニリデンを予めブレンドしてから、相分離法により多孔膜を製造する方法が開示されている。
Further, Patent Document 3 discloses a method of imparting hydrophilicity by coating the surface of a porous membrane made of polyvinylidene fluoride with a hydrophilic polymer such as polyvinylpyrrolidone.
Further, Patent Document 4 discloses a method for producing a porous membrane by a phase separation method after pre-blending polyvinylpyrrolidone and polyvinylidene fluoride.

特開昭63−172745号公報Japanese Unexamined Patent Publication No. 63-172745 特開2004−230280号公報Japanese Unexamined Patent Publication No. 2004-230280 特開平11−302438号公報JP-A-11-302438 特開昭60−216804号公報Japanese Unexamined Patent Publication No. 60-216804

しかしながら、特許文献1や2に開示された化学薬品を用いて多孔膜の表面を改質する方法では、母材であるポリフッ化ビニリデン樹脂そのものが劣化してしまう課題がある。また、特許文献3に開示された親水性ポリマーをポリフッ化ビニリデン製多孔膜の表面にコーティングする方法では、コーティング層が細孔を閉塞してしまい、透過流束が低下する課題、および、コーティング層がろ過中に剥離する課題がある。 However, the method of modifying the surface of the porous membrane using the chemicals disclosed in Patent Documents 1 and 2 has a problem that the polyvinylidene fluoride resin itself, which is the base material, deteriorates. Further, in the method of coating the surface of the porous membrane made of polyvinylidene fluoride with the hydrophilic polymer disclosed in Patent Document 3, there is a problem that the coating layer closes the pores and the permeation flux is lowered, and the coating layer. Has the problem of peeling off during filtration.

さらに、親水性ポリマーとポリフッ化ビニリデン樹脂を予めブレンドする方法では、親水性ポリマーと疎水性ポリマーであるポリフッ化ビニリデン樹脂との相溶性が低いため、親水性ポリマーを多孔膜中に残留させることが難しく、さらに、ろ過中や薬品洗浄時に多孔膜から溶出してしまう課題がある。 Further, in the method of pre-blending the hydrophilic polymer and the polyvinylidene fluoride resin, the compatibility between the hydrophilic polymer and the polyvinylidene fluoride resin which is a hydrophobic polymer is low, so that the hydrophilic polymer can remain in the porous film. It is difficult, and there is a problem that it is eluted from the porous film during filtration or chemical cleaning.

本発明が解決しようとする課題は、限外ろ過膜や精密ろ過膜として好適な、ファウリングを抑制し、高いろ過性能を達成可能な親水性と耐久性に優れた多孔膜およびその製造方法を提供することである。 The problem to be solved by the present invention is to obtain a porous membrane having excellent hydrophilicity and durability, which is suitable as an ultrafiltration membrane or a microfiltration membrane, which suppresses fouling and can achieve high filtration performance, and a method for producing the same. Is to provide.

本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、ポリフッ化ビニリデン樹脂と高い相溶性を有する疎水性ユニットと親水性ユニットを有する親水性ポリマーを合成し、この親水性ポリマーとポリフッ化ビニリデン樹脂とをブレンドし、多孔膜化することにより、ポリフッ化ビニリデン樹脂に親水性ポリマーを固定化することに成功し、さらに、得られた多孔膜は高いファウリング抑制効果有することを見出し、本発明に至った。
すなわち、本発明の多孔膜は、母材ポリマーであるポリフッ化ビニリデン樹脂と親水性ポリマーとからなる多孔膜であって、親水性ポリマーが疎水性ユニットと親水性ユニットとから構成されており、疎水性ユニットの繰返単位がメタクリル酸メチル、親水性ユニットの繰返単位がポリ(エチレングリコール)メチルエーテルメタクリレートである。
多孔膜表面の酸素Oと炭素Cの存在比O/Cは0.14〜0.25であることが好ましい。
また、本発明の多孔膜の製造方法は、母材ポリマーであるポリフッ化ビニリデン樹脂と親水性ポリマーを両者の良溶媒に溶解した製膜原液から非溶剤誘起相分離法により多孔膜を製造する製膜方法であって、親水性ポリマーが疎水性ユニットと親水性ユニットからなり、疎水性ユニットの繰返単位がメタクリル酸メチル、親水性ユニットの繰返単位がポリ(エチレングリコール)メチルエーテルメタクリレートである親水性ポリマーを用い、さらに、製膜原液を凝固させる前に、この製膜原液を相対湿度10%以上の空気中で1秒間以上暴露するものである。
ポリフッ化ビニリデン樹脂と、親水性ポリマーとの質量比は、10/1〜2/1であることが好ましい。
親水性ポリマーの数平均分子量は、10,000〜55,000であることが好ましい。
親水性ポリマーにおいて、疎水性ユニットと親水性ユニットのモル比は95/5〜85/15であることが好ましい。
親水性ユニット中の数平均分子量は300〜900であることが好ましい。
As a result of diligent studies to solve the above problems, the present inventors have synthesized a hydrophilic polymer having a hydrophobic unit and a hydrophilic unit having high compatibility with polyvinylidene fluoride resin, and this hydrophilic polymer. By blending and polyvinylidene fluoride resin to form a porous film, we succeeded in immobilizing a hydrophilic polymer on the polyvinylidene fluoride resin, and further, the obtained porous film has a high fouling suppressing effect. The heading led to the present invention.
That is, the porous film of the present invention is a porous film composed of a polyvinylidene fluoride resin as a base material and a hydrophilic polymer, and the hydrophilic polymer is composed of a hydrophobic unit and a hydrophilic unit, and is hydrophobic. The repeating unit of the sex unit is methyl methacrylate, and the repeating unit of the hydrophilic unit is poly (ethylene glycol) methyl ether methacrylate.
The abundance ratio O / C of oxygen O and carbon C on the surface of the porous membrane is preferably 0.14 to 0.25.
In addition, the method for producing a porous film of the present invention is a method for producing a porous film by a non-solvent-induced phase separation method from a film-forming stock solution in which a polyvinylidene fluoride resin as a base material polymer and a hydrophilic polymer are dissolved in a good solvent for both. In the membrane method, the hydrophilic polymer consists of a hydrophobic unit and a hydrophilic unit, the repeating unit of the hydrophobic unit is methyl methacrylate, and the repeating unit of the hydrophilic unit is poly (ethylene glycol) methyl ether methacrylate. A hydrophilic polymer is used, and the film-forming stock solution is exposed to air at a relative humidity of 10% or more for 1 second or longer before the film-forming stock solution is coagulated.
The mass ratio of the polyvinylidene fluoride resin to the hydrophilic polymer is preferably 10/1 to 2/1.
The number average molecular weight of the hydrophilic polymer is preferably 10,000 to 55,000.
In the hydrophilic polymer, the molar ratio of the hydrophobic unit to the hydrophilic unit is preferably 95/5 to 85/15.
The number average molecular weight in the hydrophilic unit is preferably 300 to 900.

本発明によれば、ファウリングを効果的に抑制し、高いろ過性能を達成可能な親水性と耐久性に優れた多孔膜を安価に提供することができる。 According to the present invention, it is possible to inexpensively provide a porous membrane having excellent hydrophilicity and durability that can effectively suppress fouling and achieve high filtration performance.

本発明の親水性ポリマーの構造を示す図である。It is a figure which shows the structure of the hydrophilic polymer of this invention. 本発明の多孔膜を用いてタンパク質水溶液をろ過した際に得られるろ過時間と透過流束の関係を示すイメージ図である。It is an image figure which shows the relationship between the filtration time and the permeation flux obtained when the protein aqueous solution is filtered using the porous membrane of this invention. 実施例の多孔膜表面の酸素Oと炭素Cの存在比O/Cを測定した結果を示した図である。It is a figure which showed the result of having measured the abundance ratio O / C of oxygen O and carbon C on the surface of the porous membrane of an Example. 実施例の多孔膜を用いてタンパク質水溶液をろ過した際のろ過時間と透過流束の関係を示した図である。It is a figure which showed the relationship between the filtration time and the permeation flux when the protein aqueous solution was filtered using the porous membrane of an Example. 実施例の多孔膜を用いてタンパク質水溶液をろ過した際の透過流束保持率と多孔膜表面上の酸素Oと炭素Cとの存在比O/Cの関係を示した図である。It is a figure which showed the relationship between the permeation flux retention rate and the abundance ratio O / C of oxygen O and carbon C on the surface of a porous membrane when the protein aqueous solution was filtered using the porous membrane of an Example. 実施例の多孔膜を用いてタンパク質水溶液をろ過した際の逆流洗浄回復性と多孔膜表面上の酸素Oと炭素Cとの存在比O/Cの関係を示した図である。It is a figure which showed the relationship between the backflow washing recovery property when the protein aqueous solution was filtered using the porous membrane of an Example, and the abundance ratio O / C of oxygen O and carbon C on the surface of a porous membrane.

以下、本発明を実施するための形態(以下、本実施の形態という。)について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して用いることができる。 Hereinafter, a mode for carrying out the present invention (hereinafter, referred to as the present embodiment) will be described in detail. The present invention is not limited to the following embodiments, and can be used in various modifications within the scope of the gist thereof.

本実施の形態の多孔膜は、母材ポリマーであるポリフッ化ビニリデン樹脂(PVDF)と親水性ポリマーからなる。本実施の形態の多孔膜に用いることができる親水性ポリマーの構造を図1に示した。親水性ポリマーは疎水性ユニットaと親水性ユニットbから構成されており、疎水性ユニットaの繰返単位はメタクリル酸メチル(MMA)、親水性ユニットbの繰返単位はポリ(エチレングリコール)メチルエーテルメタクリレート(PEGMA)で、親水性ポリマーはこれらからなる共重合体(P(MMA−PEGMA))である。ポリフッ化ビニリデン樹脂と相溶性が高い疎水性ユニットを選択することにより、この疎水性ユニットがアンカー効果として働くため、ポリフッ化ビニリデン樹脂に親水性ポリマーを製膜時に残存させ易く、また、強固に固定化することが可能となる。この結果、親水性ポリマーはろ過中や薬品洗浄中に多孔膜から容易には脱離することが無く、長期間に渡り高い親水性を発現する多孔膜を得ることができる。 The porous membrane of the present embodiment is composed of polyvinylidene fluoride resin (PVDF), which is a base material polymer, and a hydrophilic polymer. The structure of the hydrophilic polymer that can be used for the porous membrane of this embodiment is shown in FIG. The hydrophilic polymer is composed of a hydrophobic unit a and a hydrophilic unit b. The repeating unit of the hydrophobic unit a is methyl methacrylate (MMA), and the repeating unit of the hydrophilic unit b is poly (ethylene glycol) methyl. It is ether methacrylate (PEGMA), and the hydrophilic polymer is a copolymer (P (MMA-PEGMA)) composed of these. By selecting a hydrophobic unit that is highly compatible with the polyvinylidene fluoride resin, this hydrophobic unit acts as an anchor effect, so that the hydrophilic polymer easily remains in the polyvinylidene fluoride resin during film formation and is firmly fixed. It becomes possible to make it. As a result, the hydrophilic polymer does not easily desorb from the porous membrane during filtration or chemical cleaning, and a porous membrane exhibiting high hydrophilicity over a long period of time can be obtained.

また、親水性ユニットb中の親水性側鎖cとしてポリエチレングリコール(PEG)を用いることにより、被処理水中に含まれるタンパク質、多糖類、フミン質等の多孔膜の透水性能を低下させる原因物質の多孔膜への汚染(ファウリング)を抑制することができる。 Further, by using polyethylene glycol (PEG) as the hydrophilic side chain c in the hydrophilic unit b, it is a causative substance that deteriorates the water permeability of the porous membrane such as proteins, polysaccharides and humic substances contained in the water to be treated. Contamination (fouling) on the porous membrane can be suppressed.

本発明の実施の形態の多孔膜は、母材としてポリフッ化ビニリデン樹脂からなる多孔膜である。ポリフッ化ビニリデン樹脂は、製膜性に優れ、かつ、機械的および化学的な耐久性に優れているので、本発明の多孔膜の素材として好適である。本発明において用いることができるポリフッ化ビニリデン樹脂としてポリフッ化ビニリデンのホモポリマーやコポリマーを用いることができる。コポリマーとしては、ポリビニリデンフルオライド−ヘキサフルオロプロピレン共重合体や、ポリビニリデンフルオライド−クロロトリフルオロエチレン共重合体などを挙げることができる。ポリフッ化ビニリデン樹脂の分子量は、重量平均分子量で10,000〜1,000,0000のポリマーを使用することができる。 The porous membrane of the embodiment of the present invention is a porous membrane made of polyvinylidene fluoride resin as a base material. The polyvinylidene fluoride resin is suitable as a material for the porous film of the present invention because it has excellent film-forming properties and excellent mechanical and chemical durability. As the polyvinylidene fluoride resin that can be used in the present invention, a homopolymer or a copolymer of polyvinylidene fluoride can be used. Examples of the copolymer include a polyvinylidene fluoride-hexafluoropropylene copolymer and a polyvinylidene fluoride-chlorotrifluoroethylene copolymer. As the molecular weight of the polyvinylidene fluoride resin, a polymer having a weight average molecular weight of 10,000 to 1,000,000,000 can be used.

本発明の実施の形態の多孔膜は、多孔膜表面の酸素Oと炭素Cの存在比O/Cが0.14〜0.25であることが好ましい。存在比O/Cが0.14以上であると十分な親水性が多孔膜に付与されており、高いファウリング抑制効果が得られる。一方、存在比O/Cを0.25以下とすることで多孔膜は水に対して過度に膨潤することが無く、薬剤等の多孔膜マトリック中への侵入を阻止でき、長期間安定して使用することが可能となる。 In the porous membrane of the embodiment of the present invention, the abundance ratio O / C of oxygen O and carbon C on the surface of the porous membrane is preferably 0.14 to 0.25. When the abundance ratio O / C is 0.14 or more, sufficient hydrophilicity is imparted to the porous membrane, and a high fouling suppressing effect can be obtained. On the other hand, by setting the abundance ratio O / C to 0.25 or less, the porous membrane does not swell excessively with water, and it is possible to prevent the invasion of chemicals and the like into the porous membrane matrick, and it is stable for a long period of time. It becomes possible to use.

本実施の形態の多孔膜の細孔径は、好ましくは1nm〜10μm、より好ましくは2nm〜1μmである。細孔径が1nm以上であれば、多孔膜のろ過抵抗が低く、十分な透水性能が得られ、また、10μm以下であれば、分離性能にも優れた多孔膜が得られる。 The pore size of the porous membrane of the present embodiment is preferably 1 nm to 10 μm, more preferably 2 nm to 1 μm. When the pore diameter is 1 nm or more, the filtration resistance of the porous membrane is low and sufficient water permeability can be obtained, and when the pore diameter is 10 μm or less, a porous membrane having excellent separation performance can be obtained.

本実施の形態において、細孔径は、粒子径が既知の指標物質をろ過し、阻止率が90%以上である指標物質の大きさを細孔径とすることにより測定することができる。
具体的には、指標物質として、単分散ポリスチレン粒子を用いることにより、20nm以上の細孔径を有する膜の測定を行うことができ、また、指標物質として、タンパク質を用いることにより、20nm以下の細孔径を有する膜の測定を行うことができる。
In the present embodiment, the pore diameter can be measured by filtering an index substance having a known particle size and setting the size of the index substance having a blocking rate of 90% or more as the pore diameter.
Specifically, by using monodisperse polystyrene particles as an index substance, it is possible to measure a film having a pore diameter of 20 nm or more, and by using a protein as an index substance, fine particles of 20 nm or less can be measured. It is possible to measure a film having a pore size.

本発明の実施の形態の多孔膜の形状は、平膜状でも中空糸状でも適用することが可能である。平膜状の多孔膜とする場合は、本発明の多孔膜を単独で用いることもできるし、また、支持層として不織布等の基材を用い、基材上に本発明の多孔膜である分離層を形成させた形態として用いることもできる。 The shape of the porous membrane according to the embodiment of the present invention can be applied to either a flat membrane shape or a hollow thread shape. In the case of forming a flat membrane-like porous membrane, the porous membrane of the present invention can be used alone, or a substrate such as a non-woven fabric is used as a support layer, and the porous membrane of the present invention is separated on the substrate. It can also be used as a layered form.

同様に、中空糸状の多孔膜の場合も、本発明の多孔膜を単体として用いることもできるし、また、不織布や組紐等の基材上に本発明の多孔膜層を形成させた形状で用いることも可能である。中空糸状の多孔膜として用いる場合、内径(中空部分に相当する。)は10μm〜2mmであることが好ましい。内径が10μm以上であれば、被処理液やろ過水が中空部を流れる時に発生する圧力損失を低く抑えることが可能であり、また、2mm以下であれば、単位体積当たりの膜充填密度を高くすることができ、コンパクト化が可能である。さらに、膜厚は10μm〜1mmであることが好ましい。膜厚が10μm以上であれば、中空糸状の多孔膜の内外からの圧力に対して十分な強度を得ることができ、また、1mm以下であれば、単位体積当たりの膜充填密度を高くすることができ、コンパクト化が可能である。 Similarly, in the case of a hollow filament-like porous membrane, the porous membrane of the present invention can be used as a single substance, or the porous membrane layer of the present invention is formed on a substrate such as a non-woven fabric or braid. It is also possible. When used as a hollow filament-like porous membrane, the inner diameter (corresponding to the hollow portion) is preferably 10 μm to 2 mm. If the inner diameter is 10 μm or more, the pressure loss generated when the liquid to be treated or the filtered water flows through the hollow portion can be suppressed low, and if it is 2 mm or less, the membrane packing density per unit volume is high. It is possible to make it compact. Further, the film thickness is preferably 10 μm to 1 mm. When the film thickness is 10 μm or more, sufficient strength can be obtained against the pressure from inside and outside of the hollow filament-shaped porous membrane, and when the film thickness is 1 mm or less, the membrane packing density per unit volume is increased. It is possible to make it compact.

本発明の実施の形態の多孔膜は、ポリフッ化ビニリデン樹脂と親水性ポリマーとしてP(MMA−PEGMA)からなる製膜原料を用いれば、製膜方法は特に限定されず、例えば、相分離法、延伸開孔法、およびトラックエッチング法などにより多孔膜化することができる。中でも、相分離は多孔膜の孔径や断面構造等の制御が容易であり、本発明の多孔膜の製造方法として好適である。 The porous membrane of the embodiment of the present invention is not particularly limited in the membrane-forming method if a film-forming raw material made of polyvinylidene fluoride resin and P (MMA-PEGMA) as a hydrophilic polymer is used. For example, a phase separation method, A porous film can be formed by a stretching opening method, a track etching method, or the like. Above all, phase separation makes it easy to control the pore size and cross-sectional structure of the porous membrane, and is suitable as the method for producing the porous membrane of the present invention.

例えば、相分離法としては、ポリフッ化ビニリデン樹脂と親水性ポリマーを溶解可能な溶媒に、両者を溶かし、その後、スリット型や二重管型の口金から製膜原液を吐出し、非溶剤と接触させ、相分離を誘起する非溶剤誘起相分離法や、ポリフッ化ビニリデン樹脂を常温では溶解しないが高温で溶解する潜在溶媒に、親水性ポリマーと共に溶解した後、スリット型や二重管型の口金より製膜原液を吐出し、空気や水と接触させることにより冷却し、相分離を誘起する熱誘起相分離法などが挙げられる。 For example, as a phase separation method, a polyvinylidene fluoride resin and a hydrophilic polymer are dissolved in a solvent capable of dissolving both of them, and then a film-forming stock solution is discharged from a slit-type or double-tube type base to contact with a non-solvent. A non-solvent-induced phase separation method that induces phase separation, or a slit-type or double-tube type mouthpiece after dissolving the polyvinylidene fluoride resin in a latent solvent that does not dissolve at room temperature but dissolves at high temperature together with the hydrophilic polymer. Examples thereof include a heat-induced phase separation method in which a film-forming stock solution is discharged and cooled by contacting with air or water to induce phase separation.

中でも、非溶剤誘起相分離法は、得られる多孔膜の細孔径や断面構造の制御が容易であること、および、親水性ポリマー中の親水性ユニットを多孔膜の表面により多く偏析させることが可能であり、この結果、より高い親水性を発現する多孔膜を得ることができるため好ましい。 Above all, the non-solvent-induced phase separation method makes it easy to control the pore diameter and cross-sectional structure of the obtained porous membrane, and can segregate more hydrophilic units in the hydrophilic polymer on the surface of the porous membrane. As a result, a porous membrane exhibiting higher hydrophilicity can be obtained, which is preferable.

さらに、非溶剤誘起相分離法において、製膜原液は凝固浴中で凝固させる前に、相対湿度10%以上の空気中に1秒間以上暴露することが好ましい。この際、空気中に、溶媒蒸気を含んでいても良い。水分を含む空気中に製膜原液を暴露することにより、製膜原液中で相分離が進み、得られる多孔膜表面により多くの親水性ポリマーを偏析させることができ、効果的に親水性を付与することが可能となる。 Further, in the non-solvent-induced phase separation method, it is preferable that the membrane-forming stock solution is exposed to air having a relative humidity of 10% or more for 1 second or more before coagulating in a coagulation bath. At this time, the solvent vapor may be contained in the air. By exposing the membrane-forming stock solution to water-containing air, phase separation proceeds in the membrane-forming stock solution, and more hydrophilic polymers can be segregated on the obtained porous membrane surface, effectively imparting hydrophilicity. It becomes possible to do.

非溶剤相分離法を用いて本発明の多孔膜を製膜する際、ポリフッ化ビニリデン樹脂と親水性ポリマーとを溶媒に溶解させた製膜原液に、さらに、無機物や有機物の添加剤を加え、紡糸安定性や得られる多孔膜の細孔サイズや膜構造を調整することができる。 When forming the porous membrane of the present invention using the non-solvent phase separation method, an inorganic or organic additive is further added to the membrane-forming stock solution in which the polyvinylidene fluoride resin and the hydrophilic polymer are dissolved in a solvent. Spinning stability, pore size and film structure of the obtained porous film can be adjusted.

本実施の形態の多孔膜の製造方法において、非溶剤誘起相分離法の溶媒として用いることができる良溶媒とは、ポリフッ化ビニリデン樹脂、親水性ポリマーを常温で、1質量パーセント以上溶解可能な溶媒を指す。たとえば、アセトン、テトラヒドロフラン、メチルエチルケトン、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、燐酸トリメチル等を用いることができる。 In the method for producing a porous film of the present embodiment, the good solvent that can be used as the solvent for the non-solvent-induced phase separation method is a polyvinylidene fluoride resin or a solvent capable of dissolving 1% by mass or more of a hydrophilic polymer at room temperature. Point to. For example, acetone, tetrahydrofuran, methyl ethyl ketone, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, trimethyl phosphate and the like can be used.

本実施の形態の多孔膜の製造方法において、ポリフッ化ビニリデン樹脂と親水性ポリマーとの質量比(ポリフッ化ビニリデン樹脂/親水性ポリマー)は、10/1〜2/1が好ましい。親水性ポリマーの比率が10/1以上であれば、得られる多孔膜は十分な親水性が付与されており、高いファウリング抑制効果を有する。一方、親水性ポリマーの比率が2/1以下であれば、得られる多膜中への水や薬剤の浸透を抑制することができ、高い耐久性を発現する。 In the method for producing a porous film of the present embodiment, the mass ratio of the polyvinylidene fluoride resin to the hydrophilic polymer (polyvinylidene fluoride resin / hydrophilic polymer) is preferably 10/1 to 2/1. When the ratio of the hydrophilic polymer is 10/1 or more, the obtained porous membrane is imparted with sufficient hydrophilicity and has a high fouling suppressing effect. On the other hand, when the ratio of the hydrophilic polymer is 2/1 or less, the permeation of water and chemicals into the obtained multimembrane can be suppressed, and high durability is exhibited.

次に、本実施の形態の多孔膜の製造方法において使用する親水性ポリマーに関して、ポリマー分子量、疎水性ユニットと親水性ユニットとのモル比、親水性ユニット内のPEGの分子鎖長に関して説明する。 Next, regarding the hydrophilic polymer used in the method for producing a porous film of the present embodiment, the molecular weight of the polymer, the molar ratio of the hydrophobic unit to the hydrophilic unit, and the molecular chain length of PEG in the hydrophilic unit will be described.

本実施の形態の多孔膜の製造方法において、使用する親水性ポリマーの数平均分子量は、10,000〜55,000が好ましい。数平均分子量が10,000以上であれば、親水性ポリマーの大部分が製膜後の多孔膜に残留し、また、ろ過中や薬品洗浄時に多孔膜から脱離せず、高い親水性を長く維持することができる。一方、数平均分子量が55,000以下であれば、母材であるポリフッ化ビニル樹脂の耐久性を損なうこと無く、かつ、高い親水性を発現することができる。 In the method for producing a porous membrane of the present embodiment, the number average molecular weight of the hydrophilic polymer used is preferably 10,000 to 55,000. When the number average molecular weight is 10,000 or more, most of the hydrophilic polymer remains in the porous membrane after film formation, and does not desorb from the porous membrane during filtration or chemical washing, and maintains high hydrophilicity for a long time. can do. On the other hand, when the number average molecular weight is 55,000 or less, high hydrophilicity can be exhibited without impairing the durability of the polyvinyl fluoride resin which is the base material.

次に、親水性ポリマー中の疎水性ユニットと親水性ユニットの比率(疎水性ユニット/親水性ユニット)は、MMAとPEGMAのモル比として、MMA/PEGMA=95/5〜85/15が好ましい。親水性ポリマー中の親水性ユニットの比が5以上、即ち疎水性ユニットと親水性ユニットの比率が95/5以上であれば、製膜後に得られる多孔膜は十分な親水性と耐ファウリング性を有する。一方、親水性ポリマー中の親水性ユニットの比が15以上、即ち疎水性ユニットと親水性ユニットの比率が85/15以下であれば、疎水性ポリマーのアンカー効果により親水性ポリマーはポリフッ化ビニリデン樹脂に強固に固定化され、多孔膜は長期間にわたり、親水性を発揮することができる。 Next, the ratio of the hydrophobic unit to the hydrophilic unit (hydrophobic unit / hydrophilic unit) in the hydrophilic polymer is preferably MMA / PEGMA = 95/5 to 85/15 as the molar ratio of MMA to PEGMA. When the ratio of hydrophilic units in the hydrophilic polymer is 5 or more, that is, the ratio of hydrophobic units to hydrophilic units is 95/5 or more, the porous membrane obtained after film formation has sufficient hydrophilicity and fouling resistance. Has. On the other hand, if the ratio of hydrophilic units in the hydrophilic polymer is 15 or more, that is, the ratio of hydrophobic units to hydrophilic units is 85/15 or less, the hydrophilic polymer is a polyvinylidene fluoride resin due to the anchor effect of the hydrophobic polymer. It is firmly immobilized on the surface, and the porous film can exhibit hydrophilicity for a long period of time.

さらに、親水性ポリマー中の親水性ユニットを構成するPEGMAの数平均分子量は、300〜900が好ましい。ここで、PEGMAの数平均分子量はPEGMA中のPEGの分子鎖長に依存し、PEGMAの分子量が大きいとPEGの分子鎖長が長いことを意味する。数平均分子量が300以上であれば、製膜後、PEGの分子鎖は多孔膜の表面に存在し、多孔膜に親水性を付与することが可能となる。一方、数平均分子量が900以下であれば、PEGの分子鎖が細孔内を閉塞することは無く、多孔膜は高い透水性能を維持することができる。 Further, the number average molecular weight of PEGMA constituting the hydrophilic unit in the hydrophilic polymer is preferably 300 to 900. Here, the number average molecular weight of PEGMA depends on the molecular chain length of PEG in PEGMA, and a large molecular weight of PEGMA means that the molecular chain length of PEG is long. When the number average molecular weight is 300 or more, the molecular chain of PEG exists on the surface of the porous film after the film formation, and it is possible to impart hydrophilicity to the porous film. On the other hand, when the number average molecular weight is 900 or less, the molecular chain of PEG does not block the inside of the pores, and the porous membrane can maintain high water permeability.

本実施の形態の多孔膜は、中空糸状の場合は、数百本から数千本束ね、エポキシ樹脂やウレタン樹脂により両端部をケースなどに接着した円筒型や矩型の膜モジュールとして使用することができる。一方、平膜状の場合は、樹脂製や金属製の矩型のフレームに本実施の形態の多孔膜をエポキシ樹脂やウレタン樹脂で固定化した膜モジュールとして使用することができる。 In the case of a hollow filament, the porous membrane of the present embodiment is used as a cylindrical or rectangular membrane module in which hundreds to thousands of membranes are bundled and both ends are bonded to a case or the like with epoxy resin or urethane resin. Can be done. On the other hand, in the case of a flat film, it can be used as a film module in which the porous film of the present embodiment is immobilized with an epoxy resin or a urethane resin on a rectangular frame made of resin or metal.

本実施の形態の多孔膜からなる膜モジュールは、無機物や有機物を含有する被処理液のろ過に用いることができる。被処理水としては、膜分離法が適用できる液体であれば特に限定されず、例えば、河川水、地下水、湖沼水、ダム水、海水、下水、下水二次処理水、各種工場排水、プール水、浴槽水、発酵液、培養液などが挙げられる。被処理液は、その用途に応じて、種々の大きさ、形状、濃度の無機物や有機物を含有する。河川水等においては、有機物としては、例えば、低分子量や高分子量のフミン質、多糖類、タンパク質およびこれらのコロイド状物質が挙げられ、無機物としては、例えば、イオン状の鉄、マンガン、カルシウム、マグネシウム、アルミニウム、シリカやこれらのコロイド状物質、またはカオリン、ベントナイトなどの微粒子などが挙げられる。 The membrane module made of the porous membrane of the present embodiment can be used for filtering a liquid to be treated containing an inorganic substance or an organic substance. The water to be treated is not particularly limited as long as it is a liquid to which the membrane separation method can be applied. For example, river water, groundwater, lake water, dam water, seawater, sewage, secondary sewage treated water, various factory effluents, pool water. , Bath water, fermented liquid, culture liquid and the like. The liquid to be treated contains inorganic substances and organic substances of various sizes, shapes, and concentrations depending on its use. In river water and the like, examples of organic substances include low molecular weight and high molecular weight humic substances, polysaccharides, proteins and colloidal substances thereof, and examples of inorganic substances include ionic iron, manganese and calcium. Examples thereof include magnesium, aluminum, silica, colloidal substances thereof, and fine particles such as kaolin and bentonite.

本実施の形態の多孔膜からなる膜モジュールを用いて被処理液をろ過する方法は、特に限定されず、例えば、多孔膜の内表面側から外表面側にろ過する方法、また、逆に、外表面側から内表面側にろ過する方法がある。さらに、1次側を加圧するろ過法や、2次側を吸引するろ過方法が挙げられる。また、被処理液は中空糸多孔膜でろ過する前に、適宜、凝集沈殿、加圧浮上ろ過、遠心分離、生物処理、薬剤の添加などの前処理を行ってもよい。 The method of filtering the liquid to be treated using the membrane module made of the porous membrane of the present embodiment is not particularly limited, and for example, a method of filtering from the inner surface side to the outer surface side of the porous membrane, and vice versa. There is a method of filtering from the outer surface side to the inner surface side. Further, a filtration method in which the primary side is pressurized and a filtration method in which the secondary side is sucked can be mentioned. Further, the liquid to be treated may be subjected to pretreatment such as coagulation precipitation, pressurized flotation filtration, centrifugation, biological treatment, addition of chemicals, etc. before filtering with the hollow fiber porous membrane.

さらに、被処理水を一定時間ろ過した毎に、膜ろ過水や水道水等の多孔膜を汚染しない清澄水による逆流洗浄や空気などの気体による多孔膜表面の空気洗浄を行うことができる。本実施の形態の多孔膜は膜表面近傍に水和層を形成するため、被処理液中の無機物や有機物の多孔膜を汚染する物質の膜面への吸着を抑制し、ろ過中に膜面に堆積しても、逆流洗浄や空気洗浄により容易に膜面から剥離し、多孔膜は高い透水性能を発現することが可能となる。 Further, every time the water to be treated is filtered for a certain period of time, it is possible to perform backflow cleaning with clear water that does not contaminate the porous film such as membrane filtered water or tap water, or air cleaning of the surface of the porous film with a gas such as air. Since the porous membrane of the present embodiment forms a hydrated layer in the vicinity of the membrane surface, it suppresses the adsorption of substances that contaminate the porous membrane of inorganic substances and organic substances in the liquid to be treated to the membrane surface, and the membrane surface during filtration. Even if it is deposited on the membrane, it can be easily peeled off from the membrane surface by backflow cleaning or air cleaning, and the porous membrane can exhibit high water permeability.

以下、本実施の形態を実施例および比較例によってさらに具体的に説明するが、本実施の形態は、これらの実施例のみに限定されるものではない。なお、本実施の形態に用いられる測定方法は以下のとおりである。以下の測定は全て25℃で行った。 Hereinafter, the present embodiment will be described in more detail with reference to Examples and Comparative Examples, but the present embodiment is not limited to these Examples. The measurement method used in this embodiment is as follows. All of the following measurements were performed at 25 ° C.

(1)親水性ポリマーP(MMA−PEGMA)の重合
表1に示した所定の濃度のメタクリル酸メチル(MMA、シグマ アルドリッチジャパン社製)とポリ(エチレングリコール)メチルエーテルメタクリレート(PEGMA、シグマ アルドリッチジャパン社製)を酢酸エチル(和光純薬工業社製)中に加え、系内を窒素置換した。その後、酢酸エチルに溶解したアゾビスイソブチロニトリル(AIBN、和光純薬工業社製)を加えて、60℃で5時間重合反応を行った。得られた重合物は、重合溶液の10倍以上のヘキサンに滴下後、沈殿物をろ過し、水洗後、60℃で24時間、真空乾燥した。乾燥後の沈殿物をテトラヒドロフランに溶解させ、10倍以上の容積のヘキサンに滴下後、沈殿物をろ過し、水洗後、60℃で24時間、真空乾燥を行った。この作業を繰り返し行い、不純物を十分に除去した。得られた親水性ポリマーの分子量を、ゲル浸透クロマトグラフィーにより測定した。島津製作所社製のHPLC装置(送液ポンプ:LC−9A、カラムオーブン:CTO−20A、検出器:RID−10A、脱気ユニット:DGU−20A3)を用い、昭和電工社製GPCカラム:KD−804を用いて測定を行った。ここで、溶離液はクロロホルムを用い、流束1.0ml/分で通液した。また、校正曲線は、ポリスチレン標準サンプルを用いて作製した。測定の結果、数平均分子量で、10,000から55,000の親水性ポリマーP(MMA−PEGMA)を得た。
(1) Polymerization of hydrophilic polymer P (MMA-PEGMA) Methyl methacrylate (MMA, manufactured by Sigma-Aldrich Japan) and poly (ethylene glycol) methyl ether methacrylate (PEGMA, Sigma-Aldrich Japan) at predetermined concentrations shown in Table 1 Was added to ethyl acetate (manufactured by Wako Pure Chemical Industries, Ltd.) to replace the inside of the system with nitrogen. Then, azobisisobutyronitrile (AIBN, manufactured by Wako Pure Chemical Industries, Ltd.) dissolved in ethyl acetate was added, and a polymerization reaction was carried out at 60 ° C. for 5 hours. The obtained polymer was added dropwise to hexane 10 times or more the polymerization solution, the precipitate was filtered, washed with water, and vacuum dried at 60 ° C. for 24 hours. The dried precipitate was dissolved in tetrahydrofuran, added dropwise to hexane having a volume of 10 times or more, the precipitate was filtered, washed with water, and vacuum dried at 60 ° C. for 24 hours. This work was repeated to sufficiently remove impurities. The molecular weight of the obtained hydrophilic polymer was measured by gel permeation chromatography. Using an HPLC device manufactured by Shimadzu Corporation (liquid feed pump: LC-9A, column oven: CTO-20A, detector: RID-10A, degassing unit: DGU-20A3), Showa Denko GPC column: KD- Measurements were made using 804. Here, chloroform was used as the eluent, and the liquid was passed at a flux of 1.0 ml / min. The calibration curve was prepared using a polystyrene standard sample. As a result of the measurement, a hydrophilic polymer P (MMA-PEGMA) having a number average molecular weight of 10,000 to 55,000 was obtained.

(2)多孔膜の表面組成の分析:存在比O/Cの算出
多孔膜表面の酸素Oと炭素Cとの存在比O/Cは、X線光電分光法(XPS)にて求めた。多孔膜を試料台に両面テープにて固定し、下記の条件にて測定を行った。
XPS測定装置:アルバック・ファイ社製 PHI X−tool
励起源 :ALKα、15kV×50W
光電子脱出角度:45°
パスエネルギー:280eV
測定されたスペクトルを用いて、F1S、O1S、C1Sの面積強度から、各元素の相対元素濃度を求め、存在比O/Cを算出した。
(2) Analysis of surface composition of porous membrane: Calculation of abundance ratio O / C The abundance ratio O / C of oxygen O and carbon C on the surface of the porous membrane was determined by X-ray photoelectron spectroscopy (XPS). The porous membrane was fixed to the sample table with double-sided tape, and the measurement was performed under the following conditions.
XPS measuring device: PHI X-tool manufactured by ULVAC-PHI
Excitation source: ALKα, 15kV × 50W
Photoelectron escape angle: 45 °
Path energy: 280 eV
Using the measured spectrum, the relative element concentration of each element was obtained from the area intensities of F1S, O1S, and C1S, and the abundance ratio O / C was calculated.

(3)純水透過流束の測定
膜面積6.1×10−3の平膜状の多孔膜を日東電工社製の平膜テストセルCT10−Tにセットし、クロスフロー流量160ml/分の条件で行った。最初に、膜間差圧1barの条件で15分間ろ過した後、膜間差圧0.5barの条件で透過水量の測定を行った。得られた透過水量から、以下の式により純水透過流束Jを求めた。
(3) Measurement of pure water permeation flux A flat membrane-like porous membrane with a membrane area of 6.1 × 10 -3 m 2 was set in a flat membrane test cell CT10-T manufactured by Nitto Denko, and a cross-flow flow rate of 160 ml / I went on the condition of minutes. First, after filtering for 15 minutes under the condition of the intermembrane differential pressure of 1 bar, the amount of permeated water was measured under the condition of the intermembrane differential pressure of 0.5 bar. From the obtained permeated water amount, the pure water permeated flux J 0 was determined by the following formula.

(4)透過流束保持率の測定
上記(3)の純水透過流束Jの測定後、原水を50ppmのBSA(Bovine Serum Albumin)タンパク質水溶液(緩衝溶液を用いて水素イオン濃度pH=7に調整)に変えて、膜間差圧0.5barの条件でろ過を行った。ろ過60分間後の透過流束Jと上記(3)で得られた純水透過流束Jを用いて、以下の式より、透過流束保持率J/Jを算出した。
(4) flux after the measurement of pure water permeation flux J 0 of retention of measurement (3), of 50ppm raw water BSA (Bovine Serum Albumin) protein solution (buffer solution of hydrogen ion concentration pH = 7 using The filtration was performed under the condition of an intermembrane differential pressure of 0.5 bar. Using the permeated flux J 60 minutes after filtration and the pure water permeated flux J 0 obtained in (3) above, the permeated flux retention rate J / J 0 was calculated from the following formula.

(5)逆流洗浄回復性nRFの測定
上記(4)の50ppmのBSAタンパク質水溶液を60分間ろ過後、多孔膜の2次側から純水を0.1barで2分間ろ過し、再び、1次側から50ppmのBSAタンパク質水溶液を膜間差圧0.5barの条件でろ過を行った。この時、逆流洗浄直前のBSAタンパク質水溶液の透過流束をJbbとし、逆流洗浄直後のBSAタンパク質水溶液の透過流束をJabとした。純水透過流束J、Jbb、Jabを用いて、以下の式により、逆流洗浄回復性nRFを算出した。
図2は、本発明の多孔膜を用いてBSAタンパク質水溶液をろ過した際のろ過時間と透過流束の関係を示すイメージ図である。上記式のJ0、Jbb、Jabの各パラメータの関係は、この図に記載された通りである。
(5) Measurement of backflow washing recoverability nRF After filtering the 50 ppm BSA protein aqueous solution of (4) above for 60 minutes, pure water is filtered from the secondary side of the porous membrane at 0.1 bar for 2 minutes, and then again on the primary side. A 50 ppm BSA protein aqueous solution was filtered under the condition of an intermembrane differential pressure of 0.5 bar. At this time, the flux of BSA protein solution immediately before backwashing and J bb, the permeation flux of BSA protein solution immediately after backwashing was set to J ab. Pure water flux J 0, J bb, using J ab, by the following equation was calculated backwashing recovery NRf.
FIG. 2 is an image diagram showing the relationship between the filtration time and the permeation flux when the BSA protein aqueous solution is filtered using the porous membrane of the present invention. The relationship between the J0, Jbb, and Jab parameters in the above equation is as shown in this figure.

[実施例1〜4、比較例1]
ポリフッ化ビニリデン樹脂(PVDF)として、Kynar741(アルケマ社製)を、親水性ポリマーとして、ポリ(エチレングリコール)メチルエーテルメタクリレート(PEGMA)の数平均分子量が475、MMA/PEGMAモル比が90/10であるP(MMA−PEGMA)(表1のNo.2に記載)を用い、これらのポリマーをPVDF/P(MMA−PEGMA)の質量比が、100/0、10/1、8/1、4/1、2/1となる様に、溶媒であるジメチルアセトアミド(DMAC)に加え、24時間、60℃にて溶解して、それぞれ比較例1、実施例1、実施例2、実施例3、実施例4のポリマー溶液を得た。その後、得られたポリマー溶液は、24時間真空下で脱気し、製膜原液とした。各製膜原液の組成を表2に記載した。得られた製膜原液は、ガラス板上に置かれた不織布上に厚さ200マイクロメートルの厚さで塗布し、相対湿度30%の空気中で10秒間放置後、10分間脱イオン水中に浸漬し、製膜原液を固化させ、多孔膜を得た。得られた多孔膜は引き続き脱イオン水を用いて多孔膜中に残留するDMACを除去した。
[Examples 1 to 4, Comparative Example 1]
Kynar741 (manufactured by Alchema) as a polyvinylidene fluoride resin (PVDF) and poly (ethylene glycol) methyl ether methacrylate (PEGMA) as a hydrophilic polymer have a number average molecular weight of 475 and an MMA / PEGMA molar ratio of 90/10. Using a certain P (MMA-PEGMA) (listed in No. 2 of Table 1), the mass ratio of PVDF / P (MMA-PEGMA) of these polymers is 100/0, 10/1, 8/1, 4 In addition to the solvent dimethylacetamide (DMAC), it was dissolved at 60 ° C. for 24 hours so as to be 1/1 and 2/1, and the results were compared with Comparative Example 1, Example 1, Example 2, and Example 3, respectively. The polymer solution of Example 4 was obtained. Then, the obtained polymer solution was degassed under vacuum for 24 hours to prepare a membrane-forming stock solution. The composition of each membrane-forming stock solution is shown in Table 2. The obtained undiluted film-forming solution is applied to a non-woven fabric placed on a glass plate to a thickness of 200 micrometers, left in air at a relative humidity of 30% for 10 seconds, and then immersed in deionized water for 10 minutes. Then, the undiluted membrane-forming solution was solidified to obtain a porous membrane. The obtained porous membrane was subsequently subjected to deionized water to remove DMAC remaining in the porous membrane.

こうして製膜した多孔膜の表面上の元素の組成をXPSにて測定した。測定結果として得た酸素Oと炭素Cとの存在比O/Cを図3に示した。製膜原液中の親水性ポリマーの比率が高くなると、多孔膜表面の存在比O/Cも高くなっており、多孔膜表面が親水性ポリマーで改質されていることが分かる。さらに、得られた多孔膜を用いて、50ppmのBSAタンパク質水溶液を膜間差圧0.5barでろ過した際に得られたろ過時間と透過流束の関係を図4に示した。製膜原液中の親水性ポリマーの比率が高くなると、60分間ろ過後の透過流束も高くなっており、また、その後実施された逆流洗浄による回復性も高い結果となった。 The composition of the elements on the surface of the porous film thus formed was measured by XPS. The abundance ratio O / C of oxygen O and carbon C obtained as a measurement result is shown in FIG. As the ratio of the hydrophilic polymer in the membrane-forming stock solution increases, the abundance ratio O / C of the porous membrane surface also increases, indicating that the porous membrane surface is modified with the hydrophilic polymer. Further, FIG. 4 shows the relationship between the filtration time and the permeation flux obtained when a 50 ppm BSA protein aqueous solution was filtered with an intermembrane differential pressure of 0.5 bar using the obtained porous membrane. When the ratio of the hydrophilic polymer in the membrane-forming stock solution was high, the permeation flux after filtration for 60 minutes was also high, and the recovery by the backflow washing performed thereafter was also high.

多孔質表面の存在比O/Cと、タンパク質水溶液をろ過した際の透過流束保持率J/J×100、および、逆流洗浄回復性nRFとの関係を、それぞれ、図5、図6に示した(図5、6における符号“○”参照)。図より、存在比O/Cが高くなると、透過流束保持率、逆流洗浄回復性とも高くなることが分かり、ポリフッ化ビニリデン樹脂に本発明の親水性ポリマーを添加することにより、多孔膜表面の存在比O/Cが高くなり、この結果、多孔膜の耐ファウリング性が向上していることが確認された。
以上の結果から、本発明の多孔膜を用いることにより、高い親水性の多孔膜を得ることができ、さらに、得られた多孔膜はファウリングを抑制し、高いろ過流束と逆流洗浄回復性を有していることが示された。
The relationship between the abundance ratio O / C of the porous surface, the permeation flux retention rate J / J 0 × 100 when the protein aqueous solution is filtered, and the backflow washing recovery nRF is shown in FIGS. 5 and 6, respectively. It is shown (see the symbol “◯” in FIGS. 5 and 6). From the figure, it can be seen that the higher the abundance ratio O / C, the higher the permeation flux retention rate and the backflow cleaning recovery property, and by adding the hydrophilic polymer of the present invention to the polyvinylidene fluoride resin, the surface of the porous membrane is surfaced. It was confirmed that the abundance ratio O / C was increased, and as a result, the fouling resistance of the porous membrane was improved.
From the above results, by using the porous membrane of the present invention, a highly hydrophilic porous membrane can be obtained, and further, the obtained porous membrane suppresses fouling, and has high filtration flux and backflow washing recovery. Was shown to have.

[実施例5、6]
親水性ポリマーとして、MMA/PEGMAモル比が95/5、85/15のP(MMA−PEGMA)を用いた(表1のNo.1、3に記載)以外は、実施例1〜4と同様の方法にて、実施例5、6の多孔膜を作製した。得られた多孔膜表面の存在比O/Cと、BSAタンパク質水溶液をろ過した際の透過流束保持率J/J×100、および、逆流洗浄回復性nRFを、それぞれ、図5、図6に示した(図5、6における符号“□”参照)。親水性ポリマー中の親水性ユニットであるPEGMAのモル比が増えると、多孔膜表面の存在比O/Cも増え、この結果、透過流束保持率J/J×100、逆流洗浄回復性nRFも高くなることが分かる。
[Examples 5 and 6]
Similar to Examples 1 to 4 except that P (MMA-PEGMA) having an MMA / PEGMA molar ratio of 95/5 and 85/15 was used as the hydrophilic polymer (listed in Nos. 1 and 3 of Table 1). The porous membranes of Examples 5 and 6 were prepared by the method of. The abundance ratio O / C of the obtained porous membrane surface, the permeation flux retention rate J / J 0 × 100 when the BSA protein aqueous solution was filtered, and the backflow washing recovery nRF are shown in FIGS. 5 and 6, respectively. (See reference numerals “□” in FIGS. 5 and 6). As the molar ratio of PEGMA, which is a hydrophilic unit in the hydrophilic polymer, increases, the abundance ratio O / C of the porous membrane surface also increases, and as a result, the permeation flux retention rate J / J 0 × 100 and the backflow washing recovery nRF It turns out that it also becomes higher.

[実施例7、8]
親水性ポリマーとして、親水性ユニットを構成するPEGMAの数平均分子量が300、900のP(MMA−PEGMA)を用いた(表1のNo.4、5に記載)以外は、実施例1〜4と同様の方法にて、多孔膜を作製した。得られた多孔膜表面の存在比O/Cと、BSAタンパク質水溶液をろ過した際の透過流束保持率J/J×100、および、逆流洗浄回復性nRFを、それぞれ、図5、図6に示した(図5、6における符号“△”参照)。親水性ポリマー中の親水性ユニットを構成するPEGMAの数平均分子量が増えると、多孔膜表面の存在比O/Cも増え、この結果、透過流束保持率J/J×100、逆流洗浄回復性nRFも高くなることが分かる。
[Examples 7 and 8]
Examples 1 to 4 except that P (MMA-PEGMA) having a number average molecular weight of 300 and 900 of PEGMA constituting the hydrophilic unit was used as the hydrophilic polymer (described in Nos. 4 and 5 in Table 1). A porous membrane was prepared in the same manner as in the above. The abundance ratio O / C of the obtained porous membrane surface, the permeation flux retention rate J / J 0 × 100 when the BSA protein aqueous solution was filtered, and the backflow washing recovery nRF are shown in FIGS. 5 and 6, respectively. (See reference numeral “Δ” in FIGS. 5 and 6). As the number average molecular weight of PEGMA constituting the hydrophilic unit in the hydrophilic polymer increases, the abundance ratio O / C of the porous membrane surface also increases, and as a result, the permeation flux retention rate J / J 0 × 100 and backflow washing recovery It can be seen that the sex nRF also increases.

本発明によれば、限外ろ過膜や精密ろ過膜として好適な、膜ファウリングを抑制し、高いろ過性能を達成可能な親水性と耐久性に優れた多孔膜、および、その製造方法を提供することができる。
本発明は、水処理分野、食品や医薬品製造など、限外ろ過膜や精密ろ過膜が適用されている広い分野において産業上の利用可能性を有する。
According to the present invention, there is provided a porous membrane having excellent hydrophilicity and durability, which suppresses membrane fouling and can achieve high filtration performance, which is suitable as an ultrafiltration membrane or a microfiltration membrane, and a method for producing the same. can do.
The present invention has industrial applicability in a wide range of fields to which ultrafiltration membranes and microfiltration membranes are applied, such as water treatment fields and food and pharmaceutical manufacturing.

a 疎水性ユニット
b 親水性ユニット
c 親水性側鎖
a Hydrophobic unit b Hydrophilic unit c Hydrophilic side chain

Claims (6)

母材ポリマーであるポリフッ化ビニリデン樹脂と親水性ポリマーとからなる多孔膜であって、前記親水性ポリマーが疎水性ユニットと親水性ユニットとから構成されており、前記疎水性ユニットの繰返単位がメタクリル酸メチル、前記親水性ユニットの繰返単位がポリ(エチレングリコール)メチルエーテルメタクリレートであり、多孔膜表面の酸素Oと炭素Cの存在比O/Cが0.14〜0.25である多孔膜。 It is a porous film composed of a polyvinylidene fluoride resin which is a base material polymer and a hydrophilic polymer, and the hydrophilic polymer is composed of a hydrophobic unit and a hydrophilic unit, and the repeating unit of the hydrophobic unit is methyl methacrylate, wherein the repeating units of the hydrophilic units poly (ethylene glycol) Ri methyl ether methacrylate der abundance ratio O / C of oxygen O and carbon C of the porous membrane surface 0.14 to 0.25 der Porous membrane. 母材ポリマーであるポリフッ化ビニリデン樹脂と親水性ポリマーを両者の良溶媒に溶解した製膜原液から非溶剤誘起相分離法により多孔膜を製造する製膜方法であって、前記親水性ポリマーが疎水性ユニットと親水性ユニットからなり、前記疎水性ユニットの繰返単位がメタクリル酸メチル、前記親水性ユニットの繰返単位がポリ(エチレングリコール)メチルエーテルメタクリレートである親水性ポリマーを用い、さらに、前記製膜原液を凝固させる前に、該製膜原液を相対湿度10%以上の空気中で1秒間以上暴露する多孔膜の製造方法。 This is a film-forming method for producing a porous film by a non-solvent-induced phase separation method from a film-forming stock solution prepared by dissolving a polyvinylidene fluoride resin as a base material polymer and a hydrophilic polymer in both good solvents, and the hydrophilic polymer is hydrophobic. A hydrophilic polymer composed of a sex unit and a hydrophilic unit, wherein the repeating unit of the hydrophobic unit is methyl methacrylate and the repeating unit of the hydrophilic unit is poly (ethylene glycol) methyl ether methacrylate is used, and further, the above-mentioned A method for producing a porous film, in which the undiluted film-forming solution is exposed to air at a relative humidity of 10% or more for 1 second or longer before the undiluted film-forming solution is coagulated. 前記ポリフッ化ビニリデン樹脂と、前記親水性ポリマーとの質量比が、10/1〜2/1である請求項記載の多孔膜の製造方法。 The method for producing a porous membrane according to claim 2 , wherein the mass ratio of the polyvinylidene fluoride resin to the hydrophilic polymer is 10/1 to 2/1. 前記親水性ポリマーの数平均分子量が、10,000〜55,000である請求項または記載の多孔膜の製造方法。 The method for producing a porous membrane according to claim 2 or 3 , wherein the hydrophilic polymer has a number average molecular weight of 10,000 to 55,000. 前記親水性ポリマーにおいて、疎水性ユニットと親水性ユニットのモル比が95/5〜85/15である請求項いずれか1項記載の多孔膜の製造方法。 The method for producing a porous membrane according to any one of claims 2 to 4 , wherein in the hydrophilic polymer, the molar ratio of the hydrophobic unit to the hydrophilic unit is 95/5 to 85/15. 前記親水性ユニットの数平均分子量が300〜900である請求項いずれか1項記載の多孔膜の製造方法。 The method for producing a porous membrane according to any one of claims 2 to 5, wherein the number average molecular weight of the hydrophilic units is 300 to 900.
JP2016058121A 2016-03-23 2016-03-23 Polyvinylidene fluoride porous membrane and its manufacturing method Active JP6767141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016058121A JP6767141B2 (en) 2016-03-23 2016-03-23 Polyvinylidene fluoride porous membrane and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016058121A JP6767141B2 (en) 2016-03-23 2016-03-23 Polyvinylidene fluoride porous membrane and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2017170319A JP2017170319A (en) 2017-09-28
JP6767141B2 true JP6767141B2 (en) 2020-10-14

Family

ID=59972533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016058121A Active JP6767141B2 (en) 2016-03-23 2016-03-23 Polyvinylidene fluoride porous membrane and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6767141B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109433027A (en) * 2018-12-20 2019-03-08 长春工业大学 A kind of hydrophilic antipollution ultrafiltration membrane and preparation method thereof
KR20210089658A (en) 2018-12-27 2021-07-16 마루젠 세끼유가가꾸 가부시키가이샤 Polyvinylidene fluoride resin porous film and its manufacturing method
WO2023195479A1 (en) * 2022-04-08 2023-10-12 国立大学法人神戸大学 Filtration membrane and production method for said membrane

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2263582C (en) * 1996-08-26 2004-03-30 Massachusetts Institute Of Technology Polymeric membranes and polymer articles having hydrophilic surface and method for their preparation
EP2349523A4 (en) * 2008-10-28 2016-10-26 Arkema Inc Water flux polymer membranes
JP2012110856A (en) * 2010-11-26 2012-06-14 Mitsubishi Rayon Co Ltd Apparatus for manufacturing hollow porous membrane
FR3003257B1 (en) * 2013-03-13 2015-03-20 Polymem AMPHIPHILE BLOCK COPOLYMER AND USE THEREOF FOR MANUFACTURING POLYMER FILTRATION MEMBRANES
CN105722585A (en) * 2013-09-18 2016-06-29 三菱丽阳株式会社 Porous hollow fiber membrane and method for manufacturing same

Also Published As

Publication number Publication date
JP2017170319A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
US8528746B2 (en) Method of manufacturing hydrophilic membrane having improved antifouling property and hydrophilic membrane manufactured by the method
JP6174808B2 (en) Surface-modified separation membrane and surface modification method for separation membrane
US7867417B2 (en) Membrane post treatment
JP5181119B2 (en) Porous membranes from organopolysiloxane copolymers
KR101630208B1 (en) A preparation method of hydrophilic membrane and a hydrophilic membrane prepared by the same
JP5524779B2 (en) Process for producing polyvinylidene fluoride porous filtration membrane
WO2018070616A1 (en) Polymer composition containing sulfonated carbon nanotube and sulfonated graphene oxide for fabricating hydrophilic separation membrane
JP6642860B2 (en) Water treatment separation membrane and method for producing the same
JP6767141B2 (en) Polyvinylidene fluoride porous membrane and its manufacturing method
JP6343470B2 (en) NF membrane manufacturing method
KR101971130B1 (en) Forward osmosis thin-film composite membrane with improved water flux comprising supporting interlayer consisting of polydopamine and graphene oxide and method for preparing thereof
KR101790174B1 (en) A PVA coated hollow fiber mambrane and a preparation method thereof
JP2016182690A (en) Surface-modified substrate, polymer-coated substrate, and production method of them
JP6667217B2 (en) Fouling inhibitor, porous filtration membrane for water treatment, and method for producing the same
JP2011156519A (en) Polymer water treatment film, water treatment method, and method for maintaining polymer water treatment film
JP6390326B2 (en) Method for producing porous filtration membrane for water treatment
CN112973467B (en) Preparation method of composite nanofiltration membrane and composite nanofiltration membrane
AU2005312347B2 (en) Membrane post treatment
Eryildiz et al. Preparation and characterization of polyvinyl chloride membranes and their fouling behavior in water purification
JP2006224051A (en) Porous membrane, porous membrane element, and membrane filter apparatus
Yushkin et al. Preparation of Polyacrylonitrile Membranes by Vapor Induced Phase Separation
CN114749035B (en) Low-pressure large-flux hollow fiber nanofiltration membrane, and preparation method and application thereof
JP6712717B2 (en) Method for producing polyvinyl chloride porous filtration membrane for water treatment
JP2010119931A (en) Method for removing organic fluorine compound
KR20170112605A (en) Water treatment media, manufacturing method thereof, and Water treatment filter including thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200917

R150 Certificate of patent or registration of utility model

Ref document number: 6767141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150