JP2012055870A - Method for producing porous filtration membrane of polyvinylidene fluoride - Google Patents

Method for producing porous filtration membrane of polyvinylidene fluoride Download PDF

Info

Publication number
JP2012055870A
JP2012055870A JP2010204252A JP2010204252A JP2012055870A JP 2012055870 A JP2012055870 A JP 2012055870A JP 2010204252 A JP2010204252 A JP 2010204252A JP 2010204252 A JP2010204252 A JP 2010204252A JP 2012055870 A JP2012055870 A JP 2012055870A
Authority
JP
Japan
Prior art keywords
copolymer
porous
polyvinylidene fluoride
membrane
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010204252A
Other languages
Japanese (ja)
Other versions
JP5524779B2 (en
Inventor
Hideto Matsuyama
秀人 松山
Tatsuo Maruyama
達生 丸山
Osamu Nishikakiuchi
修 西垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
NOF Corp
Original Assignee
Kobe University NUC
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC, NOF Corp filed Critical Kobe University NUC
Priority to JP2010204252A priority Critical patent/JP5524779B2/en
Publication of JP2012055870A publication Critical patent/JP2012055870A/en
Application granted granted Critical
Publication of JP5524779B2 publication Critical patent/JP5524779B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of producing a porous separation membrane of polyvinylidene fluoride, improved in problems such as fouling, without using an onganic solvent with simple operation, environmentally friendly and safely.SOLUTION: The method for producing a porous separation membrane includes bringing the porous membrane of polyvinylidene fluoride into contact with a solution in which MPC (2-methacryloyloxyethyl phosphorylcholine)-BMA (butyl methacrylate) copolymer is dissolved in a solvent, and modifying the surface of the porous membrane. The molar ratio of the constitutional unit of MPC to that of BMA is (10 to 50):(90 to 50) and characteristically, water is used as a solvent for dissolving the copolymer. The obtained separation membrane can be used as a membrane of reverse osmosis, ultrafiltration, microfiltration, dialysis, ion exchange or the like.

Description

本発明は、ファウリング等の物性を改善したポリフッ化ビニリデン多孔質濾過膜を、容易な操作で、且つ環境的にも有利な方法で製造しうる該多孔質濾過膜の製造方法に関する。   The present invention relates to a method for producing a porous filtration membrane capable of producing a polyvinylidene fluoride porous filtration membrane having improved physical properties such as fouling by an easy operation and an environmentally advantageous method.

最近、限外濾過、精密濾過、逆浸透などの多孔質濾過膜は、例えば、飲料水製造、上下水道処理、あるいは廃液処理など、多くの産業分野で利用されている。
このような多孔質濾過膜の中で、限外濾過膜や精密濾過膜は水質の浄化などに多用されており、例えば、透水性や機械的・化学的耐久性に優れる、ポリフッ化ビニリデンを主材とする多孔質濾過膜が多用されている。しかしながら、該ポリフッ化ビニリデン多孔質濾過膜は、疎水性が高く、ファウリングし易いことが問題となっていた。
ファウリングとは、原水に含まれるファウラントと呼ばれる原因物質、例えば、難溶性成分や、蛋白質、多糖類などの高分子の溶質、コロイド、微小固形物、微生物などが膜に沈着して透過流速を低下させる現象であり、膜性能低下の主要原因として知られている。
このようなファウリング対策としては、定期的に界面活性剤や逆洗と呼ばれる通常とは逆向きに水流を流すなどの方法で多孔質濾過膜を洗浄してファウリングを除去する方法、ファウリング抑制のための前処理剤などを使用する方法、あるいは、膜の作製方法に手を加えることにより、膜自体にファウリングを低減する効果を付与する方法などが検討されてきた。これらの方法は、効果的なファウリングを抑制する方法としては一定の効果はあるものの、蛋白質や微生物を原因とするファウリングに対する効果は十分とは言えなかった。
Recently, porous filtration membranes such as ultrafiltration, microfiltration, and reverse osmosis have been used in many industrial fields such as drinking water production, water and sewage treatment, and wastewater treatment.
Among such porous filtration membranes, ultrafiltration membranes and microfiltration membranes are frequently used for water purification, for example, polyvinylidene fluoride, which is excellent in water permeability, mechanical and chemical durability, is mainly used. A porous filtration membrane as a material is frequently used. However, the polyvinylidene fluoride porous filtration membrane has a problem of high hydrophobicity and easy fouling.
Fouling is a causative substance called foulant contained in raw water, for example, poorly soluble components, high molecular solutes such as proteins and polysaccharides, colloids, micro solids, microorganisms, etc. This phenomenon is known as a major cause of membrane performance degradation.
As a countermeasure against such fouling, a method of periodically removing a fouling by washing a porous membrane with a method such as periodically flowing a water flow in a reverse direction called a surfactant or backwashing, fouling, A method of using a pretreatment agent for suppression or the like, or a method of imparting an effect of reducing fouling to the film itself by modifying the film manufacturing method have been studied. Although these methods have a certain effect as a method for effectively suppressing fouling, they have not been sufficiently effective for fouling caused by proteins and microorganisms.

そこで、このような蛋白質や微生物を原因とするファウリングに対する比較的効果の高い方法として、例えば、蛋白質や微生物などのファウラントを吸着抑制できる素材を、多孔質膜表面に共有結合あるいは吸着処理する方法が提案されている。例えば、特許文献1には、蛋白質や微生物などのファウラントを吸着抑制できる素材として、細胞膜の構成成分であるリン脂質を模倣したホスホリルコリン類似基を有する単量体を構成単位として含む重合体を用いることが提案されている。また、特許文献2及び3には、前述のホスホリルコリン類似基を有する単量体を構成単位として含む重合体により被覆された多孔質膜が開示されている。さらに、特許文献4には、ホスホリルコリン類似基を有する単量体を構成単位として含む重合体を含有するファウリング防止材が開示されている。   Therefore, as a relatively highly effective method for fouling caused by such proteins and microorganisms, for example, a method of covalently binding or adsorbing a material capable of suppressing adsorption of foulants such as proteins and microorganisms to the surface of the porous membrane Has been proposed. For example, Patent Document 1 uses a polymer containing as a constituent unit a monomer having a phosphorylcholine-like group that mimics a phospholipid that is a constituent component of a cell membrane as a material capable of suppressing adsorption of foulants such as proteins and microorganisms. Has been proposed. Patent Documents 2 and 3 disclose porous membranes coated with a polymer containing the above-described monomer having a phosphorylcholine-like group as a structural unit. Further, Patent Document 4 discloses a fouling prevention material containing a polymer containing a monomer having a phosphorylcholine-like group as a structural unit.

上述の特許文献に記載された、ホスホリルコリン類似基を有する単量体を構成単位として含む重合体で被覆した多孔質膜の製造方法としては、該重合体を有機溶剤を含む溶液に溶解し、この溶液と多孔質膜を接触させる方法が記載されている。
しかし、このような有機溶剤を含む溶液を用いる方法においては、環境的に該有機溶剤を後処理する工程や設備が必要であり、多孔質濾過膜の製造を煩雑化し、コスト的にも問題がある。
As a method for producing a porous film coated with a polymer containing a monomer having a phosphorylcholine-like group as a constituent unit described in the above-mentioned patent document, the polymer is dissolved in a solution containing an organic solvent. A method for contacting a solution with a porous membrane is described.
However, in the method using such a solution containing an organic solvent, a process and equipment for post-treating the organic solvent are required environmentally, which complicates the production of the porous filtration membrane and has a problem in cost. is there.

特開平3−39309号公報JP-A-3-39309 特開平5−177119号公報JP-A-5-177119 国際公開第2002/009857号International Publication No. 2002/009857 特開2006−239636号公報JP 2006-239636 A

本発明の課題は、ファウリング等の問題を改善したポリフッ化ビニリデン多孔質分離膜を、有機溶剤を用いないで、簡易な操作で、環境的にも安心、安全に製造することが可能な方法を提供することにある。   An object of the present invention is to provide a method capable of producing a polyvinylidene fluoride porous separation membrane with improved problems such as fouling, etc., without using an organic solvent, safely and safely in an environmentally friendly manner. Is to provide.

従来、多孔質分離膜におけるファウリング等の問題を解決するために、多孔質膜を、2−メタクリロイルオキシエチルホスホリルコリンとブチルメタクリレートとの共重合体を溶媒に溶解した溶液に接触させる方法においては、該溶媒として、有機溶剤を含む溶液が常用されている。これは、上記共重合体において、両親媒性のホスホリルコリン類似基を有する2−メタクリロイルオキシエチルホスホリルコリンは、水への溶解度が高く、共重合体中における含有割合を高くした場合、多孔質分離膜から溶出し、性能維持が困難になるおそれがあるため、ある程度、ブチルメタクリレート等の疎水性単量体の割合を多くする必要があり、この場合、該共重合体を溶媒に確実に溶解させるには、有機溶剤を用いることが必要であるという当該分野における認識に基づくものである。
しかしながら、本発明者らは、特定の多孔質膜に、特定の共重合体を用いた場合に、溶媒として、有機溶剤を用いなくても、共重合体を水に溶解でき、且つ多孔質膜を改質処理した後に、その性能を、有機溶剤を用いた場合と同程度に維持しうることを見い出し、本発明を完成した。
Conventionally, in order to solve problems such as fouling in a porous separation membrane, in a method of contacting a porous membrane with a solution in which a copolymer of 2-methacryloyloxyethyl phosphorylcholine and butyl methacrylate is dissolved in a solvent, As the solvent, a solution containing an organic solvent is commonly used. This is because, in the above copolymer, 2-methacryloyloxyethyl phosphorylcholine having an amphiphilic phosphorylcholine-like group has high solubility in water, and when the content ratio in the copolymer is increased, the porous separation membrane It is necessary to increase the proportion of hydrophobic monomers such as butyl methacrylate to some extent because it may be difficult to maintain the performance, and in this case, in order to reliably dissolve the copolymer in the solvent This is based on the recognition in the field that it is necessary to use an organic solvent.
However, when the specific copolymer is used for the specific porous film, the present inventors can dissolve the copolymer in water without using an organic solvent as the solvent, and the porous film After the modification treatment, it was found that the performance could be maintained at the same level as when an organic solvent was used, and the present invention was completed.

本発明によれば、2−メタクリロイルオキシエチルホスホリルコリン(以下、MPCと略す)とブチルメタクリレート(以下、BMAと略す)との共重合体を溶媒に溶解した溶液に、ポリフッ化ビニリデン多孔質膜を接触させて、該多孔質膜表面を改質する、多孔質分離膜の製造方法であって、前記共重合体におけるMPC構成単位と、BMA構成単位のモル比が、10〜50:90〜50であり、且つ該共重合体を溶解する溶媒として、水を用いることを特徴とするポリフッ化ビニリデン多孔質分離膜の製造方法が提供される。   According to the present invention, a polyvinylidene fluoride porous membrane is contacted with a solution obtained by dissolving a copolymer of 2-methacryloyloxyethyl phosphorylcholine (hereinafter abbreviated as MPC) and butyl methacrylate (hereinafter abbreviated as BMA) in a solvent. A method for producing a porous separation membrane for modifying the surface of the porous membrane, wherein the molar ratio of the MPC constituent unit to the BMA constituent unit in the copolymer is 10 to 50:90 to 50 There is also provided a method for producing a polyvinylidene fluoride porous separation membrane characterized in that water is used as a solvent for dissolving the copolymer.

本発明の製造方法は、ポリフッ化ビニリデン多孔質膜表面のMPCとBMAとの共重合体による改質に、MPC単位とBMA単位とを特定割合とした共重合体を用い、且つ該共重合体を溶解する溶媒として、有機溶剤を用いないで水を用いるので、操作が簡易であり、低コストかつ環境的にも安心、安全に、ファウリングの問題が改善されたポリフッ化ビニリデン多孔質分離膜を得ることができる。また、得られるポリフッ化ビニリデン多孔質分離膜は、従来の有機溶剤を用いて製造したものと、同程度の性能維持率を確保することが可能である。従って、本発明の製造方法により得られる多孔質分離膜は、逆浸透膜、限外濾過膜、精密濾過膜、透析膜、イオン交換膜等の各種分離膜に適用することができる。   The production method of the present invention uses a copolymer having a specific ratio of MPC units and BMA units for modification with a copolymer of MPC and BMA on the surface of the polyvinylidene fluoride porous membrane, and the copolymer Polyvinylidene fluoride porous separation membrane with simple operation, low cost, environmentally safe and safe, and improved fouling problem because water is used as a solvent to dissolve Can be obtained. Moreover, the obtained polyvinylidene fluoride porous separation membrane can ensure a performance maintenance rate comparable to that produced using a conventional organic solvent. Therefore, the porous separation membrane obtained by the production method of the present invention can be applied to various separation membranes such as reverse osmosis membranes, ultrafiltration membranes, microfiltration membranes, dialysis membranes, and ion exchange membranes.

実施例及び比較例においてファウリング効果確認試験を行った試験装置の概略を示す概略図である。It is the schematic which shows the outline of the testing apparatus which performed the fouling effect confirmation test in the Example and the comparative example. 実施例及び比較例におけるファウリング効果確認試験の結果を示すグラフである。It is a graph which shows the result of the fouling effect confirmation test in an example and a comparative example.

以下、本発明について詳細に説明する。
本発明の製造方法は、MPCとBMAとの特定割合の共重合体を特定溶媒に溶解した溶液に、ポリフッ化ビニリデン多孔質膜を接触させて、該多孔質膜表面を改質する工程を含む。該表面改質により、得られる多孔質分離膜は、改質する前のポリフッ化ビニリデン多孔質膜に比して、ファウリングの問題等が改善される。
Hereinafter, the present invention will be described in detail.
The production method of the present invention includes a step of modifying the surface of the porous membrane by bringing the polyvinylidene fluoride porous membrane into contact with a solution in which a specific proportion of a copolymer of MPC and BMA is dissolved in a specific solvent. . By the surface modification, the porous separation membrane obtained is improved in the fouling problem and the like as compared with the polyvinylidene fluoride porous membrane before the modification.

本発明に用いるポリフッ化ビニリデン多孔質膜は、ポリフッ化ビニリデン樹脂、例えば、フッ化ビニリデン単独重合体又はフッ化ビニリデン共重合体を、溶融賦型−延伸法、溶融賦型−抽出法、湿式賦型法等の公知の種々の方法により多孔質膜としたものであれば特に限定されない。
フッ化ビニリデン共重合体としては、例えば、フッ化ビニリデンと、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレン、エチレン等からなる群より選ばれた少なくとも1種との共重合体が挙げられる。これらは単独で、又は必要に応じ、2種以上混合して用いることができる。
ポリフッ化ビニリデン多孔質膜の空孔率は特に制限は無いが20〜90容量%の範囲が好ましい。多孔質膜の形態は、中空糸状、チューブ状、フィルム状等どのような形態でも良い。このような形態の多孔質膜の製造は、公知の方法により行うことができる。
ポリフッ化ビニリデン多孔質膜は、未使用のもの、使用済みのものどちらも使用できるが、使用済み多孔質膜を用いる場合、予め公知の方法で洗浄し、ファウラントをできるだけ除去しておくことが望ましい。
The porous polyvinylidene fluoride membrane used in the present invention is a polyvinylidene fluoride resin, such as a vinylidene fluoride homopolymer or a vinylidene fluoride copolymer, melt-stretched-stretched, melt-molded-extracted, wet-stretched. There is no particular limitation as long as the porous film is formed by various known methods such as a mold method.
Examples of the vinylidene fluoride copolymer include a copolymer of vinylidene fluoride and at least one selected from the group consisting of ethylene tetrafluoride, propylene hexafluoride, ethylene trifluoride chloride, ethylene, and the like. Can be mentioned. These may be used alone or in combination of two or more as required.
The porosity of the polyvinylidene fluoride porous membrane is not particularly limited, but is preferably in the range of 20 to 90% by volume. The form of the porous membrane may be any form such as a hollow fiber shape, a tube shape, or a film shape. Manufacture of the porous membrane of such a form can be performed by a well-known method.
Polyvinylidene fluoride porous membranes can be used either unused or used. However, when using a used porous membrane, it is desirable to remove the foulant as much as possible by washing it with a known method in advance. .

本発明に用いるMPCとBMAとの共重合体は、MPC構成単位と、BMA構成単位の割合が、モル比で、10〜50:90〜50であり、好ましくはMPC30モル%、BMA70モル%である。MPC構成単位が10モル%未満、即ち、BMA構成単位が90モル%を超える場合には、十分なファウリング抑制効果を示さないおそれが。一方、MPC構成単位が50モル%を超える場合、即ち、BMA構成単位が50モル%未満の場合には、得られる多孔質分離膜の改質維持が低下するおそれがある。
なお、共重合体のMPC構成単位の存在量の測定は、例えば、X線光電子分光法により行うことができる。
該共重合体の種類としては交互共重合体、ランダム共重合体、ブロック共重合体などの公知の重合体いずれであっても良い。
In the copolymer of MPC and BMA used in the present invention, the ratio of the MPC constituent unit and the BMA constituent unit is 10 to 50:90 to 50 in terms of molar ratio, preferably MPC 30 mol% and BMA 70 mol%. is there. When the MPC constituent unit is less than 10 mol%, that is, when the BMA constituent unit exceeds 90 mol%, there is a possibility that a sufficient fouling suppressing effect is not exhibited. On the other hand, when the MPC constitutional unit exceeds 50 mol%, that is, when the BMA constitutional unit is less than 50 mol%, the maintenance of the resulting porous separation membrane may be lowered.
In addition, the measurement of the abundance of the MPC structural unit of the copolymer can be performed by, for example, X-ray photoelectron spectroscopy.
The type of the copolymer may be any known polymer such as an alternating copolymer, a random copolymer, or a block copolymer.

前記共重合体の重合法としては、溶液重合、塊状重合、乳化重合、懸濁重合等公知の方法を用いることができ、例えば、MPCとBMAを溶媒中で開始剤の存在下、重合反応させる方法を採用することができる。
前記重合反応に用いる溶媒としてはモノマーが溶解すればよく、具体的には例えば、水、メタノール、エタノール、プロパノール、t−ブタノール、ベンゼン、トルエン、ジメチルホルムアミド、テトラヒドロフラン、クロロホルム又はこれら2種以上の混合液が挙げられる。
前記重合反応に用いる開始剤としては、通常の開始剤ならばいずれを用いてもよく、例えば、ラジカル重合の場合は脂肪族アゾ化合物や有機過酸化物を用いることができる。
As the polymerization method of the copolymer, known methods such as solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization can be used. For example, MPC and BMA are subjected to a polymerization reaction in a solvent in the presence of an initiator. The method can be adopted.
As the solvent used in the polymerization reaction, it is sufficient that the monomer is dissolved. Specifically, for example, water, methanol, ethanol, propanol, t-butanol, benzene, toluene, dimethylformamide, tetrahydrofuran, chloroform, or a mixture of two or more of these. Liquid.
Any initiator can be used as the initiator used in the polymerization reaction. For example, in the case of radical polymerization, an aliphatic azo compound or an organic peroxide can be used.

本発明に用いる共重合体の分子量は溶媒である水に溶解する分子量とする必要がある。該分子量としては、ゲルパーミエーションクロマトグラフ(GPC)により、標準ポリエチレングリコールを用いて換算した重量平均分子量で、好ましくは1万以上、特に好ましくは10万以上30万以下である。該分子量が1万未満の場合には、得られる多孔質分離膜表面から共重合体が短時間で溶出するおそれがあり、分子量が高すぎる場合には、溶媒である水に溶解せず、本発明の製造方法を実施し得ないおそれがある。   The molecular weight of the copolymer used in the present invention must be a molecular weight that is soluble in water as a solvent. The molecular weight is preferably 10,000 or more, particularly preferably 100,000 or more and 300,000 or less, in terms of a weight average molecular weight converted using standard polyethylene glycol by gel permeation chromatography (GPC). When the molecular weight is less than 10,000, the copolymer may be eluted from the surface of the resulting porous separation membrane in a short time. When the molecular weight is too high, the copolymer does not dissolve in water as a solvent. There is a possibility that the manufacturing method of the invention cannot be carried out.

本発明の製造方法において、上記共重合体を溶解する溶媒は、水であり、実質的に有機溶剤を含まないものである。該水は、通常、精製水等を用いることができる。
前記共重合体を溶媒である水に溶解する際の濃度は、該共重合体の濃度が低すぎると十分な効果を得ることができないおそれがあるため、0.0001質量%以上が好ましく、高すぎると経済性に優れないため1.0質量%以下が望ましい。
上記溶媒に溶解した共重合体溶液には、必要に応じて各種添加成分を含有させることができる。例えば、pHを安定させるためのリン酸塩などの緩衝液成分、あるいはNaClなどの塩成分や次亜塩素酸ナトリウムなどの洗浄・抗菌成分が挙げられる。
In the production method of the present invention, the solvent for dissolving the copolymer is water, and substantially does not contain an organic solvent. Usually, purified water or the like can be used as the water.
The concentration at which the copolymer is dissolved in water as a solvent is preferably 0.0001% by mass or more because a sufficient effect may not be obtained if the concentration of the copolymer is too low. If it is too much, it is not excellent in economic efficiency, so 1.0 mass% or less is desirable.
The copolymer solution dissolved in the solvent can contain various additive components as necessary. For example, a buffer component such as phosphate for stabilizing the pH, a salt component such as NaCl, and a cleaning / antibacterial component such as sodium hypochlorite can be used.

前記共重合体液にポリフッ化ビニリデン多孔質膜を接触させる方法は、例えば、前記共重合体液に、該多孔質膜を浸漬する方法が挙げられる。
前記接触させる際の条件は、本発明の効果が得られるように、多孔質膜表面を改質しうる範囲で適宜選択することができる。該接触条件としては、通常、共重合体液温度2〜60℃で1〜120分間接触させる条件が挙げられる。また、共重合体液のpHは、2.0〜9.0の範囲に保持することが好ましい。
上記接触により得られるポリフッ化ビニリデン多孔質分離膜は、乾燥させて保管してから使用することができる。また、使用前の前処理などは特に必要はなく、そのまま使用することができる。
Examples of the method of bringing the polyvinylidene fluoride porous film into contact with the copolymer liquid include a method of immersing the porous film in the copolymer liquid.
The conditions for the contact can be appropriately selected within a range in which the surface of the porous membrane can be modified so that the effects of the present invention can be obtained. Examples of the contact condition include a condition in which contact is usually made at a copolymer liquid temperature of 2 to 60 ° C. for 1 to 120 minutes. The pH of the copolymer liquid is preferably maintained in the range of 2.0 to 9.0.
The polyvinylidene fluoride porous separation membrane obtained by the above contact can be used after being dried and stored. Further, pretreatment before use is not particularly necessary, and can be used as it is.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれらに限定されない。
合成例1−3
MPCとBMAとの共重合体(モル比3:7)の合成
MPCおよびBMAを30mol%:70mol%のモル比で水−エタノール混合液に溶解し、4つ口フラスコに入れ、30分間窒素を吹き込んだ。続いて、重合開始剤として登録商標パーブチル−ND(日油社製)を添加し、60℃で3時間攪拌後、70℃で1.52時間攪拌、その後、室温に冷却し、アセトンによる再沈あるいは濾過精製することにより4種のMPCとBMAの共重合体を合成した。得られた共重合体をX線光電子分光法によりMPC単位の存在量を測定したところいずれも30mol%であった。
得られた共重合体を、ゲルパーミレーションクロマトグラフにより標準ポリエチレングリコールを用いて換算した重量平均分子量は約100000(合成例1)、300000(合成例2)、1000000(合成例3)であった。
得られた各共重合体について、1質量%となるように水への溶解性を評価したところ、合成例1および2の共重合体は無色透明の水溶液を得ることができたが、合成例3の共重合体はほとんど溶けず、水溶液を得ることはできなかった。
Hereinafter, although an example and a comparative example explain the present invention still in detail, the present invention is not limited to these.
Synthesis Example 1-3
Synthesis of a copolymer of MPC and BMA (molar ratio 3: 7) MPC and BMA were dissolved in a water-ethanol mixture at a molar ratio of 30 mol%: 70 mol%, placed in a four-necked flask, and nitrogen was added for 30 minutes. Infused. Subsequently, registered trademark Perbutyl-ND (manufactured by NOF Corporation) was added as a polymerization initiator, stirred at 60 ° C. for 3 hours, then stirred at 70 ° C. for 1.52 hours, then cooled to room temperature, and reprecipitated with acetone. Alternatively, four types of MPC and BMA copolymers were synthesized by filtration purification. When the abundance of MPC units was measured for the obtained copolymers by X-ray photoelectron spectroscopy, all were 30 mol%.
The weight average molecular weights obtained by converting the obtained copolymer using standard polyethylene glycol by gel permeation chromatography were about 100,000 (Synthesis Example 1), 300,000 (Synthesis Example 2), and 1000000 (Synthesis Example 3). .
For each of the obtained copolymers, the solubility in water was evaluated so as to be 1% by mass. As a result, the copolymers of Synthesis Examples 1 and 2 were able to obtain colorless and transparent aqueous solutions. The copolymer of 3 was hardly dissolved and an aqueous solution could not be obtained.

実施例1
合成例1で合成した分子量100000の共重合体の0.5質量%水溶液を調製した。この共重合体水溶液に、自製したポリフッ化ビニリデン多孔質膜中空糸(内径/外径:0.8/1.2mm、空孔率70%)を室温で1時間浸漬した。余剰の共重合体を除去するために10分間純水で洗浄し、ポリフッ化ビニリデン多孔質中空糸分離膜を調製した。得られた中空糸分離膜を用いて以下の試験を行った。
Example 1
A 0.5 mass% aqueous solution of the copolymer having a molecular weight of 100,000 synthesized in Synthesis Example 1 was prepared. A self-made polyvinylidene fluoride porous membrane hollow fiber (inner diameter / outer diameter: 0.8 / 1.2 mm, porosity 70%) was immersed in this aqueous copolymer solution at room temperature for 1 hour. In order to remove excess copolymer, it was washed with pure water for 10 minutes to prepare a polyvinylidene fluoride porous hollow fiber separation membrane. The following tests were conducted using the obtained hollow fiber separation membrane.

ファウリング効果確認試験
タンパク質の一種である牛血清アルブミンをモデルタンパク質としてタンパク質含有液に対するファウリング抑制効果を確認した。試験装置の概略図を図1に示す。以下に、具体的な実験方法を説明する。
上記で調製した中空糸分離膜を用い、牛血清アルブミン(和光純薬社製)を1000ppmとなるように溶解した液(ファウラント原液)について、クロスフロー方式、圧力0.5atm、流速16mL/min、液温15℃で120分間試験を行い、所定時間毎の絶対透水量(L・m-2・h-1・atm-1)を以下の式に従って測定した。結果を図2に示す。
絶対透水量=透過水量(L)/[中空糸膜表面積(m2)×透過時間(h)×透過圧力(atm)]
Fouling effect confirmation test The fouling inhibitory effect with respect to a protein containing liquid was confirmed by using bovine serum albumin which is a kind of protein as a model protein. A schematic diagram of the test apparatus is shown in FIG. A specific experimental method will be described below.
Using the hollow fiber separation membrane prepared above, a solution (foulant stock solution) in which bovine serum albumin (manufactured by Wako Pure Chemical Industries) was dissolved to 1000 ppm, a cross flow method, a pressure of 0.5 atm, a flow rate of 16 mL / min The test was conducted at a liquid temperature of 15 ° C. for 120 minutes, and the absolute water permeation amount (L · m −2 · h −1 · atm −1 ) per predetermined time was measured according to the following formula. The results are shown in FIG.
Absolute water permeability = permeate flow rate (L) / [the hollow fiber membrane surface area (m 2) × transmission time (h) × permeation pressure (atm)]

実施例2
共重合体として合成例2で合成した分子量300000の共重合体を用いた以外は実施例1と同様に中空糸分離膜を調製し、試験を行った。結果を図2に示す。
Example 2
A hollow fiber separation membrane was prepared and tested in the same manner as in Example 1 except that the copolymer having a molecular weight of 300,000 synthesized in Synthesis Example 2 was used as the copolymer. The results are shown in FIG.

比較例1
実施例1及び2で用いたポリフッ化ビニリデン多孔質膜中空糸を、共重合体による接触処理をしないでそのまま用いた以外は実施例1と同様に試験を行った。結果を図2に示す。
Comparative Example 1
A test was performed in the same manner as in Example 1 except that the polyvinylidene fluoride porous membrane hollow fiber used in Examples 1 and 2 was used as it was without being subjected to contact treatment with a copolymer. The results are shown in FIG.

図2の結果より、いずれの実施例の場合も絶対透過水量は未処理のポリフッ化ビニリデン多孔質膜よりも高かった。絶対透水量が高いことはファウリングに対して抵抗性があることを示す。つまり、実施例の方法で共重合体を接触させて改質処理したポリフッ化ビニリデン多孔質膜は、未処理のポリフッ化ビニリデン多孔質膜と比較していずれも蛋白質ファウリング抑制効果が認められた。   From the results shown in FIG. 2, the absolute permeated water amount was higher in all examples than in the untreated polyvinylidene fluoride porous membrane. High absolute water permeability indicates resistance to fouling. That is, the polyvinylidene fluoride porous membrane modified by bringing the copolymer into contact with the method of the example was found to have a protein fouling suppressing effect as compared with the untreated polyvinylidene fluoride porous membrane. .

Claims (2)

2−メタクリロイルオキシエチルホスホリルコリンとブチルメタクリレートとの共重合体を溶媒に溶解した溶液に、ポリフッ化ビニリデン多孔質膜を接触させて、該多孔質膜表面を改質する、多孔質分離膜の製造方法であって、
前記共重合体における2−メタクリロイルオキシエチルホスホリルコリン構成単位と、ブチルメタクリレート構成単位のモル比が、10〜50:90〜50であり、且つ該共重合体を溶解する溶媒として、水を用いることを特徴とするポリフッ化ビニリデン多孔質分離膜の製造方法。
A method for producing a porous separation membrane, wherein a polyvinylidene fluoride porous membrane is brought into contact with a solution in which a copolymer of 2-methacryloyloxyethyl phosphorylcholine and butyl methacrylate is dissolved in a solvent, thereby modifying the surface of the porous membrane. Because
The molar ratio of the 2-methacryloyloxyethyl phosphorylcholine structural unit to the butyl methacrylate structural unit in the copolymer is 10 to 50:90 to 50, and water is used as a solvent for dissolving the copolymer. A method for producing a polyvinylidene fluoride porous separation membrane.
2−メタクリロイルオキシエチルホスホリルコリンとブチルメタクリレートとの共重合体の重量平均分子量が、10万以上30万以下であることを特徴とする請求項1記載の製造方法。   The production method according to claim 1, wherein the copolymer of 2-methacryloyloxyethyl phosphorylcholine and butyl methacrylate has a weight average molecular weight of 100,000 to 300,000.
JP2010204252A 2010-09-13 2010-09-13 Process for producing polyvinylidene fluoride porous filtration membrane Active JP5524779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010204252A JP5524779B2 (en) 2010-09-13 2010-09-13 Process for producing polyvinylidene fluoride porous filtration membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010204252A JP5524779B2 (en) 2010-09-13 2010-09-13 Process for producing polyvinylidene fluoride porous filtration membrane

Publications (2)

Publication Number Publication Date
JP2012055870A true JP2012055870A (en) 2012-03-22
JP5524779B2 JP5524779B2 (en) 2014-06-18

Family

ID=46053622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010204252A Active JP5524779B2 (en) 2010-09-13 2010-09-13 Process for producing polyvinylidene fluoride porous filtration membrane

Country Status (1)

Country Link
JP (1) JP5524779B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014008479A (en) * 2012-07-02 2014-01-20 Kobe Univ Surface treatment agent for polyamide reverse osmosis membrane
CN103657445A (en) * 2013-12-17 2014-03-26 常熟丽源膜科技有限公司 Method for preparing polyvinylidene fluoride ultra-filtration membrane
WO2014115630A1 (en) 2013-01-28 2014-07-31 日油株式会社 Fouling inhibitor, filtration membrane and method for producing same
WO2014115631A1 (en) * 2013-01-28 2014-07-31 日油株式会社 Fouling inhibitor, filtration membrane and method for producing same
JP2017000998A (en) * 2015-06-15 2017-01-05 学校法人五島育英会 Fouling inhibitor, porous filtration membrane for water treatment and production method of the same
JP2017080674A (en) * 2015-10-28 2017-05-18 日東電工株式会社 Separation membrane, and protein separation-recovery system
KR102056871B1 (en) 2013-03-15 2019-12-17 도레이첨단소재 주식회사 Positive charged poly(vinylidene fluoride) porous membranes and manufacturing method thereof
CN112897704A (en) * 2020-12-04 2021-06-04 南京斯博伏特新材料有限公司 Hydrogel microelectrode for sewage treatment
WO2021200384A1 (en) * 2020-03-31 2021-10-07 株式会社ダイセル Laminate
WO2023195479A1 (en) * 2022-04-08 2023-10-12 国立大学法人神戸大学 Filtration membrane and production method for said membrane

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014008479A (en) * 2012-07-02 2014-01-20 Kobe Univ Surface treatment agent for polyamide reverse osmosis membrane
KR101890020B1 (en) * 2013-01-28 2018-08-20 니치유 가부시키가이샤 Fouling inhibitor, filtration membrane and method for producing same
WO2014115630A1 (en) 2013-01-28 2014-07-31 日油株式会社 Fouling inhibitor, filtration membrane and method for producing same
WO2014115631A1 (en) * 2013-01-28 2014-07-31 日油株式会社 Fouling inhibitor, filtration membrane and method for producing same
JP2014144393A (en) * 2013-01-28 2014-08-14 Nof Corp Fouling inhibitor composition for porous filtration membrane, porous filtration membrane and production method of the same
CN104936681A (en) * 2013-01-28 2015-09-23 日油株式会社 Fouling inhibitor, filtration membrane and method for producing same
KR20150113109A (en) 2013-01-28 2015-10-07 니치유 가부시키가이샤 Fouling inhibitor, filtration membrane and method for producing same
EP2949378A4 (en) * 2013-01-28 2016-09-21 Nof Corp Fouling inhibitor, filtration membrane and method for producing same
US10376848B2 (en) * 2013-01-28 2019-08-13 Nof Corporation Fouling inhibitor, filtration membrane and method for producing same
KR102056871B1 (en) 2013-03-15 2019-12-17 도레이첨단소재 주식회사 Positive charged poly(vinylidene fluoride) porous membranes and manufacturing method thereof
CN103657445A (en) * 2013-12-17 2014-03-26 常熟丽源膜科技有限公司 Method for preparing polyvinylidene fluoride ultra-filtration membrane
JP2017000998A (en) * 2015-06-15 2017-01-05 学校法人五島育英会 Fouling inhibitor, porous filtration membrane for water treatment and production method of the same
JP2017080674A (en) * 2015-10-28 2017-05-18 日東電工株式会社 Separation membrane, and protein separation-recovery system
WO2021200384A1 (en) * 2020-03-31 2021-10-07 株式会社ダイセル Laminate
CN112897704A (en) * 2020-12-04 2021-06-04 南京斯博伏特新材料有限公司 Hydrogel microelectrode for sewage treatment
WO2023195479A1 (en) * 2022-04-08 2023-10-12 国立大学法人神戸大学 Filtration membrane and production method for said membrane

Also Published As

Publication number Publication date
JP5524779B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP5524779B2 (en) Process for producing polyvinylidene fluoride porous filtration membrane
Miller et al. Surface modification of water purification membranes
WO2014115631A1 (en) Fouling inhibitor, filtration membrane and method for producing same
CN110917897A (en) Composite nanofiltration membrane and preparation method thereof
JP6022827B2 (en) Surface treatment agent for polyamide reverse osmosis membrane
CN110756061B (en) Oxidation-resistant high-flux reverse osmosis membrane and preparation method and application thereof
KR102141265B1 (en) Water-treatment membrane and method for manufacturing the same
KR101890020B1 (en) Fouling inhibitor, filtration membrane and method for producing same
WO2014186138A1 (en) 1234yf– and 1234ze–based polymeric membrane materials, membrane preparations and uses thereof
JP6767141B2 (en) Polyvinylidene fluoride porous membrane and its manufacturing method
AU2013365015B2 (en) Method for hydrophilizing reverse osmosis membrane
JP6667217B2 (en) Fouling inhibitor, porous filtration membrane for water treatment, and method for producing the same
CN114917776A (en) High-flux antibacterial reverse osmosis membrane and preparation method and application thereof
JP6158720B2 (en) Surface treatment agent, surface-treated polyamide reverse osmosis membrane and method for producing the same
JP2015229159A (en) Anti-contamination processing method for reverse osmosis membrane
JP2011156519A (en) Polymer water treatment film, water treatment method, and method for maintaining polymer water treatment film
JP6390326B2 (en) Method for producing porous filtration membrane for water treatment
KR101283738B1 (en) Asymmetric ultrafiltration and microfiltration membranes containing chitosan molecules and the method for preparation thereof
JP6712717B2 (en) Method for producing polyvinyl chloride porous filtration membrane for water treatment
JP6358031B2 (en) Method for producing a porous filtration membrane made of polyvinylidene fluoride for water treatment
Kassim Shaari et al. Fabrication of polysulfone/chitosan composite membrane with various concentrations of polysulfone
WO2023195479A1 (en) Filtration membrane and production method for said membrane
JP2017018844A (en) Water treatment method
KR20140073169A (en) Polyacrylonitrile membrane having excellent fouling resistance and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140410

R150 Certificate of patent or registration of utility model

Ref document number: 5524779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150