WO2014129423A1 - MAGNETIC RECORDING-USE Cr-ALLOY, SPUTTERING-USE TARGET MATERIAL, AND VERTICAL MAGNETIC RECORDING MEDIUM USING SAME - Google Patents

MAGNETIC RECORDING-USE Cr-ALLOY, SPUTTERING-USE TARGET MATERIAL, AND VERTICAL MAGNETIC RECORDING MEDIUM USING SAME Download PDF

Info

Publication number
WO2014129423A1
WO2014129423A1 PCT/JP2014/053652 JP2014053652W WO2014129423A1 WO 2014129423 A1 WO2014129423 A1 WO 2014129423A1 JP 2014053652 W JP2014053652 W JP 2014053652W WO 2014129423 A1 WO2014129423 A1 WO 2014129423A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
magnetic recording
lattice constant
mgo
group
Prior art date
Application number
PCT/JP2014/053652
Other languages
French (fr)
Japanese (ja)
Inventor
慶明 松原
亮二 林
Original Assignee
山陽特殊製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山陽特殊製鋼株式会社 filed Critical 山陽特殊製鋼株式会社
Priority to CN201480010235.7A priority Critical patent/CN105027203B/en
Priority to SG11201505973XA priority patent/SG11201505973XA/en
Priority to MYPI2015702571A priority patent/MY170548A/en
Publication of WO2014129423A1 publication Critical patent/WO2014129423A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • C22C27/025Alloys based on vanadium, niobium, or tantalum alloys based on vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7373Non-magnetic single underlayer comprising chromium
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

Provided, as an orientation control layer for an MgO film, is a BCC-structure Cr-based alloy having a lattice constant for which mismatch with a (001) surface of the MgO is minimal, and a fine and uniform crystal grain distribution. Also provided is a sputtering target material comprising the alloy. This alloy is a magnetic recording-use Cr alloy, the alloy including, in atomic percent, one or more types of elements selected from a group comprising Al, Ti, Mo, W, V, and Ru, in total, in amounts for which the value of a in formula (1) is greater than or equal to 2.919 Å and less than or equal to 3.037 Å, a3 = N/ρΣ(MnAn) (1) [in the formula, a represents the lattice constant, N represents Avogadro's number, ρ represents calculated density (g/cm3), m represents the number of elements existing within a unit cell, and A represents atomic weight]. The alloy also includes one or more types of elements selected from a group comprising B, C, P, Si and Sn so as to total 0.1 to 5%, and the remainder comprising Cr and unavoidable impurities.

Description

磁気記録用Cr合金およびスパッタリング用ターゲット材並びにそれらを用いた垂直磁気記録媒体Cr alloy for magnetic recording, target material for sputtering, and perpendicular magnetic recording medium using them 関連出願の相互参照Cross-reference of related applications
 この出願は、2013年2月25日に出願された日本国特許出願2013-34228号に基づく優先権を主張するものであり、その全体の開示内容が参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2013-34228 filed on February 25, 2013, the entire disclosure of which is incorporated herein by reference.
 本発明は、熱アシスト磁気記録媒体に用いるMgOシード層用合金およびスパッタリングターゲット材、ならびにそれらを用いた垂直磁気記録媒体に関するものである。本発明は、とりわけ、熱アシスト磁気記録媒体に用いるMgOシード層の配向制御層用合金およびスパッタリングターゲット材、ならびにそれらを用いた垂直磁気記録媒体に関するものである。 The present invention relates to an alloy for an MgO seed layer and a sputtering target material used for a heat-assisted magnetic recording medium, and a perpendicular magnetic recording medium using them. In particular, the present invention relates to an alloy for an orientation control layer of an MgO seed layer and a sputtering target material used for a thermally assisted magnetic recording medium, and a perpendicular magnetic recording medium using them.
 近年、磁気記録技術の進歩は著しく、ドライブの大容量化のために、磁気記録媒体の高記録密度化が進められている。そこで、従来普及していた面内磁気記録媒体よりも更に高い記録密度が実現できる、垂直磁気記録方式が実用化されている。垂直磁気記録方式とは、垂直磁気記録媒体の磁性膜中の媒体面に対して磁化容易軸が垂直方向に配向するように形成したものであり、高記録密度に適した方法である。更に、垂直磁気記録方式を応用し、熱により記録をアシストする方法も検討されている。 In recent years, the progress of magnetic recording technology has been remarkable, and in order to increase the capacity of the drive, the recording density of magnetic recording media has been increased. Therefore, a perpendicular magnetic recording system that can realize a higher recording density than the in-plane magnetic recording medium that has been widely used has been put into practical use. The perpendicular magnetic recording system is a method suitable for high recording density, in which the easy magnetization axis is oriented in the perpendicular direction with respect to the medium surface in the magnetic film of the perpendicular magnetic recording medium. Further, a method of assisting recording by applying heat by applying a perpendicular magnetic recording method has been studied.
 磁気記録媒体の記録密度上昇に伴って1ビット当たりの磁気記録媒体の体積は減少する。そのため、熱擾乱により記録減磁の問題が顕在化し、より結晶磁気異方性定数(Ku)の高い磁気記録膜(例えば、CoPtやFePtなど)が必要とされる一方で、これら高結晶磁気異方性の材料は、現状の記録ヘッドの記録可能な磁界では記録することができない。よって、熱アシスト記録方式では、記録材料の磁性が温度と共に減少することを利用して、記録時のみ対象領域をレーザー光、または近接場光を用いて加熱し、磁気記録を可能としている。 As the recording density of the magnetic recording medium increases, the volume of the magnetic recording medium per bit decreases. Therefore, the problem of recording demagnetization becomes obvious due to thermal disturbance, and magnetic recording films having higher crystal magnetic anisotropy constants (Ku) (for example, CoPt, FePt, etc.) are required. An isotropic material cannot be recorded by a recordable magnetic field of a current recording head. Therefore, in the heat-assisted recording method, by utilizing the fact that the magnetism of the recording material decreases with temperature, the target area is heated only with recording using laser light or near-field light, thereby enabling magnetic recording.
 熱アシスト記録方式は、磁気記録技術と光記録技術を融合した記録方式であり、通常の磁気記録技術では記録できないような高保磁力媒体に対して、レーザー光の照射による熱で記録磁気部分の保磁力を局所的に下げて記録した後、室温まで急冷して保磁力を大きくして保存するというものである。 The heat-assisted recording method is a recording method in which magnetic recording technology and optical recording technology are merged, and the recording magnetic part is preserved by heat from laser light irradiation on a high coercive force medium that cannot be recorded by ordinary magnetic recording technology. After recording with the magnetic force lowered locally, it is rapidly cooled to room temperature and stored with an increased coercive force.
 また、熱アシスト記録方式で用いられるFePtなどの記録膜は、従来用いられてきたCoCrPt系記録膜の六方晶系結晶構造とは異なるL1Oの結晶構造をもち、そのシード層にはMgOが用いられている。例えば、特表2010-503139号公報(特許文献1)や特開2011-60344号公報(特許文献2)に開示されているように、MgOシード層の配向性および結晶粒径を制御するための配向制御層として、純Cr層やCr合金層が用いられている。 A recording film such as FePt used in the heat-assisted recording system has a crystal structure of L 1 O different from the hexagonal crystal structure of the conventionally used CoCrPt recording film, and MgO is contained in the seed layer. It is used. For example, as disclosed in JP-T-2010-503139 (Patent Document 1) and JP-A-2011-60344 (Patent Document 2), for controlling the orientation and crystal grain size of the MgO seed layer As the orientation control layer, a pure Cr layer or a Cr alloy layer is used.
特表2010-503139号公報Special table 2010-503139 特開2011-60344号公報JP 2011-60344 A
 しかしながら、配向制御層を形成する材料として、上述したような材料を用いる場合、MgOとの格子定数のミスマッチが大きく、結晶粒を制御するような元素が添加されていないため、配向制御層の粒径が粗く、その分散が大きい膜をもたらす。そのため、MgO膜の配向性が悪くなり、結晶粒径が大きくなる結果、磁性膜も同様の傾向となり、記録密度を高密度化することができない。 However, when the material as described above is used as the material for forming the orientation control layer, the lattice constant mismatch with MgO is large, and no element that controls the crystal grains is added. The result is a membrane with a coarse diameter and large dispersion. For this reason, the orientation of the MgO film is deteriorated and the crystal grain size is increased. As a result, the magnetic film has the same tendency and the recording density cannot be increased.
 本発明は、上述したような課題に鑑みてなされたものであり、MgO膜の配向制御層として、MgOの(001)面とのミスマッチが小さい格子定数と、微細で均一な結晶粒分布とを有するBCC(body-centered cubic)構造のCr系合金、およびこの合金からなるスパッタリングターゲット材を提供することを目的とする。また、このようなCr系合金単層膜をMgO膜の配向制御層として用いることにより、(001)面に配向した微細なMgO上に、結晶粒径が微細で均一な磁性膜が成膜された垂直磁気記録媒体を提供することを目的とする。 The present invention has been made in view of the above-described problems. As an orientation control layer of an MgO film, a lattice constant having a small mismatch with the (001) plane of MgO and a fine and uniform crystal grain distribution are obtained. An object of the present invention is to provide a Cr-based alloy having a BCC (body-centered cubic) structure and a sputtering target material made of this alloy. In addition, by using such a Cr-based alloy single layer film as the orientation control layer of the MgO film, a uniform magnetic film with a fine crystal grain size is formed on the fine MgO oriented in the (001) plane. Another object of the present invention is to provide a perpendicular magnetic recording medium.
 本発明者らは、上述した問題を解消するために、鋭意研究を行った結果、MgOの(001)面とのミスマッチが小さい格子定数と、微細で均一な結晶粒分布とを有するBCC構造のCr系合金として、Crに固溶する(M)群元素(Al、Ti、Mo、W、VおよびRu)を添加することで、MgOとの格子定数のミスマッチを小さくし、かつ(X)群元素(B、C、P、SiおよびSn)を微量添加して結晶粒径を調整した合金系を見出した。 As a result of intensive studies to solve the above problems, the present inventors have found that a BCC structure having a lattice constant with a small mismatch with the (001) face of MgO and a fine and uniform crystal grain distribution. Addition of (M) group element (Al, Ti, Mo, W, V, and Ru) that dissolves in Cr as a Cr-based alloy reduces the lattice constant mismatch with MgO, and (X) group An alloy system was found in which a small amount of elements (B, C, P, Si and Sn) was added to adjust the crystal grain size.
 本発明の一態様によれば、
 磁気記録用Cr合金であって、
 at.%で、
 Al、Ti、Mo、W、VおよびRuからなる群から選択される1種以上の元素を、合計で、式(1)のaの値が2.919Å以上3.037Å以下となる量で含有し、
 a3=N/ρΣ(mnn)    ‥‥     (1)
[式中、
 aは、格子定数を表わし、
 Nは、アボガドロ数を表わし、
 ρは、計算密度(g/cm3 )を表わし、
 mは、単位格子中に存在する元素の個数を表わし、
 Aは、原子量を表わす。]
 B、C、P、SiおよびSnからなる群から選択される1種以上の元素を合計で0.1~5%含有し、
 残部Crおよび不可避的不純物からなる合金が提供される。
According to one aspect of the invention,
A Cr alloy for magnetic recording,
at. %so,
Contains one or more elements selected from the group consisting of Al, Ti, Mo, W, V and Ru in such a total amount that the value of a in formula (1) is 2.919 to 3.037. And
a 3 = N / ρΣ (m n A n ) (1)
[Where:
a represents a lattice constant,
N represents Avogadro's number,
ρ represents the calculated density (g / cm 3 ),
m represents the number of elements present in the unit cell;
A represents atomic weight. ]
Containing at least 0.1 to 5% of one or more elements selected from the group consisting of B, C, P, Si and Sn,
An alloy comprising the balance Cr and inevitable impurities is provided.
 本発明の他の一態様によれば、
 at.%で、Al、Ti、Mo、W、V、Ruからなる元素の内の1種または2種以上の元素を合計で式1のaの値が2.919Å以上3.037Å以下となる量を含有し、B、C、P、Si、Snからなる元素の内の1種または2種以上の元素を合計で0.1~5%含有し、残部Crおよび不可避的不純物からなることを特徴とする磁気記録用Cr合金が提供される。
3 =N/ρΣ(mn An )    ‥‥     (式1)
但し、a:格子定数
   N:アボガドロ数
   ρ:計算密度(g/cm3 )
   m:単位格子中に存在する元素の個数
   A:原子量
According to another aspect of the invention,
at. %, In which the total amount of one or more of the elements consisting of Al, Ti, Mo, W, V, and Ru is such that the value of a in Formula 1 is 2.919 to 3.037. Containing one or more elements of B, C, P, Si, and Sn in a total content of 0.1 to 5%, the balance being Cr and inevitable impurities A magnetic recording Cr alloy is provided.
a 3 = N / ρΣ (m n A n ) (Formula 1)
Where a: lattice constant N: Avogadro number ρ: calculation density (g / cm 3 )
m: number of elements present in the unit cell A: atomic weight
 本発明の他の一態様によれば、上記の磁気記録用合金からなるスパッタリングターゲット材が提供される。 According to another aspect of the present invention, a sputtering target material made of the above magnetic recording alloy is provided.
 本発明のさらに他の一態様によれば、上記の磁気記録用合金を用いた垂直磁気記録媒体が提供される。 According to yet another aspect of the present invention, there is provided a perpendicular magnetic recording medium using the above magnetic recording alloy.
 以上述べたように、本発明によれば、MgOの(001)面とのミスマッチが小さい格子定数と微細で均一な結晶粒分布とを有するBCC構造のCr系合金、およびこの合金からなるスパッタリングターゲット材が提供され、このような合金によれば磁気記録媒体においてMgO膜の配向性を改善し、結晶粒径を微細かつ均一に分散することができる。このように、記録層下地膜であるMgO膜と配制御層との格子定数のミスマッチを小さくすると同時に、結晶粒径を微細かつ均一にするという技術思想は従来にはなかった。この点は本発明における特徴的な技術思想である。 As described above, according to the present invention, a Cr-based alloy having a BCC structure having a lattice constant with a small mismatch with the (001) plane of MgO and a fine and uniform crystal grain distribution, and a sputtering target comprising this alloy According to such an alloy, the orientation of the MgO film can be improved in the magnetic recording medium, and the crystal grain size can be finely and uniformly dispersed. Thus, there has been no technical idea in the past to reduce the mismatch of the lattice constant between the MgO film as the recording layer base film and the distribution control layer and at the same time make the crystal grain size fine and uniform. This is a characteristic technical idea of the present invention.
 以下に本発明を具体的に説明する。特段の明示が無いかぎり、本明細書において、「%」は原子%(at.%)を意味する。 The present invention will be specifically described below. Unless otherwise specified, in this specification, “%” means atomic% (at.%).
 本発明による磁気記録用Cr合金は、Al、Ti、Mo、W、VおよびRuからなる群から選択される1種以上の元素と、B、C、P、SiおよびSnからなる群から選択される1種以上の元素と、残部Crおよび不可避的不純物からなり(comprising)、好ましくはこれらの元素および不可避的不純物から実質的になり(consisting essentially of)、より好ましくはこれらの元素および不可避的不純物のみからなる(consisting of)。 The Cr alloy for magnetic recording according to the present invention is selected from the group consisting of one or more elements selected from the group consisting of Al, Ti, Mo, W, V and Ru, and the group consisting of B, C, P, Si and Sn. One or more elements and the balance Cr and inevitable impurities, preferably consisting essentially of these elements and inevitable impurities, more preferably these elements and inevitable impurities It consists only of (consisting of).
 以下、本発明について詳細に説明する。MgOの(001)面とのミスマッチが小さい格子定数と、微細で均一な結晶粒分布とを有するBCC構造のCr系合金組成について検討したところ、Crを固溶する(M)群元素であるAl、Ti、Mo、W、VおよびRuの内の1種または2種以上を適量添加することで、格子定数を2.919Å以上3.037Å以下にすることができることを見出した。また、(X)群元素であるB、C、P、SiおよびSnからなる元素の内の1種または2種以上を微量添加することで、BCC構造を保ちつつ結晶粒を微細で均一に制御できることを見い出した。 Hereinafter, the present invention will be described in detail. When the Cr-based alloy composition of the BCC structure having a lattice constant with a small mismatch with the (001) surface of MgO and a fine and uniform grain distribution was studied, Al (M) group element which dissolves Cr It has been found that the lattice constant can be adjusted from 2.919 to 3.037 by adding an appropriate amount of one or more of Ti, Mo, W, V and Ru. In addition, by adding a trace amount of one or more of the elements consisting of (X) group elements B, C, P, Si and Sn, the crystal grains can be controlled finely and uniformly while maintaining the BCC structure. I found what I could do.
 以下、本発明による磁気記録用Cr合金の限定理由を説明する。 Hereinafter, the reasons for limitation of the Cr alloy for magnetic recording according to the present invention will be described.
(M)群元素(Al、Ti、Mo、W、VおよびRu)の添加量
 Crは格子定数が2.880Åであり、そのルート2倍(√2倍)の値である4.072Åは、MgOの格子定数である4.211Åに対して、-3.3%のミスマッチがある。そこでCrに(M)群元素(Al、Ti、Mo、W、VおよびRu)を適量添加することでBCC構造を維持しつつ、格子定数をミスマッチが±2.0%以内となる2.919Å以上3.037Å以下にすることができる。
The additive amount Cr of the (M) group element (Al, Ti, Mo, W, V, and Ru) has a lattice constant of 2.880 、, which is twice the root (√2), 4.072 Å, There is a mismatch of −3.3% with respect to 4.21% which is the lattice constant of MgO. Therefore, by adding an appropriate amount of (M) group element (Al, Ti, Mo, W, V, and Ru) to Cr, the lattice constant mismatch is within ± 2.0% while maintaining the BCC structure. It can be made 3.037 mm or less.
 格子定数のミスマッチが±2.0%以内となる、格子定数が2.919Å以上3.037Å以下のCr合金膜を成膜することにより、MgOの(001)面を良好に成膜することができる。格子定数が2.919Åより小さくなると、MgOの配向性に純Crとの違いが見られなくなり、3.037Åより大きくなると、MgOの(110)面が観察され、配向性が悪化する。 By forming a Cr alloy film having a lattice constant mismatch of within ± 2.0% and a lattice constant of 2.919 to 3.037 mm, it is possible to satisfactorily form the (001) surface of MgO. it can. When the lattice constant is smaller than 2.919 mm, the MgO orientation is not different from that of pure Cr. When the lattice constant is larger than 3.037 mm, the (110) plane of MgO is observed and the orientation is deteriorated.
 1種のみの元素を添加した場合の具体的な添加量の範囲を例として下記に示す。
Al:9.3~43.4%
Ti:7.5~35.4%
Mo:11.7~55.4%
W:11.2~52.4%
V:22.8~94.0%
Ru:24.5~32.0%
 なお、2種以上の場合も同様に、式(1)の計算で得られた格子定数が2.919Å以上3037Å以下となる添加量の範囲となる。
A specific range of the addition amount when only one element is added is shown below as an example.
Al: 9.3 to 43.4%
Ti: 7.5-35.4%
Mo: 11.7 to 55.4%
W: 11.2-52.4%
V: 22.8-94.0%
Ru: 24.5-32.0%
Similarly, in the case of two or more types, the addition amount is within the range of the lattice constant obtained by the calculation of the formula (1) of 2.919 to 3037.
(X)群元素(B、C、P、SiおよびSn)の1種以上を0.1~5%添加すること
 上記元素は、Crにほとんど固溶せず、Crと化合物を作る元素であり、添加することで結晶粒の微細化および粒径の均一化効果がある。よって、最適な添加量を0.1%から5%の範囲とした。0.1%より少ない添加量では添加効果が見られず、逆に5%より多い添加量では、化合物が顕著に生成し、BCC単相が得られない。
(X) Adding 0.1 to 5% of one or more of group elements (B, C, P, Si and Sn) The above elements are elements that hardly form a solid solution in Cr and form a compound with Cr. , The effect of making the crystal grains finer and making the grain size uniform. Therefore, the optimum addition amount is set in the range of 0.1% to 5%. When the addition amount is less than 0.1%, the effect of addition is not observed. On the contrary, when the addition amount is more than 5%, the compound is remarkably produced and a BCC single phase cannot be obtained.
 以下、本発明について実施例によって具体的に説明する。表1に示す組成で純金属(純度3N以上)原料粉末を混合し、HIP成形(熱間等方圧プレス)の原料粉末として用いた。混合には、V型混合機を使用した。HIP成形用ビレットは、直径200mm、長さ10mmの炭素鋼製缶に原料粉末を充填したのち、真空脱気、封入して作製した。この粉末充填ビレットを、温度1050℃、圧力120MPa、保持時間2時間の条件でHIP成形した。その後、成形体から直径95mm、厚さ2mmの軟磁性合金スパッタリングターゲット材を作製した。このスパッタリングターゲット材を用いて、密着層薄膜をガラス基板上に作製した。チャンバー内を1×10-4Pa以下に真空排気し、純度99.99%のArガスを0.6Paで投入しスパッタを行なった。まず、洗浄したガラス基板上に20nmのCr合金層を成膜した。 Hereinafter, the present invention will be specifically described with reference to examples. Pure metal (purity 3N or more) raw material powder was mixed with the composition shown in Table 1 and used as a raw material powder for HIP molding (hot isostatic pressing). A V-type mixer was used for mixing. A billet for HIP molding was prepared by filling a raw material powder into a carbon steel can having a diameter of 200 mm and a length of 10 mm, followed by vacuum degassing and sealing. This powder-filled billet was HIP-molded under the conditions of a temperature of 1050 ° C., a pressure of 120 MPa, and a holding time of 2 hours. Thereafter, a soft magnetic alloy sputtering target material having a diameter of 95 mm and a thickness of 2 mm was produced from the compact. Using this sputtering target material, an adhesion layer thin film was produced on a glass substrate. The inside of the chamber was evacuated to 1 × 10 −4 Pa or less, and Ar gas with a purity of 99.99% was charged at 0.6 Pa to perform sputtering. First, a 20 nm Cr alloy layer was formed on a cleaned glass substrate.
 上記のようにして作製した単層膜を試料として、X線回折でBCC単相であることを確認し、格子定数を測定し、さらにTEM観察で平均結晶粒径およびその分散を観察した。平均結晶粒径については比較例1のCrの値を1とした場合に、値が0.9より大きいものを×、0.9から0.8までのものを△、0.8より小さいものを○とした。また、その分散についてそれぞれの平均結晶粒径で規格化した値について、比較例1のCrの値を1とした場合に、値が0.9より大きいものを×、0.9から0.7までのものを△、0.7より小さいものを○とした。これらの結果を表1に示す。 Using the single-layer film produced as described above as a sample, it was confirmed that it was a BCC single phase by X-ray diffraction, the lattice constant was measured, and the average crystal grain size and its dispersion were observed by TEM observation. As for the average crystal grain size, when the Cr value in Comparative Example 1 is 1, the value is larger than 0.9, x is from 0.9 to 0.8, and is smaller than 0.8. Was marked as ○. Further, with respect to the value normalized by the average crystal grain size for the dispersion, when the value of Cr in Comparative Example 1 is 1, the value larger than 0.9 is x, from 0.9 to 0.7 The ones up to were marked with Δ, and those smaller than 0.7 were marked with ○. These results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、No.1は比較例1を示し、No.2~24は本発明例であり、No.25~35は比較例である。
Figure JPOXMLDOC01-appb-T000001
As shown in Table 1, no. 1 shows Comparative Example 1, Nos. 2 to 24 are examples of the present invention. 25 to 35 are comparative examples.
 比較例No.25は、(X)群元素であるBの含有量が高いために、第2相の析出が顕著に生成し、BCC単相が得られなかった。また、比較例No.26は、(X)群元素であるCの含有量が高いために、比較例No.25と同様に、第2相の析出が顕著に生成し、BCC単相が得られなかった。比較例No.27~28は、(X)群元素を添加していないために、結晶粒の微細化および粒径の均一化効果が得られなかった。比較例No.29は、(X)群元素が添加されておらず、しかも格子定数が3.037Åより大きいために、結晶粒の微細化および粒径の均一化の効果が得られず、かつMgOの(110)面が観測され、配向性が悪化した。 Comparative Example No. In No. 25, since the content of B as the (X) group element was high, precipitation of the second phase was remarkably generated, and a BCC single phase was not obtained. Comparative Example No. No. 26 has a high content of C which is the (X) group element. Similar to 25, precipitation of the second phase was remarkably generated, and a BCC single phase was not obtained. Comparative Example No. In Nos. 27 to 28, since the (X) group element was not added, the effect of refining crystal grains and uniforming the grain size could not be obtained. Comparative Example No. No. 29 (X) group element is not added and the lattice constant is larger than 3.037Å, so that the effect of refining crystal grains and uniforming the grain size cannot be obtained, and MgO (110 ) Plane was observed and the orientation deteriorated.
 比較例No.30は、(X)群元素が添加されておらず、しかも格子定数が2.919Åより小さいために、結晶粒の微細化および粒径の均一化が悪く、かつMgOの配向性に純Crとの違いが見られなかった。比較例No.31は、(X)群元素であるBとCの合計含有量が高いために、第2相の析出が顕著に生成し、BCC単相が得られなかった。また、格子定数が2.919Åより小さいために、MgOの配向性に純Crとの違いが見られなかった。比較例No.32~35は、いずれも格子定数が3.037Åより大きいために、MgOの(110)面が観測され、配向性が悪化した。 Comparative Example No. No. 30 (X) group element is not added, and since the lattice constant is smaller than 2.919 mm, the refinement of crystal grains and the uniformity of grain size are poor, and the orientation of MgO is pure Cr and The difference was not seen. Comparative Example No. In No. 31, since the total content of B and C which are (X) group elements was high, precipitation of the second phase was remarkably generated, and a BCC single phase was not obtained. In addition, since the lattice constant was smaller than 2.919 mm, the MgO orientation was not different from that of pure Cr. Comparative Example No. For 32 to 35, since the lattice constant was larger than 3.037 mm, the (110) plane of MgO was observed, and the orientation deteriorated.
 これに対して、本発明例であるNo.2~24は、いずれも本発明条件を満足していることから、MgOの配向性とミスマッチが小さい格子定数と、微細で均一な結晶粒分布とを有するBCC構造のCr系合金を得ることができたことが分かった。 On the other hand, No. which is an example of the present invention. Since all of Nos. 2 to 24 satisfy the conditions of the present invention, it is possible to obtain a Cr-based alloy having a BCC structure having a MgO orientation and a lattice constant with a small mismatch and a fine and uniform grain distribution. I understood that I was able to do it.
 以上述べたように、本発明によれば、MgO膜の配向制御層として、MgOの(001)面とのミスマッチが小さい格子定数と、微細で均一な結晶粒分布とを有するBCC構造のCr系合金単層膜を用いることで、(001)面に配向した微細なMgO上に結晶粒径が微細で均一な磁性膜が成膜された垂直磁気記録媒体を提供することができるという、優れた効果が奏される。 As described above, according to the present invention, as the orientation control layer of the MgO film, a Cr-based BCC structure having a lattice constant with a small mismatch with the (001) surface of MgO and a fine and uniform grain distribution. By using an alloy single layer film, it is possible to provide a perpendicular magnetic recording medium in which a uniform magnetic film having a fine crystal grain size is formed on fine MgO oriented in the (001) plane. An effect is produced.

Claims (5)

  1.  磁気記録用Cr合金であって、
     at.%で、
     Al、Ti、Mo、W、VおよびRuからなる群から選択される1種以上の元素を、合計で、式(1)のaの値が2.919Å以上3.037Å以下となる量で含有し、
     a3=N/ρΣ(mnn)    ‥‥     (1)
    [式中、
     aは、格子定数を表わし、
     Nは、アボガドロ数を表わし、
     ρは、計算密度(g/cm3 )を表わし、
     mは、単位格子中に存在する元素の個数を表わし、
     Aは、原子量を表わす。]
     B、C、P、SiおよびSnからなる群から選択される1種以上の元素を合計で0.1~5%含有し、
     残部Crおよび不可避的不純物からなる、合金。
    A Cr alloy for magnetic recording,
    at. %so,
    Contains one or more elements selected from the group consisting of Al, Ti, Mo, W, V and Ru in such a total amount that the value of a in formula (1) is 2.919 to 3.037. And
    a 3 = N / ρΣ (m n A n ) (1)
    [Where:
    a represents a lattice constant,
    N represents Avogadro's number,
    ρ represents the calculated density (g / cm 3 ),
    m represents the number of elements present in the unit cell;
    A represents atomic weight. ]
    Containing at least 0.1 to 5% of one or more elements selected from the group consisting of B, C, P, Si and Sn,
    An alloy composed of the balance Cr and inevitable impurities.
  2.  垂直磁気記録媒体における配向制御層に用いられる、請求項1に記載の合金。 The alloy according to claim 1, which is used for an orientation control layer in a perpendicular magnetic recording medium.
  3.  at.%で、
     Al、Ti、Mo、W、VおよびRuからなる群から選択されるいずれか1種の元素を、下記の範囲内:
     Al:9.3~43.4%
     Ti:7.5~35.4%
     Mo:11.7~55.4%
     W:11.2~52.4%
     V:22.8~94.0%、または
     Ru:24.5~32.0%
    で含有する、請求項1または2に記載の合金。
    at. %so,
    Any one element selected from the group consisting of Al, Ti, Mo, W, V and Ru is within the following range:
    Al: 9.3 to 43.4%
    Ti: 7.5-35.4%
    Mo: 11.7 to 55.4%
    W: 11.2-52.4%
    V: 22.8-94.0%, or Ru: 24.5-32.0%
    The alloy according to claim 1 or 2, comprising:
  4.  請求項1~3のいずれか一項に記載の合金からなる、スパッタリングターゲット材。 A sputtering target material comprising the alloy according to any one of claims 1 to 3.
  5.  請求項1~3のいずれか一項に記載の合金を用いた、垂直磁気記録媒体。 A perpendicular magnetic recording medium using the alloy according to any one of claims 1 to 3.
PCT/JP2014/053652 2013-02-25 2014-02-17 MAGNETIC RECORDING-USE Cr-ALLOY, SPUTTERING-USE TARGET MATERIAL, AND VERTICAL MAGNETIC RECORDING MEDIUM USING SAME WO2014129423A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480010235.7A CN105027203B (en) 2013-02-25 2014-02-17 For magnetic recording Cr alloys and sputtering target material and use its perpendicular magnetic recording media
SG11201505973XA SG11201505973XA (en) 2013-02-25 2014-02-17 Cr ALLOY AND SPUTTERING TARGET MATERIAL FOR MAGNETIC RECORDING, AND PERPENDICULAR MAGNETIC RECORDING MEDIUM USING THE SAME
MYPI2015702571A MY170548A (en) 2013-02-25 2014-02-17 Cr alloy and sputtering target material for magnetic recording, and perpendicular magnetic recording medium using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-034228 2013-02-25
JP2013034228A JP6180755B2 (en) 2013-02-25 2013-02-25 Cr alloy for magnetic recording, target material for sputtering, and perpendicular magnetic recording medium using them

Publications (1)

Publication Number Publication Date
WO2014129423A1 true WO2014129423A1 (en) 2014-08-28

Family

ID=51391215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053652 WO2014129423A1 (en) 2013-02-25 2014-02-17 MAGNETIC RECORDING-USE Cr-ALLOY, SPUTTERING-USE TARGET MATERIAL, AND VERTICAL MAGNETIC RECORDING MEDIUM USING SAME

Country Status (6)

Country Link
JP (1) JP6180755B2 (en)
CN (1) CN105027203B (en)
MY (1) MY170548A (en)
SG (2) SG10201705531QA (en)
TW (1) TWI615836B (en)
WO (1) WO2014129423A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111712587A (en) * 2018-02-19 2020-09-25 山阳特殊制钢株式会社 Sputtering target material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU201611U1 (en) * 2019-12-06 2020-12-23 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина) Sputtered magnetron unit for deposition of solid composite films

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011060344A (en) * 2009-09-07 2011-03-24 Showa Denko Kk Thermally assisted magnetic recording medium and magnetic recording device
JP2011146089A (en) * 2010-01-14 2011-07-28 National Institute For Materials Science Perpendicular magnetic recording medium and method for manufacturing the same
JP2012048792A (en) * 2010-08-30 2012-03-08 Showa Denko Kk Heat-assisted magnetic recording medium and magnetic storage device
JP2012160243A (en) * 2011-02-02 2012-08-23 Showa Denko Kk Thermally assisted magnetic recording medium and magnetic recording device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100601938B1 (en) * 2004-01-09 2006-07-14 삼성전자주식회사 Co-based perpendicular magnetic recording media
JP2005235358A (en) * 2004-02-23 2005-09-02 Tdk Corp Magnetic recording medium
JP4510796B2 (en) * 2006-11-22 2010-07-28 株式会社アルバック Method for manufacturing magnetic storage medium
JP4782047B2 (en) * 2007-03-09 2011-09-28 昭和電工株式会社 Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP2009032356A (en) * 2007-07-30 2009-02-12 Showa Denko Kk Perpendicular magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011060344A (en) * 2009-09-07 2011-03-24 Showa Denko Kk Thermally assisted magnetic recording medium and magnetic recording device
JP2011146089A (en) * 2010-01-14 2011-07-28 National Institute For Materials Science Perpendicular magnetic recording medium and method for manufacturing the same
JP2012048792A (en) * 2010-08-30 2012-03-08 Showa Denko Kk Heat-assisted magnetic recording medium and magnetic storage device
JP2012160243A (en) * 2011-02-02 2012-08-23 Showa Denko Kk Thermally assisted magnetic recording medium and magnetic recording device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111712587A (en) * 2018-02-19 2020-09-25 山阳特殊制钢株式会社 Sputtering target material

Also Published As

Publication number Publication date
CN105027203B (en) 2018-04-06
MY170548A (en) 2019-08-16
TWI615836B (en) 2018-02-21
SG11201505973XA (en) 2015-08-28
SG10201705531QA (en) 2017-08-30
CN105027203A (en) 2015-11-04
JP2014164780A (en) 2014-09-08
JP6180755B2 (en) 2017-08-16
TW201503120A (en) 2015-01-16

Similar Documents

Publication Publication Date Title
TWI550114B (en) Fe-Pt-C sputtering target
US10325762B2 (en) Sputtering target for forming magnetic recording film and process for producing same
WO2012105201A1 (en) Sputtering target for forming magnetic recording medium film, and method for producing same
WO2012086335A1 (en) Fe-pt-based sputtering target with dispersed c particles
WO2012133166A1 (en) Sputtering target for magnetic recording film
US20150107991A1 (en) Fe-Pt-Based Sputtering Target Having Nonmagnetic Substance Dispersed Therein
JP5705993B2 (en) Fe-Pt-Ag-C based sputtering target in which C particles are dispersed and method for producing the same
WO2014126143A1 (en) Cofe system alloy for soft magnetic film layers in perpendicular magnetic recording media, and sputtering target material
WO2012070464A1 (en) Alloy for seed layer of magnetic recording medium, and sputtering target material
WO2012105205A1 (en) Sputtering target for forming magnetic recording medium film and method for producing same
WO2011062192A1 (en) Ag alloy thermal diffusion control film used in magnetic recording medium for thermally assisted recording, magnetic recording medium for thermally assisted recording, and sputtering target
JP6094848B2 (en) Method for producing Fe-Co alloy soft magnetic film for perpendicular magnetic recording medium
WO2014129423A1 (en) MAGNETIC RECORDING-USE Cr-ALLOY, SPUTTERING-USE TARGET MATERIAL, AND VERTICAL MAGNETIC RECORDING MEDIUM USING SAME
JP6037206B2 (en) Sputtering target for forming a magnetic recording medium film and method for producing the same
JP2023144067A (en) Sputtering target, granular film, and vertical magnetic recording medium
JP2014041682A (en) Sputtering target for magnetic recording medium film formation, and manufacturing method thereof
TWI604078B (en) Perpendicular magnetic recording medium, soft magnetic film layer alloy, sputtering target, and perpendicular magnetic recording medium having a soft magnetic film layer
JP7238527B2 (en) Soft magnetic film for heat-assisted magnetic recording medium and sputtering target for forming soft magnetic film for heat-assisted magnetic recording medium
JP6037197B2 (en) Sputtering target for forming a magnetic recording medium film and method for producing the same
JP6442460B2 (en) CoFe-based alloy and sputtering target material for soft magnetic film layer in perpendicular magnetic recording medium
TWI567206B (en) Soft magnetic film and soft magnetic film forming sputtering target
JP2018085156A (en) Sputtering target for forming soft magnetic film
TW201510238A (en) Sputtering target for magnetic recording medium
TW201510257A (en) Sputtering target for magnetic recording medium
JP6876115B2 (en) Co-Pt-Re based sputtering target, its manufacturing method and magnetic recording layer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480010235.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14753756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14753756

Country of ref document: EP

Kind code of ref document: A1