WO2014132710A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2014132710A1
WO2014132710A1 PCT/JP2014/051437 JP2014051437W WO2014132710A1 WO 2014132710 A1 WO2014132710 A1 WO 2014132710A1 JP 2014051437 W JP2014051437 W JP 2014051437W WO 2014132710 A1 WO2014132710 A1 WO 2014132710A1
Authority
WO
WIPO (PCT)
Prior art keywords
film capacitor
pedestal
housing
capacitor
terminal
Prior art date
Application number
PCT/JP2014/051437
Other languages
French (fr)
Japanese (ja)
Inventor
順平 楠川
央 上妻
中津 欣也
佐々木 康二
佐藤 俊也
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2014132710A1 publication Critical patent/WO2014132710A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Definitions

  • the present invention relates to a film capacitor and a power conversion device such as an inverter device using the film capacitor.
  • the power conversion device represented by the inverter device is applied and deployed to various home appliances, industrial equipment, power equipment, automobile equipment such as a hybrid vehicle (HEV), and an electric vehicle (EV).
  • Inverter devices used in HEVs and EVs are required to have higher voltage and smaller size and higher density in order to reduce fuel consumption, reduce power consumption, and reduce space.
  • These inverter devices are composed of components such as a capacitor for smoothing DC power, in addition to a power semiconductor module incorporating a power semiconductor element such as IGBT, a bus bar, and a coil.
  • the voltage used is as high as several hundred volts, so a high withstand voltage film capacitor is mainly used in many cases.
  • a film capacitor is a film capacitor element having a wound body in which two organic dielectric films deposited with metal are stacked and wound, and current collecting electrodes (metallicon electrodes) formed on both end faces of the wound body, and And a pair of terminals respectively connected to the collecting electrodes at both ends.
  • the film capacitor element with the terminal connected as described above is housed in a resin case, and the space between the resin case and the film capacitor element is sealed with an insulating sealing resin (potting resin).
  • the capacitor module is manufactured (see Patent Document 1).
  • a power conversion device smoothes a power semiconductor module that converts DC power into AC power, and DC power that is covered with an insulating sheath and has a pair of terminals protruding from the insulating sheath.
  • a housing-side capacitor housing portion for housing a film capacitor fixed to the pedestal, the power semiconductor module is fixed, and the conductor plate and the pedestal in a state where the plate surface of the conductor plate and the bottom surface of the pedestal face each other.
  • the pedestal is a recess recessed from the surface opposite to the bottom surface toward the bottom surface. And a pair of terminal through holes penetrating from the bottom to the bottom of the base-side capacitor housing recess, and the film capacitor is partly in contact with the base-side capacitor housing recess. In the state, it is fixed to the pedestal by an insulating sealing material filled in the space between the first recess, and the pair of terminals protrudes from the bottom surface to the outside of the pedestal through the pair of terminal through-holes to form a circuit on the conductor plate. It is electrically connected.
  • the development speed of the power converter can be improved.
  • FIG. 1 It is a perspective view which shows the external appearance of the power converter device (inverter device) of 1st Embodiment. It is an exploded view of an inverter apparatus. It is an external appearance perspective view of a film capacitor. It is sectional drawing which shows typically the attachment state to the housing
  • FIG. 6 is a diagram illustrating a cross-sectional structure of a main circuit portion of a power conversion device according to Comparative Example 2.
  • FIG. It is a figure which shows the result of a vibration analysis. It is a figure which shows the result of a vibration analysis. It is a figure which shows the result of a moisture resistance test.
  • the power conversion device of the present embodiment can be applied not only to a hybrid vehicle (HEV) but also to a power conversion device mounted on a vehicle such as a plug-in hybrid vehicle (PHEV) or an electric vehicle (EV).
  • the present invention can also be applied to power conversion devices used for vehicles such as construction machines.
  • FIG. 1 is a perspective view showing an external appearance of a power conversion device (inverter device) 100 according to the present embodiment
  • FIG. 2 is an exploded view of the inverter device 100.
  • the inverter device 100 includes an upper lid 110, an AC bus bar 120, a gate / control board 130, a DC bus bar 140, a board base 150, and a conductor plate 160.
  • the inverter device 100 includes a pedestal 10, a plurality of film capacitors 1, a water channel / case (housing) 20, a power semiconductor module 21, and a lower lid 170.
  • each part constituting the inverter device 100 is housed in an inverter case having an upper lid 110, a water channel / case 20, and a lower lid 170.
  • the water channel / case 20 is a case for accommodating the film capacitor 1 and the power semiconductor module 21 as described later.
  • the water channel / case 20 is simply referred to as a housing 20.
  • the upper lid 110 is an upper lid of the housing 20.
  • the lower lid 170 is a lower lid of the housing 20, to which a water channel partition plate 171 that partitions a water channel through which a refrigerant (for example, water) for cooling the power semiconductor module 21 flows is attached. 172 is provided.
  • the material of the upper lid 110, the water channel / case 20, and the lower lid 170 is, for example, aluminum.
  • the power semiconductor module 21 is a module that incorporates a series circuit of upper and lower arms of an inverter circuit constituted by power semiconductor elements, and is provided corresponding to three phases of AC power U phase, V phase, and W phase. .
  • the film capacitor 1 is a capacitor for smoothing DC power, and is fixed to the housing 20 together with the pedestal 10 while being fixed to the pedestal 10. The film capacitor 1 and the housing 20 will be described in detail later.
  • the conductor plate 160 is a laminated bus bar in which a positive electrode conductor plate and a negative electrode conductor plate (not shown) are laminated via a sheet-like insulating member (insulating paper or resin). Note that the positive electrode conductor plate and the negative electrode conductor plate (not shown) are formed of wide plate conductors. Thus, by making a positive electrode conductor plate and a negative electrode conductor plate having a large area into a laminated structure, the resistance value and inductance of the conductor plate 160 can be reduced.
  • the conductor plate 160 is fixed above the housing 20 and the base 10 fixed to the housing 20.
  • the substrate base 150 is an aluminum plate sandwiched between the casing 20 and the upper lid 110 and plays a role of releasing heat generated in the gate / control board 130 to the refrigerant through the casing 20.
  • the DC bus bar 140 is a bus bar connected to the conductor plate 160 and connected to an external secondary battery (not shown).
  • the AC bus bar 120 is a bus bar connected to the AC terminal of the power semiconductor module 21 and is connected to an external motor generator (not shown).
  • the gate / control board 130 is a board in which the control circuit and driver circuit of the inverter device 100 are built.
  • the control circuit calculates whether a motor generator (not shown) is operated as a motor or a generator, generates a control pulse based on the calculation result, and supplies the control pulse to the driver circuit.
  • the driver circuit generates a drive pulse for controlling the inverter circuit based on the supplied control pulse.
  • the film capacitor 1 used in this embodiment is a capacitor having a pair of terminals 2 and 2 attached to a film capacitor element 1a and covered with an insulation sheath 3. It is a single part.
  • reference numeral 1b denotes a current collecting electrode (metallicon electrode) of the film capacitor element 1a.
  • the film capacitor element 1a has a rounded rectangular shape (that is, a shape composed of two parallel lines of two equal lengths and two semicircles) in which two organic dielectric films on which metal is deposited are stacked and wound. And a current collecting electrode (metallicon electrode) formed on both end faces of the wound body.
  • a current collecting electrode metallic electrode
  • the cross section of the film capacitor element 1a has a rounded rectangular shape
  • the cross sectional shape of the film capacitor 1 covered with the insulating outer covering 3 also has a rounded rectangular shape.
  • the surface of the film capacitor 1 on which the two electrodes 2 and 2 are provided is called an end surface of the film capacitor 1 and is a plane portion extending in the same direction as the terminal 2 between the both end surfaces. Is called the side surface of the film capacitor 1.
  • the film capacitor element 1a is covered with the insulating outer sheath 3.
  • moisture penetrates from the interface between the terminals 2, 2 and the resin of the insulating outer sheath 3, and the film capacitor element 1a is metallized.
  • the thin film electrode of the film may be oxidized, resulting in a decrease in capacity.
  • FIG. 4 is a cross-sectional view schematically showing how the conductor plate 160, the pedestal 10, the film capacitor 1, and the power semiconductor module 21 are attached to the housing 20.
  • FIG. 5 is a perspective view of the pedestal 10 viewed from the top surface 10a side of the pedestal 10
  • FIG. 6 is a perspective view of the pedestal 10 viewed from the bottom surface 10b side of the pedestal 10.
  • pedestal-side capacitor accommodating recesses (accommodating recesses) 11 for accommodating one film capacitor 1 are provided at six locations.
  • the housing recess 11 is a recess that is recessed from the top surface 10 a toward the bottom surface 10 b, and has a pair of terminal through holes 14, 14, a protrusion 15, and an insulating sealing material insertion port 16.
  • a bottom surface recess 12 is provided on the bottom surface 10 b of the base 10.
  • the pedestal 10 is provided with a bolt hole 10c for fixing to the casing 20 together with the conductor plate 160 by bolting, as will be described later.
  • the accommodating recess 11 is, for example, a recess that is recessed in a semi-cylindrical shape obtained by vertically dividing a cylinder into two equal parts.
  • the curvature radius of the curved surface corresponding to the surface of the cylinder is larger than the curvature radius in the cross section of the semicircular portion of the film capacitor 1 having a rounded rectangular cross section.
  • a pair of terminal through holes 14 and 14 are provided in the vicinity of the boundary between the wall surface corresponding to both end faces of the cylinder and the curved surface corresponding to the surface of the cylinder.
  • the pair of through holes 14 and 14 are holes through which the pair of terminals 2 and 2 are inserted when the film capacitor 1 is disposed in the housing recess 11.
  • the protrusions 15 are protrusions that protrude from the bottom of the housing recess 11, and two protrusions 15 are provided, for example, spaced from each other in the longitudinal direction of the cylinder for each housing recess.
  • the insulating sealing material insertion port 16 is, for example, a groove-like portion provided on the wall surface corresponding to the end surface of the cylinder of the housing recess 11 as shown in FIG.
  • the bottom surface recess 12 is a recess provided so as to surround the periphery of the opening on the bottom surface side of the terminal through hole 14, and is provided for all the terminal through holes 14.
  • the film capacitor 1 is fixed to the pedestal 10 thus configured as follows. First, the pair of terminals 2 and 2 of the film capacitor 1 are inserted through the terminal through holes 14 and 14 formed in the housing recess 11 of the base 10, and the film capacitor 1 is disposed in the housing recess 11 of the base 10. When the film capacitor 1 is disposed in the housing recess 11, the pair of terminals 2 and 2 are inserted through the pair of terminal through holes 14 and 14, respectively, and protrude from the bottom surface 10b.
  • the portion between the pair of terminals 2 of the film capacitor 1 comes into contact with the protrusion 15, so that the film capacitor 1 is separated from the curved surface of the housing recess 11 (particularly, the housing is stored A gap is formed apart from the bottom of the recess 11 by an amount defined by the height of the protrusion 15.
  • an epoxy-based insulating sealing resin (second insulating sealing material 18) having a resin viscosity of about 85,000 mPa ⁇ s is poured into the bottom recess 12 formed on the bottom surface 10b of the base 10 to solidify the resin.
  • the bottom surface recess 12 is a recess provided in the bottom surface 10b and surrounds the periphery of the terminal 2 protruding toward the conductor plate 160 disposed to face the bottom surface 10b as described later. Is formed. Therefore, the base 10 and the film capacitor 1 can be temporarily fixed by solidifying the second insulating seal 18 poured into the bottom recess 12, and the gap between the terminal through hole 14 and the terminal 2 is filled.
  • the first insulating sealing material described later flows out from the gap between the terminal through hole 14 and the terminal 2. To prevent.
  • an epoxy insulating resin (first insulating sealing material 17) having a resin viscosity of, for example, about 800 mPa ⁇ s is poured into the insulating sealing material insertion port 16 formed in the housing recess 11 of the base 10. Since the viscosity of the first insulating sealing material 17 is sufficiently low, the first insulating sealing material 17 also flows into the gap between the bottom portion of the housing recess 11 formed by the protrusion 15 and the film capacitor 1. The first insulating sealing material 17 is filled up to a height near the boundary between the semicircular portion and the straight portion of the film capacitor 1 having a rounded rectangular cross section.
  • the pedestal 10 on which the film capacitor 1 is placed is placed in a high-temperature bath, the first insulating sealing material 17 is cured, and the pedestal 10 and the film capacitor 1 are first insulated. Fix with the sealing material 17.
  • the housing 20 is provided with a capacitor / pedestal accommodating portion 20 ⁇ / b> A for accommodating the film capacitor 1 and the pedestal 10, and a power semiconductor module accommodating portion 20 ⁇ / b> B for accommodating the power semiconductor module 21. It has been.
  • the power semiconductor module housing portion 20B is configured such that the refrigerant entering and exiting from the refrigerant inlet / outlet 172 passes therethrough.
  • the pedestal 10 to which the film capacitor 1 is fixed is disposed in the capacitor / pedestal housing portion 20A, and the power semiconductor module 21 is disposed in the power semiconductor module housing portion 20B.
  • the pedestal 10 to which the film capacitor 1 is fixed is disposed in the capacitor / pedestal storage portion 20A with the film capacitor 1 fixed to the storage recess 11 facing the housing 20 side.
  • the conductor plate 160 is disposed so as to face the bottom surface 10 b of the base 10, and the conductor plate 160 and the base 10 are fixed to the housing 20 with the bolts 24. Then, the conductor plate 160 and the terminal 2 of the film capacitor 1, and the conductor plate 160 and the terminal 22 of the power semiconductor module are electrically connected, for example, by welding. Thereby, the main circuit part of the inverter apparatus 100 is completed.
  • the AC bus bar 120 and the DC bus bar 140, the substrate base 150, and the gate / control substrate 130 are attached, electrically connected, covered with the upper lid 110, and fixed with bolts (not shown), and the inverter device 100 is completed.
  • the inverter device 100 has the following operational effects. (1) A film capacitor 1 as a component in which a pair of terminals 2 and 2 are attached to a film capacitor element 1a and covered with an insulating exterior coating 3 is placed on a pedestal 10 having a housing recess 11, and a first insulating sealing material 17 and fixed. Then, the pedestal 10 to which the film capacitor 1 was fixed was fixed to the housing 20 with bolts 24 together with the conductor plate 160.
  • the film capacitor 1 as a component in which the pair of terminals 2 and 2 are attached to the film capacitor element 1a and the insulating sheath 3 is covered can be directly mounted on the conductor plate 160. This can improve development speed and reduce costs.
  • the projection 15 is provided on the bottom of the housing recess 11.
  • the second insulating sealing material 18 having a high resin viscosity is poured into the bottom surface recess 12 formed on the bottom surface 10b of the base 10 to solidify the resin.
  • the fixing strength between the terminal 2 and the base 10 is improved. Therefore, it is possible to suppress an undesired stress from acting on the connection portion between the terminal 2 and the conductive plate 160 and to improve the reliability and durability of the connection portion between the terminal 2 and the conductive plate 160.
  • the first insulating sealing material can be prevented from flowing out from the gap between the terminal through hole 14 and the terminal 2.
  • Productivity in the process of fixing 1 to the base 10 can be improved.
  • FIG. 7 is a cross-sectional view schematically showing how the conductor plate 160, the pedestal 10, the film capacitor 1, and the power semiconductor module 21 are attached to the housing 20 in the present embodiment.
  • FIG. 8 is a perspective view of the pedestal 10 viewed from the upper surface 10a side of the pedestal 10
  • FIG. 9 is a perspective view of the pedestal 10 viewed from the bottom surface 10b side of the pedestal 10.
  • the protrusion 15 is not provided.
  • the capacitor terminal proximal-side concave portion that is a concave portion provided in the vicinity of the opening at the bottom of the accommodating concave portion 11 of each terminal through-hole 14 so as to surround the periphery of the opening. (Terminal base side recesses) 13 are respectively provided. About another point, there is no change point in the base 10 of 1st Embodiment, and the base 10 of this Embodiment.
  • the film capacitor 1 is fixed to the pedestal 10 of the present embodiment configured as described above as follows. First, the pair of terminals 2 and 2 of the film capacitor 1 are inserted through the terminal through holes 14 and 14 formed in the housing recess 11 of the base 10, and the film capacitor 1 is disposed in the housing recess 11 of the base 10. When the film capacitor 1 is disposed in the housing recess 11, the pair of terminals 2 and 2 are inserted through the pair of terminal through holes 14 and 14, respectively, and protrude from the bottom surface 10b.
  • the protrusion 15 since the protrusion 15 is not provided, when the film capacitor 1 is disposed in the housing recess 11, the portion between the pair of terminals 2 of the film capacitor 1 comes into contact with the bottom of the housing recess 11.
  • the curvature radius of the curved surface forming the accommodating recess 11 is larger than the curvature radius of the semicircular portion of the film capacitor 1 having a rounded rectangular cross section. Therefore, when the film capacitor 1 is disposed in the housing recess 11, the film capacitor 1 is separated from the curved surface of the housing recess 11 (except for the vicinity of the deepest bottom of the housing recess 11) to form a gap.
  • the second insulating sealing material 18 having a resin viscosity of about 85,000 mPa ⁇ s is poured into the bottom recess 12 formed on the bottom surface 10b of the base 10 to solidify the resin.
  • the effect obtained by filling the bottom recess 12 with the second insulating sealing material 18 is the same as that of the first embodiment.
  • an epoxy insulating resin (first insulating sealing material 17) having a resin viscosity of, for example, about 500 mPa ⁇ s is poured into the insulating sealing material insertion port 16 formed in the housing recess 11 of the base 10. Since the viscosity of the first insulating sealing material 17 is sufficiently low, the first insulating sealing material 17 also flows into the gap between the housing recess 11 and the film capacitor 1 and the terminal proximal end recess 13. The first insulating sealing material 17 is filled up to a height near the boundary between the semicircular portion and the straight portion of the film capacitor 1 having a rounded rectangular cross section.
  • the viscosity (about 500 mPa ⁇ s) of the first insulating sealing material 17 of the present embodiment is lower than the viscosity (about 800 mPa ⁇ s) of the first insulating sealing material 17 of the first embodiment. It may be equivalent to the viscosity (about 800 mPa ⁇ s) of the first insulating sealing material 17 of the first embodiment.
  • the base 10 on which the film capacitor 1 is arranged is placed in a high-temperature tank, and the first insulating sealing material 17 is cured, as in the first embodiment. 10 and the film capacitor 1 are fixed by a first insulating sealing material 17.
  • casing 20 are each performed are the same as 1st Embodiment.
  • Inverter device 100 of the present embodiment has the following operational effects in addition to the operational effects of the first embodiment.
  • (1) The terminal base end side concave portion 13 is provided in the vicinity of the opening of the terminal through hole 14 at the bottom of the housing concave portion 11. Thereby, even if the protrusion 15 is not provided, the first insulating sealing material 17 filled in the terminal proximal-side concave portion 13 has the base end of the terminal 2 protruding from the insulating coating 3 (the terminal of the film capacitor 1). 2).
  • the insertion depth of the film capacitor 1 into the housing recess 11 is deeper than that of the first embodiment by the height of the protrusion 15. Therefore, similarly to the first embodiment, even if the first insulating sealing material 17 is filled up to a height near the boundary between the semicircular portion and the straight portion of the film capacitor 1 having a rounded rectangular cross section. The amount of the first insulating sealing material 17 required for filling can be reduced, which contributes to cost reduction.
  • FIG. 10 is a cross-sectional view schematically showing how the conductor plate 160, the pedestal 10, the film capacitor 1, and the power semiconductor module 21 are attached to the housing 20 in the present embodiment.
  • FIG. 11 is a perspective view of the pedestal 10 viewed from the upper surface 10a side of the pedestal 10
  • FIG. 12 is a perspective view of the pedestal 10 viewed from the bottom surface 10b side of the pedestal 10.
  • the bottom surface recess 12 is not provided on the bottom surface 10b of the pedestal 10 (FIG. 12).
  • the film capacitor 1 is fixed to the pedestal 10 thus configured as follows. First, prior to disposing the film capacitor 1 in the housing recess 11, the boundary portion between the terminal 2 of the film capacitor 1 and the exterior insulation coating 3, that is, the base end portion of the terminal 2 protruding from the insulation exterior coating 3 (film capacitor An epoxy insulating resin (second insulating sealing material 18) having a resin viscosity of, for example, about 150,000 mPa ⁇ s is applied to the base portion of the terminal 2 of 1.
  • the pair of terminals 2 and 2 of the film capacitor 1 are inserted through the terminal through holes 14 and 14 formed in the housing recess 11 of the base 10, and the film capacitor 1 is disposed in the housing recess 11 of the base 10.
  • the second insulating sealing material 18 is solidified. In this way, by applying the second insulating sealing material 18 in advance to the base end portion of the terminal 2 protruding from the insulating outer covering film 3 and solidifying the second insulating sealing material 18 after the film capacitor 1 is arranged. The same operational effects as when the second insulating sealing material 18 is poured into the bottom recess 12 in the first embodiment and solidified are produced.
  • the protrusion 15 is formed in the housing recess 11. Therefore, when the film capacitor 1 is disposed in the housing recess 11, the portion between the pair of terminals 2 of the film capacitor 1 comes into contact with the projection 15, and the film capacitor 1 is projected from the curved surface of the housing recess 11. A gap is formed by being separated by an amount defined by the height of.
  • an epoxy insulating resin (first insulating sealing material 17) having a resin viscosity of, for example, about 800 mPa ⁇ s is poured into the insulating sealing material insertion port 16 formed in the housing recess 11 of the base 10. Since the viscosity of the first insulating sealing material 17 is sufficiently low, the first insulating sealing material 17 also flows into the gap between the bottom portion of the housing recess 11 formed by the protrusion 15 and the film capacitor 1. The first insulating sealing material 17 is filled up to a height near the boundary between the semicircular portion and the straight portion of the film capacitor 1 having a rounded rectangular cross section.
  • the base 10 on which the film capacitor 1 is arranged is placed in a high-temperature tank, and the first insulating sealing material 17 is cured, as in the first embodiment. 10 and the film capacitor 1 are fixed by a first insulating sealing material 17.
  • a resin such as the first insulating sealing material 17
  • a thermosetting insulating resin having a low viscosity may be poured. Then, the pedestal 10 to which the film capacitor 1 is fixed is disposed in the capacitor / pedestal housing portion 20A, and the power semiconductor module 21 is disposed in the power semiconductor module housing portion 20B.
  • the conductor plate 160 is disposed so as to face the bottom surface 10 b of the base 10, and the conductor plate 160 and the base 10 are fixed to the housing 20 with the bolts 24. Then, these are put in a high-temperature tank, the insulating resin poured into the capacitor / pedestal housing portion 20A is cured, and the housing 20 and the film capacitor 1 are fixed with the insulating resin. Then, the conductor plate 160 and the terminal 2 of the film capacitor 1, and the conductor plate 160 and the terminal 22 of the power semiconductor module are electrically connected, for example, by welding.
  • the insulating resin poured into the capacitor / pedestal housing portion 20A may be cured, and the casing 20 and the film capacitor 1 may be fixed with the insulating resin.
  • the housing 20 and the film capacitor 1 may be fixed with an insulating resin. It is not essential to fix the housing 20 and the film capacitor 1 with an insulating resin.
  • Inverter device 100 of the present embodiment has the following operational effects in addition to the operational effects of the first and second embodiments.
  • the second insulating sealing material 18 is applied to the boundary portion between the terminal 2 of the film capacitor 1 and the exterior insulating coating 3. Thereby, it can prevent that the insulation exterior coating 3 peels at the interface with the terminal 2. Thereby, since moisture does not enter from the boundary surface between the terminal 2 and the insulating exterior coating 3, it is possible to prevent a decrease in the capacity of the film capacitor 1 and improve durability.
  • FIG. 13 is a diagram showing a cross-sectional structure of the main circuit portion of the power conversion device in which the film capacitor 1 used as the comparative example 1 is directly connected to the conductor plate 160.
  • the base 10 in the first to third embodiments does not exist.
  • the film capacitor 1 is fixed as follows. First, the pair of terminals 2 and 2 of the film capacitor 1 are arranged at predetermined positions on the conductor plate 160, and the pair of terminals 2 and 2 are connected to the conductor plate 160 by welding. The film capacitor 1 is supported on the conductor plate 160 only by the connection portion with the pair of terminals 2.
  • the power semiconductor module 21 is disposed in the power semiconductor module housing portion 20B. Thereafter, the conductor plate 160 to which the film capacitor 1 is attached is disposed. As a result, the film capacitor 1 is disposed in the capacitor housing portion 20 ⁇ / b> C provided in the housing 20.
  • the conductor plate 160 is fixed to the housing 20 with the bolts 24. And the conductor board 160 and the terminal 22 of a power semiconductor module are electrically connected by welding. Thereby, the main circuit part of the power converter device of the comparative example 1 is completed.
  • FIG. 14 is a diagram showing a cross-sectional structure of the main circuit portion of the power conversion device in which the film capacitor 1 used as the comparative example 1 is directly connected to the conductor plate 160.
  • the base 10 in the first to third embodiments does not exist.
  • the film capacitor 1 is fixed as follows. First, as in Comparative Example 1, the pair of terminals 2 and 2 of the film capacitor 1 are arranged at predetermined positions on the conductor plate 160, and the pair of terminals 2 and 2 are connected to the conductor plate 160 by welding, respectively.
  • the epoxy adhesive 26 is applied between the conductor plate 160 and the pair of elements 2 and 2, and the base end portion of the terminal 2 protruding from the insulating outer coating 3 and the conductor plate 160 are bonded with the epoxy adhesive 26. Fix it.
  • the film capacitor 1 is supported on a conductor plate 160 by a connection portion between the pair of terminals 2 and 2 and an epoxy adhesive 26.
  • the power semiconductor module 21 is disposed in the power semiconductor module housing portion 20B. Thereafter, the conductor plate 160 to which the film capacitor 1 is attached is disposed. As a result, the film capacitor 1 is disposed in the capacitor housing portion 20 ⁇ / b> C provided in the housing 20.
  • the conductor plate 160 is fixed to the housing 20 with the bolts 24. And the conductor board 160 and the terminal 22 of a power semiconductor module are electrically connected by welding. Thereby, the main circuit part of the power converter device of the comparative example 2 is completed.
  • FIG. 15 shows a connection portion between the film capacitor element 1a and the terminal 2 when a vibration in a frequency range of 0 to 2000 Hz is applied in the power conversion devices of the first to third embodiments and Comparative Examples 1 and 2 (FIG. It is a figure which shows the analysis result of the maximum stress which acts on the A section in FIG.
  • the vertical axis indicates the stress ratio when the stress in the X direction in the film capacitor 1 of Comparative Example 1 is 1 (reference).
  • the X direction refers to the horizontal direction of the paper surface in FIGS. 13 and 14
  • the Y direction refers to the depth direction of the paper surface in FIGS. 13 and 14
  • the Z direction refers to the vertical direction of the paper surface in FIGS.
  • Comparative Example 1 since the film capacitor 1 is supported only by the welded portion between the pair of terminals 2 and the conductor plate 160, the film capacitor 1 is greatly shaken when vibration is applied, and the film capacitor element 1a and the terminal 2 A large stress is generated at the joint.
  • Comparative Example 2 since the film capacitor 1 is fixed to the conductor plate 160 by the welded portion between the pair of terminals 2 and the conductor plate 160 and the epoxy adhesive 26, the Y direction and Z Directional stress is suppressed. However, since the film capacitor 1 is supported only in the vicinity of the terminal 2 of the film capacitor element 1 a via the pair of terminals 2, 2 and the insulation sheath 3, the stress in the X direction is still high.
  • the film capacitor 1 according to the first and second embodiments is fixed to the conductor plate 160 at a welded portion between the pair of terminals 2 and the conductor plate 160, and through a portion filled with the first insulating sealing material 17. It is fixed to the base 10. In this case, vibration is suppressed in all directions of X, Y, and Z, and stress applied to the joint portion between the film capacitor element 1a and the terminal 2 can be suppressed.
  • FIG. 16 also shows the effect on the joint between the terminal 2 of the film capacitor 1 and the conductor plate 160 when vibration is applied in the range of 0 to 2000 Hz in the first to third embodiments and the comparative examples 1 and 2. It is an analysis result of maximum stress to be performed.
  • the stress acting on the joint between the terminal 2 of the film capacitor 1 and the conductor plate 160 is also different from that of Comparative Examples 1 and 2 in the first to third embodiments in that the film capacitor 1 is formed by the base 10 and the insulating sealing material 17. Since it is fixed, vibration is suppressed and stress can be reduced.
  • FIG. 17 is a diagram showing the results of the moisture resistance evaluation.
  • the power converters of the first and second embodiments and Comparative Example 1 are placed in a high-temperature and high-humidity tank of 85 ° C./85% RH, and predetermined. It is the result of having measured the capacity
  • the horizontal axis represents the time of exposure to an atmosphere of 85 ° C./85% RH
  • the vertical axis represents the rate of change in capacitance when the initial capacitor capacity before the test is 1.
  • the value on the vertical axis is a negative value
  • the capacitance of the capacitor is lower than the initial value.
  • the boundary portion between the outer insulating coating 3 and the terminal 2 of the film capacitor 1 (the base end portion of the terminal 2 protruding from the insulating outer coating 3) is the base 10. And since it is covered with the insulating sealing material 26, moisture absorption can be suppressed, and a decrease in capacity can be suppressed.
  • the bottom face recessed part 12 is not provided in the bottom face 10b of the base 10, this invention is not limited to this, In 3rd Embodiment, the bottom face of the base 10 A bottom recess 12 may be provided on 10b. Then, as in the first and second embodiments, the second insulating sealing material 18 may be poured into the bottom recess 12 to solidify the resin.
  • each insulating sealing material is described with specific resin viscosities, but the numerical values of these resin viscosities are examples, and the present invention is not limited thereto. Moreover, you may use not only an epoxy-type insulating resin but various resin which has electrical insulation.
  • the number of film capacitors 1 fixed to the base 10 is six, but the present invention is not limited to this.
  • the number of film capacitors 1 fixed to the pedestal 10 may be, for example, one or two or more arbitrary plural depending on the required capacity.
  • the film capacitor 1 has a rounded rectangular cross section, but the present invention is not limited to this.
  • a cylindrical capacitor having a circular cross section may be used.
  • the present invention is not limited to the above-described embodiment, and a power semiconductor module that converts DC power into AC power and a pair of terminals that are covered with the insulating outer sheath and are covered with the insulating outer sheath.
  • a film capacitor for smoothing the projecting DC power a plate-like conductor plate on which a circuit for electrically connecting the power semiconductor module and the film capacitor is formed, a pedestal on which the film capacitor is fixed, and a power semiconductor It has a power semiconductor housing part for housing the module and a housing side capacitor housing part for housing the film capacitor fixed to the pedestal.
  • the power semiconductor module is fixed and the plate surface of the conductor plate and the bottom surface of the pedestal face each other.
  • the film capacitor is identical to the pedestal-side capacitor housing recess.
  • the part is fixed to the pedestal by an insulating sealing material filled in a space between the first recess and the part, and the pair of terminals protrudes from the bottom to the outside of the pedestal through the pair of terminal through holes. It includes power converters of various structures, characterized in that they are electrically connected to the circuit of the conductor plate.

Abstract

The invention addresses the problem of improving the speed of developing power conversion devices. A power conversion device of the present invention comprises: a film capacitor covered with an insulating outer cover and having a pair of terminals projecting from the insulating outer cover; and a base to which the film capacitor is fixed. The base has: a base-side capacitor housing recess which is a recess recessed from the surface on the opposite side to the bottom surface toward the bottom surface and on which the film capacitor is disposed; and a pair of terminal through-holes passing through from a bottom portion of the base-side capacitor housing recess to the bottom surface. The film capacitor is fixed to the base by an insulation sealing material filled in the space between a first recess and the film capacitor while partially touching the base-side capacitor housing recess. The pair of terminals projects from the bottom surface to the outside of the base through the pair of terminal through-holes and are electrically connected to a conductive sheet circuit.

Description

電力変換装置Power converter
 本発明は、フィルムコンデンサ及びそれを用いたインバータ装置等の電力変換装置に関する。 The present invention relates to a film capacitor and a power conversion device such as an inverter device using the film capacitor.
 インバータ装置を代表とする電力変換装置が、各種家電製品をはじめ、産業機器、電力機器、ハイブリッド自動車(HEV)、電気自動車(EV)等の自動車機器等にも応用展開されている。HEV、EVに使用されるインバータ装置は、低燃費化、低電費化と小スペース化実現のため、装置の高電圧化と小型高密度化が求められている。これらインバータ装置は、IGBT等のパワー半導体素子を内蔵したパワー半導体モジュール、バスバー、コイル等の他、直流電力を平滑化させるためのコンデンサ等の部品から成り立っている。特にHEV、EV用インバータ装置のコンデンサとしては、使用される電圧が数百ボルトと高いため、高耐圧なフィルムコンデンサが主として使用されるケースが多い。 The power conversion device represented by the inverter device is applied and deployed to various home appliances, industrial equipment, power equipment, automobile equipment such as a hybrid vehicle (HEV), and an electric vehicle (EV). Inverter devices used in HEVs and EVs are required to have higher voltage and smaller size and higher density in order to reduce fuel consumption, reduce power consumption, and reduce space. These inverter devices are composed of components such as a capacitor for smoothing DC power, in addition to a power semiconductor module incorporating a power semiconductor element such as IGBT, a bus bar, and a coil. In particular, as a capacitor for HEV and EV inverter devices, the voltage used is as high as several hundred volts, so a high withstand voltage film capacitor is mainly used in many cases.
 フィルムコンデンサは、金属が蒸着された有機誘電体フィルムを2枚重ねて巻回した巻回体と、巻回体の両端面に形成した集電電極(メタリコン電極)とを有するフィルムコンデンサ素子、および、両端の集電電極にそれぞれ接続された一対の端子を備えている。HEV、EV用インバータ装置では、上記のように端子が接続されたフィルムコンデンサ素子を樹脂ケース内に収納し、樹脂ケースとフィルムコンデンサ素子との空間を絶縁封止樹脂(ポッティング樹脂)で封止し、コンデンサモジュールとして製作される(特許文献1参照)。 A film capacitor is a film capacitor element having a wound body in which two organic dielectric films deposited with metal are stacked and wound, and current collecting electrodes (metallicon electrodes) formed on both end faces of the wound body, and And a pair of terminals respectively connected to the collecting electrodes at both ends. In HEV and EV inverter devices, the film capacitor element with the terminal connected as described above is housed in a resin case, and the space between the resin case and the film capacitor element is sealed with an insulating sealing resin (potting resin). The capacitor module is manufactured (see Patent Document 1).
特開2012-161242号公報JP 2012-161242 A
 車種や出力容量等によって種々のインバータ装置を用意する必要がある。また、フィルムコンデンサ素子を収納する樹脂ケースをインバータの機種毎に専用に設計して、機種毎専用のコンデンサモジュールを製造する必要があった。そのため、インバータ装置の開発スピードが向上し難くなるとともに、コスト増となるおそれがあった。 It is necessary to prepare various inverter devices depending on the vehicle type and output capacity. In addition, it is necessary to design a resin case for storing the film capacitor element exclusively for each inverter model, and to manufacture a capacitor module dedicated to each model. For this reason, the development speed of the inverter device is difficult to improve, and the cost may increase.
 請求項1に記載の電力変換装置は、直流電力を交流電力とを相互に変換するパワー半導体モジュールと、絶縁外装被覆で覆われて絶縁外装被覆から一対の端子が突設された直流電力を平滑化するフィルムコンデンサと、パワー半導体モジュールとフィルムコンデンサとを電気的に接続する回路が形成された板状の導体板と、フィルムコンデンサが固定される台座と、パワー半導体モジュールを収容するパワー半導体収容部と、台座に固定されたフィルムコンデンサを収容する筐体側コンデンサ収容部を有し、パワー半導体モジュールを固定するとともに、導体板の板面と台座の底面とを向かい合わせた状態で導体板と台座とを固定する筐体とを備え、台座は、底面とは反対側の面から底面に向かって凹んでいる凹部であってフィルムコンデンサを配置する台座側コンデンサ収容凹部と、台座側コンデンサ収容凹部の底部から底面まで貫通する一対の端子用貫通孔とを有し、フィルムコンデンサは、台座側コンデンサ収容凹部と一部が当接した状態で第1凹部との間の空間に充填された絶縁封止材により台座に固定され、一対の端子は、一対の端子用貫通孔を介し底面から台座の外部に突出して導体板の回路に電気的に接続されていることを特徴とする。 A power conversion device according to claim 1 smoothes a power semiconductor module that converts DC power into AC power, and DC power that is covered with an insulating sheath and has a pair of terminals protruding from the insulating sheath. Film capacitor, a plate-like conductor plate on which a circuit for electrically connecting the power semiconductor module and the film capacitor is formed, a pedestal to which the film capacitor is fixed, and a power semiconductor housing portion for housing the power semiconductor module And a housing-side capacitor housing portion for housing a film capacitor fixed to the pedestal, the power semiconductor module is fixed, and the conductor plate and the pedestal in a state where the plate surface of the conductor plate and the bottom surface of the pedestal face each other. The pedestal is a recess recessed from the surface opposite to the bottom surface toward the bottom surface. And a pair of terminal through holes penetrating from the bottom to the bottom of the base-side capacitor housing recess, and the film capacitor is partly in contact with the base-side capacitor housing recess. In the state, it is fixed to the pedestal by an insulating sealing material filled in the space between the first recess, and the pair of terminals protrudes from the bottom surface to the outside of the pedestal through the pair of terminal through-holes to form a circuit on the conductor plate. It is electrically connected.
 本発明によれば、電力変換装置の開発スピードを向上できる。 According to the present invention, the development speed of the power converter can be improved.
第1の実施の形態の電力変換装置(インバータ装置)の外観を示す斜視図である。It is a perspective view which shows the external appearance of the power converter device (inverter device) of 1st Embodiment. インバータ装置の分解図である。It is an exploded view of an inverter apparatus. フィルムコンデンサの外観斜視図である。It is an external appearance perspective view of a film capacitor. 導体板、台座、フィルムコンデンサ、およびパワー半導体モジュールの筐体への取り付け状態を模式的に示す断面図である。It is sectional drawing which shows typically the attachment state to the housing | casing of a conductor plate, a base, a film capacitor, and a power semiconductor module. 台座の上面側から見た台座の斜視図である。It is the perspective view of the base seen from the upper surface side of the base. 台座の底面側から見た台座の斜視図である。It is the perspective view of the base seen from the bottom face side of the base. 第2の実施の形態の導体板、台座、フィルムコンデンサ、およびパワー半導体モジュールの筐体への取り付け状態を模式的に示す断面図である。It is sectional drawing which shows typically the attachment state to the housing | casing of the conductor plate of the 2nd Embodiment, a base, a film capacitor, and a power semiconductor module. 台座の上面側から見た第2の実施の形態の台座の斜視図である。It is a perspective view of the base of 2nd Embodiment seen from the upper surface side of the base. 台座の底面側から見た第2の実施の形態の台座の斜視図である。It is the perspective view of the base of 2nd Embodiment seen from the bottom face side of the base. 第3の実施の形態の導体板、台座、フィルムコンデンサ、およびパワー半導体モジュールの筐体への取り付け状態を模式的に示す断面図である。It is sectional drawing which shows typically the attachment state to the housing | casing of the conductor plate of a 3rd Embodiment, a base, a film capacitor, and a power semiconductor module. 台座の上面側から見た第3の実施の形態の台座の斜視図である。It is a perspective view of the base of 3rd Embodiment seen from the upper surface side of the base. 台座の底面側から見た第3の実施の形態の台座の斜視図である。It is the perspective view of the base of 3rd Embodiment seen from the bottom face side of the base. 比較例1についての電力変換装置の主回路部分の断面構造を示す図である。5 is a diagram showing a cross-sectional structure of a main circuit portion of a power conversion device according to Comparative Example 1. FIG. 比較例2についての電力変換装置の主回路部分の断面構造を示す図である。6 is a diagram illustrating a cross-sectional structure of a main circuit portion of a power conversion device according to Comparative Example 2. FIG. 振動解析の結果を示す図である。It is a figure which shows the result of a vibration analysis. 振動解析の結果を示す図である。It is a figure which shows the result of a vibration analysis. 耐湿性試験の結果を示す図である。It is a figure which shows the result of a moisture resistance test.
---第1の実施の形態---
 図1~6を参照して、本発明による電力変換装置の第1の実施の形態を説明する。本実施の形態の電力変換装置は、ハイブリッド自動車(HEV)に限らず、プラグインハイブリッド自動車(PHEV)あるいは電気自動車(EV)等の車両に搭載される電力変換装置にも適用でき、さらには、建設機械等の車両に用いられる電力変換装置にも適用できる。
--- First embodiment ---
A first embodiment of a power converter according to the present invention will be described with reference to FIGS. The power conversion device of the present embodiment can be applied not only to a hybrid vehicle (HEV) but also to a power conversion device mounted on a vehicle such as a plug-in hybrid vehicle (PHEV) or an electric vehicle (EV). The present invention can also be applied to power conversion devices used for vehicles such as construction machines.
 図1は、本実施の形態の電力変換装置(インバータ装置)100の外観を示す斜視図であり、図2は、インバータ装置100の分解図である。インバータ装置100は、上蓋110と、交流バスバー120と、ゲート・制御基板130と、直流バスバー140と、基板ベース150と、導体板160とを備えている。また、インバータ装置100は、台座10と、複数個のフィルムコンデンサ1と、水路/ケース(筐体)20と、パワー半導体モジュール21と、下蓋170とを備えている。 FIG. 1 is a perspective view showing an external appearance of a power conversion device (inverter device) 100 according to the present embodiment, and FIG. 2 is an exploded view of the inverter device 100. The inverter device 100 includes an upper lid 110, an AC bus bar 120, a gate / control board 130, a DC bus bar 140, a board base 150, and a conductor plate 160. The inverter device 100 includes a pedestal 10, a plurality of film capacitors 1, a water channel / case (housing) 20, a power semiconductor module 21, and a lower lid 170.
 インバータ装置100は、上蓋110と、水路/ケース20と、下蓋170とを有するインバータケース内に、インバータ装置100を構成する各部が収納されている。水路/ケース20は、後述するようにフィルムコンデンサ1やパワー半導体モジュール21を収容するケースである。以下の説明では、水路/ケース20を単に筐体20と呼ぶ。上蓋110は、筐体20の上蓋である。下蓋170は、筐体20の下蓋であり、パワー半導体モジュール21を冷却するための冷媒(たとえば水)が流れる水路を仕切る水路仕切板171が取り付けられ、筐体20内への冷媒の出入口172が設けられている。上蓋110、水路/ケース20、および下蓋170の材質は、たとえばアルミニウムである。 In the inverter device 100, each part constituting the inverter device 100 is housed in an inverter case having an upper lid 110, a water channel / case 20, and a lower lid 170. The water channel / case 20 is a case for accommodating the film capacitor 1 and the power semiconductor module 21 as described later. In the following description, the water channel / case 20 is simply referred to as a housing 20. The upper lid 110 is an upper lid of the housing 20. The lower lid 170 is a lower lid of the housing 20, to which a water channel partition plate 171 that partitions a water channel through which a refrigerant (for example, water) for cooling the power semiconductor module 21 flows is attached. 172 is provided. The material of the upper lid 110, the water channel / case 20, and the lower lid 170 is, for example, aluminum.
 パワー半導体モジュール21は、パワー半導体素子により構成されるインバータ回路の上下アームの直列回路を内蔵したモジュールであり、交流電力のU相、V相、W相の3相に対応して備えられている。フィルムコンデンサ1は、直流電力を平滑化するためのコンデンサであり、台座10に固定された状態で、台座10とともに筐体20に固定される。フィルムコンデンサ1および筐体20については、後に詳述する。 The power semiconductor module 21 is a module that incorporates a series circuit of upper and lower arms of an inverter circuit constituted by power semiconductor elements, and is provided corresponding to three phases of AC power U phase, V phase, and W phase. . The film capacitor 1 is a capacitor for smoothing DC power, and is fixed to the housing 20 together with the pedestal 10 while being fixed to the pedestal 10. The film capacitor 1 and the housing 20 will be described in detail later.
 導体板160は、不図示の正極導体板と負極導体板とをシート状の不図示の絶縁部材(絶縁紙や樹脂)を介して積層したラミネートバスバーである。なお、不図示の正極導体板および負極導体板は幅広の板状導体から成る。このように面積の大きな正極導体板および負極導体板を積層構造とすることにより、導体板160の抵抗値およびインダクタンスを低減できる。導体板160は、筐体20および筐体20に固定された台座10の上方に固定される。 The conductor plate 160 is a laminated bus bar in which a positive electrode conductor plate and a negative electrode conductor plate (not shown) are laminated via a sheet-like insulating member (insulating paper or resin). Note that the positive electrode conductor plate and the negative electrode conductor plate (not shown) are formed of wide plate conductors. Thus, by making a positive electrode conductor plate and a negative electrode conductor plate having a large area into a laminated structure, the resistance value and inductance of the conductor plate 160 can be reduced. The conductor plate 160 is fixed above the housing 20 and the base 10 fixed to the housing 20.
 基板ベース150は、筐体20および上蓋110との間に挟まれるアルミニウム製の板であり、ゲート・制御基板130で発生する熱を、筐体20を介して冷媒に逃がす役割を果たす。直流バスバー140は、導体板160と接続されたバスバーであり、外部の不図示の二次電池に接続される。交流バスバー120は、パワー半導体モジュール21の交流端子と接続されたバスバーであり、外部の不図示のモータジェネレータに接続される。ゲート・制御基板130は、インバータ装置100の制御回路やドライバ回路を内蔵する基板である。なお、制御回路は、不図示のモータジェネレータをモータとして運転するか発電機として運転するかを演算し、演算結果に基づいて制御パルスを発生し、その制御パルスをドライバ回路へ供給する。また、ドライバ回路は、供給された制御パルスに基づいて、インバータ回路を制御するための駆動パルスを発生する。 The substrate base 150 is an aluminum plate sandwiched between the casing 20 and the upper lid 110 and plays a role of releasing heat generated in the gate / control board 130 to the refrigerant through the casing 20. The DC bus bar 140 is a bus bar connected to the conductor plate 160 and connected to an external secondary battery (not shown). The AC bus bar 120 is a bus bar connected to the AC terminal of the power semiconductor module 21 and is connected to an external motor generator (not shown). The gate / control board 130 is a board in which the control circuit and driver circuit of the inverter device 100 are built. The control circuit calculates whether a motor generator (not shown) is operated as a motor or a generator, generates a control pulse based on the calculation result, and supplies the control pulse to the driver circuit. The driver circuit generates a drive pulse for controlling the inverter circuit based on the supplied control pulse.
---本実施の形態で用いられるフィルムコンデンサ1について---
 従来のHEV、EV用インバータ装置では、インバータの機種毎に用意された専用の樹脂ケースにあらかじめフィルムコンデンサ素子が収納されたコンデンサモジュールを用いていた。これに対して、本実施の形態で用いられるフィルムコンデンサ1は、図3に示すように、フィルムコンデンサ素子1aに一対の端子2,2が取り付けられて絶縁外装被覆3が被せられた、コンデンサの単体の部品である。なお、図3において、1bは、フィルムコンデンサ素子1aの集電電極(メタリコン電極)である。
--- About film capacitor 1 used in this embodiment ---
In conventional HEV and EV inverter devices, a capacitor module in which a film capacitor element is stored in advance in a dedicated resin case prepared for each inverter model is used. On the other hand, as shown in FIG. 3, the film capacitor 1 used in the present embodiment is a capacitor having a pair of terminals 2 and 2 attached to a film capacitor element 1a and covered with an insulation sheath 3. It is a single part. In FIG. 3, reference numeral 1b denotes a current collecting electrode (metallicon electrode) of the film capacitor element 1a.
 フィルムコンデンサ素子1aは、金属が蒸着された有機誘電体フィルムを2枚重ねて巻回した断面が角丸長方形状(すなわち二つの等しい長さの平行線と二つの半円形からなるからなる形状)である巻回体と、巻回体の両端面に形成した集電電極(メタリコン電極)とを有する。このようにフィルムコンデンサ素子1aの断面が角丸長方形状であるので、絶縁外装被覆3が被せられたフィルムコンデンサ1も断面形状が角丸長方形状となる。説明の便宜上、以下の説明では、フィルムコンデンサ1の2つの電極2,2が設けられている面をフィルムコンデンサ1の端面と呼び、両端面の間で端子2と同じ方向に延在する平面部分をフィルムコンデンサ1の側面と呼ぶ。 The film capacitor element 1a has a rounded rectangular shape (that is, a shape composed of two parallel lines of two equal lengths and two semicircles) in which two organic dielectric films on which metal is deposited are stacked and wound. And a current collecting electrode (metallicon electrode) formed on both end faces of the wound body. Thus, since the cross section of the film capacitor element 1a has a rounded rectangular shape, the cross sectional shape of the film capacitor 1 covered with the insulating outer covering 3 also has a rounded rectangular shape. For convenience of description, in the following description, the surface of the film capacitor 1 on which the two electrodes 2 and 2 are provided is called an end surface of the film capacitor 1 and is a plane portion extending in the same direction as the terminal 2 between the both end surfaces. Is called the side surface of the film capacitor 1.
 図3に示したフィルムコンデンサ1の端子2,2は、導体板160に直接電気的に接続される。しかし、本実施の形態のインバータ装置100のように、HEVや、PHEV、EV等の車両に搭載される場合には、フィルムコンデンサ1に車両の振動が伝わる。そのため、フィルムコンデンサ1の端子2,2と導体板160との電気的および機械的な接続だけでは、フィルムコンデンサ素子1aと端子2との接続部(図3におけるA部)、あるいは図3では不図示の導体板160と端子2,2との接続部(図3におけるB部)が破断するおそれがある。 3 are directly electrically connected to the conductor plate 160. The terminals 2 and 2 of the film capacitor 1 shown in FIG. However, when mounted on a vehicle such as HEV, PHEV, or EV as in the inverter device 100 of the present embodiment, the vibration of the vehicle is transmitted to the film capacitor 1. For this reason, only the electrical and mechanical connection between the terminals 2 and 2 of the film capacitor 1 and the conductor plate 160 is not sufficient in the connection portion (A portion in FIG. 3) between the film capacitor element 1a and the terminal 2 or in FIG. There is a possibility that the connecting portion (B portion in FIG. 3) between the illustrated conductor plate 160 and the terminals 2 and 2 is broken.
 また、上述したようにフィルムコンデンサ素子1aは絶縁外装被覆3で覆われているが、端子2,2と絶縁外装被覆3の樹脂の境界面から水分が浸入して、フィルムコンデンサ素子1aの金属化フィルムの薄膜電極が酸化されて、結果として容量が低下するおそれがある。さらに、複数個のフィルムコンデンサ1を一つずつ個々に導体板160に位置決めして、電気的に接続する必要があるため、生産性を阻害するおそれがある。 Further, as described above, the film capacitor element 1a is covered with the insulating outer sheath 3. However, moisture penetrates from the interface between the terminals 2, 2 and the resin of the insulating outer sheath 3, and the film capacitor element 1a is metallized. The thin film electrode of the film may be oxidized, resulting in a decrease in capacity. Furthermore, since it is necessary to position and electrically connect the plurality of film capacitors 1 to the conductor plate 160 one by one, there is a risk of hindering productivity.
 そこで、本実施の形態では、フィルムコンデンサ1をあらかじめ台座10に固定することで、上述した懸念を払拭した。以下、具体的に説明する。 Therefore, in the present embodiment, the above-described concerns are eliminated by fixing the film capacitor 1 to the base 10 in advance. This will be specifically described below.
---台座10について---
 図4は、導体板160、台座10、フィルムコンデンサ1、およびパワー半導体モジュール21の筐体20への取り付け状態を模式的に示す断面図である。図5は、台座10の上面10a側から見た台座10の斜視図であり、図6は、台座10の底面10b側から見た台座10の斜視図である。本実施の形態の台座10では、1つのフィルムコンデンサ1を収納する台座側コンデンサ収容凹部(収容凹部)11が6箇所に設けられている。
--- About the pedestal 10 ---
FIG. 4 is a cross-sectional view schematically showing how the conductor plate 160, the pedestal 10, the film capacitor 1, and the power semiconductor module 21 are attached to the housing 20. FIG. 5 is a perspective view of the pedestal 10 viewed from the top surface 10a side of the pedestal 10, and FIG. 6 is a perspective view of the pedestal 10 viewed from the bottom surface 10b side of the pedestal 10. In the pedestal 10 of the present embodiment, pedestal-side capacitor accommodating recesses (accommodating recesses) 11 for accommodating one film capacitor 1 are provided at six locations.
 収容凹部11は、上面10aから底面10bに向かって凹んでいる凹部であり、一対の端子用貫通孔14,14と、突起部15と、絶縁封止材挿入口16とを有する。図6に示すように、台座10の底面10bには、底面凹部12が設けられている。また、台座10には、後述するように導体板160とともに筐体20に対してボルト止めによって固定するためのボルト孔10cが設けられている。 The housing recess 11 is a recess that is recessed from the top surface 10 a toward the bottom surface 10 b, and has a pair of terminal through holes 14, 14, a protrusion 15, and an insulating sealing material insertion port 16. As shown in FIG. 6, a bottom surface recess 12 is provided on the bottom surface 10 b of the base 10. In addition, the pedestal 10 is provided with a bolt hole 10c for fixing to the casing 20 together with the conductor plate 160 by bolting, as will be described later.
 収容凹部11は、たとえば、円柱を縦に2等分した半円柱形状に凹んでいる凹部である。収容凹部11の形状について、円柱の表面に相当する曲面の曲率半径は、角丸長方形状の断面を有するフィルムコンデンサ1の半円部分の断面における曲率半径より大きい。収容凹部11のうち、円柱の両端面に相当する壁面と円柱の表面に相当する曲面との境界近傍には、一対の端子用貫通孔14,14が設けられている。 The accommodating recess 11 is, for example, a recess that is recessed in a semi-cylindrical shape obtained by vertically dividing a cylinder into two equal parts. Regarding the shape of the housing recess 11, the curvature radius of the curved surface corresponding to the surface of the cylinder is larger than the curvature radius in the cross section of the semicircular portion of the film capacitor 1 having a rounded rectangular cross section. In the housing recess 11, a pair of terminal through holes 14 and 14 are provided in the vicinity of the boundary between the wall surface corresponding to both end faces of the cylinder and the curved surface corresponding to the surface of the cylinder.
 一対の貫通孔14,14は、フィルムコンデンサ1を収容凹部11に配設したときに一対の端子2,2が挿通される孔である。突起部15は、収容凹部11の底部から突出した突起物であり、収容凹部1箇所につき、たとえば円柱の長手方向に離間して2つ設けられている。絶縁封止材挿入口16は、たとえば、図5に示すように収容凹部11の円柱の端面に相当する壁面に設けられた溝状の部位である。 The pair of through holes 14 and 14 are holes through which the pair of terminals 2 and 2 are inserted when the film capacitor 1 is disposed in the housing recess 11. The protrusions 15 are protrusions that protrude from the bottom of the housing recess 11, and two protrusions 15 are provided, for example, spaced from each other in the longitudinal direction of the cylinder for each housing recess. The insulating sealing material insertion port 16 is, for example, a groove-like portion provided on the wall surface corresponding to the end surface of the cylinder of the housing recess 11 as shown in FIG.
 底面凹部12は、端子用貫通孔14の底面側の開口の周囲を取り囲むように設けられた凹部であり、すべての端子用貫通孔14について設けられている。 The bottom surface recess 12 is a recess provided so as to surround the periphery of the opening on the bottom surface side of the terminal through hole 14, and is provided for all the terminal through holes 14.
---フィルムコンデンサ1の台座10への固定---
 このように構成された台座10に対して、フィルムコンデンサ1は次のように固定される。まず、台座10の収容凹部11に形成した端子用貫通孔14,14に、フィルムコンデンサ1の一対の端子2,2を挿入貫通させ、フィルムコンデンサ1を台座10の収容凹部11に配置する。フィルムコンデンサ1が収容凹部11に配置されると、一対の端子2,2は、それぞれ一対の端子用貫通孔14,14に挿通されて、底面10bから突出する。
--- Fixing the film capacitor 1 to the base 10 ---
The film capacitor 1 is fixed to the pedestal 10 thus configured as follows. First, the pair of terminals 2 and 2 of the film capacitor 1 are inserted through the terminal through holes 14 and 14 formed in the housing recess 11 of the base 10, and the film capacitor 1 is disposed in the housing recess 11 of the base 10. When the film capacitor 1 is disposed in the housing recess 11, the pair of terminals 2 and 2 are inserted through the pair of terminal through holes 14 and 14, respectively, and protrude from the bottom surface 10b.
 また、フィルムコンデンサ1が収容凹部11に配置されると、フィルムコンデンサ1の一対の端子2の間の部位が突起物15と当接するため、フィルムコンデンサ1は、収容凹部11の曲面から(特に収容凹部11の底部から)、突起物15の高さで規定される分だけ離間して隙間が形成される。 In addition, when the film capacitor 1 is disposed in the housing recess 11, the portion between the pair of terminals 2 of the film capacitor 1 comes into contact with the protrusion 15, so that the film capacitor 1 is separated from the curved surface of the housing recess 11 (particularly, the housing is stored A gap is formed apart from the bottom of the recess 11 by an amount defined by the height of the protrusion 15.
 次いで、台座10の底面10bに形成された底面凹部12に、樹脂粘度が約85,000mPa・sのエポキシ系絶縁封止樹脂(第2絶縁封止材18)を流し込み、樹脂を固化させる。底面凹部12は、上述したように、底面10bに設けられた凹部であって、後述するように底面10bと対向して配設される導体板160に向かって突出した端子2の周囲を取り囲んで形成されている。そのため、底面凹部12に流し込んだ第2絶縁封止18を固化させることで、台座10とフィルムコンデンサ1とを仮固定でき、端子用貫通孔14と端子2との隙間が埋まる。このように、端子用貫通孔14と端子2との隙間を第2絶縁封止18で埋めることで、後述する第1絶縁封止材が端子用貫通孔14と端子2との隙間から流出を防止する。 Next, an epoxy-based insulating sealing resin (second insulating sealing material 18) having a resin viscosity of about 85,000 mPa · s is poured into the bottom recess 12 formed on the bottom surface 10b of the base 10 to solidify the resin. As described above, the bottom surface recess 12 is a recess provided in the bottom surface 10b and surrounds the periphery of the terminal 2 protruding toward the conductor plate 160 disposed to face the bottom surface 10b as described later. Is formed. Therefore, the base 10 and the film capacitor 1 can be temporarily fixed by solidifying the second insulating seal 18 poured into the bottom recess 12, and the gap between the terminal through hole 14 and the terminal 2 is filled. Thus, by filling the gap between the terminal through hole 14 and the terminal 2 with the second insulating seal 18, the first insulating sealing material described later flows out from the gap between the terminal through hole 14 and the terminal 2. To prevent.
 次いで、台座10の収容凹部11に形成した絶縁封止材挿入口16に、樹脂粘度がたとえば約800mPa・sのエポキシ系絶縁樹脂(第1絶縁封止材17)を流し込む。第1絶縁封止材17の粘度が十分に低いため、第1絶縁封止材17は、突起物15によって形成された収容凹部11の底部とフィルムコンデンサ1との隙間にも流れ込む。なお、第1絶縁封止材17は、角丸長方形状の断面を有するフィルムコンデンサ1の半円部分と直線部分との境界付近の高さまで充填される。 Next, an epoxy insulating resin (first insulating sealing material 17) having a resin viscosity of, for example, about 800 mPa · s is poured into the insulating sealing material insertion port 16 formed in the housing recess 11 of the base 10. Since the viscosity of the first insulating sealing material 17 is sufficiently low, the first insulating sealing material 17 also flows into the gap between the bottom portion of the housing recess 11 formed by the protrusion 15 and the film capacitor 1. The first insulating sealing material 17 is filled up to a height near the boundary between the semicircular portion and the straight portion of the film capacitor 1 having a rounded rectangular cross section.
 第1絶縁封止材17の充填後、フィルムコンデンサ1が配置された台座10を高温槽内に入れて、第1絶縁封止材17を硬化させ、台座10とフィルムコンデンサ1とを第1絶縁封止材17で固定する。 After filling the first insulating sealing material 17, the pedestal 10 on which the film capacitor 1 is placed is placed in a high-temperature bath, the first insulating sealing material 17 is cured, and the pedestal 10 and the film capacitor 1 are first insulated. Fix with the sealing material 17.
 その後、フィルムコンデンサ1が固定された台座10と、パワー半導体モジュール21とを筺体20にそれぞれ配置する。なお、図2,4に示すように、筐体20には、フィルムコンデンサ1および台座10を収容するコンデンサ・台座収容部20Aと、パワー半導体モジュール21を収容するパワー半導体モジュール収容部20Bとが設けられている。なお、パワー半導体モジュール収容部20Bは、冷媒の出入口172から出入りする冷媒が通過するように構成されている。 Thereafter, the pedestal 10 to which the film capacitor 1 is fixed and the power semiconductor module 21 are respectively arranged on the housing 20. As shown in FIGS. 2 and 4, the housing 20 is provided with a capacitor / pedestal accommodating portion 20 </ b> A for accommodating the film capacitor 1 and the pedestal 10, and a power semiconductor module accommodating portion 20 </ b> B for accommodating the power semiconductor module 21. It has been. The power semiconductor module housing portion 20B is configured such that the refrigerant entering and exiting from the refrigerant inlet / outlet 172 passes therethrough.
 フィルムコンデンサ1が固定された台座10はコンデンサ・台座収容部20Aへ、パワー半導体モジュール21はパワー半導体モジュール収容部20Bへそれぞれ配置される。なお、フィルムコンデンサ1が固定された台座10は、収容凹部11に固定されたフィルムコンデンサ1を筐体20側に向けて状態でコンデンサ・台座収容部20Aに配置される。 The pedestal 10 to which the film capacitor 1 is fixed is disposed in the capacitor / pedestal housing portion 20A, and the power semiconductor module 21 is disposed in the power semiconductor module housing portion 20B. The pedestal 10 to which the film capacitor 1 is fixed is disposed in the capacitor / pedestal storage portion 20A with the film capacitor 1 fixed to the storage recess 11 facing the housing 20 side.
 その後、導体板160を台座10の底面10bと向かい合わせとなるように配置し、導体板160および台座10をボルト24により筺体20に固定する。そして、導体板160とフィルムコンデンサ1の端子2、導体板160とパワー半導体モジュールの端子22とを、たとえば溶接にて電気的に接続する。これにより、インバータ装置100の主回路部分が完成する。 Thereafter, the conductor plate 160 is disposed so as to face the bottom surface 10 b of the base 10, and the conductor plate 160 and the base 10 are fixed to the housing 20 with the bolts 24. Then, the conductor plate 160 and the terminal 2 of the film capacitor 1, and the conductor plate 160 and the terminal 22 of the power semiconductor module are electrically connected, for example, by welding. Thereby, the main circuit part of the inverter apparatus 100 is completed.
 さらに、交流バスバー120および直流バスバー140と、基板ベース150と、ゲート・制御基板130とを取り付けて、電気的な接続を行い、上蓋110を被せて不図示のボルトで固定することで、インバータ装置100が完成する。 Further, the AC bus bar 120 and the DC bus bar 140, the substrate base 150, and the gate / control substrate 130 are attached, electrically connected, covered with the upper lid 110, and fixed with bolts (not shown), and the inverter device 100 is completed.
 本実施の形態のインバータ装置100では、次の作用効果を奏する。
(1) フィルムコンデンサ素子1aに一対の端子2,2が取り付けられて絶縁外装被覆3が被せられただけの部品としてのフィルムコンデンサ1を、収納凹部11を有する台座10に第1絶縁封止材17によって固定した。そして、フィルムコンデンサ1が固定された台座10を導体板160とともにボルト24で筐体20に固定した。
The inverter device 100 according to the present embodiment has the following operational effects.
(1) A film capacitor 1 as a component in which a pair of terminals 2 and 2 are attached to a film capacitor element 1a and covered with an insulating exterior coating 3 is placed on a pedestal 10 having a housing recess 11, and a first insulating sealing material 17 and fixed. Then, the pedestal 10 to which the film capacitor 1 was fixed was fixed to the housing 20 with bolts 24 together with the conductor plate 160.
 これにより、車両の振動に起因する、端子2とフィルムコンデンサ素子1aや導体板160との接続部での破断のおそれがなくなり、端子2,2と絶縁外装被覆3との境界面から浸入した水分によるフィルムコンデンサ素子1aの金属化フィルムの薄膜電極酸化のおそれがなくなる。さらに、複数個のフィルムコンデンサ1の導体板160に対する位置決めが容易となり、生産性にも寄与する。したがって、フィルムコンデンサ素子1aに一対の端子2,2が取り付けられて絶縁外装被覆3が被せられただけの部品としてのフィルムコンデンサ1を導体板160に直接実装できるようになる。これにより、開発スピードの向上、コスト低減を図れる。 As a result, there is no risk of breakage at the connection portion between the terminal 2 and the film capacitor element 1a or the conductor plate 160 due to the vibration of the vehicle, and moisture that has entered from the boundary surface between the terminals 2 and 2 and the insulation sheath 3 There is no risk of oxidation of the thin film electrode of the metallized film of the film capacitor element 1a. Furthermore, positioning of the plurality of film capacitors 1 with respect to the conductor plate 160 is facilitated, contributing to productivity. Accordingly, the film capacitor 1 as a component in which the pair of terminals 2 and 2 are attached to the film capacitor element 1a and the insulating sheath 3 is covered can be directly mounted on the conductor plate 160. This can improve development speed and reduce costs.
(2) 台座10の底面10bと導体板160とを向かい合わせに配置して、台座10から突出したフィルムコンデンサ1の端子2を導電板160に直接接続した。これにより、端子2を導体板160に直接接続でき、配線長を短縮してインダクタンスを低減できるので、損失が低下する。 (2) The bottom surface 10 b of the pedestal 10 and the conductor plate 160 were disposed facing each other, and the terminal 2 of the film capacitor 1 protruding from the pedestal 10 was directly connected to the conductive plate 160. Thereby, the terminal 2 can be directly connected to the conductor plate 160, the wiring length can be shortened, and the inductance can be reduced, so that the loss is reduced.
(3) 収容凹部11の底部に突起物15を設けるように構成した。これにより、フィルムコンデンサ1が収容凹部11に配置されると、フィルムコンデンサ1が収容凹部11の底部から突起物15の高さで規定される分だけ離間して隙間が形成される。したがって、粘度が低い第1絶縁封止材17がフィルムコンデンサ1と収容凹部11の曲面との隙間に流れ込むので、絶縁外装被覆3が端子2との境界面で剥離等することを防止できる。これにより、端子2と絶縁外装被覆3との境界面から水分が浸入しないので、フィルムコンデンサ1の容量低下を防止でき、耐久性を向上できる。また、フィルムコンデンサ1と台座10との固定強度を十分確保でき、振動に対するインバータ装置100の耐久性を向上できる。 (3) The projection 15 is provided on the bottom of the housing recess 11. Thereby, when the film capacitor 1 is disposed in the housing recess 11, the film capacitor 1 is separated from the bottom of the housing recess 11 by an amount defined by the height of the protrusion 15, thereby forming a gap. Accordingly, since the first insulating sealing material 17 having a low viscosity flows into the gap between the film capacitor 1 and the curved surface of the housing recess 11, it is possible to prevent the insulating exterior coating 3 from being peeled off at the interface with the terminal 2. Thereby, since moisture does not enter from the boundary surface between the terminal 2 and the insulating exterior coating 3, it is possible to prevent a decrease in the capacity of the film capacitor 1 and improve durability. Further, the fixing strength between the film capacitor 1 and the base 10 can be sufficiently secured, and the durability of the inverter device 100 against vibration can be improved.
(4) 台座10の底面10bに形成された底面凹部12に、樹脂粘度が高い第2絶縁封止材18を流し込み、樹脂を固化させるように構成した。これにより、端子2と台座10との固定強度が向上する。したがって、端子2と導電板160との接続部分への不所望な応力が作用することを抑制でき、端子2と導電板160との接続部分の信頼性、耐久性を向上できる。また、端子用貫通孔14と端子2との隙間が第2絶縁封止18で埋まるので、第1絶縁封止材が端子用貫通孔14と端子2との隙間から流出を防止でき、フィルムコンデンサ1を台座10へ固定する工程での生産性を向上できる。 (4) The second insulating sealing material 18 having a high resin viscosity is poured into the bottom surface recess 12 formed on the bottom surface 10b of the base 10 to solidify the resin. Thereby, the fixing strength between the terminal 2 and the base 10 is improved. Therefore, it is possible to suppress an undesired stress from acting on the connection portion between the terminal 2 and the conductive plate 160 and to improve the reliability and durability of the connection portion between the terminal 2 and the conductive plate 160. Further, since the gap between the terminal through hole 14 and the terminal 2 is filled with the second insulating seal 18, the first insulating sealing material can be prevented from flowing out from the gap between the terminal through hole 14 and the terminal 2. Productivity in the process of fixing 1 to the base 10 can be improved.
---第2の実施の形態---
 図7~9を参照して、本発明による電力変換装置の第2の実施の形態を説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、主に、突起部15が設けられていない点で、第1の実施の形態と異なる。
--- Second Embodiment ---
A second embodiment of the power conversion device according to the present invention will be described with reference to FIGS. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, and different points will be mainly described. Points that are not particularly described are the same as those in the first embodiment. This embodiment is different from the first embodiment mainly in that the protrusion 15 is not provided.
 図7は、本実施の形態における導体板160、台座10、フィルムコンデンサ1、およびパワー半導体モジュール21の筐体20への取り付け状態を模式的に示す断面図である。図8は、台座10の上面10a側から見た台座10の斜視図であり、図9は、台座10の底面10b側から見た台座10の斜視図である。本実施の形態の台座10では、突起部15が設けられていない。 FIG. 7 is a cross-sectional view schematically showing how the conductor plate 160, the pedestal 10, the film capacitor 1, and the power semiconductor module 21 are attached to the housing 20 in the present embodiment. FIG. 8 is a perspective view of the pedestal 10 viewed from the upper surface 10a side of the pedestal 10, and FIG. 9 is a perspective view of the pedestal 10 viewed from the bottom surface 10b side of the pedestal 10. In the pedestal 10 of the present embodiment, the protrusion 15 is not provided.
 そして、本実施の形態の台座10では、各端子用貫通孔14の収容凹部11の底部での開口近傍に、この開口の周囲を取り囲むように設けられた凹部である、コンデンサ端子基端側凹部(端子基端側凹部)13がそれぞれ設けられている。その他の点については、第1の実施の形態の台座10と本実施の形態の台座10とで変更点はない。 In the pedestal 10 of the present embodiment, the capacitor terminal proximal-side concave portion that is a concave portion provided in the vicinity of the opening at the bottom of the accommodating concave portion 11 of each terminal through-hole 14 so as to surround the periphery of the opening. (Terminal base side recesses) 13 are respectively provided. About another point, there is no change point in the base 10 of 1st Embodiment, and the base 10 of this Embodiment.
---フィルムコンデンサ1の台座10への固定---
 このように構成された本実施の形態の台座10に対して、フィルムコンデンサ1は次のように固定される。まず、台座10の収容凹部11に形成した端子用貫通孔14,14に、フィルムコンデンサ1の一対の端子2,2を挿入貫通させ、フィルムコンデンサ1を台座10の収容凹部11に配置する。フィルムコンデンサ1が収容凹部11に配置されると、一対の端子2,2は、それぞれ一対の端子用貫通孔14,14に挿通されて、底面10bから突出する。
--- Fixing the film capacitor 1 to the base 10 ---
The film capacitor 1 is fixed to the pedestal 10 of the present embodiment configured as described above as follows. First, the pair of terminals 2 and 2 of the film capacitor 1 are inserted through the terminal through holes 14 and 14 formed in the housing recess 11 of the base 10, and the film capacitor 1 is disposed in the housing recess 11 of the base 10. When the film capacitor 1 is disposed in the housing recess 11, the pair of terminals 2 and 2 are inserted through the pair of terminal through holes 14 and 14, respectively, and protrude from the bottom surface 10b.
 本実施の形態では突起物15が設けられていないので、フィルムコンデンサ1が収容凹部11に配置されると、フィルムコンデンサ1の一対の端子2の間の部位が収容凹部11の底部と当接する。しかし、収容凹部11を形成する曲面の曲率半径は、上述したように、角丸長方形状の断面を有するフィルムコンデンサ1の半円部分の断面における曲率半径より大きい。そのため、フィルムコンデンサ1が収容凹部11に配置されると、フィルムコンデンサ1は、(収容凹部11の最も深い底部近傍を除いて)収容凹部11の曲面から離間して隙間が形成される。 In the present embodiment, since the protrusion 15 is not provided, when the film capacitor 1 is disposed in the housing recess 11, the portion between the pair of terminals 2 of the film capacitor 1 comes into contact with the bottom of the housing recess 11. However, as described above, the curvature radius of the curved surface forming the accommodating recess 11 is larger than the curvature radius of the semicircular portion of the film capacitor 1 having a rounded rectangular cross section. Therefore, when the film capacitor 1 is disposed in the housing recess 11, the film capacitor 1 is separated from the curved surface of the housing recess 11 (except for the vicinity of the deepest bottom of the housing recess 11) to form a gap.
 次いで、台座10の底面10bに形成された底面凹部12に、樹脂粘度が約85,000mPa・sである第2絶縁封止材18を流し込み、樹脂を固化させる。底面凹部12に第2絶縁封止材18を充填することによる作用効果は、第1の実施の形態と同じである。 Next, the second insulating sealing material 18 having a resin viscosity of about 85,000 mPa · s is poured into the bottom recess 12 formed on the bottom surface 10b of the base 10 to solidify the resin. The effect obtained by filling the bottom recess 12 with the second insulating sealing material 18 is the same as that of the first embodiment.
 次いで、台座10の収容凹部11に形成した絶縁封止材挿入口16に、樹脂粘度がたとえば約500mPa・sのエポキシ系絶縁樹脂(第1絶縁封止材17)を流し込む。第1絶縁封止材17の粘度が十分に低いため、第1絶縁封止材17は、収容凹部11とフィルムコンデンサ1との隙間、および、端子基端側凹部13にも流れ込む。なお、第1絶縁封止材17は、角丸長方形状の断面を有するフィルムコンデンサ1の半円部分と直線部分との境界付近の高さまで充填される。また、本実施の形態の第1絶縁封止材17の粘度(約500mPa・s)が第1の実施の形態の第1絶縁封止材17の粘度(約800mPa・s)よりも低いが、第1の実施の形態の第1絶縁封止材17の粘度(約800mPa・s)と同等であってもよい。 Next, an epoxy insulating resin (first insulating sealing material 17) having a resin viscosity of, for example, about 500 mPa · s is poured into the insulating sealing material insertion port 16 formed in the housing recess 11 of the base 10. Since the viscosity of the first insulating sealing material 17 is sufficiently low, the first insulating sealing material 17 also flows into the gap between the housing recess 11 and the film capacitor 1 and the terminal proximal end recess 13. The first insulating sealing material 17 is filled up to a height near the boundary between the semicircular portion and the straight portion of the film capacitor 1 having a rounded rectangular cross section. Further, the viscosity (about 500 mPa · s) of the first insulating sealing material 17 of the present embodiment is lower than the viscosity (about 800 mPa · s) of the first insulating sealing material 17 of the first embodiment. It may be equivalent to the viscosity (about 800 mPa · s) of the first insulating sealing material 17 of the first embodiment.
 第1絶縁封止材17の充填後、第1の実施の形態と同様に、フィルムコンデンサ1が配置された台座10を高温槽内に入れて、第1絶縁封止材17を硬化させ、台座10とフィルムコンデンサ1とを第1絶縁封止材17で固定する。なお、この後に行われるフィルムコンデンサ1が固定された台座10と、パワー半導体モジュール21とを筺体20にそれぞれ配置する工程などは第1の実施の形態と同じである。 After filling with the first insulating sealing material 17, the base 10 on which the film capacitor 1 is arranged is placed in a high-temperature tank, and the first insulating sealing material 17 is cured, as in the first embodiment. 10 and the film capacitor 1 are fixed by a first insulating sealing material 17. In addition, the process etc. which arrange | position the base 10 with which the film capacitor 1 fixed after this, and the power semiconductor module 21 in the housing | casing 20 are each performed are the same as 1st Embodiment.
 本実施の形態のインバータ装置100では、第1の実施の形態における作用効果に加えて、次の作用効果を奏する。
(1) 収容凹部11の底部での端子用貫通孔14の開口近傍に、端子基端側凹部13を設けるように構成した。これにより、突起部15を設けなくても、端子基端側凹部13に充填される第1絶縁封止材17が、絶縁外装被膜3から突出する端子2の基端部(フィルムコンデンサ1の端子2の根元部分)を覆う。したがって、車両の振動に起因する、端子2とフィルムコンデンサ素子1aとの接続部での破断のおそれがなくなり、端子2,2と絶縁外装被覆3との境界面から浸入した水分によるフィルムコンデンサ素子1aの金属化フィルムの薄膜電極酸化のおそれがなくなる。
Inverter device 100 of the present embodiment has the following operational effects in addition to the operational effects of the first embodiment.
(1) The terminal base end side concave portion 13 is provided in the vicinity of the opening of the terminal through hole 14 at the bottom of the housing concave portion 11. Thereby, even if the protrusion 15 is not provided, the first insulating sealing material 17 filled in the terminal proximal-side concave portion 13 has the base end of the terminal 2 protruding from the insulating coating 3 (the terminal of the film capacitor 1). 2). Therefore, there is no risk of breakage at the connecting portion between the terminal 2 and the film capacitor element 1a due to the vibration of the vehicle, and the film capacitor element 1a due to moisture entering from the boundary surface between the terminals 2, 2 and the insulating exterior coating 3 is eliminated. There is no risk of oxidation of the thin film electrode of the metallized film.
(2) 突起部15が設けられていないため、収容凹部11へのフィルムコンデンサ1の挿入深さが突起部15の高さ分だけ第1の実施の形態よりも深くなる。そのため、第1の実施の形態と同様に、第1絶縁封止材17を、角丸長方形状の断面を有するフィルムコンデンサ1の半円部分と直線部分との境界付近の高さまで充填しても、充填に要する第1絶縁封止材17の量を減らすことができ、コストダウンに貢献する。 (2) Since the protrusion 15 is not provided, the insertion depth of the film capacitor 1 into the housing recess 11 is deeper than that of the first embodiment by the height of the protrusion 15. Therefore, similarly to the first embodiment, even if the first insulating sealing material 17 is filled up to a height near the boundary between the semicircular portion and the straight portion of the film capacitor 1 having a rounded rectangular cross section. The amount of the first insulating sealing material 17 required for filling can be reduced, which contributes to cost reduction.
---第3の実施の形態---
 図10~12を参照して、本発明による電力変換装置の第3の実施の形態を説明する。以下の説明では、第1および第2の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1および第2の実施の形態と同じである。本実施の形態では、主に、台座10の底面10bに底面凹部12が設けられていない点で、第1および第2の実施の形態と異なる。
--- Third embodiment ---
A third embodiment of the power conversion device according to the present invention will be described with reference to FIGS. In the following description, the same components as those in the first and second embodiments are denoted by the same reference numerals, and different points will be mainly described. Points that are not particularly described are the same as those in the first and second embodiments. This embodiment is different from the first and second embodiments mainly in that the bottom surface recess 12 is not provided on the bottom surface 10b of the base 10.
 図10は、本実施の形態における導体板160、台座10、フィルムコンデンサ1、およびパワー半導体モジュール21の筐体20への取り付け状態を模式的に示す断面図である。図11は、台座10の上面10a側から見た台座10の斜視図であり、図12は、台座10の底面10b側から見た台座10の斜視図である。本実施の形態の台座10では、上述したように、台座10の底面10bに底面凹部12が設けられていない(図12)。 FIG. 10 is a cross-sectional view schematically showing how the conductor plate 160, the pedestal 10, the film capacitor 1, and the power semiconductor module 21 are attached to the housing 20 in the present embodiment. FIG. 11 is a perspective view of the pedestal 10 viewed from the upper surface 10a side of the pedestal 10, and FIG. 12 is a perspective view of the pedestal 10 viewed from the bottom surface 10b side of the pedestal 10. In the pedestal 10 of the present embodiment, as described above, the bottom surface recess 12 is not provided on the bottom surface 10b of the pedestal 10 (FIG. 12).
---フィルムコンデンサ1の台座10への固定---
 このように構成された台座10に対して、フィルムコンデンサ1は次のように固定される。まず、フィルムコンデンサ1を収容凹部11に配置するのに先だって、フィルムコンデンサ1の端子2と外装絶縁被覆3との境界部分、すなわち、絶縁外装被膜3から突出する端子2の基端部(フィルムコンデンサ1の端子2の根元部分)に、樹脂粘度がたとえば約150,000mPa・sのエポキシ系絶縁樹脂(第2絶縁封止材18)を塗布する。
--- Fixing the film capacitor 1 to the base 10 ---
The film capacitor 1 is fixed to the pedestal 10 thus configured as follows. First, prior to disposing the film capacitor 1 in the housing recess 11, the boundary portion between the terminal 2 of the film capacitor 1 and the exterior insulation coating 3, that is, the base end portion of the terminal 2 protruding from the insulation exterior coating 3 (film capacitor An epoxy insulating resin (second insulating sealing material 18) having a resin viscosity of, for example, about 150,000 mPa · s is applied to the base portion of the terminal 2 of 1.
 その後、台座10の収容凹部11に形成した端子用貫通孔14,14に、フィルムコンデンサ1の一対の端子2,2を挿入貫通させ、フィルムコンデンサ1を台座10の収容凹部11に配置して、第2絶縁封止材18を固化させる。このように、絶縁外装被膜3から突出する端子2の基端部にあらかじめ第2絶縁封止材18を塗布して、フィルムコンデンサ1の配置後に、第2絶縁封止材18を固化させることで、第1の実施の形態における底面凹部12に、第2絶縁封止材18を流し込んで固化させた場合と同様の作用効果を奏する。 Thereafter, the pair of terminals 2 and 2 of the film capacitor 1 are inserted through the terminal through holes 14 and 14 formed in the housing recess 11 of the base 10, and the film capacitor 1 is disposed in the housing recess 11 of the base 10. The second insulating sealing material 18 is solidified. In this way, by applying the second insulating sealing material 18 in advance to the base end portion of the terminal 2 protruding from the insulating outer covering film 3 and solidifying the second insulating sealing material 18 after the film capacitor 1 is arranged. The same operational effects as when the second insulating sealing material 18 is poured into the bottom recess 12 in the first embodiment and solidified are produced.
 また、本実施の形態では、収容凹部11に突起部15が形成されている。したがって、フィルムコンデンサ1が収容凹部11に配置されると、フィルムコンデンサ1の一対の端子2の間の部位が突起物15と当接し、フィルムコンデンサ1は、収容凹部11の曲面から、突起物15の高さで規定される分だけ離間して隙間が形成される。 Further, in the present embodiment, the protrusion 15 is formed in the housing recess 11. Therefore, when the film capacitor 1 is disposed in the housing recess 11, the portion between the pair of terminals 2 of the film capacitor 1 comes into contact with the projection 15, and the film capacitor 1 is projected from the curved surface of the housing recess 11. A gap is formed by being separated by an amount defined by the height of.
 次いで、台座10の収容凹部11に形成した絶縁封止材挿入口16に、樹脂粘度がたとえば約800mPa・sのエポキシ系絶縁樹脂(第1絶縁封止材17)を流し込む。第1絶縁封止材17の粘度が十分に低いため、第1絶縁封止材17は、突起物15によって形成された収容凹部11の底部とフィルムコンデンサ1との隙間にも流れ込む。なお、第1絶縁封止材17は、角丸長方形状の断面を有するフィルムコンデンサ1の半円部分と直線部分との境界付近の高さまで充填される。 Next, an epoxy insulating resin (first insulating sealing material 17) having a resin viscosity of, for example, about 800 mPa · s is poured into the insulating sealing material insertion port 16 formed in the housing recess 11 of the base 10. Since the viscosity of the first insulating sealing material 17 is sufficiently low, the first insulating sealing material 17 also flows into the gap between the bottom portion of the housing recess 11 formed by the protrusion 15 and the film capacitor 1. The first insulating sealing material 17 is filled up to a height near the boundary between the semicircular portion and the straight portion of the film capacitor 1 having a rounded rectangular cross section.
 第1絶縁封止材17の充填後、第1の実施の形態と同様に、フィルムコンデンサ1が配置された台座10を高温槽内に入れて、第1絶縁封止材17を硬化させ、台座10とフィルムコンデンサ1とを第1絶縁封止材17で固定する。 After filling with the first insulating sealing material 17, the base 10 on which the film capacitor 1 is arranged is placed in a high-temperature tank, and the first insulating sealing material 17 is cured, as in the first embodiment. 10 and the film capacitor 1 are fixed by a first insulating sealing material 17.
 この後に行われるフィルムコンデンサ1が固定された台座10と、パワー半導体モジュール21とを筺体20にそれぞれ配置する工程などは第1の実施の形態と同じである。 The subsequent steps of placing the base 10 to which the film capacitor 1 is fixed and the power semiconductor module 21 and the power semiconductor module 21 are respectively performed in the housing 20 are the same as those in the first embodiment.
 なお、本実施の形態では、フィルムコンデンサ1が固定された台座10を筺体20に配置するにあたり、あらかじめ筐体20のコンデンサ・台座収容部20Aに、たとえば第1絶縁封止材17のように樹脂粘度が低い熱硬化性の絶縁樹脂を流し込んでおいてもよい。そして、フィルムコンデンサ1が固定された台座10をコンデンサ・台座収容部20Aへ、パワー半導体モジュール21をパワー半導体モジュール収容部20Bへそれぞれ配置する。 In the present embodiment, when the pedestal 10 to which the film capacitor 1 is fixed is disposed in the housing 20, a resin, such as the first insulating sealing material 17, is previously placed in the capacitor / pedestal housing portion 20 </ b> A of the housing 20. A thermosetting insulating resin having a low viscosity may be poured. Then, the pedestal 10 to which the film capacitor 1 is fixed is disposed in the capacitor / pedestal housing portion 20A, and the power semiconductor module 21 is disposed in the power semiconductor module housing portion 20B.
 この場合には、その後、導体板160を台座10の底面10bと向かい合わせとなるように配置し、導体板160および台座10をボルト24により筺体20に固定する。その後、これらを高温槽内に入れて、コンデンサ・台座収容部20Aに流し込んだ絶縁樹脂を硬化させて、筺体20とフィルムコンデンサ1とを絶縁樹脂で固定する。そして、導体板160とフィルムコンデンサ1の端子2、導体板160とパワー半導体モジュールの端子22とを、たとえば溶接にて電気的に接続する。 In this case, thereafter, the conductor plate 160 is disposed so as to face the bottom surface 10 b of the base 10, and the conductor plate 160 and the base 10 are fixed to the housing 20 with the bolts 24. Then, these are put in a high-temperature tank, the insulating resin poured into the capacitor / pedestal housing portion 20A is cured, and the housing 20 and the film capacitor 1 are fixed with the insulating resin. Then, the conductor plate 160 and the terminal 2 of the film capacitor 1, and the conductor plate 160 and the terminal 22 of the power semiconductor module are electrically connected, for example, by welding.
 このように、コンデンサ・台座収容部20Aに流し込んだ絶縁樹脂を硬化させて、筺体20とフィルムコンデンサ1とを絶縁樹脂で固定するようにしてもよい。また、本実施の形態に限らず、第1および第2の実施の形態において、筺体20とフィルムコンデンサ1とを絶縁樹脂で固定するようにしてもよい。なお、筺体20とフィルムコンデンサ1とを絶縁樹脂で固定することは必須ではない。 As described above, the insulating resin poured into the capacitor / pedestal housing portion 20A may be cured, and the casing 20 and the film capacitor 1 may be fixed with the insulating resin. In addition to the present embodiment, in the first and second embodiments, the housing 20 and the film capacitor 1 may be fixed with an insulating resin. It is not essential to fix the housing 20 and the film capacitor 1 with an insulating resin.
 本実施の形態のインバータ装置100では、第1および第2の実施の形態における作用効果に加えて、次の作用効果を奏する。
(1) フィルムコンデンサ1を収容凹部11に配置するのに先だって、フィルムコンデンサ1の端子2と外装絶縁被覆3との境界部分に、たとえば第2絶縁封止材18を塗布するようにした。これにより、絶縁外装被覆3が端子2との境界面で剥離等することを防止できる。これにより、端子2と絶縁外装被覆3との境界面から水分が浸入しないので、フィルムコンデンサ1の容量低下を防止でき、耐久性を向上できる。
Inverter device 100 of the present embodiment has the following operational effects in addition to the operational effects of the first and second embodiments.
(1) Prior to disposing the film capacitor 1 in the housing recess 11, for example, the second insulating sealing material 18 is applied to the boundary portion between the terminal 2 of the film capacitor 1 and the exterior insulating coating 3. Thereby, it can prevent that the insulation exterior coating 3 peels at the interface with the terminal 2. Thereby, since moisture does not enter from the boundary surface between the terminal 2 and the insulating exterior coating 3, it is possible to prevent a decrease in the capacity of the film capacitor 1 and improve durability.
(2) 台座10で固定されているフィルムコンデンサ1の端部とは反対側の端部を絶縁樹脂によってコンデンサ・台座収容部20Aと固定することにより、筐体20とフィルムコンデンサ1との固定強度をさらに向上できる。これにより、車両の振動に起因する、端子2とフィルムコンデンサ素子1aや導体板160との接続部での破断のおそれがさらになくなり、端子2,2と絶縁外装被覆3との境界面から浸入した水分によるフィルムコンデンサ素子1aの金属化フィルムの薄膜電極酸化のおそれがさらになくなる。したがって、インバータ装置100の耐久性をさらに向上できる。 (2) Fixing strength between the casing 20 and the film capacitor 1 by fixing the end opposite to the end of the film capacitor 1 fixed by the pedestal 10 to the capacitor / pedestal accommodating portion 20A with an insulating resin. Can be further improved. This further eliminates the possibility of breakage at the connection portion between the terminal 2 and the film capacitor element 1a or the conductor plate 160 due to the vibration of the vehicle, and enters from the boundary surface between the terminals 2 and 2 and the insulating exterior coating 3. The possibility of oxidation of the thin film electrode of the metallized film of the film capacitor element 1a due to moisture is further eliminated. Therefore, the durability of the inverter device 100 can be further improved.
 ---比較例1---
 図13は、比較例1として用いたフィルムコンデンサ1を直接導体板160に接続した電力変換装置の主回路部分の断面構造を示す図である。比較例1では、第1~第3の実施の形態における台座10は存在しない。
--- Comparative Example 1 ---
FIG. 13 is a diagram showing a cross-sectional structure of the main circuit portion of the power conversion device in which the film capacitor 1 used as the comparative example 1 is directly connected to the conductor plate 160. In Comparative Example 1, the base 10 in the first to third embodiments does not exist.
---フィルムコンデンサ1の固定---
 比較例1の電力変換装置では、フィルムコンデンサ1を次のように固定する。まず、フィルムコンデンサ1の一対の端子2,2を導体板160の所定に位置に配置し、溶接にて一対の端子2,2を導体板160にそれぞれ接続する。フィルムコンデンサ1は導体板160に一対の端子2との接続部分だけで支えられている。
--- Fixing of film capacitor 1 ---
In the power converter of Comparative Example 1, the film capacitor 1 is fixed as follows. First, the pair of terminals 2 and 2 of the film capacitor 1 are arranged at predetermined positions on the conductor plate 160, and the pair of terminals 2 and 2 are connected to the conductor plate 160 by welding. The film capacitor 1 is supported on the conductor plate 160 only by the connection portion with the pair of terminals 2.
 パワー半導体モジュール21はパワー半導体モジュール収容部20Bへ配置される。その後、フィルムコンデンサ1が取り付けられた導体板160を配置する。これによりフィルムコンデンサ1は、筐体20に設けられたコンデンサ収容部20Cに配置される。 The power semiconductor module 21 is disposed in the power semiconductor module housing portion 20B. Thereafter, the conductor plate 160 to which the film capacitor 1 is attached is disposed. As a result, the film capacitor 1 is disposed in the capacitor housing portion 20 </ b> C provided in the housing 20.
 その後、導体板160をボルト24により筺体20に固定する。そして、導体板160とパワー半導体モジュールの端子22とを、溶接にて電気的に接続する。これにより、比較例1の電力変換装置の主回路部分が完成する。 Thereafter, the conductor plate 160 is fixed to the housing 20 with the bolts 24. And the conductor board 160 and the terminal 22 of a power semiconductor module are electrically connected by welding. Thereby, the main circuit part of the power converter device of the comparative example 1 is completed.
 ---比較例2---
 図14は、比較例1として用いたフィルムコンデンサ1を直接導体板160に接続した電力変換装置の主回路部分の断面構造を示す図である。比較例2では、比較例1と同様に第1~第3の実施の形態における台座10は存在しない。
--- Comparative Example 2 ---
FIG. 14 is a diagram showing a cross-sectional structure of the main circuit portion of the power conversion device in which the film capacitor 1 used as the comparative example 1 is directly connected to the conductor plate 160. In Comparative Example 2, as in Comparative Example 1, the base 10 in the first to third embodiments does not exist.
---フィルムコンデンサ1の固定---
 比較例2の電力変換装置では、フィルムコンデンサ1を次のように固定する。まず、比較例1と同様に、フィルムコンデンサ1の一対の端子2,2を導体板160の所定に位置に配置し、溶接にて一対の端子2,2を導体板160にそれぞれ接続する。
--- Fixing of film capacitor 1 ---
In the power converter of Comparative Example 2, the film capacitor 1 is fixed as follows. First, as in Comparative Example 1, the pair of terminals 2 and 2 of the film capacitor 1 are arranged at predetermined positions on the conductor plate 160, and the pair of terminals 2 and 2 are connected to the conductor plate 160 by welding, respectively.
 そして導体板160と一対の素子2,2との間にエポキシ系接着剤26を塗布し、絶縁外装被膜3から突出する端子2の基端部と導体板160とをエポキシ系接着剤26で接着固定する。フィルムコンデンサ1は導体板160に一対の端子2、2との接続部分とエポキシ系接着剤26とで支えられている。 Then, the epoxy adhesive 26 is applied between the conductor plate 160 and the pair of elements 2 and 2, and the base end portion of the terminal 2 protruding from the insulating outer coating 3 and the conductor plate 160 are bonded with the epoxy adhesive 26. Fix it. The film capacitor 1 is supported on a conductor plate 160 by a connection portion between the pair of terminals 2 and 2 and an epoxy adhesive 26.
 パワー半導体モジュール21はパワー半導体モジュール収容部20Bへ配置される。その後、フィルムコンデンサ1が取り付けられた導体板160を配置する。これによりフィルムコンデンサ1は、筐体20に設けられたコンデンサ収容部20Cに配置される。 The power semiconductor module 21 is disposed in the power semiconductor module housing portion 20B. Thereafter, the conductor plate 160 to which the film capacitor 1 is attached is disposed. As a result, the film capacitor 1 is disposed in the capacitor housing portion 20 </ b> C provided in the housing 20.
 その後、導体板160をボルト24により筺体20に固定する。そして、導体板160とパワー半導体モジュールの端子22とを、溶接にて電気的に接続する。これにより、比較例2の電力変換装置の主回路部分が完成する。 Thereafter, the conductor plate 160 is fixed to the housing 20 with the bolts 24. And the conductor board 160 and the terminal 22 of a power semiconductor module are electrically connected by welding. Thereby, the main circuit part of the power converter device of the comparative example 2 is completed.
---振動解析---
 第1~第3の実施の形態および比較例1,2の電力変換装置に対し、本願発明の効果を検証するために、発明者らは、振動時にフィルムコンデンサ素子1aと端子2との接続部(図3におけるA部)、および、導体板160と端子2,2との接続部(図3におけるB部)にかかる応力解析を実施した。
--- Vibration analysis ---
In order to verify the effect of the present invention with respect to the power converters of the first to third embodiments and Comparative Examples 1 and 2, the inventors made a connection between the film capacitor element 1a and the terminal 2 during vibration. (A part in FIG. 3) and the stress analysis concerning the connection part (B part in FIG. 3) of the conductor plate 160 and the terminals 2 and 2 were implemented.
 図15は、第1~第3の実施の形態および比較例1,2の電力変換装置において、0~2000Hzの周波数範囲の振動を与えた時のフィルムコンデンサ素子1aと端子2との接続部(図3におけるA部)に作用する最大応力の解析結果を示す図である。図15において、縦軸は、比較例1のフィルムコンデンサ1におけるX方向の応力を1(基準)とした場合の、応力の比を示している。なお、X方向とは、図13,14における紙面左右方向を指し、Y方向とは、図13,14における紙面奥行き方向を指し、Z方向とは、図13,14における紙面上下方向を指す。 FIG. 15 shows a connection portion between the film capacitor element 1a and the terminal 2 when a vibration in a frequency range of 0 to 2000 Hz is applied in the power conversion devices of the first to third embodiments and Comparative Examples 1 and 2 (FIG. It is a figure which shows the analysis result of the maximum stress which acts on the A section in FIG. In FIG. 15, the vertical axis indicates the stress ratio when the stress in the X direction in the film capacitor 1 of Comparative Example 1 is 1 (reference). Note that the X direction refers to the horizontal direction of the paper surface in FIGS. 13 and 14, the Y direction refers to the depth direction of the paper surface in FIGS. 13 and 14, and the Z direction refers to the vertical direction of the paper surface in FIGS.
 比較例1では、フィルムコンデンサ1が一対の端子2と導体板160との溶接部分のみでしか支えられていないため、振動を与えると大きくフィルムコンデンサ1が揺さぶられ、フィルムコンデンサ素子1aと端子2との接合部に大きな応力が発生する。比較例2では、フィルムコンデンサ1が一対の端子2と導体板160との溶接部分、および、エポキシ系接着剤26によって導体板160に固定されているので、比較例1に対してY方向およびZ方向の応力が抑えられている。しかし、フィルムコンデンサ1が一対の端子2,2,および絶縁外装被覆3を介したフィルムコンデンサ素子1aの端子2の近傍でしか支えられていないためにX方向の応力は依然として高い値である。 In Comparative Example 1, since the film capacitor 1 is supported only by the welded portion between the pair of terminals 2 and the conductor plate 160, the film capacitor 1 is greatly shaken when vibration is applied, and the film capacitor element 1a and the terminal 2 A large stress is generated at the joint. In Comparative Example 2, since the film capacitor 1 is fixed to the conductor plate 160 by the welded portion between the pair of terminals 2 and the conductor plate 160 and the epoxy adhesive 26, the Y direction and Z Directional stress is suppressed. However, since the film capacitor 1 is supported only in the vicinity of the terminal 2 of the film capacitor element 1 a via the pair of terminals 2, 2 and the insulation sheath 3, the stress in the X direction is still high.
 第1および第2の実施の形態のフィルムコンデンサ1は、一対の端子2と導体板160との溶接部分で導体板160に固定され、第1絶縁封止材17が充填された部分を介して台座10に固定されている。この場合、X,Y、Z全ての方向において振動が抑制され、フィルムコンデンサ素子1aと端子2との接合部にかかる応力を抑制できる。 The film capacitor 1 according to the first and second embodiments is fixed to the conductor plate 160 at a welded portion between the pair of terminals 2 and the conductor plate 160, and through a portion filled with the first insulating sealing material 17. It is fixed to the base 10. In this case, vibration is suppressed in all directions of X, Y, and Z, and stress applied to the joint portion between the film capacitor element 1a and the terminal 2 can be suppressed.
 図16は、同じく第1~第3の実施の形態および比較例1、2において、0~2000Hzの範囲で振動を与えた場合のフィルムコンデンサ1の端子2と導体板160との接合部に作用する最大応力の解析結果である。フィルムコンデンサ1の端子2と導体板160との接合部に作用する応力も、比較例1、2に対し第1~第3の実施の形態ではフィルムコンデンサ1が台座10と絶縁封止材17で固定されているため振動が抑えられ、応力が低減できる。 FIG. 16 also shows the effect on the joint between the terminal 2 of the film capacitor 1 and the conductor plate 160 when vibration is applied in the range of 0 to 2000 Hz in the first to third embodiments and the comparative examples 1 and 2. It is an analysis result of maximum stress to be performed. The stress acting on the joint between the terminal 2 of the film capacitor 1 and the conductor plate 160 is also different from that of Comparative Examples 1 and 2 in the first to third embodiments in that the film capacitor 1 is formed by the base 10 and the insulating sealing material 17. Since it is fixed, vibration is suppressed and stress can be reduced.
---耐湿性試験---
 第1~第3の実施の形態および比較例1,2の電力変換装置に対し、本願発明の効果を検証するために、発明者らは、フィルムコンデンサ1の耐湿性試験を実施した。図17は、耐湿性評価結果を示す図であり、第1および第2の実施の形態、および、比較例1の電力変換装置を85℃/85%RHの高温高湿槽内に置き、所定時間毎にフィルムコンデンサ1の容量を測定した結果である。
---- Moisture resistance test ---
In order to verify the effect of the present invention on the power converters of the first to third embodiments and Comparative Examples 1 and 2, the inventors conducted a moisture resistance test of the film capacitor 1. FIG. 17 is a diagram showing the results of the moisture resistance evaluation. The power converters of the first and second embodiments and Comparative Example 1 are placed in a high-temperature and high-humidity tank of 85 ° C./85% RH, and predetermined. It is the result of having measured the capacity | capacitance of the film capacitor 1 for every time.
 図17では、横軸は85℃/85%RHの雰囲気に曝された時間、縦軸は試験前初期のコンデンサ容量を1とした場合の容量変化率を表わしている。縦軸の値が負の値である場合にはコンデンサ容量が初期に比べて低下している。 In FIG. 17, the horizontal axis represents the time of exposure to an atmosphere of 85 ° C./85% RH, and the vertical axis represents the rate of change in capacitance when the initial capacitor capacity before the test is 1. When the value on the vertical axis is a negative value, the capacitance of the capacitor is lower than the initial value.
 図17から分かるように、比較例1では、時間経過とともに容量が低下傾向にある。これはフィルムコンデンサ1の外装絶縁被覆3と端子2との境界面から水分が浸入し、フィルムコンデンサ素子1aの金属化フィルムの薄膜電極が酸化されたためと考えられる。 As can be seen from FIG. 17, in Comparative Example 1, the capacity tends to decrease with time. This is presumably because moisture entered from the boundary surface between the outer insulation coating 3 of the film capacitor 1 and the terminal 2 and the thin film electrode of the metallized film of the film capacitor element 1a was oxidized.
 比較例1に対し、第1および第2の実施の形態では、フィルムコンデンサ1の外装絶縁被覆3と端子2との境界部分(絶縁外装被膜3から突出する端子2の基端部)が台座10および絶縁封止材26で覆われているので、吸湿が抑えられ、容量の低下が抑制できる。 In contrast to Comparative Example 1, in the first and second embodiments, the boundary portion between the outer insulating coating 3 and the terminal 2 of the film capacitor 1 (the base end portion of the terminal 2 protruding from the insulating outer coating 3) is the base 10. And since it is covered with the insulating sealing material 26, moisture absorption can be suppressed, and a decrease in capacity can be suppressed.
---変形例---
(1) 上述した第3の実施の形態では、台座10の底面10bに底面凹部12が設けられていないが、本発明はこれに限定されず、第3の実施の形態において、台座10の底面10bに底面凹部12を設けてもよい。そして、第1および第2の実施の形態のように、底面凹部12に第2絶縁封止材18を流し込み、樹脂を固化させるようにしてもよい。
---- Modifications ----
(1) In 3rd Embodiment mentioned above, although the bottom face recessed part 12 is not provided in the bottom face 10b of the base 10, this invention is not limited to this, In 3rd Embodiment, the bottom face of the base 10 A bottom recess 12 may be provided on 10b. Then, as in the first and second embodiments, the second insulating sealing material 18 may be poured into the bottom recess 12 to solidify the resin.
(2) 上述の説明では、各絶縁封止材について具体的な樹脂粘度を挙げて説明しているが、これらの樹脂粘度の数値は一例であり、本発明はこれに限定されない。また、エポキシ系絶縁樹脂に限らず、電気絶縁性を有する各種の樹脂を用いてもよい。 (2) In the above description, each insulating sealing material is described with specific resin viscosities, but the numerical values of these resin viscosities are examples, and the present invention is not limited thereto. Moreover, you may use not only an epoxy-type insulating resin but various resin which has electrical insulation.
(3) 上述の説明では、台座10に固定されるフィルムコンデンサ1の数がそれぞれ6つであるが、本発明はこれに限定されない。台座10に固定されるフィルムコンデンサ1の数は、要求される容量に応じてたとえば1つであってもよく、2個以上の任意の複数個であってもよい。 (3) In the above description, the number of film capacitors 1 fixed to the base 10 is six, but the present invention is not limited to this. The number of film capacitors 1 fixed to the pedestal 10 may be, for example, one or two or more arbitrary plural depending on the required capacity.
(4) 上述の説明では、フィルムコンデンサ1の断面が角丸長方形状であるが、本発明はこれに限定されない。たとえば、円形断面を有する円柱形状のコンデンサを用いてもよい。
(5) 上述した各実施の形態および変形例は、それぞれ組み合わせてもよい。
(4) In the above description, the film capacitor 1 has a rounded rectangular cross section, but the present invention is not limited to this. For example, a cylindrical capacitor having a circular cross section may be used.
(5) You may combine each embodiment and modification which were mentioned above, respectively.
 なお、本発明は、上述した実施の形態のものに何ら限定されず、直流電力を交流電力とを相互に変換するパワー半導体モジュールと、絶縁外装被覆で覆われて絶縁外装被覆から一対の端子が突設された直流電力を平滑化するフィルムコンデンサと、パワー半導体モジュールとフィルムコンデンサとを電気的に接続する回路が形成された板状の導体板と、フィルムコンデンサが固定される台座と、パワー半導体モジュールを収容するパワー半導体収容部と、台座に固定されたフィルムコンデンサを収容する筐体側コンデンサ収容部を有し、パワー半導体モジュールを固定するとともに、導体板の板面と台座の底面とを向かい合わせた状態で導体板と台座とを固定する筐体とを備え、台座は、底面とは反対側の面から底面に向かって凹んでいる凹部であってフィルムコンデンサを配置する台座側コンデンサ収容凹部と、台座側コンデンサ収容凹部の底部から底面まで貫通する一対の端子用貫通孔とを有し、フィルムコンデンサは、台座側コンデンサ収容凹部と一部が当接した状態で第1凹部との間の空間に充填された絶縁封止材により台座に固定され、一対の端子は、一対の端子用貫通孔を介し底面から台座の外部に突出して導体板の回路に電気的に接続されていることを特徴とする各種構造の電力変換装置を含むものである。 Note that the present invention is not limited to the above-described embodiment, and a power semiconductor module that converts DC power into AC power and a pair of terminals that are covered with the insulating outer sheath and are covered with the insulating outer sheath. A film capacitor for smoothing the projecting DC power, a plate-like conductor plate on which a circuit for electrically connecting the power semiconductor module and the film capacitor is formed, a pedestal on which the film capacitor is fixed, and a power semiconductor It has a power semiconductor housing part for housing the module and a housing side capacitor housing part for housing the film capacitor fixed to the pedestal. The power semiconductor module is fixed and the plate surface of the conductor plate and the bottom surface of the pedestal face each other. And a housing for fixing the conductive plate and the pedestal in a state where the pedestal is recessed from the surface opposite to the bottom surface toward the bottom surface. And a pair of terminal through holes penetrating from the bottom portion to the bottom surface of the pedestal-side capacitor housing recess. The film capacitor is identical to the pedestal-side capacitor housing recess. The part is fixed to the pedestal by an insulating sealing material filled in a space between the first recess and the part, and the pair of terminals protrudes from the bottom to the outside of the pedestal through the pair of terminal through holes. It includes power converters of various structures, characterized in that they are electrically connected to the circuit of the conductor plate.
1 フィルムコンデンサ、1a フィルムコンデンサ素子、2 端子、3 絶縁外装被覆、10 台座、11 台座側コンデンサ収容凹部(収容凹部)、12 底面凹部、13 コンデンサ端子基端側凹部(端子基端側凹部)、14 端子用貫通孔、15 突起部、16 絶縁封止材挿入口、17 エポキシ系絶縁樹脂(第1絶縁封止材)、18 エポキシ系絶縁封止樹脂(第2絶縁封止材)、20 水路/ケース(筐体)、21 パワー半導体モジュール、100 電力変換装置(インバータ装置)、160 導体板 1 film capacitor, 1a film capacitor element, 2 terminal, 3 insulation sheathing, 10 pedestal, 11 pedestal side capacitor housing recess (housing recess), 12 bottom surface recess, 13 capacitor terminal proximal recess (terminal proximal recess), 14 Terminal through hole, 15 protrusion, 16 insulating sealing material insertion port, 17 epoxy insulating resin (first insulating sealing material), 18 epoxy insulating sealing resin (second insulating sealing material), 20 water channel / Case (housing), 21 power semiconductor module, 100 power conversion device (inverter device), 160 conductor plate

Claims (5)

  1.  直流電力を交流電力とを相互に変換するパワー半導体モジュールと、
     絶縁外装被覆で覆われて前記絶縁外装被覆から一対の端子が突設された直流電力を平滑化するフィルムコンデンサと、
     前記パワー半導体モジュールと前記フィルムコンデンサとを電気的に接続する回路が形成された板状の導体板と、
     前記フィルムコンデンサが固定される台座と、
     前記パワー半導体モジュールを収容するパワー半導体収容部と、前記台座に固定された前記フィルムコンデンサを収容する筐体側コンデンサ収容部を有し、前記パワー半導体モジュールを固定するとともに、前記導体板の板面と前記台座の底面とを向かい合わせた状態で前記導体板と前記台座とを固定する筐体とを備え、
     前記台座は、前記底面とは反対側の面から前記底面に向かって凹んでいる凹部であって前記フィルムコンデンサを配置する台座側コンデンサ収容凹部と、前記台座側コンデンサ収容凹部の底部から前記底面まで貫通する一対の端子用貫通孔とを有し、
     前記フィルムコンデンサは、前記台座側コンデンサ収容凹部と一部が当接した状態で前記第1凹部との間の空間に充填された絶縁封止材により前記台座に固定され、
     前記一対の端子は、前記一対の端子用貫通孔を介し前記底面から前記台座の外部に突出して前記導体板の回路に電気的に接続されていることを特徴とする電力変換装置。
    A power semiconductor module that converts DC power into AC power; and
    A film capacitor for smoothing DC power covered with an insulating sheath and having a pair of terminals protruding from the insulating sheath;
    A plate-like conductor plate on which a circuit for electrically connecting the power semiconductor module and the film capacitor is formed;
    A pedestal to which the film capacitor is fixed;
    A power semiconductor housing portion for housing the power semiconductor module; a housing-side capacitor housing portion for housing the film capacitor fixed to the base; and fixing the power semiconductor module; and a plate surface of the conductor plate; A housing for fixing the conductor plate and the pedestal in a state where the bottom surface of the pedestal faces each other;
    The pedestal is a recess that is recessed from the surface opposite to the bottom surface toward the bottom surface, and a pedestal-side capacitor housing recess in which the film capacitor is disposed, and from the bottom of the pedestal-side capacitor housing recess to the bottom surface A pair of terminal through-holes penetrating,
    The film capacitor is fixed to the pedestal by an insulating sealing material filled in a space between the first concave portion in a state where a part of the film capacitor is in contact with the pedestal side capacitor accommodating concave portion,
    The pair of terminals protrudes from the bottom surface to the outside of the pedestal through the pair of terminal through holes, and is electrically connected to the circuit of the conductor plate.
  2.  請求項1に記載の電力変換装置において、
     前記台座は、前記底面に設けられた凹部であって前記底面から前記導体板に向かって突出した前記端子の周囲を取り囲んで形成された底面凹部をさらに有し、
     前記底面凹部は、絶縁封止材が充填されていることを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    The pedestal further includes a bottom surface recessed portion formed on the bottom surface and surrounding the terminal protruding from the bottom surface toward the conductor plate,
    The power converter according to claim 1, wherein the bottom recess is filled with an insulating sealing material.
  3.  請求項1または請求項2に記載の電力変換装置において、
     前記台座は、前記台座側コンデンサ収容凹部の底部から突出する突起部をさらに有し、
     前記フィルムコンデンサは、前記突起部と当接して前記突起の突出距離だけ前記台座側コンデンサ収容凹部の底部から離間した状態で前記台座に固定されることを特徴とする電力変換装置。
    In the power converter device according to claim 1 or 2,
    The pedestal further has a protrusion protruding from the bottom of the pedestal-side capacitor housing recess,
    The power converter according to claim 1, wherein the film capacitor is fixed to the pedestal in a state in which the film capacitor is in contact with the protruding portion and is separated from a bottom portion of the pedestal-side capacitor receiving recess by a protruding distance of the protruding portion.
  4.  請求項1または請求項2に記載の電力変換装置において、
     前記台座は、前記台座側コンデンサ収容凹部の底部から前記底面に向かって凹んでいる凹部であって前記前記端子の基端側の周囲を取り囲んで形成されたコンデンサ端子基端側凹部をさらに有し、
     前記コンデンサ端子基端側凹部は、絶縁封止材が充填されることを特徴とする電力変換装置。
    In the power converter device according to claim 1 or 2,
    The pedestal further has a concave portion recessed from the bottom portion of the pedestal side capacitor housing concave portion toward the bottom surface, and is formed so as to surround the periphery of the proximal side of the terminal. ,
    The capacitor terminal proximal end concave portion is filled with an insulating sealing material.
  5.  請求項1~4のいずれか一項に記載の電力変換装置において、
     前記台座は、前記底面とは反対側の面を前記筐体側コンデンサ収容部に向けた状態で前記筐体に固定され、
     前記フィルムコンデンサは、前記筐体側コンデンサ収容部の底面と絶縁樹脂によって固定されていることを特徴とする電力変換装置。
    In the power converter according to any one of claims 1 to 4,
    The pedestal is fixed to the housing with the surface opposite to the bottom surface facing the housing-side capacitor housing portion,
    The power conversion device according to claim 1, wherein the film capacitor is fixed to a bottom surface of the housing-side capacitor housing portion by an insulating resin.
PCT/JP2014/051437 2013-03-01 2014-01-24 Power conversion device WO2014132710A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-040709 2013-03-01
JP2013040709A JP5852975B2 (en) 2013-03-01 2013-03-01 Power converter

Publications (1)

Publication Number Publication Date
WO2014132710A1 true WO2014132710A1 (en) 2014-09-04

Family

ID=51427984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051437 WO2014132710A1 (en) 2013-03-01 2014-01-24 Power conversion device

Country Status (2)

Country Link
JP (1) JP5852975B2 (en)
WO (1) WO2014132710A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047212A1 (en) * 2014-09-25 2016-03-31 日立オートモティブシステムズ株式会社 Power conversion device
WO2023285442A1 (en) * 2021-07-15 2023-01-19 Valeo Eautomotive France Sas Capacitor cell
WO2023285446A1 (en) * 2021-07-15 2023-01-19 Valeo Eautomotive France Sas Power converter

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6596402B2 (en) * 2016-09-14 2019-10-23 日立オートモティブシステムズ株式会社 Power converter
JP2020155567A (en) * 2019-03-20 2020-09-24 日本電産モビリティ株式会社 Electronic module and electronic device
JP7426315B2 (en) * 2020-08-31 2024-02-01 日立Astemo株式会社 power converter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083648A1 (en) * 2006-01-17 2007-07-26 Hitachi, Ltd. Power converter
JP2008053635A (en) * 2006-08-28 2008-03-06 Daikin Ind Ltd Electrical equipment unit
JP2009177872A (en) * 2008-01-22 2009-08-06 Nissan Motor Co Ltd Power conversion apparatus and method of manufacturing the same
JP2009232564A (en) * 2008-03-21 2009-10-08 Denso Corp Power conversion apparatus
JP2010141362A (en) * 2010-03-19 2010-06-24 Denso Corp Capacitor module and power conversion apparatus employing the same
JP2011223753A (en) * 2010-04-09 2011-11-04 Toyota Motor Corp Power conversion equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083648A1 (en) * 2006-01-17 2007-07-26 Hitachi, Ltd. Power converter
JP2008053635A (en) * 2006-08-28 2008-03-06 Daikin Ind Ltd Electrical equipment unit
JP2009177872A (en) * 2008-01-22 2009-08-06 Nissan Motor Co Ltd Power conversion apparatus and method of manufacturing the same
JP2009232564A (en) * 2008-03-21 2009-10-08 Denso Corp Power conversion apparatus
JP2010141362A (en) * 2010-03-19 2010-06-24 Denso Corp Capacitor module and power conversion apparatus employing the same
JP2011223753A (en) * 2010-04-09 2011-11-04 Toyota Motor Corp Power conversion equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047212A1 (en) * 2014-09-25 2016-03-31 日立オートモティブシステムズ株式会社 Power conversion device
US10264695B2 (en) 2014-09-25 2019-04-16 Hitachi Automotive Systems, Ltd. Power converter
WO2023285442A1 (en) * 2021-07-15 2023-01-19 Valeo Eautomotive France Sas Capacitor cell
WO2023285446A1 (en) * 2021-07-15 2023-01-19 Valeo Eautomotive France Sas Power converter
EP4125104A1 (en) * 2021-07-15 2023-02-01 Valeo eAutomotive France SAS Power converter
EP4125103A1 (en) * 2021-07-15 2023-02-01 Valeo eAutomotive France SAS Capacitor cell

Also Published As

Publication number Publication date
JP2014171284A (en) 2014-09-18
JP5852975B2 (en) 2016-02-03

Similar Documents

Publication Publication Date Title
WO2014132710A1 (en) Power conversion device
US9877419B2 (en) Power conversion apparatus
US9301434B2 (en) Power conversion apparatus
US10381943B2 (en) Capacitor module and power conversion device
JP5391797B2 (en) Case mold type capacitor
US20140140119A1 (en) Power Inverter
JP5975916B2 (en) Capacitor device and power conversion device
US20150214857A1 (en) Power Conversion Apparatus
JP4718840B2 (en) Capacitor device and vehicle
US20130176761A1 (en) Power Conversion Device
CN103299532A (en) Electrical power conversion device
JP2016152243A (en) Capacitor and inverter
JP5320960B2 (en) Case mold type capacitor
JP5167922B2 (en) Case mold type capacitor
CN106981591A (en) Electrical storage device and its manufacture method
US9793050B2 (en) Capacitor and inverter
JP6305731B2 (en) Case mold type capacitor and manufacturing method thereof
JP3975993B2 (en) Case mold type film capacitor
JP2014045035A (en) Capacitor device
JP2010182914A (en) Case molded capacitor
JP5945684B2 (en) Case mold type capacitor
JP2007142454A (en) Case-mold film capacitor
WO2020153164A1 (en) Circuit structure, electric connection box, and method for manufacturing circuit structure
JP2016073096A (en) Capacitor module
JP5186939B2 (en) Case mold type capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14757479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14757479

Country of ref document: EP

Kind code of ref document: A1