WO2014132358A1 - Defective member determination device and defective member determination method - Google Patents
Defective member determination device and defective member determination method Download PDFInfo
- Publication number
- WO2014132358A1 WO2014132358A1 PCT/JP2013/055127 JP2013055127W WO2014132358A1 WO 2014132358 A1 WO2014132358 A1 WO 2014132358A1 JP 2013055127 W JP2013055127 W JP 2013055127W WO 2014132358 A1 WO2014132358 A1 WO 2014132358A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- determination
- defective
- mark
- area
- die
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/04—Mounting of components, e.g. of leadless components
- H05K13/043—Feeding one by one by other means than belts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67288—Monitoring of warpage, curvature, damage, defects or the like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/20—Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/08—Monitoring manufacture of assemblages
- H05K13/081—Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
- H05K13/0812—Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines the monitoring devices being integrated in the mounting machine, e.g. for monitoring components, leads, component placement
Definitions
- the present invention relates to a defective member determination apparatus and method.
- a defective die determination apparatus that determines whether or not the die is a defective product based on the presence or absence of a defective mark.
- a circuit pattern is formed on a plurality of dies formed on a wafer, and after the formation, surface inspection of each die is performed. It is disclosed that the die is taken out, the defective die is discarded, and only the good die is mounted on the substrate.
- the defect mark may be printed by a printing apparatus, but an operator may write with a pen.
- an average value of gray scale values of dots included in the search area and a predetermined value are searched for a search area for searching for the presence / absence of a defective mark among the shooting areas shot for each die.
- a method of determining the presence / absence of a defective mark by comparing with a threshold value of the above is conceivable. For example, if a white die is defective, a black defect mark is to be added, and the defect mark is a set of dots having a grayscale value of black or dark gray, and is therefore included in the search area. If the average value of the gray scale values of dots exceeds a predetermined threshold value, it is determined that there is a defective mark.
- the defect mark attached to the die is not always attached to the fixed position of the die, and is attached to the center of the die or the corner of the die, for example. For this reason, it is necessary to widen the search area to be approximately the same size as the die. At this time, if the defect mark is thin or small, the average value of the gray scale values of the dots included in the search area becomes small, and the average value falls below a predetermined threshold even though there is a defect mark. It may be erroneously determined that there is no mark.
- the present invention has been made to solve such a problem, and a main object thereof is to suppress the occurrence of erroneous detection of a defective mark attached to a member.
- the defective member determination device of the present invention is A defective member determination device for determining whether or not a defect mark is attached to a member used in a mounting machine, Photographing means for photographing the member; In the search area for searching for the presence or absence of a defective mark in the image of the member imaged by the imaging means, a determination area having a size smaller than the search area is applied, and the gray scale value of the dots included in the determination area Determination means for determining the presence or absence of the defective mark using the number of dots included in the determination area; It is equipped with.
- a determination region having a size smaller than the search region is applied in a search region for searching for the presence or absence of a defective mark in the image of the photographed member, and the dots included in the determination region are detected.
- the presence or absence of a defective mark is determined using color information (for example, RGB value or gray scale value) and the number of dots included in the determination area.
- the color information of the defective mark dot can be distinguished from the color information of the underlying dot of the photographed member.
- the determination area is the same size as the search area, if the size of the attached defect mark is too small compared to the determination area, the ratio of the number of defective mark dots to the number of dots included in the determination area May become too small to determine that there is no defective mark despite the presence of a defective mark.
- the determination area is smaller than the search area, such a fear is eliminated. Therefore, it is possible to suppress the occurrence of erroneous detection of a defective mark attached to the member.
- the “determination area” may be applied to the search area, for example, or may be applied to a place (one or more) where there is a high possibility that a defect mark exists in the search area.
- the “member” may be anything used in a mounting machine, and may be, for example, a plurality of dies formed so as to be collected on a wafer, or a plurality of substrates formed so as to be collected on a large plate material. It may be.
- the determination unit may determine the presence or absence of the defective mark by comparing an average value of gray scale values of dots included in the determination region with a predetermined threshold value.
- the average grayscale value of the dots included in the determination area is calculated using the grayscale value (color information) of the dots included in the determination area and the number of dots included in the determination area. In this way, even if the defect mark attached to the member is faint, it can be accurately determined that there is a defect mark.
- the defective member determination apparatus of the present invention may further include a setting change unit that changes the setting of the size or shape of at least one of the search area and the determination area. By doing this, it is possible to change the size and shape of the search area according to the size and shape of the member, or to change the size and shape of the determination area according to the size and shape of the defective mark. .
- the determination unit sets a defective mark candidate portion based on color information of dots included in the search region of the member, and sets the determination region for the defective mark candidate portion. It may be determined whether or not the defective mark exists. In this way, it is possible to make a determination in a shorter time than in the case where the determination region is fully applied within the search region.
- the determination unit may exclude an exclusion region preset in the image of the member from the search region.
- an area that is likely to be confused with a defective mark in advance (for example, an area having color information equivalent to that of a defective mark) can be set as an excluded area, which is effective in suppressing the occurrence of erroneous detection of a defective mark.
- the exclusion region may be set based on a circuit pattern formed on the member. Since the circuit pattern is one of the areas that are likely to be confused with the defective mark in advance, setting this as an excluded area increases the effect of suppressing the occurrence of erroneous detection of the defective mark.
- the defective member determination method of the present invention is A defective member determination method for determining whether or not a defect mark is attached to a member used in a mounting machine, (A) photographing the member; (B) In the search area for searching for the presence or absence of a defective mark in the image of the member photographed in step (a), a determination area having a size smaller than the search area is applied, and the dots included in the determination area Determining the presence or absence of the defective mark using color information and the number of dots included in the determination area; Is included.
- a determination region having a size smaller than the search region is applied within the search region of each member, and the average value of the gray scale values of the dots included in the determination region is compared with a predetermined threshold value.
- the determination area is the same size as the search area, if the size of the attached defect mark is too small compared to the search area, the average value of the gray scale values of the dots included in the determination area is set to the threshold value. The smaller the value is, the smaller the value is, and there is a possibility that it is determined that there is no defective mark despite the presence of the defective mark.
- the determination area is smaller than the search area, such a fear is eliminated. Therefore, it is possible to suppress the occurrence of erroneous detection of a defective mark attached to the member.
- FIG. 1 The perspective view of the electronic component mounting apparatus 10.
- FIG. 1 The perspective view of the wafer pallet 50.
- FIG. FIG. FIG. 3 is a block diagram showing a configuration relating to control of the electronic component mounting apparatus 10.
- frame F2 for determination areas is the same as frame F1 for search areas.
- FIG. 1 is a perspective view of the electronic component mounting apparatus 10
- FIG. 2 is a perspective view of a wafer pallet 50
- FIG. 3 is an overall view of the wafer W
- FIG. 4 is a block diagram showing a configuration relating to control of the electronic component mounting apparatus 10.
- the left-right direction (X-axis), the front-rear direction (Y-axis), and the up-down direction (Z-axis) are as shown in FIG.
- the electronic component mounting apparatus 10 includes a substrate transport device 18 that transports the substrate 16, a head 24 that can move on the XY plane, a mark camera 44 that is integrated with the head 24, and a wafer W.
- a wafer pallet 50 to be transferred and a controller 60 (see FIG. 4) that controls various types of control are provided.
- the substrate transfer device 18 is attached to the housing 12 and is provided on the opposing surfaces of the support plates 20 and 20 and the support plates 20 and 20 that are provided in the front-rear direction of FIG. Conveyor belts 22 and 22 (only one of them is shown in FIG. 2).
- the conveyor belts 22 and 22 are stretched over the drive wheels and the driven wheels provided on the left and right sides of the support plates 20 and 20 so as to be endless.
- substrate 16 is mounted on the upper surface of a pair of conveyor belts 22 and 22, and is conveyed from the left to the right.
- the substrate 16 is supported by a large number of support pins 23 erected on the back side.
- the head 24 is attached to the front surface of the X-axis slider 26.
- the X-axis slider 26 is attached to the front surface of the Y-axis slider 30 that can slide in the front-rear direction so as to be slidable in the left-right direction.
- the Y-axis slider 30 is slidably attached to a pair of left and right guide rails 32, 32 extending in the front-rear direction.
- the guide rails 32 and 32 are fixed to the housing 12.
- a pair of upper and lower guide rails 28, 28 extending in the left-right direction are provided on the front surface of the Y-axis slider 30, and the X-axis slider 26 is attached to the guide rails 28, 28 so as to be slidable in the left-right direction.
- the head 24 moves in the left-right direction as the X-axis slider 26 moves in the left-right direction, and moves in the front-rear direction as the Y-axis slider 30 moves in the front-rear direction.
- Each slider 26, 30 is driven by a drive motor (not shown).
- the head 24 incorporates a Z-axis motor 34, and adjusts the height of the suction nozzle 40 integrated with a holder 42 attached to a ball screw 36 extending along the Z-axis by the Z-axis motor 34.
- the suction nozzle 40 uses pressure to suck a component at the tip of the nozzle or to release a component sucked at the tip of the nozzle.
- the mark camera 44 is attached to the rear surface of the X-axis slider 26. Therefore, the mark camera 44 moves together with the head 24.
- the mark camera 44 is attached with a lens facing downward so as to photograph the lower part of the camera. Therefore, in a state where the mark camera 44 is positioned above the wafer W, it is possible to photograph the die D constituting the wafer W.
- the wafer pallet 50 has a rectangular pallet main body 52 having a circular hole 52a, and a stretchable structure fixed by a grip ring 54 while being stretched so as to close the circular hole 52a.
- An adhesive sheet 56 is provided.
- a wafer W on which a large number of dies D are formed is attached to the upper surface of the adhesive sheet 56.
- the die D is formed by forming a circuit by pattern printing before cutting the wafer W and then cutting the wafer W.
- a push-up pin (not shown) is disposed below the adhesive sheet 56. The push-up pins play a role of facilitating the peeling of the die D from the pressure-sensitive adhesive sheet 56 by pushing the die D upward from below the pressure-sensitive adhesive sheet 56 when the die D is sucked by the suction nozzle 40.
- Fig. 3 shows an overall view of the wafer W.
- the die D is square (or rectangular). In the vicinity of the outer edge of the wafer W, the die D is not formed because the shape of the die D is chipped. Further, the wafer W includes a good die D and a bad die D.
- the defective die D is a circuit where a defective portion is found in a circuit printed with a pattern in appearance inspection, and a defect mark M is attached with ink or the like by an inspector or an inspection machine. The position of the defect mark M on the die D is not determined, and it is not determined what size and shape it is. Such a defective mark M is not attached to a good die D.
- the controller 60 is configured as a microprocessor centered on a CPU 60a, and includes a ROM 60b for storing processing programs, an HDD 60c for storing various data, a RAM 60d used as a work area, an external device and electrical signals. An input / output interface 60e and the like for performing the exchange are provided, and these are connected via a bus 60f.
- the controller 60 is connected so that signals can be exchanged with the substrate transport device 18, the X-axis slider 26, the Y-axis slider 30, the head 24, the mark camera 44, and the like.
- the controller 60 of the electronic component mounting apparatus 10 controls the X-axis slider 26 and the Y-axis slider 30 so that the suction nozzle 40 comes right above a predetermined die D in the wafer W. Subsequently, the controller 60 controls the Z-axis motor 34 of the head 24 to lower the suction nozzle 40 with the ball screw 36, and applies a negative pressure to the tip of the suction nozzle 40. Then, the die D is adsorbed from the adhesive sheet 56 to the tip of the adsorption nozzle 40.
- the controller 60 drives a push pin (not shown) of the wafer pallet 50 to push the die D sucked by the suction nozzle 40 upward from below the adhesive sheet 56. Since the suction nozzle 40 is supported by a spring (not shown), the spring is contracted and raised by the amount pushed up. Thus, the die D is easily peeled from the adhesive sheet 56 by pushing up the die D from below. Thereafter, the controller 60 raises the suction nozzle 40, controls each slider 26, 30 so that the die D is directly above a predetermined position of the substrate 16, lowers the suction nozzle 40 at that position, and sucks the suction nozzle 40.
- the die D is separated from the suction nozzle 40 and mounted at a predetermined position on the substrate 16. In this way, the die D is mounted on the substrate 16, but the wafer W has a good die D and a bad die D as shown in FIG. Therefore, the defective die D, that is, the die D with the defective mark M is discarded without being mounted on the substrate 16.
- Whether the defect mark M is attached to the die D is determined by the controller 60 using the image of the die D taken by the mark camera 33. Specifically, the controller 60 determines whether or not the die is a die D (defective die) with a defective mark M by executing the defective die determination processing routine of FIG. This routine is stored in the HDD 60c. In the present embodiment, it is assumed that the die D is silver and the defect mark is attached with black ink.
- the CPU 60a of the controller 60 first acquires a captured image of the wafer W (step S100). Specifically, after the X-axis slider 26 and the Y-axis slider 30 are driven and controlled so that the mark camera 44 is positioned directly above the wafer W, and the shutter of the mark camera 44 is operated at that position, the image is taken. The entire image of the wafer W is acquired from the mark camera 44.
- the CPU 60a of the controller 60 sets one target die D from the wafer W (step S110).
- the setting procedure of the target die D is not particularly limited. For example, the setting is performed in order from the upper left to the right of the wafer W in FIG. You may make it repeat the procedure of setting in order toward.
- the CPU 60a of the controller 60 sets a search area in the captured image of the target die D (step S120), and acquires the gray scale value of the dot in the search area (step S130).
- the search area frame F1 for setting the search area is set to the same shape and size as the die D, and information related to the frame F1 is stored in the HDD 60c.
- an area surrounded by the search area frame F1 is a search area.
- the gray scale value is a value when the image is expressed only in light and darkness from white to black.
- a value of 0 to 15 can be taken, and 8 bits ( In the case of (256 gradations), values from 0 to 255 can be taken.
- the minimum value that is, zero
- the maximum value represents white.
- the CPU 60a of the controller 60 sets a defective mark candidate part based on the gray scale value in the search area (step S140). Specifically, a set of gray dots whose value is black or close to black is searched from the gray scale values in the search area, and the largest set is set as a defective mark candidate portion. In the case of 256 gradations, the number of dots having gray scale values of 0 to G (G is, for example, 50 or 60) and adjacent to each other may be black or a set of gray dots close to black.
- FIG. 7 is an explanatory diagram regarding the setting of the defective mark candidate portion.
- FIG. 7A shows a die D without a defect mark M, and has two large and small black circular portions d1 and d2.
- FIG. 7B shows a die D with a defect mark M, which has a defect mark M in addition to the circular portions d1 and d2.
- the defect mark M is set as a defect mark candidate part.
- the CPU 60a of the controller 60 sets a determination area so as to include a defective mark candidate part (step S150).
- a determination area frame F2 (see FIG. 6) for setting a determination area is set in advance and stored in the HDD 60c.
- the determination area frame F2 is smaller in size than the search area frame F1.
- the determination region frame F2 is set so that the minimum defect mark Mmin is determined from the defect marks M that vary in such a manner, and the size and shape can surround the minimum defect mark Mmin. Yes.
- FIG. 8 is an explanatory diagram regarding the setting of the determination area.
- FIG. 8A shows a determination area set for the die D without the defect mark M
- FIG. 8B shows a determination area set for the die D with the minimum defect mark Mmin.
- the CPU 60a of the controller 60 calculates an average value (grayscale average value) of grayscale values of dots included in the determination area (step S160). Then, the gray scale average value and the threshold value are compared (step S170). If the gray scale average value exceeds the threshold value, the current die D is stored as a defective die in the HDD 60c (step S180), and the gray scale average value is calculated. If it is below the threshold, the current die D is stored in the HDD 60c as a normal die (step S185).
- the gray scale average value is a value obtained by dividing the sum of the gray scale values of the dots included in the determination area by the number of dots included in the determination area.
- the threshold is a value set as follows.
- the gray scale average value of a plurality of dies D with defective marks and the gray scale average value of a plurality of dies D without defective marks are calculated in advance, and both gray scale average values are clearly distinguished.
- a value to be obtained was obtained, and the value was used as a threshold value and a threshold value.
- the threshold value is stored in the HDD 60c.
- the gray scale average value is equal to or less than the threshold value, so that it is determined as a good die.
- FIG. 8B since the gray scale average value exceeds the threshold value, it is determined as a defective die.
- FIG. 9 shows a die D with a relatively large defect mark M. In this case, the determination area frame F2 is set so that the center dot of the defect mark M coincides with the center of the determination area frame F2, and the gray scale average value exceeds the threshold value, so that it is determined as a defective die.
- step S190 the CPU 60a of the controller 60 confirms whether or not the processing has been completed for all the dies D included in the wafer W (step S190), and if unprocessed dies D remain, the process returns to step S110 again. Returning, when the processing is completed for all the dies D, this routine is finished.
- the electronic component mounting apparatus 10 of the present embodiment corresponds to a defective member determination apparatus of the present invention
- the mark camera 44 corresponds to a photographing unit
- the controller 60 corresponds to a determination unit.
- an example of the defective member determination method of the present invention is also clarified by describing the operation of the electronic component mounting apparatus 10.
- a determination area having a size smaller than the search area is applied in the search area for searching for the presence or absence of the defect mark M in the photographed image of the die D.
- the presence / absence of the defective mark M is determined by comparing the gray scale average value of the dots included in the determination region with a threshold value.
- the determination area frame F2 is the same as the search area frame F1 (that is, the determination area is the same as the search area)
- the size of the minimum defect mark Mmin is larger than that of the determination area.
- the gray scale average value of the determination region may be too small to exceed the threshold value, and there is a possibility that it is determined that there is no defective mark M despite the presence of the defective mark M.
- the determination area is smaller than the search area, such a fear is eliminated. Therefore, occurrence of erroneous detection of the defective mark M attached to the die D can be suppressed.
- the presence or absence of the defective mark M is determined by comparing the gray scale average value and the threshold value, even if the defective mark M attached to the die D is blurred and the black dots are discontinuous, It can be determined that there is a defective mark with high accuracy.
- a defect mark candidate part is set based on the gray scale value of the dot included in the search area of the die D, and the determination area is applied to the defect mark candidate part to determine the presence or absence of the defect mark M. It is possible to make a determination in a shorter time compared to the case where the region is applied to the search region.
- the size and shape of the search area frame F1 may be set and changed.
- the size and shape of the search area can be changed according to the size and shape of the die D to be mounted, so that the occurrence of erroneous detection of the defective mark M can be suppressed more effectively.
- the size and shape of the determination area frame F2 may be set and changed. In this way, since the size and shape of the determination area can be changed according to the size and shape of the defect mark M attached to the die D, the occurrence of erroneous detection of the defect mark M can be more effectively suppressed. it can.
- the search area frame F1 has the same shape and size as the die D. However, the search area frame F1 may be set so as to exclude an exclusion area preset in the image of the die D. .
- An example is shown in FIG.
- an area surrounding the circuit pattern P is set as an excluded area
- the search area frame F1 is set so as to exclude the excluded area. In this way, an area that is likely to be confused with the defective mark M can be excluded from the search area in advance, and the effect of suppressing the occurrence of erroneous detection of the defective mark M is enhanced.
- the die D is exemplified as a member used in the mounting machine.
- a member used in the mounting machine is a multi-sided board 116 in which a plurality of daughter boards 116a are integrally coupled. It is good.
- the sub board 116a is finally separated from the multi-sided board 116.
- the multi-sided substrate 116 corresponds to the substrate 16 in FIG. 1 and is transported from the left to the right by the substrate transport device 18.
- the multi-chamfer substrate 116 is provided with a mark region 117 at a position different from the daughter substrate 116a.
- the mark area 117 is provided with the number of mark columns 117a as many as the number of child boards 116a, the left mark field 117a corresponds to the left child board 116a, the center mark field 117a corresponds to the center child board 116a, and the right side.
- the mark column 117a corresponds to the right sub board 116a. If any of the sub-substrates 116a is a defective sub-substrate, a defect mark is added to the corresponding mark column 117a.
- Each mark column 117a corresponds to a search region, and a determination region is set by a determination region frame F3 having a size smaller than that of the mark column 117a.
- a photographed image of the mark area 117 is acquired, and whether or not a defective mark is attached to each mark column 117a is a flowchart of FIG. It may be determined in the same manner as described above. Further, instead of providing the mark region 117, a mark column 117a may be provided for each daughter board 116a.
- the defect mark M is attached to the die D depending on whether or not the gray scale average value exceeds the threshold value.
- the gray scale value of the dot included in the determination area and the determination area are determined.
- the parameters are not particularly limited to the gray scale average value as long as the number of dots included is used. For example, a value obtained by dividing the number of dots of the defective mark M or a color close to it (for example, one having a gray scale value of 0 to 60) divided by the number of dots included in the determination region among the dots included in the determination region, and a threshold value The presence / absence of the defect mark M may be determined by comparing.
- the base of the die D is silver and the defect mark M is black ink.
- the defect mark M can be distinguished from the base of the die D when expressed in grayscale. Any color is acceptable.
- the defect mark M may be attached with white ink.
- the gray scale value of the defect mark M is used, but other color information such as RGB values may be used instead of the gray scale value.
- the present invention can be used for an electronic component mounting apparatus, for example.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Operations Research (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Supply And Installment Of Electrical Components (AREA)
Abstract
In an electronic component mounted device, in a search area where the presence/absence of a defect mark (M) in a picked-up die (D) image is searched for, a determination area that is smaller in size than the search area is applied. The search area is an area surrounded by a search area frame (F1), and the determination area is an area surrounded by a determination area frame (F2). Then, gray scale average values of dots contained in the determination area and a threshold value are compared with each other, whereby the presence/absence of the defect mark (M) is determined.
Description
本発明は、不良部材判定装置及びその方法に関する。
The present invention relates to a defective member determination apparatus and method.
電子部品実装装置を用いてダイを基板に搭載するにあたり、そのダイが不良品か否かを不良マークの有無によって判断する不良ダイ判定装置が知られている。例えば、特許文献1では、ウェハに形成された複数のダイに回路パターンを形成し、形成後、各ダイの表面検査を行い、不良箇所があるダイには不良マークをインク等で付し、その後、ダイを取り出し、不良品のダイを廃棄し、良品のダイのみを基板へ実装することが開示されている。ここで、不良マークは印刷装置で印字されることもあるが、作業者がペンで書くこともある。
2. Description of the Related Art When mounting a die on a substrate using an electronic component mounting apparatus, there is known a defective die determination apparatus that determines whether or not the die is a defective product based on the presence or absence of a defective mark. For example, in Patent Document 1, a circuit pattern is formed on a plurality of dies formed on a wafer, and after the formation, surface inspection of each die is performed. It is disclosed that the die is taken out, the defective die is discarded, and only the good die is mounted on the substrate. Here, the defect mark may be printed by a printing apparatus, but an operator may write with a pen.
ところで、不良ダイの判定方法としては、各ダイに対して撮影を行った撮影領域のうち不良マークの有無を検索する検索領域について、その検索領域に含まれるドットのグレースケール値の平均値と所定の閾値とを比較することにより不良マークの有無を判定する方法が考えられる。例えば、白色のダイが不良品だったならば黒色の不良マークを付けることになっている場合、不良マークは黒又は濃いグレーのグレースケール値を持つドットの集合となるため、検索領域に含まれるドットのグレースケール値の平均値が所定の閾値を超えたならば不良マークありと判定する。
By the way, as a method for determining a defective die, an average value of gray scale values of dots included in the search area and a predetermined value are searched for a search area for searching for the presence / absence of a defective mark among the shooting areas shot for each die. A method of determining the presence / absence of a defective mark by comparing with a threshold value of the above is conceivable. For example, if a white die is defective, a black defect mark is to be added, and the defect mark is a set of dots having a grayscale value of black or dark gray, and is therefore included in the search area. If the average value of the gray scale values of dots exceeds a predetermined threshold value, it is determined that there is a defective mark.
しかしながら、ダイに付される不良マークは、常にダイの決まった位置に付されるわけではなく、例えばダイの中央に付されていたりダイの隅に付されていたりする。そのため、検索領域をダイとほぼ同じ大きさに広くする必要がある。その際、不良マークが細かったり小さかったりすると、検索領域に含まれるドットのグレースケール値の平均値が小さくなり、不良マークが存在するにもかかわらず、その平均値が所定の閾値を下回り、不良マークなしと誤判定することがある。
However, the defect mark attached to the die is not always attached to the fixed position of the die, and is attached to the center of the die or the corner of the die, for example. For this reason, it is necessary to widen the search area to be approximately the same size as the die. At this time, if the defect mark is thin or small, the average value of the gray scale values of the dots included in the search area becomes small, and the average value falls below a predetermined threshold even though there is a defect mark. It may be erroneously determined that there is no mark.
本発明はこのような課題を解決するためになされたものであり、部材に付された不良マークの誤検知の発生を抑えることを主目的とする。
The present invention has been made to solve such a problem, and a main object thereof is to suppress the occurrence of erroneous detection of a defective mark attached to a member.
本発明の不良部材判定装置は、
実装機に用いられる部材に対して不良マークが付されているか否かを判定する不良部材判定装置であって、
前記部材を撮影する撮影手段と、
前記撮影手段によって撮影された前記部材の画像のうち不良マークの有無を検索する検索領域内で、該検索領域よりも小さいサイズの判定領域を当てはめ、該判定領域に含まれるドットのグレースケール値と前記判定領域に含まれるドット数とを利用して前記不良マークの有無を判定する判定手段と、
を備えたものである。 The defective member determination device of the present invention is
A defective member determination device for determining whether or not a defect mark is attached to a member used in a mounting machine,
Photographing means for photographing the member;
In the search area for searching for the presence or absence of a defective mark in the image of the member imaged by the imaging means, a determination area having a size smaller than the search area is applied, and the gray scale value of the dots included in the determination area Determination means for determining the presence or absence of the defective mark using the number of dots included in the determination area;
It is equipped with.
実装機に用いられる部材に対して不良マークが付されているか否かを判定する不良部材判定装置であって、
前記部材を撮影する撮影手段と、
前記撮影手段によって撮影された前記部材の画像のうち不良マークの有無を検索する検索領域内で、該検索領域よりも小さいサイズの判定領域を当てはめ、該判定領域に含まれるドットのグレースケール値と前記判定領域に含まれるドット数とを利用して前記不良マークの有無を判定する判定手段と、
を備えたものである。 The defective member determination device of the present invention is
A defective member determination device for determining whether or not a defect mark is attached to a member used in a mounting machine,
Photographing means for photographing the member;
In the search area for searching for the presence or absence of a defective mark in the image of the member imaged by the imaging means, a determination area having a size smaller than the search area is applied, and the gray scale value of the dots included in the determination area Determination means for determining the presence or absence of the defective mark using the number of dots included in the determination area;
It is equipped with.
本発明の不良部材判定装置では、撮影された部材の画像のうち不良マークの有無を検索する検索領域内で、該検索領域よりも小さいサイズの判定領域を当てはめ、該判定領域に含まれるドットの色情報(例えばRGB値とかグレースケール値など)と判定領域に含まれるドット数とを利用して不良マークの有無を判定する。不良マークのドットの色情報は、撮影された部材の下地のドットの色情報と区別可能である。ここで、判定領域が検索領域と同じサイズの場合には、付された不良マークの大きさが判定領域に比べて小さすぎると、判定領域に含まれるドット数に占める不良マークのドット数の割合が小さくなりすぎて不良マークが存在するにもかかわらず不良マークなしと判定するおそれがある。これに対して、本発明では、判定領域が検索領域よりも小さなサイズのため、そのようなおそれは解消される。したがって、部材に付された不良マークの誤検知の発生を抑えることができる。
In the defective member determination apparatus of the present invention, a determination region having a size smaller than the search region is applied in a search region for searching for the presence or absence of a defective mark in the image of the photographed member, and the dots included in the determination region are detected. The presence or absence of a defective mark is determined using color information (for example, RGB value or gray scale value) and the number of dots included in the determination area. The color information of the defective mark dot can be distinguished from the color information of the underlying dot of the photographed member. Here, when the determination area is the same size as the search area, if the size of the attached defect mark is too small compared to the determination area, the ratio of the number of defective mark dots to the number of dots included in the determination area May become too small to determine that there is no defective mark despite the presence of a defective mark. On the other hand, in the present invention, since the determination area is smaller than the search area, such a fear is eliminated. Therefore, it is possible to suppress the occurrence of erroneous detection of a defective mark attached to the member.
なお、「判定領域」は、例えば、検索領域内に隈なく当てはめていってもよいし、検索領域内の不良マークが存在する可能性の高い場所(1又は複数)に判定領域を当てはめてもよい。また、「部材」とは、実装機に用いられるものであればよく、例えば、ウェハに採取可能に複数形成されたダイであってもよいし、大判の板材に採取可能に複数形成された基板であってもよい。
Note that the “determination area” may be applied to the search area, for example, or may be applied to a place (one or more) where there is a high possibility that a defect mark exists in the search area. Good. In addition, the “member” may be anything used in a mounting machine, and may be, for example, a plurality of dies formed so as to be collected on a wafer, or a plurality of substrates formed so as to be collected on a large plate material. It may be.
本発明の不良部材判定装置において、前記判定手段は、前記判定領域に含まれるドットのグレースケール値の平均値と所定の閾値とを比較することにより前記不良マークの有無を判定してもよい。判定領域に含まれるドットのグレースケール値の平均値は、判定領域に含まれるドットのグレースケール値(色情報)と判定領域に含まれるドット数とを用いて算出される。こうすれば、部材に付された不良マークがかすれていたとしても、精度よく不良マークありと判定することができる。
In the defective member determination device of the present invention, the determination unit may determine the presence or absence of the defective mark by comparing an average value of gray scale values of dots included in the determination region with a predetermined threshold value. The average grayscale value of the dots included in the determination area is calculated using the grayscale value (color information) of the dots included in the determination area and the number of dots included in the determination area. In this way, even if the defect mark attached to the member is faint, it can be accurately determined that there is a defect mark.
本発明の不良部材判定装置は、更に、前記検索領域及び前記判定領域の少なくとも一方のサイズ又は形状の設定を変更する設定変更手段を備えていてもよい。こうすれば、部材のサイズや形状に応じて検索領域のサイズや形状の設定を変更したり、不良マークのサイズや形状に応じて判定領域のサイズや形状の設定を変更したりすることができる。
The defective member determination apparatus of the present invention may further include a setting change unit that changes the setting of the size or shape of at least one of the search area and the determination area. By doing this, it is possible to change the size and shape of the search area according to the size and shape of the member, or to change the size and shape of the determination area according to the size and shape of the defective mark. .
本発明の不良部材判定装置において、前記判定手段は、前記部材の前記検索領域に含まれるドットの色情報に基づいて不良マーク候補部を設定し、該不良マーク候補部に対して前記判定領域を当てはめて前記不良マークの有無を判定してもよい。こうすれば、判定領域を検索領域内に隈なく当てはめていく場合に比べて、短時間で判定を行うことができる。
In the defective member determination apparatus of the present invention, the determination unit sets a defective mark candidate portion based on color information of dots included in the search region of the member, and sets the determination region for the defective mark candidate portion. It may be determined whether or not the defective mark exists. In this way, it is possible to make a determination in a shorter time than in the case where the determination region is fully applied within the search region.
本発明の不良部材判定装置において、前記判定手段は、前記部材の画像に予め設定された除外領域については前記検索領域から除外してもよい。こうすれば、予め不良マークと混同しそうな領域(例えば不良マークと同等の色情報を持つ領域)については除外領域に設定しておくことができるため、不良マークの誤検知の発生を抑える効果が高まる。除外領域は、部材に形成された回路パターンに基づいて設定されていてもよい。回路パターンは、予め不良マークと混同しそうな領域の一つであるため、これを除外領域に設定しておくことにより、不良マークの誤検知の発生を抑える効果が高まる。
In the defective member determination apparatus of the present invention, the determination unit may exclude an exclusion region preset in the image of the member from the search region. In this way, an area that is likely to be confused with a defective mark in advance (for example, an area having color information equivalent to that of a defective mark) can be set as an excluded area, which is effective in suppressing the occurrence of erroneous detection of a defective mark. Rise. The exclusion region may be set based on a circuit pattern formed on the member. Since the circuit pattern is one of the areas that are likely to be confused with the defective mark in advance, setting this as an excluded area increases the effect of suppressing the occurrence of erroneous detection of the defective mark.
本発明の不良部材判定方法は、
実装機に用いられる部材に対して不良マークが付されているか否かを判定する不良部材判定方法であって、
(a)前記部材を撮影するステップと、
(b)前記ステップ(a)で撮影した前記部材の画像のうち不良マークの有無を検索する検索領域内で、該検索領域よりも小さいサイズの判定領域を当てはめ、該判定領域に含まれるドットの色情報と前記判定領域に含まれるドット数とを利用して前記不良マークの有無を判定するステップと、
を含むものである。 The defective member determination method of the present invention is
A defective member determination method for determining whether or not a defect mark is attached to a member used in a mounting machine,
(A) photographing the member;
(B) In the search area for searching for the presence or absence of a defective mark in the image of the member photographed in step (a), a determination area having a size smaller than the search area is applied, and the dots included in the determination area Determining the presence or absence of the defective mark using color information and the number of dots included in the determination area;
Is included.
実装機に用いられる部材に対して不良マークが付されているか否かを判定する不良部材判定方法であって、
(a)前記部材を撮影するステップと、
(b)前記ステップ(a)で撮影した前記部材の画像のうち不良マークの有無を検索する検索領域内で、該検索領域よりも小さいサイズの判定領域を当てはめ、該判定領域に含まれるドットの色情報と前記判定領域に含まれるドット数とを利用して前記不良マークの有無を判定するステップと、
を含むものである。 The defective member determination method of the present invention is
A defective member determination method for determining whether or not a defect mark is attached to a member used in a mounting machine,
(A) photographing the member;
(B) In the search area for searching for the presence or absence of a defective mark in the image of the member photographed in step (a), a determination area having a size smaller than the search area is applied, and the dots included in the determination area Determining the presence or absence of the defective mark using color information and the number of dots included in the determination area;
Is included.
本発明の不良部材判定方法では、各部材の検索領域内で、検索領域よりも小さいサイズの判定領域を当てはめ、該判定領域に含まれるドットのグレースケール値の平均値と所定の閾値とを比較することにより不良マークの有無を判定する。ここで、判定領域が検索領域と同じサイズの場合には、付された不良マークの大きさが検索領域に比べて小さすぎると、判定領域に含まれるドットのグレースケール値の平均値が閾値を下回るほど小さな値となり、不良マークが存在するにもかかわらず不良マークなしと判定されるおそれがある。これに対して、本発明では、判定領域が検索領域よりも小さなサイズのため、そのようなおそれは解消される。したがって、部材に付された不良マークの誤検知の発生を抑えることができる。
In the defective member determination method of the present invention, a determination region having a size smaller than the search region is applied within the search region of each member, and the average value of the gray scale values of the dots included in the determination region is compared with a predetermined threshold value. Thus, the presence or absence of a defective mark is determined. Here, in the case where the determination area is the same size as the search area, if the size of the attached defect mark is too small compared to the search area, the average value of the gray scale values of the dots included in the determination area is set to the threshold value. The smaller the value is, the smaller the value is, and there is a possibility that it is determined that there is no defective mark despite the presence of the defective mark. On the other hand, in the present invention, since the determination area is smaller than the search area, such a fear is eliminated. Therefore, it is possible to suppress the occurrence of erroneous detection of a defective mark attached to the member.
本発明の好適な実施形態を図面を参照しながら以下に説明する。図1は電子部品実装装置10の斜視図、図2はウェハパレット50の斜視図、図3はウェハWの全体図、図4は電子部品実装装置10の制御に関わる構成を示すブロック図である。なお、本実施形態において、左右方向(X軸)、前後方向(Y軸)及び上下方向(Z軸)は、図1に示した通りとする。
Preferred embodiments of the present invention will be described below with reference to the drawings. 1 is a perspective view of the electronic component mounting apparatus 10, FIG. 2 is a perspective view of a wafer pallet 50, FIG. 3 is an overall view of the wafer W, and FIG. 4 is a block diagram showing a configuration relating to control of the electronic component mounting apparatus 10. . In the present embodiment, the left-right direction (X-axis), the front-rear direction (Y-axis), and the up-down direction (Z-axis) are as shown in FIG.
電子部品実装装置10は、図1に示すように、基板16を搬送する基板搬送装置18と、XY平面を移動可能なヘッド24と、ヘッド24と一体化されたマークカメラ44と、ウェハWを搬送するウェハパレット50と、各種の制御を司るコントローラ60(図4参照)とを備えている。
As shown in FIG. 1, the electronic component mounting apparatus 10 includes a substrate transport device 18 that transports the substrate 16, a head 24 that can move on the XY plane, a mark camera 44 that is integrated with the head 24, and a wafer W. A wafer pallet 50 to be transferred and a controller 60 (see FIG. 4) that controls various types of control are provided.
基板搬送装置18は、筐体12に取り付けられ、図1の前後に間隔を開けて設けられ左右方向に延びる支持板20,20と、両支持板20,20の互いに対向する面に設けられたコンベアベルト22,22(図2では片方のみ図示)とを備えている。コンベアベルト22,22は、支持板20,20の左右に設けられた駆動輪及び従動輪に無端状となるように架け渡されている。基板16は、一対のコンベアベルト22,22の上面に乗せられて左から右へと搬送される。この基板16は、裏面側に多数立設された支持ピン23によって支持される。
The substrate transfer device 18 is attached to the housing 12 and is provided on the opposing surfaces of the support plates 20 and 20 and the support plates 20 and 20 that are provided in the front-rear direction of FIG. Conveyor belts 22 and 22 (only one of them is shown in FIG. 2). The conveyor belts 22 and 22 are stretched over the drive wheels and the driven wheels provided on the left and right sides of the support plates 20 and 20 so as to be endless. The board | substrate 16 is mounted on the upper surface of a pair of conveyor belts 22 and 22, and is conveyed from the left to the right. The substrate 16 is supported by a large number of support pins 23 erected on the back side.
ヘッド24は、X軸スライダ26の前面に取り付けられている。X軸スライダ26は、前後方向にスライド可能なY軸スライダ30の前面に、左右方向にスライド可能となるように取り付けられている。Y軸スライダ30は、前後方向に延びる左右一対のガイドレール32,32にスライド可能に取り付けられている。なお、ガイドレール32,32は、筐体12に固定されている。Y軸スライダ30の前面には、左右方向に延びる上下一対のガイドレール28,28が設けられ、このガイドレール28,28にX軸スライダ26が左右方向にスライド可能に取り付けられている。ヘッド24は、X軸スライダ26が左右方向に移動するのに伴って左右方向に移動し、Y軸スライダ30が前後方向に移動するのに伴って前後方向に移動する。なお、各スライダ26,30は、それぞれ駆動モータ(図示せず)により駆動される。また、ヘッド24は、Z軸モータ34を内蔵し、Z軸に沿って延びるボールネジ36に取り付けられたホルダ42と一体化された吸着ノズル40の高さをZ軸モータ34によって調整する。この吸着ノズル40は、圧力を利用して、ノズル先端に部品を吸着したり、ノズル先端に吸着している部品を離したりするものである。
The head 24 is attached to the front surface of the X-axis slider 26. The X-axis slider 26 is attached to the front surface of the Y-axis slider 30 that can slide in the front-rear direction so as to be slidable in the left-right direction. The Y-axis slider 30 is slidably attached to a pair of left and right guide rails 32, 32 extending in the front-rear direction. The guide rails 32 and 32 are fixed to the housing 12. A pair of upper and lower guide rails 28, 28 extending in the left-right direction are provided on the front surface of the Y-axis slider 30, and the X-axis slider 26 is attached to the guide rails 28, 28 so as to be slidable in the left-right direction. The head 24 moves in the left-right direction as the X-axis slider 26 moves in the left-right direction, and moves in the front-rear direction as the Y-axis slider 30 moves in the front-rear direction. Each slider 26, 30 is driven by a drive motor (not shown). The head 24 incorporates a Z-axis motor 34, and adjusts the height of the suction nozzle 40 integrated with a holder 42 attached to a ball screw 36 extending along the Z-axis by the Z-axis motor 34. The suction nozzle 40 uses pressure to suck a component at the tip of the nozzle or to release a component sucked at the tip of the nozzle.
マークカメラ44は、X軸スライダ26の後面に取り付けられている。そのため、マークカメラ44は、ヘッド24と一体となって移動する。このマークカメラ44は、カメラ下方を撮影するようにレンズが下向きに取り付けられている。そのため、マークカメラ44がウェハWの上方に位置決めされた状態では、ウェハWを構成するダイDを撮影することが可能となる。
The mark camera 44 is attached to the rear surface of the X-axis slider 26. Therefore, the mark camera 44 moves together with the head 24. The mark camera 44 is attached with a lens facing downward so as to photograph the lower part of the camera. Therefore, in a state where the mark camera 44 is positioned above the wafer W, it is possible to photograph the die D constituting the wafer W.
ウェハパレット50は、図2に示すように、円形穴52aが開けられた矩形状のパレット本体52と、その円形穴52aを塞ぐように伸張された状態でグリップリング54により固定された伸縮可能な粘着シート56とを備えている。粘着シート56の上面には、多数のダイDが形成されたウェハWが貼り付けられている。ダイDは、ウェハWを裁断する前にパターン印刷によって回路が形成され、その後、ウェハWを裁断することにより形成されたものである。粘着シート56の下方には、図示しない突き上げピンが配置されている。この突き上げピンは、ダイDが吸着ノズル40に吸着される際に、そのダイDを粘着シート56の下方から上方へ突き上げることにより粘着シート56からのダイDの剥離を容易にする役割を果たす。
As shown in FIG. 2, the wafer pallet 50 has a rectangular pallet main body 52 having a circular hole 52a, and a stretchable structure fixed by a grip ring 54 while being stretched so as to close the circular hole 52a. An adhesive sheet 56 is provided. A wafer W on which a large number of dies D are formed is attached to the upper surface of the adhesive sheet 56. The die D is formed by forming a circuit by pattern printing before cutting the wafer W and then cutting the wafer W. A push-up pin (not shown) is disposed below the adhesive sheet 56. The push-up pins play a role of facilitating the peeling of the die D from the pressure-sensitive adhesive sheet 56 by pushing the die D upward from below the pressure-sensitive adhesive sheet 56 when the die D is sucked by the suction nozzle 40.
図3にウェハWの全体図を示す。図3では、ダイDは正方形(又は長方形)である。ウェハWの外縁付近では、ダイDの形状に欠けができることからダイDは形成されていない。また、ウェハWには、良好なダイDと不良なダイDとが含まれている。不良なダイDは、外観検査においてパターン印刷された回路に不良箇所がみつかったものであり、検査員又は検査機によってインク等で不良マークMが付されている。不良マークMは、ダイDのどの位置に付されるか決まっておらず、また、どのような大きさ、形状であるかも決まっていない。良好なダイDには、こうした不良マークMは付されていない。
Fig. 3 shows an overall view of the wafer W. In FIG. 3, the die D is square (or rectangular). In the vicinity of the outer edge of the wafer W, the die D is not formed because the shape of the die D is chipped. Further, the wafer W includes a good die D and a bad die D. The defective die D is a circuit where a defective portion is found in a circuit printed with a pattern in appearance inspection, and a defect mark M is attached with ink or the like by an inspector or an inspection machine. The position of the defect mark M on the die D is not determined, and it is not determined what size and shape it is. Such a defective mark M is not attached to a good die D.
コントローラ60は、図4に示すように、CPU60aを中心とするマイクロプロセッサとして構成されており、処理プログラムを記憶するROM60b、各種データを記憶するHDD60c、作業領域として用いられるRAM60d、外部装置と電気信号のやり取りを行うための入出力インタフェース60eなどを備えており、これらはバス60fを介して接続されている。このコントローラ60は、基板搬送装置18、X軸スライダ26、Y軸スライダ30、ヘッド24、マークカメラ44などと信号のやり取りが可能なように接続されている。
As shown in FIG. 4, the controller 60 is configured as a microprocessor centered on a CPU 60a, and includes a ROM 60b for storing processing programs, an HDD 60c for storing various data, a RAM 60d used as a work area, an external device and electrical signals. An input / output interface 60e and the like for performing the exchange are provided, and these are connected via a bus 60f. The controller 60 is connected so that signals can be exchanged with the substrate transport device 18, the X-axis slider 26, the Y-axis slider 30, the head 24, the mark camera 44, and the like.
次に、電子部品実装装置10を用いて電子部品であるダイDを基板16へ実装する場合について説明する。電子部品実装装置10のコントローラ60は、ウェハWの中の所定のダイDの真上に吸着ノズル40が来るようにX軸スライダ26及びY軸スライダ30を制御する。続いて、コントローラ60は、ヘッド24のZ軸モータ34を制御してボールネジ36により吸着ノズル40を下降させ、吸着ノズル40の先端に負圧を付与する。すると、粘着シート56からダイDが吸着ノズル40の先端に吸着される。続いて、コントローラ60は、ウェハパレット50の図示しない突き上げピンを駆動して、吸着ノズル40に吸着されたダイDを粘着シート56の下方から上方へ突き上げる。吸着ノズル40は、図示しないバネによって支持されているため、突き上げられた分、そのバネが縮んで上昇する。このように、ダイDを下から突き上げることにより、粘着シート56からダイDが容易に剥離する。その後、コントローラ60は、吸着ノズル40を上昇させ、ダイDが基板16の所定位置の真上に来るように各スライダ26,30を制御し、その位置で吸着ノズル40を下降させると共に吸着ノズル40に正圧を供給する。すると、ダイDが吸着ノズル40から離れ、基板16の所定位置に実装される。このようにしてダイDが基板16に実装されるが、ウェハWには、図3に示すように良好なダイDと不良なダイDとが存在する。そのため、不良なダイDすなわち不良マークMが付されたダイDは、基板16へ実装されることなく廃棄される。
Next, a case where the die D, which is an electronic component, is mounted on the substrate 16 using the electronic component mounting apparatus 10 will be described. The controller 60 of the electronic component mounting apparatus 10 controls the X-axis slider 26 and the Y-axis slider 30 so that the suction nozzle 40 comes right above a predetermined die D in the wafer W. Subsequently, the controller 60 controls the Z-axis motor 34 of the head 24 to lower the suction nozzle 40 with the ball screw 36, and applies a negative pressure to the tip of the suction nozzle 40. Then, the die D is adsorbed from the adhesive sheet 56 to the tip of the adsorption nozzle 40. Subsequently, the controller 60 drives a push pin (not shown) of the wafer pallet 50 to push the die D sucked by the suction nozzle 40 upward from below the adhesive sheet 56. Since the suction nozzle 40 is supported by a spring (not shown), the spring is contracted and raised by the amount pushed up. Thus, the die D is easily peeled from the adhesive sheet 56 by pushing up the die D from below. Thereafter, the controller 60 raises the suction nozzle 40, controls each slider 26, 30 so that the die D is directly above a predetermined position of the substrate 16, lowers the suction nozzle 40 at that position, and sucks the suction nozzle 40. Supply positive pressure to Then, the die D is separated from the suction nozzle 40 and mounted at a predetermined position on the substrate 16. In this way, the die D is mounted on the substrate 16, but the wafer W has a good die D and a bad die D as shown in FIG. Therefore, the defective die D, that is, the die D with the defective mark M is discarded without being mounted on the substrate 16.
ダイDに不良マークMが付されているか否かは、マークカメラ33が撮影したダイDの画像を利用してコントローラ60が判断する。具体的には、コントローラ60は、図5の不良ダイ判定処理ルーチンを実行することにより不良マークMが付されたダイD(不良ダイ)か否かを判定する。このルーチンは、HDD60cに格納されている。本実施形態では、ダイDは銀色であり、不良マークは黒インクで付されているものとする。
Whether the defect mark M is attached to the die D is determined by the controller 60 using the image of the die D taken by the mark camera 33. Specifically, the controller 60 determines whether or not the die is a die D (defective die) with a defective mark M by executing the defective die determination processing routine of FIG. This routine is stored in the HDD 60c. In the present embodiment, it is assumed that the die D is silver and the defect mark is attached with black ink.
不良ダイ判定処理が開始されると、コントローラ60のCPU60aは、まず、ウェハWの撮影画像を取得する(ステップS100)。具体的には、ウェハWの真上にマークカメラ44が位置するようにX軸スライダ26及びY軸スライダ30を駆動制御し、その位置でマークカメラ44のシャッタを作動させて撮影を行ったあと、マークカメラ44からウェハWの全体の画像を取得する。
When the defective die determination process is started, the CPU 60a of the controller 60 first acquires a captured image of the wafer W (step S100). Specifically, after the X-axis slider 26 and the Y-axis slider 30 are driven and controlled so that the mark camera 44 is positioned directly above the wafer W, and the shutter of the mark camera 44 is operated at that position, the image is taken. The entire image of the wafer W is acquired from the mark camera 44.
次に、コントローラ60のCPU60aは、ウェハWの中から対象となる一つのダイDを設定する(ステップS110)。対象となるダイDの設定手順は、特に限定するものではないが、例えば、図3のウェハWの左上から右に向かって順に設定していき、右上まで終了したら今度は一段下がって左から右に向かって順に設定していくという手順を繰り返すようにしてもよい。
Next, the CPU 60a of the controller 60 sets one target die D from the wafer W (step S110). The setting procedure of the target die D is not particularly limited. For example, the setting is performed in order from the upper left to the right of the wafer W in FIG. You may make it repeat the procedure of setting in order toward.
次に、コントローラ60のCPU60aは、対象となるダイDの撮影画像に検索領域を設定し(ステップS120)、その検索領域内のドットのグレースケール値を取得する(ステップS130)。本実施形態では、図6に示すように、検索領域を設定するための検索領域用フレームF1がダイDと同じ形状、大きさに設定され、そのフレームF1に関する情報がHDD60cに記憶されている。ダイDの撮影画像のうち検索領域用フレームF1で囲まれた領域が検索領域となる。グレースケール値とは、画像を白から黒までの明暗だけで表現したときの値であり、例えば4ビット(16階調)の場合には0~15の値を取ることができ、8ビット(256階調)の場合には0~255の値を取ることができる。なお、最小値(つまりゼロ)は黒を表し、最大値は白を表す。
Next, the CPU 60a of the controller 60 sets a search area in the captured image of the target die D (step S120), and acquires the gray scale value of the dot in the search area (step S130). In the present embodiment, as shown in FIG. 6, the search area frame F1 for setting the search area is set to the same shape and size as the die D, and information related to the frame F1 is stored in the HDD 60c. Of the photographed image of the die D, an area surrounded by the search area frame F1 is a search area. The gray scale value is a value when the image is expressed only in light and darkness from white to black. For example, in the case of 4 bits (16 gradations), a value of 0 to 15 can be taken, and 8 bits ( In the case of (256 gradations), values from 0 to 255 can be taken. The minimum value (that is, zero) represents black, and the maximum value represents white.
次に、コントローラ60のCPU60aは、検索領域内のグレースケール値に基づいて不良マーク候補部を設定する(ステップS140)。具体的には、検索領域内のグレースケール値の中から、その値が黒又は黒に近いグレーのドットの集合を探しだし、そのうち最も大きな集合を不良マーク候補部とする。256階調の場合、グレースケール値が0~G(Gは例えば50とか60)のドットであって互いに隣接しているドットの数を、黒又は黒に近いグレーのドットの集合としてもよい。図7は、不良マーク候補部の設定に関する説明図である。図7(a)は不良マークMの付いていないダイDであり、大小2つの黒い円形部分d1,d2を有している。この場合、大きな円形部分d1が不良マーク候補部に設定される。一方、図7(b)は不良マークMの付いているダイDであり、円形部分d1,d2のほかに不良マークMを有している。この場合、不良マークMが不良マーク候補部に設定される。
Next, the CPU 60a of the controller 60 sets a defective mark candidate part based on the gray scale value in the search area (step S140). Specifically, a set of gray dots whose value is black or close to black is searched from the gray scale values in the search area, and the largest set is set as a defective mark candidate portion. In the case of 256 gradations, the number of dots having gray scale values of 0 to G (G is, for example, 50 or 60) and adjacent to each other may be black or a set of gray dots close to black. FIG. 7 is an explanatory diagram regarding the setting of the defective mark candidate portion. FIG. 7A shows a die D without a defect mark M, and has two large and small black circular portions d1 and d2. In this case, a large circular portion d1 is set as a defective mark candidate portion. On the other hand, FIG. 7B shows a die D with a defect mark M, which has a defect mark M in addition to the circular portions d1 and d2. In this case, the defect mark M is set as a defect mark candidate part.
次に、コントローラ60のCPU60aは、不良マーク候補部を含むように判定領域を設定する(ステップS150)。本実施形態では、判定領域を設定するための判定領域用フレームF2(図6参照)が予め設定され、HDD60cに記憶されている。判定領域用フレームF2は、検索領域用フレームF1よりもサイズが小さい。検査員や検査機が不良マークMを黒色インクで付した場合、不良マークMの大きさや形状にバラツキが生じる。判定領域用フレームF2は、経験上、そのようにばらつく不良マークMの中から最小の不良マークMminを定め、その最小の不良マークMminを囲むことのできる大きさ、形状となるように設定されている。CPU60aは、不良マーク候補部の中央のドットが判定領域用フレームF2の中心と一致するように判定領域用フレームF2をセットし、その判定領域用フレームF2で囲まれた領域を判定領域として設定する。図8は、判定領域の設定に関する説明図である。図8(a)は不良マークMの付いていないダイDに設定された判定領域、図8(b)は最小の不良マークMminの付いているダイDに設定された判定領域を示す。
Next, the CPU 60a of the controller 60 sets a determination area so as to include a defective mark candidate part (step S150). In the present embodiment, a determination area frame F2 (see FIG. 6) for setting a determination area is set in advance and stored in the HDD 60c. The determination area frame F2 is smaller in size than the search area frame F1. When the inspector or the inspection machine applies the defect mark M with black ink, the size and shape of the defect mark M vary. Based on experience, the determination region frame F2 is set so that the minimum defect mark Mmin is determined from the defect marks M that vary in such a manner, and the size and shape can surround the minimum defect mark Mmin. Yes. The CPU 60a sets the determination region frame F2 so that the center dot of the defective mark candidate portion coincides with the center of the determination region frame F2, and sets the region surrounded by the determination region frame F2 as the determination region. . FIG. 8 is an explanatory diagram regarding the setting of the determination area. FIG. 8A shows a determination area set for the die D without the defect mark M, and FIG. 8B shows a determination area set for the die D with the minimum defect mark Mmin.
次に、コントローラ60のCPU60aは、判定領域に含まれるドットのグレースケール値の平均値(グレースケール平均値)を算出する(ステップS160)。そして、グレースケール平均値と閾値とを比較し(ステップS170)、グレースケール平均値が閾値を超えていれば今回のダイDを不良ダイとしてHDD60cに記憶し(ステップS180)、グレースケール平均値が閾値以下ならば今回のダイDを正常ダイとしてHDD60cに記憶する(ステップS185)。グレースケール平均値は、判定領域に含まれるドットのグレースケール値の総和を判定領域に含まれるドット数で除した値である。閾値は、以下のようにして設定した値である。すなわち、予め、不良マークを付けた複数のダイDのグレースケール平均値と不良マークを付けていない複数のダイDのグレースケール平均値とを算出し、両方のグレースケール平均値を明確に区別し得る値を求め、その値を閾値と閾値とした。なお、閾値はHDD60cに記憶されている。前出の図8(a)では、グレースケール平均値が閾値以下となるため良好なダイと判定され、図8(b)では、グレースケール平均値が閾値を超えるため不良なダイと判定される。図9に、比較的大きな不良マークMが付いているダイDを示す。この場合、不良マークMの中央のドットが判定領域用フレームF2の中心と一致するように判定領域用フレームF2がセットされ、グレースケール平均値が閾値を超えるため不良なダイと判定される。
Next, the CPU 60a of the controller 60 calculates an average value (grayscale average value) of grayscale values of dots included in the determination area (step S160). Then, the gray scale average value and the threshold value are compared (step S170). If the gray scale average value exceeds the threshold value, the current die D is stored as a defective die in the HDD 60c (step S180), and the gray scale average value is calculated. If it is below the threshold, the current die D is stored in the HDD 60c as a normal die (step S185). The gray scale average value is a value obtained by dividing the sum of the gray scale values of the dots included in the determination area by the number of dots included in the determination area. The threshold is a value set as follows. In other words, the gray scale average value of a plurality of dies D with defective marks and the gray scale average value of a plurality of dies D without defective marks are calculated in advance, and both gray scale average values are clearly distinguished. A value to be obtained was obtained, and the value was used as a threshold value and a threshold value. The threshold value is stored in the HDD 60c. In FIG. 8A, the gray scale average value is equal to or less than the threshold value, so that it is determined as a good die. In FIG. 8B, since the gray scale average value exceeds the threshold value, it is determined as a defective die. . FIG. 9 shows a die D with a relatively large defect mark M. In this case, the determination area frame F2 is set so that the center dot of the defect mark M coincides with the center of the determination area frame F2, and the gray scale average value exceeds the threshold value, so that it is determined as a defective die.
次に、コントローラ60のCPU60aは、ウェハWに含まれるすべてのダイDについて処理が終了したか否かを確認し(ステップS190)、未処理のダイDが残っていたならば、再びステップS110に戻り、すべてのダイDについて処理が終了したならば、このルーチンを終了する。
Next, the CPU 60a of the controller 60 confirms whether or not the processing has been completed for all the dies D included in the wafer W (step S190), and if unprocessed dies D remain, the process returns to step S110 again. Returning, when the processing is completed for all the dies D, this routine is finished.
ここで、本実施形態の構成要素と本発明の構成要素との対応関係を明らかにする。本実施形態の電子部品実装装置10が本発明の不良部材判定装置に相当し、マークカメラ44が撮影手段に相当し、コントローラ60が判定手段に相当する。なお、本実施形態では、電子部品実装装置10の動作を説明することにより本発明の不良部材判定方法の一例も明らかにしている。
Here, the correspondence between the components of the present embodiment and the components of the present invention will be clarified. The electronic component mounting apparatus 10 of the present embodiment corresponds to a defective member determination apparatus of the present invention, the mark camera 44 corresponds to a photographing unit, and the controller 60 corresponds to a determination unit. In the present embodiment, an example of the defective member determination method of the present invention is also clarified by describing the operation of the electronic component mounting apparatus 10.
以上説明した実施形態の電子部品実装装置10によれば、撮影されたダイDの画像のうち不良マークMの有無を検索する検索領域内で、該検索領域よりも小さいサイズの判定領域を当てはめ、該判定領域に含まれるドットのグレースケール平均値と閾値とを比較することにより不良マークMの有無を判定する。ここで、図10に示すように、判定領域用フレームF2が検索領域用フレームF1と同じ(つまり判定領域が検索領域と同じ)場合には、最小の不良マークMminの大きさが判定領域に比べて小さすぎるため、判定領域のグレースケール平均値が小さくなりすぎて閾値を超えないことがあり、不良マークMが存在するにもかかわらず不良マークMなしと判定するおそれがある。これに対して、本実施形態では、判定領域が検索領域よりも小さなサイズのため、そのようなおそれは解消される。したがって、ダイDに付された不良マークMの誤検知の発生を抑えることができる。
According to the electronic component mounting apparatus 10 of the embodiment described above, a determination area having a size smaller than the search area is applied in the search area for searching for the presence or absence of the defect mark M in the photographed image of the die D. The presence / absence of the defective mark M is determined by comparing the gray scale average value of the dots included in the determination region with a threshold value. Here, as shown in FIG. 10, when the determination area frame F2 is the same as the search area frame F1 (that is, the determination area is the same as the search area), the size of the minimum defect mark Mmin is larger than that of the determination area. Therefore, the gray scale average value of the determination region may be too small to exceed the threshold value, and there is a possibility that it is determined that there is no defective mark M despite the presence of the defective mark M. On the other hand, in this embodiment, since the determination area is smaller than the search area, such a fear is eliminated. Therefore, occurrence of erroneous detection of the defective mark M attached to the die D can be suppressed.
また、グレースケール平均値と閾値とを比較することにより不良マークMの有無を判定しているため、ダイDに付された不良マークMがかすれていて黒色のドットが不連続だったとしても、精度よく不良マークありと判定することができる。
Moreover, since the presence or absence of the defective mark M is determined by comparing the gray scale average value and the threshold value, even if the defective mark M attached to the die D is blurred and the black dots are discontinuous, It can be determined that there is a defective mark with high accuracy.
更に、ダイDの検索領域に含まれるドットのグレースケール値に基づいて不良マーク候補部を設定し、該不良マーク候補部に対して判定領域を当てはめて不良マークMの有無を判定するため、判定領域を検索領域内に隈なく当てはめていく場合に比べて、短時間で判定を行うことができる。
Further, a defect mark candidate part is set based on the gray scale value of the dot included in the search area of the die D, and the determination area is applied to the defect mark candidate part to determine the presence or absence of the defect mark M. It is possible to make a determination in a shorter time compared to the case where the region is applied to the search region.
なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.
例えば、上述した実施形態において、検索領域用フレームF1のサイズや形状を設定変更可能としてもよい。こうすれば、実装しようとするダイDのサイズや形状に応じて検索領域のサイズや形状を変更することができるため、不良マークMの誤検知の発生をより効果的に抑えることができる。あるいは、判定領域用フレームF2のサイズや形状を設定変更可能としてもよい。こうすれば、ダイDに付される不良マークMのサイズや形状に応じて判定領域のサイズや形状を変更することができるため、不良マークMの誤検知の発生をより効果的に抑えることができる。
For example, in the above-described embodiment, the size and shape of the search area frame F1 may be set and changed. In this way, the size and shape of the search area can be changed according to the size and shape of the die D to be mounted, so that the occurrence of erroneous detection of the defective mark M can be suppressed more effectively. Alternatively, the size and shape of the determination area frame F2 may be set and changed. In this way, since the size and shape of the determination area can be changed according to the size and shape of the defect mark M attached to the die D, the occurrence of erroneous detection of the defect mark M can be more effectively suppressed. it can.
上述した実施形態では、検索領域用フレームF1はダイDと同じ形状、大きさとしたが、ダイDの画像に予め設定された除外領域を除外するように検索領域用フレームF1を設定してもよい。その一例を図11に示す。ここでは、ダイDに複数の円形状の回路パターンPが形成され、この回路パターンPのドットのグレースケール値が不良マークMと同等だったとする。この場合、回路パターンPを囲む領域を除外領域とし、この除外領域を除外するように検索領域用フレームF1を設定する。こうすれば、予め不良マークMと混同しそうな領域を検索領域から除外しておくことができるため、不良マークMの誤検知の発生を抑える効果が高まる。
In the above-described embodiment, the search area frame F1 has the same shape and size as the die D. However, the search area frame F1 may be set so as to exclude an exclusion area preset in the image of the die D. . An example is shown in FIG. Here, it is assumed that a plurality of circular circuit patterns P are formed on the die D, and the gray scale values of the dots of the circuit patterns P are equivalent to the defect mark M. In this case, an area surrounding the circuit pattern P is set as an excluded area, and the search area frame F1 is set so as to exclude the excluded area. In this way, an area that is likely to be confused with the defective mark M can be excluded from the search area in advance, and the effect of suppressing the occurrence of erroneous detection of the defective mark M is enhanced.
上述した実施形態では、実装機に用いられる部材としてダイDを例示したが、図12に示すように複数の子基板116aが一体的に結合されてなる多面取り基板116を実装機に用いられる部材としてもよい。子基板116aは、最終的には多面取り基板116から切り離されるものである。多面取り基板116は、図1の基板16に相当するものであり、基板搬送装置18によって左から右へと搬送されるものである。この多面取り基板116には、図12に示すように、子基板116aとは別の位置にマーク領域117が設けられている。マーク領域117は、子基板116aの数だけマーク欄117aが設けられ、左側のマーク欄117aは左側の子基板116aに対応し、中央のマーク欄117aは中央の子基板116aに対応し、右側のマーク欄117aは右側の子基板116aに対応する。そして、いずれかの子基板116aが不良な子基板だった場合には、それに対応するマーク欄117aに不良マークが付される。各マーク欄117aは、検索領域に相当し、マーク欄117aよりも小さなサイズの判定領域用フレームF3により判定領域が設定される。このような多面取り基板116についても、電子部品実装装置10へ供給する前に、マーク領域117の撮影画像を取得し、各マーク欄117aに不良マークが付されているか否かを図5のフローチャートと同様にして判定してもよい。また、マーク領域117を設ける代わりに、子基板116aごとにマーク欄117aを設けてもよい。
In the above-described embodiment, the die D is exemplified as a member used in the mounting machine. However, as shown in FIG. 12, a member used in the mounting machine is a multi-sided board 116 in which a plurality of daughter boards 116a are integrally coupled. It is good. The sub board 116a is finally separated from the multi-sided board 116. The multi-sided substrate 116 corresponds to the substrate 16 in FIG. 1 and is transported from the left to the right by the substrate transport device 18. As shown in FIG. 12, the multi-chamfer substrate 116 is provided with a mark region 117 at a position different from the daughter substrate 116a. The mark area 117 is provided with the number of mark columns 117a as many as the number of child boards 116a, the left mark field 117a corresponds to the left child board 116a, the center mark field 117a corresponds to the center child board 116a, and the right side. The mark column 117a corresponds to the right sub board 116a. If any of the sub-substrates 116a is a defective sub-substrate, a defect mark is added to the corresponding mark column 117a. Each mark column 117a corresponds to a search region, and a determination region is set by a determination region frame F3 having a size smaller than that of the mark column 117a. Also for such a multi-sided board 116, before supplying it to the electronic component mounting apparatus 10, a photographed image of the mark area 117 is acquired, and whether or not a defective mark is attached to each mark column 117a is a flowchart of FIG. It may be determined in the same manner as described above. Further, instead of providing the mark region 117, a mark column 117a may be provided for each daughter board 116a.
上述した実施形態では、グレースケール平均値が閾値を超えるか否かによってダイDに不良マークMが付されているか否かを判定したが、判定領域に含まれるドットのグレースケール値と判定領域に含まれるドット数を利用したパラメータであれば、特にグレースケール平均値に限定されるものではない。例えば、判定領域に含まれるドットのうち不良マークMの色又はそれに近い色(例えばグレースケール値が0~60のもの)のドットの数を判定領域に含まれるドット数で除した値と閾値とを比較することにより不良マークMの有無を判定してもよい。
In the above-described embodiment, it is determined whether or not the defect mark M is attached to the die D depending on whether or not the gray scale average value exceeds the threshold value. However, the gray scale value of the dot included in the determination area and the determination area are determined. The parameters are not particularly limited to the gray scale average value as long as the number of dots included is used. For example, a value obtained by dividing the number of dots of the defective mark M or a color close to it (for example, one having a gray scale value of 0 to 60) divided by the number of dots included in the determination region among the dots included in the determination region, and a threshold value The presence / absence of the defect mark M may be determined by comparing.
上述した実施形態では、ダイDの下地を銀色、不良マークMを黒インクで付されているものとしたが、不良マークMはグレースケールで表したときにダイDの下地と区別できるのであればどのような色でもよい。例えば、ダイDの下地が黒色の場合には不良マークMは白インクで付けるものとしてもよい。
In the above-described embodiment, the base of the die D is silver and the defect mark M is black ink. However, if the defect mark M can be distinguished from the base of the die D when expressed in grayscale. Any color is acceptable. For example, when the base of the die D is black, the defect mark M may be attached with white ink.
上述した実施形態では、不良マークMのグレースケール値を利用したが、グレースケール値の代わりに他の色情報、例えばRGB値を利用してもよい。
In the above-described embodiment, the gray scale value of the defect mark M is used, but other color information such as RGB values may be used instead of the gray scale value.
本発明は、例えば電子部品実装装置に利用可能である。
The present invention can be used for an electronic component mounting apparatus, for example.
10 電子部品実装装置、12 筐体、18 基板搬送装置、20 支持板、22 コンベアベルト、23 支持ピン、24 ヘッド、26 X軸スライダ、28 ガイドレール、30 Y軸スライダ、32 ガイドレール、33 マークカメラ、34 Z軸モータ、36 ボールネジ、40 吸着ノズル、42 ホルダ、44 マークカメラ、50 ウェハパレット、52 パレット本体、52a 円形穴、54 グリップリング、56 粘着シート、60 コントローラ、60a CPU、60b ROM、60c HDD、60d RAM、60e 入出力インタフェース、60f バス、116 多面取り基板、116a 子基板、117 マーク領域、117a マーク欄、d1,d2 円形部分、D ダイ、F1 検索領域用フレーム、F2 判定領域用フレーム、F3 判定領域用フレーム、M 不良マーク、W ウェハ。
10 electronic component mounting device, 12 housing, 18 substrate transport device, 20 support plate, 22 conveyor belt, 23 support pin, 24 head, 26 X axis slider, 28 guide rail, 30 Y axis slider, 32 guide rail, 33 mark Camera, 34 Z-axis motor, 36 ball screw, 40 suction nozzle, 42 holder, 44 mark camera, 50 wafer pallet, 52 pallet body, 52a circular hole, 54 grip ring, 56 adhesive sheet, 60 controller, 60a CPU, 60b ROM, 60c HDD, 60d RAM, 60e I / O interface, 60f bus, 116 multi-sided board, 116a slave board, 117 mark area, 117a mark column, d1, d2 circular part, D die, F1 search area Over arm, F2 determination region frame, F3 determination region frame, M bad marks, W wafer.
Claims (7)
- 実装機に用いられる部材に対して不良マークが付されているか否かを判定する不良部材判定装置であって、
前記部材を撮影する撮影手段と、
前記撮影手段によって撮影された前記部材の画像のうち不良マークの有無を検索する検索領域内で、該検索領域よりも小さいサイズの判定領域を当てはめ、該判定領域に含まれるドットの色情報と前記判定領域に含まれるドット数とを利用して前記不良マークの有無を判定する判定手段と、
を備えた不良部材判定装置。 A defective member determination device for determining whether or not a defect mark is attached to a member used in a mounting machine,
Photographing means for photographing the member;
In the search area for searching for the presence or absence of a defective mark in the image of the member imaged by the imaging means, a determination area having a size smaller than the search area is applied, and the dot color information included in the determination area and the color information Determination means for determining the presence or absence of the defective mark using the number of dots included in the determination area;
The defective member determination apparatus provided with. - 前記判定手段は、前記判定領域に含まれるドットのグレースケール値の平均値と所定の閾値とを比較することにより前記不良マークの有無を判定する、
請求項1に記載の不良部材判定装置。 The determination means determines the presence or absence of the defective mark by comparing an average value of gray scale values of dots included in the determination region with a predetermined threshold;
The defective member determination apparatus according to claim 1. - 請求項1又は2に記載の不良部材判定装置であって、
更に、前記検索領域及び前記判定領域の少なくとも一方のサイズ又は形状の設定を変更する設定変更手段
を備えた不良部材判定装置。 The defective member determination device according to claim 1 or 2,
Furthermore, the defective member determination apparatus provided with the setting change means to change the setting of the size or shape of at least one of the said search area | region and the said determination area | region. - 前記判定手段は、前記部材の前記検索領域に含まれるドットの色情報に基づいて不良マーク候補部を設定し、該不良マーク候補部に対して前記判定領域を当てはめて前記不良マークの有無を判定する、
請求項1~3のいずれか1項に記載の不良部材判定装置。 The determination unit sets a defective mark candidate portion based on color information of dots included in the search region of the member, and determines the presence or absence of the defective mark by applying the determination region to the defective mark candidate portion. To
The defective member determination device according to any one of claims 1 to 3. - 前記判定手段は、前記部材の画像に予め設定された除外領域については前記検索領域から除外する、
請求項1~4のいずれか1項に記載の不良部材判定装置。 The determination means excludes an exclusion area preset in the image of the member from the search area,
The defective member determination device according to any one of claims 1 to 4. - 前記除外領域は、前記部材に形成された回路パターンに基づいて設定されている、
請求項5に記載の不良部材判定装置。 The exclusion area is set based on a circuit pattern formed on the member.
The defective member determination apparatus according to claim 5. - 実装機に用いられる部材に対して不良マークが付されているか否かを判定する不良部材判定方法であって、
(a)前記部材を撮影するステップと、
(b)前記ステップ(a)で撮影した前記部材の画像のうち不良マークの有無を検索する検索領域内で、該検索領域よりも小さいサイズの判定領域を当てはめ、該判定領域に含まれるドットの色情報と前記判定領域に含まれるドット数とを利用して前記不良マークの有無を判定するステップと、
を含む不良部材判定方法。 A defective member determination method for determining whether or not a defect mark is attached to a member used in a mounting machine,
(A) photographing the member;
(B) In the search area for searching for the presence or absence of a defective mark in the image of the member photographed in step (a), a determination area having a size smaller than the search area is applied, and the dots included in the determination area Determining the presence or absence of the defective mark using color information and the number of dots included in the determination area;
A defective member determination method including:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015502624A JP6155322B2 (en) | 2013-02-27 | 2013-02-27 | Defective member determination device and method |
PCT/JP2013/055127 WO2014132358A1 (en) | 2013-02-27 | 2013-02-27 | Defective member determination device and defective member determination method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/055127 WO2014132358A1 (en) | 2013-02-27 | 2013-02-27 | Defective member determination device and defective member determination method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014132358A1 true WO2014132358A1 (en) | 2014-09-04 |
Family
ID=51427661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/055127 WO2014132358A1 (en) | 2013-02-27 | 2013-02-27 | Defective member determination device and defective member determination method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6155322B2 (en) |
WO (1) | WO2014132358A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107833841A (en) * | 2017-10-27 | 2018-03-23 | 德淮半导体有限公司 | Defect inspection method |
CN111815581A (en) * | 2020-06-27 | 2020-10-23 | 国网上海市电力公司 | Power isolating switch and automatic part identification method and device thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3634099B1 (en) * | 2017-05-24 | 2023-03-15 | Fuji Corporation | Measurement position determination device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007059858A (en) * | 2005-08-25 | 2007-03-08 | King Yuan Electronics Co Ltd | Chip image inspection method and its system |
JP2007258482A (en) * | 2006-03-23 | 2007-10-04 | Fujitsu Ltd | System and method of inspecting semiconductor device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59115534A (en) * | 1982-12-23 | 1984-07-04 | Seiko Epson Corp | Method for recognition and discrimination of non-defective ic in wafer |
-
2013
- 2013-02-27 WO PCT/JP2013/055127 patent/WO2014132358A1/en active Application Filing
- 2013-02-27 JP JP2015502624A patent/JP6155322B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007059858A (en) * | 2005-08-25 | 2007-03-08 | King Yuan Electronics Co Ltd | Chip image inspection method and its system |
JP2007258482A (en) * | 2006-03-23 | 2007-10-04 | Fujitsu Ltd | System and method of inspecting semiconductor device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107833841A (en) * | 2017-10-27 | 2018-03-23 | 德淮半导体有限公司 | Defect inspection method |
CN111815581A (en) * | 2020-06-27 | 2020-10-23 | 国网上海市电力公司 | Power isolating switch and automatic part identification method and device thereof |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014132358A1 (en) | 2017-02-02 |
JP6155322B2 (en) | 2017-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7836824B2 (en) | Method and apparatus for screen printing | |
US20110297020A1 (en) | Screen printer and screen printing method | |
WO2013186963A1 (en) | Electronic component mounting system and electronic component mounting method | |
JP2008294034A (en) | Screen printing device, and screen printing method | |
JP5989803B2 (en) | Component mounting machine and component mounting method | |
JP5681695B2 (en) | Substrate printing device | |
JP6155322B2 (en) | Defective member determination device and method | |
US20180139875A1 (en) | Screen printer improved in solder separation and method of controlling the same | |
JP6472873B2 (en) | Parts inspection machine and parts placement machine | |
JP2017150927A (en) | Inspection device, mounted device, inspection method, and program | |
JP5823174B2 (en) | Electronic component mounting position correction method and electronic component mounting position correction device | |
JP4619896B2 (en) | Reference position determining method, reference position determining apparatus, bonding material printing method and printing apparatus | |
JP6571176B2 (en) | Component mounter and component supply method for component mounter | |
WO2017081773A1 (en) | Image processing device and image processing method for base plate | |
JP6348832B2 (en) | Component mounting apparatus, surface mounter, and component thickness detection method | |
CN105828595B (en) | Component mounting inspection device | |
JP5887485B2 (en) | Mask printing system and mask manufacturing method for screen printing | |
JP6738898B2 (en) | Board-to-board working machine | |
WO2015166543A1 (en) | Manufacturing method and manufacturing apparatus for substrate with positioning hole, and a plurality of substrates each with positioning hole | |
JP6678178B2 (en) | Work machine | |
JP5879493B2 (en) | Electronic component mounting method | |
WO2017013807A1 (en) | Component mounting machine | |
JP6974101B2 (en) | Setting device and surface mounter | |
GB2484373A (en) | Screen printing device and screen printing method | |
JP5715114B2 (en) | Substrate printing apparatus and substrate printing system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13876225 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015502624 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13876225 Country of ref document: EP Kind code of ref document: A1 |