WO2014132486A1 - 非接触充電装置を備える小形電気機器、および非接触式の充電システム - Google Patents

非接触充電装置を備える小形電気機器、および非接触式の充電システム Download PDF

Info

Publication number
WO2014132486A1
WO2014132486A1 PCT/JP2013/078701 JP2013078701W WO2014132486A1 WO 2014132486 A1 WO2014132486 A1 WO 2014132486A1 JP 2013078701 W JP2013078701 W JP 2013078701W WO 2014132486 A1 WO2014132486 A1 WO 2014132486A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
secondary battery
power
state
resonance
Prior art date
Application number
PCT/JP2013/078701
Other languages
English (en)
French (fr)
Inventor
吉晴 日野
三宅 聡
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013037227A external-priority patent/JP6071638B2/ja
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Publication of WO2014132486A1 publication Critical patent/WO2014132486A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/488Cells or batteries combined with indicating means for external visualization of the condition, e.g. by change of colour or of light density
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a small electric device provided with a non-contact charging device for charging a secondary battery, and a non-contact charging system.
  • a charging circuit disclosed in Patent Document 1 As a non-contact charging device having this type of overcharge prevention function, for example, a charging circuit disclosed in Patent Document 1 is known.
  • a non-contact charging circuit is provided in a PHS telephone, and electric power is transmitted to the telephone side by electromagnetic induction between the charger and the charging circuit, and the nonaqueous electrolyte secondary battery (lithium ion secondary battery) of the telephone is transmitted. ) Can be charged.
  • the charging circuit includes a resonance circuit including a power receiving coil, a resonance capacitor, and a field effect transistor, and a rectification circuit that rectifies a high-frequency current received by the resonance circuit, and the power supplied through the rectification circuit.
  • the nonaqueous electrolyte secondary battery is charged.
  • the charging circuit is equipped with a battery voltage detection circuit, a charging current detection circuit, a full charge detection circuit, a constant voltage constant current control circuit, a switching element that turns on and off the main circuit for charging, etc. It is.
  • the full charge detection circuit detects the completion of charging based on the current value detected by the charging current detection circuit, switches the switch element to the OFF state, stops charging the nonaqueous electrolyte secondary battery, and prevents overcharging. Yes.
  • the battery voltage detection circuit always detects the voltage value of the charging current, and in parallel, the charging current detection circuit always detects the current value of the charging current.
  • the base voltage applied to the field effect transistor is limited by the constant voltage constant current control circuit to lower the output voltage of the field effect transistor. . That is, by making the field effect transistor function as a variable resistance element, the impedance of the resonance circuit is changed according to the state of charge of the nonaqueous electrolyte secondary battery so that constant current charging and constant voltage charging can be performed.
  • a charger main body provided with a primary coil and an information notification block attached to the main body constitute a charger, and the load device is attached to the charger main body to be provided in the load device.
  • the secondary battery can be charged in a non-contact state.
  • the information notification block is provided with an auxiliary coil and a light emitting diode (information notification means).
  • the primary coil and the auxiliary coil The light emitting diode can be turned on by using the electric power generated by the electromagnetic induction action. In this way, when the light emitting diode is turned on at the charger side, the user can be informed that the secondary battery of the load device is being charged.
  • Patent Document 2 discloses that an information notification unit includes a liquid crystal display, a vibration generating motor, a speaker, and the like instead of the light emitting diode.
  • JP 2000-287375 A (paragraph number 0020, FIG. 1) Japanese Patent Laying-Open No. 2011-010444 (paragraph number 0026, FIG. 1)
  • the switching element is switched to the OFF state by the full charge detection circuit based on the current value detected by the charging current detection circuit, and charging to the nonaqueous electrolyte secondary battery is stopped to prevent overcharging. can do.
  • the circuits constituting the charging circuit are only activated. Therefore, even if the PHS telephone is attached to the charger, the secondary battery cannot be immediately charged. In that case, the only way to charge the battery is to use a contact charging method by supplying a charging current to the connection terminal of the secondary battery removed from the phone. End up.
  • the object of the present invention is to charge the secondary battery appropriately in a non-contact state, and after the secondary battery is fully charged, the power transmission between the charger and the non-contact charging device is significantly reduced. It is an object of the present invention to provide a small electric device including a non-contact charging device that can prevent a secondary battery from being overcharged, and a non-contact charging system. An object of the present invention is to provide a small electric device including a non-contact charging device that can reliably charge a secondary battery by restoring the charging function of the non-contact charging device even when the secondary battery becomes empty, and The object is to provide a non-contact charging system.
  • the non-contact charging apparatus 3 includes a secondary coil 13 provided corresponding to the primary coil 7 of the charger 2 and a resonance capacitor 14 connected in parallel with the secondary coil 13.
  • a circuit 15 and a rectifier circuit 16 disposed between the resonance circuit 15 and the secondary battery 11 are provided.
  • a charge / discharge control circuit 19 and charging power monitoring circuits 20 and 21 for monitoring the voltage value and / or current value of the charging current are provided.
  • the resonance circuit 15 is provided with a changeover switch 25 that switches the connection state of the resonance capacitor 14 and / or the secondary coil 13 to switch the impedance of the resonance circuit 15 between large and small.
  • the charge / discharge control circuit 19 switches the changeover switch 25 to resonate.
  • the circuit 15 is changed from the first power receiving state in which the power receiving state is optimum to the second power receiving state in which the received power is significantly reduced.
  • the charge power monitoring circuit is configured by at least one of the voltage monitoring circuit 20 and the current monitoring circuit 21.
  • the changeover switch 25 is connected in series with the resonant capacitor 14 (see FIGS. 1 and 3).
  • the charge power monitoring circuit is configured by at least one of the voltage monitoring circuit 20 and the current monitoring circuit 21.
  • the changeover switch 25 is connected in parallel with the resonant capacitor 14 and one end thereof is connected to the midway portion 27 of the secondary coil 13 (see FIGS. 2 and 4).
  • a display structure for displaying that the secondary battery 11 is fully charged is provided in at least one of the charger 2 and the non-contact charging device 3.
  • the display structure is composed of any one of a light emitting display, a pronunciation display, an oscillation display, and a video display.
  • the charge / discharge control circuit 19 can supply the charging power supplied from the rectifier circuit 16 to either the secondary battery 11 or the device body 12, or can supply the power of the secondary battery 11 to the device body 12. Constitute. After the secondary battery 11 is fully charged, a small amount of power supplied from the rectifier circuit 16 is supplied to the device main body 12 by the charge / discharge control circuit 19 to be consumed.
  • the non-contact charging device 3 is provided with a temperature sensor 45 that detects the temperature of the secondary battery 11.
  • the charge / discharge control circuit 19 switches the changeover switch 25 so that the resonance circuit is independent of the degree of charge of the secondary battery 11. 15 is changed from the first power receiving state in which the power receiving state is optimal to the second power receiving state in which the received power is significantly reduced.
  • the non-contact charging system is configured such that a secondary battery 11 provided in a device main body 12 of a small electric device is connected to the device main body 12 by a non-contact charger 2 via a non-contact charging device 3.
  • the charger 2 includes a control circuit 5 including a rectifier circuit and a voltage adjustment circuit inside the charger main body 4, and an oscillation circuit that adjusts the current output from the control circuit 5 to a high-frequency current and outputs the high-frequency current to the primary coil 7. 6 and a resonance capacitor 8 on the primary side.
  • the non-contact charging device 3 includes a secondary coil 13 provided corresponding to the primary coil 7 of the charger 2, a resonant circuit 15 including a resonant capacitor 14 connected in parallel with the secondary coil 13, and a resonant circuit 15 And a rectifier circuit 16 disposed between the secondary battery 11 and the secondary battery 11. Between the rectifier circuit 16 and the secondary battery 11, a charge / discharge control circuit 19 and charging power monitoring circuits 20 and 21 for monitoring the voltage value and / or current value of the charging current are provided.
  • the resonance circuit 15 is provided with a changeover switch 25 that switches the connection state of the resonance capacitor 14 and / or the secondary coil 13 to switch the impedance of the resonance circuit 15 between large and small.
  • the charge / discharge control circuit 19 switches the changeover switch 25 to resonate.
  • the circuit 15 is changed from the first power receiving state in which the power receiving state is optimum to the second power receiving state in which the received power is significantly reduced.
  • a sensing coil 28 that captures leakage magnetic flux is provided in the charger 2.
  • the sensing coil 28 detects that the power receiving state of the resonance circuit 15 has changed to the second power receiving state, and stops the charging operation of the charger 2.
  • the non-contact charging device 3 is provided with a temperature sensor 45 that detects the temperature of the secondary battery 11.
  • the charge / discharge control circuit 19 switches the changeover switch 25 so that the resonance circuit is independent of the degree of charge of the secondary battery 11. 15 is changed from the first power receiving state in which the power receiving state is optimal to the second power receiving state in which the received power is significantly reduced.
  • the charging power is transmitted by the electromagnetic induction action between the charger 2 and the non-contact charging device 3, and the secondary battery 11 provided in the small electric device is kept in the non-contact state. I was able to charge with.
  • the resonance circuit 15 is configured by the secondary coil 13, the resonance capacitor 14, the changeover switch 25, and the like, and the changeover switch 25 is switched to thereby at least one of the inductance of the secondary coil 13 and the capacitance of the resonance capacitor 14. One side can be changed. When the inductance or capacitance is changed in this way, the impedance on the resonance circuit 15 side is switched between large and small, and the power reception state of the resonance circuit 15 is the optimum power reception state, and the second power reception in which the power reception is significantly reduced. Can change to state.
  • the contactless charging device 3 of the present invention when the secondary battery 11 is fully charged, the power receiving state of the resonance circuit 15 is switched to the second power receiving state, so that excessive charging power is supplied. Thus, the secondary battery 11 can be prevented from immediately falling into an overcharged state.
  • the non-contact charging device 3 in a state where the small electrical device 1 is mounted on the charger 2 is independent of the state of each circuit constituting the device 3, and the primary coil 7 and the secondary coil 13 of the charger 2. A small amount of power is transmitted to the resonance circuit 15 by the electromagnetic induction action between them. Therefore, the secondary battery 11 that has become empty (no voltage state) can be gradually charged using a small amount of power transmitted to the resonance circuit 15.
  • the changeover switch 25 is switched to the ON side so that the resonance circuit 15 can be restored to the first power receiving state.
  • the secondary battery 11 can be charged. Therefore, according to the non-contact charging device 3 of the present invention, even if the secondary battery 11 is empty, the charging function of the non-contact charging device 3 is restored and the secondary battery 11 is fully charged accurately. Can be charged to the state.
  • the charge power monitoring circuit When the charge power monitoring circuit is configured by the voltage monitoring circuit 20, it is determined whether or not the secondary battery 11 is fully charged according to the change in the charging voltage. Similarly, when the charging power monitoring circuit is configured by the current monitoring circuit 21, it is determined whether or not the secondary battery 11 is fully charged according to the change in the charging current. In any case, it can be clearly known that the secondary battery 11 is fully charged. Further, when the charging power monitoring circuit is configured by both the voltage monitoring circuit 20 and the current monitoring circuit 21, whether or not the secondary battery 11 is fully charged according to the change of the charging voltage and the change of the charging current. Therefore, it is possible to more accurately know that the secondary battery 11 has been fully charged.
  • the resonance circuit 15 in which the changeover switch 25 is connected in series with the resonance capacitor 14 there is a difference between a state in which the changeover switch 25 is turned on / off to make the resonance capacitor 14 function and a state in which the function of the resonance capacitor 14 is stopped.
  • the impedance of the resonance circuit 15 can be changed. Further, by changing the impedance of the resonance circuit 15, the power reception state of the resonance circuit 15 can be changed to a first power reception state that is an optimal power reception state and a second power reception state in which the received power is significantly reduced.
  • the changeover switch 25 is turned on and off to
  • the impedance of the resonance circuit 15 can be changed by switching the inductance between large and small. Further, by changing the impedance of the resonance circuit 15, the power reception state of the resonance circuit 15 can be changed to a first power reception state that is an optimal power reception state and a second power reception state in which the received power is significantly reduced.
  • the secondary battery 11 When a display structure is provided in at least one of the charger 2 and the non-contact charging device 3 and the display structure is operated in a state where the secondary battery 11 is fully charged, the secondary battery 11 is charged to the user. You can clearly tell when it is complete. Therefore, after the display structure is activated, the secondary battery 11 is urged to perform post-processing such as separating the small electric device 1 from the charger 2 or turning off the power switch of the charger 2 for the user. On the other hand, it is possible to eliminate the unnecessary supply of charging current.
  • Specific examples of the light emitting display, sound display, oscillation display, and video display include a light emitting diode, a speaker, a vibration motor, and a liquid crystal display.
  • the load provided in the device main body 12 It can be consumed by circuit or load equipment. Therefore, even when the small electric device 1 is left in a charged state for a long time after the secondary battery 11 is fully charged, a small amount of power is supplied to the non-contact charging device 3. Accumulation can be prevented, and the contactless charging device 3 can be prevented from generating heat or being overheated.
  • the changeover switch 25 is switched by the charge / discharge control circuit 19 in a state where the sensor 45 detects that the temperature of the secondary battery 11 has reached a predetermined value.
  • the resonance circuit 15 is switched from the first power receiving state to the second power receiving state.
  • the charging is performed when the temperature of the secondary battery 11 reaches a predetermined value.
  • the power transmission between the battery 2 and the non-contact charging device 3 is significantly reduced, and the supply of the charging current to the secondary battery 11 is stopped.
  • the switching of the switch 25 of the charge / discharge control circuit 19 is performed regardless of the charging degree of the secondary battery 11, even when the secondary battery 11 is in the middle of charging, the temperature thereof becomes an abnormally high temperature state. At that point, charging can be stopped immediately. Incidentally, after the secondary battery 11 is fully charged, when the small electrical device 1 is left in a charged state for a long time, the power consumption in the non-contact charging device 3 is reduced. The coil voltage of the next coil 13 is increased. As a result, the current flowing through the secondary coil 13 increases, and eventually the heat generation temperature of the secondary coil 13 increases and the secondary battery 11 may be damaged. However, as described above, the temperature state of the secondary battery 11 is monitored by the temperature sensor 45, and the charging control circuit 19 stops the supply of the charging current to the secondary battery 11, thereby reliably protecting the secondary battery 11. be able to.
  • the charging power is transmitted by electromagnetic induction between the charger 2 and the non-contact charging device 3, and the secondary battery 11 provided in the small electric device is contactless. I was able to charge in the state.
  • the resonance circuit 15 is configured by the secondary coil 13, the resonance capacitor 14, the changeover switch 25, and the like, and the changeover switch 25 is switched to thereby at least one of the inductance of the secondary coil 13 and the capacitance of the resonance capacitor 14. One side can be changed. When the inductance or capacitance is changed in this way, the impedance on the resonance circuit 15 side is switched between large and small, and the power reception state of the resonance circuit 15 is the optimum power reception state, and the second power reception in which the power reception is significantly reduced. Can change to state.
  • the power receiving state of the resonance circuit 15 is switched to the second power receiving state, so that excessive charging power is supplied.
  • the secondary battery 11 can be prevented from immediately falling into an overcharged state.
  • the non-contact charging device 3 in a state where the small electrical device 1 is mounted on the charger 2 is independent of the state of each circuit constituting the device 3, and the primary coil 7 and the secondary coil 13 of the charger 2. A small amount of power is transmitted to the resonance circuit 15 by the electromagnetic induction action between them. Therefore, the secondary battery 11 that has become empty (no voltage state) can be gradually charged using a small amount of power transmitted to the resonance circuit 15.
  • the changeover switch 25 is switched to the ON side so that the resonance circuit 15 can be restored to the first power receiving state.
  • the secondary battery 11 can be charged. Therefore, according to the charging system of the present invention, even if the secondary battery 11 is in an empty state, the charging function of the non-contact charging device 3 is restored and the secondary battery 11 is accurately charged to a fully charged state. can do.
  • the resonance frequency of the secondary coil 13 is shifted to the non-tuned side.
  • the resonance state of the primary coil 7 changes, and at the same time, the electromotive force of the sensing coil 28 changes.
  • the control circuit 5 shuts off the power supply circuit connected to the commercial power supply 9 based on the captured signal of the sensing coil 28, the charging operation of the charger 2 can be automatically stopped. Accordingly, it is possible to save the user from performing post-processing such as turning off the power switch of the charger 2 after the charging is completed.
  • the charge / discharge control circuit 19 switches the changeover switch 25 in a state where the sensor 45 detects that the temperature of the secondary battery 11 has reached a predetermined value.
  • the resonance circuit 15 is switched from the first power receiving state to the second power receiving state.
  • the charging is performed when the temperature of the secondary battery 11 reaches a predetermined value.
  • the power transmission between the battery 2 and the non-contact charging device 3 is significantly reduced, and the supply of the charging current to the secondary battery 11 is stopped. Therefore, it is possible to prevent the secondary battery 11 from being damaged by overheating or burning.
  • the switching of the switch 25 of the charge / discharge control circuit 19 is performed regardless of the charging degree of the secondary battery 11, even when the secondary battery is in the middle of charging, the temperature becomes an abnormally high temperature state. Charging can be stopped immediately.
  • FIG. 1 shows an outline of a charging system comprising a small electric device and a charger according to the present invention.
  • Reference numeral 1 is a small electric device
  • reference numeral 2 is a charger
  • reference numeral 3 is a small electric device 1. It is the non-contact charging device provided in a part of.
  • the charging system charges the secondary battery 11 provided in the device main body 12 of the small electric device via the non-contact charging device 3 provided in the device main body 12 with the non-contact charger 2.
  • the charger 2 includes a control circuit 5, an oscillation circuit 6, a primary coil 7 that receives a high-frequency current adjusted by the oscillation circuit 6 and generates an induced magnetic field, and a resonance on the primary side.
  • a capacitor 8 and the like are arranged.
  • the control circuit 5 is provided with a rectifier circuit for full-wave rectification of an alternating current supplied from the commercial power supply 9, a voltage adjustment circuit for adjusting the rectified current to a predetermined voltage, and the like.
  • the oscillation circuit 6 adjusts the current output from the control circuit 5 to a high frequency current and outputs it to the primary coil 7.
  • a power switch for turning on / off the power supply state is provided between the control circuit 5 and the commercial power supply 9. Since the primary coil 7 is incorporated in the charger main body 4, it cannot be visually recognized from the outside of the charger main body 4.
  • the non-contact charging device 3 is provided for charging a lithium ion secondary battery (hereinafter simply referred to as a secondary battery) 11 provided in the device main body 12 of the small electric device 1, and the device together with the secondary battery 11. It is incorporated in the main body 12.
  • the non-contact charging device 3 includes a secondary coil 13 provided corresponding to the primary coil 7 of the charger 2, a resonant circuit 15 including a resonant capacitor 14 connected in parallel with the secondary coil 13, and a resonant circuit 15 And a rectifier circuit 16 disposed between the secondary battery 11 and the secondary battery 11.
  • the non-contact charging device 3 includes a regulator circuit 18, a charge / discharge control circuit 19, and a voltage monitoring circuit (charging power monitoring circuit) that monitors the voltage value of the charging current between the resonance circuit 15 and the secondary battery 11. ) 20.
  • Reference numeral 22 denotes a power supply path that supplies power of the secondary battery 11, and the power supplied through the power supply path 22 drives a load circuit or a load device that constitutes the small electrical device 1.
  • the high-frequency current supplied from the resonance circuit 15 is rectified by the rectifier circuit 16, further adjusted to a voltage suitable for charging by the regulator circuit 18, and then secondarily through the charge / discharge control circuit 19 and the voltage monitoring circuit 20.
  • the battery 11 is supplied.
  • the charge / discharge control circuit 19 receives the monitoring signal from the voltage monitoring circuit 20, holds the first power receiving state until the secondary battery 11 reaches a predetermined voltage and becomes fully charged, and the regulator circuit 18 Is supplied to the secondary battery 11.
  • the resonance circuit 15 is overcharged. It is characterized in that a structure for preventing charging is added. Specifically, the changeover switch 25 is provided in series with the resonance capacitor 14, and the changeover switch 25 is switched between the process of charging the secondary battery 11 and the state after the secondary battery 11 is fully charged, and the resonance circuit. The 15 power receiving states are switched from the first power receiving state to the second power receiving state.
  • the changeover switch 25 is switched to the ON side, the parallel connection of the secondary coil 13 and the resonance capacitor 14 is maintained, and the power transmitted from the primary coil 7
  • the resonance circuit 15 can receive power in an optimum state.
  • the changeover switch 25 is switched to the OFF state, the parallel connection of the resonance capacitor 14 to the secondary coil 13 is cut off, and the impedance of the resonance circuit 15 is greatly changed, so that the secondary coil 13 The resonance frequency is shifted to the non-tuning side. Accordingly, in the second power receiving state, the transmission efficiency of the power transmitted from the primary coil 7 to the resonance circuit 15 is significantly reduced. However, the power transmitted to the resonance circuit 15 in the second power receiving state does not become zero, and a small amount of power is transmitted to the resonance circuit 15.
  • the impedance of the resonance circuit 15 can be changed to a large or small value by changing the connection state of the resonance capacitor 14 by changing the changeover switch 25 corresponding to the charging state of the secondary battery 11. I did it.
  • the resonance circuit 15 emits light on the outer surface of the charger body 4 to indicate that the secondary battery 11 has been fully charged and switched to the second power receiving state from the first power receiving state which is an optimal power transmission state.
  • a diode (light emitting indicator) 26 is provided. The light emitting diode 26 is turned on simultaneously with the start of the first power receiving state to indicate that the secondary battery 11 is in the middle of charging. Further, when the secondary battery 11 is fully charged, the resonance point of the primary coil 7 is shifted and the power consumption of the charger 2 is reduced. This is detected by the control circuit 5 and the light emitting diode 26 is turned on. Blink at regular intervals. Thus, the user can know that the charging of the secondary battery 11 has been completed by switching the light emitting diode 26 from the continuous lighting state to the blinking state.
  • the user after confirming the blinking state of the light emitting diode 26, the user separates the small electric device 1 from the charger 2, or turns off the power switch of the charger 2 to finish the charging operation.
  • the small electric device 1 may be left in a state where the charger 2 can be charged.
  • the resonance circuit 15 is switched to the second power reception state, and a small amount of power continues to be transmitted to the resonance circuit 15 although the power reception efficiency is extremely low. Therefore, if the leaving time is prolonged, the non-contact charging device 3 may generate heat and fall into an overheated state.
  • the internal circuit of the charge / discharge control circuit 19 is switched so that the minute electric power supplied from the rectifier circuit 16 can be reduced.
  • the main body 12 can be supplied.
  • the power supplied to the device main body 12 is supplied to and consumed by a load circuit or a load device provided therein.
  • the charge / discharge control circuit 19 receives the monitoring signal from the voltage monitoring circuit 20 and needs to charge the secondary battery 11. This is displayed on the display on the device body 12 side, and then the supply of power from the secondary battery 11 to the device body 12 is stopped.
  • any of a light emitting display device, a sound generation display device, an oscillation display device, and a video display device can be applied as the display device on the device body 12 side (not shown).
  • the small electrical device 1 may be left unused for a long period of time, and in this case, the secondary battery 11 may become empty due to a self-discharge action. Even if an attempt is made to charge the small electrical device 1 in this state with the charger 2, electric power sufficient to operate each circuit constituting the non-contact charging device 3 cannot be obtained, so the secondary battery 11 is immediately charged in an appropriate state. I can't do it. However, when the small electrical device 1 is attached to the charger 2, a small amount of electric power is generated by the electromagnetic induction action between the primary coil 7 and the secondary coil 13 regardless of the state of each circuit constituting the non-contact charging device 3. It is transmitted to the resonance circuit 15 and low power can be supplied to the secondary battery 11.
  • the secondary battery 11 is gradually charged with the supplied power over time even with a small amount of power as described above, so that the voltage of the secondary battery 11 is eventually charged with the charge / discharge control circuit 19 and the voltage monitoring circuit. It is possible to recover to a state where 20 or the like can function. Further, when the charge / discharge control circuit 19 or the voltage monitoring circuit 20 starts to function, the voltage of the secondary battery 11 is low, so that the changeover switch 25 is switched to the ON side and the resonance circuit 15 is set to the first power receiving state. Hold. Therefore, after that, the secondary battery 11 can be charged in an optimal state, and even if the secondary battery 11 is empty, the secondary battery 11 can be accurately charged to a fully charged state. . The voltage of the secondary battery 11 when the charge / discharge control circuit 19 and the voltage monitoring circuit 20 start to function is sufficiently higher than the voltage when the charge / discharge control circuit 19 prompts the user to charge the secondary battery 11. Low.
  • FIG. 2 shows a small electrical device 1 according to Example 2 in which a part of the non-contact charging device 3 is changed.
  • the charging / discharging control circuit 19 receives the monitoring signal sent from the voltage monitoring circuit 20, and determines that the secondary battery 11 is fully charged.
  • the impedance of the resonance circuit 15 is changed.
  • This embodiment is different from the first embodiment in that the changeover switch 25 is connected in parallel with the resonance capacitor 14 and one terminal of the changeover switch 25 is connected to the midway portion 27 of the secondary coil 13.
  • the changeover switch 25 is switched to the OFF position by the charge / discharge control circuit 19, and the second power reception is performed when the changeover switch 25 is switched to the ON position by the charge / discharge control circuit 19. It becomes a state.
  • the middle part of the secondary coil 13 is short-circuited via the changeover switch 25, so that the effective number of turns and the inductance are greatly different from those in the first power receiving state.
  • the received power of the resonance circuit 15 can be remarkably reduced, so that the secondary battery 11 can be prevented from falling into an overcharged state, and unnecessary power reception can be eliminated.
  • the resonance frequency of the secondary coil 13 shifts to the non-tuning side, the resonance point of the primary coil 7 shifts and the impedance on the oscillation circuit 6 side increases, so the power consumption of the charger 2 is reduced. can do.
  • connection state of the secondary coil 13 is changed by turning on / off the changeover switch 25 corresponding to the charging state of the secondary battery 11 to resonate.
  • the impedance of the circuit 15 can be changed. Since others are the same as those of the first embodiment, the same members are denoted by the same reference numerals and the description thereof is omitted. The same applies to the embodiments described below.
  • FIG. 3 shows a small electrical apparatus 1 according to Example 3 in which a part of the non-contact charging device 3 is changed.
  • the changeover switch 25 is connected in series with the resonance capacitor 14 in the same manner as the contactless charging device 3 of the first embodiment, but a current monitoring circuit (charging power) is connected between the charging / discharging control circuit 19 and the voltage monitoring circuit 20.
  • the monitoring circuit) 21 is different from the first embodiment.
  • the charge / discharge control circuit 19 determines that the secondary battery 11 is fully charged based on the monitoring signal sent from the current monitoring circuit 21 and changes the impedance of the resonance circuit 15. In the process of charging the secondary battery 11, the value of the current flowing through the current monitoring circuit 21 changes as the voltage of the secondary battery 11 gradually increases.
  • the charge / discharge control circuit 19 can determine that the battery 11 is fully charged.
  • FIG. 4 shows a small electrical apparatus 1 according to Embodiment 4 in which a part of the non-contact charging device 3 is changed.
  • the changeover switch 25 is connected in parallel with the resonance capacitor 14, and one terminal of the changeover switch 25 is connected to the midway portion 27 of the secondary coil 13.
  • a current monitoring circuit 21 is disposed between the charge / discharge control circuit 19 and the voltage monitoring circuit 20, and the secondary battery 11 is configured based on the monitoring signal sent from the current monitoring circuit 21.
  • the charge / discharge control circuit 19 determines that the battery is fully charged.
  • the contactless charging device 3 includes the voltage monitoring circuit 20 and the current monitoring circuit 21, so that the respective units sent from the voltage monitoring circuit 20 and the current monitoring circuit 21 may be sent if necessary. Based on the monitoring signal, the charge / discharge control circuit 19 can determine whether or not the secondary battery 11 is fully charged.
  • FIG. 5 shows Example 5 in which a part of the charger 2 is changed.
  • a sensing coil 28 is provided inside the charger body 4 so that leakage flux can be captured by the sensing coil 28 during power transmission between the primary coil 7 and the secondary coil 13.
  • the resonance frequency of the secondary coil 13 is shifted to the non-tuning side, and at the same time, the resonance point of the primary coil 7 is shifted and the oscillation circuit is shifted.
  • the impedance on the 6 side increases.
  • the resonance state of the primary coil 7 changes, the electromotive force of the sensing coil 28 changes. Therefore, by operating the control circuit 5 based on the captured signal of the sensing coil 28 and shutting off the power supply circuit connected to the commercial power supply 9, the charging operation of the charger 2 can be automatically stopped.
  • FIGS. 6A to 6C show still another example of the non-contact charging device 3.
  • an auxiliary capacitor 31 is provided separately from the resonant capacitor 14 described in the first embodiment, both capacitors 14 and 31 are connected in parallel, and one of the capacitors 14 and 31 is connected to the changeover switch 25. It was made to be able to conduct with the secondary coil 13 via.
  • the capacitance of the resonance capacitor 14 is set to a value that matches the resonance frequency of the primary coil 7.
  • the capacitance of the auxiliary capacitor 31 is set to a value that can shift the resonance frequency of the secondary coil 13 to the non-tuning side.
  • the changeover switch 25 allows only the resonance capacitor 14 to conduct with the secondary coil 13.
  • the changeover switch 25 is switched to cut off the conduction state of the resonance capacitor 14 and the auxiliary capacitor 31 is brought into conduction with the secondary coil 13.
  • the impedance of the resonance circuit 15 changes, so that the resonance frequency of the secondary coil 13 is shifted to the non-tuning side, and the power transmitted to the resonance circuit 15 can be significantly reduced.
  • the capacitance of the auxiliary capacitor 31 can be set strictly. The amount of shift when shifting the frequency to the non-tuning side can be strictly defined.
  • an auxiliary capacitor 31 and a conduction path 32 are provided separately from the resonance capacitor 14, and the changeover switch 25 is connected in series with the resonance capacitor 14.
  • the resonance capacitor 14 and the conduction path 32 are conducted through the changeover switch 25 in the first power receiving state.
  • the changeover switch 25 is switched so that the resonance capacitor 14 and the auxiliary capacitor 31 are connected in series, and the resonance frequency of the secondary coil 13 is shifted to the non-tuning side, so that the resonance circuit 15 Significantly reduces the power transmitted to
  • an auxiliary coil 33 is provided separately from the secondary coil 13, and the auxiliary coil 33 is arranged in parallel with the secondary coil 13. 33 can be electrically connected to the resonance capacitor 14 via the changeover switch 25.
  • the inductance of the secondary coil 13 is set to a value that matches the resonance frequency of the primary coil 7.
  • the inductance of the auxiliary coil 33 is set to a value shifted to the non-tuning side with respect to the resonance frequency of the primary coil 7.
  • the changeover switch 25 in the normal state conducts the secondary coil 13 in parallel with the resonance capacitor 14. After the charging of the secondary battery 11 is completed, the changeover switch 25 is switched to cut off the conduction state of the secondary coil 13, and the auxiliary coil 33 is turned on in parallel with the resonance capacitor 14 to make the resonance circuit 15
  • the second power receiving state is set. In this power receiving state, the resonance frequency of the auxiliary coil 33 is shifted to the non-tuning side with respect to the primary coil 7, so that the power transmitted to the resonance circuit 15 can be significantly reduced.
  • the shift amount when the auxiliary coil 33 is shifted to the non-tuning side with respect to the primary coil 7 is reduced. It can be strictly defined.
  • the auxiliary coil 33 in this embodiment can be omitted. In this case, the switch contact on the auxiliary coil 33 side may be connected to the midway portion 27 of the secondary coil 13 as in FIG.
  • the non-contact charging device 3 described in FIGS. 6A to 6C can be implemented in the following form.
  • the resonance circuit 15 is provided with a resonance capacitor 14 and an auxiliary capacitor 31, and a changeover switch 25 that electrically connects one of the capacitors 14 and 31 to the secondary coil 13.
  • the changeover switch 25 is switched by the charge / discharge control circuit 19, whereby the auxiliary capacitor 31 is brought into conduction with the secondary coil 13 to bring the resonance circuit 15 into the second power receiving state.
  • the resonance circuit 15 is provided with a resonance capacitor 14, an auxiliary capacitor 31, a conduction path 32, and a changeover switch 25 for switching the conduction state of these three members.
  • the changeover switch 25 is switched by the charge / discharge control circuit 19, whereby the resonance capacitor 14 is brought into conduction with the secondary coil 13 via the auxiliary capacitor 31 and the resonance circuit 15 is brought into the second power receiving state.
  • the secondary coil 13 and the auxiliary coil 33 are arranged in parallel in the resonance circuit 15, and the auxiliary coil 33 is connected via the changeover switch 25 in a fully charged state.
  • the resonant circuit 15 is brought into a second power receiving state by conducting with the resonant capacitor 14.
  • FIGS. 7A and 7B show still another example of the non-contact charging device 3.
  • 7A similarly to the resonance circuit 15 of FIG. 6A, an auxiliary capacitor 31 is provided separately from the resonance capacitor 14, and both capacitors 14 and 31 are connected in parallel, and either one of the capacitors is connected. 14 and 31 can be electrically connected to the secondary coil 13 via the changeover switch 25.
  • another changeover switch 35 is provided between the changeover switch 25 and the secondary coil 13, one terminal thereof is connected to the secondary coil 13 via the conduction path 36, and the other terminal is connected to the conduction path 37. It was made to connect to the middle part 27 of the secondary coil 13 via.
  • the resonance capacitor 14 is conducted through the changeover switch 25 in the first power receiving state, and the secondary coil 13 is conducted through the conduction path 36 and the changeover switch 35.
  • the changeover switch 25 is switched to turn on the auxiliary capacitor 31, or the changeover switch 35 is switched to turn on the conduction path 37 to shift the resonance frequency of the resonance circuit 15 to the non-tuned side.
  • the power transmitted to the resonant circuit 15 is significantly reduced.
  • the resonance circuit 15 that switches the resonance capacitor 14 and the auxiliary capacitor 31 or switches the number of turns of the secondary coil 13 with the two changeover switches 25 and 35, the changeover state of both the switches 25 and 35 is changed.
  • the resonance frequency of the resonance circuit 15 can be changed greatly or changed small.
  • the impedance of the resonance circuit 15 can be changed by changing the ratio of the capacitance and the inductance.
  • an auxiliary capacitor 31 is provided separately from the resonance capacitor 14, and both capacitors 14 and 31 are connected in series, and either one of the capacitors is connected. 14 and 31 can be electrically connected to the secondary coil 13 via the changeover switch 25. Further, another changeover switch 35 is provided between the changeover switch 25 and the secondary coil 13, one terminal thereof is connected to the secondary coil 13 via the conduction path 36, and the other terminal is connected to the conduction path 37. It was made to connect to the middle part 27 of the secondary coil 13 via.
  • the resonance capacitor 14 is conducted through the changeover switch 25 in the first power receiving state, and the secondary coil 13 is conducted through the conduction path 36 and the changeover switch 35.
  • the changeover switch 25 is switched to turn on the auxiliary capacitor 31, or the changeover switch 35 is switched to turn on the conduction path 37 to shift the resonance frequency of the resonance circuit 15 to the non-tuned side.
  • the power transmitted to the resonant circuit 15 is significantly reduced.
  • the resonance frequency of the resonance circuit 15 can be changed greatly or small. Further, even at the same resonance frequency, the impedance of the resonance circuit 15 can be changed by changing the ratio of the capacitance and the inductance.
  • the non-contact charging device 3 described with reference to FIG. 7 can be implemented in the following form.
  • the non-contact charging device 3 in FIG. 7A includes a resonance circuit 15, a resonance capacitor 14 and an auxiliary capacitor 31 that are arranged in parallel, a changeover switch 25 that conducts either one of the capacitors 14 and 31, and a secondary switch.
  • a conduction path 36 connected to the end of the coil 13, a conduction path 37 connected to the middle part 27 of the secondary coil 13, and a changeover switch 35 that conducts one of the conduction paths 36 and 37 are provided.
  • the changeover switch 25 is switched by the charge / discharge control circuit 19, whereby the auxiliary capacitor 31 is brought into conduction with the secondary coil 13 and the resonance circuit 15 is brought into the second power receiving state.
  • the conduction path 37 is made conductive and the resonance circuit 15 is brought into the second power receiving state.
  • the contactless charging device 3 of FIG. 7B switches the resonance circuit 15 to the resonance capacitor 14 and the auxiliary capacitor 31 and both the capacitors 14 and 31 or only the resonance capacitor 14 to the secondary coil 13.
  • Switch 25 a conduction path 36 connected to the end of the secondary coil 13, a conduction path 37 connected to the middle part 27 of the secondary coil 13, and a switching to conduct one of the conduction paths 36, 37.
  • a switch 35 is provided, In the fully charged state, the changeover switch 25 is changed over by the charge / discharge control circuit 19 so that the resonance capacitor 14 and the auxiliary capacitor 31 are brought into conduction to bring the resonance circuit 15 into the second power receiving state.
  • the changeover switch 35 by switching the changeover switch 35 with the charge / discharge control circuit 19, the conduction path 37 is made conductive and the resonance circuit 15 is brought into the second power receiving state.
  • FIG. 8 shows still another embodiment of the non-contact charging device 3.
  • the contactless charging device 3 is in a non-responsive state with respect to the charger 2 in a state where the resonance circuit 15 is switched to the second power receiving state and the resonance frequency is shifted to the non-tuned side.
  • a communication coil 39 is provided separately from the primary coil 7 on the charger 2 side, and the second power receiving state is established. Communication can be performed between the switched secondary coil 13 and communication coil 39. Thereby, the power state of the secondary battery 11 can be confirmed on the side of the charger 2 after switching to the second power receiving state. Since the detailed structure of the charger 2 in FIG. 8 is the same as the charger described in FIG. 1, the detailed structure of the resonance capacitor 8 and the like is not shown.
  • the non-contact charging device 3 configured as described above is shipped in a state where the secondary battery 11 is fully charged. However, when the secondary battery 11 is stored for a long time after shipping, the secondary battery 11 is self-discharged. Power is consumed. Furthermore, the power of the secondary battery 11 continues to be consumed by the charge / discharge control circuit 19 even if it is slight. Therefore, the warranty period of the secondary battery 11 when the battery is stored in an unused state is reduced by the amount of power consumed by the charge / discharge control circuit 19. In order to prevent the power consumption by the charge / discharge control circuit 19 during long-term storage, the power consumption by the charge / discharge control circuit 19 is forcibly stopped until the user uses the small electric device 1 for the first time. did.
  • a receiving controller 40 is provided in the charge / discharge control circuit 19, and power is supplied to the middle part of the output lead that conducts the secondary battery 11 and the charge / discharge control circuit 19.
  • the switch 41 is arranged so that the power supply switch 41 can be held in the off state in the factory shipment state. As a result, even when the small electrical device 1 is stored for a long period of time, the power consumption by the charge / discharge control circuit 19 is prevented, and the power of the secondary battery 11 falls below the guaranteed value before reaching the warranty period. Can be reliably prevented.
  • Reference numeral 42 denotes a protection circuit for the secondary battery 11.
  • the power supply switch 41 is switched to an on state when the user who has purchased the small electric device 1 charges the secondary battery 11 for the first time. Specifically, the reception controller 40 detects that the resonance circuit 15 has been activated, and switches the power supply switch 41 to the on state. Alternatively, a command is given to the reception controller 40 from the charger 2 via the resonance circuit 15 to switch the power supply switch 41 to the on state. The power supply switch 41 once switched to the on state does not return to the off state. Therefore, after charging for the first time, the non-contact charging device 3 can be properly used. It should be noted that the power supply switch 41 can be switched more reliably by stating that it is necessary to charge the first time in the instruction manual of the small electric device.
  • the small electrical device 1 in which the non-contact charging device 3 is incorporated needs to perform an operation test in an inspection process.
  • the power supply switch 41 When the power supply switch 41 is turned on at that time, a charge / discharge control circuit after shipment The power consumption due to 19 cannot be prevented.
  • a terminal for returning the power supply switch 41 to the off state is provided in the charge / discharge control circuit 19, so that the power supply that has been switched to the on state after performing an operation test in the inspection process.
  • the switch 41 can be returned to the off state.
  • the power supply switch 41 may be returned to the off state by removing the secondary battery 11 from the battery holder.
  • the non-contact charging device 3 described with reference to FIG. 9 can be implemented in the following form.
  • the device body 12 is provided with a secondary battery 11 and a non-contact charging device 3 corresponding to the non-contact charger 2,
  • the non-contact charging device 3 includes a resonance circuit 15 provided corresponding to the primary coil 7 of the charger 2, and a charge / discharge control circuit 19 disposed between the resonance circuit 15 and the secondary battery 11.
  • the charge / discharge control circuit 19 changes the resonance circuit 15 from the first power receiving state where the power receiving state is optimal to the second power receiving state where the received power is significantly reduced.
  • a conduction lead that conducts the secondary battery 11 and the charge / discharge control circuit 19 is provided with a power supply switch 41 that switches a power supply state to the charge / discharge control circuit 19 between an on state and an off state,
  • the power supply switch 41 is switched to an off state when the small electric device is shipped, and the charge switch 41 is switched to an on state by the charge / discharge control circuit 19 in accordance with the initial charging operation of the user. .
  • the resonance frequency of the resonance circuit 15 is shifted to the non-tuning side, and the power transmitted to the resonance circuit 15 is remarkably increased. Decrease.
  • the power supply of the charger 2 is turned off and a small electric device is used.
  • the operation of the non-contact charging device 3 is substantially stopped and left for a long time, the following problem occurs. In a state where the secondary battery 11 is fully charged and the operation of the contactless charging device 3 is substantially stopped, the power consumption in the contactless charging device 3 is reduced, so that the coil voltage of the secondary coil 13 is increased. .
  • the charging system of FIG. 10 adopts the same basic structure as the charging system of Embodiment 1, but the point that the non-contact charging device 3 is provided with a temperature sensor 45 that detects the temperature of the secondary battery 11 is implemented. Similar to Example 5, the difference is that a sensing coil 28 is provided inside the charger body 4.
  • the temperature sensor 45 is provided mainly for detecting the temperature of the secondary battery 11 at the time of charging, but can be used for monitoring the temperature abnormality of the secondary battery 11 at the time of discharging.
  • the charge / discharge control circuit 19 that has received the detection signal from the temperature sensor 45 sets the changeover switch 25.
  • the resonance circuit 15 is switched to the second power receiving state in which the received power is significantly reduced. This switching is performed regardless of the degree of charge of the secondary battery 11. Therefore, even when the secondary battery is in the middle of charging, when the temperature becomes an abnormally high temperature state, the power transmission between the charger 2 and the non-contact charging device 3 is immediately reduced significantly. It is possible to prevent the secondary battery 11 from being damaged.
  • the resonance frequency of the secondary coil 13 is shifted to the non-tuning side, and at the same time, the resonance state of the primary coil 7 changes.
  • the electromotive force of the sensing coil 28 that captures the leakage magnetic flux changes from the electromotive force in the first power receiving state. That is, the sensing coil 28 can detect that the power receiving state of the resonance circuit 15 has changed to the second power receiving state. Therefore, by operating the control circuit 5 based on the change in the captured signal of the sensing coil 28 and shutting off the power supply circuit connected to the commercial power supply 9, the charging operation of the charger 2 is automatically stopped, and power is wasted. Can be consumed.
  • the secondary battery 11 is a lithium ion secondary battery
  • the secondary battery to be charged may be a nickel cadmium battery, a nickel hydrogen secondary battery, or the like.
  • the display structure is one of a light emitting display represented by a light emitting diode, a sounding display represented by a speaker, an oscillation display represented by a vibration motor, a video display represented by a liquid crystal, or a combination thereof.
  • the present invention can be applied to portable devices such as mobile phones, smartphones, notebook computers, and tablets, or small electric devices such as toothbrushes, shavers, keyless entry keys, and hearing aids.
  • the non-contact charging device 3 of the present invention can be used as one power supply module having an output terminal, and in that case, the power supply module can be sold alone.

Abstract

 2次電池を充電する際の過充電を防止でき、2次電池が空状態になった場合でも、非接触充電装置の充電機能を復旧させて的確に充電できる小形電気機器を提供する。 非接触充電装置3は、共振回路15と整流回路16とを備えている。共振回路15は、2次コイル13と、同コイル13に並列接続される共振コンデンサー14を含む。整流回路16と2次電池11との間に、充放電制御回路19と電圧監視回路20を設ける。共振回路15には、共振コンデンサー14のキャパシタンスを変更する切換えスイッチ25を設ける。2次電池11が満充電された状態において、充放電制御回路19で切換えスイッチ25を切換えて、共振回路15のインピーダンスを変更し、共振回路15を受電状態が最適な第1受電状態から、受電状態が著しく低下する第2受電状態に変更する。

Description

非接触充電装置を備える小形電気機器、および非接触式の充電システム
 本発明は、2次電池を充電するための非接触充電装置を備えている小形電気機器、および非接触式の充電システムに関する。
 小形電気機器における2次電池の充電方式には、充電器と小形電気機器の端子同士を接続する接触充電方式と、高周波電磁誘導作用を利用する非接触充電方式とがある。いずれの場合にも、2次電池が満充電状態を越えて過剰に充電されるのを防ぐ必要がある。とくに、携帯電話やノートパソコンなどの、携帯式の電気機器の電源として多用されるリチウムイオン2次電池は、他の2次電池に比べてエネルギー密度が大きく、過充電時に異常過熱や発火を生じる可能性が高いことから、過充電状態に陥るのを確実に防止する必要がある。
 この種の過充電防止機能を備えている非接触充電装置として、例えば特許文献1の充電回路が公知である。そこではPHS電話機に非接触式の充電回路を設けて、充電器と充電回路との間の電磁誘導作用で電力を電話機側へ伝送し、電話機の非水電解質2次電池(リチウムイオン2次電池)を充電できるようにしている。充電回路は、受電側コイル、共振コンデンサ、および電界効果トランジスタを備えた共振回路と、共振回路で受電した高周波電流を整流する整流回路などを備えており、整流回路を介して供給される電力で非水電解質2次電池を充電する。
 充電回路には、共振回路および整流回路以外に、電池電圧検出回路、充電電流検出回路、満充電検出回路、定電圧定電流制御回路、充電用の主回路をオン・オフするスイッチ素子などが設けてある。満充電検出回路は、充電電流検出回路が検出した電流値に基づいて充電完了を検出し、スイッチ素子をオフ状態に切換えて、非水電解質2次電池に対する充電を停止し過充電を防止している。また、電池電圧検出回路で充電電流の電圧値を常時検知し、並行して充電電流検出回路で充電電流の電流値を常時検知している。電圧値と電流値のいずれか一方が所定の値を越えた場合には、定電圧定電流制御回路で電界効果トランジスタに印加されるベース電圧を制限して、電界効果トランジスタの出力電圧を低下させる。つまり、電界効果トランジスタを可変抵抗素子として機能させることにより、非水電解質2次電池の充電状態に応じて共振回路のインピーダンスを変化させて、定電流充電および定電圧充電を行えるようにしている。
 特許文献2においては、1次コイルを備えた充電器本体と、同本体に装着される情報通知ブロックとで充電器を構成し、充電器本体に負荷機器を装着することにより、負荷機器に設けた2次電池を非接触状態で充電できるようにしている。情報通知ブロックには補助コイルと発光ダイオード(情報通知手段)が設けてあり、1次コイルと負荷機器側の2次コイルとの間で電力の伝送を行う際に、1次コイルと補助コイルとの間の電磁誘導作用で生じる電力を利用して発光ダイオードを点灯できるようにしている。このように、充電器の側で発光ダイオードを点灯させると、負荷機器の2次電池が充電中であることをユーザーに知らせることができる。特許文献2には、発光ダイオードに換えて、液晶ディスプレイ、振動発生用のモータ、スピーカなどを情報通知手段とすることが開示されている。
特開2000-287375号公報(段落番号0020、図1) 特開2011-010444号公報(段落番号0026、図1)
 特許文献1の充電回路では、充電電流検出回路が検出した電流値に基づいて、スイッチ素子を満充電検出回路でオフ状態に切換え、非水電解質2次電池に対する充電を停止するので過充電を防止することができる。しかし、PHS電話機が長期間放置されるなどにより、非水電解質2次電池が無電圧状態、もしくは過放電状態などの低電圧状態になった場合に、充電回路を構成する各回路を作動させるだけの電力が得られないため、PHS電話機を充電器に装着したとしても2次電池を直ちに充電できるわけではない。その場合には、電話機から取外した2次電池の接続端子に充電電流を供給して接触充電方式で充電するしかないが、電話機に付属している充電器では充電できないためユーザーの混乱を招いてしまう。
 本発明の目的は、2次電池を非接触状態で適切に充電しながら、2次電池が満充電された後は、充電器と非接触充電装置との間の電力伝送を著しく低下させて、2次電池が過充電状態に陥るのを防止できる非接触充電装置を備えている小形電気機器、および非接触式の充電システムを提供することにある。
 本発明の目的は、2次電池が空状態になった場合でも、非接触充電装置の充電機能を復旧させて確実に2次電池を充電できる非接触充電装置を備えている小形電気機器、および非接触式の充電システムを提供することにある。
 本発明の目的は、充電時に2次電池が異常な高温状態になった場合に、直ちに充電器と非接触充電装置との間の電力伝送を著しく低下させて、2次電池が損傷するのを未然に防止し、あるいは電力が無駄に消費されるのを防止できる小形電気機器、および非接触式の充電システムを提供することにある。
 本発明に係る非接触充電装置を備える小形電気機器は、機器本体12に2次電池11と、非接触式の充電器2に対応する非接触充電装置3とが設けてある。図1に示すように、非接触充電装置3は、充電器2の1次コイル7に対応して設けられる2次コイル13と、2次コイル13と並列に接続される共振コンデンサー14を含む共振回路15と、共振回路15と2次電池11との間に配置される整流回路16とを備えている。整流回路16と2次電池11との間に、充放電制御回路19と、充電電流の電圧値および/または電流値を監視する充電電力監視回路20・21を設ける。共振回路15には、共振コンデンサー14および/または2次コイル13の接続状態を切換えて、共振回路15のインピーダンスを大小に切換える切換えスイッチ25を設ける。充電電力監視回路20・21が、2次電池11の電圧値および/または電流値が所定値に達したことを検知した満充電状態において、充放電制御回路19で切換えスイッチ25を切換えて、共振回路15を受電状態が最適な第1受電状態から、受電電力が著しく低下する第2受電状態に変更することを特徴とする。
 充電電力監視回路は、電圧監視回路20と電流監視回路21の少なくともいずれか一方で構成する。切換えスイッチ25は、共振コンデンサー14と直列に接続する(図1および3参照)。
 充電電力監視回路は、電圧監視回路20と電流監視回路21の少なくともいずれか一方で構成する。切換えスイッチ25は、共振コンデンサー14と並列に接続して、その一端を2次コイル13の中途部27に接続する(図2および図4参照)。
 充電器2と非接触充電装置3との少なくともいずれか一方に、2次電池11が満充電されたことを表示する表示構造を設ける。表示構造は、発光表示具、発音表示具、発振表示具、映像表示具のいずれかひとつで構成する。
 充放電制御回路19は、整流回路16から供給される充電電力を2次電池11と機器本体12とのいずれか一方へ供給し、あるいは2次電池11の電力を機器本体12へ供給できるように構成する。2次電池11が満充電された後に、整流回路16から供給される僅かな電力を、充放電制御回路19で機器本体12へ供給して消費させるようにする。
 図10に示すように、非接触充電装置3に2次電池11の温度を検知する温度センサー45を設ける。温度センサー45が2次電池11の温度が所定値に達したことを検知した状態において、充放電制御回路19で切換えスイッチ25を切換えて、2次電池11の充電度合とは無関係に、共振回路15を受電状態が最適な第1受電状態から、受電電力が著しく低下する第2受電状態に変更する。
 本発明に係る非接触式の充電システムは、小形電気機器の機器本体12に設けた2次電池11を、非接触式の充電器2で機器本体12に設けた非接触充電装置3を介して充電する。充電器2は、充電器本体4の内部に、整流回路および電圧調整回路を含む制御回路5と、制御回路5から出力された電流を高周波電流に調整して1次コイル7に出力する発振回路6と、1次側の共振コンデンサー8を備えている。非接触充電装置3は、充電器2の1次コイル7に対応して設けられる2次コイル13と、2次コイル13と並列に接続される共振コンデンサー14を含む共振回路15と、共振回路15と2次電池11との間に配置される整流回路16とを備えている。整流回路16と2次電池11との間に、充放電制御回路19と、充電電流の電圧値および/または電流値を監視する充電電力監視回路20・21を設ける。共振回路15には、共振コンデンサー14および/または2次コイル13の接続状態を切換えて、共振回路15のインピーダンスを大小に切換える切換えスイッチ25を設ける。充電電力監視回路20・21が、2次電池11の電圧値および/または電流値が所定値に達したことを検知した満充電状態において、充放電制御回路19で切換えスイッチ25を切換えて、共振回路15を受電状態が最適な第1受電状態から、受電電力が著しく低下する第2受電状態に変更することを特徴とする。
 図10に示すように、1次コイル7と2次コイル13との間の電磁誘導作用に並行して、漏れ磁束を捕捉するセンシングコイル28を充電器2に設ける。共振回路15の受電状態が第2受電状態に変化したことをセンシングコイル28で検知して、充電器2の充電動作を停止する。
 非接触充電装置3に2次電池11の温度を検知する温度センサー45を設ける。温度センサー45が2次電池11の温度が所定値に達したことを検知した状態において、充放電制御回路19で切換えスイッチ25を切換えて、2次電池11の充電度合とは無関係に、共振回路15を受電状態が最適な第1受電状態から、受電電力が著しく低下する第2受電状態に変更する。
 本発明に係る小形電気機器においては、充電器2と非接触充電装置3との間の電磁誘導作用で充電電力を伝送して、小形電気機器に設けた2次電池11を非接触状態のままで充電できるようにした。また、2次コイル13、共振コンデンサー14、および切換えスイッチ25などで共振回路15を構成して、切換えスイッチ25を切換えることにより、2次コイル13のインダクタンスと、共振コンデンサー14のキャパシタンスの少なくともいずれか一方を変更できるようにした。このようにインダクタンスまたはキャパシタンスを変更すると、共振回路15側のインピーダンスを大小に切換えて、共振回路15の受電状態を最適な受電状態である第1受電状態と、受電電力が著しく低下する第2受電状態に変更することができる。
 以上のように、本発明の非接触充電装置3によれば、2次電池11が満充電された状態において、共振回路15の受電状態を第2受電状態に切換えるので、過剰な充電電力が供給されるのを防止して、2次電池11が直ちに過充電状態に陥るのを防止できる。また、小形電気機器1を充電器2に装着した状態における非接触充電装置3は、同装置3を構成する各回路の状態とは無関係に、充電器2の1次コイル7と2次コイル13間の電磁誘導作用によって僅かな電力が共振回路15へ伝送される構造になっている。そのため、共振回路15へ伝送される僅かな電力を利用して、空状態(無電圧状態)になった2次電池11を徐々に充電することができる。
 詳しくは、自己放電作用によって空状態になった2次電池11を充電器2で充電しようとしても、非接触充電装置3を構成する各回路を作動させるだけの電力が得られないため、2次電池11を直ちに充電することはできない。しかし、小形電気機器1を充電器2に装着すると、1次コイル7と2次コイル13間の電磁誘導作用によって僅かな電力が共振回路15へ伝送され、2次電池11に対して低電力の充電電流を供給できる。このように、供給される電力が僅かであるとしても、時間の経過とともに2次電池11は徐々に充電されるので、やがて2次電池11の電圧を充放電制御回路19および電圧監視回路20などが機能できる状態にまで復旧することができる。また、充放電制御回路19や電圧監視回路20などが機能し始めた時点で、切換えスイッチ25がオン側へ切換えられて共振回路15を第1受電状態に復旧でき、以後は最適の状態で2次電池11を充電することができる。従って、本発明の非接触充電装置3によれば、2次電池11が空状態になっていたとしても、非接触充電装置3の充電機能を復旧させて、2次電池11を的確に満充電状態に充電することができる。
 充電電力監視回路が電圧監視回路20で構成してある場合には、充電電圧の変化に従って2次電池11が満充電状態になったか否かを判定する。同様に、充電電力監視回路が電流監視回路21で構成してある場合には、充電電流の変化に従って2次電池11が満充電状態になったか否かを判定する。いずれの場合にも、2次電池11が満充電状態になったことを明確に知ることができる。さらに、充電電力監視回路が、電圧監視回路20および電流監視回路21の両者で構成してある場合には、充電電圧の変化と充電電流の変化に従って2次電池11が満充電状態になったか否かを二重に判定できるので、2次電池11が満充電状態になったことをさらに的確に知ることができる。切換えスイッチ25を共振コンデンサー14と直列に接続する共振回路15においては、切換えスイッチ25をオン・オフして、共振コンデンサー14を機能させる状態と、共振コンデンサー14の機能を停止させる状態との違いで共振回路15のインピーダンスを変更できる。また、共振回路15のインピーダンスを変更することによって、共振回路15の受電状態を、最適な受電状態である第1受電状態と、受電電力が著しく低下する第2受電状態に変更することができる。
 切換えスイッチ25を共振コンデンサー14と並列に接続して、その一端を2次コイル13の中途部27に接続する共振回路15においては、切換えスイッチ25をオン・オフすることによって、2次コイル13のインダクタンスを大小に切換えて共振回路15のインピーダンスを変更できる。また、共振回路15のインピーダンスを変更することによって、共振回路15の受電状態を、最適な受電状態である第1受電状態と、受電電力が著しく低下する第2受電状態に変更することができる。
 充電器2と非接触充電装置3との少なくともいずれか一方に表示構造を設け、2次電池11が満充電された状態において表示構造を作動させると、ユーザーに対して2次電池11の充電が完了したことを明確に知らせることができる。従って、表示構造が作動した後は、ユーザーに対して小形電気機器1を充電器2から分離し、あるいは充電器2の電源スイッチをオフ操作するなどの後処理を促して、2次電池11に対して不必要に充電電流が供給されるのを解消できる。発光表示具、発音表示具、発振表示具、および映像表示具の具体例としては、発光ダイオード、スピーカ、振動モータ、および液晶表示具などがある。
 2次電池11が満充電された後に、整流回路16から供給される僅かな電力を、充放電制御回路19で機器本体12へ供給すると、供給された電力を機器本体12の内部に設けた負荷回路あるいは負荷機器で消費することができる。従って、2次電池11が満充電された後に、小形電気機器1が充電状態のままで長時間にわたって放置されるような場合であっても、僅かな電力が非接触充電装置3に供給されて蓄積されるのを防止でき、非接触充電装置3が発熱し、あるいは過熱状態に陥るのを解消できる。
 非接触充電装置3に温度センサー45を設ける小形電気機器では、同センサー45が2次電池11の温度が所定値に達したことを検知した状態において、充放電制御回路19で切換えスイッチ25を切換えて、共振回路15を第1受電状態から第2受電状態に切換える。このように、2次電池11の温度状態に対応して、共振回路15を受電電力が著しく低下する第2受電状態に切換えると、2次電池11の温度が所定値に達した時点で、充電器2と非接触充電装置3との間の電力伝送を著しく低下させ、さらに、2次電池11に対する充電電流の供給を停止する。従って、2次電池11が過熱し、あるいは焼損するなど損傷するのを未然に防止できる。また、充放電制御回路19のスイッチ25の切換えは、2次電池11の充電度合とは無関係に行われるので、2次電池11が充電途中状態であっても、その温度が異常な高温状態になった時点で直ちに充電を停止することができる。因みに、2次電池11が満充電された後に、小形電気機器1が充電状態のままで長時間にわたって放置されるような場合には、非接触充電装置3での電力消費が小さくなるため、2次コイル13のコイル電圧が高くなる。その結果、2次コイル13に流れる電流が増加し、やがて2次コイル13の発熱温度が上昇し、2次電池11が損傷するおそれがある。しかし、上記のように2次電池11の温度状態を温度センサー45で監視し、充電制御回路19で2次電池11に対する充電電流の供給を停止することにより、2次電池11を確実に保護することができる。
 本発明に係る非接触式の充電システムにおいては、充電器2と非接触充電装置3との間の電磁誘導作用で充電電力を伝送して、小形電気機器に設けた2次電池11を非接触状態のままで充電できるようにした。また、2次コイル13、共振コンデンサー14、および切換えスイッチ25などで共振回路15を構成して、切換えスイッチ25を切換えることにより、2次コイル13のインダクタンスと、共振コンデンサー14のキャパシタンスの少なくともいずれか一方を変更できるようにした。このようにインダクタンスまたはキャパシタンスを変更すると、共振回路15側のインピーダンスを大小に切換えて、共振回路15の受電状態を最適な受電状態である第1受電状態と、受電電力が著しく低下する第2受電状態に変更することができる。
 以上のように、本発明の充電システムによれば、2次電池11が満充電された状態において、共振回路15の受電状態を第2受電状態に切換えるので、過剰な充電電力が供給されるのを防止して、2次電池11が直ちに過充電状態に陥るのを防止できる。また、小形電気機器1を充電器2に装着した状態における非接触充電装置3は、同装置3を構成する各回路の状態とは無関係に、充電器2の1次コイル7と2次コイル13間の電磁誘導作用によって僅かな電力が共振回路15へ伝送される構造になっている。そのため、共振回路15へ伝送される僅かな電力を利用して、空状態(無電圧状態)になった2次電池11を徐々に充電することができる。
 詳しくは、自己放電作用によって空状態になった2次電池11を充電器2で充電しようとしても、非接触充電装置3を構成する各回路を作動させるだけの電力が得られないため、2次電池11を直ちに充電することはできない。しかし、小形電気機器1を充電器2に装着すると、1次コイル7と2次コイル13間の電磁誘導作用によって僅かな電力が共振回路15へ伝送され、2次電池11に対して低電力の充電電流を供給できる。このように、供給される電力が僅かであるとしても、時間の経過とともに2次電池11は徐々に充電されるので、やがて2次電池11の電圧を充放電制御回路19および電圧監視回路20などが機能できる状態にまで復旧することができる。また、充放電制御回路19や電圧監視回路20などが機能し始めた時点で、切換えスイッチ25がオン側へ切換えられて共振回路15を第1受電状態に復旧でき、以後は最適の状態で2次電池11を充電することができる。従って、本発明の充電システムによれば、2次電池11が空状態になっていたとしても、非接触充電装置3の充電機能を復旧させて、2次電池11を的確に満充電状態に充電することができる。
 共振回路15の受電状態が第2受電状態に変化したことを、充電器2に設けたセンシングコイル28で検知する充電システムにおいては、2次コイル13の共振周波数が非同調側へシフトされるに伴って、1次コイル7の共振状態が変化し、同時にセンシングコイル28の起電力が変化する。このセンシングコイル28の捕捉信号に基づき制御回路5が商用電源9に連なる電源回路を遮断することにより、充電器2の充電動作を自動的に停止することができる。従って、充電完了後に充電器2の電源スイッチをオフ操作するなど、ユーザーが行うべき後処理の手間を省くことができる。また、2次電池11が満充電された後に、小形電気機器1が充電状態のままで長時間にわたって放置されるような場合であっても、2次電池11に対する充電を完全に停止して、充電器2による電力の無駄な消費を解消でき、非接触充電装置3および2次電池11の状態を適正な状態に維持できる。
 非接触充電装置3に温度センサー45を設ける充電システムでは、同センサー45が2次電池11の温度が所定値に達したことを検知した状態において、充放電制御回路19で切換えスイッチ25を切換えて、共振回路15を第1受電状態から第2受電状態に切換える。このように、2次電池11の温度状態に対応して、共振回路15を受電電力が著しく低下する第2受電状態に切換えると、2次電池11の温度が所定値に達した時点で、充電器2と非接触充電装置3との間の電力伝送を著しく低下させ、さらに、2次電池11に対する充電電流の供給を停止する。従って、2次電池11が過熱し、あるいは焼損するなど損傷するのを未然に防止できる。また、充放電制御回路19のスイッチ25の切換えは、2次電池11の充電度合とは無関係に行われるので、2次電池が充電途中状態であっても、その温度が異常な高温状態になった時点で直ちに充電を停止することができる。
本発明の実施例1に係る小形電気機器、および非接触式の充電システムの概略説明図である。 実施例2に係る小形電気機器、および非接触式の充電システムの概略説明図である。 実施例3に係る小形電気機器、および非接触式の充電システムの概略説明図である。 実施例4に係る小形電気機器、および非接触式の充電システムの概略説明図である。 実施例5に係る小形電気機器、および非接触式の充電システムの概略説明図である。 実施例6に係る小形電気機器、および非接触式の充電システムの概略説明図である。 実施例7に係る小形電気機器、および非接触式の充電システムの概略説明図である。 実施例8に係る小形電気機器、および非接触式の充電システムの概略説明図である。 実施例9に係る小形電気機器、および非接触式の充電システムの概略説明図である。 実施例10に係る小形電気機器、および非接触式の充電システムの概略説明図である。
(実施例1) 図1は本発明に係る小形電気機器と充電器とからなる充電システムの概略を示しており、符号1は小形電気機器、符号2は充電器、符号3は小形電気機器1の一部に設けた非接触充電装置である。充電システムは、小形電気機器の機器本体12に設けた2次電池11を、非接触式の充電器2で機器本体12に設けた非接触充電装置3を介して充電する。充電器2は、充電器本体4の内部に、制御回路5および発振回路6と、発振回路6で調整された高周波電流を受けて誘導磁界を生成する1次コイル7と、1次側の共振コンデンサー8などを配置して構成してある。制御回路5には、商用電源9から供給される交流電流を全波整流する整流回路と、整流された電流を所定の電圧に調整する電圧調整回路などが設けてある。発振回路6は、制御回路5から出力された電流を高周波電流に調整して1次コイル7に出力する。図示していないが、制御回路5と商用電源9との間には、給電状態をオン・オフする電源スイッチが設けてある。なお、1次コイル7は充電器本体4の内部に組込んであるので、充電器本体4の外部から視認することはできない。
 非接触充電装置3は、小形電気機器1の機器本体12に設けたリチウムイオン2次電池(以下、単に2次電池と言う。)11を充電するために設けてあり、2次電池11とともに機器本体12の内部に組込んである。非接触充電装置3は、充電器2の1次コイル7に対応して設けられる2次コイル13と、2次コイル13と並列に接続される共振コンデンサー14を含む共振回路15と、共振回路15と2次電池11との間に配置される整流回路16などを備えている。さらに、非接触充電装置3は、共振回路15と2次電池11との間に、レギュレータ回路18と、充放電制御回路19と、充電電流の電圧値を監視する電圧監視回路(充電電力監視回路)20を備えている。符号22は2次電池11の電力を供給する給電路であり、この給電路22を介して供給される電力で、小形電気機器1を構成する負荷回路あるいは負荷機器を駆動する。
 小形電気機器1を、電源がオンされた充電器2に装着し、あるいは充電器2の近傍に配置して、2次コイル13を1次コイル7に正対させた状態では、両コイル7・13間の電磁誘導作用で充電器2から非接触充電装置3へと充電電力が伝送される。このときの電磁誘導作用を最適な状態(以下、この状態を第1受電状態と言う。)にするために、第2コイル13のインダクタンスと、2次側の共振コンデンサー14のキャパシタンスとが、1次コイル7の共振周波数と適合できるように設定してある。第1受電状態における共振回路15は充電器2からの受電電力が最大で最適な状態になっている。
 共振回路15から送給される高周波電流は、整流回路16で整流され、さらにレギュレータ回路18で充電に適した電圧に調整されたのち、充放電制御回路19と電圧監視回路20を介して2次電池11へ供給される。充放電制御回路19は、電圧監視回路20からの監視信号を受けて、2次電池11が所定の電圧に達して満充電状態になるまでの間第1受電状態を保持して、レギュレータ回路18から供給される最適な充電電流を2次電池11に供給する。
 非接触充電装置3の基本構造は以上のとおりであるが、本発明においては、2次電池11が満充電された後に2次電池11が過充電されるのを防ぐために、共振回路15に過充電防止のための構造を付加する点に特徴がある。具体的には、共振コンデンサー14と直列に切換えスイッチ25を設け、2次電池11を充電する過程と、2次電池11が満充電された後の状態とで切換えスイッチ25を切換えて、共振回路15の受電状態を第1受電状態から第2受電状態へ切換えるようにした。
 具体的には、第1受電状態においては、切換えスイッチ25がオン側に切換えられていて、2次コイル13と共振コンデンサー14の並列接続を維持しており、1次コイル7から伝送される電力を共振回路15が最適な状態で受電できるようにしている。また、第2受電状態においては、切換えスイッチ25をオフ状態に切換えて、共振コンデンサー14の2次コイル13に対する並列接続を遮断して、共振回路15のインピーダンスを大きく変化させ、2次コイル13の共振周波数を非同調側へシフトさせる。これに伴い、第2受電状態においては、1次コイル7から共振回路15へ伝送される電力の伝送効率が著しく低下する。しかし、第2受電状態において共振回路15へ伝送される電力がゼロになることはなく、僅かな電力が共振回路15へ伝送される。
 上記のように、共振コンデンサー14の接続を遮断し、2次コイル13の共振周波数を非同調側へシフトさせると、共振回路15の受電電力が著しく低下するので、非接触充電装置3が充電器2から無駄に受電するのを解消して、2次電池11が過充電状態に陥るのを解消できる。また、2次コイル13の共振周波数が非同調側へシフトするのに伴って1次コイル7の共振点がずれ、発振回路6側のインピーダンスが高くなるため、充電器2の消費電力を減少することができる。以上のように、この実施例では、2次電池11の充電状態に対応して切換えスイッチ25を切換えて、共振コンデンサー14の接続状態を変更することにより、共振回路15のインピーダンスを大小に変更できるようにした。
 共振回路15が、最適な電力伝送状態である第1受電状態から、2次電池11が満充電されて第2受電状態に切換えられたことを表示するために、充電器本体4の外面に発光ダイオード(発光表示具)26を設けている。発光ダイオード26は、第1受電状態が開始されるのと同時に点灯して、2次電池11が充電途中状態であることを表示する。また、2次電池11が満充電された状態では、1次コイル7の共振点がずれて充電器2の消費電力が減少するので、そのことを制御回路5で検知して、発光ダイオード26を一定間隔おきに明滅させる。このように、発光ダイオード26が連続点灯状態から明滅状態へ切換わることで、ユーザーは2次電池11の充電が完了したことを知ることができる。
 多くの場合には、発光ダイオード26の明滅状態を確認した後は、ユーザーが小形電気機器1を充電器2から分離し、あるいは充電器2の電源スイッチをオフ操作して充電作業を終了する。しかし、2次電池11が満充電された後にも、小形電気機器1が充電器2に対して充電可能な状態のままで放置されることがある。その場合の共振回路15は、第2受電状態に切換わっており、受電効率が著しく低い状態ではあるものの、僅かな電力が共振回路15へ伝送され続ける。そのため、放置時間が長引くと非接触充電装置3が発熱して過熱状態に陥るおそれがある。こうした非接触充電装置3の発熱や過熱等を防ぐために、2次電池11が満充電された後には、充放電制御回路19の内部回路を切換えて、整流回路16から供給される微小電力を機器本体12へ供給できるようにしている。機器本体12へ供給された電力は、その内部に設けた負荷回路あるいは負荷機器に供給されて消費される。
 小形電気機器1の使用に伴って2次電池11の電圧が所定値以下になると、充放電制御回路19は電圧監視回路20からの監視信号を受けて、2次電池11の充電が必要であることを機器本体12側の表示具で表示したのち、2次電池11から機器本体12への電力の供給を停止する。なお、図示していない機器本体12側の表示具としては、発光表示具、発音表示具、発振表示具、映像表示具のいずれかを適用することができる。
 小形電気機器1が不使用状態のままで長期にわたって放置されることがあり、その場合には、自己放電作用によって2次電池11が空状態になることがある。この状態の小形電気機器1を充電器2で充電しようとしても、非接触充電装置3を構成する各回路を作動させるだけの電力が得られないため、2次電池11を適正な状態で直ちに充電することはできない。しかし、小形電気機器1を充電器2に装着すると、非接触充電装置3を構成する各回路の状態とは無関係に、1次コイル7と2次コイル13間の電磁誘導作用によって僅かな電力が共振回路15へ伝送され、2次電池11に対して低電力を供給することができる。
 上記のように僅かな電力であっても、時間の経過とともに2次電池11は供給された電力で徐々に充電されるため、やがて2次電池11の電圧を充放電制御回路19および電圧監視回路20などが機能できる状態にまで復旧することができる。また、充放電制御回路19や電圧監視回路20などが機能し始めた時点では、2次電池11の電圧が低いため、切換えスイッチ25はオン側へ切換えられて共振回路15を第1受電状態に保持する。従って、以後は最適の状態で2次電池11を充電することができ、たとえ2次電池11が空状態になっていたとしても、2次電池11を的確に満充電状態に充電することができる。なお、充放電制御回路19および電圧監視回路20が機能し始めるときの2次電池11の電圧は、充放電制御回路19がユーザーに対して2次電池11の充電を促すときの電圧より充分に低い。
(実施例2) 図2は非接触充電装置3の一部を変更した実施例2に係る小形電気機器1を示している。そこでは、実施例1の非接触充電装置3と同様に、電圧監視回路20から送られた監視信号を充放電制御回路19で受けて、2次電池11が満充電状態になったことを判定して共振回路15のインピーダンスを変更する。この実施例では、切換えスイッチ25を共振コンデンサー14と並列に接続し、切換えスイッチ25の一方の端子を2次コイル13の中途部27に接続する点が実施例1と異なる。
 この実施例における第1受電状態では、切換えスイッチ25が充放電制御回路19でオフ位置に切換えられており、切換えスイッチ25が充放電制御回路19でオン位置へ切換えられた状態のとき第2受電状態となる。第2受電状態においては、2次コイル13の中途部が切換えスイッチ25を介して短絡されるので、その有効巻数およびインダクタンスが第1受電状態とは大きく異なることとなり、2次コイル13の共振周波数を非同調側へシフトさせて共振回路15のインピーダンスを変更できる。その結果、共振回路15の受電電力を著しく低下させて、2次電池11が過充電状態に陥るのを解消でき、さらに、無駄な受電を解消できる。また、2次コイル13の共振周波数が非同調側へシフトするのに伴って、1次コイル7の共振点がずれて発振回路6側のインピーダンスが高くなるため、充電器2の消費電力を減少することができる。
 以上のように、実施例2の非接触充電装置3では、2次電池11の充電状態に対応して切換えスイッチ25をオン・オフすることにより、2次コイル13の接続状態を変更して共振回路15のインピーダンスを変更できる。他は実施例1と同じであるので、同じ部材に同じ符号を付してその説明を省略する。以下に説明する実施例においても同じとする。
(実施例3) 図3は非接触充電装置3の一部を変更した実施例3に係る小形電気機器1を示している。そこでは、実施例1の非接触充電装置3と同様に、切換えスイッチ25を共振コンデンサー14と直列に接続するが、充放電制御回路19と電圧監視回路20との間に電流監視回路(充電電力監視回路)21を配置する点が実施例1と異なる。この実施例では、電流監視回路21から送られた監視信号にもとづき、2次電池11が満充電状態になったことを充放電制御回路19で判定して、共振回路15のインピーダンスを変更する。2次電池11を充電する過程では、2次電池11の電圧が徐々に増加するのに伴って、電流監視回路21を流れる電流値が変化するので、この電流変化を監視することにより、2次電池11が満充電状態になったことを充放電制御回路19で判定できる。
(実施例4) 図4は非接触充電装置3の一部を変更した実施例4に係る小形電気機器1を示している。そこでは、実施例2の非接触充電装置3と同様に、切換えスイッチ25を共振コンデンサー14と並列に接続し、切換えスイッチ25の一方の端子を2次コイル13の中途部27に接続する。また、実施例3と同様に、充放電制御回路19と電圧監視回路20との間に電流監視回路21を配置して、電流監視回路21から送られた監視信号にもとづき、2次電池11が満充電状態になったことを充放電制御回路19で判定している。
 実施例3および実施例4の非接触充電装置3は、電圧監視回路20と電流監視回路21とを備えているので、必要があれば、電圧監視回路20と電流監視回路21から送られた各監視信号にもとづき、2次電池11が満充電状態になったか否かを充放電制御回路19で判定することができる。
(実施例5) 図5は充電器2の一部を変更した実施例5を示している。そこでは、充電器本体4の内部にセンシングコイル28を設けて、1次コイル7と2次コイル13との間の電力伝送時に、センシングコイル28で漏れ磁束を捕捉できるようにした。先に説明したように、非接触充電装置3が第2受電状態に切換わると、2次コイル13の共振周波数が非同調側へシフトされ、同時に1次コイル7の共振点がずれて発振回路6側のインピーダンスが高くなる。この1次コイル7の共振状態の変化に伴って、センシングコイル28の起電力が変化する。従って、センシングコイル28の捕捉信号に基づき制御回路5を作動させて、商用電源9に連なる電源回路を遮断することにより、充電器2の充電動作を自動的に停止することができる。
(実施例6) 図6(a)~(c)は非接触充電装置3のさらに別の実施例を示す。図6(a)では、実施例1で説明した共振コンデンサー14とは別に補助コンデンサー31を設けて、両コンデンサー14・31を並列に接続して、いずれか一方のコンデンサー14・31を切換えスイッチ25を介して2次コイル13と導通できるようにした。共振コンデンサー14のキャパシタンスは1次コイル7の共振周波数と適合する値に設定しておく。これに対して補助コンデンサー31のキャパシタンスは、2次コイル13の共振周波数を非同調側へシフトできる値に設定する。
 常態における切換えスイッチ25は、共振コンデンサー14のみを2次コイル13と導通させている。2次電池11の充電が完了した状態では、切換えスイッチ25を切換えて共振コンデンサー14の導通状態を遮断し、補助コンデンサー31を2次コイル13と導通させる。これにより共振回路15のインピーダンスが変化するので、2次コイル13の共振周波数を非同調側へシフトさせて、共振回路15へ伝送される電力を著しく減少できる。このように、第2受電状態において補助コンデンサー31を2次コイル13と導通させる非接触充電装置3によれば、補助コンデンサー31のキャパシタンスを厳密に設定することができるので、2次コイル13の共振周波数を非同調側へシフトさせるときのシフト量を厳密に規定できる。
 図6(b)に示す非接触充電装置3においては、共振コンデンサー14とは別に、補助コンデンサー31と導通路32を設けて、切換えスイッチ25を共振コンデンサー14と直列に接続した。この非接触充電装置3では、第1受電状態のとき共振コンデンサー14と導通路32とを切換えスイッチ25を介して導通させる。また、第2受電状態では、共振コンデンサー14と補助コンデンサー31とが直列状態で導通するように切換えスイッチ25を切換えて、2次コイル13の共振周波数を非同調側へシフトさせて、共振回路15へ伝送される電力を著しく減少させる。
 図6(c)に示す非接触充電装置3においては、2次コイル13とは別に補助コイル33を設けて、補助コイル33を2次コイル13と並列に配置し、いずれか一方のコイル13・33を切換えスイッチ25を介して共振コンデンサー14と導通できるようにした。2次コイル13のインダクタンスは1次コイル7の共振周波数と適合する値に設定しておく。補助コイル33のインダクタンスは、1次コイル7の共振周波数に対して非同調側へシフトした値に設定する。
 常態における切換えスイッチ25は、2次コイル13を共振コンデンサー14に対して並列する状態で導通させる。2次電池11の充電が完了した後には、切換えスイッチ25を切換えて2次コイル13の導通状態を遮断し、補助コイル33を共振コンデンサー14に対して並列する状態で導通させて共振回路15を第2受電状態にする。この受電状態では、補助コイル33の共振周波数が、1次コイル7に対して非同調側へシフトされた状態となるため、共振回路15へ伝送される電力を著しく減少できる。このように、第2受電状態において補助コイル33を共振コンデンサー14と導通させる非接触充電装置3によれば、補助コイル33を1次コイル7に対して非同調側へシフトさせるときのシフト量を厳密に規定できる。この実施例における補助コイル33は省略することができ、その場合には、補助コイル33側のスイッチ接点を、図2と同様に2次コイル13の中途部27に接続しておけばよい。
 図6(a)から(c)で説明した非接触充電装置3は以下の形態で実施することができる。
 図6(a)の非接触充電装置3は、共振回路15に、共振コンデンサー14および補助コンデンサー31と、いずれか一方のコンデンサー14・31を2次コイル13と導通する切換えスイッチ25とが設けられており、満充電状態において、切換えスイッチ25を充放電制御回路19で切換えることにより、補助コンデンサー31を2次コイル13と導通させて共振回路15を第2受電状態にする。
 図6(b)の非接触充電装置3は、共振回路15に、共振コンデンサー14と、補助コンデンサー31と、導通路32と、これら3者の導通状態を切換える切換えスイッチ25とが設けられており、満充電状態において、切換えスイッチ25を充放電制御回路19で切換えることにより、共振コンデンサー14を補助コンデンサー31を介して2次コイル13と導通させて共振回路15を第2受電状態にする。
 図6(c)の非接触充電装置3は、共振回路15に、2次コイル13と補助コイル33とが並列に配置されており、満充電状態において、補助コイル33を切換えスイッチ25を介して共振コンデンサー14と導通させて共振回路15を第2受電状態にする。
(実施例7) 図7(a)・(b)は非接触充電装置3のさらに別の実施例を示す。図7(a)では、図6(a)の共振回路15と同様に、共振コンデンサー14とは別に補助コンデンサー31を設けて、両コンデンサー14・31を並列に接続して、いずれか一方のコンデンサー14・31を切換えスイッチ25を介して2次コイル13と導通できるようにした。また、切換えスイッチ25と2次コイル13との間に別の切換えスイッチ35を設けて、その一方の端子を導通路36を介して2次コイル13に接続し、その他方の端子を導通路37を介して2次コイル13の中途部27に接続するようにした。
 この非接触充電装置3では、第1受電状態のとき共振コンデンサー14を切換えスイッチ25を介して導通させ、さらに2次コイル13を導通路36と切換えスイッチ35を介して導通させる。また、第2受電状態では、切換えスイッチ25を切換えて補助コンデンサー31を導通させるか、切換えスイッチ35を切換えて導通路37を導通させて、共振回路15の共振周波数を非同調側へシフトさせて、共振回路15へ伝送される電力を著しく減少させる。
 上記のように、2個の切換えスイッチ25・35で、共振コンデンサー14と補助コンデンサー31を切換え、あるいは2次コイル13の巻数を切換える共振回路15によれば、両スイッチ25・35の切換え状態を異ならせることにより、共振回路15の共振周波数を大きく変化させ、あるいは小さく変化させることができる。また、同じ共振周波数でも、キャパシタンスとインダクタンスの割合を変化させて、共振回路15のインピーダンスを変更することができる。
 図7(b)では、図6(b)の共振回路15と同様に、共振コンデンサー14とは別に補助コンデンサー31を設けて、両コンデンサー14・31を直列に接続して、いずれか一方のコンデンサー14・31を切換えスイッチ25を介して2次コイル13と導通できるようにした。また、切換えスイッチ25と2次コイル13との間に別の切換えスイッチ35を設けて、その一方の端子を導通路36を介して2次コイル13に接続し、その他方の端子を導通路37を介して2次コイル13の中途部27に接続するようにした。
 この非接触充電装置3では、第1受電状態のとき共振コンデンサー14を切換えスイッチ25を介して導通させ、さらに2次コイル13を導通路36と切換えスイッチ35を介して導通させる。また、第2受電状態では、切換えスイッチ25を切換えて補助コンデンサー31を導通させるか、切換えスイッチ35を切換えて導通路37を導通させて、共振回路15の共振周波数を非同調側へシフトさせて、共振回路15へ伝送される電力を著しく減少させる。この実施例の共振回路15においても、図7(a)の共振回路15と同様に、共振回路15の共振周波数を大きく変化させ、あるいは小さく変化させることができる。また、同じ共振周波数でも、キャパシタンスとインダクタンスの割合を変化させて、共振回路15のインピーダンスを変更することができる。
 図7で説明した非接触充電装置3は以下の形態で実施することができる。
 図7(a)の非接触充電装置3は、共振回路15に、並列に配置される共振コンデンサー14および補助コンデンサー31と、いずれか一方のコンデンサー14・31を導通する切換えスイッチ25と、2次コイル13の端部に接続される導通路36と、2次コイル13の中途部27に接続される導通路37と、いずれか一方の導通路36・37を導通する切換えスイッチ35とが設けられており、
 満充電状態において、切換えスイッチ25を充放電制御回路19で切換えることにより、補助コンデンサー31を2次コイル13と導通させて共振回路15を第2受電状態にし、
 あるいは、切換えスイッチ35を充放電制御回路19で切換えることにより、導通路37を導通させて共振回路15を第2受電状態にする。
 図7(b)の非接触充電装置3は、共振回路15に、共振コンデンサー14および補助コンデンサー31と、両コンデンサー14・31を導通し、あるいは共振コンデンサー14のみを2次コイル13と導通させる切換えスイッチ25と、2次コイル13の端部に接続される導通路36と、2次コイル13の中途部27に接続される導通路37と、いずれか一方の導通路36・37を導通する切換えスイッチ35とが設けられており、
 満充電状態において、切換えスイッチ25を充放電制御回路19で切換えることにより、共振コンデンサー14と補助コンデンサー31を導通させて共振回路15を第2受電状態にし、
 あるいは、切換えスイッチ35を充放電制御回路19で切換えることにより、導通路37を導通させて共振回路15を第2受電状態にする。
(実施例8) 図8は非接触充電装置3のさらに別の実施例を示す。2次電池11の保護のために、共振回路15を第2受電状態に切換えて共振周波数を非同調側へシフトさせた状態では、非接触充電装置3は充電器2に対して無応答状態となる。こうした場合でも、充電器2と非接触充電装置3との間の通信を確立するために、充電器2の側に1次コイル7とは別に通信コイル39を設けておき、第2受電状態に切換わった2次コイル13と通信コイル39との間で通信を行なえるようにしている。これにより、第2受電状態に切換わった後に、2次電池11の電力状態を充電器2の側で確認することができる。なお、図8における充電器2の詳細構造は、図1で説明した充電器と同じであるので、共振コンデンサー8などの詳細構造は図示省略した。
 以上のように構成した非接触充電装置3は、2次電池11が満充電された状態で出荷するが、出荷後、長期にわたって保管されるような場合に、2次電池11の自己放電作用で電力が消耗する。さらに、僅かではあっても充放電制御回路19によって2次電池11の電力が消費され続ける。そのため、充放電制御回路19が消費した電力の分だけ、未使用状態のまま保管した場合の2次電池11の保証期間が短くなる。こうした、長期保管時の充放電制御回路19による電力の消費を防ぐために、ユーザーが初めて小型電気機器1を使用するまでの間、充放電制御回路19による電力の消費を強制的に停止するようにした。
(実施例9) 具体的には、図9に示すように、充放電制御回路19に受信コントローラ40を設け、2次電池11と充放電制御回路19とを導通する出力リードの中途部に給電スイッチ41を配置して、工場出荷状態において給電スイッチ41をオフ状態に保持できるようにした。これにより、小形電気機器1が長期にわたって保管された場合でも、充放電制御回路19による電力の消費を防止して、2次電池11の電力が、保証期間に達する前に保証値以下になるのを確実に防止できる。符号42は2次電池11の保護回路である。
 給電スイッチ41は、小形電気機器1を購入したユーザーが始めて2次電池11の充電を行う際に、オン状態に切換えられる。詳しくは、共振回路15が作動したことを受信コントローラ40で検知して、給電スイッチ41をオン状態に切換える。あるいは、充電器2の側から共振回路15を介して受信コントローラ40にコマンドを与えて、給電スイッチ41をオン状態に切換える。一旦オン状態に切換えられた給電スイッチ41は、オフ状態に復帰することはなく、従って、初回に充電した後は、非接触充電装置3を適正に使用することができる。なお、小形電気機器の取扱説明書に、初回使用時にまず充電を行う必要があることを記載しておくことにより、給電スイッチ41の切換えをさらに確実に行うことができる。
 非接触充電装置3が組込まれた小形電気機器1は、検査工程で動作テストを行う必要があるが、その際に給電スイッチ41がオン状態に切換えられてしまうと、出荷後の充放電制御回路19による電力の消費を防ぐことができなくなる。こうした、不具合を解消するために、給電スイッチ41をオフ状態に復帰させる端子を充放電制御回路19に設けておくことにより、検査工程で動作テストを行ったのちに、オン状態に切換わった給電スイッチ41をオフ状態に復帰することができる。また、2次電池11を電池ホルダーから取外すことにより、給電スイッチ41をオフ状態に復帰させるようにしてもよい。
 図9で説明した非接触充電装置3は以下の形態で実施することができる。
 機器本体12に2次電池11と、非接触式の充電器2に対応する非接触充電装置3とが設けられており、
 非接触充電装置3は、充電器2の1次コイル7に対応して設けられる共振回路15と、共振回路15と2次電池11との間に配置される充放電制御回路19とを備えており、
 2次電池11が満充電された状態において、充放電制御回路19で共振回路15を受電状態が最適な第1受電状態から、受電電力が著しく低下する第2受電状態に変更する小形電気機器であって、
 2次電池11と充放電制御回路19を導通する導通リードに、充放電制御回路19への給電状態をオン状態とオフ状態に切換える給電スイッチ41が設けられており、
 給電スイッチ41は、小形電気機器の出荷時にはオフ状態に切換えられており、ユーザーの初回充電動作に伴って、充放電制御回路19で給電スイッチ41をオン状態に切換えることを特徴とする小形電気機器。
 上記の各実施例では、満充電された2次電池11が過充電されるのを防ぐために、共振回路15の共振周波数を非同調側へシフトさせて、共振回路15へ伝送される電力を著しく減少させる。このように、2次電池11が満充電されて、非接触充電装置3の作動が実質的に停止された時点で、通常は、充電器2の電源をオフして小形電気機器を使用する。しかし、非接触充電装置3の作動が実質的に停止された状態のままで、長時間にわたって放置された場合には、次のような問題を生じる。2次電池11が満充電されて非接触充電装置3の作動が実質的に停止された状態では、非接触充電装置3での電力消費が小さくなるため、2次コイル13のコイル電圧が高くなる。その結果、2次コイル13に流れる電流が増加し、やがて2次コイル13の発熱温度が上昇し、2次電池11が損傷するおそれがある。このように、ユーザーの使用形態が不適切であった場合にも、2次側の発熱による2次電池11の損傷を確実に防ぐ必要がある。そのために充電システムを改良して、以下に説明する実施例10の充電システムとした。
(実施例10) 図10の充電システムは、実施例1の充電システムと同じ基本構造を採るが、非接触充電装置3に2次電池11の温度を検知する温度センサー45を設ける点と、実施例5と同様に充電器本体4の内部にセンシングコイル28を設ける点とが異なる。温度センサー45は、主に充電時の2次電池11の温度を検知するために設けるが、放電時の2次電池11の温度異常を監視するために利用することができる。充電時の2次電池11の温度が所定値に達した状態(異常な高温状態になった状態)においては、温度センサー45からの検知信号を受けた充放電制御回路19は、切換えスイッチ25をオフ状態に切換えて、共振回路15を受電電力が著しく低下する第2受電状態に切換える。このスイッチ切換えは、2次電池11の充電度合とは無関係に行われる。従って、2次電池が充電途中状態であっても、その温度が異常な高温状態になった場合に、直ちに充電器2と非接触充電装置3との間の電力伝送を著しく低下させて、2次電池11が損傷するのを未然に防止できる。
 共振回路15が第2受電状態に切換えられた状態では、2次コイル13の共振周波数が非同調側へシフトされ、同時に1次コイル7の共振状態が変化する。この1次コイル7の共振状態の変化に伴って、漏れ磁束を捕捉するセンシングコイル28の起電力が、第1受電状態のときの起電力から変化する。つまり、共振回路15の受電状態が第2受電状態に変化したことをセンシングコイル28で検知することができる。従って、センシングコイル28の捕捉信号の変化に基づき制御回路5を作動させて、商用電源9に連なる電源回路を遮断することにより、充電器2の充電動作を自動的に停止して、電力が無駄に消費されるのを防止できる。
 上記の実施例では、2次電池11がリチウムイオン2次電池である場合について説明したが、充電対象の2次電池はニッケルカドミウム電池、ニッケル水素2次電池などであってもよい。表示構造は、発光ダイオードに代表される発光表示具、スピーカに代表される発音表示具、振動モータに代表される発振表示具、液晶に代表される映像表示具のいずれかひとつ、あるいはこれらの組み合わせで構成することができる。本発明は、携帯電話、スマートフォン、ノートパソコン、タブレットなどの携帯機器、あるいは歯ブラシ、シェーバー、キーレスエントリーキー、補聴器などの小形電気機器に適用できる。また、本発明の非接触充電装置3は、出力端子を備えた1個の電源モジュールとして使用することができ、その場合には電源モジュールを単体で販売することができる。
1 小形電気機器
2 充電器
3 非接触充電装置
7 1次コイル
11 2次電池
13 2次コイル
14 共振コンデンサー
15 共振回路
16 整流回路
19 充放電制御回路
20 電圧監視回路(充電電力監視回路)
21 電流監視回路(充電電力監視回路)
25 切換えスイッチ

Claims (9)

  1.  機器本体(12)に2次電池(11)と、非接触式の充電器(2)に対応する非接触充電装置(3)とが設けてある小形電気機器であって、
     非接触充電装置(3)は、充電器(2)の1次コイル(7)に対応して設けられる2次コイル(13)と、2次コイル(13)と並列に接続される共振コンデンサー(14)を含む共振回路(15)と、共振回路(15)と2次電池(11)との間に配置される整流回路(16)とを備えており、
     整流回路(16)と2次電池(11)との間に、充放電制御回路(19)と、充電電流の電圧値および/または電流値を監視する充電電力監視回路(20・21)が設けられており、
     共振回路(15)には、共振コンデンサー(14)および/または2次コイル(13)の接続状態を切換えて、共振回路(15)のインピーダンスを大小に切換える切換えスイッチ(25)が設けられており、
     充電電力監視回路(20・21)が、2次電池(11)の電圧値および/または電流値が所定値に達したことを検知した満充電状態において、充放電制御回路(19)で切換えスイッチ(25)を切換えて、共振回路(15)を受電状態が最適な第1受電状態から、受電電力が著しく低下する第2受電状態に変更することを特徴とする非接触充電装置を備える小形電気機器。
  2.  充電電力監視回路が、電圧監視回路(20)と電流監視回路(21)の少なくともいずれか一方で構成されており、
     前記切換えスイッチ(25)が、共振コンデンサー(14)と直列に接続してある請求項1に記載の非接触充電装置を備える小形電気機器。
  3.  充電電力監視回路が、電圧監視回路(20)と電流監視回路(21)の少なくともいずれか一方で構成されており、
     前記切換えスイッチ(25)が、共振コンデンサー(14)と並列に接続されて、その一端が2次コイル(13)の中途部(27)に接続してある請求項1に記載の非接触充電装置を備える小形電気機器。
  4.  充電器(2)と非接触充電装置(3)との少なくともいずれか一方に、2次電池(11)が満充電されたことを表示する表示構造(26)が設けられており、
     表示構造(26)が、発光表示具、発音表示具、発振表示具、映像表示具のいずれかひとつで構成してある請求項1から3のいずれかひとつに記載の非接触充電装置を備える小形電気機器。
  5.  充放電制御回路(19)が、整流回路(16)から供給される充電電力を2次電池(11)と機器本体(12)とのいずれか一方へ供給し、あるいは2次電池(11)の電力を機器本体(12)へ供給できるように構成されており、
     2次電池(11)が満充電された後に、整流回路(16)から供給される僅かな電力を、充放電制御回路(19)で機器本体(12)へ供給して消費させる請求項1から4のいずれかひとつに記載の非接触充電装置を備える小形電気機器。
  6.  非接触充電装置(3)に2次電池(11)の温度を検知する温度センサー(45)が設けられており、
     温度センサー(45)が2次電池(11)の温度が所定値に達したことを検知した状態において、充放電制御回路(19)で切換えスイッチ(25)を切換えて、2次電池(11)の充電度合とは無関係に、共振回路(15)を受電状態が最適な第1受電状態から、受電電力が著しく低下する第2受電状態に変更する請求項1から5のいずれかひとつに記載の非接触充電装置を備える小形電気機器。
  7.  小形電気機器の機器本体(12)に設けた2次電池(11)を、非接触式の充電器(2)で機器本体(12)に設けた非接触充電装置(3)を介して充電する充電システムであって、
     充電器(2)は、充電器本体(4)の内部に、整流回路および電圧調整回路を含む制御回路(5)と、制御回路(5)から出力された電流を高周波電流に調整して1次コイル(7)に出力する発振回路(6)と、1次側の共振コンデンサー(8)を備えており、
     非接触充電装置(3)は、充電器(2)の1次コイル(7)に対応して設けられる2次コイル(13)と、2次コイル(13)と並列に接続される共振コンデンサー(14)を含む共振回路(15)と、共振回路(15)と2次電池(11)との間に配置される整流回路(16)とを備えており、
     整流回路(16)と2次電池(11)との間に、充放電制御回路(19)と、充電電流の電圧値および/または電流値を監視する充電電力監視回路(20・21)が設けられており、
     共振回路(15)には、共振コンデンサー(14)および/または2次コイル(13)の接続状態を切換えて、共振回路(15)のインピーダンスを大小に切換える切換えスイッチ(25)が設けられており、
     充電電力監視回路(20・21)が、2次電池(11)の電圧値および/または電流値が所定値に達したことを検知した満充電状態において、充放電制御回路(19)で切換えスイッチ(25)を切換えて、共振回路(15)を受電状態が最適な第1受電状態から、受電電力が著しく低下する第2受電状態に変更することを特徴とする非接触式の充電システム。
  8.  1次コイル(7)と2次コイル(13)との間の電磁誘導作用に並行して、漏れ磁束を捕捉するセンシングコイル(28)が充電器(2)に設けられており、
     共振回路(15)の受電状態が第2受電状態に変化したことをセンシングコイル(28)で検知して、充電器(2)の充電動作を停止する請求項7に記載の非接触式の充電システム。
  9.  非接触充電装置(3)に2次電池(11)の温度を検知する温度センサー(45)が設けられており、
     温度センサー(45)が2次電池(11)の温度が所定値に達したことを検知した状態において、充放電制御回路(19)で切換えスイッチ(25)を切換えて、2次電池(11)の充電度合とは無関係に、共振回路(15)を受電状態が最適な第1受電状態から、受電電力が著しく低下する第2受電状態に変更する請求項7または8に記載の非接触式の充電システム。
PCT/JP2013/078701 2013-02-27 2013-10-23 非接触充電装置を備える小形電気機器、および非接触式の充電システム WO2014132486A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013037227A JP6071638B2 (ja) 2012-02-28 2013-02-27 非接触充電装置を備える小形電気機器、および非接触式の充電システム
JP2013-037227 2013-02-27

Publications (1)

Publication Number Publication Date
WO2014132486A1 true WO2014132486A1 (ja) 2014-09-04

Family

ID=51428976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078701 WO2014132486A1 (ja) 2013-02-27 2013-10-23 非接触充電装置を備える小形電気機器、および非接触式の充電システム

Country Status (1)

Country Link
WO (1) WO2014132486A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109347168A (zh) * 2018-11-09 2019-02-15 苏州穿山甲机器人股份有限公司 电极安全防护装置
CN111371131A (zh) * 2018-12-25 2020-07-03 苏州景昱医疗器械有限公司 一种用于神经刺激器的无线充电系统以及欠压启动方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298847A (ja) * 1996-04-30 1997-11-18 Sony Corp 非接触充電器
JP2008206232A (ja) * 2007-02-16 2008-09-04 Seiko Epson Corp 送電制御装置、受電制御装置、無接点電力伝送システム、送電装置、受電装置および電子機器
JP2011010444A (ja) * 2009-06-25 2011-01-13 Panasonic Electric Works Co Ltd 非接触充電器
JP2012039682A (ja) * 2010-08-03 2012-02-23 Sanyo Electric Co Ltd 電池内蔵機器の無接点充電方法
JP2013005527A (ja) * 2011-06-14 2013-01-07 Sumitomo Electric Ind Ltd 非接触充電システム及び非接触充電方法
JP2013031303A (ja) * 2011-07-28 2013-02-07 Sanyo Electric Co Ltd 電池パックの無接点充電方法及び電池パック

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298847A (ja) * 1996-04-30 1997-11-18 Sony Corp 非接触充電器
JP2008206232A (ja) * 2007-02-16 2008-09-04 Seiko Epson Corp 送電制御装置、受電制御装置、無接点電力伝送システム、送電装置、受電装置および電子機器
JP2011010444A (ja) * 2009-06-25 2011-01-13 Panasonic Electric Works Co Ltd 非接触充電器
JP2012039682A (ja) * 2010-08-03 2012-02-23 Sanyo Electric Co Ltd 電池内蔵機器の無接点充電方法
JP2013005527A (ja) * 2011-06-14 2013-01-07 Sumitomo Electric Ind Ltd 非接触充電システム及び非接触充電方法
JP2013031303A (ja) * 2011-07-28 2013-02-07 Sanyo Electric Co Ltd 電池パックの無接点充電方法及び電池パック

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109347168A (zh) * 2018-11-09 2019-02-15 苏州穿山甲机器人股份有限公司 电极安全防护装置
CN109347168B (zh) * 2018-11-09 2024-02-27 苏州穿山甲机器人股份有限公司 电极安全防护装置
CN111371131A (zh) * 2018-12-25 2020-07-03 苏州景昱医疗器械有限公司 一种用于神经刺激器的无线充电系统以及欠压启动方法

Similar Documents

Publication Publication Date Title
JP6071638B2 (ja) 非接触充電装置を備える小形電気機器、および非接触式の充電システム
CN101483357B (zh) 输电控制装置、输电装置、无触点电力传输系统、电子设备及输电控制方法
US8803364B2 (en) Power transmission control device, power transmitting device, non-contact power transmission system, electronic instrument, and power transmission control method
CN101335470B (zh) 送电控制装置、送电装置、无触点电力传输系统及电子设备
CN101388571B (zh) 受电控制装置、受电装置、充电控制装置及电子设备
JP4893689B2 (ja) 受電装置、電子機器、無接点電力伝送システム、および送電装置
US8188709B2 (en) Power transmission control device, power transmitting device, non-contact power transmitting system, and electronic instrument
JP4777155B2 (ja) 電子機器、非接触型充電器及び非接触充電システム
JP4831179B2 (ja) 充電制御装置
US20130026983A1 (en) Battery pack
JP5892370B2 (ja) 充電器及び電力供給システム
JP6862924B2 (ja) 制御装置、受電装置及び電子機器
KR101063156B1 (ko) 무접점 충전제어장치 및 충전제어방법
US9231417B2 (en) Rechargeable electrical device
US20120229092A1 (en) Battery pack and electronic device including the same
WO2014038388A1 (ja) 非接触充電システム
JP2008236930A (ja) 二次電池の充電装置
JP2012143020A (ja) 充電システム
WO2014132486A1 (ja) 非接触充電装置を備える小形電気機器、および非接触式の充電システム
JP6925873B2 (ja) 非接触受電装置及び非接触受電方法
JP5424033B2 (ja) 充電装置
JP4456042B2 (ja) 保護回路
KR101358765B1 (ko) 2차 전지 관리 장치
JP2003164070A (ja) 充電器
JP3171111U (ja) 蓄電式電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876255

Country of ref document: EP

Kind code of ref document: A1