WO2023195479A1 - Filtration membrane and production method for said membrane - Google Patents

Filtration membrane and production method for said membrane Download PDF

Info

Publication number
WO2023195479A1
WO2023195479A1 PCT/JP2023/014039 JP2023014039W WO2023195479A1 WO 2023195479 A1 WO2023195479 A1 WO 2023195479A1 JP 2023014039 W JP2023014039 W JP 2023014039W WO 2023195479 A1 WO2023195479 A1 WO 2023195479A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
filtration membrane
polymer
hollow fiber
mol
Prior art date
Application number
PCT/JP2023/014039
Other languages
French (fr)
Japanese (ja)
Inventor
秀人 松山
ラジャブザデ サイード
崇 佐々木
将智 高橋
Original Assignee
国立大学法人神戸大学
日油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人神戸大学, 日油株式会社 filed Critical 国立大学法人神戸大学
Publication of WO2023195479A1 publication Critical patent/WO2023195479A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/28Polymers of vinyl aromatic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters

Definitions

  • the present disclosure relates to a filtration membrane (particularly a hollow fiber membrane filtration membrane) having both fouling resistance and water resistance, and a method for manufacturing the membrane.
  • hollow fiber membrane filtration membranes such as ultrafiltration, microfiltration, and reverse osmosis have been used in many industrial fields such as drinking water production, water supply and sewage treatment, and wastewater treatment. Furthermore, hollow fiber membrane filtration membranes are increasingly being used in biopharmaceutical fields such as artificial dialysis, blood products, and antibody drugs. Ultrafiltration membranes and microfiltration membranes, which are hollow fiber membrane filtration membranes, are widely used for water purification. However, the problem with hollow fiber membrane filtration membranes is that they are highly hydrophobic and easily foul.
  • Fouling refers to causative substances called foulants contained in raw water (e.g., poorly soluble components, proteins, polymeric solutes such as polysaccharides, colloids, minute solids, microorganisms, etc.) that deposit on membranes and reduce the permeation flow rate. This phenomenon is known as the main cause of membrane performance deterioration.
  • raw water e.g., poorly soluble components, proteins, polymeric solutes such as polysaccharides, colloids, minute solids, microorganisms, etc.
  • This phenomenon is known as the main cause of membrane performance deterioration.
  • As a manufacturing method for hollow fiber membrane filtration membranes that are highly effective against fouling caused by proteins and microorganisms for example, materials that can suppress foulants such as proteins and microorganisms are retained or adsorbed on hollow fiber membrane filtration membranes. A method has been proposed.
  • Patent Document 1 discloses "a method for suppressing foulant adsorption by coating the surface of a hollow fiber membrane filtration membrane with a solution of a polymer obtained by polymerizing 2-methacryloyloxyethylphosphorylcholine.”
  • Patent Document 2 discloses "a method in which a solution of a polymer obtained by polymerizing 2-methacryloyloxyethylphosphorylcholine is placed in a coagulation bath, and the polymer is incorporated into a film during film formation.”
  • Patent Document 3 discloses "a production method for forming a film by mixing a solution of a polymer obtained by polymerizing specific 2-methacryloyloxyethylphosphorylcholine with polysulfone.”
  • the present disclosure provides a filtration membrane (particularly a hollow fiber membrane filtration membrane) that effectively suppresses fouling, is excellent in recovering water permeability after cleaning when fouling occurs, and has water resistance.
  • An object of the present invention is to provide a method for manufacturing the membrane.
  • the present inventors have developed a film-forming stock solution containing a polymer containing vinylidene fluoride as a monomer, and a film-forming solution containing a polymer containing styrene and maleic anhydride as monomers.
  • a method for producing a filtration membrane in particular, a hollow fiber membrane filtration membrane in which a filtration membrane is produced using an external control liquid containing a polymer containing a specific phosphorylcholine group, and a polymer containing a specific phosphorylcholine group is immobilized on the filtration membrane.
  • filtration membrane comprising a polymer and a polymer containing styrene and maleic anhydride as monomers.
  • the polymer containing 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate and 2-aminoethyl methacrylate or its hydrochloride as a monomer is 2-(methacryloyloxy)ethyl 2-(trimethylammonio).
  • the filtration membrane according to item 1 above which contains 40 mol% to 60 mol% of ethyl phosphate and 40 mol% to 60 mol% of 2-aminoethyl methacrylate or its hydrochloride. 4.
  • the polymer (P) includes 30 mol% to 90 mol% of 2-(methacryloyloxy)eth
  • a monovinylidene fluoride on which a polymer (P) containing 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate and 2-aminoethyl methacrylate or its hydrochloride of the present disclosure is immobilized is used.
  • the polymer (P) is It is immobilized so that it cannot be easily detached from the That is, in the filtration membrane of the present disclosure (particularly the hollow fiber membrane filtration membrane), the polymer (P) does not elute in water, and the fouling suppressing effect can be maintained for a long period of time.
  • the filtration membrane of the present disclosure is made of vinylidene fluoride on which a polymer containing 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate and 2-aminoethyl methacrylate or its hydrochloride is immobilized as a monomer.
  • This is a filtration membrane (hereinafter sometimes simply referred to as "the filtration membrane of the present disclosure") including a polymer containing as a monomer and a polymer containing styrene and maleic anhydride as monomers.
  • the filtration membrane of the present disclosure includes a hollow fiber membrane filtration membrane and a flat membrane filtration membrane, and preferably a hollow fiber membrane filtration membrane.
  • An example of the composition of the hollow fiber membrane filtration membrane of the present disclosure is that a "polymer containing vinylidene fluoride as a monomer" and "a polymer containing maleic anhydride as a monomer” form a hollow fiber membrane by physical adsorption. formed and substantially free of core liquid.
  • a monomer (constituent unit) means a unit of a compound contained in a polymer based on each monomer or derived from each monomer.
  • each lower limit value and upper limit value can be independently combined.
  • “preferable lower limit: 10” and “more preferable upper limit: 90” can be combined to become “10 to 90”. .
  • a method for manufacturing a hollow fiber membrane filtration membrane of the present disclosure includes the following steps.
  • the polymer (P) includes 30 mol% to 90 mol% of 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate and 70 mol% to 10 mol% of 2-aminoethyl methacrylate or its hydrochloride.
  • the method for producing a hollow fiber membrane filtration membrane of the present disclosure includes a membrane forming stock solution in which a polymer containing vinylidene fluoride as a monomer is dissolved, a polymer containing styrene and maleic anhydride as monomers, A hollow fiber is manufactured by discharging an external control liquid and a core liquid containing A hollow fiber membrane filtration membrane that has both fouling resistance and water resistance can be produced by reacting a thread membrane filtration membrane with a polymer (P) to immobilize and coat the polymer (P) on the membrane surface.
  • P polymer
  • fouling resistance means that the amount of water permeation is less likely to decrease during filtration using the hollow fiber membrane filtration membrane of the present disclosure, and that the decreased amount of water permeation is recovered during washing. Moreover, water resistance means that the polymer (P) does not peel off from the hollow fiber membrane filtration membrane of the present disclosure.
  • Membrane forming stock solution As the polymer containing vinylidene fluoride as a monomer contained in the membrane forming stock solution of the present disclosure, vinylidene fluoride alone or copolymerized with other monomers can be used. Polymers containing only vinylidene fluoride are commercially available, for example, available from Solvay Specialty Polymers Japan Co., Ltd. (Solef (registered trademark) 11010, Solef (registered trademark) 31508, Solef (registered trademark) 6020, etc.) ).
  • monomers copolymerized with vinylidene fluoride include, but are not particularly limited to, propylene hexafluoride, tetrafluoroethylene, ethylene, ethylene tetrafluoride, ethylene trifluorochloride, vinyl fluoride, and the like.
  • hollow fibers can be produced in the membrane forming stock solution if the polymer containing vinylidene fluoride as a monomer is in the range of 10% to 40% by weight, but in order to produce good hollow fibers, 15% by weight is required. % to 30% by weight is preferred, and 20% to 30% by weight is more preferred.
  • the polymer containing vinylidene fluoride as a monomer (constituent unit) contained in the membrane forming stock solution of the present disclosure is preferably exemplified by polyvinylidene fluoride.
  • the solvent for the membrane forming stock solution of the present disclosure glycerol triacetate, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and the like can be used. Glycerol triacetate is preferred from the viewpoint of phase separation when the membrane forming stock solution, external control solution, and core solution are immersed (discharged) into the coagulation solution.
  • the polymer containing styrene and maleic anhydride as monomers (constituent units) contained in the external control liquid of the present disclosure is a polymer containing styrene and maleic anhydride as constituent units, or a polymer containing styrene and maleic anhydride as monomers (constituent units), or a polymer containing styrene and maleic anhydride as monomers (constituent units), or , or other monomers (ester, carboxylic acid, diammonium maleate, monoammonium maleate monoester, monoester maleate) can be used as a constituent unit.
  • Polymers of styrene and maleic anhydride are available from Polyscope Polymers.
  • XIRAN (registered trademark) 1000P Polymers of styrene and maleic anhydride are available from Polyscope Polymers.
  • XIRAN (registered trademark) 1000P Polymers of styrene and maleic anhydride are available from Polyscope Polymers.
  • XIRAN (registered trademark) 1000P Polymers based on styrene and maleic anhydride, as well as other monomers, are available from Polyscope Polymers.
  • XIRAN (registered trademark) 1440 and XIRAN (registered trademark) 2625P can be exemplified.
  • the content of the polymer containing styrene and maleic anhydride as monomers in the external control liquid can be set at 1% by weight to 40% by weight, but in order to produce good hollow fibers, 1% by weight is required. % to 20% by weight is preferred, and 1% to 5% by weight is more preferred.
  • the polymer containing styrene and maleic anhydride as monomers (constituent units) contained in the external control liquid of the present disclosure is preferably exemplified by a polymer containing styrene and maleic anhydride as monomers. .
  • glycerol triacetate dimethylacetamide, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and the like can be used. Glycerol triacetate is preferred from the viewpoint of phase separation when the membrane forming stock solution, external control solution, and core solution are immersed (discharged) into the coagulation solution.
  • core liquid As the core liquid of the present disclosure, glycerol triacetate, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and the like can be used. Glycerol triacetate is preferred from the viewpoint of phase separation when the membrane forming stock solution, external control solution, and core solution are immersed (discharged) into the coagulation solution.
  • the discharge ratio of the membrane forming stock solution, external control liquid, and core liquid is 1 part to 40 parts by mass of the film forming stock solution, 0.1 part to 20 parts by mass of the external control liquid, and 0.1 part by mass to the core liquid.
  • the amount may be 50 parts by mass, but in order to produce good hollow fibers, preferably 0.1 to 10 parts by mass of the external control liquid and 0 parts by mass of the core liquid to 1 to 20 parts by mass of the membrane forming stock solution.
  • the discharge speed of the membrane forming stock solution, external control liquid, and core liquid is preferably 5 to 20 g/min, more preferably 7 to 9 g/min, and preferably 1 to 10 g/min for the external control liquid.
  • /min more preferably 2 to 4 g/min
  • the core liquid is preferably 3 to 20 g/min, more preferably 5 to 8 g/min.
  • coagulation liquid examples include water, which is a solvent that does not dissolve the hollow fiber membrane filtration membrane of the present disclosure.
  • the amount of coagulation liquid used can be 100 parts by mass to 100,000,000 parts by mass per 100 parts by mass of the membrane-forming stock solution, but in order to favorably proceed with the formation of the hollow fiber membrane filtration membrane. It is preferable to use 1,000 parts by mass to 100,000,000 parts by mass of the coagulating liquid, and more preferably to use 1,000 parts by mass to 100,000 parts by mass.
  • the method of manufacturing a hollow fiber membrane filtration membrane by the thermally induced phase separation method of the present disclosure includes discharging a membrane forming stock solution, a membrane forming stock solution, an external control liquid, and a core liquid from a concentric multi-slit nozzle, and cooling them with a low-temperature coagulation liquid. This causes phase separation into a concentrated phase and a dilute phase in each of the polyvinylidene fluoride layer and the styrene maleic anhydride polymer layer. In this dense phase, a hollow fiber membrane is formed in which the surface of polyvinylidene fluoride is covered with a styrene maleic anhydride polymer.
  • Membrane-form membrane forming stock solution manufacturing process (hollow fiber manufacturing process)
  • the membrane forming stock solution, external control liquid, and core liquid (glycerol triacetate) are discharged from a triple slit nozzle to obtain hollow fibers.
  • the temperature of the coagulating liquid is preferably 5°C to 40°C.
  • a washing step of removing the solvent etc. using water or hot water at 5° C. to 95° C. an extraction step of removing the solvent by extraction, A drying step at 5 to 70° C. may also be performed.
  • the hollow fiber membrane filtration membrane is not used immediately, it can be stored in a storage solution containing water, glycerin, or ethanol.
  • the polymer (P) of the present disclosure comprises 30 mol% to 90 mol% of 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate and 70 mol% to 10 mol% of 2-aminoethyl methacrylate or its hydrochloride.
  • the polymer (P) of the present disclosure may have any structure such as a random polymer or a block polymer, or may be a mixture of these polymers.
  • Method for producing polymer (P) As a method for producing the polymer (P), known methods such as solution polymerization, bulk polymerization, emulsion polymerization, and suspension polymerization can be used. For example, 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl A method can be adopted in which a phosphate and 2-aminoethyl methacrylate or its hydrochloride are subjected to a polymerization reaction in a solvent in the presence of a polymerization initiator.
  • the solvent used in the polymerization reaction may be any solvent that dissolves 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate and 2-aminoethyl methacrylate or its hydrochloride; specifically, water, methanol, ethanol, etc. , propanol, t-butanol, benzene, toluene, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, tetrahydrofuran, chloroform, etc., and two or more types may be mixed.
  • the initiator used in the polymerization reaction any common initiator may be used.
  • an azo compound water-soluble azo polymerization initiator
  • an organic peroxide can be used. .
  • the solvent used when performing the immobilization reaction between the hollow fiber membrane filtration membrane and the polymer (P) in the immobilization step (e) of the present disclosure is a solvent in which the polymer (P) is dissolved and which is a membrane material.
  • Any solvent that does not dissolve the polyvinylidene fluoride or styrene maleic anhydride polymer can be used. Examples include water, methanol, ethanol, propanol, t-butanol, benzene, toluene, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, tetrahydrofuran, chloroform, etc., and two or more types may be mixed.
  • the concentration of the polymer (P) when performing the immobilization reaction between the hollow fiber membrane filtration membrane and the polymer (P) may be between 0.1% and 10% by weight, but this may be due to economical and environmental considerations. Considering the influence, 0.1% by weight to 5% by weight is preferable.
  • a catalyst can be used to promote the reaction.
  • an acid catalyst or a base catalyst can be used as the solvent used in the immobilization reaction of the hollow fiber membrane filtration membrane and the polymer (P).
  • Examples include hydrochloric acid, acetic acid, sulfuric acid, phosphoric acid, p-toluenesulfonic acid monohydrate, etc.
  • Base catalysts include 4-dimethylaminopyridine, pyridine, triethylamine, etc., but triethylamine is preferred from the viewpoint of reactivity and cost. is preferred.
  • the amount of catalyst used when performing the immobilization reaction between the hollow fiber membrane filtration membrane and the polymer (P) can be in the range of 0.1% to 10% by weight, but it is important to maintain reactivity and protect the environment. Considering the influence, it is preferably 0.1% to 5% by weight, more preferably 0.1% to 1% by weight.
  • the filtration membrane of the present disclosure (in particular, the hollow fiber membrane filtration membrane) has been confirmed to have excellent fouling resistance and water resistance through the following examples. All applications where filtration membranes, reverse osmosis membranes, etc. are used (e.g., removal of microorganisms, bacteria, and viruses, separation and concentration of proteins, enzymes, etc., artificial dialysis, separation and removal of yeast in the production of draft sake and draft beer, seawater desalination) It can be used for production of industrial pure water and ultrapure water, concentration of fruit juice and milk, purification of wastewater, etc.).
  • filtration membrane of the present disclosure can be exemplified below, but are not particularly limited.
  • polyvinylidene fluoride powder Solvay 6020 manufactured by Solvay Specialty Polymers Japan Co., Ltd., weight average molecular weight 687 kDa
  • glycerol triacetate Frujifilm Wako Pure Chemical Industries, Ltd., hereinafter referred to as "GTA”
  • External control liquid preparation step (b) 10 parts by mass of styrene maleic anhydride polymer (SMA-6000 manufactured by Polyscope Polymers, weight average molecular weight 10 kDa, polystyrene:maleic anhydride molar ratio 6:1) to 190 parts by mass of GTA. It was dissolved at 60°C.
  • the discharge speed was 8.5 g/min for the film forming stock solution, 2.5 g/min (2 ml/min) for the external control liquid, and 6.2 g/min for the core solution (GTA).
  • Membrane forming step (d) The discharged hollow fibers were immersed in a coagulating liquid (water) and cooled to obtain a hollow fiber membrane-like filtration membrane. At this time, the temperature of the coagulation liquid was 15°C. Washing step (d-1): Once the hollow fiber membrane filtration membrane was formed, it was soaked in 40°C warm water to remove glycerol triacetate. Storage step (d-2): The hollow fiber membrane filtration membrane was left standing in pure water and stored.
  • the hollow fiber membrane filtration membrane (30 cm) produced in Production Example 1 was immersed in water containing 2 wt% polymer (P-1) and 0.25 wt% triethylamine (catalyst: Fuji Film Wako Pure Chemical Industries, Ltd.). After that, the solution temperature was raised to 60°C and left for 6 hours. Thereafter, it was washed with pure water and stored in pure water.
  • a hollow fiber membrane filtration membrane of the present disclosure was produced in the same manner as in Example 1, except that polymer (P-1) was replaced with polymer (P-2).
  • a hollow fiber membrane filtration membrane of the present disclosure was produced in the same manner as in Example 1, except that polymer (P-1) was replaced with polymer (P-3).
  • the water permeation amount (LMH/Bar) was measured at 1 bar using pure water (initial water permeation amount). Subsequently, a 1,000 ppm bovine serum albumin solution was used as a model foulant, and the solution was permeated for 60 minutes. Thereafter, backwashing was performed for 10 minutes using pure water with the direction of water permeation reversed. After backwashing, the amount of water permeation (LMH/Bar) was measured again using pure water (the amount of water permeation after the first backwashing), and the water permeation recovery rate (%) was calculated.
  • LMH/Bar water permeation amount
  • M-1 of the present disclosure produced in Example 1 first, a 0.85% by weight sodium chloride (Fujifilm Wako Pure Chemical Industries, Ltd.) aqueous solution was used at 0.5 bar. The water permeation amount (LMH/Bar) was measured (initial water permeation amount). Subsequently, a bacterial suspension (Sphingomonas paucimobilis) was used as a model foulant, and the solution was permeated for 90 minutes. Thereafter, backwashing was performed for 10 minutes with a 0.85% by weight aqueous sodium chloride solution in which the direction of water permeation was reversed.
  • the water permeation recovery rate (%) is a value expressed by the following formula (2).
  • the unit of water permeation amount "LMH/Bar” represents the amount of water passing through the filter membrane (L) per 1 m 2 of the filter membrane per hour under 1 bar.
  • the results are shown in Table 2.
  • Water permeability recovery rate (%) (water permeability after backwashing/initial water permeation) x 100...Formula (2)
  • the bacterial suspension was prepared by culturing the culture using tryptic soy broth (manufactured by Becton Dickinson, 30 g/L) at 120 rpm and 30°C for 12 hours with shaking, then diluting it 50 times with tryptic soy broth and culturing it for 4 hours.
  • the cells were cultured again at °C and diluted with tryptic soy broth to a bacterial concentration of 0.05 at 450 nm absorbance.
  • the hollow fiber membrane filtration membrane manufactured in Manufacturing Example 1 was used.
  • the hollow fiber membrane filtration membrane (M-1) of the present disclosure manufactured in Example 1 was cut into approximately 1 cm pieces, placed on a test stand, and a water droplet was dropped on it, and the contact angle change was determined with the moment of drop as the initial stage and 120 seconds later as the final stage. was measured. Furthermore, the contact angle was similarly measured for the hollow fiber membrane filtration membrane (M-1) of the present disclosure that had been stored in water for 30 and 60 days. The results are shown in Table 3. The contact angle was measured using a contact angle goniometer Drop Master (manufactured by Kyowa Interface Science Co., Ltd.). In Comparative Example 3, the hollow fiber membrane filtration membrane manufactured in Manufacturing Example 1 was used.
  • Example 6 The contact angle change was measured in the same manner as in Example 6, except that the hollow fiber membrane filtration membrane (M-2) of the present disclosure manufactured in Example 2 was used. The results are shown in Table 3.
  • Example 3 The contact angle change was measured in the same manner as in Example 6, except that the hollow fiber membrane filtration membrane (M-3) of the present disclosure manufactured in Example 3 was used. The results are shown in Table 3.
  • the water permeation recovery rate of the hollow fiber membrane filtration membrane of the present disclosure was significantly superior to that of Comparative Example 1.
  • the hollow fiber membrane filtration membrane of the present disclosure showed a high water permeability recovery rate even when the number of backwashes was increased, and also showed a high water permeability recovery rate even in cell suspensions containing proteins and bacteria. Highly ring-like.
  • the hollow fiber membrane filtration membrane of the present disclosure did not change the contact angle even after being stored in water for a long period of time, so the polymer (P) did not peel off, and it was excellent. It was revealed that it has water resistance.
  • the hollow fiber membrane filtration membrane of the present disclosure has excellent fouling resistance and water resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention provides: a filtration membrane (particularly, a hollow fiber membrane-type filtration membrane) which effectively inhibits fouling, which has excellent recovery of water permeability after cleaning when fouling has occurred, and which has water resistance; and method for producing said membrane. The present disclosure was achieved upon finding a method for producing a filtration membrane (particularly, a hollow fiber membrane-type filtration membrane) wherein: a filtration membrane is produced with a membrane-forming stock solution that contains a polymer which contains vinylidene fluoride as a monomer and an outside control solution that contains a polymer which contains styrene and maleic anhydride as monomers; and immobilizing on the filtration membrane a polymer that contains a specific phosphorylcholine group.

Description

濾過膜及び該膜の製造方法Filtration membrane and method for manufacturing the membrane
 本開示は、耐ファウリング性と耐水性を併せ持つ濾過膜(特に、中空糸膜状濾過膜)及び該膜の製造方法に関する。
 本出願は、参照によりここに援用されるところの日本出願2022-64806号優先権を請求する。
The present disclosure relates to a filtration membrane (particularly a hollow fiber membrane filtration membrane) having both fouling resistance and water resistance, and a method for manufacturing the membrane.
This application claims priority to Japanese Application No. 2022-64806, which is incorporated herein by reference.
 最近、限外濾過、精密濾過及び逆浸透等の中空糸膜状濾過膜は、飲料水製造、上下水道処理、廃液処理等の多くの産業分野で利用されている。さらに、中空糸膜状濾過膜は、人工透析、血液製剤、抗体医薬等のバイオ医薬品分野での利用も盛んにされている。
 中空糸膜状濾過膜である限外濾過膜や精密濾過膜は水質の浄化などに多用されている。しかし、中空糸膜状濾過膜は、疎水性が高くかつファウリングし易いことが問題となっている。ファウリングとは、原水に含まれるファウラントと呼ばれる原因物質(例えば、難溶性成分、蛋白質、多糖類などの高分子の溶質、コロイド、微小固形物、微生物等)が膜に沈着して透過流速を低下させる現象であり、膜性能低下の主要原因として知られている。
 蛋白質や微生物を原因とするファウリングに対して効果の高い中空糸膜状濾過膜の製造方法として、例えば、蛋白質や微生物などのファウラントを吸着抑制できる素材を中空糸膜状濾過膜に保持または吸着させる方法が提案されている。
Recently, hollow fiber membrane filtration membranes such as ultrafiltration, microfiltration, and reverse osmosis have been used in many industrial fields such as drinking water production, water supply and sewage treatment, and wastewater treatment. Furthermore, hollow fiber membrane filtration membranes are increasingly being used in biopharmaceutical fields such as artificial dialysis, blood products, and antibody drugs.
Ultrafiltration membranes and microfiltration membranes, which are hollow fiber membrane filtration membranes, are widely used for water purification. However, the problem with hollow fiber membrane filtration membranes is that they are highly hydrophobic and easily foul. Fouling refers to causative substances called foulants contained in raw water (e.g., poorly soluble components, proteins, polymeric solutes such as polysaccharides, colloids, minute solids, microorganisms, etc.) that deposit on membranes and reduce the permeation flow rate. This phenomenon is known as the main cause of membrane performance deterioration.
As a manufacturing method for hollow fiber membrane filtration membranes that are highly effective against fouling caused by proteins and microorganisms, for example, materials that can suppress foulants such as proteins and microorganisms are retained or adsorbed on hollow fiber membrane filtration membranes. A method has been proposed.
(先行技術)
 特許文献1は、「2-メタクリロイルオキシエチルホスホリルコリンを重合した重合体の溶液を中空糸膜状濾過膜表面にコーティングし、ファウラントの吸着を抑制する方法」を開示している。
 特許文献2は、「2-メタクリロイルオキシエチルホスホリルコリンを重合した重合体の溶液を凝固浴に入れ、製膜時に重合体を膜に取り込む方法」を開示している。
 特許文献3は、「特定の2-メタクリロイルオキシエチルホスホリルコリンを重合した重合体の溶液をポリスルホンと混合することで製膜する製造方法」を開示している。
(prior art)
Patent Document 1 discloses "a method for suppressing foulant adsorption by coating the surface of a hollow fiber membrane filtration membrane with a solution of a polymer obtained by polymerizing 2-methacryloyloxyethylphosphorylcholine."
Patent Document 2 discloses "a method in which a solution of a polymer obtained by polymerizing 2-methacryloyloxyethylphosphorylcholine is placed in a coagulation bath, and the polymer is incorporated into a film during film formation."
Patent Document 3 discloses "a production method for forming a film by mixing a solution of a polymer obtained by polymerizing specific 2-methacryloyloxyethylphosphorylcholine with polysulfone."
特開2012-055870号公報JP2012-055870A 特開2016-077922号公報JP2016-077922A 再表02/009857号公報Retable No. 02/009857
 本開示は、ファウリングを効果的に抑制し、ファウリングが生じた時の洗浄後の透水率の回復にも優れ、さらに、耐水性を有する濾過膜(特に、中空糸膜状濾過膜)及び該膜の製造する方法を提供することを課題とする。 The present disclosure provides a filtration membrane (particularly a hollow fiber membrane filtration membrane) that effectively suppresses fouling, is excellent in recovering water permeability after cleaning when fouling occurs, and has water resistance. An object of the present invention is to provide a method for manufacturing the membrane.
 本発明者らは、上記の問題点を解決すべく鋭意検討を重ねた結果、フッ化ビニリデンを単量体として含む重合体を含有する製膜原液と、スチレンと無水マレイン酸を単量体として含む重合体を含有する外部制御液によって濾過膜を製造し、さらに、特定のホスホリルコリン基を含む重合体を該濾過膜に固定化する濾過膜(特に、中空糸膜状濾過膜)の製造する方法を見出し、本開示を完成するに至った。
 すなわち、本開示は以下の通りである。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have developed a film-forming stock solution containing a polymer containing vinylidene fluoride as a monomer, and a film-forming solution containing a polymer containing styrene and maleic anhydride as monomers. A method for producing a filtration membrane (in particular, a hollow fiber membrane filtration membrane) in which a filtration membrane is produced using an external control liquid containing a polymer containing a specific phosphorylcholine group, and a polymer containing a specific phosphorylcholine group is immobilized on the filtration membrane. This discovery led to the completion of the present disclosure.
That is, the present disclosure is as follows.
 1.2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチルホスフェート及び2-アミノエチルメタクリレート若しくはその塩酸塩を単量体として含む重合体を固定化した、フッ化ビニリデンを単量体として含む重合体とスチレンと無水マレイン酸を単量体として含む重合体を含む濾過膜。
 2.前記濾過膜が中空糸膜状濾過膜である、前項1に記載の濾過膜。
 3.前記2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチルホスフェート及び2-アミノエチルメタクリレート若しくはその塩酸塩を単量体として含む重合体は、2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチルホスフェート40モル%~60モル%及び2-アミノエチルメタクリレート若しくはその塩酸塩40モル%~60モル%である、前項1に記載の濾過膜。
 4.医療用である、前項1~3のいずれか1に記載の濾過膜。
 5.タンパク質又は菌付着抑制用である、前項1~3のいずれか1に記載の濾過膜。
 6.フッ化ビニリデンを単量体として含む重合体を含有する製膜原液を調製する、製膜原液調製工程(a)と、
 スチレンと無水マレイン酸を単量体として含む重合体を含有する外部制御液を調製する、外部制御液調製工程(b)と、
 該製膜原液と該外部制御液を膜状に吐出させる、膜状の製膜原液製造工程(c)と、
 該膜状の製膜原液を凝固液に接触させて濾過膜を製造する、製膜工程(d)と、並びに、
 該濾過膜と重合体(P)を反応させて該重合体(P)を該膜表面に固定化する、固定化工程(e)を有し、
 ここで、該重合体(P)は、2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチルホスフェート30モル%~90モル%及び2-アミノエチルメタクリレート若しくはその塩酸塩70モル%~10モル%である、
 濾過膜の製造方法。
1. Contains vinylidene fluoride as a monomer, immobilized with a polymer containing 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate and 2-aminoethyl methacrylate or its hydrochloride as a monomer A filtration membrane comprising a polymer and a polymer containing styrene and maleic anhydride as monomers.
2. The filtration membrane according to the above item 1, wherein the filtration membrane is a hollow fiber membrane filtration membrane.
3. The polymer containing 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate and 2-aminoethyl methacrylate or its hydrochloride as a monomer is 2-(methacryloyloxy)ethyl 2-(trimethylammonio). 2.) The filtration membrane according to item 1 above, which contains 40 mol% to 60 mol% of ethyl phosphate and 40 mol% to 60 mol% of 2-aminoethyl methacrylate or its hydrochloride.
4. The filtration membrane according to any one of items 1 to 3 above, which is for medical use.
5. The filtration membrane according to any one of items 1 to 3 above, which is for suppressing protein or bacterial adhesion.
6. A membrane forming stock solution preparation step (a) of preparing a membrane forming stock solution containing a polymer containing vinylidene fluoride as a monomer;
an external control liquid preparation step (b) of preparing an external control liquid containing a polymer containing styrene and maleic anhydride as monomers;
a process (c) for producing a film-forming stock solution in which the film-forming stock solution and the external control liquid are discharged in a film-form;
A membrane forming step (d) of manufacturing a filtration membrane by bringing the membrane-like membrane forming stock solution into contact with a coagulation liquid, and
an immobilization step (e) of reacting the filtration membrane with the polymer (P) to immobilize the polymer (P) on the membrane surface;
Here, the polymer (P) includes 30 mol% to 90 mol% of 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate and 70 mol% to 10 mol% of 2-aminoethyl methacrylate or its hydrochloride. %,
Method for manufacturing a filtration membrane.
 本開示の2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチルホスフェート及び2-アミノエチルメタクリレート若しくはその塩酸塩を単量体として含む重合体(P)を固定化した、フッ化ビニリデンを単量体として含む重合体とスチレンと無水マレイン酸を単量体として含む重合体を含む濾過膜(特に、中空糸膜状濾過膜)の製造方法によれば、重合体(P)が該濾過膜から容易に脱離できないように固定化されている。
 すなわち、本開示の濾過膜(特に、中空糸膜状濾過膜)は、水中で重合体(P)が溶出することがなく、ファウリング抑制効果が長期間維持できる。
A monovinylidene fluoride on which a polymer (P) containing 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate and 2-aminoethyl methacrylate or its hydrochloride of the present disclosure is immobilized is used. According to the method for producing a filtration membrane (particularly a hollow fiber membrane filtration membrane) containing a polymer containing styrene and maleic anhydride as monomers, the polymer (P) is It is immobilized so that it cannot be easily detached from the
That is, in the filtration membrane of the present disclosure (particularly the hollow fiber membrane filtration membrane), the polymer (P) does not elute in water, and the fouling suppressing effect can be maintained for a long period of time.
  以下、本開示を詳細に説明する。
(本開示の濾過膜)
 本開示の濾過膜は、2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチルホスフェート及び2-アミノエチルメタクリレート若しくはその塩酸塩を単量体として含む重合体を固定化した、フッ化ビニリデンを単量体として含む重合体とスチレンと無水マレイン酸を単量体として含む重合体を含む濾過膜(以後、単に「本開示の濾過膜」と称することがある)である。
 本開示の濾過膜には、中空糸膜状濾過膜及び平膜状濾過膜を含むが、好ましくは、中空糸膜状濾過膜である。
 本開示の中空糸膜状濾過膜の組成例は、「フッ化ビニリデンを単量体として含む重合体」と「無水マレイン酸を単量体として含む重合体」が物理的吸着により中空糸状膜を形成し、芯液を実質的に含んでいない。
 なお、単量体(構成単位)とは、各モノマーに基づく又は各モノマーから誘導される重合体に含まれる化合物の単位を意味する。
 また、本明細書において、好ましい数値範囲(例えば、含有量や吐出割合)を段階的に記載した場合、各下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~100、より好ましくは20~90」という記載において、「好ましい下限値:10」と「より好ましい上限値:90」とを組み合わせて「10~90」とすることができる。
The present disclosure will be described in detail below.
(Filtration membrane of the present disclosure)
The filtration membrane of the present disclosure is made of vinylidene fluoride on which a polymer containing 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate and 2-aminoethyl methacrylate or its hydrochloride is immobilized as a monomer. This is a filtration membrane (hereinafter sometimes simply referred to as "the filtration membrane of the present disclosure") including a polymer containing as a monomer and a polymer containing styrene and maleic anhydride as monomers.
The filtration membrane of the present disclosure includes a hollow fiber membrane filtration membrane and a flat membrane filtration membrane, and preferably a hollow fiber membrane filtration membrane.
An example of the composition of the hollow fiber membrane filtration membrane of the present disclosure is that a "polymer containing vinylidene fluoride as a monomer" and "a polymer containing maleic anhydride as a monomer" form a hollow fiber membrane by physical adsorption. formed and substantially free of core liquid.
In addition, a monomer (constituent unit) means a unit of a compound contained in a polymer based on each monomer or derived from each monomer.
Further, in this specification, when preferable numerical ranges (for example, content and discharge ratio) are described in stages, each lower limit value and upper limit value can be independently combined. For example, in the statement "preferably 10 to 100, more preferably 20 to 90", "preferable lower limit: 10" and "more preferable upper limit: 90" can be combined to become "10 to 90". .
(本開示の中空糸膜状濾過膜の製造方法)
 本開示の中空糸膜状濾過膜の製造方法は、以下の工程を含む。
 フッ化ビニリデンを単量体として含む重合体を含有する製膜原液を調製する、製膜原液調製工程(a)
 スチレンと無水マレイン酸を単量体として含む重合体を含有する外部制御液を調製する、外部制御液調製工程(b)
 少なくとも製膜原液と外部制御液を中空糸膜状に吐出させて中空糸を製造する、膜状の製膜原液製造工程(c)
 中空糸を凝固液に接触させて中空糸膜状濾過膜を製造する、製膜工程(d)
 中空糸膜状濾過膜と重合体(P)を反応させて該重合体(P)を該膜表面に固定化する、固定化工程(e)
 ここで、重合体(P)は、2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチルホスフェート30モル%~90モル%及び2-アミノエチルメタクリレート若しくはその塩酸塩70モル%~10モル%であることが好ましい。
 より詳しくは、本開示の中空糸膜状濾過膜の製造方法は、フッ化ビニリデンを単量体として含む重合体を溶解させた製膜原液、スチレンと無水マレイン酸を単量体として含む重合体を含む外部制御液及び芯液を、3連オリフィス紡糸口金から吐出させて中空糸を製造し、さらに、該中空糸を凝固液に浸漬して中空糸膜状濾過膜を製膜させ、該中空糸膜状濾過膜と重合体(P)を反応させて膜表面に重合体(P)を固定化・被膜させることにより、耐ファウリング性と耐水性を併せ持つ中空糸膜状濾過膜を製造できる点に特徴がある。
 ここで、耐ファウリング性とは、本開示の中空糸膜状濾過膜を使用した濾過時に、透水量が低下しづらく、洗浄時には低下した透水量が回復することを意味する。
 また、耐水性とは、本開示の中空糸膜状濾過膜から重合体(P)が剥離しないことを意味する。
(Method for manufacturing hollow fiber membrane filtration membrane of the present disclosure)
A method for manufacturing a hollow fiber membrane filtration membrane of the present disclosure includes the following steps.
Film forming stock solution preparation step (a) of preparing a film forming stock solution containing a polymer containing vinylidene fluoride as a monomer
External control liquid preparation step (b) of preparing an external control liquid containing a polymer containing styrene and maleic anhydride as monomers.
Membrane-form membrane-forming stock solution production process (c) in which hollow fibers are manufactured by discharging at least a membrane-forming stock solution and an external control liquid into a hollow fiber membrane shape.
Membrane forming step (d) of manufacturing a hollow fiber membrane filtration membrane by bringing the hollow fibers into contact with a coagulation liquid
Immobilization step (e) of reacting the hollow fiber membrane filtration membrane and the polymer (P) to immobilize the polymer (P) on the membrane surface.
Here, the polymer (P) includes 30 mol% to 90 mol% of 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate and 70 mol% to 10 mol% of 2-aminoethyl methacrylate or its hydrochloride. It is preferable that
More specifically, the method for producing a hollow fiber membrane filtration membrane of the present disclosure includes a membrane forming stock solution in which a polymer containing vinylidene fluoride as a monomer is dissolved, a polymer containing styrene and maleic anhydride as monomers, A hollow fiber is manufactured by discharging an external control liquid and a core liquid containing A hollow fiber membrane filtration membrane that has both fouling resistance and water resistance can be produced by reacting a thread membrane filtration membrane with a polymer (P) to immobilize and coat the polymer (P) on the membrane surface. The points are distinctive.
Here, the term "fouling resistance" means that the amount of water permeation is less likely to decrease during filtration using the hollow fiber membrane filtration membrane of the present disclosure, and that the decreased amount of water permeation is recovered during washing.
Moreover, water resistance means that the polymer (P) does not peel off from the hollow fiber membrane filtration membrane of the present disclosure.
(製膜原液)
 本開示の製膜原液に含まれるフッ化ビニリデンを単量体として含む重合体は、フッ化ビニリデン単独または他の単量体と共重合したものが使用できる。フッ化ビニリデンのみの重合体は、市販品を利用でき、例えば、ソルベイスペシャリティポリマーズジャパン株式会社から入手可能である(ソレフ(登録商標)11010、ソレフ(登録商標)31508、ソレフ(登録商標)6020等)。
 また、フッ化ビニリデンと共重合する他の単量体は、6フッ化プロピレン、テトラフルオロエチレン、エチレン、4フッ化エチレン、3フッ化塩化エチレン、フッ化ビニル等が挙げられるが特に限定されない。
 また、製膜原液は、フッ化ビニリデンを単量体として含む重合体が10重量%~40重量%の範囲であれば中空糸が製造できるが、良好な中空糸を製造するためには15重量%~30重量%が好ましく、20重量%~30重量%がさらに好ましい。
 本開示の製膜原液に含まれるフッ化ビニリデンを単量体(構成単位)として含む重合体は、好ましくは、ポリフッ化ビニリデンを例示することができる。
 本開示の製膜原液の溶媒は、グリセロールトリアセテート、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、およびN-メチルピロリドン等が使用できる。製膜原液、外部制御液、芯液を凝固液中に浸漬(吐出)したときの相分離性の点でグリセロールトリアセテートが好ましい。
(Membrane forming stock solution)
As the polymer containing vinylidene fluoride as a monomer contained in the membrane forming stock solution of the present disclosure, vinylidene fluoride alone or copolymerized with other monomers can be used. Polymers containing only vinylidene fluoride are commercially available, for example, available from Solvay Specialty Polymers Japan Co., Ltd. (Solef (registered trademark) 11010, Solef (registered trademark) 31508, Solef (registered trademark) 6020, etc.) ).
Other monomers copolymerized with vinylidene fluoride include, but are not particularly limited to, propylene hexafluoride, tetrafluoroethylene, ethylene, ethylene tetrafluoride, ethylene trifluorochloride, vinyl fluoride, and the like.
In addition, hollow fibers can be produced in the membrane forming stock solution if the polymer containing vinylidene fluoride as a monomer is in the range of 10% to 40% by weight, but in order to produce good hollow fibers, 15% by weight is required. % to 30% by weight is preferred, and 20% to 30% by weight is more preferred.
The polymer containing vinylidene fluoride as a monomer (constituent unit) contained in the membrane forming stock solution of the present disclosure is preferably exemplified by polyvinylidene fluoride.
As the solvent for the membrane forming stock solution of the present disclosure, glycerol triacetate, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and the like can be used. Glycerol triacetate is preferred from the viewpoint of phase separation when the membrane forming stock solution, external control solution, and core solution are immersed (discharged) into the coagulation solution.
(外部制御液)
 本開示の外部制御液に含まれるスチレンと無水マレイン酸を単量体(構成単位)として含む重合体は、スチレンと無水マレイン酸を構成単位とした重合体、または、スチレンと無水マレイン酸に加え、他の単量体(エステル、カルボン酸、マレイン酸ジアンモニウム、マレイン酸モノアンモニウムモノエステル、マレイン酸モノエステル)を構成単位とした重合体が使用できる。
 スチレンと無水マレイン酸からなる重合体は、Polyscope Polymers社から入手可能である。例えば、XIRAN(登録商標)1000P、XIRAN (登録商標)2000P、XIRAN(登録商標)3000P、XIRAN(登録商標)EF30、XIRAN(登録商標)EF40を例示することができる。
 スチレンと無水マレイン酸に加え、他の単量体を構成単位とする重合体は、Polyscope Polymers社から入手可能である。例えば、XIRAN (登録商標)1440、XIRAN (登録商標)2625Pを例示することができる。
 また、外部制御液中のスチレンと無水マレイン酸を単量体として含む重合体の含有量は1重量%~40重量%で行うことができるが、良好な中空糸を製造するためには1重量%~20重量%が好ましく、1重量%~5重量%がさらに好ましい。
 本開示の外部制御液に含まれるスチレンと無水マレイン酸を単量体(構成単位)として含む重合体は、好ましくは、単量体としてスチレンと無水マレイン酸からなる重合体を例示することができる。
 本開示の外部制御液の溶媒は、グリセロールトリアセテート、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、およびN-メチルピロリドン等が使用できる。製膜原液、外部制御液、芯液を凝固液中に浸漬(吐出)したときの相分離性の点でグリセロールトリアセテートが好ましい。
(External control liquid)
The polymer containing styrene and maleic anhydride as monomers (constituent units) contained in the external control liquid of the present disclosure is a polymer containing styrene and maleic anhydride as constituent units, or a polymer containing styrene and maleic anhydride as monomers (constituent units), or a polymer containing styrene and maleic anhydride as monomers (constituent units), or , or other monomers (ester, carboxylic acid, diammonium maleate, monoammonium maleate monoester, monoester maleate) can be used as a constituent unit.
Polymers of styrene and maleic anhydride are available from Polyscope Polymers. For example, XIRAN (registered trademark) 1000P, XIRAN (registered trademark) 2000P, XIRAN (registered trademark) 3000P, XIRAN (registered trademark) EF30, and XIRAN (registered trademark) EF40.
Polymers based on styrene and maleic anhydride, as well as other monomers, are available from Polyscope Polymers. For example, XIRAN (registered trademark) 1440 and XIRAN (registered trademark) 2625P can be exemplified.
In addition, the content of the polymer containing styrene and maleic anhydride as monomers in the external control liquid can be set at 1% by weight to 40% by weight, but in order to produce good hollow fibers, 1% by weight is required. % to 20% by weight is preferred, and 1% to 5% by weight is more preferred.
The polymer containing styrene and maleic anhydride as monomers (constituent units) contained in the external control liquid of the present disclosure is preferably exemplified by a polymer containing styrene and maleic anhydride as monomers. .
As the solvent for the external control liquid of the present disclosure, glycerol triacetate, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and the like can be used. Glycerol triacetate is preferred from the viewpoint of phase separation when the membrane forming stock solution, external control solution, and core solution are immersed (discharged) into the coagulation solution.
(芯液)
 本開示の芯液は、グリセロールトリアセテート、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、およびN-メチルピロリドン等が使用できる。
 製膜原液、外部制御液、芯液を凝固液中に浸漬(吐出)したときの相分離性の点でグリセロールトリアセテートが好ましい。
(core liquid)
As the core liquid of the present disclosure, glycerol triacetate, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and the like can be used.
Glycerol triacetate is preferred from the viewpoint of phase separation when the membrane forming stock solution, external control solution, and core solution are immersed (discharged) into the coagulation solution.
(製膜原液と外部制御液と芯液の吐出割合)
 製膜原液と外部制御液と芯液の吐出割合としては、製膜原液1質量部~40質量部に対して外部制御液0.1質量部~20質量部、芯液0.1質量部~50質量部であればよいが、良好な中空糸を製造するためには好ましくは製膜原液1質量部~20質量部に対して外部制御液0.1質量部~10質量部、芯液0.1質量部~20質量部、さらに好ましくは製膜原液1質量部~5質量部に対して外部制御液0.1質量部~5質量部、芯液0.1質量部~10質量部である。
 また、製膜原液と外部制御液と芯液の吐出速度としては、製膜原液は好ましくは5~20g/min、さらに好ましくは7~9g/minであり、外部制御液は好ましくは1~10g/min、さらに好ましくは2~4g/minであり、芯液は好ましくは3~20g/min、さらに好ましくは5~8g/minである。この吐出速度の範囲であると、良好な中空糸を製造することができ、ファウリング抑制効果に優れる。
(Discharge ratio of film forming stock solution, external control liquid and core liquid)
The discharge ratio of the membrane forming stock solution, external control liquid, and core liquid is 1 part to 40 parts by mass of the film forming stock solution, 0.1 part to 20 parts by mass of the external control liquid, and 0.1 part by mass to the core liquid. The amount may be 50 parts by mass, but in order to produce good hollow fibers, preferably 0.1 to 10 parts by mass of the external control liquid and 0 parts by mass of the core liquid to 1 to 20 parts by mass of the membrane forming stock solution. .1 parts by mass to 20 parts by mass, more preferably 0.1 parts by mass to 5 parts by mass of the external control liquid and 0.1 parts by mass to 10 parts by mass of the core liquid per 1 part by mass to 5 parts by mass of the membrane forming stock solution. be.
Furthermore, the discharge speed of the membrane forming stock solution, external control liquid, and core liquid is preferably 5 to 20 g/min, more preferably 7 to 9 g/min, and preferably 1 to 10 g/min for the external control liquid. /min, more preferably 2 to 4 g/min, and the core liquid is preferably 3 to 20 g/min, more preferably 5 to 8 g/min. When the discharge speed is within this range, good hollow fibers can be manufactured and the fouling suppressing effect is excellent.
(凝固液)
 本開示の凝固液は、本開示の中空糸膜状濾過膜を溶解しない溶媒である水などが挙げられる。凝固液の量は、製膜原液100質量部に対して、凝固液を100質量部~100,000,000質量部が使用できるが、中空糸膜状濾過膜の成膜を良好に進行させるためには凝固液を1,000質量部~100,000,000質量部使用することが好ましく、1,000質量部~100,000質量部使用することがさらに好ましい。
(coagulation liquid)
Examples of the coagulating liquid of the present disclosure include water, which is a solvent that does not dissolve the hollow fiber membrane filtration membrane of the present disclosure. The amount of coagulation liquid used can be 100 parts by mass to 100,000,000 parts by mass per 100 parts by mass of the membrane-forming stock solution, but in order to favorably proceed with the formation of the hollow fiber membrane filtration membrane. It is preferable to use 1,000 parts by mass to 100,000,000 parts by mass of the coagulating liquid, and more preferably to use 1,000 parts by mass to 100,000 parts by mass.
(本開示の熱誘起相分離法による中空糸膜状濾過膜の製造方法)
 本開示の熱誘起相分離法による中空糸膜状濾過膜の製造方法は、製膜原液、製膜原液、外部制御液及び芯液を同心多重スリットノズルから吐出させ、低温の凝固液で冷却することにより、ポリフッ化ビニリデン層およびスチレン無水マレイン酸重合体層それぞれで濃厚相と希薄相に相分離させる。この濃厚相では、ポリフッ化ビニリデンの表面をスチレン無水マレイン酸重合体が覆った中空糸膜状膜が形成される。
(Method for producing hollow fiber membrane filtration membrane by thermally induced phase separation method of the present disclosure)
The method of manufacturing a hollow fiber membrane filtration membrane by the thermally induced phase separation method of the present disclosure includes discharging a membrane forming stock solution, a membrane forming stock solution, an external control liquid, and a core liquid from a concentric multi-slit nozzle, and cooling them with a low-temperature coagulation liquid. This causes phase separation into a concentrated phase and a dilute phase in each of the polyvinylidene fluoride layer and the styrene maleic anhydride polymer layer. In this dense phase, a hollow fiber membrane is formed in which the surface of polyvinylidene fluoride is covered with a styrene maleic anhydride polymer.
 具体的な製造工程について説明する。
 製膜原液調製工程(a):ポリフッ化ビニリデン10重量%~40重量%をグリセロールトリアセテートに添加し、50~200℃に加温して溶解させ製膜原液を得る。
 外部制御液調製工程(b):スチレン無水マレイン酸重合体1重量%~40重量%をグリセロールトリアセテートに添加し、50~200℃に加温して溶解させ外部制御液を得る。
 膜状の製膜原液製造工程(中空糸製造工程)(c):製膜原液、外部制御液及び芯液(グリセロールトリアセテート)を3重スリットノズルから吐出させ、中空糸を得る。
 製膜工程(d):中空糸を凝固液(水)に接触させ(浸漬させ)冷却、中空糸膜状濾過膜を得る。凝固液の温度は5℃~40℃が好ましい。
 固定化工程(e):中空糸膜状濾過膜と重合体(P)をトリエチルアミン0.1重量%~1重量%が溶解した水に浸漬させ、5℃~95℃で1時間~10時間反応を行い、膜表面に重合体(P)を固定化して、本開示の中空糸膜状濾過膜を得る。
 なお、製膜工程(d)及び/又は固定化工程(e)の後に、5℃~95℃の水または熱水を用いて溶媒等を除去する洗浄工程、溶媒を抽出によって除去する抽出工程、および5~70℃の乾燥工程を行ってもよい。
 また、中空糸膜状濾過膜をすぐに使用しないときは、水やグリセリン、エタノールを含む保存液で保存できる。
The specific manufacturing process will be explained.
Film forming stock solution preparation step (a): 10% to 40% by weight of polyvinylidene fluoride is added to glycerol triacetate and dissolved by heating to 50 to 200° C. to obtain a film forming stock solution.
External control liquid preparation step (b): Add 1% to 40% by weight of styrene maleic anhydride polymer to glycerol triacetate, and dissolve by heating to 50 to 200°C to obtain an external control liquid.
Membrane-form membrane forming stock solution manufacturing process (hollow fiber manufacturing process) (c): The membrane forming stock solution, external control liquid, and core liquid (glycerol triacetate) are discharged from a triple slit nozzle to obtain hollow fibers.
Membrane forming step (d): The hollow fibers are brought into contact with (immersed in) a coagulating liquid (water) and cooled to obtain a hollow fiber membrane filtration membrane. The temperature of the coagulating liquid is preferably 5°C to 40°C.
Immobilization step (e): The hollow fiber membrane filtration membrane and polymer (P) are immersed in water in which 0.1% to 1% by weight of triethylamine is dissolved, and reacted at 5°C to 95°C for 1 to 10 hours. The polymer (P) is immobilized on the membrane surface to obtain a hollow fiber membrane filtration membrane of the present disclosure.
In addition, after the membrane forming step (d) and/or the immobilization step (e), a washing step of removing the solvent etc. using water or hot water at 5° C. to 95° C., an extraction step of removing the solvent by extraction, A drying step at 5 to 70° C. may also be performed.
Furthermore, when the hollow fiber membrane filtration membrane is not used immediately, it can be stored in a storage solution containing water, glycerin, or ethanol.
(重合体(P))
 本開示の重合体(P)は、2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチルホスフェート30モル%~90モル%及び2-アミノエチルメタクリレートまたはその塩酸塩70モル%~10モル%を重合して得られた重合体が使用できるが、ファウリング抑制性能と耐水性を両立した本開示の中空糸膜状濾過膜を製造するためには、2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチルホスフェート40モル%~60モル%及び2-アミノエチルメタクリレートまたはその塩酸塩60モル%~40モル%であることが好ましい。
 本開示の重合体(P)は、ランダム重合体、ブロック重合体等いずれの構造であってもよく、これらの重合体の混合物でもよい。
(Polymer (P))
The polymer (P) of the present disclosure comprises 30 mol% to 90 mol% of 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate and 70 mol% to 10 mol% of 2-aminoethyl methacrylate or its hydrochloride. Although a polymer obtained by polymerizing 2-(methacryloyloxy)ethyl 2-( Preferably, the amount is 40 mol% to 60 mol% of trimethylammonio)ethyl phosphate and 60 mol% to 40 mol% of 2-aminoethyl methacrylate or its hydrochloride.
The polymer (P) of the present disclosure may have any structure such as a random polymer or a block polymer, or may be a mixture of these polymers.
(重合体(P)の製造方法)
 重合体(P)の製造方法としては、溶液重合、塊状重合、乳化重合、懸濁重合等公知の方法を用いることができ、例えば、2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチルホスフェートと2-アミノエチルメタクリレートまたはその塩酸塩とを溶媒中で重合開始剤の存在下、重合反応させる方法を採用することができる。
 重合反応に用いる溶媒としては、2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチルホスフェートと2-アミノエチルメタクリレートまたはその塩酸塩が溶解すればよく、具体的には、水、メタノール、エタノール、プロパノール、t-ブタノール、ベンゼン、トルエン、ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドン、テトラヒドロフラン、クロロホルム等が挙げられ、2種以上を混合してもよい。
 前記重合反応に用いる開始剤としては、通常の開始剤ならばいずれを用いてもよく、例えば、ラジカル重合の場合はアゾ化合物(水溶性アゾ重合開始剤)や有機過酸化物を用いることができる。
(Method for producing polymer (P))
As a method for producing the polymer (P), known methods such as solution polymerization, bulk polymerization, emulsion polymerization, and suspension polymerization can be used. For example, 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl A method can be adopted in which a phosphate and 2-aminoethyl methacrylate or its hydrochloride are subjected to a polymerization reaction in a solvent in the presence of a polymerization initiator.
The solvent used in the polymerization reaction may be any solvent that dissolves 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate and 2-aminoethyl methacrylate or its hydrochloride; specifically, water, methanol, ethanol, etc. , propanol, t-butanol, benzene, toluene, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, tetrahydrofuran, chloroform, etc., and two or more types may be mixed.
As the initiator used in the polymerization reaction, any common initiator may be used. For example, in the case of radical polymerization, an azo compound (water-soluble azo polymerization initiator) or an organic peroxide can be used. .
(固定化工程(e))
 本開示の固定化工程(e)における、中空糸膜状濾過膜と重合体(P)の固定化反応を行う際に使用する溶媒としては、重合体(P)が溶解し、膜素材であるポリフッ化ビニリデンまたはスチレン無水マレイン酸重合体を溶解しない溶媒が使用できる。例えば、水、メタノール、エタノール、プロパノール、t-ブタノール、ベンゼン、トルエン、ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドン、テトラヒドロフラン、クロロホルム等が挙げられ、2種以上を混合してもよい。
(Imobilization step (e))
The solvent used when performing the immobilization reaction between the hollow fiber membrane filtration membrane and the polymer (P) in the immobilization step (e) of the present disclosure is a solvent in which the polymer (P) is dissolved and which is a membrane material. Any solvent that does not dissolve the polyvinylidene fluoride or styrene maleic anhydride polymer can be used. Examples include water, methanol, ethanol, propanol, t-butanol, benzene, toluene, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, tetrahydrofuran, chloroform, etc., and two or more types may be mixed.
 中空糸膜状濾過膜と重合体(P)の固定化反応を行う際の重合体(P)の濃度は0.1重量%~10%重量%であればよいが、経済性や環境への影響を考慮すると、0.1重量%~5重量%が好ましい。 The concentration of the polymer (P) when performing the immobilization reaction between the hollow fiber membrane filtration membrane and the polymer (P) may be between 0.1% and 10% by weight, but this may be due to economical and environmental considerations. Considering the influence, 0.1% by weight to 5% by weight is preferable.
 中空糸膜状濾過膜と重合体(P)の固定化反応を行う際には反応を促進するため触媒を使用することができる。触媒としては中空糸膜状濾過膜と重合体(P)の固定化反応で使用する溶媒に酸触媒、または塩基触媒が使用できる。塩酸、酢酸、硫酸、リン酸、p-トルエンスルホン酸一水和物等が挙げられ、塩基触媒としては4-ジメチルアミノピリジン、ピリジン、トリエチルアミン等が挙げられるが、反応性や価格の点からトリエチルアミンが好ましい。 When carrying out the immobilization reaction between the hollow fiber membrane filtration membrane and the polymer (P), a catalyst can be used to promote the reaction. As a catalyst, an acid catalyst or a base catalyst can be used as the solvent used in the immobilization reaction of the hollow fiber membrane filtration membrane and the polymer (P). Examples include hydrochloric acid, acetic acid, sulfuric acid, phosphoric acid, p-toluenesulfonic acid monohydrate, etc. Base catalysts include 4-dimethylaminopyridine, pyridine, triethylamine, etc., but triethylamine is preferred from the viewpoint of reactivity and cost. is preferred.
 中空糸膜状濾過膜と重合体(P)の固定化反応を行う際に使用する触媒量は0.1重量%~10重量%の範囲で使用できるが、反応性を保つことや環境への影響を考慮すると0.1重量%~5重量%が好ましく、0.1重量%~1重量%がさらに好ましい。 The amount of catalyst used when performing the immobilization reaction between the hollow fiber membrane filtration membrane and the polymer (P) can be in the range of 0.1% to 10% by weight, but it is important to maintain reactivity and protect the environment. Considering the influence, it is preferably 0.1% to 5% by weight, more preferably 0.1% to 1% by weight.
(本開示の濾過膜の用途)
 本開示の濾過膜(特に、中空糸膜状濾過膜)は、以下の実施例により、耐ファウリング性と耐水性に優れていることを確認しているため、従来の精密濾過膜、限外濾過膜、逆浸透膜などが使用されているあらゆる用途(例えば、微生物、細菌、ウイルスの除去、蛋白質、酵素などの分離・濃縮、人工透析、生酒・生ビールの製造における酵母分離除去、海水淡水化、工業用純水・超純水の製造、果汁や牛乳の濃縮、排水の浄化等)に使用可能である。
(Applications of the filtration membrane of the present disclosure)
The filtration membrane of the present disclosure (in particular, the hollow fiber membrane filtration membrane) has been confirmed to have excellent fouling resistance and water resistance through the following examples. All applications where filtration membranes, reverse osmosis membranes, etc. are used (e.g., removal of microorganisms, bacteria, and viruses, separation and concentration of proteins, enzymes, etc., artificial dialysis, separation and removal of yeast in the production of draft sake and draft beer, seawater desalination) It can be used for production of industrial pure water and ultrapure water, concentration of fruit juice and milk, purification of wastewater, etc.).
 本開示の濾過膜の具体的な構成は、以下を例示することができるが、得に限定されない。
 (1)2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチルホスフェート及び2-アミノエチルメタクリレート塩酸塩を単量体として構成する重合体を固定化した、フッ化ビニリデンを単量体として構成する重合体(ポリフッ化ビニリデン)とスチレンと無水マレイン酸を単量体として構成する重合体を含む濾過膜。
Specific configurations of the filtration membrane of the present disclosure can be exemplified below, but are not particularly limited.
(1) Consisting of vinylidene fluoride as a monomer, immobilized with a polymer composed of 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate and 2-aminoethyl methacrylate hydrochloride as monomers. A filtration membrane containing a polymer composed of a polymer (polyvinylidene fluoride), styrene, and maleic anhydride as monomers.
 以下、本開示を実施例により具体的に説明するが、本開示は実施例に限定されない。 Hereinafter, the present disclosure will be specifically explained using Examples, but the present disclosure is not limited to the Examples.
(重合体(P)の合成)
〇合成例1:重合体(P-1)
 2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチルホスフェート(日油株式会社)54.59gと2-アミノエチルメタクリレート塩酸塩(Sigma-Aldrich) 30.62gを165.41gの水に溶解し、窒素を30分間吹き込んだ。続いて、重合開始剤として98.34gの水に溶解させた1.66gのV-50(富士フイルム和光純薬工業株式会社)を添加し、72℃で2時間重合させた。重合終了後、467gの水を加えてポリマー濃度を10重量%に調製した。
 2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチルホスフェートと2-アミノエチルメタクリレート塩酸塩のモル比 50:50
 重量平均分子量:20万
 重合体(P―1)の重量平均分子量は下記条件で測定した。
 GPC装置:東ソー株式会社 HLC-8420GPC
 使用カラム:ウォーターズ株式会社製Ultra-Hydrogel Liner 300 x 7.8 mm
 移動相:0.2mol/L硝酸ナトリウム(0.02wt%アジ化ナトリウム含有)
 検出器:示差屈折率検出器
 流速:0.5mL/min
 試料注入量:100μL
 標準物質:プルランレディカルキット(PSS製pulkitr1h)
〇合成例2:重合体(P-2)
 2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチルホスフェートを76.43g、2-アミノエチルメタクリレート塩酸塩を18.37gとした以外は合成例1と同じ操作を行って調製した。
 2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチルホスフェートと2-アミノエチルメタクリレート塩酸塩のモル比 70:30
 重量平均分子量:28万
 重合体(P―2)の重量平均分子量の測定方法は、重合体(P―1)の測定方法と同様に行った。
〇合成例3:重合体(P-3)
 2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチルホスフェートを98.26g、2-アミノエチルメタクリレート塩酸塩を6.12gとした以外は合成例1と同じ操作を行って調製した。
 2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチルホスフェートと2-アミノエチルメタクリレート塩酸塩のモル比 90:10
 重量平均分子量:29万
 重合体(P―3)の重量平均分子量の測定方法は、重合体(P―1)の測定方法と同様に行った。
(Synthesis of polymer (P))
〇Synthesis example 1: Polymer (P-1)
54.59 g of 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate (NOF Corporation) and 30.62 g of 2-aminoethyl methacrylate hydrochloride (Sigma-Aldrich) were dissolved in 165.41 g of water. , nitrogen was bubbled for 30 minutes. Subsequently, 1.66 g of V-50 (Fuji Film Wako Pure Chemical Industries, Ltd.) dissolved in 98.34 g of water was added as a polymerization initiator, and polymerization was carried out at 72° C. for 2 hours. After the polymerization was completed, 467 g of water was added to adjust the polymer concentration to 10% by weight.
Molar ratio of 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate and 2-aminoethyl methacrylate hydrochloride 50:50
Weight average molecular weight: 200,000 The weight average molecular weight of the polymer (P-1) was measured under the following conditions.
GPC device: Tosoh Corporation HLC-8420GPC
Column used: Ultra-Hydrogel Liner 300 x 7.8 mm manufactured by Waters Co., Ltd.
Mobile phase: 0.2mol/L sodium nitrate (contains 0.02wt% sodium azide)
Detector: Differential refractive index detector Flow rate: 0.5mL/min
Sample injection volume: 100μL
Standard substance: Pullulan Redical Kit (pulkitr1h manufactured by PSS)
〇Synthesis example 2: Polymer (P-2)
It was prepared in the same manner as in Synthesis Example 1, except that 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate was used in an amount of 76.43 g, and 2-aminoethyl methacrylate hydrochloride was added in an amount of 18.37 g.
Molar ratio of 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate and 2-aminoethyl methacrylate hydrochloride 70:30
Weight average molecular weight: 280,000 The weight average molecular weight of the polymer (P-2) was measured in the same manner as that of the polymer (P-1).
〇Synthesis example 3: Polymer (P-3)
It was prepared by performing the same operation as in Synthesis Example 1 except that 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate was used as 98.26 g and 2-aminoethyl methacrylate hydrochloride was used as 6.12 g.
Molar ratio of 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate and 2-aminoethyl methacrylate hydrochloride 90:10
Weight average molecular weight: 290,000 The weight average molecular weight of the polymer (P-3) was measured in the same manner as that of the polymer (P-1).
(製造例1)
(熱誘起相分離法による中空糸膜状濾過膜の製造)
 製膜原液調製工程(a):ポリフッ化ビニリデン粉末(ソルベイスペシャリティポリマーズジャパン株式会社製ソルベイ6020、重量平均分子量687 kDa)25質量部を、グリセロールトリアセテート(富士フイルム和光純薬工業株式会社、以後、「GTA」と略すことがある)75質量部に加えて130℃で6時間攪拌溶解した。
 外部制御液調製工程(b):スチレン無水マレイン酸重合体(Polyscope Polymers社製 SMA-6000、重量平均分子量10kDa、ポリスチレン:無水マレイン酸モル比6:1)10質量部を190質量部のGTAに60℃で溶解した。
 中空糸製造工程(c):製膜原液、外部制御液及び芯液(GTA)とともにトリプルオリフィス紡糸金口を備えた二軸押出機(テクノベル社製:ULTnanoシリーズTW05)から190℃で吐出させた。
 吐出速度は製膜原液8.5g/min、外部制御液2.5g/min(2ml/min)、芯液(GTA)6.2g/minであった。
 製膜工程(d):吐出させた中空糸を凝固液(水)に浸漬させ、冷却し、中空糸膜状濾過膜を得た。この時、凝固液の温度は15℃とした。
 洗浄工程(d-1):中空糸膜状濾過膜が形成されたら40℃の温水に浸してグリセロールトリアセテートを除去した。
 保管工程(d-2):中空糸膜状濾過膜を純水中に静置して保管した。
(Manufacturing example 1)
(Production of hollow fiber membrane filtration membrane by thermally induced phase separation method)
Film forming stock solution preparation step (a): 25 parts by mass of polyvinylidene fluoride powder (Solvay 6020 manufactured by Solvay Specialty Polymers Japan Co., Ltd., weight average molecular weight 687 kDa) was added to glycerol triacetate (Fujifilm Wako Pure Chemical Industries, Ltd., hereinafter referred to as " 75 parts by mass (sometimes abbreviated as "GTA") was stirred and dissolved at 130° C. for 6 hours.
External control liquid preparation step (b): 10 parts by mass of styrene maleic anhydride polymer (SMA-6000 manufactured by Polyscope Polymers, weight average molecular weight 10 kDa, polystyrene:maleic anhydride molar ratio 6:1) to 190 parts by mass of GTA. It was dissolved at 60°C.
Hollow fiber manufacturing process (c): The membrane forming stock solution, external control liquid, and core solution (GTA) were discharged at 190°C from a twin-screw extruder equipped with a triple orifice spinning die (ULTnano series TW05, manufactured by Technovel). .
The discharge speed was 8.5 g/min for the film forming stock solution, 2.5 g/min (2 ml/min) for the external control liquid, and 6.2 g/min for the core solution (GTA).
Membrane forming step (d): The discharged hollow fibers were immersed in a coagulating liquid (water) and cooled to obtain a hollow fiber membrane-like filtration membrane. At this time, the temperature of the coagulation liquid was 15°C.
Washing step (d-1): Once the hollow fiber membrane filtration membrane was formed, it was soaked in 40°C warm water to remove glycerol triacetate.
Storage step (d-2): The hollow fiber membrane filtration membrane was left standing in pure water and stored.
(本開示の重合体(P-1)を固定化した中空糸膜状濾過膜(M―1)の製造)
 製造例1で製造した中空糸膜状ろ過膜(30cm)を2wt%の重合体(P-1)と0.25wt%のトリエチルアミン(触媒:富士フイルム和光純薬工業株式会社)が含まれる水に浸漬した後、溶液温度を60℃にして6時間放置した。その後純水で洗浄し、純水中に保管した。
(Production of hollow fiber membrane filtration membrane (M-1) with immobilized polymer (P-1) of the present disclosure)
The hollow fiber membrane filtration membrane (30 cm) produced in Production Example 1 was immersed in water containing 2 wt% polymer (P-1) and 0.25 wt% triethylamine (catalyst: Fuji Film Wako Pure Chemical Industries, Ltd.). After that, the solution temperature was raised to 60°C and left for 6 hours. Thereafter, it was washed with pure water and stored in pure water.
(本開示の重合体(P-2)を固定化した中空糸膜状濾過膜(M―2)の製造)
 重合体(P-1)を重合体(P-2)に置き換えた以外は、実施例1と同一の方法で本開示の中空糸膜状濾過膜を製造した。
(Production of hollow fiber membrane filtration membrane (M-2) with immobilized polymer (P-2) of the present disclosure)
A hollow fiber membrane filtration membrane of the present disclosure was produced in the same manner as in Example 1, except that polymer (P-1) was replaced with polymer (P-2).
(本開示の重合体(P-3)を固定化した中空糸膜状濾過膜(M―3)の製造)
 重合体(P-1)を重合体(P-3)に置き換えた以外は、実施例1と同一の方法で本開示の中空糸膜状濾過膜を製造した。
(Production of hollow fiber membrane filtration membrane (M-3) with immobilized polymer (P-3) of the present disclosure)
A hollow fiber membrane filtration membrane of the present disclosure was produced in the same manner as in Example 1, except that polymer (P-1) was replaced with polymer (P-3).
 実施例1で製造した本開示の中空糸膜状濾過膜(M―1)に関し、まず、純水を用いて1バールで透水量(LMH/Bar)を測定した(初期透水量)。
 続いて、モデルファウラントとして1,000ppmの牛血清アルブミン溶液を用い、該溶液を60分間透水した。その後、純水を用いて透水方向を逆にした逆洗浄を10分間行った。逆洗浄後、再び純水を用いて透水量(LMH/Bar)を測定し(1回目逆洗浄後透水量)、透水回復率(%)を算出した。
 その後、同様に、牛血清アルブミン溶液を60分間透水し、純水を用いて逆洗浄を10分間行った後、純水を用いて透水量を測定し(2回目逆洗浄後透水量)、透水回復率(%)を算出した。この操作を計7回となるまで繰り返した。結果を表1に示す。
 なお、透水回復率(%)は、下記式(1)で表される値である。透水量の単位「LMH/Bar」は、1バール下、1時間当たり、濾過膜1m当たりの純水の濾過膜通過量(L)を表す。
 透水回復率(%)=(逆洗浄後透水量/初期透水量)×100 ・・・式(1)
 なお、比較例1は、製造例1で製造した中空糸膜状濾過膜を使用した。
Regarding the hollow fiber membrane filtration membrane (M-1) of the present disclosure manufactured in Example 1, first, the water permeation amount (LMH/Bar) was measured at 1 bar using pure water (initial water permeation amount).
Subsequently, a 1,000 ppm bovine serum albumin solution was used as a model foulant, and the solution was permeated for 60 minutes. Thereafter, backwashing was performed for 10 minutes using pure water with the direction of water permeation reversed. After backwashing, the amount of water permeation (LMH/Bar) was measured again using pure water (the amount of water permeation after the first backwashing), and the water permeation recovery rate (%) was calculated.
After that, in the same way, the bovine serum albumin solution was permeated for 60 minutes, backwashed for 10 minutes using pure water, and the amount of water permeated was measured using pure water (water permeation amount after second backwashing). Recovery rate (%) was calculated. This operation was repeated until a total of 7 times. The results are shown in Table 1.
Note that the water permeability recovery rate (%) is a value expressed by the following formula (1). The unit of water permeation rate "LMH/Bar" represents the amount (L) of pure water passing through the filter membrane per 1 m2 of the filter membrane per hour under 1 bar.
Water permeability recovery rate (%) = (Water permeation amount after backwashing/Initial water permeation amount) x 100...Formula (1)
In Comparative Example 1, the hollow fiber membrane filtration membrane manufactured in Manufacturing Example 1 was used.
 実施例1で製造した本開示の中空糸膜状濾過膜(M―1)に関し、まず、0.85重量%の塩化ナトリウム(富士フイルム和光純薬工業株式会社)水溶液を用いて0.5バールで透水量(LMH/Bar)を測定した(初期透水量)。
 続いて、モデルファウラントとして細菌懸濁液(Sphingomonas paucimobilis)を用い、該液を90分間透水した。その後、0.85重量%の塩化ナトリウム水溶液で透水方向を逆にした逆洗浄を10分間行った。逆洗浄後、再び0.85重量%塩化ナトリウム水溶液を用いて透水量(LMH/Bar)を測定し(1回目逆洗浄後透水量)、透水回復率(%)を算出した。
 その後、同様に細胞懸濁液を90分間透水し、0.85重量%の塩化ナトリウム水溶液を用いて逆洗浄を10分間行った後、0.85重量%の塩化ナトリウム水溶液を用いて透水量を測定し(2回目逆洗浄後透水量)、透水回復率(%)を算出した。
 透水回復率(%)とは下記式(2)で表される値である。透水量の単位「LMH/Bar」は、1バール下、1時間当たり、濾過膜1m当たりの水の濾過膜通過量(L)を表す。結果を表2に示す。
 透水回復率(%)=(逆洗浄後透水量/初期透水量)×100 ・・・式(2)
 細菌懸濁液は、トリプティックソイブロス(ベクトンディッキンソン社製、30 g/L)を用いて120rpmで30℃、12時間振とう培養した培養液を、トリプティックソイブロスで50倍希釈して4時間30℃でもう一度培養し、細菌濃度を450nm吸光度で0.05となる濃度にトリプティックソイブロスで希釈して用いた。
 なお、比較例2は、製造例1で製造した中空糸膜状濾過膜を使用した。
Regarding the hollow fiber membrane filtration membrane (M-1) of the present disclosure produced in Example 1, first, a 0.85% by weight sodium chloride (Fujifilm Wako Pure Chemical Industries, Ltd.) aqueous solution was used at 0.5 bar. The water permeation amount (LMH/Bar) was measured (initial water permeation amount).
Subsequently, a bacterial suspension (Sphingomonas paucimobilis) was used as a model foulant, and the solution was permeated for 90 minutes. Thereafter, backwashing was performed for 10 minutes with a 0.85% by weight aqueous sodium chloride solution in which the direction of water permeation was reversed. After backwashing, the amount of water permeation (LMH/Bar) was measured again using a 0.85% by weight aqueous sodium chloride solution (the amount of water permeation after the first backwashing), and the water permeation recovery rate (%) was calculated.
Thereafter, the cell suspension was permeated for 90 minutes in the same manner, backwashed for 10 minutes using a 0.85% by weight aqueous sodium chloride solution, and the amount of water permeated was determined using a 0.85% by weight aqueous sodium chloride solution. It was measured (water permeation amount after second backwashing) and water permeation recovery rate (%) was calculated.
The water permeability recovery rate (%) is a value expressed by the following formula (2). The unit of water permeation amount "LMH/Bar" represents the amount of water passing through the filter membrane (L) per 1 m 2 of the filter membrane per hour under 1 bar. The results are shown in Table 2.
Water permeability recovery rate (%) = (water permeability after backwashing/initial water permeation) x 100...Formula (2)
The bacterial suspension was prepared by culturing the culture using tryptic soy broth (manufactured by Becton Dickinson, 30 g/L) at 120 rpm and 30°C for 12 hours with shaking, then diluting it 50 times with tryptic soy broth and culturing it for 4 hours. The cells were cultured again at ℃ and diluted with tryptic soy broth to a bacterial concentration of 0.05 at 450 nm absorbance.
In Comparative Example 2, the hollow fiber membrane filtration membrane manufactured in Manufacturing Example 1 was used.
 実施例1で製造した本開示の中空糸膜状濾過膜(M―1)を約1cmに切り、試験台に乗せ、水滴を落とし、落ちた瞬間を初期、120秒後を終期として接触角変化を測定した。
さらに、水中に30日、60日保管した本開示の中空糸膜状濾過膜(M―1)についても、同様に接触角の測定を行った。結果は表3に示した。
 接触角の測定は、接触角ゴニオメーターDrop Master(協和界面科学株式会社製)を用いた。
 なお、比較例3は、製造例1で製造した中空糸膜状濾過膜を使用した。
The hollow fiber membrane filtration membrane (M-1) of the present disclosure manufactured in Example 1 was cut into approximately 1 cm pieces, placed on a test stand, and a water droplet was dropped on it, and the contact angle change was determined with the moment of drop as the initial stage and 120 seconds later as the final stage. was measured.
Furthermore, the contact angle was similarly measured for the hollow fiber membrane filtration membrane (M-1) of the present disclosure that had been stored in water for 30 and 60 days. The results are shown in Table 3.
The contact angle was measured using a contact angle goniometer Drop Master (manufactured by Kyowa Interface Science Co., Ltd.).
In Comparative Example 3, the hollow fiber membrane filtration membrane manufactured in Manufacturing Example 1 was used.
 実施例2で製造した本開示の中空糸膜状濾過膜(M―2)を使用した以外は、実施例6と同一の方法で接触角変化を測定した。結果は表3に示した。 The contact angle change was measured in the same manner as in Example 6, except that the hollow fiber membrane filtration membrane (M-2) of the present disclosure manufactured in Example 2 was used. The results are shown in Table 3.
 実施例3で製造した本開示の中空糸膜状濾過膜(M―3)を使用した以外は、実施例6と同一の方法で接触角変化を測定した。結果は表3に示した。 The contact angle change was measured in the same manner as in Example 6, except that the hollow fiber membrane filtration membrane (M-3) of the present disclosure manufactured in Example 3 was used. The results are shown in Table 3.
(本開示の中空糸膜状濾過膜の評価)
 表1及び表2から明らかなように、本開示の中空糸膜状濾過膜の透水回復率は、比較例1の透水回復率と比較して顕著に優れていた。特に、本開示の中空糸膜状濾過膜は、逆洗浄回数を増やしても高い透水回復率を示し、さらに、タンパク質や菌を含む細胞懸濁液でも高い透水回復率を示したので、耐ファウリング性が高い。
 表3から明らかなように、本開示の中空糸膜状濾過膜は、水中で長期間保管しても接触角に変化なかったことから重合体(P)の剥離は生じておらず、優れた耐水性を有することが明らかとなった。
 以上より、本開示の中空糸膜状濾過膜は、耐ファウリング性と耐水性に優れている。
(Evaluation of the hollow fiber membrane filtration membrane of the present disclosure)
As is clear from Tables 1 and 2, the water permeation recovery rate of the hollow fiber membrane filtration membrane of the present disclosure was significantly superior to that of Comparative Example 1. In particular, the hollow fiber membrane filtration membrane of the present disclosure showed a high water permeability recovery rate even when the number of backwashes was increased, and also showed a high water permeability recovery rate even in cell suspensions containing proteins and bacteria. Highly ring-like.
As is clear from Table 3, the hollow fiber membrane filtration membrane of the present disclosure did not change the contact angle even after being stored in water for a long period of time, so the polymer (P) did not peel off, and it was excellent. It was revealed that it has water resistance.
As described above, the hollow fiber membrane filtration membrane of the present disclosure has excellent fouling resistance and water resistance.
 耐ファウリング性と耐水性に優れる中空糸膜状濾過膜を提供する。 To provide a hollow fiber membrane filtration membrane with excellent fouling resistance and water resistance.

Claims (6)

  1.  2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチルホスフェート及び2-アミノエチルメタクリレート若しくはその塩酸塩を単量体として含む重合体を固定化した、フッ化ビニリデンを単量体として含む重合体とスチレンと無水マレイン酸を単量体として含む重合体を含む濾過膜。
    A polymer containing vinylidene fluoride as a monomer, on which a polymer containing 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate and 2-aminoethyl methacrylate or its hydrochloride as a monomer is immobilized. and a filtration membrane containing a polymer containing styrene and maleic anhydride as monomers.
  2.  前記濾過膜が中空糸膜状濾過膜である、請求項1に記載の濾過膜。
     
    The filtration membrane according to claim 1, wherein the filtration membrane is a hollow fiber membrane filtration membrane.
  3.  前記2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチルホスフェート及び2-アミノエチルメタクリレート若しくはその塩酸塩を単量体として含む重合体は、2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチルホスフェート40モル%~60モル%及び2-アミノエチルメタクリレート若しくはその塩酸塩40モル%~60モル%である、請求項1に記載の濾過膜。
    The polymer containing 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate and 2-aminoethyl methacrylate or its hydrochloride as a monomer is 2-(methacryloyloxy)ethyl 2-(trimethylammonio). 2. The filtration membrane according to claim 1, wherein the filtration membrane contains 40 mol% to 60 mol% of ethyl phosphate and 40 mol% to 60 mol% of 2-aminoethyl methacrylate or its hydrochloride.
  4.  医療用である、請求項1~3のいずれか1に記載の濾過膜。
    The filtration membrane according to any one of claims 1 to 3, which is for medical use.
  5.  タンパク質又は菌付着抑制用である、請求項1~3のいずれか1に記載の濾過膜。
     
    The filtration membrane according to any one of claims 1 to 3, which is for suppressing protein or bacterial adhesion.
  6.  フッ化ビニリデンを単量体として含む重合体を含有する製膜原液を調製する、製膜原液調製工程(a)と、
     スチレンと無水マレイン酸を単量体として含む重合体を含有する外部制御液を調製する、外部制御液調製工程(b)と、
     該製膜原液と該外部制御液を膜状に吐出させる、膜状の製膜原液製造工程(c)と、
     該膜状の製膜原液を凝固液に接触させて濾過膜を製造する、製膜工程(d)と、並びに、
     該濾過膜と重合体(P)を反応させて該重合体(P)を該膜表面に固定化する、固定化工程(e)を有し、
     ここで、該重合体(P)は、2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチルホスフェート30モル%~90モル%及び2-アミノエチルメタクリレート若しくはその塩酸塩70モル%~10モル%である、
     濾過膜の製造方法。
    A membrane forming stock solution preparation step (a) of preparing a membrane forming stock solution containing a polymer containing vinylidene fluoride as a monomer;
    an external control liquid preparation step (b) of preparing an external control liquid containing a polymer containing styrene and maleic anhydride as monomers;
    a process (c) for producing a film-forming stock solution in which the film-forming stock solution and the external control liquid are discharged in a film-form;
    A membrane forming step (d) of manufacturing a filtration membrane by bringing the membrane-like membrane forming stock solution into contact with a coagulation liquid, and
    an immobilization step (e) of reacting the filtration membrane with the polymer (P) to immobilize the polymer (P) on the membrane surface;
    Here, the polymer (P) includes 30 mol% to 90 mol% of 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate and 70 mol% to 10 mol% of 2-aminoethyl methacrylate or its hydrochloride. %,
    Method for manufacturing a filtration membrane.
PCT/JP2023/014039 2022-04-08 2023-04-05 Filtration membrane and production method for said membrane WO2023195479A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022064806 2022-04-08
JP2022-064806 2022-04-08

Publications (1)

Publication Number Publication Date
WO2023195479A1 true WO2023195479A1 (en) 2023-10-12

Family

ID=88243091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014039 WO2023195479A1 (en) 2022-04-08 2023-04-05 Filtration membrane and production method for said membrane

Country Status (1)

Country Link
WO (1) WO2023195479A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055870A (en) * 2010-09-13 2012-03-22 Kobe Univ Method for producing porous filtration membrane of polyvinylidene fluoride
JP2014200752A (en) * 2013-04-05 2014-10-27 ダイキン工業株式会社 Porous polymer membrane
JP2017170319A (en) * 2016-03-23 2017-09-28 旭化成株式会社 Porous membrane made of polyvinylidene fluoride, and manufacturing method thereof
US20190282968A1 (en) * 2016-05-11 2019-09-19 Guizhou Material Industrial Technology Institute Preparation method of high-strength anti-pollution antibacterial hollow fiber nanofiltration membrane and product
WO2020231797A1 (en) * 2019-05-10 2020-11-19 Trustees Of Tufts College Zwitterionic charged copolymer membranes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055870A (en) * 2010-09-13 2012-03-22 Kobe Univ Method for producing porous filtration membrane of polyvinylidene fluoride
JP2014200752A (en) * 2013-04-05 2014-10-27 ダイキン工業株式会社 Porous polymer membrane
JP2017170319A (en) * 2016-03-23 2017-09-28 旭化成株式会社 Porous membrane made of polyvinylidene fluoride, and manufacturing method thereof
US20190282968A1 (en) * 2016-05-11 2019-09-19 Guizhou Material Industrial Technology Institute Preparation method of high-strength anti-pollution antibacterial hollow fiber nanofiltration membrane and product
WO2020231797A1 (en) * 2019-05-10 2020-11-19 Trustees Of Tufts College Zwitterionic charged copolymer membranes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAN GANG, LIU JIANG TAO, LU KANG JIA, CHUNG TAI-SHUNG: "Advanced Anti-Fouling Membranes for Osmotic Power Generation from Wastewater via Pressure Retarded Osmosis (PRO)", ENVIRONMENTAL SCIENCE & TECHNOLOGY, AMERICAN CHEMICAL SOCIETY, US, vol. 52, no. 11, 5 June 2018 (2018-06-05), US , pages 6686 - 6694, XP093097826, ISSN: 0013-936X, DOI: 10.1021/acs.est.7b05933 *

Similar Documents

Publication Publication Date Title
KR101539608B1 (en) Polyvinylidene fluoride Hollow Fiber Membranes and Preparation Thereof
US20140083931A1 (en) Anti-biofouling Membrane for Water-Treatment
JP5524779B2 (en) Process for producing polyvinylidene fluoride porous filtration membrane
KR101630208B1 (en) A preparation method of hydrophilic membrane and a hydrophilic membrane prepared by the same
KR20080089476A (en) Highly durable porous pvdf film, method of producing the same and washing method and filtration method using the same
US9782730B2 (en) 1234YF- and 1234ZE-based polymeric membrane materials, membrane preparations and uses thereof
CN110404418A (en) A kind of antibacterial ultrafiltration membrane and preparation method thereof
Kolesnyk et al. Improved antifouling properties of polyethersulfone membranes modified with α-amylase entrapped in Tetronic® micelles
JP6464866B2 (en) Surface-modified substrate, polymer-coated substrate, and production method thereof
KR101790174B1 (en) A PVA coated hollow fiber mambrane and a preparation method thereof
KR101890020B1 (en) Fouling inhibitor, filtration membrane and method for producing same
WO2023195479A1 (en) Filtration membrane and production method for said membrane
US5525236A (en) Reverse osmosis purification of water
US5942120A (en) Composite microporous ultrafiltration membrane, method of making thereof, and separation methods
KR101068437B1 (en) Porous pvdf membranes with improved water permeability and chemical resistance and manufacturing method thereof
JP6390326B2 (en) Method for producing porous filtration membrane for water treatment
KR102084359B1 (en) Resin composition for membrane to purify or diagnose biological products and method of preparing the same
CN117120154A (en) Solution of polymer P in N-tert-butyl-2-pyrrolidone for membranes
CN111715080A (en) Preparation method of biodegradable high-molecular ultrafiltration membrane
EP3296011B1 (en) Membranes comprising fluoropolymers
JP2006224051A (en) Porous membrane, porous membrane element, and membrane filter apparatus
KR100543573B1 (en) Method for preparation of pH, microorganism and fouling resistant asymmetric membranes by coating titania
KR20200005747A (en) Copolymers and trimers based on chlorotrifluoroethylene and vinyl chloride and uses thereof
Yushkin et al. Preparation of Polyacrylonitrile Membranes by Vapor Induced Phase Separation
Kim et al. Anti-fouling ultrafiltration membrane made from surface saponification of poly (vinyl acetate-co-vinyl pivalate) with enhanced syndiotacticity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784763

Country of ref document: EP

Kind code of ref document: A1