WO2014132796A1 - 撮像レンズ及び撮像装置 - Google Patents

撮像レンズ及び撮像装置 Download PDF

Info

Publication number
WO2014132796A1
WO2014132796A1 PCT/JP2014/053168 JP2014053168W WO2014132796A1 WO 2014132796 A1 WO2014132796 A1 WO 2014132796A1 JP 2014053168 W JP2014053168 W JP 2014053168W WO 2014132796 A1 WO2014132796 A1 WO 2014132796A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
image
optical surface
imaging
antireflection film
Prior art date
Application number
PCT/JP2014/053168
Other languages
English (en)
French (fr)
Inventor
大輔 棚橋
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015502850A priority Critical patent/JP6308208B2/ja
Publication of WO2014132796A1 publication Critical patent/WO2014132796A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0018Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings

Definitions

  • the present invention relates to an imaging lens, and more particularly, to a small imaging lens that uses a solid-state imaging device such as a CCD image sensor or a CMOS image sensor, and an imaging apparatus including the imaging lens.
  • a solid-state imaging device such as a CCD image sensor or a CMOS image sensor
  • a thin portable terminal called a smartphone has been developed, and a reduction in the height of an imaging lens used in an imaging apparatus mounted on such a thin portable terminal is required. If an attempt is made to reduce the height of the imaging lens, the power of the object side surface of the first lens closest to the object becomes strong, and the image side surface of the first lens takes a shape close to a flat or concave meniscus. It becomes. Due to this influence, the light incident on the first lens with a large angle tends to generate so-called multiple reflection ghost light in which multiple total reflection occurs between the object side surface and the image side surface of the first lens and reaches the image surface. It has come to be seen.
  • a light beam having an angle larger than the angle of view that contributes to image formation is totally reflected three or more times between both surfaces of the first lens, and therefore reaches the image surface without extremely reducing the intensity of multiple reflection ghost light. Probability is high.
  • multiple reflected ghost light is incident on the imaging surface of the image sensor, it causes deterioration in image quality.
  • the ghost light caused by the luminous flux from a strong light source having an angle larger than the angle of view that contributes to image formation does not appear in the image sensor because the light source that is the main cause of the ghost light does not appear in the image sensor. Easy to stand out.
  • Patent Document 1 discloses a condition in which ghost light is not generated.
  • an imaging lens having a large number of lenses there is a patent for multi-reflection ghost light that is remarkably generated by promoting a reduction in height. It is difficult to solve with the technique of Document 1, and Patent Document 1 does not disclose any countermeasure against multiple reflection ghost light.
  • the present invention has been made in view of such problems, and an imaging lens capable of forming a high-quality image by suppressing ghost light while having a relatively large number of lenses and a low profile, and An object is to provide an imaging apparatus using the same.
  • the imaging lens according to claim 1 It is composed of a positive first lens, a second lens, a third lens, a fourth lens, and a fifth lens, which are arranged in order from the object side and have a convex surface facing the object side, and the aperture stop is closer to the object side than the third lens.
  • an antireflection film is formed on at least the object-side optical surface and the image-side optical surface of the first lens.
  • the antireflection film is composed of a plurality of layers in which high refractive index layers and low refractive index layers are alternately stacked, On the optical axis of the first lens, the thickness of the antireflection film on the object side optical surface is larger than the thickness of the antireflection film on the image side surface.
  • FIG. 2 is a cross-sectional view of an imaging lens according to an example of the present invention.
  • the imaging lens shown in any figure is also a five-lens ball, L1 to L5 are lenses, S is an aperture stop, CG is a parallel plate such as an IR cut filter, and I is an imaging device.
  • L1 to L5 are lenses
  • S is an aperture stop
  • CG is a parallel plate such as an IR cut filter
  • I is an imaging device.
  • I is an imaging device.
  • the first lens Since the image side optical surface S2 of L1 is closer to the lens periphery (as it is away from the optical axis), the sag amount becomes a negative value (closer to the object side optical surface S1 of L1). The incident angle of the light beam becomes smaller, and total reflection occurs only twice. Therefore, it was found that the multiple reflection ghost light reaching the image plane is not conspicuous.
  • the object-side optical surface S1 protrudes in the optical axis direction, and the image-side optical surface S2 has a shape (or concave shape) close to a plane. With such a shape, the image-side optical surface S2 of the first lens L1 does not change greatly (or does not take a large negative value) even at a location away from the optical axis, so that it contributes to image formation.
  • the incident angle of the light beam after two times of total reflection on the S2 surface is increased to three degrees. Total reflection occurs (especially in the lower marginal ray group). Since the light beam totally reflected three times or more reaches the image sensor, the intensity of the ghost light is very strong and conspicuous.
  • the normal NL of the surface and the optical axis of the object side optical surface S1 of the first lens L1 are closer to the lens periphery (as the distance from the optical axis).
  • the film thickness around the lens tends to decrease compared to that on the axis, and the reflectance on the long wavelength side tends to increase. Therefore, the red ghost light easily reaches the image plane by combining these phenomena.
  • the red ghost light is more preferable than the blue ghost light. Tend to be hated.
  • the present inventor limits the shape of the first lens L1, and thus it is difficult to significantly suppress the multiple reflection ghost light.
  • the goal was to change the quality instead of reducing the amount of ghost light.
  • the film thickness of the antireflection film on the object side optical surface is set to be the same as that of the antireflection film on the image side surface. It was thicker than the film thickness.
  • the film thickness refers to the total film thickness.
  • the antireflection film may be provided only in the effective diameter range, or may be provided in an area larger than the effective diameter or on the entire surface of the lens. On the other hand, it is not necessary to provide an antireflection film at a joint portion that is joined in contact with another lens.
  • the low refractive index layer of the antireflection film preferably refers to a layer having a refractive index at a wavelength of 587.56 nm of 1.30 or more and less than 1.80.
  • the high refractive index layer of the antireflection film refers to a layer having a refractive index of 1.80 or more and 2.50 or less at a wavelength of 587.56 nm.
  • Preferred examples of the low refractive index layer include aluminum fluoride, magnesium fluoride, silicon oxide, aluminum oxide, yttrium oxide, cerium fluoride, and the like, and mixtures thereof.
  • Preferable examples of the high refractive index layer include zirconium oxide, tantalum oxide, titanium oxide, and haonium oxide.
  • examples of the method for providing the antireflection film include a vacuum deposition method, a sputtering method, a CVD method, an atmospheric pressure plasma method, a coating method, and a mist method.
  • a vacuum deposition method a sputtering method, a CVD method, an atmospheric pressure plasma method, a coating method, and a mist method.
  • the lens is a glass lens, it is preferable to anneal after forming the antireflection film.
  • the imaging lens according to the first aspect wherein the distance on the optical axis from the most object-side optical surface to the image-side focal point of the entire imaging lens system is L (mm), and the solid When the diagonal length of the imaging surface of the imaging device (diagonal length of the rectangular effective pixel region of the solid-state imaging device) is 2Y (mm), the following equation is satisfied. L / 2Y ⁇ 0.8 (1)
  • the imaging lens is a five-lens ball
  • the imaging lens when the imaging lens is low in height such that L / 2Y satisfies the expression (1), the image-side optical surface S2 of the first lens L1 closest to the object side has a shape close to a plane. Since it becomes (or concave), the light beam incident from the outside of the angle of view easily undergoes multiple total reflection between both surfaces of the first lens, so that the configuration of the present invention is particularly effective.
  • the imaging lens according to claim 3 is a positive first lens, second lens, third lens, fourth lens, fifth lens, and sixth lens that are arranged in order from the object side and have a convex surface facing the object side.
  • the aperture stop is located on the object side of the third lens, an antireflection film is formed on at least the object side optical surface and the image side optical surface of the first lens, and an object image is formed on the imaging surface of the solid-state image sensor.
  • the antireflection film is composed of a plurality of layers in which high refractive index layers and low refractive index layers are alternately stacked, On the optical axis of the first lens, the thickness of the antireflection film on the object side optical surface is larger than the thickness of the antireflection film on the image side surface.
  • the film thickness of the antireflection film on the object side optical surface is the same as that of the antireflection film on the image side surface. It was thicker than the film thickness.
  • the reflectance minimum value of the antireflection film can be shifted to the long wavelength side only on the object side optical surface of the first lens, thereby changing the color of the ghost light from red to blue and further preventing reflection.
  • the angle between the normal of the optical surface on which the film is deposited and the optical axis is increased, the reflectance on the long wavelength side increases, but the minimum value of the reflectance of the antireflection film is shifted to the long wavelength side.
  • the reflectivity of the light beam reflected at the point where the angle between the surface normal and the optical axis is large can be kept low in the entire visible light range, and the intensity becomes small and can be made inconspicuous.
  • the distance on the optical axis from the most object-side optical surface of the entire imaging lens system to the image-side focal point is L (mm)
  • the solid state When the diagonal length of the imaging surface of the imaging device (diagonal length of the rectangular effective pixel region of the solid-state imaging device) is 2Y (mm), the following equation is satisfied. L / 2Y ⁇ 0.9 (2)
  • the imaging lens is a six-lens lens
  • the imaging lens when the imaging lens is low in height so that L / 2Y satisfies the expression (2), the image-side optical surface S2 of the first lens L1 closest to the object side has a shape close to a plane. Since it becomes (or concave), the light beam incident from the outside of the angle of view easily undergoes multiple total reflection between both surfaces of the first lens, so that the configuration of the present invention is particularly effective.
  • An imaging lens is the imaging lens according to any one of the first to fourth aspects, wherein the film thickness of the antireflection film on the object-side optical surface of the first lens is the optical axis on the optical axis.
  • the thickness is set so that the reflectance of incident light with an angle ⁇ of 0 degree is 1% or less within the wavelength band of 500 to 750 nm,
  • the film thickness of the antireflection film on the image side optical surface of the first lens is 1 on the optical axis when the angle ⁇ formed with the optical axis is 0 degree and the reflectance of incident light is in the wavelength range of 420 to 650 nm.
  • the thickness is set to be equal to or less than%.
  • the color of ghost light can be changed from red to blue, making it less noticeable.
  • An imaging lens according to a sixth aspect of the present invention is the imaging lens according to any one of the first to fifth aspects, wherein the object-side optical surface and the image-side optical surface of the first lens have the same film configuration. It is characterized by that.
  • the same vapor deposition apparatus can be used for film deposition by making the antireflection films on the object side optical surface and the image side optical surface have the same film configuration.
  • the film thickness can be easily adjusted by controlling the heat source of the vapor deposition material and changing the vapor deposition time.
  • the image pickup lens according to claim 7 is characterized in that, in the invention according to any one of claims 1 to 6, the antireflection film has a four-layer structure.
  • the reflectance can be satisfactorily suppressed in a wide band by forming the antireflection film with a four-layer structure. Furthermore, by making it less than five layers, cost can be suppressed and generation
  • the imaging lens according to claim 8 is the imaging lens according to claim 7, wherein the antireflection film is formed by laminating the same film material in the order of the high refractive index layer and the low refractive index layer from the first lens side.
  • the outermost layer of the antireflection film is a low refractive index layer.
  • the wavelength range for suppressing reflection can be expanded. Further, by repeating the same film material, it is possible to avoid errors such as erroneous setting of different film materials in the vapor deposition apparatus, and to further improve durability.
  • the imaging lens according to claim 9 is the invention according to any one of claims 1 to 8, wherein the aperture stop is located closer to the object side than an effective diameter position of the object-side optical surface of the first lens.
  • the present invention is more effective in a so-called pre-aperture imaging lens that is small and low-profile.
  • the aperture stop when the aperture stop is positioned on the image side from the vertex on the object side optical surface of the first lens, a light beam outside the angle of view that does not contribute to image formation is likely to enter the lens. It becomes effective.
  • An imaging lens according to a tenth aspect of the present invention is the imaging lens according to any one of the first to ninth aspects, wherein the antireflection film includes a Ti-based high refractive index layer and a Si-based low refractive index layer.
  • the low refractive index layer is a mixed film in which two kinds of different inorganic materials are mixed, and the material constituting the mixed film is SiO 2 and Al 2 O 3 , and is used for the Si element in the mixed film.
  • the ratio of the number of Al elements is 1 to 5%.
  • the low refractive index layer is composed of a mixture of SiO 2 and Al 2 O 3 , stress is relaxed without deteriorating optical properties, and peeling and cracks are prevented from occurring.
  • the imaging lens according to claim 11 is the imaging lens according to any one of claims 1 to 10, wherein the image-side optical surface of the most image-side lens is an aspheric surface and has an inflection point within an effective diameter. It is characterized by.
  • the “inflection point” means that when the cross section of the image side optical surface of the lens is taken, the inclination of the tangent line drawn on the image side optical surface changes from positive to negative or from negative to positive as the distance from the optical axis increases. The point to do.
  • An imaging lens according to a twelfth aspect is the invention according to any one of the first to eleventh aspects, wherein an antireflection film is formed on the object-side optical surface and the image-side optical surface of all the lenses other than the first lens. It is characterized by being.
  • An imaging lens according to a thirteenth aspect is characterized in that, in the invention according to any one of the first to twelfth aspects, the second lens has a negative power.
  • the imaging lens according to a fourteenth aspect is the invention according to any one of the first to thirteenth aspects, wherein the maximum value ⁇ sagmax of the sag change amount ⁇ sag within the effective diameter of the object-side optical surface of the first lens is It satisfies the following formula. ⁇ sagmax ⁇ 0.4 (3)
  • FIG. 3 schematically shows from the center h0 of the surface S1 to the outer peripheral edge as an example of the optical surface of the lens.
  • the sag amount (sag) is the optical axis X of the lens center h0 at an arbitrary radius h when the optical axis X of the lens and the lens center h0 of the surface S1 are aligned.
  • the distance (mm) from the perpendicular L to the surface S1, and the direction from the surface S1 toward the image side is positive.
  • the sag change amount ⁇ sag is the sag inclination amount at an arbitrary radius h in the surface S1, that is, the inclination of the tangent line of the surface S1 at the radius h from the straight line L, and the surface S1 at the point of the radius h. Is the same as the angle formed by the normal line and the optical axis X, and its unit is [rad]. However, the case where the sag amount increases from the inner periphery toward the outer periphery is positive, and the case where the sag amount decreases is negative.
  • the object-side optical surface of the first lens has a surface shape that satisfies ⁇ sagmax satisfying the expression (3), when the antireflection coating is deposited on the object-side optical surface, Where the angle formed is large ( ⁇ sag is large), the film material does not ride on the object-side optical surface by the specified thickness, leading to a decrease in the optical film thickness compared to the center of the lens. In particular, the effect of the present invention is effective. Note that the present invention is further required when the following expression is satisfied. ⁇ sagmax ⁇ 0.6 (3 ′)
  • the sag change amount ⁇ sag on the image side optical surface of the first lens is the image side optical surface of the first lens.
  • the following formula is satisfied in the whole area within 80% of the effective diameter. ⁇ 0.05 ⁇ ⁇ sag (4)
  • the surface shape is almost perpendicular to the optical axis within 80% of the effective optical surface diameter.
  • the effect of the present invention is effective because the light beam incident from outside the corner is easily totally reflected on the surface. This is particularly effective because 0 ⁇ ⁇ sag is a concave surface in the entire area within 80% of the effective optical surface diameter of the image-side optical surface of the first lens. Since the light beam totally reflected in the peripheral area of the optical surface that exceeds 80% of the effective diameter travels outside the effective diameter of the optical surface, ⁇ sag in that area often does not cause a problem.
  • An imaging lens according to a sixteenth aspect is characterized in that, in the invention according to any one of the first to fifteenth aspects, the image-side optical surface of the first lens is a paraxial and concave surface on the image side. To do.
  • the image-side optical surface of the first lens is a surface having a concave shape on the image side, a light beam incident from outside the angle of view is easily totally reflected by the image-side optical surface. Is effective.
  • the imaging lens according to claim 17 is the imaging lens according to any one of claims 1 to 16, wherein sag (mm) on the image-side optical surface of the first lens is equal to that of the image-side optical surface of the first lens.
  • sag (mm) on the image-side optical surface of the first lens is equal to that of the image-side optical surface of the first lens.
  • the following expression is satisfied in the whole area within 80% of the effective diameter. -0.01 ⁇ sag (5)
  • the surface shape that is substantially flat with respect to the optical axis within the 80% diameter of the optical surface effective diameter or The effect of the present invention is effective because the light beam entering from the outside of the angle of view is easily totally reflected on the surface because of the concave shape.
  • the present invention is further required when the following expression is satisfied. ⁇ 0.004 ⁇ sag (5 ′)
  • sag is positive on the object side in the optical axis direction. Since the light beam totally reflected in the peripheral area of the optical surface that exceeds 80% of the effective diameter travels outside the effective diameter of the optical surface, the sag in that area often does not cause a problem.
  • An image pickup apparatus includes the image pickup lens according to any one of claims 1 to 17 and a solid-state image sensor.
  • an imaging lens capable of forming a high-quality image by suppressing ghost light while having a relatively large number of lenses and a low profile, and an imaging apparatus using the imaging lens.
  • FIG. 3 is a cross-sectional view in the optical axis direction of the imaging lens of Example 1.
  • FIG. 6 is a cross-sectional view in the optical axis direction of the imaging lens of Example 2.
  • the vertical axis represents ⁇ sag of the object-side optical surface of the first lens L1
  • the horizontal axis represents the height from the optical axis (however, the effective diameter is 1). It is.
  • the vertical axis represents the sag of the image-side optical surface of the first lens L1
  • the horizontal axis represents the height from the optical axis (however, the effective diameter is 1). It is.
  • the vertical axis represents ⁇ sag of the image-side optical surface of the first lens L1
  • the horizontal axis represents the height from the optical axis (however, the effective diameter is 1). It is.
  • An example of the relationship between reflectance and wavelength when ⁇ sag is changed when an antireflection film is deposited on the optical surface (the angle formed by the normal of the optical surface on which the antireflection film is deposited and the optical axis) is shown.
  • FIG. 4 is a cross-sectional view along the optical axis of the imaging apparatus 10 according to the present embodiment.
  • the following configuration is a schematic diagram, and some shapes, dimensions, and the like are different from actual ones.
  • the imaging apparatus 10 includes a CMOS imaging device 11 as a solid-state imaging device including a photoelectric conversion unit 11 a and an imaging lens 12 that forms a subject image on the photoelectric conversion unit 11 a of the imaging device 11.
  • a lens frame 13 that holds the imaging lens 12, an IR cut filter 14 that has a parallel plate shape, and a substrate 15 that supports the imaging element 11.
  • the image pickup device 11 is an image pickup device in which pixels (photoelectric conversion devices) are two-dimensionally arranged at the center of the light receiving side (upper surface in FIG. 4) on a parallel plate chip.
  • a photoelectric conversion unit 11a as a surface is formed, and a signal processing circuit (not shown) is formed around the photoelectric conversion unit 11a.
  • Such a signal processing circuit includes a drive circuit unit that sequentially drives each pixel to obtain a signal charge, an A / D conversion unit that converts each signal charge into a digital signal, and a signal that forms an image signal output using the digital signal. It consists of a processing unit and the like.
  • the image sensor 11 converts the signal charge from the photoelectric conversion unit 11a into an image signal such as a digital YUV signal, and transmits the image signal to an external circuit (not shown) (for example, a control circuit included in a host device on which the image pickup device is mounted). It is like that. In addition, it is possible to receive power and a clock signal for driving the image sensor 11 from an external circuit.
  • Y is a luminance signal
  • the image sensor is not limited to the above CMOS image sensor, and other devices such as a CCD may be used.
  • an imaging lens 12 having a five-lens configuration is provided inside the lens frame 13.
  • the imaging lens 12 includes, in order from the object side, a positive first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5 having a convex surface directed toward the object side. It is on the object side from the three lenses L3. It is preferable that the optical surfaces of all the lenses are composed of a plurality of layers in which a high refractive index layer and a low refractive index layer are alternately laminated, but at least on the optical axis of the first lens L1, the object side
  • the film thickness of the antireflection film on the optical surface is larger than the film thickness of the antireflection film on the image side surface. Since the method of forming the antireflection film is well known, it will not be described below.
  • An annular spacer SP is arranged between the flanges of each lens, and the distance between the lenses is maintained with high accuracy.
  • an IR cut filter 14 is disposed on the flange portion of the fifth lens L5 on the imaging element 11 side via an annular spacer SP. Furthermore, the spacer SP that supports the IR cut filter 14 and the lower end of the lens frame 13 that holds the imaging lens 12 are in contact with the substrate 15.
  • FIG. 5A and 5B show a state in which the imaging device 10 is mounted on a smartphone 100 as a mobile terminal.
  • FIG. 6 is a control block diagram of the smartphone 100.
  • the object side end surface of the lens frame 13 is provided on the back surface of the smartphone 100 (see FIG. 5B), and is disposed at a position corresponding to the lower side of the liquid crystal display unit.
  • the imaging device 10 is connected to the control unit 101 of the smartphone 100 via an external connection terminal (an arrow in FIG. 6), and outputs an image signal such as a luminance signal or a color difference signal to the control unit 101 side.
  • the smartphone 100 controls each unit in an integrated manner, and a control unit (CPU) 101 that executes a program corresponding to each process, a switch such as a power source, a number, and the like using a touch pad.
  • a control unit CPU
  • a switch such as a power source, a number, and the like using a touch pad.
  • ROM storage unit
  • the smartphone 100 operates by operating the input key unit 60, drives the imaging lens 12 by an actuator (not shown) to perform an autofocus operation, and presses the release button 71 or the like to operate the imaging device 10. Imaging can be performed.
  • the image signal input from the imaging device 10 is stored in the storage unit 92 or displayed on the touch panel 70 by the control system of the smartphone 100, and further transmitted to the outside as video information via the wireless communication unit 80. Is done.
  • f Focal length of the entire imaging lens system
  • fB Back focus
  • F F number 2Y: Diagonal length ENTP on the imaging surface of the solid-state imaging device: Entrance pupil position (distance from the first surface to the entrance pupil position)
  • EXTP exit pupil position (distance from imaging surface to exit pupil position)
  • H1 Front principal point position (distance from first surface to front principal point position)
  • H2 Rear principal point position (distance from the final surface to the rear principal point position)
  • R radius of curvature
  • D axial top surface spacing
  • Nd refractive index ⁇ d of lens material with respect to d-line: Abbe number of lens material
  • L distance on the optical axis from the lens surface closest to the object side to the image side focal point of the entire imaging lens system
  • the surface on which the aspheric coefficient is described is a surface having an aspheric shape, and the aspheric shape has an apex at the surface as an origin, an X axis in the optical axis direction, and a direction perpendicular to the optical axis.
  • the height is expressed by the following “Equation 1” where h is the height.
  • Example 1 shows lens data of Example 1.
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 02
  • E for example, 2.5E-02
  • FIG. 7 is a cross-sectional view of the lens of Example 1 according to five balls.
  • L1 is a first lens having a positive refractive power and a convex surface facing the object side, and the image side optical surface is concave
  • L2 is a second lens having a negative refractive power
  • L3 is a third lens
  • L5 is a fifth lens whose image side optical surface is paraxial and concave, and has an inflection point within the effective diameter
  • S is disposed on the object side from the effective diameter of the first lens L1.
  • An aperture stop, I indicates an imaging surface.
  • CG is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like.
  • Example 1 a high refractive index layer made of TiO 2 and a low refractive index layer made of SiO 2 and Al 2 O 3 are alternately laminated on the optical surfaces of all lenses in order from the lens (substrate) side.
  • an antireflection film consisting of a total of four layers is formed.
  • the ratio of the number of Al elements to the Si elements in the mixed film of the low refractive index layer is 1 to 5%.
  • the outermost layer of the antireflection film is a low refractive index layer.
  • the film thickness of the antireflection film on the optical axis on the object side optical surface of the first lens L1 is 294 nm, and as shown in Table 3, on the optical axis on the image side optical surface.
  • the thickness of the antireflection film is 253 nm.
  • Example 2 Table 4 shows lens data of Example 2.
  • FIG. 8 is a cross-sectional view of the lens of Example 1 concerning 6 balls.
  • L1 is a first lens having a positive refractive power, a convex surface facing the object side, and an image-side optical surface close to a flat surface
  • L2 a second lens having a negative refractive power
  • L3 a third lens.
  • L4 is a fourth lens
  • L5 is a fifth lens
  • L6 is a sixth lens in which the image side optical surface is a paraxial concave shape and has an inflection point within an effective diameter
  • S is a first lens L1.
  • An aperture stop (surface stop) formed on the image-side optical surface, I denotes an imaging surface.
  • CG is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like.
  • Example 2 a high refractive index layer made of TiO 2 and a low refractive index layer made of SiO 2 and Al 2 O 3 are alternately laminated on the optical surfaces of all lenses in order from the lens (substrate) side.
  • an antireflection film consisting of a total of four layers is formed.
  • the ratio of the number of Al elements to the Si elements in the mixed film of the low refractive index layer is 1 to 5%.
  • the outermost layer of the antireflection film is a low refractive index layer.
  • the film thickness of the antireflection film on the optical axis on the object side optical surface of the first lens L1 is 294 nm, and as shown in Table 3, on the optical axis on the image side optical surface.
  • the thickness of the antireflection film is 253 nm.
  • FIG. 9 is a graph showing the reflection characteristics of the antireflection film on the object side optical surface and the image side optical surface of the first lens L1 in Examples 1 and 2.
  • the film thickness of the antireflection film on the object-side optical surface of the first lens L1 is as described above on the optical axis, reflection of incident light with an angle ⁇ formed with the optical axis being 0 degrees.
  • the rate is 1% or less within the wavelength band of 500 to 750 nm.
  • the film thickness of the antireflection film on the image side optical surface of the first lens L1 is as described above, the reflectance of the incident light when the angle ⁇ formed with the optical axis is 0 degree is in the wavelength band 420 ⁇ .
  • the thickness is set to be 1% or less within the range of 650 nm.
  • the reflectance of incident light at an angle ⁇ of 0 ° that forms only the object-side optical surface of the first lens L1 with the optical axis is 1% or less within a wavelength band of 500 to 750 nm.
  • a similar antireflection film shifted to the longer wavelength side may be deposited on the other optical surfaces.
  • the image side optical surface of the fifth lens L5 has a shape that is concave on the image side in the vicinity of the optical axis and convex on the image side in the peripheral portion, so that ⁇ sag is large. Inter-surface reflection is likely to occur between the optical surfaces.
  • an antireflection film is used in which the incident light has an angle ⁇ of 0 degree and the reflectance of incident light is 1% or less within the wavelength band of 500 to 750 nm. You may do it.
  • the film thickness ratio in order to change the film thickness ratio with the same film configuration as described above and shift the wavelength band where the reflectance is low to about 100 nm to the longer wavelength side, for example, on the object side optical surface of the first lens L1
  • the ratio of the physical film thickness of the antireflection film on the optical axis on the image side optical surface of the first lens L1 to the physical film thickness of the antireflection film on the optical axis may be about 0.84 to 0.89.
  • the film design wavelength shift amount may be about 80 to 100 nm on the long wavelength side.
  • the vertical axis represents ⁇ sag of the object-side optical surface of the first lens L1
  • the horizontal axis represents the height from the optical axis (where the effective diameter is 1).
  • FIG. The maximum value ⁇ sagmax of the amount ⁇ sag of the object side optical surface in the first lens L1 is about 0.7 in both the first and second embodiments.
  • FIG. 11 shows the sag of the image-side optical surface of the first lens L1 on the vertical axis in Examples 1 and 2, and the height from the optical axis on the horizontal axis (however, the effective diameter is 1).
  • FIG. 11 In the entire area within 80% of the effective diameter of the image-side optical surface of the first lens L1, the sag of Example 1 is 0 or more, and the sag of Example 2 is ⁇ 0.002 or more.
  • the vertical axis indicates ⁇ sag of the image side optical surface of the first lens L1
  • the horizontal axis indicates the height from the optical axis (however, the effective diameter is 1).
  • FIG. In the entire 80% of the effective diameter of the image-side optical surface of the first lens L1, ⁇ sag in Example 1 is 0 or more, and ⁇ sag in Example 2 is ⁇ 0.01 or more.
  • FIG. 13 is a diagram showing an example of the relationship between reflectance and wavelength when ⁇ sag is changed when an antireflection film is deposited on the optical surface.
  • the value of ⁇ sag is increased, that is, the greater the angle between the normal of the optical surface on which the antireflection film is deposited and the optical axis, the lower the reflectance is in the shorter wavelength range. It can be seen that the light on the long wavelength side is easily reflected.
  • the value of ⁇ sag increases as the height from the optical axis of the S1 surface increases, that is, as the distance from the optical surface increases.
  • the inventor has the same lens shape as in Example 1, but the film thickness of the antireflection film on the optical axis of the object-side optical surface in the first lens L1 is set on the optical axis of the image-side optical surface.
  • a comparative example having the same thickness (253 nm) as that of the antireflection film was prepared.
  • FIG. 14 shows an example of the CIE XYZ coordinate system X on the imaging surface that receives the multiple reflected ghost light when a light beam having an angle larger than the angle of view that contributes to imaging is incident in the comparative example and Example 1. Only the values are graphed, and the larger the X value, the stronger the reddish tint.
  • the number of display pixels on the imaging surface is 128 pixels in the horizontal direction and 96 pixels in the vertical direction.
  • the illuminance on the image plane was made substantially equal between the corresponding pixels in the comparative example and Example 1.
  • Example 1 In the comparative example shown in FIG. 14B, there are a wide range of areas where the X value is 1.5 or more, and there are also areas where the X value is 2.0 or more at both ends. On the other hand, in Example 1 shown in FIG. 14 (a), there are few regions where the X value is 1.5 or more, and there are no regions where the X value is 2.0 or more. Therefore, in Example 1, the redness component can be suppressed even when multiple reflection ghost light is generated.
  • the present invention is not limited to the embodiments and examples described in the specification, and includes other examples and modifications based on the embodiments, examples, and technical ideas described in the present specification. It will be apparent to those skilled in the art. For example, even when a dummy lens having substantially no refractive power is further provided, it is within the scope of application of the present invention.
  • the present invention can provide an imaging lens suitable for a small portable terminal.

Abstract

 比較的レンズ枚数が多く、且つ低背でありながらも、ゴースト光を抑制して高画質な画像を形成できる撮像レンズ、及びそれを用いた撮像装置を提供することを目的とする。 物体側から順に配置された、物体側に凸面を向けた正の第1レンズ(L1)ないし第5レンズ(L5)からなり、開口絞り(S)は前記第3レンズ(L3)より物体側にあり、少なくとも前記第1レンズ(L1)の物体側光学面と像側光学面とに反射防止膜が形成され、固体撮像素子の撮像面に被写体像を結像するために用いられる撮像レンズにおいて、前記反射防止膜は、高屈折率層と低屈折率層とが交互に積層された複数の層から構成され、前記第1レンズ(L1)の光軸上において、前記物体側光学面の反射防止膜の膜厚は、前記像側面の反射防止膜の膜厚より厚くする。

Description

撮像レンズ及び撮像装置
 本発明は撮像レンズ、特には、CCD型イメージセンサあるいはCMOS型イメージセンサ等の固体撮像素子を用いた小型で高い解像度が得られる撮像レンズ、およびこれを備える撮像装置に関する。
 近年、CCD(Charged Coupled Device)型イメージセンサあるいはCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサ等の固体撮像素子を用いた撮像装置が搭載された携帯端末の普及の増大に伴い、より高画質の画像が得られるよう、高画素数をもつ撮像素子を使用した撮像装置が搭載されたものが市場に供給されるようになってきた。従来の高画素数をもつ撮像素子は、大型化をともなっていたが、近年、画素の高細化が進み、撮像素子が小型化されるようになってきた。又、このような高画素の撮像素子に高画質な被写体像を形成できるよう、撮像レンズには5枚玉以上のレンズを有することが必要になってきた。
 一方で、特に近年,スマートフォンと呼ばれる薄形の携帯端末が開発されており、このような薄形の携帯端末に搭載される撮像装置に用いる撮像レンズの低背化が要求されている。ここで、撮像レンズの低背化を推進しようとすると、最も物体側の第1レンズの物体側面のパワーが強くなり且つ第1レンズの像側面は平面または凹のメニスに近い形状をとるようになってくる。この影響により、大きな角度を持って第1レンズに入射してくる光が第1レンズの物体側面と像側面間で多重全反射し像面に到達する、いわゆる多重反射ゴースト光が発生する傾向が見られるようになってきた。
 特に、結像に寄与する画角より大きな角度を有する光束は、第1レンズの両面間で三回以上全反射するため、多重反射ゴースト光の強度が極端に低下することなく像面に到達する可能性が高い。このような多重反射ゴースト光が、撮像素子の撮像面に入射すると画質を悪化させる原因となる。特に、結像に寄与する画角より大きな角度を有する、強度の強い光源からの光束によるゴースト光は、撮像素子内にそのゴースト光の主原因たる光源は写りこまないため、ゴースト光が非常に目立ちやすい。
 これに対し特許文献1には、ゴースト光が発生しない条件について開示されているが、レンズ枚数が多い撮像レンズにおいて、低背化を推進することで顕著に発生する多重反射ゴースト光については、特許文献1の技術では解消することが困難であり、また特許文献1には、多重反射ゴースト光の対策について何ら開示されていない。
特開2009-294528号公報
 本発明は、このような問題点に鑑みてなされたものであり、比較的レンズ枚数が多く、且つ低背でありながらも、ゴースト光を抑制して高画質な画像を形成できる撮像レンズ、及びそれを用いた撮像装置を提供することを目的とする。
 請求項1に記載の撮像レンズは、
 物体側から順に配置された、物体側に凸面を向けた正の第1レンズ、第2レンズ、第3レンズ、第4レンズ、第5レンズからなり、開口絞りは前記第3レンズより物体側にあり、少なくとも前記第1レンズの物体側光学面と像側光学面とに反射防止膜が形成され、固体撮像素子の撮像面に被写体像を結像するために用いられる撮像用レンズにおいて、
 前記反射防止膜は、高屈折率層と低屈折率層とが交互に積層された複数の層から構成され、
 前記第1レンズの光軸上において、前記物体側光学面の反射防止膜の膜厚は、前記像側面の反射防止膜の膜厚より厚いことを特徴とする。
 本発明者は、比較的光軸方向長が長い従来タイプの撮像レンズと、それよりも低背に設計された撮像レンズとを比較しつつ、多重反射ゴースト光の特性について検討した。図1は、光軸方向全長が5mm(L/2Y=0.87)と比較的長い従来の撮像レンズの断面図である。図2は、本発明の一例にかかる撮像レンズの断面図である。いずれの図に示す撮像レンズも5枚玉であり、L1~L5はレンズ、Sは開口絞り、CGはIRカットフィルタなどの平行平板、Iは撮像素子である。ここで、図1に示す撮像レンズにおいて、結像に寄与する画角より大きな角度を有する光束が入射して、最も物体側の第1レンズL1の両面間で多重反射しても、第1レンズL1の像側光学面S2はレンズ周辺に向かうほど(光軸から離れるにつれて)sag量はマイナスの値を取る(L1の物体側光学面S1に近づく)ため、二回全反射後のS2面への光線入射角は小さくなり、全反射は二回しか生じない。そのため像面に到達する多重反射ゴースト光が目立たないことが分かった。
 一方、図2に示す撮像レンズは、図1の撮像レンズに比べて光軸方向全長が3.42mm(L/2Y=0.75)と短くなっているので、最も物体側の第1レンズL1の物体側光学面S1が光軸方向に突出し、且つ像側光学面S2が平面に近い形状(もしくは凹状)となっている。このような形状であると、第1レンズL1の像側光学面S2は光軸から離れた箇所でもsag量は大きく変化しない(またはマイナスに大きな値を取らない)為に結像に寄与する画角より大きな角度を有する光束が入射して、最も物体側の第1レンズL1の両面間で多重反射した際に、二回全反射後の光線のS2面への入射角は大きくなり、三度全反射が生じる(特に、下側のマージナル光線群において)。この三回以上全反射した光線が撮像素子に到達してしまう為、ゴースト光の強度は非常に強く目立ってしまう。
 更に、光学面S1に反射防止膜を設けている場合、第1レンズL1の物体側光学面S1において、レンズ周辺に向かうほど(光軸から遠くなるにつれて)、面の法線NLと光軸との成す角αが大きくなる。そのため、レンズ周辺での膜厚が軸上に比べて減少しやすく、これにより長波長側の反射率は高くなる傾向にある。従って、これらの現象が合わせて生じることで赤色系のゴースト光が像面に到達しやすくなるが、より高品位の画質が所望される場合、青色系のゴースト光より赤色系のゴースト光の方が嫌われる傾向にある。
 本発明者は、以上のごとき知見から、レンズ枚数が多い撮像レンズを低背化した場合、第1レンズL1の形状が制限されるので、多重反射ゴースト光を大幅に抑制することは困難であるという結論に達し、ゴースト光の量を抑える代わりに質を変えることを目指したのである。より具体的には、最も避けたい赤色ゴースト光を低減するために、前記第1レンズの光軸上において、前記物体側光学面の反射防止膜の膜厚を、前記像側面の反射防止膜の膜厚より厚くしたのである。これにより前記第1レンズの物体側光学面のみ反射防止膜の反射率極小値を長波長側にシフトすることができ、もって、ゴースト光の色味を赤系から青系に変化させ、更に反射防止膜を蒸着した光学面の法線と光軸との成す角が大きくなると長波長側の反射率が高くなってしまうが、反射防止膜の反射率極小値を長波長側にシフトしたことで光学面の法線と光軸との成す角が大きい箇所で反射された光線の反射率を可視光全域で低く抑えることが出来、強度も小さくなり目立たなくすることができたのである。尚、ここでの膜厚は、総膜厚をいう。
 尚、反射防止膜は、有効径の範囲のみに反射防止膜を設けるようにしてもよいし、有効径より大きな領域、又は、レンズ全面に反射防止膜を設けるようにしてもよい。一方、他のレンズと接して接合する接合部には、反射防止膜を設けなくてもよい。
 また、反射防止膜の低屈折率層とは、好ましくは、波長587.56nmでの屈折率が、1.30以上、1.80未満の層をいう。また、反射防止膜の高屈折率層とは、波長587.56nmでの屈折率が、1.80以上、2.50以下の層をいう。
 低屈折率層の好ましい例としては、フッ化アルミニウム、フッ化マグネシウム、酸化シリコン、酸化アルミニウム、酸化イットリウム、フッ化セリウム等及びこれらの混合物が挙げられる。高屈折率層の好ましい例としては、酸化ジルコニウム、酸化タンタル、酸化チタン、酸化ハウニウム等が挙げられる。
 また、反射防止膜を設ける方法としては、真空蒸着法、スパッタ法、CVD法、大気圧プラズマ法、塗布法、ミスト法等が挙げられる。尚、レンズがガラスレンズである場合、反射防止膜を形成した後、アニール処理することが好ましい。
 請求項2に記載の撮像レンズは、請求項1に記載の発明において、前記撮像レンズ全系の最も物体側の光学面から像側焦点までの光軸上の距離をL(mm)、前記固体撮像素子の撮像面対角線長(固体撮像素子の矩形実効画素領域の対角線長)を2Y(mm)とすると、以下の式を満たすことを特徴とする。
 L/2Y<0.8   (1)
 前記撮像レンズが5枚玉である場合、L/2Yが(1)式を満たすような低背な撮像レンズにすると、最も物体側の第1レンズL1の像側光学面S2が平面に近い形状(もしくは凹状)となる為、画角外から入射してきた光束が前記第1レンズの両面間で多重全反射しやすくなるため、特に本発明の構成が有効である。
 請求項3に記載の撮像レンズは、物体側から順に配置された、物体側に凸面を向けた正の第1レンズ、第2レンズ、第3レンズ、第4レンズ、第5レンズ、第6レンズからなり、開口絞りは前記第3レンズより物体側にあり、少なくとも前記第1レンズの物体側光学面と像側光学面とに反射防止膜が形成され、固体撮像素子の撮像面に被写体像を結像するために用いられる撮像用レンズにおいて、
 前記反射防止膜は、高屈折率層と低屈折率層とが交互に積層された複数の層から構成され、
 前記第1レンズの光軸上において、前記物体側光学面の反射防止膜の膜厚は、前記像側面の反射防止膜の膜厚より厚いことを特徴とする。
 本発明によれば、最も避けたい赤色ゴースト光を低減するために、前記第1レンズの光軸上において、前記物体側光学面の反射防止膜の膜厚は、前記像側面の反射防止膜の膜厚より厚くしたのである。これにより前記第1レンズの物体側光学面のみ反射防止膜の反射率極小値を長波長側にシフトすることができ、もって、ゴースト光の色味を赤系から青系に変え、更に反射防止膜を蒸着した光学面の法線と光軸との成す角が大きくなると長波長側の反射率が高くなってしまうが、反射防止膜の反射率極小値を長波長側にシフトしたことで光学面の法線と光軸との成す角が大きい箇所で反射された光線の反射率を可視光全域で低く抑えることが出来、強度も小さくなり目立たなくすることができたのである。
 請求項4に記載の撮像レンズは、請求項3に記載の発明において、前記撮像レンズ全系の最も物体側の光学面から像側焦点までの光軸上の距離をL(mm)、前記固体撮像素子の撮像面対角線長(固体撮像素子の矩形実効画素領域の対角線長)を2Y(mm)とすると、以下の式を満たすことを特徴とする。
 L/2Y<0.9   (2)
 前記撮像レンズが6枚玉である場合、L/2Yが(2)式を満たすような低背な撮像レンズにすると、最も物体側の第1レンズL1の像側光学面S2が平面に近い形状(もしくは凹状)となる為、画角外から入射してきた光束が前記第1レンズの両面間で多重全反射しやすくなるため、特に本発明の構成が有効である。
 請求項5に記載の撮像レンズは、請求項1~4のいずれかに記載の発明において、前記第1レンズの物体側光学面の反射防止膜の膜厚は、光軸上において、光軸と成す角度θが0度で入射する光の反射率が波長帯500~750nmの範囲内で1%以下となるように、厚さが設定されており、
 前記第1レンズの像側光学面の反射防止膜の膜厚は、光軸上において、光軸と成す角度θが0度で入射する光の反射率が波長帯420~650nmの範囲内で1%以下となるように、厚さが設定されていることを特徴とする。
 上記特性を有する反射防止膜とすることで、ゴースト光の色味を赤系から青系に変えることができ、より目立たなくすることができる
 請求項6に記載の撮像レンズは、請求項1~5のいずれかに記載の発明において、前記第1レンズの物体側光学面と像側光学面の反射防止膜は、同一の膜構成であることを特徴とする。
 前記物体側光学面と前記像側光学面の反射防止膜を同一の膜構成とすることで、膜蒸着時に同一蒸着装置を使用できるメリットがある。尚、膜厚に関しては、蒸着材の熱源をコントロールし蒸着時間を変えるなどすることで、容易に調整できる。
 請求項7に記載の撮像レンズは、請求項1~6のいずれかに記載の発明において、前記反射防止膜は四層の積層構造であることを特徴とする。
 前記反射防止膜を四層の積層構造とすることで、広い帯域で良好に反射率を抑えることができる。更に、五層未満とすることで、コストを抑えることができ、またクラックなどの発生を抑制できる。
 請求項8に記載の撮像レンズは、請求項7に記載の発明において、前記反射防止膜は前記第1レンズ側から順に高屈折率層、低屈折率層の順で同一膜材料が積層され、前記反射防止膜の最外層は低屈折率層であることを特徴とする。
 このように同一の膜材料を繰り返し積層することで、反射を抑制する波長範囲を広げることができる。また、同一膜材料の繰り返しとすることで、蒸着装置に異なる膜材料を誤ってセットするなどの誤りを回避でき、更に耐久性も上げることが可能となる。
 請求項9に記載の撮像レンズは、請求項1~8のいずれかに記載の発明において、前記開口絞りは、前記第1レンズの物体側光学面の有効径の位置より物体側にあることを特徴とする。
 小型・低背な、いわゆる前置絞りの撮像レンズにおいて本発明は一層の効果を発揮する。特に、前記第1レンズの物体側光学面頂点より像側に前記開口絞りが位置する場合、結像に寄与しない画角外の光束がレンズ内に入射しやすくなる為、本発明の効果がより有効となってくる。
 請求項10に記載の撮像レンズは、請求項1~9のいずれかに記載の発明において、前記反射防止膜はTi系の高屈折率層とSi系の低屈折率層とで構成されており、前記低屈折率層は2種類の異なる無機材料が混合された混合膜であり、前記混合膜を構成する材料が、SiO2とAl23であり、前記混合膜中のSiの元素に対するAlの元素数の比率が1~5%であることを特徴とする。
 前記低屈折率層がSiO2とAl23との混合物で構成されることで、光学特性を損なうことなく応力が緩和されて剥離やクラックの発生が防止される。
 請求項11に記載の撮像レンズは、請求項1~10のいずれかに記載の発明において、最も像側のレンズの像側光学面は非球面であって、有効径内に変曲点を持っていることを特徴とする。
 これにより、有効画角全域の結像性能を良好にすることができる。尚、「変曲点」とは、レンズの像側光学面の断面をとったとき、前記像側光学面に引いた接線の傾きが、光軸から離れるにつれて正から負又は負から正に変化する点をいう。
 請求項12に記載の撮像レンズは、請求項1~11のいずれかに記載の発明において、前記第1レンズ以外の全てのレンズにおける物体側光学面及び像側光学面に、反射防止膜が形成されていることを特徴とする。
 これにより、ゴースト、フレアを更に低減できる
 請求項13に記載の撮像レンズは、請求項1~12のいずれかに記載の発明において、前記第2レンズは負のパワーを有することを特徴とする。
 これにより色収差を良好に補正できる。
 請求項14に記載の撮像レンズは、請求項1~13のいずれかに記載の発明において、前記第1レンズの物体側光学面の有効径内において、サグの変化量Δsagの最大値Δsagmaxは以下の式を満たすことを特徴とする。
 Δsagmax≧0.4   (3)
 サグ(sag)及びサグの変化量Δsagについて説明する。図3は、レンズの光学面の例として面S1の中心h0から外周端までを模式的に示している。図3に示すように、サグ量(sag)とは、レンズの光軸Xと面S1のレンズ中心h0とが一致するよう配置したとき、任意の半径hにおいて、レンズ中心h0における光軸Xの垂線Lから面S1までの距離(mm)であり、なお面S1から像側へ向く方向を正とする。また、サグの変化量Δsagとは、面S1における任意の半径hでのサグの傾き量、すなわち、半径hにおける面S1の接線の、直線Lからの傾きをいい、半径hの点における面S1の法線と光軸Xとの成す角と同義であり、その単位は[rad]である。但し、内周から外周へ向かってサグ量が増加する場合を正、減少する場合を負とする。
 前記第1レンズの物体側光学面が(3)式を満たすΔsagmaxをとるような面形状だと、反射防止コートを物体側光学面に蒸着した際に、光軸に対して面の法線の成す角が大きい(Δsagが大きい)個所では、膜材料が物体側光学面に規定厚分乗らず、レンズ中央部に比べて光学膜厚の減少を招き、その影響で赤色味の強いゴースト光となってしまう可能性が高くなるため、特に本発明の効果が有効である。尚、以下の式を満たすと更に本発明が必要となってくる。
 Δsagmax≧0.6   (3’)
 請求項15に記載の撮像レンズは、請求項1~14のいずれかに記載の発明において、前記第1レンズの像側光学面におけるサグの変化量Δsagは、前記第1レンズの像側光学面の有効径の8割径内全域において以下の式を満たすことを特徴とする。
-0.05≦Δsag   (4)
 前記第1レンズの像側光学面において、Δsagが(4)式を満たすような面形状だと、光学面有効径の8割径内においては光軸に対してほぼ直交する面形状となり、画角外から入射してきた光束がその面で全反射しやすくなるため、本発明の効果が有効である。前記第1レンズの像側光学面の光学面有効径の8割径内全域において、0≦Δsagであると凹面形状となるため特に有効となる。尚、有効径の8割を超えるような光学面周縁領域で全反射した光束は、光学面有効径外へ進むので、その領域のΔsagは問題とならないことが多い。
 請求項16に記載の撮像レンズは、請求項1~15のいずれかに記載の発明において、前記第1レンズの像側光学面は、近軸で像側に凹状の面であることを特徴とする。
 前記第1レンズの像側光学面が像側に凹となる形状の面となることで、画角外から入射してきた光束が、像側光学面で全反射しやすくなるため、本発明の効果が有効である。
 請求項17に記載の撮像レンズは、請求項1~16のいずれかに記載の発明において、前記第1レンズの像側光学面におけるsag(mm)は、前記第1レンズの像側光学面の有効径の8割径内全域において以下の式を満たすことを特徴とする。
-0.01≦sag   (5)
 記第1レンズの像側光学面におけるsagが(5)式を満たすような面形状だと、光学面有効径の8割径内においては、光軸に対してほぼフラットな直交する面形状または凹面形状となり、画角外から入射してきた光束がその面で全反射しやすくなるため、本発明の効果が有効となる。尚、以下の式を満たすと更に本発明が必要となってくる。
 -0.004≦sag   (5’)
 但し、sagは光軸方向物体側を正としている。有効径の8割を超えるような光学面周縁領域で全反射した光束は光学面有効径外へ進むため、その領域のsagは問題とならないことが多い。
 請求項18に記載の撮像装置は、請求項1~17のいずれかに記載の撮像レンズと、固体撮像素子とを有することを特徴とする。
 本発明によれば、比較的レンズ枚数が多く、且つ低背でありながらも、ゴースト光を抑制して高画質な画像を形成できる撮像レンズ、及びそれを用いた撮像装置を提供することができる。
従来の撮像レンズの断面図である。 本発明の一例にかかる撮像レンズの断面図である。 レンズL1の光学面の例として面S1の中心h0から外周端までを模式的に示す図である。 撮像装置の撮像光学系の光軸に沿った断面を模式的に示した図である。 撮像ユニットを適用した携帯電話の正面図(a)、及び撮像ユニットを適用した携帯電話の背面図(b)である。 図5のスマートフォンの制御ブロック図である。 実施例1の撮像レンズの光軸方向断面図である。 実施例2の撮像レンズの光軸方向断面図である。 第1レンズの物体側光学面の反射防止膜と,像側光学面の反射防止膜の反射特性を比較して示すグラフである。 実施例1,2において、縦軸に第1レンズL1における物体側光学面のΔsagをとって示し、横軸に光軸からの高さ(但し、有効径を1とする)をとって示す図である。 実施例1,2において、縦軸に第1レンズL1における像側光学面のsagをとって示し、横軸に光軸からの高さ(但し、有効径を1とする)をとって示す図である。 実施例1,2において、縦軸に第1レンズL1における像側光学面のΔsagをとって示し、横軸に光軸からの高さ(但し、有効径を1とする)をとって示す図である。 光学面に反射防止膜を蒸着した場合にΔsagを変化させたときにおける(反射防止膜が蒸着した光学面の法線と光軸との成す角と)、反射率と波長の関係の一例を示す図である。 比較例と実施例1とにおいて多重反射ゴースト光を受光した撮像面上におけるCIE XYZ座標系のX値だけをグラフ化した図で、(a)が実施例1の場合を示し、(b)が比較例の場合を示す。
 以下、本発明の実施の形態を図面に基づいて説明する。図4は、本実施の形態にかかる撮像装置10の光軸に沿った断面図である。以下に示す構成は概略図であり、形状や寸法等は実際と異なるものがある。
 図4に示すように、撮像装置10は、光電変換部11aを備えた固体撮像素子としてのCMOS型撮像素子11と、この撮像素子11の光電変換部11aに被写体像を結像させる撮像レンズ12と、撮像レンズ12を保持する鏡枠13と、平行平板状であるIRカットフィルタ14と、撮像素子11を支持する基板15とを有する。
 図4に示すように、撮像素子11は、平行平板状のチップ上において、その受光側(図4で上面)の中央部に、画素(光電変換素子)が2次元的に配置された、撮像面としての光電変換部11aが形成されており、その周囲には信号処理回路(不図示)が形成されている。かかる信号処理回路は、各画素を順次駆動し信号電荷を得る駆動回路部と、各信号電荷をデジタル信号に変換するA/D変換部と、このデジタル信号を用いて画像信号出力を形成する信号処理部等から構成されている。
 また、撮像素子11のチップにおける受光面側の外縁近傍に形成された複数のパッドは、不図示のワイヤにより基板15に接続されている。撮像素子11は、光電変換部11aからの信号電荷をデジタルYUV信号等の画像信号等に変換し、不図示の外部回路(例えば、撮像装置を実装した上位装置が有する制御回路)へと送信するようになっている。又、外部回路から撮像素子11を駆動するための電力やクロック信号の供給を受けることもできる。ここで、Yは輝度信号、U(=R-Y)は赤と輝度信号との色差信号、V(=B-Y)は青と輝度信号との色差信号である。なお、撮像素子は上記CMOS型のイメージセンサに限定されるものではなく、CCD等の他のものを使用しても良い。
 図4において、鏡枠13の内部には、5枚レンズ構成の撮像レンズ12が設けられている。撮像レンズ12は物体側より順に、物体側に凸面を向けた正の第1レンズL1、第2レンズL2、第3レンズL3、第4レンズL4、第5レンズL5からなり、開口絞りSは第3レンズL3より物体側にある。全てのレンズの光学面には、高屈折率層と低屈折率層とが交互に積層された複数の層から構成されていると好ましいが、少なくとも第1レンズL1の光軸上において、物体側光学面の反射防止膜の膜厚は、像側面の反射防止膜の膜厚より厚くなっている。反射防止膜の形成方法は、よく知られているので,以下記載しない。
 各レンズのフランジ部間には、環状のスペーサSPが配置され、レンズ間距離を精度良く維持している。又、第5レンズL5のフランジ部の撮像素子11側には、環状のスペーサSPを介してIRカットフィルタ14が配置されている。更に、IRカットフィルタ14を支持するスペーサSPと、撮像レンズ12を保持する鏡枠13の下端は、基板15上に当接している。
 上述した撮像装置10の動作について説明する。図5(a)(b)は、撮像装置10を携帯端末としてのスマートフォン100に装備した状態を示す。また、図6はスマートフォン100の制御ブロック図である。
 撮像装置10は、例えば、鏡枠13の物体側端面がスマートフォン100の背面(図5(b)参照)に設けられ、液晶表示部の下方に相当する位置に配設される。
 撮像装置10は、外部接続端子(図6では矢印)を介して、スマートフォン100の制御部101と接続され、輝度信号や色差信号等の画像信号を制御部101側に出力する。
 一方、スマートフォン100は、図6に示すように、各部を統括的に制御すると共に、各処理に応じたプログラムを実行する制御部(CPU)101と、電源等のスイッチ及び番号等をタッチパッドにより指示入力するための入力部60と、所定のデータの他に撮像した映像等を液晶パネルで表示する表示部65(但し、表示部の液晶パネルと入力部のタッチパッドはタッチパネル70が兼用する)と、外部サーバとの間の各種情報通信を実現するための無線通信部80と、スマートフォン100のシステムプログラムや各種処理プログラム及び端末ID等の必要な諸データを記憶している記憶部(ROM)91と、制御部101によって実行される各種処理プログラムやデータ、若しくは処理データ、或いは撮像装置10により得られた撮像データ等を一時的に格納する作業領域として用いられる及び一時記憶部(RAM)92とを備えている。
 スマートフォン100は、入力キー部60の操作によって動作し、アクチュエータ(不図示)により撮像レンズ12を駆動してオートフォーカス動作を行い、レリーズボタン71等を押圧することで、撮像装置10を動作させて撮像を行うことができる。撮像装置10から入力された画像信号は、上記スマートフォン100の制御系により、記憶部92に記憶されたり、或いはタッチパネル70で表示され、さらには、無線通信部80を介して映像情報として外部に送信される。
 次に、上述した実施の形態に好適な実施例について説明する。但し、以下に示す実施例により本発明が限定されるものではない。
f   :撮像レンズ全系の焦点距離
fB  :バックフォーカス
F   :Fナンバー
2Y  :固体撮像素子の撮像面対角線長
ENTP:入射瞳位置(第1面から入射瞳位置までの距離)
EXTP:射出瞳位置(撮像面から射出瞳位置までの距離)
H1  :前側主点位置(第1面から前側主点位置までの距離)
H2  :後側主点位置(最終面から後側主点位置までの距離)
R   :曲率半径
D   :軸上面間隔
Nd  :レンズ材料のd線に対する屈折率
νd  :レンズ材料のアッベ数
L   :撮像レンズ全系の最も物体側のレンズ面から像側焦点までの光軸上の距離
 各実施例において、非球面係数が記載された面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとして以下の「数1」で表す。
Figure JPOXMLDOC01-appb-M000001
ただし、
Ai:i次の非球面係数
R :基準曲率半径
K :円錐定数
(実施例1)
 実施例1のレンズデータを表1に示す。なお、これ以降(表のレンズデータを含む)において、10のべき乗数(たとえば2.5×10-02)を、E(たとえば2.5E-02)を用いて表すものとする。
(表1)
実施例1
    f= 2.94mm       ENTP= 0mm
    fB=0.32mm       EXTP= -1.74mm
    F= 2.09         H1= 1.17mm
    2Y= 4.59mm     H2= -2.57mm
    L= 3.42mm
    L/2Y= 0.75

面番号  R(mm)   D(mm)     Nd     νd     有効半径(mm)
1(絞り)   ∞     -0.16                        0.69
2       1.196     0.39    1.5447   56.2       0.72
3      28.057     0.07                        0.73
4       7.081     0.15    1.6347   23.9        0.72
5       1.725     0.27                        0.73
6       5.607     0.31    1.5447   56.2        0.83
7     304.977     0.43                        0.89
8      -6.894     0.50    1.5447   56.2        1.02
9      -0.751     0.20                        1.30
10      -1.783    0.27    1.5447   56.2        1.84    
11       1.076    0.39                        1.96    
12        ∞      0.11    1.5163   64.1        2.50    
13        ∞                                  2.50    

非球面係数                        
     第2面       第3面       第4面       第5面       第6面  
K    8.75365E-02  5.01098E+01 -9.94304E+00 -4.20559E-01  1.02181E+01
A4   4.98363E-03  3.46071E-02 -6.91616E-02 -1.59975E-01 -1.63809E-01
A6   1.54519E-02  1.64591E-01  4.96919E-01  1.47025E+00 -1.56514E-01
A8  -8.59264E-03 -9.39580E-02 -6.79209E-01 -4.96074E+00  7.37281E-01
A10  1.64097E-01 -8.33916E-01 -1.38166E+00  1.02873E+01 -1.50239E+00
A12  1.88071E-01 -7.29556E-01 -2.10765E-01 -1.26392E+01  2.50310E+00
A14 -9.89165E-01  1.43571E+00  3.02506E+00  7.32911E+00 -1.51385E+00
A16  0.00000E+00  0.00000E+00  0.00000E+00  0.00000E+00  0.00000E+00
                        
     第7面       第8面       第9面       第10面    第11面    
K    0.00000E+00  2.28100E-07 -2.93784E+00 -5.32419E-01 -1.42366E+01
A4  -1.93160E-01 -3.14905E-01 -7.66199E-03 -1.84902E-02 -1.29156E-01
A6  -1.56943E-02  1.27573E+00 -1.57419E-01  8.19765E-02  8.01974E-02
A8  -2.37082E-02 -4.49916E+00  4.46513E-01 -5.01957E-02 -4.45157E-02
A10 -1.91355E-01  8.51327E+00 -5.58957E-01  2.42219E-02  1.48987E-02
A12  2.63360E-01 -9.23005E+00  3.73679E-01 -7.58614E-03 -3.28208E-03
A14  2.21021E-01  5.07538E+00 -1.20806E-01  1.25912E-03  4.39453E-04
A16  0.00000E+00 -1.08838E+00  1.33708E-02 -8.24083E-05 -2.26307E-05
 図7は5枚玉にかかる実施例1のレンズの断面図である。図中、L1は正の屈折力を有し物体側に凸面を向け像側光学面が凹状となった第1レンズ、L2は負の屈折力を有する第2レンズ、L3は第3レンズ、L4は第4レンズ、L5は、像側光学面が近軸で凹形状であり且つ有効径内に変曲点を持つ第5レンズ、Sは第1レンズL1の有効径より物体側に配置された開口絞り、Iは撮像面を示す。また、CGは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。
 実施例1では、全てのレンズの光学面に、レンズ(基板)側から順に、TiO2からなる高屈折率層と、SiO2とAl23からなる低屈折率層とを交互に積層してなり、全部で4層からなる反射防止膜が形成されている。低屈折率層の混合膜中のSiの元素に対するAlの元素数の比率は1~5%である。反射防止膜の最外層は、低屈折率層である。但し、表2に示すように、第1レンズL1の物体側光学面における光軸上の反射防止膜の膜厚は294nmであり、表3に示すように、像側光学面における光軸上の反射防止膜の膜厚は253nmである。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
(実施例2)
 実施例2のレンズデータを表4に示す。
(表4)
実施例2
    f= 3.47mm       ENTP= 0.40mm
    fB= 0.30mm      EXTP= -2.50mm
    F= 1.81         H1= 0.44mm
    2Y= 5.53mm     H2= -3.18mm
    L= 4.79mm
    L/2Y= 0.87
 
面番号   R(mm)   D(mm)     Nd     νd     有効半径(mm)
1        1.719    0.55    1.5447    56.2       1.05    
2(絞り) -24.146    0.09                        0.90    
3        4.510    0.20    1.6347    23.9       0.93    
4        1.771    0.37                        0.94    
5        4.427    0.20    1.6347    23.9       0.98    
6        2.777    0.09                        1.18    
7        3.617    0.68    1.5447    56.2       1.44    
8        6.274    0.19                        1.49    
9      132.081    0.78    1.5447    56.2       1.61    
10      -0.790    0.09                        1.65    
11      -4.971    0.52    1.5447    56.2       1.73    
12       0.928    0.60                        2.41    
13        ∞      0.11    1.5163    64.1      2.72    
14        ∞                                 2.75    

非球面係数                        
     第1面       第2面       第3面       第4面
K   -1.40720E+00  5.00000E+01 -4.79559E+01 -8.24976E+00
A4   3.89293E-02  7.88563E-02  5.36037E-02  7.99730E-02
A6   1.13045E-02 -1.31489E-02  2.57265E-02  1.33243E-02
A8   1.50160E-02 -1.67135E-01 -1.10479E-01 -3.84373E-02
A10 -5.85923E-02  3.67600E-01  1.24027E-01  3.88155E-02
A12  7.58043E-02 -3.45156E-01 -5.32895E-02  0.00000E+00
A14 -3.46456E-02  1.15321E-01  0.00000E+00  0.00000E+00
                        
     第5面       第6面       第7面       第8面    
K    1.67693E+01 -2.56359E+01 -5.00000E+01  0.00000E+00
A4  -2.22312E-01 -1.66427E-01 -1.21092E-01 -1.08750E-01
A6   1.86310E-01  2.75730E-01  1.36414E-01 -7.41013E-03
A8  -3.82318E-01 -3.79753E-01 -5.52916E-02 -1.35406E-02
A10  3.15515E-01  3.19707E-01  4.30841E-03  1.97316E-02
A12 -1.52109E-01 -1.56133E-01  3.00130E-03 -1.19426E-02
A14  0.00000E+00  3.25791E-02 -4.69023E-04  3.07881E-03
                        
     第9面       第10面     第11面     第12面    
K    5.00000E+01 -4.03705E+00  6.87015E+00 -6.85573E+00
A4   2.38259E-03 -4.03105E-02  7.15832E-02 -7.03868E-02
A6  -3.92406E-02 -1.39225E-02 -2.48966E-01  2.15814E-02
A8  -3.79075E-02 -3.76763E-03  1.92768E-01 -5.51825E-03
A10  3.85216E-02  4.50081E-03 -7.34751E-02  7.28067E-04
A12 -1.07949E-02  1.61331E-03  1.30428E-02 -3.80863E-05
A14  1.12116E-03 -5.39441E-04 -6.70985E-04 -3.09175E-07
 図8は6枚玉にかかる実施例1のレンズの断面図である。図中、L1は正の屈折力を有し物体側に凸面を向け像側光学面が平面に近い形状となった第1レンズ、L2は負の屈折力を有する第2レンズ、L3は第3レンズ、L4は第4レンズ、L5は第5レンズ、L6は、像側光学面が近軸で凹形状であり且つ有効径内に変曲点を持つ第6レンズ、Sは第1レンズL1の像側光学面上に形成された開口絞り(面絞り)、Iは撮像面を示す。また、CGは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。
 実施例2では、全てのレンズの光学面に、レンズ(基板)側から順に、TiO2からなる高屈折率層と、SiO2とAl23からなる低屈折率層とを交互に積層してなり、全部で4層からなる反射防止膜が形成されている。低屈折率層の混合膜中のSiの元素に対するAlの元素数の比率は1~5%である。反射防止膜の最外層は、低屈折率層である。但し、表2に示すように、第1レンズL1の物体側光学面における光軸上の反射防止膜の膜厚は294nmであり、表3に示すように、像側光学面における光軸上の反射防止膜の膜厚は253nmである。
 図9は、実施例1,2において、第1レンズL1の物体側光学面と、像側光学面の反射防止膜の反射特性を示すグラフである。図9に示すように、第1レンズL1の物体側光学面の反射防止膜の膜厚が光軸上において上述の通りであるから、光軸と成す角度θが0度で入射する光の反射率が波長帯500~750nmの範囲内で1%以下となる。又、第1レンズL1の像側光学面の反射防止膜の膜厚光軸上において上述の通りであるから、光軸と成す角度θが0度で入射する光の反射率が波長帯420~650nmの範囲内で1%以下となるように、厚さが設定されている。また、本実施例1,2においては第1レンズL1の物体側光学面のみを光軸と成す角度θが0度で入射する光の反射率が波長帯500~750nmの範囲内で1%以下となるように膜設定したが、他の光学面についても同様な長波長側にシフトした反射防止膜を蒸着しても良い。例えば、実施例1について、第5レンズL5の像側光学面は光軸近傍で像側に凹、周辺部で像側に凸となるような形状を有しているためΔsagが大きく、また他の光学面間とで面間反射が生じやすい。そのため第1レンズL1の物体側光学面と同様に、光軸と成す角度θが0度で入射する光の反射率が波長帯500~750nmの範囲内で1%以下となる反射防止膜を適用しても良い。また、上記のように同一の膜構成で膜厚比を変更し、反射率が低くなる波長帯を約100nm程度長波長側にシフトするためには、例えば第1レンズL1の物体側光学面における光軸上の反射防止膜の物理膜厚に対する第1レンズL1の像側光学面における光軸上の反射防止膜の物理膜厚の比を0.84~0.89程度にすればよい。膜設計波長シフト量としては長波長側に80~100nm程度にすればよい。
 図10は、実施例1,2において、縦軸に第1レンズL1における物体側光学面のΔsagをとって示し、横軸に光軸からの高さ(但し、有効径を1とする)をとって示す図である。第1レンズL1における物体側光学面の量Δsagの最大値Δsagmaxは、実施例1,2ともに約0.7程度である。
 図11は、実施例1,2において、縦軸に第1レンズL1における像側光学面のsagをとって示し、横軸に光軸からの高さ(但し、有効径を1とする)をとって示す図である。第1レンズL1の像側光学面の有効径の8割径内全域において、実施例1のsagは0以上であり、実施例2のsagは-0.002以上である。
 図12は、実施例1,2において、縦軸に第1レンズL1における像側光学面のΔsagをとって示し、横軸に光軸からの高さ(但し、有効径を1とする)をとって示す図である。第1レンズL1の像側光学面の有効径の8割径内全域において、実施例1のΔsagは0以上であり、実施例2のΔsagは-0.01以上である。
 図13は、光学面に反射防止膜を蒸着した場合にΔsagを変化させたときにおける、反射率と波長の関係の一例を示す図である。図13に示すように、Δsagの値を増加させると、つまり、反射防止膜が蒸着した光学面の法線と光軸との成す角が大きくなれば大きくなるほど反射率が低い範囲が短波長側に移動するから、長波長側の光線が反射しやすくなることが分かる。図10から明らかなように、S1面は光軸からの高さが大きくなるほど、つまり、光学面から離れるほどΔsagの値が大きくなる。つまり、多重反射ゴースト光が生じた場合、例えばL1両面間で四回反射し像面に到達する光線は図2のように最終的にS1面の最周辺近傍、つまりΔsagの値が大きい箇所で反射される為、長波長側の光線の反射率は高くなる。つまり、像面に到達するゴースト光は赤みを帯びる恐れがある。
 本発明者は、実施例1に対して、レンズ形状は同じであるが、第1レンズL1における物体側光学面の光軸上における反射防止膜の膜厚を、像側光学面の光軸上における反射防止膜の膜厚と同じ(253nm)にした比較例を作成した。
 図14は、比較例と実施例1とで、一例として結像に寄与する画角より大きな角度を有する光束が入射したときの多重反射ゴースト光を受光した撮像面上におけるCIE XYZ座標系のX値だけをグラフ化したものであり、X値が大きいほど赤系の色味が強くなることを示している。尚、撮像面の表示画素数は、横が128画素、縦が96画素である。像面における照度は比較例と実施例1とで対応する各画素同士でほぼ同等とした。
 図14(b)に示す比較例では、X値が1.5以上の領域が幅広く存在し、その両端にX値が2.0以上の領域もある。これに対し、図14(a)に示す実施例1では、X値が1.5以上の領域はわずかであり、X値が2.0以上の領域は存在しない。従って、実施例1では、多重反射ゴースト光が生じた場合でも、赤み成分を抑えることができる。
 本発明は、明細書に記載の実施形態・実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施形態や実施例や技術思想から本分野の当業者にとって明らかである。例えば、実質的に屈折力を持たないダミーレンズを更に付与した場合でも本発明の適用範囲内である。
 本発明は、小型の携帯端末に好適な撮像レンズを提供できる。
10  撮像装置
11a 光電変換部
11  撮像素子
12  撮像レンズ
13  鏡枠
14  平行平板
15  基板
60  入力キー部
65  表示部
70  タッチパネル
71  レリーズボタン
80  無線通信部
92  記憶部
100 スマートフォン
101 制御部
L1~L6 レンズ
S   開口絞り
SP  スペーサ

Claims (18)

  1.  物体側から順に配置された、物体側に凸面を向けた正の第1レンズ、第2レンズ、第3レンズ、第4レンズ、第5レンズからなり、開口絞りは前記第3レンズより物体側にあり、少なくとも前記第1レンズの物体側光学面と像側光学面とに反射防止膜が形成され、固体撮像素子の撮像面に被写体像を結像するために用いられる撮像用レンズにおいて、
     前記反射防止膜は、高屈折率層と低屈折率層とが交互に積層された複数の層から構成され、
     前記第1レンズの光軸上において、前記物体側光学面の反射防止膜の膜厚は、前記像側面の反射防止膜の膜厚より厚いことを特徴とする撮像用レンズ。
  2.  前記撮像レンズ全系の最も物体側の光学面から像側焦点までの光軸上の距離をL(mm)、前記固体撮像素子の撮像面対角線長(固体撮像素子の矩形実効画素領域の対角線長)を2Y(mm)とすると、以下の式を満たす請求項1に記載の撮像レンズ。
     L/2Y<0.8   (1)
  3.  物体側から順に配置された、物体側に凸面を向けた正の第1レンズ、第2レンズ、第3レンズ、第4レンズ、第5レンズ、第6レンズからなり、開口絞りは前記第3レンズより物体側にあり、少なくとも前記第1レンズの物体側光学面と像側光学面とに反射防止膜が形成され、固体撮像素子の撮像面に被写体像を結像するために用いられる撮像用レンズにおいて、
     前記反射防止膜は、高屈折率層と低屈折率層とが交互に積層された複数の層から構成され、
     前記第1レンズの光軸上において、前記物体側光学面の反射防止膜の膜厚は、前記像側面の反射防止膜の膜厚より厚いことを特徴とする撮像用レンズ。
  4.  前記撮像レンズ全系の最も物体側の光学面から像側焦点までの光軸上の距離をL(mm)、前記固体撮像素子の撮像面対角線長(固体撮像素子の矩形実効画素領域の対角線長)を2Y(mm)とすると、以下の式を満たす請求項3に記載の撮像レンズ。
     L/2Y<0.9   (2)
  5.  前記第1レンズの物体側光学面の反射防止膜の膜厚は、光軸上において、光軸と成す角度θが0度で入射する光の反射率が波長帯500~750nmの範囲内で1%以下となるように、厚さが設定されており、
     前記第1レンズの像側光学面の反射防止膜の膜厚は、光軸上において、光軸と成す角度θが0度で入射する光の反射率が波長帯420~650nmの範囲内で1%以下となるように、厚さが設定されている請求項1~4のいずれかに記載の撮像レンズ。
  6.  前記第1レンズの物体側光学面と像側光学面の反射防止膜は、同一の膜構成である請求項1~5のいずれかに記載の撮像レンズ。
  7.  前記反射防止膜は四層の積層構造である請求項1~6のいずれかに記載の撮像レンズ。
  8.  前記反射防止膜は前記第1レンズ側から順に高屈折率層、低屈折率層の順で同一膜材料が積層され、前記反射防止膜の最外層は低屈折率層である請求項7に記載の撮像レンズ。
  9.  前記開口絞りは、前記第1レンズの物体側光学面の有効径の位置より物体側にある請求項1~8のいずれかに記載の撮像レンズ。
  10.  前記反射防止膜はTi系の高屈折率層とSi系の低屈折率層とで構成されており、前記低屈折率層は2種類の異なる無機材料が混合された混合膜であり、前記混合膜を構成する材料が、SiO2とAl23であり、前記混合膜中のSiの元素に対するAlの元素数の比率が1~5%である請求項1~9のいずれかに記載の撮像レンズ。
  11.  最も像側のレンズの像側光学面は非球面であって、有効径内に変曲点を持っている請求項1~10のいずれかに記載の撮像レンズ。
  12.  前記第1レンズ以外の全てのレンズにおける物体側光学面及び像側光学面に、反射防止膜が形成されている請求項1~11のいずれかに記載の撮像レンズ。
  13.  前記第2レンズは負のパワーを有する請求項1~12のいずれかに記載の撮像レンズ。
  14.  前記第1レンズの物体側光学面の有効径内において、サグの変化量Δsagの最大値Δsagmaxは以下の式を満たす請求項1~13のいずれかに記載の撮像レンズ。
     Δsagmax≧0.4   (3)
  15.  前記第1レンズの像側光学面におけるサグの変化量Δsagは、前記第1レンズの像側光学面の有効径の8割径内全域において以下の式を満たす請求項1~14のいずれかに記載の撮像レンズ。
    -0.05≦Δsag   (4)
  16.  前記第1レンズの像側光学面は、近軸で像側に凹状の面である請求項1~15のいずれかに記載の撮像レンズ。
  17.  前記第1レンズの像側光学面におけるsag(mm)は、前記第1レンズの像側光学面の有効径の8割径内全域において以下の式を満たす請求項1~16のいずれかに記載の撮像レンズ。
    -0.01≦sag   (5)
  18.  請求項1~17のいずれかに記載の撮像レンズと、固体撮像素子とを有する撮像装置。
PCT/JP2014/053168 2013-02-26 2014-02-12 撮像レンズ及び撮像装置 WO2014132796A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015502850A JP6308208B2 (ja) 2013-02-26 2014-02-12 撮像レンズ及び撮像装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013035584 2013-02-26
JP2013-035584 2013-02-26

Publications (1)

Publication Number Publication Date
WO2014132796A1 true WO2014132796A1 (ja) 2014-09-04

Family

ID=51428069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053168 WO2014132796A1 (ja) 2013-02-26 2014-02-12 撮像レンズ及び撮像装置

Country Status (2)

Country Link
JP (1) JP6308208B2 (ja)
WO (1) WO2014132796A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105589179A (zh) * 2014-09-29 2016-05-18 大立光电股份有限公司 取像透镜系统、取像装置以及电子装置
JP2016173484A (ja) * 2015-03-17 2016-09-29 コニカミノルタ株式会社 投影レンズおよびプロジェクター
JP2016200776A (ja) * 2015-04-14 2016-12-01 カンタツ株式会社 撮像レンズ
JP2017187566A (ja) * 2016-04-04 2017-10-12 カンタツ株式会社 撮像レンズ
CN108873251A (zh) * 2014-11-12 2018-11-23 大立光电股份有限公司 摄影用光学镜组及取像装置
JP2019139198A (ja) * 2018-02-11 2019-08-22 エーエーシー テクノロジーズ ピーティーイー リミテッド 撮像光学レンズ
JP2019139199A (ja) * 2018-02-11 2019-08-22 エーエーシー テクノロジーズ ピーティーイー リミテッド 撮像光学レンズ
JP2019191538A (ja) * 2018-04-26 2019-10-31 エーエーシー テクノロジーズ ピーティーイー リミテッド 撮像光学レンズ
JP2019191547A (ja) * 2018-04-26 2019-10-31 エーエーシー テクノロジーズ ピーティーイー リミテッド 撮像光学レンズ
JP2020027260A (ja) * 2018-08-14 2020-02-20 エーエーシー テクノロジーズ ピーティーイー リミテッド 撮像光学レンズ
CN114114595A (zh) * 2020-08-31 2022-03-01 华为技术有限公司 一种镜头模组、摄像模组及终端
CN114200641A (zh) * 2020-09-18 2022-03-18 三星电机株式会社 光学成像系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323226A (ja) * 1990-11-09 1993-12-07 Asahi Optical Co Ltd 広波長域ゴースト防止光学系
JP2005292462A (ja) * 2004-03-31 2005-10-20 Konica Minolta Opto Inc 誘電体多層膜を有する光学素子
JP2011227362A (ja) * 2010-04-22 2011-11-10 Konica Minolta Opto Inc 像シフト可能な撮像レンズ,撮像光学装置及びデジタル機器
WO2012008357A1 (ja) * 2010-07-16 2012-01-19 コニカミノルタオプト株式会社 撮像レンズ
JP2012189893A (ja) * 2011-03-11 2012-10-04 Olympus Corp 撮像光学系及びそれを用いた撮像装置
JP2012208148A (ja) * 2011-03-29 2012-10-25 Olympus Corp 撮像光学系及びそれを用いた撮像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323226A (ja) * 1990-11-09 1993-12-07 Asahi Optical Co Ltd 広波長域ゴースト防止光学系
JP2005292462A (ja) * 2004-03-31 2005-10-20 Konica Minolta Opto Inc 誘電体多層膜を有する光学素子
JP2011227362A (ja) * 2010-04-22 2011-11-10 Konica Minolta Opto Inc 像シフト可能な撮像レンズ,撮像光学装置及びデジタル機器
WO2012008357A1 (ja) * 2010-07-16 2012-01-19 コニカミノルタオプト株式会社 撮像レンズ
JP2012189893A (ja) * 2011-03-11 2012-10-04 Olympus Corp 撮像光学系及びそれを用いた撮像装置
JP2012208148A (ja) * 2011-03-29 2012-10-25 Olympus Corp 撮像光学系及びそれを用いた撮像装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105589179B (zh) * 2014-09-29 2018-01-16 大立光电股份有限公司 取像透镜系统、取像装置以及电子装置
CN105589179A (zh) * 2014-09-29 2016-05-18 大立光电股份有限公司 取像透镜系统、取像装置以及电子装置
CN108873251B (zh) * 2014-11-12 2021-02-19 大立光电股份有限公司 摄影用光学镜组及取像装置
CN108873251A (zh) * 2014-11-12 2018-11-23 大立光电股份有限公司 摄影用光学镜组及取像装置
JP2016173484A (ja) * 2015-03-17 2016-09-29 コニカミノルタ株式会社 投影レンズおよびプロジェクター
JP2016200776A (ja) * 2015-04-14 2016-12-01 カンタツ株式会社 撮像レンズ
JP2017187566A (ja) * 2016-04-04 2017-10-12 カンタツ株式会社 撮像レンズ
JP2019139198A (ja) * 2018-02-11 2019-08-22 エーエーシー テクノロジーズ ピーティーイー リミテッド 撮像光学レンズ
JP2019139199A (ja) * 2018-02-11 2019-08-22 エーエーシー テクノロジーズ ピーティーイー リミテッド 撮像光学レンズ
JP2019191538A (ja) * 2018-04-26 2019-10-31 エーエーシー テクノロジーズ ピーティーイー リミテッド 撮像光学レンズ
JP2019191547A (ja) * 2018-04-26 2019-10-31 エーエーシー テクノロジーズ ピーティーイー リミテッド 撮像光学レンズ
JP2020027260A (ja) * 2018-08-14 2020-02-20 エーエーシー テクノロジーズ ピーティーイー リミテッド 撮像光学レンズ
CN114114595A (zh) * 2020-08-31 2022-03-01 华为技术有限公司 一种镜头模组、摄像模组及终端
CN114114595B (zh) * 2020-08-31 2024-04-16 华为技术有限公司 一种镜头模组、摄像模组及终端
CN114200641A (zh) * 2020-09-18 2022-03-18 三星电机株式会社 光学成像系统
US20220091372A1 (en) * 2020-09-18 2022-03-24 Samsung Electro-Mechanics Co., Ltd. Optical imaging system

Also Published As

Publication number Publication date
JPWO2014132796A1 (ja) 2017-02-02
JP6308208B2 (ja) 2018-04-11

Similar Documents

Publication Publication Date Title
JP6308208B2 (ja) 撮像レンズ及び撮像装置
CN105938238B (zh) 拍摄镜头系统和具有拍摄镜头系统的拍摄设备
JP6222564B2 (ja) 撮像レンズ、レンズユニット、撮像装置、デジタルスチルカメラ及び携帯端末
JP5839038B2 (ja) 撮像レンズ及び撮像装置
WO2021238648A1 (zh) 光学成像镜头及成像设备
CN110596860B (zh) 高像素广角镜头及成像设备
WO2013014850A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
TWI828321B (zh) 光學成像鏡頭
WO2013008862A1 (ja) 撮像レンズ及び撮像装置
TWI475245B (zh) 攝像用光學透鏡組及其攝像裝置
JP2014163970A (ja) 撮像光学系ユニットならびに撮像装置およびデジタル機器
WO2020140788A1 (zh) 长焦镜头及移动终端
WO2010071077A1 (ja) 撮像レンズ
CN113433674B (zh) 光学镜头及成像设备
JP2015084066A (ja) 撮像レンズ、撮像装置及び携帯端末
JP2015040869A (ja) 撮像装置及びデジタル機器
CN102608735A (zh) 变焦投影镜头
CN111308668A (zh) 光学系统、镜头模组及终端设备
CN211698378U (zh) 摄像镜头
JP2015001644A (ja) 撮像レンズ及び撮像装置
CN211554450U (zh) 光学系统、摄像模组及电子装置
WO2022183509A1 (zh) 摄像光学系统、以及光学摄像装置
WO2022110066A1 (zh) 光学成像系统、取像模组及电子装置
JP2015022152A (ja) 撮像レンズ及び撮像装置
WO2015159592A1 (ja) 撮像レンズ、撮像装置及び携帯端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015502850

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14756470

Country of ref document: EP

Kind code of ref document: A1