WO2014129774A1 - Multi-emission spectrochemical analysis method using dichroic mirror and emission spectrometer using same - Google Patents

Multi-emission spectrochemical analysis method using dichroic mirror and emission spectrometer using same Download PDF

Info

Publication number
WO2014129774A1
WO2014129774A1 PCT/KR2014/001266 KR2014001266W WO2014129774A1 WO 2014129774 A1 WO2014129774 A1 WO 2014129774A1 KR 2014001266 W KR2014001266 W KR 2014001266W WO 2014129774 A1 WO2014129774 A1 WO 2014129774A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
dichroic mirror
monochromatic light
target
emission
Prior art date
Application number
PCT/KR2014/001266
Other languages
French (fr)
Korean (ko)
Inventor
진승민
양일승
서영덕
박효선
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2014129774A1 publication Critical patent/WO2014129774A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1213Filters in general, e.g. dichroic, band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices

Definitions

  • It provides a reflection type emission spectroscopic analysis method comprising the step (step 4) of detecting and analyzing the light emission separated in step 3 with a detector.
  • a reflection type emission spectrometer including a detection unit for detecting and analyzing light emission separated by the dichroic mirror.
  • FIG. 4 is a graph measuring wavelengths of light passing through each section of the transmission type emission spectrometer in the sample-free state according to Example 1.
  • FIG. 4 is a graph measuring wavelengths of light passing through each section of the transmission type emission spectrometer in the sample-free state according to Example 1.
  • FIG. 8 is a schematic diagram schematically showing the configuration of a reflection type emission spectrometer according to the present invention.
  • the present invention includes the steps of reflecting the monochromatic light generated by the multi-wavelength monochromatic light source through the first dichroic mirror (step 1);
  • It provides a transmission type emission spectroscopic analysis method comprising the step (step 4) of detecting and analyzing the light emission separated in step 3 with a detector.
  • the dichroic mirror of step 1 is a reflector using a layer of the non-metal material of the flat glass coating and the interference. It is preferable to use a multi-band type dichroic mirror capable of selecting two or more single wavelength range light (monochromatic light) by adjusting a material, a film thickness, and the number of layers to properly select and reflect a part of visible light and then transmit the rest. Do.
  • the method may further include condensing the reflected monochromatic light with an objective lens (step 1 ′).
  • the emitted light is transmitted through the opposite side of the target surface to which the irradiated monochromatic light reaches the target, that is, the other surface of the target.
  • some of the monochromatic light irradiated to the target does not excite the target, and passes through it, and then proceeds in the same traveling direction as the light emitted from the target.
  • the transmission type emission spectroscopy method of the present invention is in the fields of biotechnology and genetic engineering such as DNA structure analysis, DNA sequencing, environmental fields such as the content analysis of organic or inorganic substances in water, chemical reactions and quantum efficiency calculations. It can be usefully used throughout the industry, such as in the field of analytical chemistry, food and agriculture, such as detection of luminescent substances in food, as well as quantification of polymer compounds, film coating.
  • a transmission type emission spectrometer including a detector 208 for detecting and analyzing light emission 207 separated by the second dichroic mirror 206.
  • the light source unit 201 emits a monochromatic light 202 incident on a sample.
  • the light source unit 201 according to the present invention uses a multi-wavelength monochromatic light source consisting of blue, green, and red and their monochromatic light sources. And selectively controlling the light emitting device to emit monochromatic light.
  • the first dichroic mirror 203 is a reflector using multiple layers of flat glass with a non-metallic material and using the interference.
  • the first dichroic mirror 203 adjusts the thickness of the material or the film, the number of layers, and the like to appropriately select a part of the visible light and reflects the rest. It has the property of transmitting.
  • the first dichroic mirror 203 according to the present invention serves to reflect the monochromatic light 202 ′ generated from the light source unit 201, and has an unwanted wavelength to the monochromatic light 202 generated from the light source unit 201. When the light 204 is included, it serves to transmit and remove the light 204 of the unwanted wavelength.
  • the dichroic mirror according to the present invention it is preferable to use a multi-band dichroic mirror capable of selecting two or more single wavelength range light (monochrome light).
  • a multi-wavelength dichroic mirror such as white light
  • the multi-band dichroic mirror selectively reflects a plurality of specific wavelength range light (monochrome light)
  • Light in the other range is characterized by being transmitted. Due to this property, even when the wavelength of the monochromatic light 202 generated from the light source unit 201 is replaced, the sample can be analyzed without mechanical movement of the dichroic mirror.
  • the method may further include an objective lens configured to collect the monochromatic light 202 ′ reflected by the first dichroic mirror 203 and transmit the light to the sample unit 205.
  • the sample unit 205 including the target is to fix the target to be measured
  • the sample unit 205 according to the present invention can be fixed to the liquid or solid target that can transmit the monochromatic light, the position is It is preferable to be located on the same line as the first dichroic mirror 203 and the second dichroic mirror 206.
  • the detector 208 detects and analyzes the light emission 207 separated from the second dichroic mirror 206, and is located on the same line as the sample unit 205 and the second dichroic mirror 206.
  • the light emission 207 separated from the second dichroic mirror 206 is incident.
  • Transmission type luminescence spectroscopy apparatus is a monochromatic filter or monochrome for separating monochromatic light from a light source when performing multi-luminescence spectroscopic analysis by using monochromatic light by multi-wavelength monochromatic light source and multi-wavelength dichroic mirror Luminescence can be measured without mechanical replacement of a single wavelength dichroic mirror in order to measure the change in emission wavelength generated from the sample by the device and a wide range of monochromatic light.
  • the transmission type emission spectroscopy apparatus of the present invention is in the fields of biotechnology and genetic engineering, such as DNA structure analysis, DNA sequencing, environmental fields such as the content analysis of organic or inorganic substances in water, chemical reactions and quantum efficiency calculations. It can be usefully used throughout the industry, such as in the field of analytical chemistry, food and agriculture, such as detection of luminescent substances in food, as well as quantification of polymer compounds, film coating.
  • the present invention comprises the steps of reflecting the monochromatic light generated by the multi-wavelength monochromatic light source through the color-selective mirror (step 1);
  • the monochromatic light reflected in the step 1 reaches the target to excite the target, and obtains the reflective light emission emitted from the excited target (step 2);
  • It provides a reflection type emission spectroscopic analysis method comprising the step (step 4) of detecting and analyzing the light emission separated in step 3 with a detector.
  • the step 1 according to the present invention is a step of reflecting the monochromatic light generated by the multi-wavelength monochromatic light source through the color screening mirror, more specifically, the monochromatic light emitted from the multi-wavelength monochromatic light source of blue, green or red color. After irradiating with the selection mirror, it is the step of reflecting the monochromatic light irradiated to the dichroic mirror to the target of the sample unit.
  • the dichroic mirror of step 1 is a reflector using a layer of the non-metal material of the flat glass coating and the interference. It is preferable to use a multi-band type dichroic mirror capable of selecting two or more single wavelength region light (monochromatic light) by adjusting a material, a film thickness, the number of layers, etc. to appropriately select and reflect a part of visible light and to transmit the rest. Do.
  • the method may further include condensing the reflected monochromatic light with an objective lens (step 1 ′).
  • the objective lens collects the monochromatic light reflected in the step 1 and serves to increase the irradiation amount of the monochromatic light irradiated to the target in the sample unit without dispersing the monochromatic light.
  • the emitted light emits the reflective light in a path that matches the path irradiated with the monochromatic light spatially.
  • some of the monochromatic light irradiated to the target does not excite the target, and passes through it, and then proceeds in the same traveling direction as the light emitted from the target.
  • the step 3 according to the present invention is a step of removing the monochromatic light other than the light emission and separating only the light emission by using the mixed light of the monochromatic light other than the light emission and the light emission obtained in the step 2 by using the color screening mirror of the step 1, More specifically, the mixed light consisting of the emitted light emitted from the target of step 2 and the target monochromatic light that is not excited and irradiated to the color-dividing mirror of step 1 is irradiated to transmit and separate the light, and the target cannot be excited.
  • the monochromatic light is reflected and removed as in step 1 above.
  • step 4 is a step of detecting and analyzing the light emission separated in step 3 with a detector.
  • the reflection type emission spectroscopy method is a monochrome filter for separating monochromatic light from a light source when performing multi-luminescence spectroscopic analysis by using monochromatic light and multi-wavelength dichroic mirror by a multi-wavelength monochromatic light source or Luminescence can be measured without mechanical replacement of a single wavelength dichroic mirror in order to measure the change in emission wavelength generated from the sample by a monochromator and a wide range of monochromatic light.
  • the reflection type emission spectroscopy method of the present invention is in the fields of biotechnology and genetic engineering such as DNA structure analysis, DNA sequencing, environmental fields such as the content analysis of organic or inorganic matter in water, chemical reaction and quantum efficiency calculation. It can be usefully used throughout the industry, such as in the field of analytical chemistry, food and agriculture, such as detection of luminescent substances in food, as well as quantification of polymer compounds, film coating.
  • a dichroic mirror 303 which simultaneously performs a role of reflecting the monochromatic light 302 generated from the light source unit 301 and selecting only the reflective light emission 305 emitted from the sample unit 304;
  • a reflection type emission spectroscopy apparatus including a detection unit 306 for detecting and analyzing light emission 305 separated by the dichroic mirror 303.
  • the light source unit 301 according to the present invention emits a monochromatic light 302 incident on a sample
  • the light source unit 301 according to the present invention is a multi-wavelength monochromatic light source consisting of blue, green and red and their multi-wavelength monochromatic light.
  • the dichroic mirror 303 is a reflector using multiple layers of planar glass as a non-metallic material and using the interference.
  • the dichroic mirror 303 adjusts the thickness of the material or the film, the number of layers, and the like to appropriately select a part of the visible light to reflect the light and transmit the rest. Has characteristics.
  • the dichroic mirror 303 according to the present invention serves to reflect the monochromatic light 302 generated from the light source unit 301.
  • the mixed light including the light emission 305 emitted from the sample unit 304 and the monochromatic light 302 reflected without excitation of the target is transmitted through and separated from the light emission, and the monochromatic light 302 reflected without excitation of the target is separated. Reflects the light and performs only the selection of the reflective light emission 305 at the same time.
  • the dichroic mirror according to the present invention it is preferable to use a multi-band dichroic mirror capable of selecting two or more single wavelength range light (monochrome light).
  • a multi-wavelength dichroic mirror such as white light
  • the multi-band dichroic mirror selectively reflects a plurality of specific wavelength range light (monochrome light), Light in other areas is transmitted. Due to this property, even when the wavelength of the monochromatic light 302 generated from the light source unit 301 is replaced, the sample can be analyzed without mechanical movement of the dichroic mirror.
  • the method may further include an objective lens configured to collect the monochromatic light 302 reflected by the dichroic mirror 304 and transmit it to the sample unit 303.
  • the objective lens serves to increase the irradiation amount of the monochromatic light 302 irradiated to the target in the sample portion 304 without dispersing the monochromatic light 302 by condensing the monochromatic light 302 reflected in step 1,
  • the position is preferably located on the same line of the dichroic mirror 303 and the sample portion 304.
  • the sample unit 304 including the target is to fix the target to be measured
  • the sample unit 304 according to the present invention can be fixed to the solid or liquid target that is impossible to transmit the monochromatic light (302).
  • the detector 306 detects and analyzes the light emission 305 separated from the dichroic mirror 303.
  • the detector 306 is positioned on the same line as the dichroic mirror 306 and the sample unit 304. Light emission 305 separated from 303 is incident.
  • Reflection type luminescence spectroscopy apparatus is a monochromatic filter for separating monochromatic light from a light source when performing a multi-luminescence spectroscopic analysis by using monochromatic light by a multi-wavelength monochromatic light source and multi-wavelength dichroic mirror or Luminescence can be measured without mechanical replacement of a single wavelength dichroic mirror in order to measure the change in emission wavelength generated from the sample by a monochromator and a wide range of monochromatic light.
  • the reflection type luminescence spectroscopy apparatus of the present invention is in the fields of biotechnology and genetic engineering such as DNA structure analysis, DNA sequencing, environmental fields such as the content analysis of organic or inorganic matter in water, chemical reaction and quantum efficiency calculation. It can be usefully used throughout the industry, such as in the field of analytical chemistry, food and agriculture, such as detection of luminescent substances in food, as well as quantification of polymer compounds, film coating.
  • Transmission spectrophotometer (SM240, Korea Spectral Products Co., Ltd.) for measuring the wavelength of the light passing through each component of the transmission type according to the present invention (for example, FIGS. 4 and 6 202, 202 ', 202 ", 204, 207, and 209).
  • SM240 Korea Spectral Products Co., Ltd.
  • FIGS. 4 and 6 202, 202 ', 202 ", 204, 207, and 209 First, the analysis principle of the transmissive luminescence spectrometer in the neglected state is confirmed. In this state, the monochromatic light having a wavelength of about 600 nm to 660 nm is irradiated, the wavelength of the light passing through each section is measured, and the operation principle of the transmissive emission spectrometer is confirmed.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Food Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The present invention relates to a multi-emission spectrochemical analysis method using a multi-band type dichroic mirror, and a multi-emission spectrometer using the same. A transmission type emission spectrometer according to the present invention can use monochromatic light of various regions, required for sample analysis, without a mechanical change of a monochromator by using a multi-wavelength monochromatic light source and a multi-wavelength dichroic mirror, thereby greatly facilitating the sample analysis requiring multi-wavelength monochromatic light analysis and simplifying a manufacturing process according to a simple structure thereof. In addition, irradiated light passes through the dichroic mirror before and after arriving at a target such that monochromatic light arriving at the target is separated from light emitted from the excited target so as to improve spectrometer analysis performance. Therefore, the emission spectrometer can be utilized in biotechnology and genetic engineering such as DNA structure analysis, DNA sequencing and the like, an environmental field such as analysis of an organic substance or mineral content in water, analytical chemistry such as a chemical reaction, quantum efficiency calculation and the like, and the food and agriculture field such as the detection of luminance substances in food, high molecular compound quantification, film coating, and the like.

Description

색선별 거울을 이용한 멀티발광 분광 분석방법 및 이를 이용한 발광 분광 분석장치Multi-luminescence spectroscopy method using color-based mirror and emission spectroscopy device
본 발명은 멀티 밴드형(multi band type) 색선별 거울을 이용한 멀티 발광 분광 분석방법 및 이를 이용한 멀티 발광 분광분석 장치에 관한 것이다.The present invention relates to a multi-luminescence spectroscopic analysis method using a multi-band type color screening mirror and a multi-luminescence spectroscopy apparatus using the same.
형광(Fluorescence)이란 빛이 시료에 조사되었을 때, 시료 내부의 에너지 상태가 바닥상태에서 들뜬 상태로 전이되고, 짧은 시간 내에 다시 수 나노 초 이내에 바닥상태로 돌아갈 때 발생되는 빛을 의미한다. 인광(Phosphorescence)이란 형광과 흡사하나 바닥상태로 돌아갈 때 중간 에너지 수준인 삼중항 상태를 거치므로 형광보다는 지연된 시간 안에 빛을 방출하게 된다.Fluorescence refers to light that is generated when light is irradiated onto a sample, when the energy state inside the sample transitions from the ground state to the excited state and returns to the ground state within a few nanoseconds within a short time. Phosphorescence is similar to fluorescence, but when it returns to the ground state it goes through a triplet state, which is an intermediate energy level, and emits light in a delayed time rather than fluorescence.
발광 분광 분석장치는 빛이 조사된 시료에서 발생하는 형광 또는 인광을 파장 별로 측정하여 시료의 광 물리 및 광화학적 특성을 분석하고, 물질의 미시구조를 해명하는데 사용되는 기기이다. 이러한 발광 분광 분석장치는 DNA 구조 분석, DNA 시퀀싱과 같은 생명공학 및 유전공학 분야, 수질 내 유기물 무기물의 함량분석과 같은 환경분야, 화학반응과 양자효율 계산과 같은 분석화학 분야, 식품 내의 발광물질 검출 등과 같은 식품 및 농업 분야뿐만 아니라 고분자화합물의 정량, 필름코팅 분야 등의 산업 전반에 걸쳐 이용될 수 있다.The luminescence spectrometer is a device used to analyze photophysical and photochemical characteristics of a sample by measuring fluorescence or phosphorescence generated from a sample to which light is irradiated for each wavelength and to elucidate the microstructure of a material. Such luminescence spectroscopy devices are used in biotechnology and genetic engineering fields such as DNA structure analysis, DNA sequencing, environmental fields such as the analysis of organic mineral content in water quality, analytical chemistry fields such as chemical reaction and quantum efficiency calculation, and detection of luminescent substances in foods. It can be used throughout the industry, such as food and agriculture, as well as quantification of polymer compounds, film coating, and the like.
도 1은 종래의 일반적인 발광 분광 분석장치의 구성을 개략적으로 도시한 모식도이다.1 is a schematic diagram schematically showing the configuration of a conventional luminescence spectroscopy apparatus.
도 1을 참조하면, 종래의 발광 분광 분석장치에서는 제1 광필터(102)를 통하여, 백색광(101) 중에서 플레이트(104) 위에 놓인 시료(105)에 부착된 발광체의 흡수 파장과 일치하는 단색광을 선별한다. 선별된 흡수 파장의 단색광(103)의 경로는 단일파장 색선별 거울(single band dichroic mirror)(108)을 통해 조정하여 대물렌즈(106)를 통해 시료(105)에 조사하고, 제2 광필터(109)를 통하여 대물렌즈(106) 및 단일파장 색선별 거울(108)을 통과한 시료(105)의 발광체에 의해 발생한 광(107)에서 시료(105)의 발광체의 발색 파장과 일치하는 광을 선별하여 수광부(110)로 제공한다. 한편 수광부(110)는 다양한 발광 분석소자로 구현되며 시료(108)에 부착된 발광체의 발색 파장을 검출하여 보임으로써 시료(105)의 특정 정보를 확인할 수 있도록 한다.Referring to FIG. 1, in the conventional luminescence spectroscopy apparatus, monochromatic light corresponding to an absorption wavelength of an illuminant attached to a sample 105 placed on a plate 104 among white light 101 is obtained through a first optical filter 102. Select. The path of the monochromatic light 103 of the selected absorption wavelength is adjusted through a single band dichroic mirror 108 and irradiated to the sample 105 through the objective lens 106, and the second optical filter ( The light 107 generated by the light emitter of the sample 105 passing through the objective lens 106 and the single wavelength dichroic mirror 108 through the light source 109 is selected to match the color wavelength of the light emitter of the sample 105. To the light receiving unit 110. On the other hand, the light receiving unit 110 is implemented by a variety of light emission analysis elements and detects the visible wavelength of the light emitting material attached to the sample 108 to check the specific information of the sample 105.
하지만, 종래의 발광 분광 분석장치는 시료(105)에 조사되는 광(光)에 따라 단일한 발광영상을 얻는 구조로 되어 있으므로, 다양한 광을 조사하여 발광영상을 얻은 후 이를 서로 비교함으로써 시료(105)의 정확한 형상을 관찰하기에는 부적합한 문제가 있다.However, since the conventional luminescence spectroscopy apparatus has a structure of obtaining a single luminescent image according to light irradiated onto the sample 105, the sample 105 is obtained by irradiating various lights and comparing them with each other. There is a problem that is not suitable to observe the exact shape of the).
이러한 문제를 해결하기 위해 시료(105)에 다양한 광(光)을 조사할 수 있도록 다수의 광원부를 포함하도록 마련되는 멀티발광 분광 분석장치가 개발된 바 있으나, 종래의 멀티발광 분광 분석장치는 단일 수광부(110)를 통해 발광영상을 얻도록 구성되어 있으므로 시료(105)에 조사되는 광(光)의 유형에 따라 광원부인, 단색화장치, 필터(Filter) 및 단일파장 색선별 거울을 기계적으로 교체해야만 하는 문제점이 있다.In order to solve this problem, a multi-luminescence spectroscopy apparatus has been developed to include a plurality of light source units to irradiate various light to the sample 105, but the conventional multi-luminescence spectroscopy apparatus has a single light receiving unit. Since it is configured to obtain a light emitting image through the 110, it is necessary to mechanically replace the monochromator, the filter, and the single wavelength color-dividing mirror, which are light sources, according to the type of light irradiated to the sample 105. There is a problem.
즉, 종래의 멀티발광 분광 분석장치의 광원부에 포함되는, 단색화장치, 필터(Filter), 단일파장 색선별 거울 등을 교체하기 위해 별도의 전자, 기계적 장비를 요구하기 때문에 생산 비용이 많이 소요되고, 기계적 진동이 발생하게 되어 기기의 고장이 쉽게 유발되며, 광원부 및 필터를 교체하는데 별도의 시간이 소모되기 때문에 원하는 발광 영상을 신속하고 간편하게 얻을 수 없는 문제점이 있다. 이에, 기계적 움직임이 없더라도 다수의 발광 영상을 간편하고 신속하게 얻을 수 있는 멀티발광 분광 분석장치의 개발이 요구되는 실정이다.That is, the production cost is high because it requires a separate electronic and mechanical equipment to replace a monochromator, a filter, a single wavelength dichroic mirror, etc. included in the light source of the conventional multi-luminescence spectroscopy apparatus, Mechanical vibration is generated to easily cause a breakdown of the device, and since it takes extra time to replace the light source unit and the filter, there is a problem that a desired emission image cannot be obtained quickly and simply. Therefore, there is a need for the development of a multi-luminescence spectroscopy apparatus capable of easily and quickly obtaining a plurality of emission images even without mechanical movement.
현재까지 멀티발광 분광 분석을 위한 연구가 활발히 진행되어, 조사되는 광원부의 수에 대응되는 다수의 이미지 획득부를 포함함으로써 기계적 움직임 없이 다수의 발광 영상을 간편하고 신속하게 분석하는 발광 영상 관측 장치가 공지된 바 있다(대한민국공개특허 제2012-0024436호). 그러나, 상기 발광 영상 관측 장치는 제한된 공간 내에 다수의 이미지 획득부를 포함하므로 구조가 복잡하므로, 생산 공정에서 고도의 숙련도가 요구되며, 작은 충격에도 쉽게 광배열이 틀어질 수 있는 문제점이 있다.To date, researches for multi-luminescence spectroscopy have been actively conducted, and a light emitting image observing apparatus for analyzing a plurality of light emitting images easily and quickly without mechanical movement by including a plurality of image acquiring units corresponding to the number of light source portions to be irradiated is known. (Korean Patent Publication No. 2012-0024436). However, since the light emitting image observing apparatus includes a plurality of image acquisition units within a limited space, the structure is complicated. Therefore, a high level of skill is required in the production process, and there is a problem that the light array can be easily twisted even with a small impact.
이에, 본 발명자들은 다파장 단색광원부 및 다파장 색선별 거울을 이용한 멀티발광 분광 분석장치가 광원부 및 필터 교체를 위한 기계적 움직임 없이 다양한 단색 파장에서 다수의 발광 분광 분석자료를 측정할 수 있음을 확인하고 본 발명을 완성하였다.Accordingly, the present inventors have confirmed that the multi-luminescence spectroscopy apparatus using the multi-wavelength monochromatic light source unit and the multi-wavelength dichroic mirror can measure a plurality of emission spectroscopic analysis data at various monochromatic wavelengths without mechanical movement for replacing the light source unit and the filter. The present invention has been completed.
본 발명의 목적은 투과형 발광 분광 분석방법을 제공하는데 있다.An object of the present invention is to provide a transmission type emission spectroscopic analysis method.
본 발명의 다른 목적은 투과형 발광 분광 분석방법을 이용한 투과형 발광 분광 분석장치를 제공하는데 있다.Another object of the present invention is to provide a transmission type emission spectrometer using a transmission type emission spectrometry.
본 발명의 또 다른 목적은 반사형 발광 분광 분석방법을 제공하는데 있다.It is another object of the present invention to provide a reflective emission spectroscopic analysis method.
본 발명의 다른 목적은 반사형 발광 분광 분석방법을 이용한 반사형 발광 분광 분석장치를 제공하는데 있다.Another object of the present invention is to provide a reflective luminescence spectroscopy apparatus using the reflective luminescence spectroscopy method.
상기 목적을 달성하기 위하여,In order to achieve the above object,
본 발명은 다파장 단색광원에 의해 생성된 단색광을 제1 색선별 거울을 통해 반사시키는 단계(단계 1);The present invention includes the steps of reflecting the monochromatic light generated by the multi-wavelength monochromatic light source through the first dichroic mirror (step 1);
상기 단계 1에서 반사된 단색광에 도달하여 타겟을 여기시키고, 상기 여기된 타겟으로부터 발산되는 투과형 발광을 얻는 단계(단계 2);Reaching the monochromatic light reflected in the step 1 to excite the target, and obtaining transmissive light emission emitted from the excited target (step 2);
상기 단계 2에서 얻은 발광 및 발광 이외의 단색광의 혼합광을 제2 색선별 거울을 이용하여 발광 이외의 단색광을 제거하고 발광만을 분리하는 단계(단계 3); 및Removing the monochromatic light other than the luminescent light by separating the luminescent light and the mixed light of the monochromatic light other than the luminescent light obtained in the step 2 using the second dichroic mirror (step 3); And
상기 단계 3에서 분리된 발광을 검출기로 검출하여 분석하는 단계(단계 4)를 포함하는 것을 특징으로 하는 투과형(transmission type) 발광 분광 분석방법을 제공한다. It provides a transmission type emission spectroscopic analysis method comprising the step (step 4) of detecting and analyzing the light emission separated in step 3 with a detector.
또한, 본 발명은 단색광을 발생시키는 광원부;In addition, the present invention is a light source for generating a monochromatic light;
상기 광원부로부터 발생된 단색광을 반사시키는 제1 색선별 거울;A first dichroic mirror reflecting monochromatic light generated from the light source unit;
상기 제1 색선별 거울로부터 반사된 단색광이 타겟에 도달하여 타겟을 여기시키고, 상기 여기된 타겟으로부터 발산되는 투과형 발광이 발광되는, 상기 타겟을 포함하는 시료부;A sample part including the target, wherein the monochromatic light reflected from the first dichroic mirror reaches a target to excite the target, and the transmissive light emitted from the excited target is emitted;
상기 시료부로부터 전달되는 발광 및 상기 발광 이외의 단색광의 혼합광으로부터 상기 발광 이외의 단색광을 제거하고 발광만을 분리하는 제2 색선별 거울; 및A second dichroic mirror that removes monochromatic light other than the light emission from the mixed light of the light emitted from the sample portion and monochromatic light other than the light emission, and separates only the light emission; And
상기 제2 색선별 거울에 의해 분리된 발광을 검출 및 분석하는 검출부를 포함하는 투과형(transmission type) 발광 분광 분석장치를 제공한다.Provided is a transmission type emission spectrometer including a detection unit for detecting and analyzing light emission separated by the second dichroic mirror.
나아가, 본 발명은 다파장 단색광원에 의해 생성된 단색광을 색선별 거울을 통해 반사시키는 단계(단계 1);Furthermore, the present invention comprises the steps of reflecting the monochromatic light generated by the multi-wavelength monochromatic light source through the color-selective mirror (step 1);
상기 단계 1에서 반사된 단색광이 타겟에 도달하여 타겟을 여기시키고, 상기 여기된 타겟으로부터 발산되는 반사형 발광을 얻는 단계(단계 2);The monochromatic light reflected in the step 1 reaches the target to excite the target, and obtains the reflective light emission emitted from the excited target (step 2);
상기 단계 2에서 얻은 발광 및 발광 이외의 단색광의 혼합광을 상기 단계 1의 색선별 거울을 이용하여 발광 이외의 단색광을 제거하고 발광만을 분리하는 단계(단계 3); 및Removing the monochromatic light other than the luminescent light by separating the luminescent light and the monochromatic light other than the luminescent light obtained in the step 2 using the dichroic mirror of the first step (step 3); And
상기 단계 3에서 분리된 발광을 검출기로 검출하여 분석하는 단계(단계 4)를 포함하는 것을 특징으로 하는 반사형(reflection type) 발광 분광 분석방법을 제공한다. It provides a reflection type emission spectroscopic analysis method comprising the step (step 4) of detecting and analyzing the light emission separated in step 3 with a detector.
또한, 본 발명은 단색광을 발생시키는 광원부;In addition, the present invention is a light source for generating a monochromatic light;
상기 광원부로부터 발생된 단색광은 반사시키는 역할 및 하기 시료부로부터 발산되는 반사형 발광만을 선별하는 역할을 동시에 수행하는 색선별 거울;A dichroic mirror that simultaneously performs a role of reflecting the monochromatic light generated from the light source unit and selecting only the reflective light emitted from the sample unit;
상기 색선별 거울로부터 반사된 단색광이 타겟에 도달하여 타겟을 여기시키고 상기 여기된 타겟으로부터 투과형 발광이 발산되는, 상기 타겟을 포함하는 시료부; 및A sample unit including the target, wherein the monochromatic light reflected from the dichroic mirror reaches a target to excite the target, and the transmissive emission is emitted from the excited target; And
상기 색선별 거울에 의해 분리된 발광을 검출 및 분석하는 검출부를 포함하는 반사형(reflection type) 발광 분광 분석장치를 제공한다.Provided is a reflection type emission spectrometer including a detection unit for detecting and analyzing light emission separated by the dichroic mirror.
본 발명에 따른 투과형 발광 분광 분석장치는 다파장 단색광원 및 다파장 색선별 거울을 사용함으로써 시료 분석에 필요한 다양한 영역의 단색광을 단색화 장치의 기계적 교체 없이 사용가능하여 다파장의 단색광 분석이 요구되는 시료 분석이 상당히 용이할 뿐만 아니라, 그 구조가 매우 간단하여 생산 공정이 간단하다. 또한, 조사된 광이 타겟에 도달하기 전후에 색선별 거울을 거치게 하여 타겟에 도달하는 단색광 및 여기된 타겟으로부터 발산된 발광을 선별함으로써 분광 분석장치의 분석능을 향상시키는 효과가 우수하므로, DNA 구조 분석, DNA 시퀀싱과 같은 생명공학 및 유전공학 분야, 수질 내 유기물 또는 무기물의 함량분석과 같은 환경분야, 화학반응과 양자효율 계산과 같은 분석화학 분야, 식품 내의 발광물질 검출 등과 같은 식품 및 농업 분야뿐만 아니라 고분자 화합물의 정량, 필름코팅 분야 등의 산업 전반에 걸쳐 유용하게 사용될 수 있다.The transmission type luminescence spectroscopy apparatus according to the present invention uses a multi-wavelength monochromatic light source and a multi-wavelength dichroic mirror so that the monochromatic light of various regions required for sample analysis can be used without mechanical replacement of the monochromator, thereby requiring the analysis of monochromatic light of multi-wavelength. In addition to being fairly easy to analyze, the structure is so simple that the production process is simple. In addition, since the irradiated light passes through the dichroic mirror before and after reaching the target, the monochromatic light reaching the target and the emitted light emitted from the excited target are selected to improve the analytical performance of the spectroscopic analysis apparatus. In the fields of biotechnology and genetic engineering, such as analysis and DNA sequencing, environmental fields such as the analysis of organic or inorganic content in water quality, analytical chemistry such as chemical reactions and quantum efficiency calculations, as well as food and agriculture, such as the detection of luminescent substances in food. But it can be usefully used throughout the industry, such as quantification of polymer compounds, film coating.
도 1은 종래의 일반적인 발광 분광 분석장치의 구성을 개략적으로 나타낸 모식도이다.1 is a schematic diagram schematically showing the configuration of a conventional general emission spectrometer.
도 2는 본 발명에 따른 투과형(transmission type) 발광 분광 분석장치의 구성을 개략적으로 나타낸 모식도이다.2 is a schematic diagram schematically showing the configuration of a transmission type emission spectrometer according to the present invention.
도 3은 다파장의 광이 조사되었을 경우, 일반적인 멀티 밴드형 색선별 거울의 투과 및 반사되는 파장을 측정한 그래프이다.3 is a graph measuring wavelengths transmitted and reflected by a general multi-band dichroic mirror when light of multiple wavelengths is irradiated.
도 4는 실시예 1에 따른 무-시료 상태에서의 투과형(transmission type) 발광 분광 분석장치의 각 구간별로 통과한 광의 파장을 측정한 그래프이다.FIG. 4 is a graph measuring wavelengths of light passing through each section of the transmission type emission spectrometer in the sample-free state according to Example 1. FIG.
도 5는 실시예 1에 따른 무-시료 상태에서의 투과형(transmission type) 발광 분광 분석장치의 각 구간을 통과한 광의 구간별 파장 그래프를 오버랩하여 비교한 그래프이다.FIG. 5 is a graph comparing overlapping wavelength graphs of light passing through each section of a transmission type emission spectrometer in the sample-free state according to Example 1. FIG.
도 6은 실시예 1에 따른 투과형(transmission type) 발광 분광 분석장치의 각 구간별로 통과한 광의 파장을 측정한 그래프이다.FIG. 6 is a graph measuring wavelengths of light passing through each section of the transmission type emission spectrometer according to Example 1. FIG.
도 7은 실시예 1에 따른 투과형(transmission type) 발광 분광 분석장치의 각 구간을 통과한 광의 구간별 파장 그래프를 오버랩하여 비교한 그래프이다.FIG. 7 is a graph comparing overlapping wavelength graphs of light beams passing through sections of a transmission type emission spectrometer according to Example 1; FIG.
도 8은 본 발명에 따른 반사형(reflection type) 발광 분광 분석장치의 구성을 개략적으로 나타낸 모식도이다.8 is a schematic diagram schematically showing the configuration of a reflection type emission spectrometer according to the present invention.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 다파장 단색광원에 의해 생성된 단색광을 제1 색선별 거울을 통해 반사시키는 단계(단계 1);The present invention includes the steps of reflecting the monochromatic light generated by the multi-wavelength monochromatic light source through the first dichroic mirror (step 1);
상기 단계 1에서 반사된 단색광에 도달하여 타겟을 여기시키고, 상기 여기된 타겟으로부터 발산되는 투과형 발광을 얻는 단계(단계 2);Reaching the monochromatic light reflected in the step 1 to excite the target, and obtaining transmissive light emission emitted from the excited target (step 2);
상기 단계 2에서 얻은 발광 및 발광 이외의 단색광의 혼합광을 제2 색선별 거울을 이용하여 발광 이외의 단색광을 제거하고 발광만을 분리하는 단계(단계 3); 및Removing the monochromatic light other than the luminescent light by separating the luminescent light and the mixed light of the monochromatic light other than the luminescent light obtained in the step 2 using the second dichroic mirror (step 3); And
상기 단계 3에서 분리된 발광을 검출기로 검출하여 분석하는 단계(단계 4)를 포함하는 것을 특징으로 하는 투과형(transmission type) 발광 분광 분석방법을 제공한다. It provides a transmission type emission spectroscopic analysis method comprising the step (step 4) of detecting and analyzing the light emission separated in step 3 with a detector.
이하, 상기 투과형(transmission type) 발광 분광 분석방법을 각 단계별로 상세히 설명한다.Hereinafter, the transmission type emission spectroscopic analysis method will be described in detail for each step.
먼저, 본 발명에 따른 상기 단계 1은 다파장 단색광원에 의해 생성된 단색광을 제1 색선별 거울을 통해 반사시키는 단계로서, 더욱 상세하게는 청색, 녹색 또는 적색의 다파장 단색광원으로부터 발산된 단색광을 제1 색선별 거울로 조사한 다음, 제1 색선별 거울에 조사된 단색광을 시료부의 타겟으로 반사시키는 단계이다.First, the step 1 according to the present invention is a step of reflecting the monochromatic light generated by the multi-wavelength monochromatic light source through the first dichroic mirror, more specifically the monochromatic light emitted from the multi-wavelength monochromatic light source of blue, green or red color. Irradiating with a first dichroic mirror, and then reflecting the monochromatic light irradiated to the first dichroic mirror to the target of the sample unit.
이때, 상기 단계 1의 색선별 거울은 평면 유리를 비금속 물질로 여러 층 피막하고 그 간섭을 이용하는 반사경. 재료나 막의 두께, 층수 등을 조절하여 가시광선의 일부를 적절히 선택하여 반사시키고 나머지를 투과시키는 것으로, 2 이상의 단일 파장범위 광(단색광)을 선별할 수 있는 멀티 밴드형 색선별 거울을 사용하는 것이 바람직하다.In this case, the dichroic mirror of step 1 is a reflector using a layer of the non-metal material of the flat glass coating and the interference. It is preferable to use a multi-band type dichroic mirror capable of selecting two or more single wavelength range light (monochromatic light) by adjusting a material, a film thickness, and the number of layers to properly select and reflect a part of visible light and then transmit the rest. Do.
본 발명에 따른 상기 단계 1을 수행한 후 반사된 단색광을 대물렌즈로 집광하는 단계(단계 1')를 더 포함할 수 있다.After performing step 1 according to the present invention, the method may further include condensing the reflected monochromatic light with an objective lens (step 1 ′).
이때, 대물렌즈는 상기 단계 1에서 반사된 단색광을 집광하여 단색광을 분산없이 시료부에 있는 타겟에 조사되는 단색광의 조사량을 높이는 역할을 수행하게 된다.In this case, the objective lens collects the monochromatic light reflected in the step 1 and serves to increase the irradiation amount of the monochromatic light irradiated to the target in the sample unit without dispersing the monochromatic light.
다음으로, 본 발명에 따른 상기 단계 2는 상기 단계 1에서 반사된 단색광에 도달하여 타겟을 여기시키고, 상기 여기된 타겟으로부터 발산되는 투과형 발광을 얻는 단계로서, 더욱 상세하게는 상기 단계 1의 제1 색선별 거울로부터 반사된 단색광이 타겟에 조사되어, 타겟을 여기시키고, 여기된 타겟은 발광을 발산하여 안정화되는 단계이다.Next, the step 2 according to the present invention is a step of reaching the monochromatic light reflected in the step 1 to excite the target, and to obtain the transmissive light emission emitted from the excited target, more specifically, the first of step 1 The monochromatic light reflected from the dichroic mirror is irradiated onto the target to excite the target, and the excited target emits light and stabilizes.
이때 발산되는 발광은 조사된 단색광이 타겟에 도달하게 되는 타겟일면의 반대편, 즉, 타겟의 타면으로 투과되어 발산된다.In this case, the emitted light is transmitted through the opposite side of the target surface to which the irradiated monochromatic light reaches the target, that is, the other surface of the target.
또한, 타겟에 조사된 단색광 중 일부는 타겟을 여기시키지 못하고 투과하여 타겟으로부터 발산된 발광과 같은 진행방향으로 나아가게 된다.In addition, some of the monochromatic light irradiated to the target does not excite the target, and passes through it, and then proceeds in the same traveling direction as the light emitted from the target.
다음으로, 본 발명에 따른 상기 단계 3은 상기 단계 2에서 얻은 발광 및 발광 이외의 단색광의 혼합광을 제2 색선별 거울을 이용하여 발광 이외의 단색광을 제거하고 발광만을 분리하는 단계로서, 더욱 상세하게는 상기 단계 2의 타겟에서 발산된 발광 및 타겟을 여기시키지 못하고 투과된 단색광으로 이루어진 혼합광을 제2 색선별 거울에 조사시켜 발광은 투과시켜 분리하고, 타겟을 여기시키지 못하고 투과된 단색광은 제1 색선별 거울에서와 같이 반사시켜 제거하는 단계이다.Next, step 3 according to the present invention is a step of removing the monochromatic light other than the light emission and separating only the light emission by using the second color screening mirror mixed light of the monochromatic light other than the light emission and the light emission obtained in the step 2, Preferably, the light emitted from the target of step 2 and the mixed light consisting of the transmitted monochromatic light without exciting the target are irradiated to the second dichroic mirror to transmit and separate the emitted light, and the monochromatic light transmitted without exciting the target is removed. It is a step of reflecting and removing as in the dichroic mirror.
다음으로, 본 발명에 따른 상기 단계 4는 상기 단계 3에서 분리된 발광을 검출기로 검출하여 분석하는 단계이다.Next, step 4 according to the present invention is a step of detecting and analyzing the light emission separated in step 3 with a detector.
본 발명에 따른 투과형(transmission type) 발광 분광 분석방법은 다파장 단색광원에 의한 단색광 및 다파장 색선별 거울을 이용함으로써 멀티 발광 분광 분석을 수행할 경우, 광원으로부터 단색광을 분리하기 위한 단색화 필터 또는 단색화장치 및 다양한 범위의 단색광에 의해 시료로부터 발생되는 발광 파장의 변화를 측정하기 위하여 단일파장 색선별 거울의 기계적 교체없이 발광 측정할 수 있다.Transmission type emission spectroscopic analysis method according to the present invention is a monochromatic filter or monochromator for separating monochromatic light from a light source when performing multi-luminescence spectroscopic analysis by using monochromatic light by multi-wavelength monochromatic light source and multi-wavelength dichroic mirror Luminescence can be measured without mechanical replacement of a single wavelength dichroic mirror to measure the change in emission wavelength generated from the sample by the device and a wide range of monochromatic light.
따라서, 본 발명의 투과형(transmission type) 발광 분광 분석방법은 DNA 구조 분석, DNA 시퀀싱과 같은 생명공학 및 유전공학 분야, 수질 내 유기물 또는 무기물의 함량분석과 같은 환경분야, 화학반응과 양자효율 계산과 같은 분석화학 분야, 식품 내의 발광물질 검출 등과 같은 식품 및 농업 분야뿐만 아니라 고분자 화합물의 정량, 필름코팅 분야 등의 산업 전반에 걸쳐 유용하게 사용될 수 있다.Accordingly, the transmission type emission spectroscopy method of the present invention is in the fields of biotechnology and genetic engineering such as DNA structure analysis, DNA sequencing, environmental fields such as the content analysis of organic or inorganic substances in water, chemical reactions and quantum efficiency calculations. It can be usefully used throughout the industry, such as in the field of analytical chemistry, food and agriculture, such as detection of luminescent substances in food, as well as quantification of polymer compounds, film coating.
또한, 본 발명은In addition, the present invention
단색광을 발생시키는 광원부(1);A light source unit 1 for generating monochromatic light;
상기 광원부(201)로부터 발생된 단색광(202)을 반사시키는 제1 색선별 거울(203);A first dichroic mirror (203) for reflecting the monochromatic light (202) generated from the light source unit (201);
상기 제1 색선별 거울(203)로부터 반사된 단색광(202')이 타겟에 도달하여 타겟을 여기시키고 상기 여기된 타겟으로부터 투과형 발광(207)이 발산되는, 상기 타겟을 포함하는 시료부(205);The sample portion 205 including the target, wherein the monochromatic light 202 ′ reflected from the first dichroic mirror 203 reaches the target to excite the target, and the transmissive light emission 207 is emitted from the excited target. ;
상기 시료부(205)로부터 전달되는 발광(207) 및 상기 발광 이외의 단색광(202')의 혼합광으로부터 상기 발광 이외의 단색광(202')을 제거하고 발광(207)만을 분리하는 제2 색선별 거울(206); 및A second color screening that removes the monochromatic light 202 'other than the light emission from the mixed light of the light emission 207 transmitted from the sample unit 205 and the monochromatic light 202' other than the light emission, and separates only the light emission 207 Mirror 206; And
상기 제2 색선별 거울(206)에 의해 분리된 발광(207)을 검출 및 분석하는 검출부(208)를 포함하는 투과형(transmission type) 발광 분광 분석장치를 제공한다.Provided is a transmission type emission spectrometer including a detector 208 for detecting and analyzing light emission 207 separated by the second dichroic mirror 206.
이하, 본 발명에 따른 투과형(transmission type) 발광 분광 분석장치의 각 구성, 기능 및 작용을 상세히 설명한다.Hereinafter, each configuration, function and operation of the transmission type emission spectrometer according to the present invention will be described in detail.
먼저, 본 발명에 따른 광원부(201)는 시료에 입사되는 단색광(202)을 방출하는 것으로서, 본 발명에 따른 광원부(201)은 청색, 녹색 및 적색으로 이루어진 다파장 단색광원 및 이들의 단색광원을 선택적으로 조절하여 단색광을 발광시키는 제어장치를 포함하여 이루어진다.First, the light source unit 201 according to the present invention emits a monochromatic light 202 incident on a sample. The light source unit 201 according to the present invention uses a multi-wavelength monochromatic light source consisting of blue, green, and red and their monochromatic light sources. And selectively controlling the light emitting device to emit monochromatic light.
다음으로, 제1 색선별 거울(203)은 평면 유리를 비금속 물질로 여러 층 피막하고 그 간섭을 이용하는 반사경으로서, 재료나 막의 두께, 층수 등을 조절하여 가시광선의 일부를 적절히 선택하여 반사시키고 나머지를 투과시키는 특성을 가진다. 본 발명에 따른 제1 색선별 거울(203)은 상기 광원부(201)로부터 발생된 단색광(202')을 반사시키는 역할을 수행하며, 광원부(201)로부터 발생된 단색광(202)에 원치 않는 파장의 광(204)이 포함되어 있을 경우, 원치 않는 파장의 광(204)을 투과시켜 제거하는 역할을 함께 수행한다. Next, the first dichroic mirror 203 is a reflector using multiple layers of flat glass with a non-metallic material and using the interference. The first dichroic mirror 203 adjusts the thickness of the material or the film, the number of layers, and the like to appropriately select a part of the visible light and reflects the rest. It has the property of transmitting. The first dichroic mirror 203 according to the present invention serves to reflect the monochromatic light 202 ′ generated from the light source unit 201, and has an unwanted wavelength to the monochromatic light 202 generated from the light source unit 201. When the light 204 is included, it serves to transmit and remove the light 204 of the unwanted wavelength.
본 발명에 따른 색선별 거울은 2 이상의 단일 파장범위 광(단색광)을 선별할 수 있는 멀티 밴드형 색선별 거울을 사용하는 것이 바람직하다. 예를 들면, 도 3에 나타난 바와 같이 백색광과 같은 다파장의 광을 다파장 색선별 거울에 조사할 경우, 멀티 밴드형 색선별 거울은 다수의 특정 파장범위 광(단색광)을 선택적으로 반사하고, 이외 범위의 광은 투과하는 특징이 있다. 이러한 성질로 인하여 광원부(201)로부터 발생된 단색광(202)의 파장을 교체할 경우에도, 색선별 거울의 기계적인 움직임 없이 시료의 분석이 가능하다.As the dichroic mirror according to the present invention, it is preferable to use a multi-band dichroic mirror capable of selecting two or more single wavelength range light (monochrome light). For example, as shown in FIG. 3, when a multi-wavelength dichroic mirror such as white light is irradiated onto the multi-color dichroic mirror, the multi-band dichroic mirror selectively reflects a plurality of specific wavelength range light (monochrome light), Light in the other range is characterized by being transmitted. Due to this property, even when the wavelength of the monochromatic light 202 generated from the light source unit 201 is replaced, the sample can be analyzed without mechanical movement of the dichroic mirror.
상기 제1 색선별 거울(203)에서 반사된 단색광(202')을 집광하여 시료부(205)로 전달하는 대물렌즈를 더 포함할 수 있다.The method may further include an objective lens configured to collect the monochromatic light 202 ′ reflected by the first dichroic mirror 203 and transmit the light to the sample unit 205.
이때, 대물렌즈는 상기 단계 1에서 반사된 단색광(202')을 집광하여 단색광(202')의 분산 없이 시료부(205)에 있는 타겟에 조사되는 단색광(202')의 조사량을 높이는 역할을 수행하게 되며, 위치는 색선별 거울(203)과 시료부(205)의 동일선상에 위치하는 것이 바람직하다.In this case, the objective lens collects the monochromatic light 202 'reflected in step 1 and increases the irradiation amount of the monochromatic light 202' irradiated to the target in the sample unit 205 without dispersing the monochromatic light 202 '. The position is preferably located on the same line of the dichroic mirror 203 and the sample unit 205.
다음으로, 타겟을 포함하는 시료부(205)는 측정하고자 하는 타겟을 고정시키는 것으로, 본 발명에 따른 시료부(205)는 단색광의 투과가 가능한 액체 또는 고체 타겟을 고정시킬 수 있으며, 그 위치는 제1 색선별 거울(203)과 제2 색선별 거울(206)과 동일선 상에 위치하는 것이 바람직하다.Next, the sample unit 205 including the target is to fix the target to be measured, the sample unit 205 according to the present invention can be fixed to the liquid or solid target that can transmit the monochromatic light, the position is It is preferable to be located on the same line as the first dichroic mirror 203 and the second dichroic mirror 206.
다음으로, 제2 색선별 거울(206)는 상기 시료부(205)로부터 발광된 발광(207) 및 타겟을 여기시키지 못하고 투과된 단색광(202')으로 이루어진 혼합광을 발광(207)은 투과시켜 분리하고, 타겟을 여기시키지 못하고 투과된 단색광(202')은 제1 색선별 거울(203)에서와 같이 반사시켜 제거하는 시키는 역할을 수행하며, 제1 색선별 거울(203)과 마찬가지로 2 이상의 단일 파장범위 광(단색광)을 선별할 수 있는 멀티 밴드형 색선별 거울을 사용하는 것이 바람직하다.Next, the second dichroic mirror 206 transmits the mixed light including the light emission 207 emitted from the sample unit 205 and the monochromatic light 202 ′ transmitted without exciting the target, thereby transmitting the light emission 207. The monochromatic light 202 ′, which is separated and does not excite the target, reflects and is removed as in the first dichroic mirror 203, and similarly to the first dichroic mirror 203, two or more single light beams. It is preferable to use a multi-band type dichroic mirror capable of selecting wavelength range light (monochrome light).
다음으로, 검출부(208)는 상기 제2 색선별 거울(206)로부터 분리된 발광(207)을 검출 및 분석하는 것으로, 시료부(205) 및 제2 색선별 거울(206)과 동일선상에 위치하여 제2 색선별 거울(206)로부터 분리된 발광(207)이 입사된다.Next, the detector 208 detects and analyzes the light emission 207 separated from the second dichroic mirror 206, and is located on the same line as the sample unit 205 and the second dichroic mirror 206. The light emission 207 separated from the second dichroic mirror 206 is incident.
본 발명에 따른 투과형(transmission type) 발광 분광 분석장치는 다파장 단색광원에 의한 단색광 및 다파장 색선별 거울을 이용함으로써 멀티 발광 분광분석을 수행할 경우, 광원으로부터 단색광을 분리하기 위한 단색화 필터 또는 단색화장치 및 다양한 범위의 단색광에 의해 시료로부터 발생되는 발광 파장의 변화를 측정하기 위하여 단일파장 색선별 거울의 기계적 교체없이 발광을 측정할 수 있다.Transmission type luminescence spectroscopy apparatus according to the present invention is a monochromatic filter or monochrome for separating monochromatic light from a light source when performing multi-luminescence spectroscopic analysis by using monochromatic light by multi-wavelength monochromatic light source and multi-wavelength dichroic mirror Luminescence can be measured without mechanical replacement of a single wavelength dichroic mirror in order to measure the change in emission wavelength generated from the sample by the device and a wide range of monochromatic light.
따라서, 본 발명의 투과형(transmission type) 발광 분광 분석장치는 DNA 구조 분석, DNA 시퀀싱과 같은 생명공학 및 유전공학 분야, 수질 내 유기물 또는 무기물의 함량분석과 같은 환경분야, 화학반응과 양자효율 계산과 같은 분석화학 분야, 식품 내의 발광물질 검출 등과 같은 식품 및 농업 분야뿐만 아니라 고분자 화합물의 정량, 필름코팅 분야 등의 산업 전반에 걸쳐 유용하게 사용될 수 있다.Therefore, the transmission type emission spectroscopy apparatus of the present invention is in the fields of biotechnology and genetic engineering, such as DNA structure analysis, DNA sequencing, environmental fields such as the content analysis of organic or inorganic substances in water, chemical reactions and quantum efficiency calculations. It can be usefully used throughout the industry, such as in the field of analytical chemistry, food and agriculture, such as detection of luminescent substances in food, as well as quantification of polymer compounds, film coating.
나아가, 본 발명은 다파장 단색광원에 의해 생성된 단색광을 색선별 거울을 통해 반사시키는 단계(단계 1);Furthermore, the present invention comprises the steps of reflecting the monochromatic light generated by the multi-wavelength monochromatic light source through the color-selective mirror (step 1);
상기 단계 1에서 반사된 단색광이 타겟에 도달하여 타겟을 여기시키고, 상기 여기된 타겟으로부터 발산되는 반사형 발광을 얻는 단계(단계 2);The monochromatic light reflected in the step 1 reaches the target to excite the target, and obtains the reflective light emission emitted from the excited target (step 2);
상기 단계 2에서 얻은 발광 및 발광 이외의 단색광의 혼합광을 상기 단계 1의 색선별 거울을 이용하여 발광 이외의 단색광을 제거하고 발광만을 분리하는 단계(단계 3); 및Removing the monochromatic light other than the luminescent light by separating the luminescent light and the monochromatic light other than the luminescent light obtained in the step 2 using the dichroic mirror of the first step (step 3); And
상기 단계 3에서 분리된 발광을 검출기로 검출하여 분석하는 단계(단계 4)를 포함하는 것을 특징으로 하는 반사형(reflection type) 발광 분광 분석방법을 제공한다. It provides a reflection type emission spectroscopic analysis method comprising the step (step 4) of detecting and analyzing the light emission separated in step 3 with a detector.
이하, 상기 반사형(reflection type) 발광 분광 분석방법을 각 단계별로 상세히 설명한다.Hereinafter, the reflection type emission spectroscopic analysis method will be described in detail for each step.
먼저, 본 발명에 따른 상기 단계 1은 다파장 단색광원에 의해 생성된 단색광을 색선별 거울을 통해 반사시키는 단계로서, 더욱 상세하게는 청색, 녹색 또는 적색의 다파장 단색광원으로부터 발산된 단색광을 색선별 거울로 조사한 다음, 색선별 거울에 조사된 단색광을 시료부의 타겟으로 반사시키는 단계이다.First, the step 1 according to the present invention is a step of reflecting the monochromatic light generated by the multi-wavelength monochromatic light source through the color screening mirror, more specifically, the monochromatic light emitted from the multi-wavelength monochromatic light source of blue, green or red color. After irradiating with the selection mirror, it is the step of reflecting the monochromatic light irradiated to the dichroic mirror to the target of the sample unit.
이때, 상기 단계 1의 색선별 거울은 평면 유리를 비금속 물질로 여러 층 피막하고 그 간섭을 이용하는 반사경. 재료나 막의 두께, 층수 등을 조절하여 가시광선의 일부를 적절히 선택하여 반사시키고 나머지를 투과시키는 것으로, 2 이상의 단일 파장영역 광(단색광)을 선별할 수 있는 멀티 밴드형 색선별 거울을 사용하는 것이 바람직하다.In this case, the dichroic mirror of step 1 is a reflector using a layer of the non-metal material of the flat glass coating and the interference. It is preferable to use a multi-band type dichroic mirror capable of selecting two or more single wavelength region light (monochromatic light) by adjusting a material, a film thickness, the number of layers, etc. to appropriately select and reflect a part of visible light and to transmit the rest. Do.
본 발명에 따른 상기 단계 1을 수행한 후 반사된 단색광을 대물렌즈로 집광하는 단계(단계 1')를 더 포함할 수 있다.After performing step 1 according to the present invention, the method may further include condensing the reflected monochromatic light with an objective lens (step 1 ′).
이때, 대물렌즈는 상기 단계 1에서 반사된 단색광을 집광하여 단색광을 분산없이 시료부에 있는 타겟에 조사되는 단색광의 조사량을 높이는 역할을 수행하게 된다.In this case, the objective lens collects the monochromatic light reflected in the step 1 and serves to increase the irradiation amount of the monochromatic light irradiated to the target in the sample unit without dispersing the monochromatic light.
다음으로, 본 발명에 따른 상기 단계 2는 상기 단계 1에서 반사된 단색광에 도달하여 타겟을 여기시키고, 상기 여기된 타겟으로부터 발산되는 반사형 발광을 얻는 단계로서, 더욱 상세하게는 상기 단계 1의 색선별 거울로부터 반사된 단색광이 타겟에 조사되어, 타겟을 여기시키고, 여기된 타겟은 발광을 발산하여 안정화되는 단계이다.Next, the step 2 according to the present invention is a step of reaching the monochromatic light reflected in the step 1 to excite the target, and to obtain the reflective light emission emitted from the excited target, more specifically the color of the step 1 Monochromatic light reflected from the selection mirror is irradiated to the target to excite the target, and the excited target emits light emission and is stabilized.
이때 발산되는 발광은 단색광이 타겟으로 조사된 경로와 공간적으로 일치하는 경로로 반사형 발광을 하게 된다.In this case, the emitted light emits the reflective light in a path that matches the path irradiated with the monochromatic light spatially.
또한, 타겟에 조사된 단색광 중 일부는 타겟을 여기시키지 못하고 투과하여 타겟으로부터 발산된 발광과 같은 진행방향으로 나아가게 된다.In addition, some of the monochromatic light irradiated to the target does not excite the target, and passes through it, and then proceeds in the same traveling direction as the light emitted from the target.
다음으로, 본 발명에 따른 상기 단계 3은 상기 단계 2에서 얻은 발광 및 발광 이외의 단색광의 혼합광을 상기 단계 1의 색선별 거울을 이용하여 발광 이외의 단색광을 제거하고 발광만을 분리하는 단계로서, 더욱 상세하게는 상기 단계 2의 타겟에서 발산된 발광 및 타겟을 여기시키지 못하고 반사된 단색광으로 이루어진 혼합광을 상기 단계 1의 색선별 거울에 조사시켜 발광은 투과시켜 분리하고, 타겟을 여기시키지 못하고 투과된 단색광은 상기 단계 1에서와 같이 반사시켜 제거하는 단계이다.Next, the step 3 according to the present invention is a step of removing the monochromatic light other than the light emission and separating only the light emission by using the mixed light of the monochromatic light other than the light emission and the light emission obtained in the step 2 by using the color screening mirror of the step 1, More specifically, the mixed light consisting of the emitted light emitted from the target of step 2 and the target monochromatic light that is not excited and irradiated to the color-dividing mirror of step 1 is irradiated to transmit and separate the light, and the target cannot be excited. The monochromatic light is reflected and removed as in step 1 above.
다음으로, 본 발명에 따른 상기 단계 4는 상기 단계 3에서 분리된 발광을 검출기로 검출하여 분석하는 단계이다.Next, step 4 according to the present invention is a step of detecting and analyzing the light emission separated in step 3 with a detector.
본 발명에 따른 반사형(reflection type) 발광 분광 분석방법은 다파장 단색광원에 의한 단색광 및 다파장 색선별 거울을 이용함으로써 멀티 발광 분광 분석을 수행할 경우, 광원으로부터 단색광을 분리하기 위한 단색화 필터 또는 단색화장치 및 다양한 범위의 단색광에 의해 시료로부터 발생되는 발광 파장의 변화를 측정하기 위하여 단일파장 색선별 거울의 기계적 교체없이 발광을 측정할 수 있다.The reflection type emission spectroscopy method according to the present invention is a monochrome filter for separating monochromatic light from a light source when performing multi-luminescence spectroscopic analysis by using monochromatic light and multi-wavelength dichroic mirror by a multi-wavelength monochromatic light source or Luminescence can be measured without mechanical replacement of a single wavelength dichroic mirror in order to measure the change in emission wavelength generated from the sample by a monochromator and a wide range of monochromatic light.
따라서, 본 발명의 반사형(reflection type) 발광 분광 분석방법은 DNA 구조 분석, DNA 시퀀싱과 같은 생명공학 및 유전공학 분야, 수질 내 유기물 또는 무기물의 함량분석과 같은 환경분야, 화학반응과 양자효율 계산과 같은 분석화학 분야, 식품 내의 발광물질 검출 등과 같은 식품 및 농업 분야뿐만 아니라 고분자 화합물의 정량, 필름코팅 분야 등의 산업 전반에 걸쳐 유용하게 사용될 수 있다.Therefore, the reflection type emission spectroscopy method of the present invention is in the fields of biotechnology and genetic engineering such as DNA structure analysis, DNA sequencing, environmental fields such as the content analysis of organic or inorganic matter in water, chemical reaction and quantum efficiency calculation. It can be usefully used throughout the industry, such as in the field of analytical chemistry, food and agriculture, such as detection of luminescent substances in food, as well as quantification of polymer compounds, film coating.
나아가, 본 발명은Furthermore, the present invention
단색광을 발생시키는 광원부(301);A light source unit 301 for generating monochromatic light;
상기 광원부(301)로부터 발생된 단색광(302)은 반사시키는 역할과, 하기 시료부(304)로부터 발광되는 반사형 발광(305)만을 선별하는 역할을 동시에 수행하는 색선별 거울(303);A dichroic mirror 303 which simultaneously performs a role of reflecting the monochromatic light 302 generated from the light source unit 301 and selecting only the reflective light emission 305 emitted from the sample unit 304;
상기 색선별 거울(303)로부터 반사된 단색광(302)이 타겟에 도달하여 타겟을 여기시키고 상기 여기된 타겟으로부터 투과형 발광(305)이 발광되는, 상기 타겟을 포함하는 시료부(304); 및A sample unit 304 including the target, wherein the monochromatic light 302 reflected from the dichroic mirror 303 reaches a target to excite the target, and the transmissive light emission 305 is emitted from the excited target; And
상기 색선별 거울(303)에 의해 분리된 발광(305)을 검출 및 분석하는 검출부(306)를 포함하는 반사형(reflection type) 발광 분광 분석장치를 제공한다.Provided is a reflection type emission spectroscopy apparatus including a detection unit 306 for detecting and analyzing light emission 305 separated by the dichroic mirror 303.
이하, 본 발명에 따른 반사형(reflection type) 발광 분광 분석장치의 각 구성, 기능 및 작용을 상세히 설명한다.Hereinafter, each configuration, function and operation of the reflection type emission spectroscopy apparatus according to the present invention will be described in detail.
먼저, 본 발명에 따른 광원부(301)는 시료에 입사되는 단색광(302)을 방출하는 것으로서, 본 발명에 따른 광원부(301)은 청색, 녹색 및 적색으로 이루어진 다파장 단색광원 및 이들의 다파장 단색광원을 선택적으로 조절하여 단색광(302)을 발광시키는 제어장치를 포함하여 이루어진다.First, the light source unit 301 according to the present invention emits a monochromatic light 302 incident on a sample, and the light source unit 301 according to the present invention is a multi-wavelength monochromatic light source consisting of blue, green and red and their multi-wavelength monochromatic light. And a controller for selectively adjusting the circle to emit the monochromatic light 302.
다음으로, 색선별 거울(303)은 평면 유리를 비금속 물질로 여러 층 피막하고 그 간섭을 이용하는 반사경으로서, 재료나 막의 두께, 층수 등을 조절하여 가시광선의 일부를 적절히 선택하여 반사시키고 나머지를 투과시키는 특성을 가진다. 본 발명에 따른 색선별 거울(303)은 상기 광원부(301)로부터 발생된 단색광(302)을 반사시키는 역할을 수행한다. 또한, 상기 시료부(304)로부터 발산된 발광(305) 및 타겟을 여기시키지 못하고 반사된 단색광(302)으로 이루어진 혼합광을 발광은 투과시켜 분리하고, 타겟을 여기시키지 못하고 반사된 단색광(302)을 반사시켜 반사형 발광(305)만을 선별하는 역할을 동시에 수행한다.Next, the dichroic mirror 303 is a reflector using multiple layers of planar glass as a non-metallic material and using the interference. The dichroic mirror 303 adjusts the thickness of the material or the film, the number of layers, and the like to appropriately select a part of the visible light to reflect the light and transmit the rest. Has characteristics. The dichroic mirror 303 according to the present invention serves to reflect the monochromatic light 302 generated from the light source unit 301. In addition, the mixed light including the light emission 305 emitted from the sample unit 304 and the monochromatic light 302 reflected without excitation of the target is transmitted through and separated from the light emission, and the monochromatic light 302 reflected without excitation of the target is separated. Reflects the light and performs only the selection of the reflective light emission 305 at the same time.
본 발명에 따른 색선별 거울은 2 이상의 단일 파장범위 광(단색광)을 선별할 수 있는 멀티 밴드형 색선별 거울을 사용하는 것이 바람직하다. 예를 들면, 도 3에 나타난 바와 같이 백색광과 같은 다파장의 광을 다파장 색선별 거울에 조사할 경우, 멀티 밴드형 색선별 거울은 다수의 특정 파장범위 광(단색광)을 선택적으로 반사하고, 이외 영역의 광은 투과하는 특징이 있다. 이러한 성질로 인하여 광원부(301)로부터 발생된 단색광(302)의 파장을 교체할 경우에도, 색선별 거울의 기계적인 움직임 없이 시료의 분석이 가능하다.As the dichroic mirror according to the present invention, it is preferable to use a multi-band dichroic mirror capable of selecting two or more single wavelength range light (monochrome light). For example, as shown in FIG. 3, when a multi-wavelength dichroic mirror such as white light is irradiated onto the multi-color dichroic mirror, the multi-band dichroic mirror selectively reflects a plurality of specific wavelength range light (monochrome light), Light in other areas is transmitted. Due to this property, even when the wavelength of the monochromatic light 302 generated from the light source unit 301 is replaced, the sample can be analyzed without mechanical movement of the dichroic mirror.
상기 색선별 거울(304)에서 반사된 단색광(302)을 집광하여 시료부(303)로 전달하는 대물렌즈를 더 포함할 수 있다.The method may further include an objective lens configured to collect the monochromatic light 302 reflected by the dichroic mirror 304 and transmit it to the sample unit 303.
이때, 대물렌즈는 상기 단계 1에서 반사된 단색광(302)을 집광하여 단색광(302)을 분산없이 시료부(304)에 있는 타겟에 조사되는 단색광(302)의 조사량을 높이는 역할을 수행하게 되며, 위치는 색선별 거울(303)과 시료부(304)의 동일선상에 위치하는 것이 바람직하다.At this time, the objective lens serves to increase the irradiation amount of the monochromatic light 302 irradiated to the target in the sample portion 304 without dispersing the monochromatic light 302 by condensing the monochromatic light 302 reflected in step 1, The position is preferably located on the same line of the dichroic mirror 303 and the sample portion 304.
다음으로, 타겟을 포함하는 시료부(304)는 측정하고자 하는 타겟을 고정시키는 것으로, 본 발명에 따른 시료부(304)는 단색광(302)의 투과가 불가능한 고체 또는 액체 타겟을 고정시킬 수 있다.Next, the sample unit 304 including the target is to fix the target to be measured, the sample unit 304 according to the present invention can be fixed to the solid or liquid target that is impossible to transmit the monochromatic light (302).
다음으로, 검출부(306)는 상기 색선별 거울(303)로부터 분리된 발광(305)을 검출 및 분석하는 것으로, 색선별 거울(306) 및 시료부(304)와 동일선상에 위치하여 색선별 거울(303)로부터 분리된 발광(305)이 입사된다.Next, the detector 306 detects and analyzes the light emission 305 separated from the dichroic mirror 303. The detector 306 is positioned on the same line as the dichroic mirror 306 and the sample unit 304. Light emission 305 separated from 303 is incident.
본 발명에 따른 반사형(reflection type) 발광 분광 분석장치는 다파장 단색광원에 의한 단색광 및 다파장 색선별 거울을 이용함으로써 멀티 발광 분광분석을 수행할 경우, 광원으로부터 단색광을 분리하기 위한 단색화 필터 또는 단색화장치 및 다양한 범위의 단색광에 의해 시료로부터 발생되는 발광 파장의 변화를 측정하기 위하여 단일파장 색선별 거울의 기계적 교체없이 발광을 측정할 수 있다.Reflection type luminescence spectroscopy apparatus according to the present invention is a monochromatic filter for separating monochromatic light from a light source when performing a multi-luminescence spectroscopic analysis by using monochromatic light by a multi-wavelength monochromatic light source and multi-wavelength dichroic mirror or Luminescence can be measured without mechanical replacement of a single wavelength dichroic mirror in order to measure the change in emission wavelength generated from the sample by a monochromator and a wide range of monochromatic light.
따라서, 본 발명의 반사형(reflection type) 발광 분광 분석장치는 DNA 구조 분석, DNA 시퀀싱과 같은 생명공학 및 유전공학 분야, 수질 내 유기물 또는 무기물의 함량분석과 같은 환경분야, 화학반응과 양자효율 계산과 같은 분석화학 분야, 식품 내의 발광물질 검출 등과 같은 식품 및 농업 분야뿐만 아니라 고분자 화합물의 정량, 필름코팅 분야 등의 산업 전반에 걸쳐 유용하게 사용될 수 있다.Accordingly, the reflection type luminescence spectroscopy apparatus of the present invention is in the fields of biotechnology and genetic engineering such as DNA structure analysis, DNA sequencing, environmental fields such as the content analysis of organic or inorganic matter in water, chemical reaction and quantum efficiency calculation. It can be usefully used throughout the industry, such as in the field of analytical chemistry, food and agriculture, such as detection of luminescent substances in food, as well as quantification of polymer compounds, film coating.
이하, 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited to the following examples.
투과형 발광 분광 분석 장치의 시료 분석 원리Sample Analysis Principle of Transmissive Emission Spectroscopy
본 발명에 따른 투과형 발광 분광 분석 장치를 이용하여 시료가 분석되는 과정을 다음의 분석예에 의해 이해될 수 있다.The process of analyzing a sample using the transmission type emission spectrophotometer according to the present invention can be understood by the following analysis example.
본 발명에 따른 투과형 발광 분광 분석장치 각 구성요소를 통과한 광의 파장을 측정하기 위한 분광광도계(SM240, 코리아스펙트랄프로덕츠(주))가 분석장치의 각 구간(예를 들면, 도 4 및 도 6의 202, 202', 202", 204, 207 및 209의 위치)에 구비된다. 먼저, 무시료 상태에서 투과형 발광 분석장치의 분석원리를 확인한다. 색선별 거울로 인한 광 변화의 확인은 무시료 상태에서 광원부를 조작하여 약 600 nm 내지 660 nm 파장의 단색광을 조사한 후, 각 구간을 통과하는 광의 파장을 측정하여, 투과형 발광 분광 분석장치의 동작원리를 확인한다. 그후, 시료 측정시 투과형 발광 분석장치의 분석원리를 확인하기 위하여 상기 무-시료 상태의 측정이 완료되면, 시료부에 시료(Rhodamin 6G)를 고정시키고, 광원부를 조작하여 시료(Rhodamin 6G) 분석에 적합한 약 505 nm 내지 560 nm의 단색광을 조사하여 각 구간을 통과하는 광의 파장을 측정한다. 이때, 상기 분광 분석장치의 제2 색선별 거울(207)이 검출부(208)에 도달하는 광 변화에 미치는 영향을 확인하기 위하여, 제2 색선별 거울(207)을 장착한 경우와 그렇지 않은 경우, 각각의 각 구간별 통과된 광의 파장을 측정한다.Transmission spectrophotometer (SM240, Korea Spectral Products Co., Ltd.) for measuring the wavelength of the light passing through each component of the transmission type according to the present invention (for example, FIGS. 4 and 6 202, 202 ', 202 ", 204, 207, and 209). First, the analysis principle of the transmissive luminescence spectrometer in the neglected state is confirmed. In this state, the monochromatic light having a wavelength of about 600 nm to 660 nm is irradiated, the wavelength of the light passing through each section is measured, and the operation principle of the transmissive emission spectrometer is confirmed. When the measurement of the sample-free state is completed in order to confirm the analysis principle of the device, the sample (Rhodamin 6G) is fixed to the sample part, and the light source part is operated to about 505 nm to 560 nm suitable for analyzing the sample (Rhodamin 6G). only The wavelength of the light passing through each section is measured by irradiating the light, and in order to check the effect of the second dichroic mirror 207 of the spectroscopic analyzer on the light change reaching the detection unit 208, In the case where the dichroic mirror 207 is mounted or not, the wavelength of the light passing through each section is measured.
도 4를 참조하면, 본 발명에 따른 제1 색선별 거울은 조사되는 단색광(202)에 원하지 않는 파장의 광(204)이 존재할 경우, 이를 제거하고 분석에 필요한 파장의 단색광(202')만을 반사시켜 선별하는 역할을 수행한다. 예를 들면, 광원부(201)로부터 약 600 nm 내지 660 nm 파장의 광을 제1 색선별 거울(203)에 조사하면, 원하지 않는 약 630 nm 내지 660 nm의 광(204)은 투과되어 제거되고, 분석에 요구되는 약 600 nm 내지 640 nm의 광(202')은 반사되어 선별되는 것을 알 수 있다(도 4의 202, 202' 및 204 그래프 참조). Referring to FIG. 4, in the first dichroic mirror according to the present invention, if the light 204 of the unwanted wavelength is present in the monochromatic light 202 to be irradiated, the first dichroic mirror removes it and reflects only the monochromatic light 202 ′ of the wavelength required for analysis. Screening is performed. For example, when light of about 600 nm to 660 nm wavelength is irradiated from the light source unit 201 to the first dichroic mirror 203, the unwanted light 204 nm to 660 nm is transmitted through and removed. It can be seen that the light 202 'of about 600 nm to 640 nm required for analysis is reflected and selected (see graphs 202, 202' and 204 of Figure 4).
또한, 제2 색선별 거울은 제1 색선별 거울에서 반사된 단색광(202')을 재반사시켜 타겟으로부터 발산된 발광(207)과 분리함으로써, 타겟을 여기시키지 못하고 투과된 단색광(202')이 검출부(208)에 도달하지 못하도록 제거하는 역할을 수행하는 것을 알 수 있다. 예를 들면, 상기 제1 색선별 거울에서 반사된 광(202')은 제2 색선별 거울에 의하여 재반사되어 제거됨으로써, 검출부(208)로 투과되지 않는 것을 알 수 있다(도 4의 202', 202" 및 209 그래프 참조).In addition, the second dichroic mirror re-reflects the monochromatic light 202 'reflected by the first dichroic mirror to be separated from the light emission 207 emitted from the target, thereby transmitting the monochromatic light 202' which does not excite the target and is transmitted. It can be seen that the role of removing so as not to reach the detector 208. For example, it can be seen that the light 202 ′ reflected by the first dichroic mirror is not reflected by the second dichroic mirror to be removed by the second dichroic mirror (202 ′ of FIG. 4). , 202 "and 209 graphs).
도 6을 참조하면, 본 발명에 따른 투과형 발광 분광 분석장치는 다파장 단색광원 및 다파장 색선별 거울을 사용함으로써 무시료 상태의 단색광 조사에 사용된 단색광과 다른 파장의 단색광 조사 및 단색광의 선별을 장치의 기계적 움직임 없이 용이하게 수행할 수 있는 것이 확인되었다(도 4 및 도 6의 202 그래프 참조). Referring to FIG. 6, the transmission type luminescence spectroscopy apparatus according to the present invention employs a multi-wavelength monochromatic light source and a multi-wavelength dichroic mirror to select monochromatic light irradiated at a wavelength different from that of monochromatic light used for irradiating monochromatic light and to select monochromatic light. It has been confirmed that it can be easily performed without mechanical movement of the device (see 202 graphs of FIGS. 4 and 6).
또한, 본 발명에 따른 색선별 거울은 무시료 상태에서와 마찬가지로 광원부(201)로부터 조사된 약 500 nm 내지 560 nm 파장의 단색광(202)에 약 500 nm 내지 520 nm 및 540 nm 내지 560 nm의 원치 않는 파장의 광(204)이 존재할 경우, 이를 투과함으로써 제거하고, 시료분석에 필요한 약 520 nm 내지 540 nm 파장의 단색광(202') 만을 반사하여 선별하는 역할을 수행하는 것을 알 수 있다(도 6의 202, 202' 및 204 그래프 참조). In addition, the dichroic mirror according to the present invention has a source of about 500 nm to 520 nm and 540 nm to 560 nm in the monochromatic light 202 having a wavelength of about 500 nm to 560 nm irradiated from the light source unit 201 as in the state of negligence. If the light 204 of the wavelength does not exist, it is removed by transmitting it, it can be seen that serves to reflect and select only the monochromatic light 202 ′ of about 520 nm to 540 nm wavelength required for sample analysis (FIG. 6). (See graphs 202, 202 'and 204).
나아가, 제2 선색선별 거울의 유무로 인한, 검출부(208)에 도달하는 광의 파장을 통하여 알 수 있듯이 제2 색선별 거울은 시료부(205)에 존재하는 타겟을 여기시키지 못하고 투과된, 약 520 nm 내지 540 nm 파장의 단색광(202')을 반사시켜 제거하고, 타겟을 여기시켜 발생되는 발광만을 검출부(208)에 도달시켜 분광 분석장치의 분석능을 향상시킴으로써 보다 정확한 타겟 정보를 얻는다(도 6의 202' 및 207 그래프 참조).Furthermore, as can be seen from the wavelength of the light reaching the detection unit 208 due to the presence or absence of the second dichroic dividing mirror, the second dichroic mirror does not excite the target present in the sample portion 205 and is transmitted about 520. By reflecting and removing monochromatic light 202 ′ having a wavelength from nm to 540 nm, and excitation of the target, only the emission generated by reaching the detection unit 208 improves the analytical power of the spectroscopic analyzer to obtain more accurate target information (FIG. 6). 202 'and 207 graphs).
[부호의 설명][Description of the code]
101: 백색광101: white light
102: 제1 광필터102: first optical filter
103: 단색광103: monochromatic light
104: 플레이트104: plate
105: 시료105: sample
106: 대물렌즈106: objective lens
107: 시료(105)의 발광체에 의해 발생된 광107: light generated by the light emitter in the sample 105
108: 단일파장 색선별 거울(single band dichroi mirror)108: single-band dichroi mirror
109: 제2 광필터109: second optical filter
110: 수광부110: light receiver
201: 다파장 단색광원201: multi-wavelength monochromatic light source
202: 단색광202: monochromatic light
202': 제1 색선별 거울로부터 반사된 단색광202 ': monochromatic light reflected from the first dichroic mirror
202": 제2 색선별 거울로부터 반사된 단색광 202 ": monochromatic light reflected from the second dichroic mirror
203: 제1 색선별 거울203: first color discriminating mirror
204: 제1 색선별 겨울로부터 투과된 단색광204: Monochromatic light transmitted from the first color-coded winter
205: 시료부205: sample portion
206: 제2 색선별 거울206: second dichroic mirror
207: 시료(205)의 발광체에 의해 발생된 광207: light generated by the light emitter in the sample 205
208: 검출부208: detection unit
209: 제2 색선별 거울을 투과한 광209: light transmitted through the second color discriminating mirror
301: 다파장 단색광원301: multi-wavelength monochromatic light source
302: 단색광302: monochromatic light
303: 색선별 거울303: dichroic mirror
304: 시료부304: sample part
305: 시료(304)의 발광체에 의해 발생된 광305: Light generated by the light emitter of the sample 304
306: 검출부306: detection unit

Claims (12)

  1. 다파장 단색광원에 의해 생성된 단색광을 제1 색선별 거울을 통해 반사시키는 단계(단계 1);Reflecting the monochromatic light generated by the multi-wavelength monochromatic light source through the first dichroic mirror (step 1);
    상기 단계 1에서 반사된 단색광에 도달하여 타겟을 여기시키고, 상기 여기된 타겟으로부터 발산되는 투과형 발광을 얻는 단계(단계 2);Reaching the monochromatic light reflected in the step 1 to excite the target, and obtaining transmissive light emission emitted from the excited target (step 2);
    상기 단계 2에서 얻은 발광 및 발광 이외의 단색광의 혼합광을 제2 색선별 거울을 이용하여 발광 이외의 단색광을 제거하고 발광만을 분리하는 단계(단계 3); 및Removing the monochromatic light other than the luminescent light by separating the luminescent light and the mixed light of the monochromatic light other than the luminescent light obtained in the step 2 using the second dichroic mirror (step 3); And
    상기 단계 3에서 분리된 발광을 검출기로 검출하여 분석하는 단계(단계 4)를 포함하는 것을 특징으로 하는 투과형(transmission type) 발광 분광 분석방법. And a step (step 4) of detecting and analyzing the emitted light separated by the detector (step 4).
  2. 제1항에 있어서,The method of claim 1,
    상기 단계 1의 색선별 거울은 2 이상의 단일 파장범위 광(단색광)을 선별할 수 있는 멀티 밴드형 색선별 거울인 것을 특징으로 하는 투과형(transmission type) 발광 분광 분석방법.The color screening mirror of step 1 is a transmission type emission spectroscopic analysis method, characterized in that the multi-band color screening mirror that can select two or more single wavelength range light (monochrome light).
  3. 제1항에 있어서,The method of claim 1,
    상기 제2 색선별 거울은 타겟으로부터 발생하는 발광 파장이 변경되는 경우에도 교체없이 사용가능한 것을 특징으로 하는 투과형(transmission type) 발광 분광 분석방법.And the second dichroic mirror is usable without replacement even when the emission wavelength generated from the target is changed.
  4. 제1항에 있어서,The method of claim 1,
    상기 단계 1을 수행한 후 반사된 단색광을 대물렌즈로 집광하는 단계(단계 1')를 더 포함하는 것을 특징으로 하는 투과형(transmission type) 발광 분광 분석방법.And performing a step 1 to collect the reflected monochromatic light with an objective lens (step 1 ′).
  5. 단색광을 발생시키는 광원부;A light source unit generating monochromatic light;
    상기 광원부로부터 발생된 단색광을 반사시키는 제1 색선별 거울;A first dichroic mirror reflecting monochromatic light generated from the light source unit;
    상기 제1 색선별 거울로부터 반사된 단색광이 타겟에 도달하여 타겟을 여기시키고, 상기 여기된 타겟으로부터 발산되는 투과형 발광이 발광되는, 상기 타겟을 포함하는 시료부;A sample part including the target, wherein the monochromatic light reflected from the first dichroic mirror reaches a target to excite the target, and the transmissive light emitted from the excited target is emitted;
    상기 시료부로부터 전달되는 발광 및 상기 발광 이외의 단색광의 혼합광으로부터 상기 발광 이외의 단색광을 제거하고 발광만을 분리하는 제2 색선별 거울; 및A second dichroic mirror that removes monochromatic light other than the light emission from the mixed light of the light emitted from the sample portion and monochromatic light other than the light emission, and separates only the light emission; And
    상기 제2 색선별 거울에 의해 분리된 발광을 검출 및 분석하는 검출부를 포함하는 투과형(transmission type) 발광 분광 분석장치.And a detection unit for detecting and analyzing light emission separated by the second dichroic mirror.
  6. 제5항에 있어서,The method of claim 5,
    상기 제1 색선별 거울에서 반사된 단색광을 집광하여 시료부로 전달하는 대물렌즈를 더 포함하는 것을 특징으로 하는 투과형(transmission type) 발광 분광 분석장치.A transmission type emission spectrometer, further comprising: an objective lens for collecting the monochromatic light reflected from the first color-dividing mirror and transferring the monochromatic light to the sample unit.
  7. 다파장 단색광원에 의해 생성된 단색광을 색선별 거울을 통해 반사시키는 단계(단계 1);Reflecting the monochromatic light generated by the multi-wavelength monochromatic light source through the dichroic mirror (step 1);
    상기 단계 1에서 반사된 단색광이 타겟에 도달하여 타겟을 여기시키고, 상기 여기된 타겟으로부터 발산되는 반사형 발광을 얻는 단계(단계 2);The monochromatic light reflected in the step 1 reaches the target to excite the target, and obtains the reflective light emission emitted from the excited target (step 2);
    상기 단계 2에서 얻은 발광 및 발광 이외의 단색광의 혼합광을 상기 단계 1의 색선별 거울을 이용하여 발광 이외의 단색광을 제거하고 발광만을 분리하는 단계(단계 3); 및Removing the monochromatic light other than the luminescent light by separating the luminescent light and the monochromatic light other than the luminescent light obtained in the step 2 using the dichroic mirror of the first step (step 3); And
    상기 단계 3에서 분리된 발광을 검출기로 검출하여 분석하는 단계(단계 4)를 포함하는 것을 특징으로 하는 반사형(reflection type) 발광 분광 분석방법. And a step (step 4) of detecting and analyzing the emitted light separated in the step 3 with a detector.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 단계 1의 색선별 거울은 2 이상의 단일 파장범위 광(단색광)을 선별할 수 있는 멀티 밴드형 색선별 거울인 것을 특징으로 하는 반사형(reflection type) 발광 분광 분석방법.The dichroic mirror of step 1 is a reflection type emission spectroscopic analysis method, characterized in that the multi-band dichroic mirror capable of selecting two or more single wavelength range light (monochrome light).
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 색선별 거울은 타겟으로부터 발생하는 발광 파장이 변경되는 경우에도 교체없이 사용가능한 것을 특징으로 하는 반사형(reflection type) 발광 분광 분석방법.The dichroic mirror is a reflection type emission spectroscopic method, characterized in that it can be used without replacement even when the emission wavelength generated from the target.
  10. 제7항에 있어서,The method of claim 7, wherein
    상기 단계 1을 수행한 후 반사된 단색광을 대물렌즈로 집광하는 단계(단계 1')를 더 포함하는 것을 특징으로 하는 반사형(reflection type) 발광 분광 분석방법.And performing a step 1 to collect the reflected monochromatic light with an objective lens (step 1 ′).
  11. 단색광을 발생시키는 광원부;A light source unit generating monochromatic light;
    상기 광원부로부터 발생된 단색광은 반사시키는 역할과, 하기 시료부로부터 발산되는 반사형 발광만을 선별하는 역할을 동시에 수행하는 색선별 거울;A dichroic mirror that simultaneously performs a role of reflecting the monochromatic light generated from the light source unit and selecting only the reflective light emitted from the sample unit;
    상기 색선별 거울로부터 반사된 단색광이 타겟에 도달하여 타겟을 여기시키고, 상기 여기된 타겟으로부터 투과형 발광이 발광되는, 상기 타겟을 포함하는 시료부; 및A sample unit including the target, wherein the monochromatic light reflected from the dichroic mirror reaches a target to excite the target, and the transmissive light is emitted from the excited target; And
    상기 색선별 거울에 의해 분리된 발광을 검출 및 분석하는 검출부를 포함하는 반사형(reflection type) 발광 분광 분석장치.Reflection type light emission spectrometer comprising a detection unit for detecting and analyzing the light emission separated by the dichroic mirror.
  12. 제11항에 있어서,The method of claim 11,
    상기 색선별 거울에서 반사된 단색광을 집광하여 시료부로 전달하는 대물렌즈를 더 포함하는 것을 특징으로 하는 반사형(reflection type) 발광 분광 분석장치.Reflection type emission spectrometer, characterized in that it further comprises an objective lens for collecting the monochromatic light reflected from the dichroic mirror to transmit to the sample unit.
PCT/KR2014/001266 2013-02-20 2014-02-17 Multi-emission spectrochemical analysis method using dichroic mirror and emission spectrometer using same WO2014129774A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0018027 2013-02-20
KR1020130018027A KR101675258B1 (en) 2013-02-20 2013-02-20 Multi luminescence spectroscopic method using multi band dichroic mirror and luminescence spectrophotometer using the same

Publications (1)

Publication Number Publication Date
WO2014129774A1 true WO2014129774A1 (en) 2014-08-28

Family

ID=51391514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001266 WO2014129774A1 (en) 2013-02-20 2014-02-17 Multi-emission spectrochemical analysis method using dichroic mirror and emission spectrometer using same

Country Status (2)

Country Link
KR (1) KR101675258B1 (en)
WO (1) WO2014129774A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180751A (en) * 1991-12-30 1993-07-23 Toa Medical Electronics Co Ltd Analyzing apparatus of particle image
US5907401A (en) * 1997-09-03 1999-05-25 The United States Of America As Represented By The Secretary Of The Army Device and method for performing an optical hall test
US20070086005A1 (en) * 2001-01-26 2007-04-19 Andreas Gfrorer Optical System and Method for Exciting and Measuring Fluorescence on or in Samples Treated with Fluorescent Pigments
JP2012058105A (en) * 2010-09-09 2012-03-22 Dkk Toa Corp Optical analyzer
WO2012104496A1 (en) * 2011-02-04 2012-08-09 Horiba Abx Sas Device and method for multiparametric measurements of microparticles in a fluid

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3820806B2 (en) * 1999-07-21 2006-09-13 三菱電機株式会社 Laser inspection equipment
US9395527B2 (en) 2010-08-18 2016-07-19 Nanotek, Inc. Fluorescent microscope for observing multiple fluorescent images, fluorescent image surveying method using the same, and multiple fluorescent image observing system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180751A (en) * 1991-12-30 1993-07-23 Toa Medical Electronics Co Ltd Analyzing apparatus of particle image
US5907401A (en) * 1997-09-03 1999-05-25 The United States Of America As Represented By The Secretary Of The Army Device and method for performing an optical hall test
US20070086005A1 (en) * 2001-01-26 2007-04-19 Andreas Gfrorer Optical System and Method for Exciting and Measuring Fluorescence on or in Samples Treated with Fluorescent Pigments
JP2012058105A (en) * 2010-09-09 2012-03-22 Dkk Toa Corp Optical analyzer
WO2012104496A1 (en) * 2011-02-04 2012-08-09 Horiba Abx Sas Device and method for multiparametric measurements of microparticles in a fluid

Also Published As

Publication number Publication date
KR101675258B1 (en) 2016-11-14
KR20140104614A (en) 2014-08-29

Similar Documents

Publication Publication Date Title
US20080144014A1 (en) Apparatus for wafer inspection
EP0257559A3 (en) Multi-color fluorescence analysis with single wavelength excitation
WO2012023816A9 (en) Fluorescence microscope for multi-fluorescence image observation, fluorescence image observation method using the same, and multi-fluorescence image observation system
WO2020080692A1 (en) Apparatus for optical coherence tomography and image generation method using same
US11579089B2 (en) Raman microscope having fluorescence observation function and filter unit
WO2017217590A1 (en) Apparatus and method for measuring thickness and shape of multilayer film structure using image spectrometer
WO2002059584A3 (en) Scanning spectrophotometer for high throughput fluorescence detection
JP2014512548A5 (en)
WO2015182803A1 (en) Total-reflection-type rain sensor using mirror
WO2014129774A1 (en) Multi-emission spectrochemical analysis method using dichroic mirror and emission spectrometer using same
EP2527820B1 (en) Fluorometric assay apparatus and fluorometric assay method
WO2017217657A1 (en) Lighting apparatus and mobile terminal for controlling the same
WO2020231113A1 (en) Dimension measurement jig and dimension measurement device including same
WO2009119983A2 (en) Fpd substrate and semiconductor wafer inspection system using duplicate images
WO2010074450A9 (en) Lc-mfr-ms-based method and apparatus for screening a new drug candidate
WO1999023466A3 (en) Apparatus and methods for measuring fluorescence polarization
WO2016011622A1 (en) Time-resolved fluorescence detection method based on phase-equalization frequency multiplication modulation principle
WO2022220662A1 (en) Chromatic confocal sensor based on geometric phase lens
US7154607B2 (en) Flat spectrum illumination source for optical metrology
US20210285818A1 (en) Spectrophotometer
WO2021246745A1 (en) Optical signal detection device for detecting multiple optical signals for multiple target analytes from sample
WO2020222454A1 (en) Thickness measuring device
WO2020242263A1 (en) Device and method for detecting light
WO2023191143A1 (en) Auto-focus device for optical microscope and method for maintaining auto-focus
WO2024071617A1 (en) Application state analysis system and method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14754232

Country of ref document: EP

Kind code of ref document: A1