JP2012160243A - Thermally assisted magnetic recording medium and magnetic recording device - Google Patents

Thermally assisted magnetic recording medium and magnetic recording device Download PDF

Info

Publication number
JP2012160243A
JP2012160243A JP2011020923A JP2011020923A JP2012160243A JP 2012160243 A JP2012160243 A JP 2012160243A JP 2011020923 A JP2011020923 A JP 2011020923A JP 2011020923 A JP2011020923 A JP 2011020923A JP 2012160243 A JP2012160243 A JP 2012160243A
Authority
JP
Japan
Prior art keywords
underlayer
recording medium
magnetic recording
magnetic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011020923A
Other languages
Japanese (ja)
Other versions
JP5730047B2 (en
Inventor
Tetsuya Kanbe
哲也 神邊
Yuzo Sasaki
有三 佐々木
Atsushi Hashimoto
篤志 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2011020923A priority Critical patent/JP5730047B2/en
Publication of JP2012160243A publication Critical patent/JP2012160243A/en
Application granted granted Critical
Publication of JP5730047B2 publication Critical patent/JP5730047B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Magnetic Heads (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermally assisted magnetic recording medium having narrow inverse magnetic field dispersing and a magnetic recording device using the same.SOLUTION: In a magnetic recording device comprising a substrate, a plurality of base layers formed on the substrate and a magnetic layer mainly made of alloy having an L1structure, a thermally assisted magnetic recording medium in which at least one of the base layers is TiC is used. In addition, the base layer is formed on a base layer which is Cr or mainly made of Cr and has a BCC structure containing at least one of Ti, V, Mo, W, Mn and Ru.

Description

本発明は熱アシスト磁気記録媒体、及びそれを用いた磁気記憶装置に関する。   The present invention relates to a heat-assisted magnetic recording medium and a magnetic storage device using the same.

媒体に近接場光等を照射して表面を局所的に加熱し、媒体の保磁力を低下させて書き込みを行う熱アシスト記録は、1Tbit/inchクラスの面記録密度を実現できる次世代記録方式として注目されている。熱アシスト記録を用いた場合、室温における保磁力が数十kOeの記録媒体でも、現状ヘッドの記録磁界により容易に書き込みを行うことができる。このため、記録層に10J/m台の高い結晶磁気異方性Kuを有する材料を使用することが可能となり、熱安定性を維持したまま、磁性粒径を6nm以下まで微細化できる。このような高Ku材料としては、L1型結晶構造を有するFePt合金(Ku〜7×10J/m)や、CoPt合金(Ku〜5×10J/m)等の規則合金が知られている。 Thermally assisted recording, in which writing is performed by irradiating the medium with near-field light to locally heat the surface and reducing the coercive force of the medium, the next-generation recording method that can realize a surface recording density of 1 Tbit / inch 2 class It is attracting attention as. When heat-assisted recording is used, even a recording medium having a coercive force of several tens of kOe at room temperature can be easily written by the recording magnetic field of the current head. For this reason, it becomes possible to use a material having high magnetocrystalline anisotropy Ku of 10 6 J / m 3 for the recording layer, and the magnetic particle size can be reduced to 6 nm or less while maintaining the thermal stability. . Examples of such high Ku material, L1 0 type FePt alloy (Ku~7 × 10 6 J / m 3) having a crystalline structure and, CoPt alloy (Ku~5 × 10 6 J / m 3) rules, such as Alloy It has been known.

磁性層に、L1型結晶構造を有するFePt合金を用いる場合、該FePt層は(001)配向をとっている必要がある。これは、下地層に適切な材料を用いることによって実現できる。特許文献1にはMgO下地層を用いることによって、FePt磁性層が(001)配向を示すことが示されている。MgOはNaCl構造をとり、格子定数は0.421nmと、L1構造のFePt合金のa軸長と近い。このため、(100)配向したMgO下地層上にFePt磁性層を形成することにより、該磁性層に(001)配向をとらせることができる。また、非特許文献1には、TiN下地層を用いることにより、FePt磁性層が(001)配向を示すことが記載されている。TiNもMgO同様、NaCl構造をとり、格子定数もMgOと近い。このため、MgOの場合と同様、FePt磁性層に(001)配向をとらせることができる。 The magnetic layer, when using the FePt alloy having an L1 0 type crystal structure, the FePt layer must have taken (001) orientation. This can be realized by using an appropriate material for the underlayer. Patent Document 1 shows that the FePt magnetic layer exhibits (001) orientation by using an MgO underlayer. MgO takes a NaCl structure, lattice constant and 0.421nm, L1 0 a-axis length of the FePt alloy structure and close. Therefore, by forming the FePt magnetic layer on the (100) -oriented MgO underlayer, the magnetic layer can be (001) -oriented. Non-Patent Document 1 describes that the FePt magnetic layer exhibits (001) orientation by using a TiN underlayer. TiN, like MgO, has an NaCl structure and a lattice constant close to that of MgO. For this reason, as in the case of MgO, the (001) orientation can be taken in the FePt magnetic layer.

熱アシスト磁気記録媒体においても、高い媒体SN比を得るには、磁性層中の磁性結晶粒間の交換結合を十分に低減する必要がある。このため、磁性層には、磁性結晶粒を分断するための粒界相が添加されている。粒界相としては、SiO、TiO、MgO等の酸化物やC等が用いられている。 Even in the heat-assisted magnetic recording medium, it is necessary to sufficiently reduce exchange coupling between magnetic crystal grains in the magnetic layer in order to obtain a high medium S / N ratio. For this reason, the grain boundary phase for dividing the magnetic crystal grains is added to the magnetic layer. As the grain boundary phase, an oxide such as SiO 2 , TiO 2 , MgO, C, or the like is used.

特開平11−353648号公報Japanese Patent Laid-Open No. 11-353648

J. Vac. Sci. Technol. B 25 (6), 1892−1895 (2007)J. et al. Vac. Sci. Technol. B 25 (6), 1892-1895 (2007)

磁性層がL1型FePt合金と、SiO、TiO、MgO等の酸化物、もしくはCからなる熱アシスト媒体は、現状の垂直磁気記録媒体に比べて反転磁界分散(SFD:Switching Field Distribution)が著しく大きい。これは、磁性結晶粒の粒径分散が大きいためである。上記、粒径分散を低減し、如何にしてSFDを低減するかが熱アシスト記録媒体のSNRを高める上で重要な課題となっている。 And the magnetic layer L1 0 type FePt alloy, SiO 2, TiO 2, oxides such as MgO, or thermally assisted medium consisting of C, the switching field distribution as compared to the perpendicular magnetic recording medium of the present situation (SFD: Switching Field Distribution) Is significantly larger. This is because the particle size dispersion of the magnetic crystal grains is large. As described above, how to reduce the particle size dispersion and how to reduce the SFD is an important issue in increasing the SNR of the heat-assisted recording medium.

上記課題は、基板と、該基板上に形成された複数の下地層と、L1構造を有する合金を主成分とする磁性層からなる磁気記録媒体において、該下地層を、TiCとすることで解決できる。すなわち本願発明は下記に関する。 The above object includes a substrate, a plurality of base layer formed on the substrate, a magnetic recording medium comprising a magnetic layer mainly composed of an alloy having an L1 0 structure, the underlayer, that the TiC can be solved. That is, the present invention relates to the following.

(1)基板と、該基板上に形成された下地層と、L1構造を有する合金を主成分とする磁性層からなる磁気記録媒体において、該下地層が、TiCであることを特徴とする熱アシスト磁気記録媒体。
(2)前記下地層を複数層から形成し、前記TiCが、BCC構造を有する下地層の上に形成されていることを特徴とする(1)に記載の熱アシスト磁気記録媒体。
(3)前記TiCが、Cr、もしくはCrを主成分とし、Ti、V、Mo、W、Mn、Ruのうちの少なくとも1種類を含有したBCC構造を有する下地層の上に形成されていることを特徴とする(2)に記載の熱アシスト磁気記録媒体。
(4)前記TiCが、Cr、もしくはCrを主成分とし、Ti、V、Mo、W、Mn、Ruのうちの少なくとも1種類を含有し、更に、B、C、Siのうちの少なくとも1種類を含有したBCC構造を有する下地層の上に形成されていることを特徴とする(1)に記載の熱アシスト磁気記録媒体。
(5)前記TiCが、BCC構造を有する第一の下地層と、前記第一の下地層の上に形成されたBCC構造を有する第二の下地層の上に形成されており、前記第二の下地層の格子定数が、0.306nm以上であることを特徴とする(1)に記載の熱アシスト磁気記録媒体。
(6)前記TiCが、B2構造を有するNiAl、もしくはRuAlからなる第一の下地層と、前記第一の下地層の上に形成されたBCC構造を有する第二の下地層の上に形成されており、前記第二の下地層の格子定数が、0.306nm以上であることを特徴とする(1)に記載の熱アシスト磁気記録媒体。
(7)格子定数が0.306nm以上である第二の下地層が、Mo、W、Ta、Nb、もしくはこれらを含有するBCC構造を有する合金であることを特徴とする(5)または(6)に記載の熱アシスト磁気記録媒体。
(8)前記TiCが、MgO下地層の上に形成されていることを特徴とする(1)に記載の熱アシスト磁気記録媒体。
(9)磁性層がL1構造を有するFePt、もしくはCoPt合金を主成分とし、かつ、SiO、TiO、Cr、Al、Ta、ZrO、Y、CeO、MnO、TiO、ZnO、Cから選択される少なくとも一種類の酸化物、もしくは元素を含有していることを特徴とする(1)1乃至(8)の何れか1項に記載の熱アシスト磁気記録媒体。
(10)磁気記録媒体と、該磁気記録媒体を回転させるための駆動部と、該磁気記録媒体を加熱するためのレーザー発生部と、該レーザー発生部から発生したレーザー光をヘッド先端まで導く導波路と、ヘッド先端に取り付けられた近接場光発生部を備えた磁気ヘッドと、該磁気ヘッドを移動させるための駆動部と、記録再生信号処理系から構成さる磁気記憶装置において、該磁気記録媒体が(1)乃至(9)の何れか1項に記載の熱アシスト媒体であることを特徴とする磁気記憶装置。
(1) and the substrate, the substrate and the underlayer formed on the plate, a magnetic recording medium comprising a magnetic layer mainly composed of an alloy having an L1 0 structure, underlying layer, characterized in that a TiC Thermally assisted magnetic recording medium.
(2) The heat-assisted magnetic recording medium according to (1), wherein the underlayer is formed of a plurality of layers, and the TiC is formed on the underlayer having a BCC structure.
(3) The TiC is formed on a base layer having a BCC structure containing Cr or Cr as a main component and containing at least one of Ti, V, Mo, W, Mn, and Ru. (2) The heat-assisted magnetic recording medium according to (2).
(4) The TiC contains Cr or Cr as a main component and contains at least one of Ti, V, Mo, W, Mn, and Ru, and at least one of B, C, and Si. The heat-assisted magnetic recording medium according to (1), wherein the heat-assisted magnetic recording medium is formed on an underlayer having a BCC structure containing Nb.
(5) The TiC is formed on a first underlayer having a BCC structure and a second underlayer having a BCC structure formed on the first underlayer, and the second underlayer The heat-assisted magnetic recording medium according to (1), wherein the underlayer has a lattice constant of 0.306 nm or more.
(6) The TiC is formed on a first underlayer made of NiAl or RuAl having a B2 structure and a second underlayer having a BCC structure formed on the first underlayer. The heat-assisted magnetic recording medium according to (1), wherein the second underlayer has a lattice constant of 0.306 nm or more.
(7) The second underlayer having a lattice constant of 0.306 nm or more is Mo, W, Ta, Nb, or an alloy having a BCC structure containing these (5) or (6 The heat-assisted magnetic recording medium according to (1).
(8) The heat-assisted magnetic recording medium according to (1), wherein the TiC is formed on an MgO underlayer.
(9) The magnetic layer is mainly composed of FePt or CoPt alloy having an L1 0 structure, and SiO 2 , TiO 2 , Cr 2 O 3 , Al 2 O 3 , Ta 2 O 5 , ZrO 2 , Y 2 O (3 ) At least one kind of oxide or element selected from CeO 2 , MnO, TiO, ZnO, and C is contained, (1) Any one of (1) to (8) Thermally assisted magnetic recording medium.
(10) A magnetic recording medium, a drive unit for rotating the magnetic recording medium, a laser generating unit for heating the magnetic recording medium, and a laser beam generated from the laser generating unit for guiding the laser light to the head tip In a magnetic storage device comprising a waveguide, a magnetic head having a near-field light generating unit attached to the tip of the head, a driving unit for moving the magnetic head, and a recording / reproducing signal processing system, the magnetic recording medium Is a heat-assisted medium according to any one of (1) to (9).

本発明により、SFDが低い熱アシスト記録媒体が実現され、これを用いた磁気記憶装置を提供することができる。   According to the present invention, a heat-assisted recording medium having a low SFD is realized, and a magnetic storage device using the same can be provided.

本発明の磁気記録媒体の層構成の一例を表す図である。It is a figure showing an example of the layer structure of the magnetic recording medium of this invention. 本発明の磁気記録媒体の層構成の一例を表す図である。It is a figure showing an example of the layer structure of the magnetic recording medium of this invention. 本発明の磁気記録媒体のXRD回折測定結果を表す図である。It is a figure showing the XRD diffraction measurement result of the magnetic recording medium of this invention. 本発明の磁気記憶装置の傾視図である。It is a perspective view of the magnetic storage device of the present invention. 本発明の磁気ヘッドを表す図である。It is a figure showing the magnetic head of this invention.

本願発明の熱アシスト磁気記録媒体は、基板と、該基板上に形成された下地層と、L1構造を有する合金を主成分とする磁性層からなる磁気記録媒体において、下地層をTiCとすることを特徴とする。 TiCはMgOと同様、NaCl構造をとり、格子定数は0.432nmとMgOの格子定数に近い。このため、(100)配向したTiC下地層上にL1型FePt合金からなる磁性層を形成した場合、エピタキシャル成長により該FePtは(001)配向を示す。発明者らは、種々の材料をL1型FePt合金の下地層材料として検討した結果、TiC下地層を用いることによって、FePt合金の粒径を均一化できることを見出した。 Thermally assisted magnetic recording medium of the present invention is a substrate, an underlayer formed on the substrate layer, a magnetic recording medium comprising a magnetic layer mainly composed of an alloy having an L1 0 structure, a base layer and TiC It is characterized by that. TiC, like MgO, has a NaCl structure and a lattice constant of 0.432 nm, which is close to the lattice constant of MgO. Therefore, when forming a magnetic layer consisting of L1 0 type FePt alloy (100) -oriented TiC underlayer, the FePt by epitaxial growth shows a (001) orientation. Inventors have made study various materials as the underlayer material for the L1 0 type FePt alloy, by using the TiC underlayer was found to be able to equalize the grain size of the FePt alloy.

磁性層中のL1−FePt合金に(001)配向をとらせるため、TiC下地層は、(100)配向をとっている必要がある。これを実現するため、下地層を多層構造とし、TiC下地層を、Cr、もしくはCrを主成分とし、Ti、V、Mn、Mo、W、Ruのうちの少なくとも1種類を含有したBCC構造を有する合金からなる下地層上に形成することが望ましい。TiC下地層に(100)配向をとらせるために、TiC下地層の直下に形成する下地層を、以後、配向制御層と記す。配向制御層はBCC構造を有し、かつ、(100)配向をとっていることが望ましい。これは、配向制御層を、非晶質合金からなるシード層上に形成することによって実現できる。非晶質合金としては、例えばCo−50at%Ti、Co−50at%Ta、Ni−50at%Ti、Ni−50at%Ta、Cr−50at%Ti、Cr−50at%Ta等を用いることができる。また、非晶質合金層上に、配向制御層を形成する際には、150℃以上の基板加熱を行うことが望ましい。これによって、配向制御層に良好な(100)配向をとらせることができる。 In order to make the L1 0 -FePt alloy in the magnetic layer take (001) orientation, the TiC underlayer needs to have (100) orientation. In order to realize this, a BCC structure in which the underlayer has a multilayer structure, the TiC underlayer has Cr or Cr as a main component, and contains at least one of Ti, V, Mn, Mo, W, and Ru. It is desirable to form it on a base layer made of an alloy. In order to make the TiC underlayer take (100) orientation, the underlayer formed immediately below the TiC underlayer is hereinafter referred to as an orientation control layer. It is desirable that the orientation control layer has a BCC structure and has a (100) orientation. This can be realized by forming the orientation control layer on a seed layer made of an amorphous alloy. As the amorphous alloy, for example, Co-50 at% Ti, Co-50 at% Ta, Ni-50 at% Ti, Ni-50 at% Ta, Cr-50 at% Ti, Cr-50 at% Ta, or the like can be used. Further, when forming the orientation control layer on the amorphous alloy layer, it is desirable to heat the substrate at 150 ° C. or higher. As a result, the orientation control layer can have a good (100) orientation.

配向制御層には、上記Crを主成分とした合金にB、C、Si等を添加した材料を用いても良い。上記元素を添加することにより、配向制御層の粒径を10nm以下に微細化できると同時に、粒径分布をより均一化できる。TiC下地層は、配向制御層上にエピタキシャル成長し、磁性層はTiC下地層上にエピタキシャル成長するため、配向制御層の粒径を微細・均一化することにより、磁性粒径を微細・均一化することができる。Crを主成分とする配向制御層への添加元素の添加量は、BCC構造を大幅に劣化させない範囲内であれば、特に制限はない。   For the orientation control layer, a material obtained by adding B, C, Si, or the like to the alloy containing Cr as a main component may be used. By adding the above elements, the particle size of the orientation control layer can be reduced to 10 nm or less, and at the same time, the particle size distribution can be made more uniform. Since the TiC underlayer is epitaxially grown on the orientation control layer and the magnetic layer is epitaxially grown on the TiC underlayer, the magnetic grain size can be made fine and uniform by making the orientation control layer grain size fine and uniform. Can do. The amount of additive element added to the orientation control layer containing Cr as a main component is not particularly limited as long as it is within a range that does not significantly deteriorate the BCC structure.

配向制御層を二層構成としてもよい。第一の配向制御層(基板側)には、上述のCr、もしくはBCC構造を有するCr合金を用いることができる。また、B2構造のRuAl、NiAlを用いても良い。第二の配向制御層(TiC側)には、格子定数が0.306nm以上であるBCC構造の金属、もしくは合金を用いることができる。第二の配向制御層の格子定数を0.306nm以上とすることによって、TiC層の膜面内方向に引っ張り応力を導入し、L1構造を有するFePtの規則度を改善できる。第二の配向制御の格子定数の上限は、第一の配向制御層との格子ミスフィットが15%以下となるように設定することが望ましい。格子ミスフィットが15%を上回ると、第二の配向制御層の(100)配向が劣化するため、好ましくない。 The orientation control layer may have a two-layer structure. For the first orientation control layer (substrate side), the above-described Cr or Cr alloy having a BCC structure can be used. Further, RuAl or NiAl having a B2 structure may be used. For the second orientation control layer (TiC side), a BCC structure metal or alloy having a lattice constant of 0.306 nm or more can be used. By the second orientation control layer lattice constant 0.306nm above, by introducing a tensile stress in the film plane direction of the TiC layer, it can improve the degree of order of FePt having an L1 0 structure. The upper limit of the lattice constant for the second orientation control is desirably set so that the lattice misfit with the first orientation control layer is 15% or less. If the lattice misfit exceeds 15%, the (100) orientation of the second orientation control layer deteriorates, which is not preferable.

第二の配向制御層には、具体的に、CrMo、CrW、CrTa、CrNb、VMo、VW、VTa、VNb、MoW、MoTa、MoNb、WTa、WNb、TaNb等のBCC合金を用いることが出来る。但し、上記合金のうち、Cr、もしくはVを含有する合金を用いる場合は、格子定数が0.306nm以上となるように組成を調整する必要がある。また、Mo、W、Ta、Nb等の単体金属を第二の配向制御層に用いてもよい。   Specifically, BCC alloys such as CrMo, CrW, CrTa, CrNb, VMo, VW, VTa, VNb, MoW, MoTa, MoNb, WTa, WNb, and TaNb can be used for the second orientation control layer. However, when using an alloy containing Cr or V among the above alloys, it is necessary to adjust the composition so that the lattice constant is 0.306 nm or more. Moreover, you may use single metals, such as Mo, W, Ta, and Nb, for a 2nd orientation control layer.

TiCを(100)配向したMgO下地層の上に形成しても良い。MgOは化学的に安定で、下地層からの拡散バリア層として機能するため、金属、もしくは合金からなる下地層の上に形成した場合よりも基板温度を高く設定できる。   TiC may be formed on a (100) -oriented MgO underlayer. Since MgO is chemically stable and functions as a diffusion barrier layer from the underlayer, the substrate temperature can be set higher than when formed on the underlayer made of metal or alloy.

磁性層には、L1構造を有するFePtの他、L1構造を有するCoPtを用いることもできる。また磁性層を、磁性結晶粒を粒界相で分断した構造とする場合は、粒界相材料には、SiO、TiO、Cr、Al、Ta、ZrO、Y、CeO、MnO、TiO、ZnO、Cを用いることができる。粒界相材料の添加量は、体積比率で20体積%以上、60体積%以下が望ましい。20体積%を下回ると、粒界幅が狭くなり、磁性粒子間の交換結合を十分に低減できない。一方、60体積%を上回ると、磁性結晶粒のL1構造の規則度が低下するため、好ましくない。 The magnetic layer, other FePt having an L1 0 structure, can also be used CoPt having an L1 0 structure. When the magnetic layer has a structure in which magnetic crystal grains are divided by a grain boundary phase, the grain boundary phase material includes SiO 2 , TiO 2 , Cr 2 O 3 , Al 2 O 3 , Ta 2 O 5 , ZrO. 2 , Y 2 O 3 , CeO 2 , MnO, TiO, ZnO, C can be used. The addition amount of the grain boundary phase material is preferably 20% by volume or more and 60% by volume or less by volume ratio. When it is less than 20% by volume, the grain boundary width becomes narrow, and the exchange coupling between the magnetic particles cannot be sufficiently reduced. On the other hand, if it exceeds 60 vol%, since the rule of the L1 0 structure of the magnetic crystal grains is lowered, unfavorably.

磁性層の上にキャップ層を形成することができる。これにより、磁性結晶粒間に適度な交換結合を導入し、反転磁界分散(SFD)を更に低減できる。キャップ層としては、CoCrPt、CoCrPtB等のHCP合金や、NiFe、NiCr、FePt等のBCC合金、もしくはFCC合金を用いることができる。また、Co、もしくはFeを含有する非晶質合金でもよい。   A cap layer can be formed on the magnetic layer. Thereby, an appropriate exchange coupling is introduced between the magnetic crystal grains, and the switching field dispersion (SFD) can be further reduced. As the cap layer, HCP alloys such as CoCrPt and CoCrPtB, BCC alloys such as NiFe, NiCr, and FePt, or FCC alloys can be used. An amorphous alloy containing Co or Fe may also be used.

Cu、Ag、Al、Au等の熱伝導率の高い材料をヒートシンク層として形成してもよい。また、上記元素を組み合わせた合金材料からなるヒートシンク層を用いることもできる。ヒートシンク層は、基板と下地層の間に形成するのが望ましい。また後述の軟磁性層を設ける場合、ヒートシンク層は軟磁性層の上下何れに設けることも可能であるが、ヒートシンク層が厚いときは、軟磁性下地層の下、薄いときは上に設けるのが望ましい。   A material having high thermal conductivity such as Cu, Ag, Al, or Au may be formed as the heat sink layer. In addition, a heat sink layer made of an alloy material combining the above elements can be used. The heat sink layer is preferably formed between the substrate and the base layer. When the soft magnetic layer described later is provided, the heat sink layer can be provided either above or below the soft magnetic layer. However, when the heat sink layer is thick, it should be provided below the soft magnetic underlayer and above it when it is thin. desirable.

書き込み特性を改善するため、軟磁性下地層を形成することもできる。軟磁性下地層としては、CoTaZr、CoNbZr、FeTaC、FeAlSi、CoFeTaSi、CoFeTaB、CoFeZrSi等の軟磁性合金を用いることができる。また、軟磁性下地層は、上記合金からなる単層膜でもよいし、Ruを挟んで反強磁性結合した積層膜でもよい。   In order to improve the write characteristics, a soft magnetic underlayer can be formed. As the soft underlayer, soft magnetic alloys such as CoTaZr, CoNbZr, FeTaC, FeAlSi, CoFeTaSi, CoFeTaB, and CoFeZrSi can be used. The soft magnetic underlayer may be a single layer film made of the above alloy or a laminated film antiferromagnetically coupled with Ru interposed therebetween.

(実施例1、比較例1)
図1に本実施例で作製した磁気記録媒体の層構成の一例を示す。ガラス基板101上に、4nmのSi下地層102、10nmのTiC下地層103、10nmの(Fe−50at%Pt−8at%Ag)−15mol%SiO磁性層104、3nmのDLC−C保護膜105が順次形成されている。基板には、ガラス転移温度が700℃以上の耐熱ガラス基板を用い、TiC下地層形成前に640℃の基板加熱を行った。また、比較例として、TiC下地層の代わりにMgO下地層を形成した媒体を作製した。
(Example 1, Comparative Example 1)
FIG. 1 shows an example of the layer structure of the magnetic recording medium produced in this example. On glass substrate 101, 4 nm Si underlayer 102, 10 nm TiC underlayer 103, 10 nm (Fe-50 at% Pt-8 at% Ag) -15 mol% SiO 2 magnetic layer 104, 3 nm DLC-C protective film 105 Are sequentially formed. A heat-resistant glass substrate having a glass transition temperature of 700 ° C. or higher was used as the substrate, and the substrate was heated at 640 ° C. before forming the TiC underlayer. As a comparative example, a medium in which an MgO underlayer was formed instead of the TiC underlayer was produced.

本実施例媒体のX線回折測定を行ったところ、TiC下地層は、NaCl構造をとっており、(200)ピークのみが観察された。また、磁性層からは、L1(001)ピーク、及び、L1(002)とFCC(200)の混合ピークが観察された。後者の混合ピーク強度に対する前者のピーク強度比は、1.9であった。このことより、磁性層中のFePtAg合金は、良好な規則度を有していることがわかる。Si下地層からは明瞭な回折ピークが確認されなかったが、断面TEM観察を行った結果、非晶質構造であることがわかった。 When the X-ray diffraction measurement of the medium of this example was performed, the TiC underlayer had a NaCl structure, and only the (200) peak was observed. Further, from the magnetic layer, an L1 0 (001) peak and a mixed peak of L1 0 (002) and FCC (200) were observed. The former peak intensity ratio to the latter mixed peak intensity was 1.9. This indicates that the FePtAg alloy in the magnetic layer has a good degree of order. A clear diffraction peak was not confirmed from the Si underlayer, but as a result of cross-sectional TEM observation, it was found to be an amorphous structure.

一方、MgO下地層を用いた比較例媒体のX線回折測定を行ったところ、MgO下地層からも(200)ピークが観察された。磁性層からは、L1(001)ピーク、及び、L1(002)とFCC(200)の混合ピークが観察されたが、後者の混合ピーク強度に対する前者のピーク強度比は1.3と、実施例媒体に比べて低かった。 On the other hand, when X-ray diffraction measurement was performed on a comparative medium using an MgO underlayer, a (200) peak was also observed from the MgO underlayer. From the magnetic layer, an L1 0 (001) peak and a mixed peak of L1 0 (002) and FCC (200) were observed. The former peak intensity ratio to the latter mixed peak intensity was 1.3, It was low compared with the Example medium.

実施例媒体、及び比較例媒体の保磁力を、PPMSにより7Tの磁界を印加して測定したところ、それぞれ31kOe、23kOeであった。以上より、MgO下地層の代わりにTiC下地層を用いることにより、磁性層の規則度が向上し、30kOe以上の高い保磁力を有する媒体が得られることがわかった。   When the coercive force of the example medium and the comparative example medium was measured by applying a 7T magnetic field by PPMS, they were 31 kOe and 23 kOe, respectively. From the above, it was found that by using a TiC underlayer instead of the MgO underlayer, the order of the magnetic layer is improved and a medium having a high coercive force of 30 kOe or more can be obtained.

(実施例2、比較例2)
図2に本実施例で作製した磁気記録媒体の層構成の一例を示す。ガラス基板201上に、Ti−50at%Al接着層202、Ag−5at%Pdヒートシンク層203、Cr−50at%Tiシード層204、配向制御層205、TiC下地層206、(Fe−50at%Pt−8at%Cu)−45at%C磁性層207、Ni−20at%Feキャップ層208、DLC−C保護膜209が順次形成されている。
(Example 2, comparative example 2)
FIG. 2 shows an example of the layer structure of the magnetic recording medium manufactured in this example. On a glass substrate 201, a Ti-50at% Al adhesive layer 202, an Ag-5at% Pd heat sink layer 203, a Cr-50at% Ti seed layer 204, an orientation control layer 205, a TiC underlayer 206, (Fe-50at% Pt- 8 at% Cu) -45 at% C magnetic layer 207, Ni-20 at% Fe cap layer 208, and DLC-C protective film 209 are sequentially formed.

基板は、ガラス転移温度が650℃以上の耐熱ガラス基板を用いた。ヒートシンク層のAg合金膜はガラスとの密着性が悪いので、ヒートシンク層と基板に間に接着層として、5nmのTiAl合金膜を形成した。ヒートシンク層上に直接配向制御層を形成すると、配向制御層が(100)配向しないため、30nmのCrTiシード層を形成し、その上に配向制御層を形成した。尚、配向制御層の形成時には、250−350℃の基板加熱を行うことが望ましい。これにより、配向制御層に良好な(100)配向をとらせることができる。配向制御層には、12nmのCr(実施例2.1)、Cr−8at%Ti(実施例2.2)、Cr−20at%Mn(実施例2.3)、Cr−40at%V(実施例2.4)、Cr−25at%Mo(実施例2.5)、Cr−20at%W(実施例2.6)、Cr−20at%Ru(実施例2.7)、Cr−10at%Ti−3at%B(実施例2.8)、Cr−20at%Mo−5at%B合金(実施例2.9)を用いた。また、TiC下地層の膜厚は2nmとした。磁性層成膜前に、550−650℃の基板加熱を行うことが望ましい。これにより、FePtCu合金のL1規則化を促進できる。本実施例では、磁性層成膜前に620℃の基板加熱を行った。 As the substrate, a heat-resistant glass substrate having a glass transition temperature of 650 ° C. or higher was used. Since the Ag alloy film of the heat sink layer has poor adhesion to glass, a 5 nm TiAl alloy film was formed as an adhesive layer between the heat sink layer and the substrate. When the orientation control layer was formed directly on the heat sink layer, the orientation control layer was not (100) oriented, so a 30 nm CrTi seed layer was formed, and an orientation control layer was formed thereon. Note that it is desirable to heat the substrate at 250 to 350 ° C. when forming the orientation control layer. Thereby, a favorable (100) orientation can be taken in the orientation control layer. For the orientation control layer, 12 nm of Cr (Example 2.1), Cr-8 at% Ti (Example 2.2), Cr-20 at% Mn (Example 2.3), Cr-40 at% V (Example) Example 2.4), Cr-25 at% Mo (Example 2.5), Cr-20 at% W (Example 2.6), Cr-20 at% Ru (Example 2.7), Cr-10 at% Ti -3 at% B (Example 2.8), Cr-20 at% Mo-5 at% B alloy (Example 2.9) was used. The thickness of the TiC underlayer was 2 nm. It is desirable to heat the substrate at 550 to 650 ° C. before forming the magnetic layer. Thereby promoting the L1 0 ordered the FePtCu alloy. In this example, the substrate was heated at 620 ° C. before the magnetic layer was formed.

磁性層、キャップ層の膜厚は、それぞれ、10nm、4nmとした。また、DLC−Cの膜厚は3nmとした。また、比較例として、配向制御層に5nmのSi層を使用した媒体を作製した(比較例2)。   The film thicknesses of the magnetic layer and the cap layer were 10 nm and 4 nm, respectively. The film thickness of DLC-C was 3 nm. As a comparative example, a medium using a 5 nm Si layer as the orientation control layer was prepared (Comparative Example 2).

本実施例媒体のX線回折測定を行ったところ、磁性層からは、L1(001)ピーク、及び、L1(002)とFCC(200)の混合ピークが観察された。後者の混合ピーク強度に対する前者のピーク強度比は、全ての実施例において2.1以上であった。 When X-ray diffraction measurement was performed on the medium of this example, an L1 0 (001) peak and a mixed peak of L1 0 (002) and FCC (200) were observed from the magnetic layer. The ratio of the former peak intensity to the latter mixed peak intensity was 2.1 or more in all Examples.

このことより、磁性層中のFePtCu合金は、良好な規則度を有していることがわかった。尚、上記以外に磁性層からの回折ピークは観察されなかった。一方、配向制御層からは、BCC(200)ピークのみが観察された。よって、本実施例で用いた配向制御層は、全てBCC構造を有し、良好な(100)配向をとっていることがわかった。TiC下地層からは膜厚が薄いため、明瞭な回折ピークが観察されなかったが、磁性層が良好な(001)配向をとっていることから、配向制御層上にエピタキシャル成長して(100)配向をとっていると考えられる。また、CrTiシード層からも明瞭な回折ピークが観察されなかった。よって、CrTiシード層は非晶質、もしくは微結晶構造であると考えられる。   This indicates that the FePtCu alloy in the magnetic layer has a good degree of order. In addition to the above, no diffraction peak from the magnetic layer was observed. On the other hand, only the BCC (200) peak was observed from the orientation control layer. Therefore, it was found that the orientation control layers used in this example all have a BCC structure and have a good (100) orientation. A clear diffraction peak was not observed because the film thickness was thin from the TiC underlayer, but the magnetic layer had a good (001) orientation, so it was epitaxially grown on the orientation control layer and (100) oriented. It is thought that it is taking. Also, no clear diffraction peak was observed from the CrTi seed layer. Therefore, it is considered that the CrTi seed layer has an amorphous or microcrystalline structure.

比較例媒体のX線回折測定を行ったところ、実施例媒体と同様、磁性層からは、L1(001)ピーク、及び、L1(002)とFCC(200)の混合ピークのみが観察された。但し、後者の混合ピーク強度に対する前者のピーク強度比は、1.8と、実施例媒体に比べて低かった。Si下地層からは明瞭な回折ピークが確認されなかったが、断面TEM観察を行った結果、非晶質構造であることがわかった。以上より、配向制御層にCr、もしくはBCC構造を有するCr合金を用い、該配向制御層上にTiC下地層を形成することにより、L1構造を有する磁性合金の規則度を更に高められることがわかった。 When the X-ray diffraction measurement of the comparative example medium was performed, only the L1 0 (001) peak and the mixed peak of L1 0 (002) and FCC (200) were observed from the magnetic layer as in the example medium. It was. However, the former peak intensity ratio with respect to the latter mixed peak intensity was 1.8, which was lower than that of the example medium. A clear diffraction peak was not confirmed from the Si underlayer, but as a result of cross-sectional TEM observation, it was found to be an amorphous structure. From the above, using a Cr alloy having a Cr or BCC structure, the orientation control layer, by forming a TiC underlayer the orientation control layer, further it can be enhanced rules of the magnetic alloy having an L1 0 structure all right.

次に、本実施例媒体、及び比較例媒体の磁性層の平面TEM観察を行った。表1に、TEM像から見積もった平均粒径<D>と、平均粒径で規格化した粒径分散σ/<D>を示す。本実施例媒体の磁性層の平均粒径は5−6nmで、規格化粒径分散は0.25以下であった。一方、配向制御層にSi下地層を用いた比較例媒体の平均粒径は、5.6nmで実施例媒体とほぼ同程度であったが、規格化粒径分散は0.32と、実施例媒体に比べて著しく大きかった。これより、配向制御層にBCC構造のCr、もしくはCr合金を用いることによって、粒径分散を大幅に改善できることがわかった。配向制御層にCrTi、CrMn合金を用いた実施例2.2と実施例2.3は、規格化粒径分散が特に小さかった。よって、配向制御層にCrTi、CrMn合金を用いることは、粒径均一化を図る上で有効であることがわかった。また、配向制御層にホウ素を添加した実施例2.8と実施例2.9は、平均粒径が特に小さかった。よって、ホウ素を含有した配向制御層とTiC下地層を組み合わせることによって、磁性結晶粒を微細化できることがわかった。   Next, planar TEM observation of the magnetic layers of the example medium and the comparative example medium was performed. Table 1 shows the average particle size <D> estimated from the TEM image and the particle size dispersion σ / <D> normalized by the average particle size. The average particle size of the magnetic layer of the medium of this example was 5-6 nm, and the normalized particle size dispersion was 0.25 or less. On the other hand, the average particle size of the comparative example medium using the Si underlayer as the orientation control layer was 5.6 nm, which was almost the same as that of the example medium, but the normalized particle size dispersion was 0.32. It was significantly larger than the medium. From this, it was found that the particle size dispersion can be significantly improved by using BCC structure Cr or Cr alloy for the orientation control layer. In Example 2.2 and Example 2.3 in which CrTi and CrMn alloys were used for the orientation control layer, the normalized particle size dispersion was particularly small. Therefore, it was found that using a CrTi or CrMn alloy for the orientation control layer is effective in achieving uniform particle size. In addition, Examples 2.8 and 2.9 in which boron was added to the orientation control layer had a particularly small average particle size. Therefore, it was found that the magnetic crystal grains can be refined by combining the orientation control layer containing boron and the TiC underlayer.

Figure 2012160243
Figure 2012160243

表2に、本実施例媒体、及び比較例媒体の保磁力Hc、及び保磁力分散ΔHc/Hcを示す。ここで、HcはPPMSにより、7Tの磁界を印加して測定した。また、ΔHc/Hcは、「IEEE Trans. Magn., vol.27, pp4975−4977, 1991」に記載の方法で測定した。具体的には、メジャーループ、及びマイナーループにおいて、磁化の値が飽和値の50%となるときの磁界を測定し、両者の差分から、反転磁界分布がガウス分布であると仮定してΔHc/Hcを算出した。ΔHc/Hcは、反転磁界分布の半値幅に相当するパラメーターであり、この値が低いほど、SFDが狭くなり、良好な媒体SNRが得られる。本実施例媒体は、何れも19kOe以上の高いHcと、0.33以下の低いΔHc/Hcを示した。特に、配向制御層にCrMo合金、及びCrW合金を用いた実施例2.5と実施例2.6が高いHcを示した。また、規格化粒径分散が特に小さかった実施例2.2と実施例2.3のΔHc/Hcが特に低かった。一方、比較例媒体のHcは、実施例媒体とほぼ同等であったが、ΔHc/Hcは著しく大きかった。以上より、配向制御層にCr、もしくはCr合金を用いることによって、ΔHc/Hcが低い熱アシスト媒体が得られることがわかった。   Table 2 shows the coercive force Hc and the coercive force dispersion ΔHc / Hc of the medium of this example and the comparative medium. Here, Hc was measured by applying a 7T magnetic field by PPMS. ΔHc / Hc was measured by the method described in “IEEE Trans. Magn., Vol. 27, pp 4975-4777, 1991”. Specifically, in the major loop and the minor loop, the magnetic field when the magnetization value is 50% of the saturation value is measured, and from the difference between them, it is assumed that the reversed magnetic field distribution is a Gaussian distribution and ΔHc / Hc was calculated. ΔHc / Hc is a parameter corresponding to the half-value width of the reversal magnetic field distribution. The lower this value, the narrower the SFD and the better the medium SNR. All of the media of this example exhibited a high Hc of 19 kOe or more and a low ΔHc / Hc of 0.33 or less. In particular, Examples 2.5 and 2.6 using CrMo alloy and CrW alloy for the orientation control layer showed high Hc. Further, ΔHc / Hc of Example 2.2 and Example 2.3 in which the normalized particle size dispersion was particularly small was particularly low. On the other hand, Hc of the comparative example medium was almost the same as that of the example medium, but ΔHc / Hc was remarkably large. From the above, it was found that a heat assist medium having a low ΔHc / Hc can be obtained by using Cr or a Cr alloy for the orientation control layer.

Figure 2012160243
Figure 2012160243

(実施例3)
実施例2と同一構成で、配向制御層を2種類のBCC合金からなる二層構造とした媒体を作製した。CrTiシード層の上に設ける第一の配向制御層(基板側)に、8nmのCrを使用し、第二の配向制御層(磁性層側)に、6nmのCrMo合金を使用しMo濃度を20at%から100at%(純Mo)まで変化させた。配向制御層以外の層構成、成膜プロセスは、実施例2と同様である。
(Example 3)
A medium having the same configuration as that of Example 2 and having an orientation control layer having a two-layer structure made of two types of BCC alloys was produced. The first orientation control layer (substrate side) provided on the CrTi seed layer uses 8 nm of Cr, the second orientation control layer (magnetic layer side) uses a 6 nm CrMo alloy, and the Mo concentration is 20 at. % To 100 at% (pure Mo). The layer configuration other than the orientation control layer and the film formation process are the same as those in Example 2.

XRD回折測定を行ったところ、上部、下部いずれの配向制御層からもBCC(200)ピークのみが観察された。磁性層からも、実施例2と同様、L1(001)ピーク、及び、L1(002)とFCC(200)の混合ピークが観察された。L1−FePt(200)ピークとFCC−FePt(200)ピークの混合ピークに対する、L1−FePt(001)ピーク強度比を、第二の配向制御層とTiC下地層の格子ミスフィットの関数として図3にプロットした。ここで、格子ミスフィットは、第二の配向制御層の格子定数aと、TiC下地層の格子定数aTiCから、格子ミスフィット=(√2×a−aTiC)/ aTiC(%)として算出した。aは、第二の配向制御層からのBCC(200)ピークからBraggの式を用いて算出し、aTiCは文献値から0.324nmとした。 When XRD diffraction measurement was performed, only the BCC (200) peak was observed from both the upper and lower orientation control layers. Also from the magnetic layer, the L1 0 (001) peak and the mixed peak of L1 0 (002) and FCC (200) were observed as in Example 2. For L1 0 -FePt (200) peak and FCC-FePt (200) mixed peak of the L1 0 -FePt (001) peak intensity ratio as a function of the second lattice misfit orientation control layer and the TiC underlayer Plotted in FIG. Here, the lattice misfit, the lattice constant a 2 of the second orientation control layer, the lattice constant a TiC of TiC underlayer lattice misfit = (√2 × a 2 -a TiC ) / a TiC (% ). a 2 was calculated from the BCC (200) peak from the second orientation control layer using the Bragg equation, and a TiC was set to 0.324 nm from the literature value.

ピーク強度比は、ミスフィットの増加と共に増加しており、ミスフィットが正の値になると大幅に高い値を示している。これより、ミスフィットを正の値にすることにより、L1−FePt合金の規則度を大幅に高められることがわかった。第二の配向制御層にBCC構造のCr合金を用いる場合、ミスフィットを正の値にするには、第二の配向制御層の格子定数を概ね0.306nm以上にする必要がある。この場合、Crに原子半径の大きな元素を大量に添加する必要がある。例えば、Mo添加の場合、Mo添加量は概ね65%以上となる。このため、第二の配向制御層は、Cr、もしくは添加元素の含有量の少ないCr合金からなる第一の配向制御層上に形成するのが望ましい。添加元素を大量に含有するCr合金からなる第二の配向制御層を、第一の配向制御層を形成せず、直接CrTiシード層上に形成すると(100)配向性が低下するため望ましくない。 The peak intensity ratio increases with an increase in misfit, and shows a significantly higher value when the misfit becomes a positive value. From this, it was found that the degree of order of the L1 0 -FePt alloy can be significantly increased by setting the misfit to a positive value. When a Cr alloy having a BCC structure is used for the second orientation control layer, the lattice constant of the second orientation control layer needs to be approximately 0.306 nm or more in order to make the misfit positive. In this case, it is necessary to add a large amount of an element having a large atomic radius to Cr. For example, in the case of Mo addition, the amount of Mo addition is approximately 65% or more. For this reason, it is desirable to form the second orientation control layer on the first orientation control layer made of Cr or a Cr alloy having a small content of additive elements. If the second orientation control layer made of a Cr alloy containing a large amount of the additive element is formed directly on the CrTi seed layer without forming the first orientation control layer, the (100) orientation is lowered, which is not desirable.

TiC下地層との格子ミスフィットが正になるのであれば、第二の配向制御層の材料は特に制限しない。具体的には、CrMo、CrW、CrTa、CrNb、VMo、VW、VTa、VNb、MoW、MoTa、MoNb、WTa、WNb、TaNb等のBCC合金を用いることが出来る。   If the lattice misfit with the TiC underlayer is positive, the material of the second orientation control layer is not particularly limited. Specifically, BCC alloys such as CrMo, CrW, CrTa, CrNb, VMo, VW, VTa, VNb, MoW, MoTa, MoNb, WTa, WNb, and TaNb can be used.

上記BCC合金の組成は、格子定数が0.306nm以上であれば特に制限はない。但し、第一の配向制御層とのミスフィットは、概ね15%以下とすることが望ましい。第一の配向制御層とのミスフィットが15%を上回ると、エピタキシャル成長が阻害され、第二の配向制御層の(100)配向が劣化するので好ましくない。また、第二の配向制御層にはMo、W、Ta、Nb等の単体金属を用いても良い。 The composition of the BCC alloy is not particularly limited as long as the lattice constant is 0.306 nm or more. However, the misfit with the first orientation control layer is preferably about 15% or less. If the misfit with the first orientation control layer exceeds 15%, epitaxial growth is inhibited, and the (100) orientation of the second orientation control layer is deteriorated, which is not preferable. In addition, a single metal such as Mo, W, Ta, or Nb may be used for the second orientation control layer.

第一の配向制御層の材料も特に制限はないが、BCC構造のCr合金を用いる場合は、Crへの添加元素の含有量は30%以下が望ましい。30%を上回ると、第一の配向制御層の(100)配向が劣化するので好ましくない。また、第一の配向制御層にB2構造のNiAl、RuAlなどを用いても良い。   The material of the first orientation control layer is not particularly limited, but when a Cr alloy having a BCC structure is used, the content of the additive element to Cr is preferably 30% or less. If it exceeds 30%, the (100) orientation of the first orientation control layer deteriorates, which is not preferable. In addition, B2 structure NiAl, RuAl, or the like may be used for the first orientation control layer.

(実施例4)
実施例2で示した媒体(実施例媒体2.1〜2.9)にパーフルオルポリエーテル系の潤滑剤を塗布したのち、図4に示した磁気記憶装置に組み込んだ。本磁気記憶装置は、磁気記録媒体401と、磁気記録媒体を回転させるための駆動部402と、磁気ヘッド403と、ヘッドを移動させるための駆動部404と、記録再生信号処理系405から構成される。図5に磁気ヘッドの詳細を示す。ヘッドは、主磁極501、補助磁極502、磁界を発生させるためのコイル503、レーザーダイオード(LD)504、LDから発生したレーザー光505を近接場発生素子506まで伝達するための導波路507から構成される記録ヘッド508、及びシールド509で挟まれた再生素子510から構成される再生ヘッド511からなる。近接場光素子から発生した近接場光により媒体512を加熱し、媒体の保磁力をヘッド磁界以下まで低下させて記録できる。また、LD、導波路、近接場発生素子からなる加熱機構513を主磁極と補助磁極の間に配置しても良い。但し、この場合、主磁極のリーディング側を加熱する必要があるため、媒体の進行方向は図とは逆に右側となる。
Example 4
A perfluoropolyether-based lubricant was applied to the medium shown in Example 2 (Example Mediums 2.1 to 2.9) and then incorporated into the magnetic storage device shown in FIG. This magnetic storage device includes a magnetic recording medium 401, a driving unit 402 for rotating the magnetic recording medium, a magnetic head 403, a driving unit 404 for moving the head, and a recording / reproducing signal processing system 405. The FIG. 5 shows details of the magnetic head. The head includes a main magnetic pole 501, an auxiliary magnetic pole 502, a coil 503 for generating a magnetic field, a laser diode (LD) 504, and a waveguide 507 for transmitting laser light 505 generated from the LD to the near-field generating element 506. And a reproducing head 511 including a reproducing element 510 sandwiched between a recording head 508 and a shield 509. Recording can be performed by heating the medium 512 with near-field light generated from the near-field light element and reducing the coercive force of the medium to a head magnetic field or less. A heating mechanism 513 including an LD, a waveguide, and a near-field generating element may be disposed between the main magnetic pole and the auxiliary magnetic pole. However, in this case, since the leading side of the main magnetic pole needs to be heated, the traveling direction of the medium is on the right side contrary to the figure.

表3に1400kFCIの信号を記録し、記録再生特性を評価したときのSNRとオーバーライト特性OWを示す。ここで、記録時のLDパワーは、トラックプロファイルの半値幅と定義した記録トラック幅が75nmとなるように調整した。実施例媒体はいずれも15dB以上の高いSNRと、30dB以上の高いOWを示した。中でも、ΔHc/Hcが特に小さかった実施例媒体2.2、実施例媒体2.3が16dB以上の高いSNRを示した。また、実施例媒体2.6、実施例媒体2.7が特に高いOW特性を示した。よって、OW特性を上げる場合は、CrV、CrRu下地層上にTiC下地層を形成することが望ましいことがわかった。   Table 3 shows the SNR and overwrite characteristic OW when a 1400 kFCI signal was recorded and the recording / reproduction characteristics were evaluated. Here, the LD power during recording was adjusted so that the recording track width defined as the half width of the track profile was 75 nm. All of the example media exhibited a high SNR of 15 dB or more and a high OW of 30 dB or more. Among them, Example Medium 2.2 and Example Medium 2.3 in which ΔHc / Hc was particularly small exhibited high SNR of 16 dB or more. In addition, Example Medium 2.6 and Example Medium 2.7 exhibited particularly high OW characteristics. Therefore, it was found that it is desirable to form a TiC underlayer on the CrV or CrRu underlayer in order to improve the OW characteristics.

Figure 2012160243
Figure 2012160243

101…ガラス基板
102…Si下地層
103…TiC下地層
104…磁性層
105…DLC保護膜
201…ガラス基板
202…TiAl接着層
203…AgPdヒートシンク層
204…CrTiシード層
205…配向制御層
206…TiC下地層
207…磁性層
208…キャップ層
209…DLC保護膜
401…磁気記録媒体
402…媒体駆動部
403…磁気ヘッド
404…ヘッド駆動部
405…記録再生信号処理系
501…主磁極
502…補助磁極
503…コイル
504…半導体レーザーダイオード
505…レーザー光
506…近接場光発生部
507…導波路
508…記録ヘッド
509…シールド
510…再生素子
511…再生ヘッド
DESCRIPTION OF SYMBOLS 101 ... Glass substrate 102 ... Si base layer 103 ... TiC base layer 104 ... Magnetic layer 105 ... DLC protective film 201 ... Glass substrate 202 ... TiAl adhesion layer 203 ... AgPd heat sink layer 204 ... CrTi seed layer 205 ... Orientation control layer 206 ... TiC Underlayer 207 ... magnetic layer 208 ... cap layer 209 ... DLC protective film 401 ... magnetic recording medium 402 ... medium driving unit 403 ... magnetic head 404 ... head driving unit 405 ... recording / reproduction signal processing system 501 ... main magnetic pole 502 ... auxiliary magnetic pole 503 ... Coil 504 ... Semiconductor laser diode 505 ... Laser light 506 ... Near-field light generator 507 ... Waveguide 508 ... Recording head 509 ... Shield 510 ... Reproducing element 511 ... Reproducing head

Claims (10)

基板と、該基板上に形成された下地層と、L1構造を有する合金を主成分とする磁性層からなる磁気記録媒体において、該下地層が、TiCであることを特徴とする熱アシスト磁気記録媒体。 A substrate, a base layer formed on the substrate, a magnetic recording medium comprising a magnetic layer mainly composed of an alloy having an L1 0 structure, the underlayer is thermally assisted magnetic, characterized in that the TiC recoding media. 前記下地層を複数層から形成し、前記TiCが、BCC構造を有する下地層の上に形成されていることを特徴とする請求項1に記載の熱アシスト磁気記録媒体。 The heat-assisted magnetic recording medium according to claim 1, wherein the underlayer is formed of a plurality of layers, and the TiC is formed on the underlayer having a BCC structure. 前記TiCが、Cr、もしくはCrを主成分とし、Ti、V、Mo、W、Mn、Ruのうちの少なくとも1種類を含有したBCC構造を有する下地層の上に形成されていることを特徴とする請求項2に記載の熱アシスト磁気記録媒体。 The TiC is formed on a base layer having a BCC structure containing Cr or Cr as a main component and containing at least one of Ti, V, Mo, W, Mn, and Ru. The thermally assisted magnetic recording medium according to claim 2. 前記TiCが、Cr、もしくはCrを主成分とし、Ti、V、Mo、W、Mn、Ruのうちの少なくとも1種類を含有し、更に、B、C、Siのうちの少なくとも1種類を含有したBCC構造を有する下地層の上に形成されていることを特徴とする請求項1に記載の熱アシスト磁気記録媒体。 The TiC contains Cr or Cr as a main component and contains at least one of Ti, V, Mo, W, Mn, and Ru, and further contains at least one of B, C, and Si. The heat-assisted magnetic recording medium according to claim 1, wherein the heat-assisted magnetic recording medium is formed on an underlayer having a BCC structure. 前記TiCが、BCC構造を有する第一の下地層と、前記第一の下地層の上に形成されたBCC構造を有する第二の下地層の上に形成されており、前記第二の下地層の格子定数が、0.306nm以上であることを特徴とする請求項1に記載の熱アシスト磁気記録媒体。 The TiC is formed on a first underlayer having a BCC structure and a second underlayer having a BCC structure formed on the first underlayer, and the second underlayer The thermally assisted magnetic recording medium according to claim 1, wherein the lattice constant of is 0.66 nm or more. 前記TiCが、B2構造を有するNiAl、もしくはRuAlからなる第一の下地層と、前記第一の下地層の上に形成されたBCC構造を有する第二の下地層の上に形成されており、前記第二の下地層の格子定数が、0.306nm以上であることを特徴とする請求項1に記載の熱アシスト磁気記録媒体。 The TiC is formed on a first underlayer made of NiAl or RuAl having a B2 structure and a second underlayer having a BCC structure formed on the first underlayer, The thermally assisted magnetic recording medium according to claim 1, wherein a lattice constant of the second underlayer is 0.306 nm or more. 格子定数が0.306nm以上である第二の下地層が、Mo、W、Ta、Nb、もしくはこれらを含有するBCC構造を有する合金であることを特徴とする請求項5または6に記載の熱アシスト磁気記録媒体。 The heat according to claim 5 or 6, wherein the second underlayer having a lattice constant of 0.306 nm or more is Mo, W, Ta, Nb, or an alloy having a BCC structure containing these. Assisted magnetic recording medium. 前記TiCが、MgO下地層の上に形成されていることを特徴とする請求項1に記載の熱アシスト磁気記録媒体。 The heat-assisted magnetic recording medium according to claim 1, wherein the TiC is formed on an MgO underlayer. 磁性層がL1構造を有するFePt、もしくはCoPt合金を主成分とし、かつ、SiO、TiO、Cr、Al、Ta、ZrO、Y、CeO、MnO、TiO、ZnO、Cから選択される少なくとも一種類の酸化物、もしくは元素を含有していることを特徴とする請求項1乃至8の何れか1項に記載の熱アシスト磁気記録媒体。 The magnetic layer is mainly composed of FePt or CoPt alloy having an L1 0 structure, and SiO 2 , TiO 2 , Cr 2 O 3 , Al 2 O 3 , Ta 2 O 5 , ZrO 2 , Y 2 O 3 , CeO. 9. The heat-assisted magnetic recording medium according to claim 1, comprising at least one oxide or element selected from 2 , MnO, TiO, ZnO, and C. 10. . 磁気記録媒体と、該磁気記録媒体を回転させるための駆動部と、該磁気記録媒体を加熱するためのレーザー発生部と、該レーザー発生部から発生したレーザー光をヘッド先端まで導く導波路と、ヘッド先端に取り付けられた近接場光発生部を備えた磁気ヘッドと、該磁気ヘッドを移動させるための駆動部と、記録再生信号処理系から構成さる磁気記憶装置において、該磁気記録媒体が請求項1乃至9の何れか1項に記載の熱アシスト媒体であることを特徴とする磁気記憶装置。
A magnetic recording medium, a driving unit for rotating the magnetic recording medium, a laser generating unit for heating the magnetic recording medium, a waveguide for guiding laser light generated from the laser generating unit to the head tip, In a magnetic storage device comprising a magnetic head having a near-field light generating unit attached to the tip of the head, a driving unit for moving the magnetic head, and a recording / reproducing signal processing system, the magnetic recording medium is claimed. A magnetic storage device according to any one of 1 to 9, wherein the magnetic storage device is the heat-assisted medium.
JP2011020923A 2011-02-02 2011-02-02 Thermally assisted magnetic recording medium and magnetic storage device Active JP5730047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011020923A JP5730047B2 (en) 2011-02-02 2011-02-02 Thermally assisted magnetic recording medium and magnetic storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011020923A JP5730047B2 (en) 2011-02-02 2011-02-02 Thermally assisted magnetic recording medium and magnetic storage device

Publications (2)

Publication Number Publication Date
JP2012160243A true JP2012160243A (en) 2012-08-23
JP5730047B2 JP5730047B2 (en) 2015-06-03

Family

ID=46840643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011020923A Active JP5730047B2 (en) 2011-02-02 2011-02-02 Thermally assisted magnetic recording medium and magnetic storage device

Country Status (1)

Country Link
JP (1) JP5730047B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165002A1 (en) * 2012-05-01 2013-11-07 昭和電工株式会社 Thermally assisted magnetic recording medium and magnetic recording/reproducing apparatus
WO2014129423A1 (en) * 2013-02-25 2014-08-28 山陽特殊製鋼株式会社 MAGNETIC RECORDING-USE Cr-ALLOY, SPUTTERING-USE TARGET MATERIAL, AND VERTICAL MAGNETIC RECORDING MEDIUM USING SAME
CN111681691A (en) * 2020-05-28 2020-09-18 北京航空航天大学 Phase change assisted disk media, disks, devices and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003099920A (en) * 2001-09-21 2003-04-04 National Institute For Materials Science MANUFACTURING METHOD OF THIN FePt MAGNETIC THIN FILM
JP2004178753A (en) * 2002-11-28 2004-06-24 Toshiba Corp Vertical magnetic recording medium
JP2004326889A (en) * 2003-04-23 2004-11-18 Hitachi Global Storage Technologies Inc Magnetic recording medium
US20070026263A1 (en) * 2005-07-26 2007-02-01 Seagate Technology Llc Heatsink films for magnetic recording media
WO2010109822A1 (en) * 2009-03-23 2010-09-30 昭和電工株式会社 Thermally assisted magnetic recording medium, and magnetic recording/reproducing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003099920A (en) * 2001-09-21 2003-04-04 National Institute For Materials Science MANUFACTURING METHOD OF THIN FePt MAGNETIC THIN FILM
JP2004178753A (en) * 2002-11-28 2004-06-24 Toshiba Corp Vertical magnetic recording medium
JP2004326889A (en) * 2003-04-23 2004-11-18 Hitachi Global Storage Technologies Inc Magnetic recording medium
US20070026263A1 (en) * 2005-07-26 2007-02-01 Seagate Technology Llc Heatsink films for magnetic recording media
WO2010109822A1 (en) * 2009-03-23 2010-09-30 昭和電工株式会社 Thermally assisted magnetic recording medium, and magnetic recording/reproducing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165002A1 (en) * 2012-05-01 2013-11-07 昭和電工株式会社 Thermally assisted magnetic recording medium and magnetic recording/reproducing apparatus
US9007880B2 (en) 2012-05-01 2015-04-14 Showa Denko K.K. Thermally assisted magnetic recording medium and magnetic recording and reproducing apparatus
WO2014129423A1 (en) * 2013-02-25 2014-08-28 山陽特殊製鋼株式会社 MAGNETIC RECORDING-USE Cr-ALLOY, SPUTTERING-USE TARGET MATERIAL, AND VERTICAL MAGNETIC RECORDING MEDIUM USING SAME
JP2014164780A (en) * 2013-02-25 2014-09-08 Sanyo Special Steel Co Ltd Cr ALLOY FOR MAGNETIC RECORDING AND SPUTTERING TARGET MATERIAL, AND PERPENDICULAR MAGNETIC RECORDING MEDIUM USING THE SAME
CN105027203A (en) * 2013-02-25 2015-11-04 山阳特殊制钢株式会社 Magnetic recording-use cr-alloy, sputtering-use target material, and vertical magnetic recording medium using same
CN105027203B (en) * 2013-02-25 2018-04-06 山阳特殊制钢株式会社 For magnetic recording Cr alloys and sputtering target material and use its perpendicular magnetic recording media
CN111681691A (en) * 2020-05-28 2020-09-18 北京航空航天大学 Phase change assisted disk media, disks, devices and methods
CN111681691B (en) * 2020-05-28 2023-03-10 北京航空航天大学 Phase change assisted disk media, disks, devices and methods

Also Published As

Publication number Publication date
JP5730047B2 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
JP5961490B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP5923324B2 (en) Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
JP5015901B2 (en) Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
JP6145332B2 (en) Magnetic recording medium, magnetic storage device
JP5787344B2 (en) Thermally assisted magnetic recording medium and magnetic storage device
WO2011093233A1 (en) Heat-assisted magnetic recording medium and magnetic recording and reproducing device
JP6317896B2 (en) Magnetic recording medium and magnetic storage device
JP6014385B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP5506604B2 (en) Thermally assisted magnetic recording medium and magnetic storage device
JP5938224B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP6073194B2 (en) Magnetic recording medium, magnetic storage device
JP5561773B2 (en) Thermally assisted magnetic recording medium and magnetic storage device
JP6009055B2 (en) Thermally assisted magnetic recording medium and magnetic storage device
JP5961439B2 (en) Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
JP5923152B2 (en) Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
JP5730047B2 (en) Thermally assisted magnetic recording medium and magnetic storage device
JP5804591B2 (en) Thermally assisted magnetic recording medium and magnetic storage device
JP5858634B2 (en) Thermally assisted magnetic recording medium and magnetic storage device
JP2013149328A (en) Magnetic recording medium and magnetic recording and reproducing device
JP5787349B2 (en) Thermally assisted magnetic recording medium and magnetic storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150407

R150 Certificate of patent or registration of utility model

Ref document number: 5730047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350