WO2014129365A1 - 溶解物濃度の測定方法 - Google Patents

溶解物濃度の測定方法 Download PDF

Info

Publication number
WO2014129365A1
WO2014129365A1 PCT/JP2014/053244 JP2014053244W WO2014129365A1 WO 2014129365 A1 WO2014129365 A1 WO 2014129365A1 JP 2014053244 W JP2014053244 W JP 2014053244W WO 2014129365 A1 WO2014129365 A1 WO 2014129365A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reagent
colorant
region component
concentration
Prior art date
Application number
PCT/JP2014/053244
Other languages
English (en)
French (fr)
Inventor
義尚 岸根
寿和 高橋
高橋 淳一
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to BR112015019834-1A priority Critical patent/BR112015019834B1/pt
Priority to CN201480010051.0A priority patent/CN105074428B/zh
Priority to SG11201506128YA priority patent/SG11201506128YA/en
Priority to US14/764,817 priority patent/US9933369B2/en
Priority to EP14753586.8A priority patent/EP2960641B1/en
Publication of WO2014129365A1 publication Critical patent/WO2014129365A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry

Definitions

  • the present invention relates to a lysate concentration measurement method for measuring the concentration of a lysate in a sample based on the absorbance of light.
  • the concentration of the dissolved substance dissolved in the liquid is often measured using an absorptiometric method.
  • absorptiometry for example, after a sample having a specific lysate is stored in a transparent measurement cell, a reagent is added to the sample, and the sample is colored according to the concentration of the specific lysate. Use as the measurement solution.
  • the light to be measured is transmitted through the liquid to be measured, and a part of the light is absorbed by the liquid to be measured, and then the transmitted light is received by the light receiver. Measure the light intensity.
  • the absorbance value is calculated from the intensity of the transmitted light measured at this time and the intensity of the transmitted light of a specific wavelength of light with respect to the transparent liquid, which is measured separately. Then, using this absorbance value and a calibration curve prepared in advance for this lysate, that is, a diagram showing the relationship between the absorbance value and the lysate concentration value, the concentration of the lysate in the sample is determined. calculate.
  • light including the visible light region is transmitted through the liquid to be measured, and the light in the red region component, the light in the green region component, or the blue light obtained by dividing the light in the visible light region into approximately three parts of the transmitted light. It is also possible to measure the concentration of a specific lysate in a sample by calculating an absorbance value for any of the region component lights, or for a plurality of region component lights that are a combination thereof (patents). Reference 1).
  • the lysate concentration is not detected at all even though there is a lysate to be detected in the sample, or it is less than the actual lysate concentration and only the value corresponding to the amount of reagent. Therefore, the concentration of the lysate is not detected, and there is a problem that the proper lysate concentration in the sample is not measured. This problem may also occur when measuring the concentration of the lysate using the light of three region components, red, green, and blue.
  • the present invention uses the light absorbance of the three region components of red, green, and blue to measure the concentration of the lysate in the sample. It is an object of the present invention to provide a method for measuring a concentration of a lysate capable of determining whether or not it is added.
  • light that includes a visible light region is transmitted through a liquid to be measured that is colored by the addition of a reagent to a sample, and the light in the visible light region of the transmitted light is approximately divided into three parts.
  • the concentration of the lysate selected from the light of the red region component, the light of the green region component, the light of the blue region component, or the light of the plurality of region components obtained by combining these
  • concentration of a specific lysate in the sample is measured by calculating the light absorbance of the region component for the lysate concentration measurement based on the transmitted light from the liquid to be measured to which is added Concentration measurement step and coloring Based on the transmitted light from the liquid to be measured to which an entering reagent is added, by calculating the absorbance
  • the absorbance value of the three region component lights when the liquid to be measured that has developed color due to the dissolved material absorbs, for example, all three region component lights (hereinafter referred to as region component light), the absorbance value of the three region component lights.
  • the region component light having a linear relationship between the concentration of the lysate and the lysate is selected as the region component light for lysate concentration measurement.
  • the colorant may be any colorant as long as the liquid to be measured that has developed color transmits the region component light for measuring the dissolved substance concentration without absorbing it.
  • this colorant one that causes the liquid to be measured to be colored in the same color as the region component light for measuring the dissolved substance concentration can be used.
  • the liquid to be measured that has developed color due to the colorant passes through the region component light for measuring the concentration of lysate without absorbing it. Can be easily obtained from a calibration curve prepared in advance.
  • the region component light for measuring the lysate concentration for example, the region component light other than the green region component light, that is, either the red region component light or the blue region component light, for example,
  • the red region component light passes through the liquid to be measured, and thus shows the absorbance value A3 caused by the colorant alone or the absorbance value A1 caused by the colorant and the specific dissolved material. If the red region component light shows absorbance due to the colorant and the specific lysate, the concentration of the specific lysate is known, so the absorbance of the red region component light due to the specific lysate concentration alone
  • the value A2 is also easily calculated from a calibration curve created in advance.
  • the first colorant that develops the liquid to be measured into a color that allows transmission of the light of the region component for measuring the concentration of the dissolved substance and one of the light of the remaining region component without absorbing it.
  • the color of the region component for measuring the lysate concentration and the color of the other component of the remaining region component are allowed to pass through without being absorbed.
  • the second colorant for coloring the measurement solution is added to the other of the reagents to make a second colorant-containing reagent.
  • the colorant that transmits two region component lights can cause the liquid to be measured to develop the same color as the complementary color light of the blue region component light. That's fine.
  • the colorant that transmits the red region component light and the blue region component light without absorbing them may be any colorant that causes the liquid to be measured to develop the same color as the complementary color light of the green region component light.
  • the colorant that transmits the component light and the blue region component light without absorbing it may be any colorant that causes the liquid to be measured to develop the same color as the complementary color light of the red region component light.
  • the first colorant has, for example, the same liquid as the complementary color light of the green region component light.
  • a color developing agent is used, and as the second colorant, one that causes the liquid to be measured to develop the same color as the complementary color light of the blue region component light is used. Since the red region component light is not absorbed by the liquid to be measured in which only the first colorant and the second colorant are colored, the concentration of the specific lysate in the sample is the absorbance of the red region component light. Using the value, it can be easily obtained from a calibration curve prepared in advance.
  • the green region component light since the green region component light is not absorbed by the liquid to be measured only by the coloration of the second colorant, the green region component light shows the absorbance value B3 caused only by the first colorant, or the first coloration.
  • the absorbance value B1 attributed to the agent and the specific lysate is shown.
  • the blue region component light is not absorbed by the liquid to be measured that is only colored by the first colorant, and therefore shows the absorbance value C3 due to only the second colorant, or the second colorant And the absorbance value C1 due to the specific lysate.
  • the liquid to be measured is colored so as to change color with a change in the concentration of the specific dissolved matter, and the light of the two region components is emitted.
  • the color of the solution to be measured is changed to a color that allows the light of the two region components to pass through without being absorbed.
  • an agent is added to the reagent to make a reagent with a colorant.
  • the colorant when two region component lights for measuring the concentration of lysate are, for example, a blue region component light and a green region component light, the colorant contains other region component light, that is, red region component light. Those that color the liquid to be measured in the same color as the complementary color light are used. Since the two component light components for measuring the concentration of the lysate are not affected by the colorant in the liquid to be measured, the concentration of the specific lysate is calculated based on the absorbance value of the region component light. Further, the remaining red region component light shows an absorbance value attributed only to the colorant, or an absorbance value attributed to the colorant and the specific lysate.
  • the absorbance value caused only by the colorant can be easily calculated. Therefore, the suitability of the added amount of the reagent added to the sample can be easily determined based on the absorbance value caused only by the colorant of the red region component light.
  • the colorant-containing reagent is recycled. That is, the concentration measurement step and the determination step are repeated while adding.
  • the necessary amount of the reagent has been added even after a predetermined time has elapsed. If it is determined that there is no, in the determination step, an alarm is issued and the measurement is stopped.
  • a colorant that colors the liquid to be measured is added to the reagent in a color that transmits the light of the region component for measuring the concentration of the dissolved substance without absorbing it. Therefore, the concentration of a specific lysate in the sample can be measured by the light absorbance of the area component for measuring the lysate concentration, and whether the reagent is added in the required amount by the light absorbance of the other area components. It can be determined whether or not. Therefore, in the present invention, it is possible to always measure the correct concentration of the lysate without worrying about the amount of reagent added.
  • FIG. 1 shows a concentration measuring apparatus for carrying out the present invention.
  • the concentration measuring apparatus 1 automatically measures the concentration of a dissolved substance, such as dissolved oxygen, phosphoric acid, alkalinity component, hardness component, or silica, dissolved in industrial water or daily life water, using light absorbance. To do.
  • a dissolved substance such as dissolved oxygen, phosphoric acid, alkalinity component, hardness component, or silica
  • the concentration measuring device 1 is attached to one side surface of a measuring cell 2 in which a measuring solution S2 or a colorless adjusting solution S0 colored inside is stored, and the measuring cell 2 A light receiving / emitting unit 3 that performs light emission to the side and reception of transmitted light from the measurement cell 2, a sample supply line 4 that supplies the measurement cell 2 with a sample solution S1 or a preparation solution S0 having a specific lysate,
  • the reagent T0 is added to the sample solution S1 in the measurement cell 2, and this sample solution S1 is used as the measured solution S2 colored by a specific lysate, and from the measurement cell 2 to the measured solution S2.
  • a liquid discharge line 6 for discharging the adjustment liquid S0, an arithmetic processing device 7 for inputting and outputting to the light receiving and emitting unit 3, and a processing result by the arithmetic processing device 7 are output.
  • the sample liquid S1 is colorless and transparent, and therefore is also used as the adjustment liquid S0.
  • the measurement cell 2 has a box shape with a capacity of 2.5 mL, the left side surface portion is formed of a white reflection plate 21, and the central portion of the right side surface portion facing the reflection plate 21. In addition, an acrylic transparent portion 22 is formed.
  • the measurement cell 2 has a front surface, a rear surface portion, an upper surface portion, and a lower surface portion that are formed of a black plate on the inner surface, a sample supply line 4 is connected to the lower surface portion, and a liquid discharge line 6 is connected to the upper surface portion. Are connected, and the reagent supply line 5 is connected to the left side surface portion.
  • the light emitting / receiving unit 3 includes a light emitting body 31, a light receiving body 32, a wiring base (not shown), and the like in a casing provided with an opening on the measurement cell 2 side.
  • the illuminator 31 emits light into the measurement cell 2 and transmits this light into the measured liquid S2 or the adjustment liquid S0.
  • a light source such as a light emitting diode (LED) that emits light (white light) including a visible light region is used.
  • the light receiving body 32 receives the transmitted light L of the light emitted from the light emitting body 31 from the measured liquid S2 or the adjustment liquid S0, and measures the intensity of the light related to the transmitted light L.
  • the photoreceptor 32 includes three photodiodes, light of a red region component (hereinafter referred to as red region component light), and light of a green region component (hereinafter referred to as “red region component light”).
  • red region component light three photodiodes, light of a red region component (hereinafter referred to as red region component light), and light of a green region component (hereinafter referred to as “red region component light”).
  • Three color filters F that transmit only the light of the blue region component (hereinafter referred to as blue region component light), that is, the R filter, the G filter, and the B filter, respectively.
  • an RGB color sensor having a photodiode D1 having an R filter, a photodiode D2 having a G filter, and a photodiode D3 having a B filter is used for the photoreceptor 32 (See FIG. 2).
  • the light receiving body 32 includes red region component light, green region component light, and blue region component light (hereinafter referred to as three region component lights) transmitted through each filter, of the transmitted light L transmitted through the measurement liquid S2. Simultaneously measure the light intensity.
  • the R filter transmits the red light most of the red region component light
  • the G filter transmits the green light most of the green region component light
  • the B filter transmits the blue light most of the blue region component light.
  • the light receiving body 32 is disposed on the same side as the light emitting body 31 with respect to the measurement cell 2. Further, the transmitted light L in the measured liquid S2 emitted from the light emitter 31 is reflected by the reflecting plate 21 facing the light emitter 31 with the measured liquid S2 interposed therebetween, and is transmitted again through the measured liquid S2. . Therefore, the light receiving body 32 receives the transmitted light L reflected by the reflecting plate 21.
  • the light emitter 31 and the light receiver 32 are such that the intersection point P of the light emitter 31 with the optical axis K1 of the reflector 21 and the intersection of the light receiver 32 with the optical axis K2 of the reflector 21 substantially coincide. It is positioned. Therefore, the main light from the light emitter 31 that is reflected by the reflector 21 does not reach the light receiver 32, and the light receiver 32 is a part of the reflected light from the ambient light around the main light from the light emitter 31. Or a part of the light irregularly reflected by the reflecting plate 21 or both of them.
  • FIG. 2 shows a circuit diagram in the light emitting / receiving unit 3.
  • reference sign D1 is a photodiode having an R filter
  • reference sign D2 is a photodiode having a G filter
  • reference sign D3 is a photodiode having a B filter, and these are integrated.
  • the photoreceptor 32 is formed.
  • symbol H denotes a light emitting diode (LED) that becomes the light emitter 31
  • symbols C1, C2, and C3 denote main circuits for the photodiodes D1, D2, and D3, and symbols O1, O2, and so on.
  • O3 is an operational amplifier (operational amplifier) for each of the photodiodes D1, D2, and D3.
  • the signal of the transmitted light intensity of each region component light output from the light receiving body 32 is transmitted to the arithmetic processing unit 7 through the operational amplifiers O1, O2, and O3.
  • the sample supply line 4 includes a sample pump 41, a membrane filter 42, an electromagnetic valve 43, a main pipe 44, and a return pipe 45, and is sampled at a predetermined place.
  • the sample liquid S1 is supplied to the measurement cell 2.
  • the sample pump 41 is always operating, and continues to supply the sample solution S1 to the measurement cell 2 side via the main pipe 44.
  • the electromagnetic valve 43 is closed, and the entire amount of the sample liquid S1 before being filtered by the membrane filter 42 is discharged to the return pipe 45 side.
  • the electromagnetic valve 43 is opened, the sample liquid S1 is filtered by the membrane filter 42, supplied to the measurement cell 2, and then discharged from the liquid discharge line 6 side.
  • the reagent supply line 5 includes a reagent pump 51, a reagent bottle 52, and a pipe 53.
  • the reagent pump 51 By operating the reagent pump 51 for a predetermined time, the reagent T0 in the reagent bottle 52 is measured by a predetermined amount. Supply to cell 2.
  • the sample liquid S1 and the reagent T0 are sufficiently stirred in the measurement cell 2. That is, in the measurement cell 2, the liquid to be measured S2 colored according to the concentration of a predetermined lysate is produced after a certain time by adding the reagent T0.
  • the liquid discharge line 6 discharges the measured liquid S2 or the adjustment liquid S0 (hereinafter referred to as waste liquid S3), which has been measured, in the measurement cell 2 to the outside of the measurement cell 2.
  • the waste liquid S3 is discharged from the measurement cell 2 by supplying the sample liquid S1 or the adjustment liquid S0 from the sample supply line 4 to the measurement cell 2 for a certain period of time.
  • the calculation processing device 7 is a computer that operates according to a program, and includes a calculation unit 71 and a storage unit 72.
  • the calculation unit 71 calculates, for example, the time average intensity for each region component light based on the intensity signals of the three region component lights output from the photoreceptor 32. In addition, the calculation unit 71 calculates, for example, the absorbance of the three region component lights using the transmitted light intensity of partially absorbed light and the transmitted light intensity of non-absorbed light, and the three region components. The concentration of the lysate to be measured is calculated from each absorbance value for light. Further, for example, the calculation unit 71 receives a preparation completion signal from the control device 9 and causes the light emitter 31 to emit light in a timely manner, and also causes the control device 9 to start measurement, end measurement, and stop measurement. It also has a function to send the signal.
  • the storage unit 72 stores a calibration curve indicating the relationship between the absorbance and the lysate concentration for the necessary region component light. Note that another function as described later is also added to the arithmetic unit 71 and the like.
  • the output device 8 displays on the display the concentration of the specific dissolved matter in the sample liquid S1 calculated by the arithmetic processing device 7.
  • the control device 9 controls the opening and closing of the electromagnetic valve 43 of the sample supply line 4 to discharge the waste liquid S3 in the measurement cell 2 by the sample liquid S1 and store the sample liquid S1 in the measurement cell 2. Has a function. Further, the control device 9 performs ON / OFF control of the reagent pump 51 of the reagent supply line 5 to supply a predetermined amount of the reagent T0 to the sample solution S1 in the measurement cell 2, and this sample solution S1 is used as the solution to be measured. It has the function of changing to S2.
  • control device 9 receives the measurement end signal from the arithmetic processing device 7, discharges the waste liquid S3 in the measurement cell 2, supplies the reagent T0 to the measurement cell 2, and after a predetermined time has elapsed, That is, after the solution to be measured S2 sufficiently colored by the reagent T0 is made, a signal indicating completion of preparation is transmitted to the arithmetic processing unit 7.
  • the sample pump 41 is operated with the electromagnetic valve 43 of the sample supply line 4 closed.
  • the sample solution S1 supplied from the main pipe 44 to the measurement cell 2 side is discharged only from the return pipe 45 side without being filtered.
  • the electromagnetic valve 43 is opened, and the filtered sample liquid S1 is discharged from the liquid discharge line 6 side through the measurement cell 2.
  • the electromagnetic valve 43 is closed, the sample solution S1 is discharged only from the return pipe 45 side, and a predetermined amount of the sample solution S1 is stored in the measurement cell 2.
  • the liquid to be measured S2 is colored.
  • the measured liquid S2 is sufficiently colored, light including a visible light region is emitted from the light emitter 31 of the light receiving and emitting unit 3. This light is transmitted through the measured liquid S2 in the measurement cell 2, then reflected by the reflecting plate 21, and again transmitted through the measured liquid S2.
  • the transmitted light L is received by the light receiving body 32 after a part of the light is absorbed by the liquid S2 to be measured. In this case, the transmitted light L is divided into three region component lights, and the intensity of each transmitted light is measured. Then, the emission of light from the light emitter 31 is repeated a plurality of times, and the average transmitted light intensity of the three region component lights is calculated.
  • the electromagnetic valve 43 of the sample supply line 4 is opened, and the filtered sample liquid S1 is poured into the measurement cell 2 for a predetermined time. Accordingly, the waste liquid S3 in the measurement cell 2 is discharged through the liquid discharge line 6, the inside of the measurement cell 2 is cleaned, and the sample liquid S1 that becomes the adjustment liquid S0 is stored in the measurement cell 2. . Subsequently, with respect to the transmitted light from the adjustment liquid S0, the average transmitted light intensity of the three region component lights is calculated as in the case of the measured liquid S2.
  • the respective absorbances for the three region component lights are calculated.
  • the region component light created for the region component light for measuring the concentration of a specific lysate (hereinafter referred to as the region component light for measuring the lysate concentration) From the calibration curve indicating the relationship between the absorbance and the concentration of the lysate, the concentration of the specific lysate at that time is calculated. Further, the value of the concentration of the specific lysate is displayed on the display of the output device 8.
  • FIG. 3 (a) shows a case where the specific lysate in the sample solution S1 is Wellclin (registered trademark of Kurita Kogyo Co., Ltd., which means a dithiocarbamic acid heavy metal scavenger).
  • the values of the absorbances of the light components of one region are shown for each wellcrine concentration.
  • FIG. 3 (b) is a graph showing a calibration curve. Show. Among the calibration curves shown in FIG. 3 (b), the absorbance value for the blue region component light has the most linear change in the absorbance value with respect to the wellclin concentration. Therefore, it can be seen that it is preferable to determine the wellclin concentration based on the absorbance of the blue region component light as the region component light for measuring the concentration of the lysate.
  • a ferrous chloride solution 250 mg / L is used as the reagent T0 that causes the sample solution S1 containing wellclin to develop a brown color to be measured solution S2. Further, since the liquid S2 to be measured absorbs a lot of light in the visible light, it absorbs any of the three region component lights.
  • the concentration measuring apparatus 1 the light from the light emitter 31 is transmitted so as to reciprocate obliquely through the measured liquid S2 in the measurement cell 2, and the light passing distance in the measured liquid S2 becomes longer. In addition, the amount of light absorbed into the liquid S2 to be measured can be increased accordingly. Therefore, the concentration measuring apparatus 1 can measure the dissolved substance concentration with high accuracy and can downsize the measuring cell 2.
  • the concentration measuring apparatus 1 the light including the visible light region from the light emitter 31 is divided into three region component lights by the light receiver 32, and the absorbance of these region component lights is calculated, thereby dissolving the region component light.
  • the concentration of the object is determined. Therefore, in this concentration measuring apparatus 1, in order to measure the concentration of any lysate, it is only necessary to have a simple set of the light emitter 31 and the light receiver 32, thereby reducing the measurement cost and reducing the size of the measurement apparatus. Can be achieved.
  • the absorbance is calculated for all three region component lights.
  • this absorbance may be calculated only for the region component light for measuring the lysate concentration.
  • the liquid to be measured S2 is colored yellow-orange due to the addition of the reagent T0, the liquid to be measured S2 hardly absorbs red region component light and green region component light, and is blue light that is complementary color light. It is considered that only region component light is absorbed. Therefore, in this case, the blue region component light becomes the region component light for measuring the dissolved substance concentration, and the absorbance may be calculated only for the blue region component light.
  • the reagent T0 is definitely added to the sample solution S1 when the lysate concentration is measured as 0 (zero).
  • the measured concentration value of the lysate is small, there is a question as to whether the reagent T0 is sufficiently added to the sample solution S1.
  • Such non-addition or insufficient addition of the reagent may occur due to clogging or disconnection of the pipe 53 in the reagent supply line 5, failure of the reagent pump 51, or depletion of the reagent T 0 in the reagent bottle 52. is there. Therefore, in measuring the lysate concentration, it is important to be able to determine whether or not the necessary amount of the reagent T0 is added to the sample solution S1.
  • This lysate concentration measuring method is based on a reagent preparation step of adding a colorant to the reagent T0 to produce a colorant-containing reagent T0c, and a transmitted light L from the measured liquid S2 to which the colorant-containing reagent T0c is added. Based on the concentration measurement step for measuring the concentration of the specific lysate in the sample liquid S1 and the transmitted light L from the measured liquid S2 to which the colorant-containing reagent T0c is added, only the necessary amount of the reagent T0 is obtained. And a determination step of determining whether or not it is added.
  • a colorant that develops the liquid S2 to be measured is added to the reagent T0 in a color that allows the region component light for measuring the concentration of the dissolved substance of the three region component lights to pass through without being absorbed.
  • a colorant-containing reagent T0c is produced.
  • This reagent preparation process will be described in detail with reference to FIG.
  • region component light for lysate concentration measurement As a premise of this reagent preparation process, it is necessary to determine region component light for lysate concentration measurement from three region component lights.
  • As the area component light for measuring the dissolved substance concentration one of the three area component lights that is absorbed by the measured liquid S2 colored by a specific dissolved substance is selected.
  • the absorbance value and the lysate concentration value change in a linear relationship.
  • the region component light to be selected is selected as the region component light for measuring the dissolved substance concentration.
  • a colorant that develops the liquid S2 to be measured is selected as a color that transmits the region component light for measuring the concentration of the dissolved matter without absorbing it (step S11).
  • FIG. 5 shows a hue circle in which the twelve colors that visible light may show are arranged in the order in which the colors change.
  • the hue ring is divided into three parts, and red region component light is indicated by, for example, red light, red orange light, yellow orange light, and yellow light, and green region component light is indicated by, for example, yellow green light,
  • red region component light is indicated by, for example, red light, red orange light, yellow orange light, and yellow light
  • green region component light is indicated by, for example, yellow green light
  • green light, blue-green light, and green-blue light are indicated
  • blue region component light is indicated by, for example, blue light, blue-violet light, purple light, and red-violet light.
  • the red region component light is absorbed by the measured liquid S2 that develops the same color as the complementary color light (either blue-green, green-blue, blue, blue-violet, or a mixed color of these colors). Further, the green region component light is absorbed by the measured liquid S2 that develops the same color (purple, magenta, red, red-orange, or a mixed color thereof) as the complementary color light, and the blue region. The component light is absorbed by the measured liquid S2 that develops the same color as the complementary color light (yellow-orange, yellow, yellow-green, or green, or a mixed color of these colors).
  • the red region component light is not absorbed in the measured liquid S2 that develops the same color (either red, red orange, yellow orange, or yellow, or a mixed color of these colors).
  • the green region component light is not absorbed in the measured liquid S2 that develops the same color (yellowish green, green, blue-green, or green-blue, or a mixed color of these colors).
  • the blue region component light is transmitted without being absorbed in the measured liquid S2 that develops the same color (blue, bluish purple, purple, reddish purple, or a mixture of these colors). To do.
  • the area component light for measuring the dissolved substance concentration is the red area component light
  • a colorant that develops the color of the liquid S2 to be measured in the same color as the red area component light may be used.
  • the region component light for measuring the dissolved substance concentration is the green region component light
  • the colorant may be one that colors the liquid S2 to be measured in the same color as the green region component light.
  • the concentration measurement region component light is blue region component light
  • a colorant that develops the liquid S2 to be measured in the same color as the blue region component light may be used.
  • the colorant is colored in the same color (either red, red orange, yellow orange, or yellow) as one color light in the red region component light
  • this colorant is added.
  • the liquid S2 to be measured absorbs either the green region component light or the blue region component light other than the red region component light, but the colorant has the same color (red, In the case of color development (a mixed color of red-orange, yellow-orange, and yellow), the liquid S2 to which the colorant is added absorbs both green region component light and blue region component light.
  • a predetermined amount of this colorant is added to a predetermined amount of reagent T0 to produce a colorant-containing reagent T0c (step S12).
  • the concentration measurement process is substantially the same as the series of work steps described for the concentration measurement apparatus 1. That is, in the concentration measurement step, the sample liquid S1 is supplied to the measurement cell 2, and then the reagent T0c containing the colorant is added to the sample liquid S1 to make the measurement liquid S2, and the light emitter 31 is added to the measurement liquid S2. A step of transmitting the light from the light-emitting body 31, and a step of receiving the transmitted light L by the light receiving body 32, and supplying the adjustment liquid S0 to the measurement cell 2, and then transmitting the light from the light emitter 31 to the adjustment liquid S0.
  • the absorbance of the region component light for measuring the lysate concentration is calculated from the step of receiving the transmitted light L by the light receiving body 32 and the transmitted light L of the liquid to be measured S2 and the adjustment liquid S0.
  • the absorbance of the region component light for measuring the lysate concentration is calculated from the transmitted light L of the new measured solution S2 and the adjustment solution S0, and the specific lysate concentration in the sample solution S1 is measured from this absorbance. And a process of performing. Since the region component light for measuring the lysate concentration is not affected by the colorant, an appropriate lysate concentration is measured by this concentration measuring step except for the problem of the addition amount of the reagent T0.
  • the determination step includes step 1, step 2, step 3, and step 4.
  • step 1 in the concentration measurement step, when calculating the absorbance of the region component light for measuring the dissolved substance concentration from the transmitted light L of the liquid to be measured S2 and the adjustment liquid S0, The absorbance for the region component light is calculated.
  • the absorbance for the other region component light is caused by only the colorant, the value is A3, and when this is caused by the colorant and the specific dissolved matter, the value is A1.
  • the absorbance value A3 corresponds to the amount of reagent T0 added to the sample solution S1.
  • step 3 the light absorption value A3 of the other region component light obtained in step 1 or step 2 due to only the colorant and the other region when the necessary amount of reagent T0 is added to the sample liquid S1.
  • the component light is compared with the value A0 of the absorbance due to only the colorant (hereinafter referred to as the standard absorbance). If A3 ⁇ A0, it is determined that the required amount of reagent T0 is not added to the sample solution S1, and if A3 ⁇ A0, it is determined that the required amount of reagent T0 is added to the sample solution S1. To do.
  • step 4 when it is determined that the necessary amount of the reagent T0 is not added to the sample solution S1, the concentration measurement is immediately stopped or the concentration measurement is stopped after continuing under certain conditions.
  • FIG. 4B shows the operation of the calculation unit 71 of the calculation processing device 7.
  • the absorbance of the region component light for measuring the concentration of the lysate for example, the green region component light is calculated.
  • the concentration of the specific lysate in the sample solution S1 is measured (step S22). Since the area component light for measuring the concentration of lysate (green area component light) is not affected by the colorant, the absorbance value and the area component light for measuring the concentration of lysate (green area component light) are prepared in advance.
  • the specific lysate concentration in the sample solution S1 is easily calculated from the calibration curve showing the relationship between the lysate concentration and the absorbance.
  • the absorbance value of other region component light (red region component light) at this time is defined as A1.
  • step S24 The absorbance value A3 obtained in step S23 and the absorbance due to only the colorant of other region component light (red region component light) when the necessary amount of reagent T0 is added to the sample solution S1 (reference) Is compared with the value A0 (step S24).
  • A3 ⁇ A0 it is determined YES and it is determined that the necessary amount of reagent T0 is added. If A3 ⁇ A0, NO is determined and the amount of reagent T0 added is insufficient. It is determined that
  • step S24 If it is determined in step S24 that the necessary amount of reagent T0 has been added, the measurement of the concentration relating to the sample solution S1 is completed, and the measurement of the concentration of the new sample solution S1 is started (step S25). . That is, the control device 9 is instructed to discharge the adjustment liquid S0 in the measurement cell 2, that is, the waste liquid S3, and a new sample liquid S1 is stored in the measurement cell 2. The measurement operation is performed.
  • the measurement may be stopped as it is without performing the remeasurement.
  • the standard elapsed time from the end of the first measurement to the end of the third measurement is measured, and it is determined in the first measurement that the addition amount of the reagent T0 is insufficient, the standard If the target elapsed time elapses, the measurement may be stopped.
  • the area component light for measuring the dissolved substance concentration is, for example, red area component light
  • the colorant causes the liquid S2 to be colored to develop the same color as almost all the color light in the red area component light.
  • the sum (B1 + C1) of the absorbance values of the other region component lights (green region component light and blue region component light) is calculated, and the absorbance values of these region component lights due to only the colorant are calculated.
  • the sum (B3 + C3) is calculated from the equation (B1 + C1) ⁇ (B2 + C2). Since the sum of the absorbance values (B3 + C3) is a value corresponding to the amount of the reagent T0 in the measured solution S2, this value is the colorant when the necessary amount of the reagent T0 is added to the sample solution S1.
  • this lysate concentration measurement method a colorant that develops the liquid S2 to be measured is added to the reagent T0 in a color that transmits the region component light for lysate concentration measurement without absorbing it. Based on the transmitted light of the liquid S2 to be measured to which the colorant-containing reagent T0c is added and the colorant-containing reagent T0c is added, the absorbance of the region component light for measuring the lysate concentration and the coloration of the other region component light Absorbance due to the agent alone is calculated. Therefore, in this lysate concentration measurement method, it is possible to easily determine whether or not the necessary amount of the reagent T0 is added to the sample solution S1 when measuring the lysate concentration. That is, in this method for measuring the lysate concentration, an appropriate lysate concentration can always be measured without worrying about the amount of reagent T0 added.
  • the calculation unit 71 of the calculation processing device 7 has a function of causing the operation described in the flowchart of FIG.
  • the calculation unit 71 has a function of calculating the value of the absorbance caused only by the colorant using the absorbance of the region component light other than the region component light for measuring the lysate concentration.
  • the calculation unit 71 compares the calculated absorbance value with the reference absorbance value with respect to the absorbance caused only by the colorant, and when the calculated absorbance value is small or 0 (zero). In this case, it has a function of determining that the reagent T0 is not properly added.
  • the calculation unit 71 has a function of causing the output device 8 to issue an alarm to that effect and causing the control device 9 to stop the measurement.
  • the storage unit 72 of the arithmetic processing unit 7 stores a reference absorbance value attributable to only the colorant of the region component light other than the region component light for measuring the dissolved substance concentration. Further, the storage unit 72 stores a calibration curve indicating the relationship between the absorbance and the lysate concentration for the region component light other than the lysate concentration measurement region component light.
  • blue region component light is used as the region component light for measuring the lysate concentration
  • ferrous chloride solution 250 mg / L
  • the colorant includes a dye solution (50 mg / L) that causes the liquid S2 to be measured to develop the same color as the all-color light in the blue region component light (a mixed color of blue, blue purple, purple, and red purple). Used. Therefore, the colorant-containing reagent T0c is prepared by adding a certain amount of a dye solution to a certain amount of ferrous chloride solution.
  • the capacity of the measurement cell 2 is 2.5 mL, when a predetermined amount of the reagent T0c containing the colorant is added thereto, the sample liquid S1 slightly overflows, and the liquid to be measured in the measurement cell 2 Only 2.5 mL of S2 is made.
  • (A) of FIG. 6 adds 0.2 mL of reagent T0c with a colorant to each of six types of sample liquids S1 having different wellclin concentrations in the measurement cell 2, and the absorbance of the liquid S2 to be measured is Three region component lights are examined.
  • the absorbance values A and B of the red region component light and the green region component light are affected by the wellclin and the colorant, and the values are shown in FIG. 3 (a).
  • the absorbance value C of the blue region component light is not affected by the colorant, the value is almost the same as that shown in FIG. ing. Therefore, it can be seen that the concentration of wellclin can be calculated from the absorbance of the blue region component light even when the colorant-containing reagent T0c is used.
  • the value D caused by wellclin and the colorant is the absorbance value of the red region component light.
  • the sum F of absorbance values attributed only to this colorant corresponds to the amount of reagent T0 added. Is the reagent T0 added to the sample liquid S1 by a necessary amount by the sum of absorbance values F? A determination of whether or not can be made.
  • FIG. 6 (b) shows the case where only 0.1 mL of the colorant-containing reagent T0c is added to each sample solution S1 having a different wellclin concentration in the measurement cell 2, and FIG. A case where only 0.05 mL of the colorant-containing reagent T0c is added to each sample solution S1 is shown.
  • the sum F of the absorbance values attributable to the colorant alone in the red region component light and the green region component light is 0. This is 1 ⁇ 2 of the value in the case of 2 mL, and twice the value in the case where the amount of the colorant-containing reagent T0c is 0.05 mL. From this, it can be seen that the sum F of absorbance values attributed only to this colorant is a value proportional to the amount of the colorant-containing reagent T0c added.
  • the amount of the colorant-containing reagent T0c is 0.05 mL
  • the absorbance value of each region component light becomes constant and becomes smaller than the actual value. It can be seen that the amount of the reagent T0 added to the sample solution S1 is insufficient. Therefore, when the concentration of wellclin in the sample liquid S1 can be expected to be, for example, about 100 mg / L, the amount of the colorant-containing reagent T0c is set to 0.1 mL or more, and the red region component light and the blue region component light
  • the standard absorbance value relating to the sum F of absorbance values caused only by the colorant needs to be 0.42 or more, for example.
  • FIG. 7 shows three cases where a plurality of liquids to be measured S2 are prepared by adding 0.05 mL of the colorant-containing reagent T0c to the sample liquid S1 having a wellclin concentration of 0 mg / L in the measurement cell 2.
  • the values of the absorbance of the region component light due to only the colorant and the sum of the values of the absorbance of the red region component light and the green region component light due to only the colorant are shown.
  • FIG. 8 is a graph showing the relationship between the sum of the absorbance values attributable to only the colorant and the amount of addition of the colorant-containing reagent T0c for the red region component light and the green region component light. From the graph of FIG.
  • the sum of the absorbance values due to only the colorant of the red region component light and the green region component light with respect to the addition amount of the colorant-containing reagent T0c is known. From the sum, it is possible to easily determine the standard absorbance value when the necessary amount of the reagent T0 is added.
  • the first colorant-containing reagent T1c and the second colorant-containing reagent T2c may be made in the reagent preparation step for producing the colorant-containing reagent.
  • the first colorant-containing reagent T1c is made by adding a certain amount of the first colorant to the predetermined amount of the first reagent T1
  • the second colorant-containing reagent T2c is a certain amount of the second colorant. Only in addition to a predetermined amount of the second reagent T2.
  • the first colorant includes region component light for measuring the concentration of dissolved matter, for example, red region component light and the remaining region component light, that is, green region component light or blue region component.
  • One that develops the liquid S2 to be measured is used as a color that transmits one of the light, for example, green region component light without absorbing it.
  • the second colorant has a color that transmits the dissolved component concentration measurement region component light (red region component light) and the other region component light (blue region component light) without absorbing it.
  • a liquid that colors the liquid S2 to be measured is used.
  • the colorant that develops the liquid S2 to be measured in a color that transmits the two region component lights without absorbing them will be described in detail using the hue ring of FIG.
  • the colorant when the two region component lights are the green region component light and the blue region component light, the colorant has the same color as the complementary color light of the red region component light (blue green, green blue, blue, blue violet, or these Any color can be used as long as it develops in a mixed color).
  • the colorant has the same color as the complementary color light of the green region component light (purple, magenta, red, or red-orange, or If the two region component lights are red region component light and green region component light, the complementary color light (yellow orange, yellow, yellow green, Or any one of green or a mixed color of these colors).
  • the region component light for measuring the lysate concentration is red region component light
  • a colorant that causes the liquid S2 to be measured to develop the same color as the complementary color light of the green region component light is used as the first reagent T1.
  • the first colorant-containing reagent T1c is prepared, and a colorant that causes the liquid S2 to be measured to develop the same color as the complementary color light of the blue region component light is added to the second reagent T2 to produce the second color. What is necessary is just to make reagent T2c with an agent.
  • the region component light (red region component light) for measuring the lysate concentration is not affected by the first colorant and the second colorant.
  • the concentration of the lysate can be determined.
  • the green region component light is affected only by the first colorant and is not affected by the second colorant. Therefore, for example, it is calculated using the calibration curve from the absorbance value B1 of the green region component light indicating the absorbance value due to the first colorant and the specific lysate, and the concentration value of the lysate.
  • the absorbance value B3 caused only by the first colorant is calculated from the absorbance value B2 of the green region component light caused only by the lysate, and this absorbance value B3 is obtained from the reference absorbance value B0. If it is smaller, the added amount of the first reagent T1 is insufficient.
  • the blue region component light is affected only by the second colorant and is not affected by the first colorant. Therefore, for example, it is calculated using the calibration curve from the absorbance value C1 of the blue region component light indicating the absorbance value due to the second colorant and the specific lysate and the concentration value of the lysate.
  • the absorbance value C3 due to the second colorant alone is calculated from the absorbance value C2 of the blue region component light attributable only to the lysate, and this absorbance value C3 is obtained from the reference absorbance value C0. If it is smaller, the added amount of the second reagent T2 is insufficient.
  • the measured liquid S2 in the measurement cell 2 is insufficient.
  • Re-measurement may be performed by adding only the colorant-containing reagent.
  • the calculation unit 71 of the calculation processing device 7 has a function of advancing the operation of the device as described above. Further, the storage unit 72 of the arithmetic processing unit 7 stores the reference absorbance values B0 and C0 of the respective component light components caused by only the colorant for the first reagent T1 and the second reagent T2. Yes.
  • the first reagent T1 is added to the measurement cell 2 from the first reagent supply line 5A
  • the second reagent T2 is supplied from the second reagent supply line 5B. It is added to the measuring cell 2.
  • the first colorant-containing reagent T1c is also added to the measurement cell 2 from the first reagent supply line 5A
  • the second colorant-containing reagent T2c is also added to the measurement cell 2 from the second reagent supply line 5B.
  • the reagent supply lines 5A and 5B are provided with reagent pumps 51A and 51B, reagent bottles 52A and 52B, and pipes 53A and 53B, respectively. Controlled by
  • FIG. 10 shows a case where the emission color of the solution S2 to be measured changes from the color of the complementary color light of the red region component light to the color of the complementary color light of the green region component light as the concentration of the dissolved matter increases.
  • the absorbance value of the green region component light rapidly increases in a curved line when the concentration of the lysate begins to increase, and increases linearly when the concentration of the lysate exceeds 30.
  • the absorbance value of the red region component light decreases linearly when the concentration of the lysate begins to increase, and gradually decreases when the concentration of the lysate becomes 30 or less. Therefore, the concentration of the lysate is calculated based on the absorbance value of the red region component light from 0 to 30, and if it exceeds 30, the concentration of the lysate is calculated based on the absorbance value of the green region component light. .
  • the colorant added to the reagent T0 causes the liquid S2 to be measured to be colored in the same color as the complementary color light of the blue region component light, and is transmitted without absorbing the red region component light and the green region component light. What is to be used is used. Therefore, when the blue region component light shows, for example, the absorbance due to the colorant and the specific dissolved material, the absorbance value of the blue region component light due to only the colorant is calculated, and this If the absorbance value is smaller than the standard absorbance value, it is determined that the amount of reagent T0 added to the sample solution S1 is insufficient.
  • a colorant-containing reagent T0c may be prepared by adding a colorant that causes the liquid S2 to be measured to develop the same color as the complementary color light of the remaining region component light in addition to the reagent T0. Then, from the absorbance value of the remaining region component light, the absorbance value attributed only to the colorant is calculated, and based on this absorbance value, whether or not the reagent T0 has been added to the sample solution S1 without a shortage. What is necessary is just to determine.
  • the arithmetic unit 71 of the arithmetic processing unit 7 has a function of advancing the operation of the device as described above.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

【課題】 試料中の溶解物の濃度を測定するに当たり、試料に添加された試薬の量が適正であるか否かの判定が可能な溶解物濃度の測定方法を提供する。 【解決手段】 試料への試薬の添加により発色した被測定液に、可視光域を含む光を透過させて、その透過光のうち、可視光域の光を略3分割して得られる、レッド、グリーン、ブルーの、3つの領域成分光の何れかから選定される溶解物濃度測定用の領域成分光を、吸収することなく透過させる色に、被測定液を発色させる着色剤を、試薬に加えて着色剤入り試薬を作る。つぎに、着色剤入り試薬が添加されている被測定液からの透過光に基づいて、溶解物濃度測定用の領域成分光の吸光度と、他の領域成分光の、着色剤のみに起因する吸光度A3とを算出する。この吸光度A3と基準の吸光度A0とを比較することにより、試料中に試薬が必要量だけ添加されている否かの判定を行うことができる。

Description

溶解物濃度の測定方法
 本発明は、光の吸光度に基づいて試料中の溶解物の濃度を測定する溶解物濃度の測定方法に関するものである。
 液体中に溶解している溶解物の濃度は、吸光光度法を用いて測定される場合も多い。
 この吸光光度法では、例えば、特定の溶解物を有する試料を透明な測定セル中に収容した後、この試料に試薬を添加して、この試料を特定の溶解物の濃度に応じて発色した被測定液とする。つぎに、この被測定液に、発光体から発せられた光を透過させて、この光の一部を被測定液に吸収させた後、この透過光を受光体で受光し、このときの透過光の強度を計測する。つぎに、このとき測定した透過光の強度と、別に測定した、例えば透明液に対する特定波長の光の透過光の強度とから、吸光度の値を算出する。そして、この吸光度の値と、この溶解物に関して予め作成した検量線、すなわち、吸光度の値と溶解物の濃度の値との関係を示す線図とを用いて、試料中の溶解物の濃度を算出する。
 一方、被測定液に可視光域を含む光を透過させて、その透過光のうち、可視光域の光を略3分割して得られるレッド領域成分の光、グリーン領域成分の光、又はブルー領域成分の光の何れかについて、又はこれらを組み合わせた複数の領域成分の光について、吸光度の値を算出することにより、試料中の特定の溶解物の濃度を測定することもなされている(特許文献1)。
特開2010-181150号公報
 しかしながら、吸光光度法を用いて試料中の溶解物濃度を測定するに当たり、試薬ポンプの故障、試薬の供給路の閉塞、試薬の供給チューブの外れ、又は、試薬の枯渇等により、試料に必要量の試薬が添加されない場合も生じうる。このことは、試料中の溶解物の濃度を自動的に測定する場合に多く生じる。
 このような場合、試料中に検出対象となる溶解物が存在するにもかかわらず、溶解物濃度が全く検出されなかったり、又は、実際の溶解物濃度より少ない、試薬の量に見合った値しか、溶解物の濃度が検出されないことが生じ、試料中の適正な溶解物濃度が測定されないという問題が生じる。そして、この問題は、レッド、グリーン、ブルーの、3つの領域成分の光を用いて、溶解物の濃度を測定する場合にも生じ得る。
 この発明は、以上の点に鑑み、レッド、グリーン、ブルーの、3つの領域成分の光の吸光度を用いて、試料中の溶解物の濃度を測定するに当たり、測定に必要な量の試薬が試料に添加されているか否かの判定が可能な溶解物濃度の測定方法を提供することを目的とする。
 この発明の第1の発明は、試料への試薬の添加により発色した被測定液に可視光域を含む光を透過させて、その透過光のうち、前記可視光域の光を略3分割して得られるレッド領域成分の光、グリーン領域成分の光、又はブルー領域成分の光の何れかから選定されるか、又は、これらを組み合わせた複数の前記領域成分の光から選定される溶解物濃度測定用の前記領域成分の光を、吸収することなく透過させる色に前記被測定液を発色させる着色剤を、前記試薬に加えて着色剤入り試薬を作る試薬調製工程と、前記着色剤入り試薬が添加されている前記被測定液からの前記透過光に基づいて、前記溶解物濃度測定用の前記領域成分の光の吸光度を算出することにより、前記試料中の特定の溶解物の濃度を測定する濃度測定工程と、前記着色剤入り試薬が添加されている前記被測定液からの前記透過光に基づいて、前記溶解物濃度測定用の前記領域成分の光以外の、他の前記領域成分の光の吸光度を算出することにより、この他の前記領域成分の光の、前記着色剤のみに起因する吸光度の値を定め、この吸光度の値と基準の吸光度の値とを比較することにより、前記試薬が必要量だけ添加されているか否かの判定を行う判定工程とを有する、ということである。
 この発明では、溶解物によって発色した被測定液が、例えば、3つの領域成分の光(以下領域成分光という)の何れをも吸収する場合には、3つの領域成分光のうち、吸光度の値と溶解物の濃度の値とが直線的な関係にある領域成分光が、溶解物濃度測定用の領域成分光として選定される。また、着色剤は、これによって発色した被測定液が、溶解物濃度測定用の領域成分光を、吸収することなく透過させるものであれば、どのようなものでもよい。例えば、この着色剤には、被測定液を、溶解物濃度測定用の領域成分光と同一色に発色させるものが使用できる。着色剤により発色した被測定液は、溶解物濃度測定用の領域成分光を吸収せずに透過させるので、試料中の特定の溶解物の濃度は、溶解物濃度測定用の領域成分光の吸光度の値を用いて、事前に作成された検量線から容易に求めることができる。
 また、3つの領域成分光のうち、溶解物濃度測定用の領域成分光、例えば、グリーン領域成分光以外の領域成分光、すなわち、レッド領域成分光又はブルー領域成分光の何れか一方、例えば、レッド領域成分光は、被測定液中を透過することにより、着色剤のみに起因した吸光度の値A3を示すか、又は着色剤と特定の溶解物とに起因した吸光度の値A1を示す。レッド領域成分光が着色剤と特定の溶解物とに起因した吸光度を示す場合、特定の溶解物の濃度は既知であるため、特定の溶解物の濃度のみに起因するレッド領域成分光の吸光度の値A2も、事前に作成した検量線から容易に算出される。したがって、この場合、着色剤のみに起因したレッド領域成分光の吸光度の値A3は、A3=A1-A2の式を用いて算出される。この吸光度の値A3は、試料に添加された試薬の量に応じた値となるため、この吸光度の値A3が、基準の吸光度の値A0より小さい場合、試料に添加された試薬の量が不足していると判定される。なお、基準の吸光度の値A0とは、試料に必要量の試薬を添加した場合の、着色剤のみに起因する、レッド領域成分光の吸光度の値をいう。
 この発明の第2の発明は、第1の発明の場合において、前記試料に2種類の前記試薬が添加される場合には、前記試薬調製工程において、3つの前記領域成分の光のうち、前記溶解物濃度測定用の前記領域成分の光と残りの前記領域成分の光の一方とを吸収することなく透過させる色に、前記被測定液を発色させる第1の着色剤を、前記試薬の一方に加えて第1の着色剤入り試薬を作るとともに、前記溶解物濃度測定用の前記領域成分の光と前記残りの前記領域成分の光の他方とを吸収することなく透過させる色に、前記被測定液を発色させる第2の着色剤を、前記試薬の他方に加えて第2の着色剤入り試薬を作る、ということである。
 2つの領域成分光、例えば、レッド領域成分光とグリーン領域成分光とを吸収することなく透過させる着色剤は、被測定液を、ブルー領域成分光の補色光と同一色に発色させるものであればよい。同様に、レッド領域成分光とブルー領域成分光とを吸収することなく透過させる着色剤は、被測定液を、グリーン領域成分光の補色光と同一色に発色させるものであればよく、グリーン領域成分光とブルー領域成分光とを吸収することなく透過させる着色剤は、被測定液を、レッド領域成分光の補色光と同一色に発色させるものであればよい。
 したがって、溶解物濃度測定用の領域成分光として、例えば、レッド領域成分光が使用される場合には、第1の着色剤には、例えば、被測定液をグリーン領域成分光の補色光と同一色に発色させるものが使用され、第2の着色剤には、被測定液をブルー領域成分光の補色光と同一色に発色させるものが使用される。レッド領域成分光は、第1の着色剤と第2の着色剤とが発色しただけの被測定液には吸収されないため、試料中の特定の溶解物の濃度は、レッド領域成分光の吸光度の値を用いて、事前に作成された検量線から容易に求めることができる。
 また、グリーン領域成分光は、第2の着色剤が発色しただけの被測定液には吸収されないため、第1の着色剤のみに起因した吸光度の値B3を示すか、又は、第1の着色剤と特定の溶解物とに起因した吸光度の値B1を示す。また、ブルー領域成分光は、第1の着色剤が発色しただけの被測定液に吸収されないため、第2の着色剤のみに起因した吸光度の値C3を示すか、又は、第2の着色剤と特定の溶解物とに起因した吸光度の値C1を示す。グリーン領域成分光とブルー領域成分光とが、着色剤と特定の溶解物とに起因した吸光度を示す場合には、特定の溶解物のみに起因するグリーン領域成分光とブルー領域成分光の吸光度の値(B2,C2)は、それぞれの事前に作成した検量線から読み取ることができる。したがって、第1の着色剤のみに起因するグリーン領域成分光の吸光度の値B3は、B3=B1-B2の式を用いて算出され、第2の着色剤のみに起因するブルー領域成分光の吸光度の値C3は、C3=C1-C2の式を用いて算出される。そして、これらの吸光度の値(B3,C3)が、第1の試薬と第2の試薬毎に定めた基準の吸光度の値(B0,C0)より小さい場合には、試料に添加された各試薬の添加量が不足していると判定される。
 この発明の第3の発明は、第1の発明の場合において、前記被測定液が、前記特定の溶解物の濃度の変化に伴って変色するように発色し、2つの前記領域成分の光が前記溶解物濃度測定用の前記領域成分の光となる場合には、前記試薬調製工程において、前記2つの前記領域成分の光を吸収することなく透過させる色に、前記被測定液を発色させる着色剤を、前記試薬に加えて着色剤入り試薬を作る、ということである。
 この発明では、2つの溶解物濃度測定用の領域成分光が、例えば、ブルー領域成分光とグリーン領域成分光の場合、着色剤には、これら以外の領域成分光、すなわち、レッド領域成分光の補色光と同一色に被測定液を発色させるものが使用される。2つの溶解物濃度測定用の領域成分光は、被測定液中の着色剤の影響を受けないため、これらの領域成分光の吸光度の値によって、特定の溶解物の濃度が算出される。また、残りのレッド領域成分光は、着色剤のみに起因した吸光度の値を示すか、又は、着色剤と特定の溶解物とに起因した吸光度の値を示す。レッド領域成分光が、着色剤と特定の溶解物とに起因した吸光度の値を示す場合でも、これの着色剤のみに起因する吸光度の値は容易に算出される。したがって、試料に添加された試薬の添加量の適否は、レッド領域成分光の着色剤のみに起因する吸光度の値に基づいて容易に判定できる。
 この発明の第4の発明は、第1から第3の発明の何れかの発明の場合において、前記試薬が必要量だけ添加されていないと判定された場合には、前記着色剤入り試薬の再添加を行いつつ、前記濃度測定工程と前記判定工程とを繰り返す、ということである。
 この発明の第5の発明は、 第4の発明の場合において、前記試薬が必要量だけ添加されていないと判定された後、所定の時間経過しても、前記試薬が必要量だけ添加されていないと判定された場合には、前記判定工程において、警報を発して測定を中止する、ということである。
 この発明の第6の発明は、第1から第3の発明の何れかの発明の場合において、前記試薬が必要量だけ添加されていないと判定された場合には、前記判定工程において、警報を発して測定を中止する、ということである。
 これらの発明によれば、3つの領域成分の光のうち、溶解物濃度測定用の領域成分の光を吸収することなく透過させる色に、被測定液を発色させる着色剤を、試薬に加えているので、溶解物濃度測定用の領域成分の光の吸光度により、試料中の特定の溶解物の濃度を測定できるとともに、他の領域成分の光の吸光度により、試薬が必要量だけ添加されているか否かも判定できる。したがって、この発明では、試薬の添加量を気にすることなく、常に正しい溶解物の濃度測定を行うことができる。
この発明の実施形態1に係る溶解物濃度の測定方法を実施するための濃度測定装置を示す図である。 受発光部内の電気配線図である。 通常の試薬を用いて被測定液を作った場合の、ウエルクリンの濃度と各領域成分光の吸光度の値を示す図であり、(a)は、これらを表で示し、(b)は、これらをグラフで示したものである。 実施形態1に係る溶解物濃度の測定方法を説明するためのフローチャートであり、(a)は、試薬調製工程を説明するものであり、(b)は、濃度測定工程の一部と判定工程とを説明するものである。 着色剤を説明するための、可視光の色相環を示す図である。 試料液に着色剤入り試薬を添加して被測定液を作った場合の、ウエルクリンの濃度と各領域成分光の吸光度の値等を示す図であり、(a)は、着色剤入り試薬を0.2mL添加した場合であり、(b)は、着色剤入り試薬を0.1mL添加した場合であり、(c)は、着色剤入り試薬を0.05mL添加した場合である。 溶解物を有しない試料液に着色剤入り試薬を添加して被測定液を作った場合の、着色剤入り試薬の添加量に対する、各領域成分光の吸光度の値等を表で示す図である。 図7で示される着色剤入り試薬の添加量と、赤領域成分光と緑領域成分光との、着色剤のみに起因する吸光度の値の和との関係を、グラフで示す図である。 この発明の実施形態2,3に係る溶解物濃度の測定方法を実施するための他の濃度測定装置を示す図である。 溶解物の濃度によって被測定液の発光色が変化する場合の、溶解物の濃度に対する、赤領域成分光の吸光度の値と、緑領域成分光の吸光度の値とを示す図であり、(a)は、これらをグラフで示し、(b)はこれらを表で示したものである。
 以下、この発明の実施の形態を図面を参照しつつ説明する。
[濃度測定装置]
 図1はこの発明を実施するための濃度測定装置を示している。
 濃度測定装置1は、例えば、工業用水又は生活用水中等に溶解する、溶存酸素、リン酸、アルカリ度成分、硬度成分、又はシリカといった溶解物の濃度を、光の吸光度を用いて自動的に測定するものである。
 この濃度測定装置1は、図1で示されるように、内部に発色した被測定液S2又は無色の調整液S0が溜められる測定セル2と、測定セル2の一側面に取り付けられ、測定セル2側への発光と測定セル2からの透過光の受光とを行う受発光部3と、測定セル2に、特定の溶解物を有する試料液S1又は調製液S0を供給する試料供給ライン4と、測定セル2内の試料液S1中に試薬T0を添加して、この試料液S1を、特定の溶解物により発色した被測定液S2とする試薬供給ライン5と、測定セル2から被測定液S2と調整液S0とを排出するための液排出ライン6と、受発光部3からの入力と受発光部3への出力がなされる演算処理装置7と、演算処理装置7による処理結果を出力する出力装置8と、試料供給ライン4と試薬供給ライン5中の機器とを制御する制御装置9とを有している。なお、試料液S1は、無色透明であるため調整液S0としても使用される。
 測定セル2は、図1で示されるように、容量が2.5mLの箱状のものであり、左側面部が白い反射板21から形成され、この反射板21に対向する、右側面部の中央部に、アクリル製の透明部22が形成されている。測定セル2は、前面部、後面部、上面部、及び下面部とも、内面が黒色の板材で形成されており、下面部に、試料供給ライン4が連結され、上面部に、液排出ライン6が連結され、左側面部に、試薬供給ライン5が連結されている。
 受発光部3は、測定セル2側に開口が設けられたケーシング内に、発光体31、受光体32、及び不図示の配線基盤等を有している。発光体31は、測定セル2内に光を発し、この光を被測定液S2中又は調整液S0中に透過させる。この発光体31には、可視光域を含んだ光(白色光)を発する、例えば、発光ダイオード(LED)のような光源が使用される。
 受光体32は、発光体31から発せられた光の、被測定液S2又は調整液S0からの透過光Lを受光して、これらの透過光Lに関する光の強度を計測するものである。この受光体32は、3つのフォトダイオードと、可視光域の光の波長帯を略3分割して得られる、レッド領域成分の光(以下赤領域成分光という)、グリーン領域成分の光(以下緑領域成分光という)、又はブルー領域成分の光(以下青領域成分光という)のみをそれぞれ透過させる3つのカラーフィルタF、すなわち、Rフィルタ、Gフィルタ、Bフィルタとを有している。
 すなわち、この受光体32には、Rフィルタを備えたフォトダイオードD1と、Gフィルタを備えたフォトダイオードD2と、Bフィルタを備えたフォトダイオードD3とを有したRGBカラーセンサが使用されている(図2参照)。この受光体32は、被測定液S2を透過した透過光Lのうち、各フィルタを透過した赤領域成分光と緑領域成分光と青領域成分光(以下3つの領域成分光という)の、それぞれの光の強度を同時に計測する。なお、Rフィルタは、赤領域成分光のうち赤色光を最も透過し、Gフィルタは、緑領域成分光のうち緑色光を最も透過し、Bフィルタは、青領域成分光のうち青色光を最も透過する。
 また、受光体32は、図1で示されるように、測定セル2に対して、発光体31と同一側に配置されている。また、発光体31から発せられた被測定液S2中の透過光Lは、被測定液S2を挟んで、発光体31に対向する反射板21により反射され、被測定液S2中を再度透過する。したがって、受光体32は、反射板21により反射された透過光Lを受光する。この場合、発光体31は、光軸K1が、反射板21に対してα=略45度をなすように向けられているとともに、受光体32は、光軸K2が、反射板21に直行するように向けられている。また、発光体31と受光体32とは、発光体31の光軸K1の反射板21との交点Pと、受光体32の光軸K2の反射板21との交点とが略一致するように位置決めされている。このため、反射板21で反射される、発光体31からの主要光は、受光体32には達せず、受光体32は、発光体31からの主要光周りの周辺光による反射光の一部、又は反射板21で乱反射された光の一部、又はこれらの両者を受光する。
 図2は受発光部3内の回路図を示している。図中、符号D1は、Rフィルタを備えたフォトダイオードであり、符号D2は、Gフィルタを備えたフォトダイオードであり、符号D3は、Bフィルタを備えたフォトダイオードであり、これらが一体になって、受光体32を形成している。また、図中、符号Hは、発光体31となる発光ダイオード(LED)であり、符号C1,C2,C3は、各フォトダイオードD1,D2,D3用の主回路であり、符号O1,O2,O3は、各フォトダイオードD1,D2,D3用のオペアンプ(演算増幅器)である。受光体32から出力された各領域成分光の透過光強度の信号は、オペアンプO1,O2,O3を通って、演算処理装置7に伝達される。
 試料供給ライン4は、図1で示されるように、試料ポンプ41と、膜フィルター42と、電磁弁43と、主配管44と、リターン配管45とから構成されており、所定の場所でサンプリングされた試料液S1を測定セル2に供給する。試料ポンプ41は、常時作動しており、試料液S1を、主配管44を介して、測定セル2側に供給し続けている。測定セル2側で計測が行われている間は、電磁弁43が閉じられ、膜フィルター42で濾過される前の試料液S1が、全量、リターン配管45側に排出されている。電磁弁43が開けられると、試料液S1が膜フィルター42で濾過されて、測定セル2に供給された後、液排出ライン6側から排出される。その後、一定時間経過して、電磁弁43が閉じられると、測定セル2内には、濾過された一定量の試料液S1が溜められる。なお、電磁弁43が開けられ、濾過された試料液S1が測定セル2側に供給されている間においても、試料液S1の残部のブライン(濃縮水)が、リターン配管45側からリターン液として排出される。
 試薬供給ライン5は、試薬ポンプ51と、試薬ビン52と、配管53とから構成されており、試薬ポンプ51を所定時間だけ作動させることにより、試薬ビン52内の試薬T0を所定量だけ、測定セル2に供給する。この場合、試薬供給ライン5からの試薬T0は、噴射するように供給されるため、測定セル2内で試料液S1と試薬T0とは充分に撹拌される。すなわち、測定セル2内では、試薬T0の添加によって、一定時間後、所定の溶解物の濃度に従って発色した被測定液S2が作られる。
 液排出ライン6は、測定セル2内において、測定の終了した、被測定液S2又は調整液S0(以下これらを廃液S3という)を測定セル2外に排出する。測定セル2からの廃液S3の排出は、試料供給ライン4からの試料液S1又は調整液S0を、一定時間、測定セル2に供給することによってなされる。
 演算処理装置7は、プログラムに従って作動するコンピューターであり、演算部71と記憶部72とを有している。
 演算部71は、例えば、受光体32から出力された、3つの領域成分光の各強度信号に基づいて、各領域成分光毎の時間平均強度を算出する。また、演算部71は、例えば、一部が吸収された光の透過光強度と吸収のない光の透過光強度とを用いて、3つの領域成分光に関する吸光度を算出するとともに、3つの領域成分光に関する各吸光度の値から測定しようとする溶解物の濃度を算出する。さらに、演算部71は、例えば、制御装置9からの準備完了の信号を受けて、発光体31に、タイミングよく光を発射させる機能とともに、制御装置9に、測定開始、測定終了、及び測定中止の信号を送る機能をも有している。記憶部72は、例えば、溶解物の種類毎に、必要な領域成分光について、吸光度と溶解物の濃度との関係を示す検量線を記憶している。なお、演算部71等には、後に述べるような別の機能も付加されている。
 出力装置8は、演算処理装置7で算出された、試料液S1中の特定の溶解物の濃度等をディスプレイに表示させる。
 制御装置9は、試料供給ライン4の電磁弁43の開閉制御をおこなって、試料液S1による測定セル2内の廃液S3の排出と、測定セル2内への試料液S1の貯留とを行わせる働きを有している。また、制御装置9は、試薬供給ライン5の試薬ポンプ51のON/OFF制御を行って、測定セル2内の試料液S1に所定量の試薬T0を供給し、この試料液S1を被測定液S2に変えさせる働きを有している。この場合、制御装置9は、演算処理装置7からの測定終了の信号を受けて、測定セル2内の廃液S3の排出を行うとともに、測定セル2に試薬T0を供給して一定時間経過後、すなわち、試薬T0により充分に発色した被測定液S2が作られた後、演算処理装置7に準備完了の信号を伝達する。
 つぎに、この濃度測定装置1を用いて、試料液S1中の特定の溶解物の濃度を測定する手順について説明する。
 まず、試料供給ライン4の電磁弁43を閉じた状態で、試料ポンプ41を作動させる。このことにより、主配管44から測定セル2側に供給される試料液S1は、濾過されずに、リターン配管45側のみから排出される。所定時間経過後、電磁弁43を開け、濾過された試料液S1を、測定セル2を通って、液排出ライン6側から排出させる。つづいて、所定時間経過後、電磁弁43を閉じ、試料液S1を、リターン配管45側からのみ排出させて、測定セル2内に、所定量の試料液S1を溜める。
 つぎに、試薬供給ライン5の試薬ポンプ51を所定時間だけ作動させることにより、測定セル2内の試料液S1中に所定量の試薬T0を添加し、この試料液S1を、その溶解物の濃度に応じて発色した被測定液S2に変化させる。この被測定液S2が充分に発色すると、受発光部3の発光体31から可視光域を含む光を発射する。この光は、測定セル2内の被測定液S2中を透過した後、反射板21で反射して、再び被測定液S2中を透過する。この透過光Lは、一部の光が被測定液S2等に吸収された後、受光体32により受光される。この場合、透過光Lは、3つの領域成分光に分けられて、それぞれの透過光強度が計測される。そして、発光体31からの光の発射が複数回繰り返され、3つの領域成分光の、平均した各透過光強度が算出される。
 被測定液S2についての計測が終了すると、試料供給ライン4の電磁弁43を開け、測定セル2内に濾過された試料液S1を所定時間流し込む。このことにより、測定セル2内の廃液S3が液排出ライン6を介して排出されて、測定セル2内がクリーニングされるとともに、測定セル2内に、調整液S0となる試料液S1が溜められる。つづいて、この調整液S0からの透過光について、被測定液S2の場合と同様に、3つの領域成分光の、平均した各透過光強度が算出される。
 つぎに、被測定液S2と調整液S0とについての、3つの領域成分光の各透過光強度を基に、この3つの領域成分光に関する各吸光度が算出される。つづいて、3つの領域成分光のうちの、特定の溶解物の濃度を測定するための領域成分光(以下、溶解物濃度測定用の領域成分光という)について作成された、この領域成分光の吸光度と溶解物の濃度との関係を示す検量線から、その時の特定の溶解物の濃度が算出される。また、この特定の溶解物の濃度の値が、出力装置8のディスプレイに表示される。
 図3の(a)は、試料液S1中の特定の溶解物がウエルクリン(栗田工業株式会社の登録商標であり、ここでは、ジチオカルバミン酸系重金属捕集剤を意味する)である場合に、3つの領域成分光の吸光度の値が、ウエルクリンの濃度毎にどのような値になるかを示したものであり、図3の(b)は、これらを、グラフにして、検量線としたものを示している。図3の(b)で示される検量線のうち、青領域成分光に関する検量線が、ウエルクリン濃度に対して吸光度の値が最も直線的に変化している。したがって、青領域成分光を溶解物濃度測定用の領域成分光として、その吸光度を基に、ウエルクリン濃度を決定するのが好ましいことが分かる。
 ここで、ウエルクリンを含む試料液S1を、茶色に発色させて被測定液S2とする試薬T0には、塩化第一鉄の溶液(250mg/L)が用いられる。また、この被測定液S2は、可視光中の多くの光を吸収するため、3つの領域成分光の何れをも吸収する。
 この濃度測定装置1では、発光体31からの光が、測定セル2内の被測定液S2中を、斜めに往復するように透過し、被測定液S2中の光の通過距離が長くなるため、被測定液S2への光の吸収量を、その分増加させることができる。したがって、この濃度測定装置1では、溶解物濃度を精度よく測定ができるとともに、測定セル2の小型化等を図ることができる。
 また、この濃度測定装置1では、発光体31からの可視光域を含む光を、受光体32にて、3つの領域成分光に分け、これらの領域成分光の吸光度を算出することにより、溶解物の濃度を決定している。したがって、この濃度測定装置1では、どのような溶解物の濃度を測定する場合でも、簡単な1組の発光体31と受光体32とがあればよく、測定コストの低減や測定装置の小型化を図ることができる。
 なお、以上の説明では、3つの領域成分光の全てについて吸光度を算出したが、この吸光度は、溶解物濃度測定用の領域成分光についてのみ算出すればよい。例えば、被測定液S2が、試薬T0の添加により、黄橙色に発色する場合は、この被測定液S2は、赤領域成分光と緑領域成分光とをほとんど吸収せず、補色光である青領域成分光のみを吸収すると考えられる。したがって、この場合には、青領域成分光が、溶解物濃度測定用の領域成分光となり、吸光度は、青領域成分光のみについて算出すればよい。
 ところで、以上のような濃度測定装置1で溶解物の濃度を自動的に測定すると、溶解物濃度が0(ゼロ)と測定された場合に、試料液S1に試薬T0が間違いなく添加されているのかといった疑問が生じる。また、測定された溶解物の濃度の値が小さい場合、試料液S1に試薬T0が充分に添加されているのかといった疑問も生じる。このような試薬の不添加又は不十分添加は、試薬供給ライン5中の、配管53の詰まり又は外れ、試薬ポンプ51の故障、又は試薬ビン52内の試薬T0の枯渇といった理由で生じ得るからである。したがって、溶解物濃度を測定するに当たって、試料液S1中に試薬T0が必要量だけ添加されているか否かを判定できるようにすることは重要となる。
[実施形態1]
 つぎに、試薬T0が必要量だけ添加されているか否かの判定が可能な、この発明の一実施の形態に係る溶解物濃度の測定方法について、図4及び図5を参照しつつ説明する。
 この溶解物濃度の測定方法は、試薬T0に着色剤を加えて着色剤入り試薬T0cを作る試薬調製工程と、着色剤入り試薬T0cが添加されている被測定液S2からの透過光Lに基づいて、試料液S1中の特定の溶解物の濃度を測定する濃度測定工程と、着色剤入り試薬T0cが添加されている被測定液S2からの透過光Lに基づいて、試薬T0が必要量だけ添加されているか否かを判定する判定工程とを有している。
 まず、試薬調製工程について説明する。
 試薬調製工程では、3つの領域成分光のうちの、溶解物濃度測定用の領域成分光を、吸収することなく透過させる色に、被測定液S2を発色させる着色剤を、試薬T0に加えて着色剤入り試薬T0cが作られる。
 この試薬調製工程を、図4の(a)に従って、詳細に説明する。
 この試薬調製工程の前提として、3つの領域成分光から、溶解物濃度測定用の領域成分光が定められている必要がある。溶解物濃度測定用の領域成分光には、3つの領域成分光のうち、特定の溶解物により発色した被測定液S2に吸収されるものが選定される。なお、3つの領域成分光のいずれもが、特定の溶解物により発色した被測定液S2に吸収される場合には、例えば、吸光度の値と溶解物濃度の値とが直線的な関係で変化する領域成分光が、溶解物濃度測定用の領域成分光として選定される。
 まず、溶解物濃度測定用の領域成分光を、吸収することなく透過させる色に、被測定液S2を発色させる着色剤を選定する(ステップS11)。
 説明を分かり易くするため、着色剤の選定方法を、図5を用いて説明する。図5は、可視光が示すであろう12色を、色が変化する順に並べた色相環を示している。この色相環を3分割して、赤領域成分光を、例えば、赤色光と、赤橙色光と、黄橙色光と、黄色光とで示し、緑領域成分光を、例えば、黄緑色光と、緑色光と、青緑色光と、緑青色光とで示し、青領域成分光を、例えば、青色光と、青紫色光と、紫色光と、赤紫色光とで示す場合を考えてみる。
 赤領域成分光は、その補色光と同一色(青緑、緑青、青、又は青紫の何れか、又はこれらの色の混合色)に発色する被測定液S2に吸収される。また、緑領域成分光は、その補色光と同一色(紫、赤紫、赤、又は赤橙の何れか、又はこれらの色の混合色)に発色する被測定液S2に吸収され、青領域成分光は、その補色光と同一色(黄橙、黄、黄緑、又は緑の何れか、又はこれらの色の混合色)に発色する被測定液S2に吸収される。このため、赤領域成分光は、これと同一色(赤、赤橙、黄橙、又は黄の何れか、又はこれらの色の混合色)に発色する被測定液S2中を吸収されることなく透過する。同様に、緑領域成分光は、これと同一色(黄緑、緑、青緑、又は緑青の何れか、又はこれらの色の混合色)に発色する被測定液S2中を吸収されることなく透過し、青領域成分光は、これと同一色(青、青紫、紫、又は赤紫の何れか、又はこれらの色の混合色)に発色する被測定液S2中を吸収されることなく透過する。
 したがって、溶解物濃度測定用の領域成分光が、赤領域成分光であれば、着色剤には、被測定液S2を赤領域成分光と同一色に発色させるものを用いればよい。また、溶解物濃度測定用の領域成分光が、緑領域成分光であれば、着色剤には、被測定液S2を緑領域成分光と同一色に発色させるものを用いればよいし、溶解物濃度測定用の領域成分光が、青領域成分光であれば、着色剤には、被測定液S2を青領域成分光と同一色に発色させるものを用いればよい。この場合、着色剤が、例えば、赤領域成分光中の1つの色光と同一色(赤、赤橙、黄橙、又は黄の何れか)に発色する場合には、この着色剤が加えられた被測定液S2は、赤領域成分光以外の、緑領域成分光又は青領域成分光の何れか一方を吸収するが、着色剤が、赤領域成分光中のほぼ全色光と同一色(赤、赤橙、黄橙、及び黄の混合色)に発色する場合には、この着色剤が加えられた被測定液S2は、緑領域成分光と青領域成分光の双方を吸収する。
 溶解物濃度測定用の領域成分光に対して、着色剤が選定されると、この着色剤を一定量だけ、所定量の試薬T0に加えて、着色剤入り試薬T0cを作る(ステップS12)。この場合、着色剤入り試薬T0c中の着色剤の濃度を、一定値にすることが重要である。
 つぎに、濃度測定工程について説明する。
 濃度測定工程は、濃度測定装置1について説明した、一連の作業工程とほぼ同一である。すなわち、濃度測定工程は、試料液S1を測定セル2に供給した後、この試料液S1に着色剤入り試薬T0cを添加して被測定液S2を作る工程と、被測定液S2に発光体31からの光を透過させて、この透過光Lを受光体32で受光させる工程と、調整液S0を測定セル2に供給した後、この調整液S0に発光体31からの光を透過させて、この透過光Lを受光体32で受光させる工程と、被測定液S2と調整液S0との透過光Lから、溶解物濃度測定用の領域成分光についての吸光度を算出し、この吸光度から、試料液S1中の特定の溶解物の濃度を測定する工程と、試料液S1に必要量の試薬Tが添加されていない場合、測定セル2中の被測定液S2に、不足している着色剤入り試薬T0cを再添加して、新たな被測定液S2を作り、この新たな被測定液S2と調整液S0との透過光Lから、溶解物濃度測定用の領域成分光についての吸光度を算出し、この吸光度から、試料液S1中の特定の溶解物濃度を測定する工程とを有している。なお、溶解物濃度測定用の領域成分光は、着色剤の影響を受けないので、試薬T0の添加量の問題を除けば、この濃度測定工程により、適正な溶解物濃度が測定される。
 つぎに、判定工程について説明する。
 判定工程は、工程1と、工程2と、工程3と、工程4とを有している。
 工程1では、濃度測定工程において、被測定液S2と調整液S0との透過光Lから、溶解物濃度測定用の領域成分光についての吸光度を算出する際に、着色剤の影響を受ける他の領域成分光についての吸光度を算出する。そして、この他の領域成分光についての吸光度が、着色剤のみに起因する場合には、その値をA3とし、これが着色剤と特定の溶解物とに起因する場合には、その値をA1とする。なお、吸光度の値A3は、試料液S1に対する試薬T0の添加量に相当するものである。
 工程2では、工程1で算出された、他の領域成分光についての吸光度の値がA1の場合、すなわち、その吸光度が着色剤と特定の溶解物とに起因する場合には、濃度測定工程で測定された試料液S1中の溶解物の濃度から、既知の検量線を用いて、この他の領域成分光の、溶解物の濃度のみに起因する吸光度の値A2を算出する。そして、A3=A1-A2の式を用いて、他の領域成分光の、着色剤のみに起因する吸光度の値A3を算出する。
 工程3では、工程1又は工程2で求めた、他の領域成分光の、着色剤のみに起因する吸光の値A3と、試料液S1に必要量の試薬T0を添加した場合における、他の領域成分光の、着色剤のみに起因する吸光度(以下基準の吸光度という)の値A0とを比較する。そして、A3<A0であれば、試料液S1に必要量の試薬T0が添加されていないと判定し、A3≧A0であれば、試料液S1に必要量の試薬T0が添加されていると判定する。
 工程4では、試料液S1に必要量の試薬T0が添加されていないと判定された場合、濃度測定を直ちに中止するか、又は一定条件下で継続させた後、濃度測定を中止する。
 つぎに、濃度測定工程の一部と判定工程とを、図4の(b)を参照しつつ、詳しく説明する。なお、図4の(b)は、演算処理装置7の演算部71の動作を示している。
 まず、N=1として、以下の操作が、1つの被測定液S2に関して、1回目の操作であることを明らかにする(ステップS21)。つづいて、着色剤入り試薬T0cが添加されている被測定液S2からの透過光Lに基づいて、溶解物濃度測定用の領域成分光、例えば、緑領域成分光の吸光度を算出し、この吸光度の値を基に、試料液S1中の特定の溶解物の濃度を測定する(ステップS22)。溶解物濃度測定用の領域成分光(緑領域成分光)は、着色剤の影響を受けないので、その吸光度の値と、溶解物濃度測定用の領域成分光(緑領域成分光)について予め作成された、溶解物濃度と吸光度の関係を示す検量線とから、試料液S1中の特定の溶解物濃度は容易に算出される。
 つぎに、着色剤入り試薬T0cが添加されている被測定液S2からの透過光Lに基づいて、溶解物濃度測定用の領域成分光(緑領域成分光)以外の他の領域成分光、すなわち、赤領域成分光又は青領域成分光のうちで、着色剤により発色した被測定液S2に吸収される方、例えば、赤領域成分光の吸光度の値を算出する。そして、その吸光度の値を基に、この他の領域成分光(赤領域成分光)の、着色剤にのみ起因する吸光度の値A3を算出する(ステップ23)。この他の領域成分光(赤領域成分光)が、着色剤にのみ起因する吸光度の値を示す場合は、その値がそのままA3となる。なお、他の領域成分光(赤領域成分光)の、着色剤のみに起因する吸光度の値A3は、試料液S1に対する試薬T0の添加量に相当する値となる。
 他の領域成分光(赤領域成分光)が、着色剤と特定の溶解物とに起因した値を示す場合は、以下のように考えればよい。他の領域成分光(赤領域成分光)の、このときの吸光度の値をA1とする。また、特定の溶解物の濃度は測定されているので、この特定の溶解物の濃度の値から、他の領域成分光(赤領域成分光)の、特定の溶解物のみに起因する吸光度の値A2を、事前に作成された、赤領域成分光の検量線を用いて算出する。そして、吸光度の値A1,A2を用いて、A3=A1-A2の式から、他の領域成分光(赤領域成分光)の、着色剤のみに起因する吸光度の値A3を算出する。
 つぎに、ステップS23で求めた吸光度の値A3と、試料液S1に必要量の試薬T0を添加した場合の、他の領域成分光(赤領域成分光)の着色剤のみに起因する吸光度(基準の吸光度)の値A0とを比較する(ステップS24)。このステップS24において、A3≧A0であれば、YESとなって、試薬T0が必要量だけ添加されていると判定され、A3<A0であれば、NOとなって、試薬T0の添加量が不足していると判定される。
 ステップS24において、試薬T0が必要量だけ添加されていると判定されると、この試料液S1に関する濃度の測定は終了し、新たな試料液S1についての濃度の測定が開始される(ステップS25)。すなわち、制御装置9に、測定セル2中の調整液S0、すなわち、廃液S3を排出させる測定終了の指令が出されて、測定セル2には、新たな試料液S1が溜められ、その後、通常の測定操作がなされる。
 また、ステップS24において、試薬T0の添加量が不足していると判定されると、出力装置8のディスプレイに「試薬の添加量不足」といった警報が出される。また、N=N+1=2の計算がなされ、同一の被測定液S2に対して再度の測定がなされうることが示唆される(ステップS26)。つづいて、N<4であるか否かの判定がなされ(ステップS27)、Nが3以下であれば、すなわち、3回目の測定までであれば、YESとなって、制御装置9に、測定セル2中の被測定液S2に、着色剤入り試薬T0cを再添加せよとの指令が出される(ステップS28)。つづいて、測定セル2中の被測定液S2に着色剤入り試薬T0cが再添加された後、発光体31からの透過光Lを受光体32が受光して、吸光度算出の準備が整うと、ステップS22に戻され、再び、ステップS22以降の操作がなされる。また、ステップS24において、3回目の測定でも、NOとなって、試薬T0の添加量が不足していると判定されると、N=4となるので、ステップS27において、NOとなって、「試薬の再添加不可能」という警報が出力装置8に出されて、測定が中止される(ステップS29)。
 なお、1回目の測定で、試薬T0の添加量が不足しているとの判定された場合、再測定は行わず、そのまま、測定を中止してもよい。また、1回目の測定終了から3回目の測定終了までの標準的経過時間を計測し、1回目の測定で、試薬T0の添加量が不足していると判定された場合に、その後、上記標準的経過時間が経過すれば、測定を中止するようにしてもよい。
 さらに、溶解物濃度測定用の領域成分光が、例えば、赤領域成分光であり、かつ、着色剤が赤領域成分光中のほぼ全色光と同一色に被測定液S2を発色させるとともに、3つの領域成分光の何れもが、特定の溶解物に起因して、被測定液S2に吸収される場合には、以下のように考えてもよい。すなわち、赤領域成分光の吸光度の値から求められた特定の溶解物の濃度の値から、特定の溶解物のみに起因する他の領域成分光(緑領域成分光と青領域成分光)の吸光度の値(B2、C2)を検量線から求めて、その和(B2+C2)を算出する。つづいて、他の領域成分光(緑領域成分光と青領域成分光)の吸光度の値の和(B1+C1)を算出するとともに、これらの領域成分光の、着色剤のみに起因する吸光度の値の和(B3+C3)を、(B1+C1)-(B2+C2)の式から算出する。この吸光度の値の和(B3+C3)は、被測定液S2中の試薬T0の量に応じた値となるため、この値が、試料液S1に必要量の試薬T0を添加した場合の、着色剤のみに起因する吸光度(基準の吸光度)の値(B0、C0)の和(B0+C0)より小さければ、試料液S1への試薬T0の添加量が不足していると判定する。
 以上のように、この溶解物濃度の測定方法では、溶解物濃度測定用の領域成分光を、吸収することなく透過させる色に、被測定液S2を発色させる着色剤を、試薬T0に加えて着色剤入り試薬T0cを作り、この着色剤入り試薬T0cが添加された被測定液S2の透過光に基づいて、溶解物濃度測定用の領域成分光の吸光度と、他の領域成分光の、着色剤のみに起因する吸光度とを算出している。したがって、この溶解物濃度の測定方法では、溶解物の濃度の測定に当たって、試料液S1に試薬T0が必要量だけ添加されているか否かの判定を容易に行うことができる。すなわち、この溶解物濃度の測定方法では、試薬T0の添加量を気にすることなく、常に適正な溶解物濃度の測定をすることができる。
 ここで、演算処理装置7の演算部71は、図4の(b)のフローチャートで説明した動作を進行させる機能を有している。すなわち、演算部71は、溶解物濃度測定用の領域成分光以外の領域成分光の吸光度を用いて、着色剤のみに起因する吸光度の値を算出する機能を有している。また、演算部71は、着色剤のみに起因する吸光度に関して、算出された吸光度の値と基準の吸光度の値とを比較して、算出された吸光度の値が小さい場合、又はこれが0(ゼロ)の場合には、試薬T0が適正に添加されていないと判定する機能を有している。さらに、演算部71は、試薬T0が適正に添加されていないと判定した場合、出力装置8に、その旨の警報を出させて、制御装置9に測定を中止させるといった機能を有している。また、演算処理装置7の記憶部72は、溶解物濃度測定用の領域成分光以外の領域成分光の、着色剤のみに起因する基準の吸光度の値を記憶している。さらに、この記憶部72は、溶解物濃度測定用の領域成分光以外の領域成分光について、吸光度と溶解物濃度との関係を示す検量線を記憶している。
[実施形態1の実施例]
 つぎに、溶解物がウエルクリンである場合の、溶解物濃度の求め方と、試薬T0が必要量だけ添加されているか否かの判定方法について、図6~図8を参照しつつ具体的に説明する。
 ここで、溶解物濃度測定用の領域成分光には、青領域成分光が用いられ、試薬T0には、塩化第一鉄溶液(250mg/L)が用いられる。また、着色剤には、被測定液S2を、青領域成分光中のほぼ全色光と同一色(青、青紫、紫、及び赤紫の混合色)に発色させる色素溶液(50mg/L)が用いられる。したがって、着色剤入り試薬T0cは、所定量の塩化第一鉄溶液に、一定量の色素溶液を加えることにより作られる。さらに、測定セル2の容量は2.5mLであるから、これに着色剤入り試薬T0cを所定量だけ添加した場合、試料液S1がやや溢れる状態になって、測定セル2内で、被測定液S2が2.5mLだけ作られる。
 図6の(a)は、測定セル2内の、ウエルクリン濃度が異なる6種類の各試料液S1に、着色剤入り試薬T0cを0.2mLだけ添加して、その被測定液S2の吸光度を、3つの領域成分光について調べたものである。
 図6の(a)から、赤領域成分光と緑領域成分光との各吸光度の値A,Bは、ウエルクリンと着色剤の影響を受けるため、その値が、図3の(a)で示される場合に比べて大きくなっているが、青領域成分光の吸光度の値Cは、着色剤の影響を受けないため、その値が、図3の(a)で示される場合とほぼ同一となっている。したがって、着色剤入り試薬T0cを用いた場合でも、ウエルクリンの濃度は、青領域成分光の吸光度により算出できることがわかる。
 また、図6の(a)で示されるように、赤領域成分光と緑領域成分光の吸光度の和に関して、ウエルクリンと着色剤とに起因するものの値Dは、赤領域成分光の吸光度の値Aと緑領域成分光の吸光度の値Bとを加えることにより求められ、ウエルクリンのみに起因するものの値Eは、図3の(a)で示される、赤領域成分光と緑領域成分光との吸光度の値を加えることにより求められる。したがって、赤領域成分光と青領域成分光との、着色剤のみに起因する吸光度の値の和Fは、F=D-Eの式を用いて計算できる。この着色剤のみに起因する吸光度の値の和Fは、試薬T0の添加量に相当するものであり、この吸光度の値の和Fによって、試薬T0が試料液S1に必要量だけ添加されているか否かの判定を行うことができる。
 図6の(b)は、測定セル2内の、ウエルクリン濃度が異なる各試料液S1に、着色剤入り試薬T0cを0.1mLだけ添加した場合を示し、図6の(c)は、同様の各試料液S1に、着色剤入り試薬T0cを0.05mLだけ添加した場合を示す。着色剤入り試薬T0cの量が0.1mLの場合では、赤領域成分光と緑領域成分光との、着色剤のみに起因する吸光度の値の和Fが、着色剤入り試薬T0cの量が0.2mLの場合の値の1/2となり、着色剤入り試薬T0cの量が0.05mLの場合の値の2倍となる。このことから、この着色剤のみに起因する吸光度の値の和Fは、着色剤入り試薬T0cの添加量に比例した値となることがわかる。
 また、着色剤入り試薬T0cの量が0.05mLの場合には、ウエルクリン濃度が、60mg/Lより大きくなると、各領域成分光の吸光度の値が一定となって実際より小さな値となるので、試料液S1に添加する試薬T0の量が不足していることが分かる。したがって、試料液S1中のウエルクリンの濃度が、例えば100mg/L程度まで見込める場合には、着色剤入り試薬T0cの添加量を、0.1mL以上として、赤領域成分光と青領域成分光との、着色剤のみに起因する吸光度の値の和Fに関する、基準の吸光度の値を、例えば、0.42以上とする必要がある。
 なお、図7は、測定セル2内の、ウエルクリン濃度が0mg/Lの試料液S1に、着色剤入り試薬T0cを0.05mLずつ加えて複数の被測定液S2を作った場合の、3つの領域成分光の、着色剤のみに起因する各吸光度の値と、赤領域成分光と緑領域成分光との、着色剤のみに起因する吸光度の値の和とを示している。図8は、赤領域成分光と緑領域成分光との、着色剤のみに起因する吸光度の値の和と、着色剤入り試薬T0cの添加量との関係をグラフで示している。図8のグラフから、着色剤入り試薬T0cの添加量に対して、赤領域成分光と緑領域成分光との、着色剤のみに起因する吸光度の値の和が分かるので、この吸光度の値の和から、試薬T0を必要量だけ添加した場合の、基準の吸光度の値を容易に定めることができる。
[実施形態2]
 つぎに、試料液S1に、第1の試薬T1と第2の試薬T2とが添加されて、被測定液S2が作られる場合について説明する。なお、試薬が2種類の場合の濃度測定装置1Aは、図9で示されている。
 この場合、着色剤入り試薬を作る試薬調製工程において、第1の着色剤入り試薬T1cと、第2の着色剤入り試薬T2cとを作ればよい。第1の着色剤入り試薬T1cは、第1の着色剤を一定量だけ、所定量の第1試薬T1に加えて作り、第2の着色剤入り試薬T2cは、第2の着色剤を一定量だけ、所定量の第2試薬T2に加えて作る。第1の着色剤には、3つの領域成分光のうち、溶解物濃度測定用の領域成分光、例えば、赤領域成分光と、残りの領域成分光、すなわち、緑領域成分光又は青領域成分光の一方、例えば、緑領域成分光とを吸収することなく透過させる色に、被測定液S2を発色させるものを使用する。また、第2の着色剤には、溶解物濃度測定用の領域成分光(赤領域成分光)と、残りの領域成分光の他方(青領域成分光)とを吸収することなく透過させる色に被測定液S2を発色させるものを使用する。
 ここで、図5の色相環を用いて、2つの領域成分光を吸収することなく透過させる色に、被測定液S2を発色させる着色剤について具体的に説明する。例えば、2つの領域成分光が緑領域成分光と青領域成分光の場合、着色剤は、赤領域成分光の補色光と同一色(青緑、緑青、青、又は青紫の何れか、又はこれらの色の混合色)に発色するものであればよい。また、2つの領域成分光が赤領域成分光と青領域成分光の場合、着色剤は、緑領域成分光の補色光と同一色(紫、赤紫、赤、又は赤橙の何れか、又はこれらの色の混合色)に発色するものであればよく、2つの領域成分光が赤領域成分光と緑領域成分光の場合、青領域成分光の補色光(黄橙、黄、黄緑、又は緑の何れか、又はこれらの色の混合色)と同一色に発色するものであればよい。
 したがって、溶解物濃度測定用の領域成分光が赤領域成分光の場合には、例えば、被測定液S2を緑領域成分光の補色光と同一色に発色させる着色剤を、第1の試薬T1に加えて、第1の着色剤入り試薬T1cを作り、被測定液S2を青領域成分光の補色光と同一色に発色させる着色剤を、第2の試薬T2に加えて、第2の着色剤入り試薬T2cを作ればよい。
 溶解物濃度測定用の領域成分光(赤領域成分光)は、第1の着色剤と第2の着色剤とに影響されることはないので、この領域成分光の吸光度に基づいて、特定の溶解物の濃度を求めることができる。また、緑領域成分光は、第1の着色剤のみに影響され、第2の着色剤に影響されることはない。したがって、例えば、第1の着色剤と特定の溶解物とに起因した吸光度の値を示す緑領域成分光の吸光度の値B1と、溶解物の濃度の値から検量線を用いて算出される、溶解物にのみ起因する緑領域成分光の吸光度の値B2とから、第1の着色剤のみに起因する吸光度の値B3を算出して、この吸光度の値B3が、基準の吸光度の値B0より小さければ、第1の試薬T1の添加量は不足していることとなる。
 さらに、青領域成分光は、第2の着色剤のみに影響され、第1の着色剤に影響されることはない。したがって、例えば、第2の着色剤と特定の溶解物とに起因した吸光度の値を示す青領域成分光の吸光度の値C1と、溶解物の濃度の値から検量線を用いて算出される、溶解物にのみ起因する青領域成分光の吸光度の値C2とから、第2の着色剤のみに起因する吸光度の値C3を算出して、この吸光度の値C3が、基準の吸光度の値C0より小さければ、第2の試薬T2の添加量は不足していることとなる。
 なお、第1の試薬T1又は第2の試薬T2の一方のみの添加量が不足していると判定されて、再測定を行う場合には、測定セル2中の被測定液S2に、不足している着色剤入り試薬のみを再添加して、再測定を行えばよい。
 また、演算処理装置7の演算部71は、上記において説明したような機器の動作を進行させる機能を有している。さらに、演算処理装置7の記憶部72は、第1の試薬T1と第2の試薬T2についての、着色剤のみに起因する、各領域成分光の基準の吸光度の値B0,C0を記憶している。
 また、この実施形態では、図9で示されるように、第1の試薬T1は、第1試薬供給ライン5Aから測定セル2に添加され、第2の試薬T2は、第2試薬供給ライン5Bから測定セル2に添加される。したがって、第1の着色剤入り試薬T1cも、第1試薬供給ライン5Aから測定セル2に添加され、第2の着色剤入り試薬T2cも、第2試薬供給ライン5Bから測定セル2に添加される。この場合、各試薬供給ライン5A,5Bには、それぞれ、試薬ポンプ51A,51Bと、試薬ビン52A,52Bと、配管53A,53Bとが設けられており、試薬ポンプ51A,51Bは、制御装置9により制御される。
[実施形態3]
 つぎに、被測定液S2が、特定の溶解物の濃度に従って、第1色から第2色に変色していく場合について、図10を参照しつつ説明する。なお、この場合に使用される濃度測定装置1は、図1で示されているものである。
 図10は、溶解物の濃度が上昇するに従って、被測定液S2の発光色が、赤領域成分光の補色光の色から、緑領域成分光の補色光の色に変色する場合を示している。この場合、緑領域成分光の吸光度の値は、溶解物の濃度が上昇し始めると曲線状に急激に上昇し、溶解物の濃度が30を超えると直線状に上昇する。また、赤領域成分光の吸光度の値は、溶解物の濃度が上昇し始めると直線状に下降し、溶解物の濃度が30以下になると曲線状に徐々に下降する。したがって、この溶解物の濃度は、これが0~30までは、赤領域成分光の吸光度の値を基に算出され、これが30を超えると、緑領域成分光の吸光度の値を基に算出される。
 この場合、試薬T0に加えられる着色剤には、被測定液S2を、青領域成分光の補色光と同一色に発色させて、赤領域成分光と緑領域成分光とを吸収することなく透過させるものが使用される。したがって、青領域成分光が、例えば、着色剤と特定の溶解物とに起因した吸光度を示す場合には、この青領域成分光の、着色剤のみに起因する吸光度の値を算出して、この吸光度の値が、基準の吸光度の値より小さければ、試料液S1への試薬T0の添加量が不足していると判定する。
 すなわち、被測定液S2が、特定の溶解物の濃度に従って、第1色から第2色に変色していくため、2つの溶解物濃度測定用の領域成分光の吸光度を用いて、溶解物の濃度を求める必要がある場合には、被測定液S2を、残りの領域成分光の補色光と同一色に発色させる着色剤を、試薬T0に加えて着色剤入り試薬T0cを作ればよい。そして、この残りの領域成分光の吸光度の値から、着色剤のみに起因する吸光度の値を算出して、この吸光度の値を基に、試薬T0が試料液S1に不足なく添加されているか否かを判定すればよい。
 なお、演算処理装置7の演算部71は、上記において説明したような機器の動作を進行させる機能を有している。
   1  濃度測定装置
   2  測定セル
   3  受発光部
   4  試料供給ライン
   5,5A,5B  試薬供給ライン
   6  液排出ライン
   7  演算処理装置
   8  出力装置
   9  制御装置
  31  発光体
  32  受光体
  S0  調整液
  S1  試料液(試料)
  S2  被測定液 
  A0  他の領域成分光の基準の吸光度の値
  A3  他の領域成分光の、着色剤のみに起因する吸光度の値
  T0,T1,T2  試薬
  T0c,T1c,T2c  着色剤入り試薬

Claims (6)

  1.  試料への試薬の添加により発色した被測定液に可視光域を含む光を透過させて、その透過光のうち、前記可視光域の光を略3分割して得られるレッド領域成分の光、グリーン領域成分の光、又はブルー領域成分の光の何れかから選定されるか、又は、これらを組み合わせた複数の前記領域成分の光から選定される溶解物濃度測定用の前記領域成分の光を、吸収することなく透過させる色に前記被測定液を発色させる着色剤を、前記試薬に加えて着色剤入り試薬を作る試薬調製工程と、
     前記着色剤入り試薬が添加されている前記被測定液からの前記透過光に基づいて、前記溶解物濃度測定用の前記領域成分の光の吸光度を算出することにより、前記試料中の特定の溶解物の濃度を測定する濃度測定工程と、
     前記着色剤入り試薬が添加されている前記被測定液からの前記透過光に基づいて、前記溶解物濃度測定用の前記領域成分の光以外の、他の前記領域成分の光の吸光度を算出することにより、この他の前記領域成分の光の、前記着色剤のみに起因する吸光度の値を定め、この吸光度の値と基準の吸光度の値とを比較することにより、前記試薬が必要量だけ添加されているか否かの判定を行う判定工程とを有することを特徴とする溶解物濃度の測定方法。
  2.  前記試料に2種類の前記試薬が添加される場合には、前記試薬調製工程において、3つの前記領域成分の光のうち、前記溶解物濃度測定用の前記領域成分の光と残りの前記領域成分の光の一方とを吸収することなく透過させる色に、前記被測定液を発色させる第1の着色剤を、前記試薬の一方に加えて第1の着色剤入り試薬を作るとともに、前記溶解物濃度測定用の前記領域成分の光と前記残りの前記領域成分の光の他方とを吸収することなく透過させる色に、前記被測定液を発色させる第2の着色剤を、前記試薬の他方に加えて第2の着色剤入り試薬を作ることを特徴とする請求項1記載の溶解物濃度の測定方法。
  3.  前記被測定液が、前記特定の溶解物の濃度の変化に伴って変色するように発色し、2つの前記領域成分の光が前記溶解物濃度測定用の前記領域成分の光となる場合には、前記試薬調製工程において、前記2つの前記領域成分の光を吸収することなく透過させる色に、前記被測定液を発色させる着色剤を、前記試薬に加えて着色剤入り試薬を作ることを特徴とする請求項1記載の溶解物濃度の測定方法。
  4.  前記試薬が必要量だけ添加されていないと判定された場合には、前記着色剤入り試薬の再添加を行いつつ、前記濃度測定工程と前記判定工程とを繰り返すことを特徴とす請求項1乃至3の何れかに記載の溶解物濃度の測定方法。
  5.  前記試薬が必要量だけ添加されていないと判定された後、所定の時間経過しても、前記試薬が必要量だけ添加されていないと判定された場合には、前記判定工程において、警報を発して測定を中止することを特徴とする請求項4記載の溶解物濃度の測定方法。
  6.  前記試薬が必要量だけ添加されていないと判定された場合には、前記判定工程において、警報を発して測定を中止することを特徴とする請求項1乃至3の何れかに記載の溶解物濃度の測定方法。
PCT/JP2014/053244 2013-02-22 2014-02-13 溶解物濃度の測定方法 WO2014129365A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112015019834-1A BR112015019834B1 (pt) 2013-02-22 2014-02-13 método para medir a concentração de substância dissolvida
CN201480010051.0A CN105074428B (zh) 2013-02-22 2014-02-13 溶解物浓度的测定方法
SG11201506128YA SG11201506128YA (en) 2013-02-22 2014-02-13 Method for measuring dissolved-substance concentration
US14/764,817 US9933369B2 (en) 2013-02-22 2014-02-13 Method for measuring concentration of dissolved substance
EP14753586.8A EP2960641B1 (en) 2013-02-22 2014-02-13 Method for measuring dissolved-substance concentration

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-033463 2013-02-22
JP2013033463 2013-02-22
JP2014019902A JP5648759B2 (ja) 2013-02-22 2014-02-05 溶解物濃度の測定方法
JP2014-019902 2014-02-05

Publications (1)

Publication Number Publication Date
WO2014129365A1 true WO2014129365A1 (ja) 2014-08-28

Family

ID=51391160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053244 WO2014129365A1 (ja) 2013-02-22 2014-02-13 溶解物濃度の測定方法

Country Status (8)

Country Link
US (1) US9933369B2 (ja)
EP (1) EP2960641B1 (ja)
JP (1) JP5648759B2 (ja)
CN (1) CN105074428B (ja)
BR (1) BR112015019834B1 (ja)
SG (1) SG11201506128YA (ja)
TW (1) TWI610071B (ja)
WO (1) WO2014129365A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297167A (zh) * 2014-09-24 2015-01-21 国网山东省电力公司青岛供电公司 一种水溶性物质酸碱度检测装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6105796B1 (ja) * 2015-11-27 2017-03-29 住友化学株式会社 偏光子の製造方法及びポリビニルアルコールの検出方法
KR101903013B1 (ko) * 2016-05-17 2018-10-02 (주)화백엔지니어링 케미컬 용액 농도분석장치 및 방법
CN107202763B (zh) * 2017-06-17 2023-07-21 山东省科学院海洋仪器仪表研究所 光学溶解氧传感器温盐修正算法及新型标定装置
US10945687B2 (en) * 2017-08-04 2021-03-16 Egg Medical, Inc. Display device for reducing radiation exposure to medical personnel
CN108956497B (zh) * 2018-08-02 2020-03-10 自然资源部第一海洋研究所 一种极地溶解氧观测与校正的方法
JP6927346B1 (ja) * 2020-02-21 2021-08-25 栗田工業株式会社 水質分析方法
CN114018928B (zh) * 2021-11-26 2022-09-06 国检中心深圳珠宝检验实验室有限公司 一种祖母绿颜色分级的液体标准样品及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332583A (ja) * 1997-05-30 1998-12-18 Miura Co Ltd 液体濃度の測定方法及びその測定装置
JPH11344382A (ja) * 1998-06-02 1999-12-14 Shinko Electric Co Ltd 溶液の着色度測定方法
JP2001050891A (ja) * 1999-08-09 2001-02-23 Nippon Paint Co Ltd 液体測色方法およびその装置
US20020167663A1 (en) * 2001-03-19 2002-11-14 Martino Anthony Joseph Method and apparatus for characterizing the color properties of fluids
JP2008161804A (ja) * 2006-12-28 2008-07-17 Fuji Xerox Co Ltd 水処理装置及び水処理方法
JP2010151605A (ja) * 2008-12-25 2010-07-08 Kurita Water Ind Ltd 溶解物濃度の測定方法及び測定装置、並びに色調の検出方法及び検出装置
JP2010181150A (ja) 2009-02-03 2010-08-19 Kurita Water Ind Ltd 溶解物濃度の測定方法及び測定装置、並びに色調の検出方法及び検出装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4811380B2 (ja) * 2007-09-28 2011-11-09 パナソニック株式会社 バイオセンサを用いた測定方法
JP2010050891A (ja) 2008-08-25 2010-03-04 Konica Minolta Business Technologies Inc 画像形成装置
CN102564968A (zh) * 2010-12-31 2012-07-11 东莞市常晋凹版模具有限公司 一种镀液成分的分析方法
JP5728983B2 (ja) * 2011-02-04 2015-06-03 栗田工業株式会社 重金属捕集剤の薬注制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332583A (ja) * 1997-05-30 1998-12-18 Miura Co Ltd 液体濃度の測定方法及びその測定装置
JPH11344382A (ja) * 1998-06-02 1999-12-14 Shinko Electric Co Ltd 溶液の着色度測定方法
JP2001050891A (ja) * 1999-08-09 2001-02-23 Nippon Paint Co Ltd 液体測色方法およびその装置
US20020167663A1 (en) * 2001-03-19 2002-11-14 Martino Anthony Joseph Method and apparatus for characterizing the color properties of fluids
JP2008161804A (ja) * 2006-12-28 2008-07-17 Fuji Xerox Co Ltd 水処理装置及び水処理方法
JP2010151605A (ja) * 2008-12-25 2010-07-08 Kurita Water Ind Ltd 溶解物濃度の測定方法及び測定装置、並びに色調の検出方法及び検出装置
JP2010181150A (ja) 2009-02-03 2010-08-19 Kurita Water Ind Ltd 溶解物濃度の測定方法及び測定装置、並びに色調の検出方法及び検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2960641A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297167A (zh) * 2014-09-24 2015-01-21 国网山东省电力公司青岛供电公司 一种水溶性物质酸碱度检测装置

Also Published As

Publication number Publication date
BR112015019834B1 (pt) 2020-10-27
US20150362436A1 (en) 2015-12-17
TWI610071B (zh) 2018-01-01
CN105074428B (zh) 2019-03-08
CN105074428A (zh) 2015-11-18
US9933369B2 (en) 2018-04-03
EP2960641A4 (en) 2016-10-26
JP2014186027A (ja) 2014-10-02
SG11201506128YA (en) 2015-09-29
TW201443420A (zh) 2014-11-16
BR112015019834A2 (pt) 2017-07-18
EP2960641A1 (en) 2015-12-30
EP2960641B1 (en) 2018-12-12
JP5648759B2 (ja) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5648759B2 (ja) 溶解物濃度の測定方法
JP5401978B2 (ja) 溶解物濃度の測定方法及び測定装置
JP5777848B2 (ja) 溶解物濃度の測定方法及び測定装置
WO2020228507A1 (zh) 基于集成阀岛装置的高精度海水pH原位测量系统及方法
KR101224855B1 (ko) 다파장 광원을 이용한 조류 측정 장치
CN106404681A (zh) 水质检测方法及系统
WO2006022841A3 (en) A light meter for detecting and measuring intensity of two or more wavelengths of light
JP5274903B2 (ja) 流体検知センサ
CN209387061U (zh) 复合封装led光源及基于该光源的水质监测装置
CN108169130A (zh) 一种用于CODcr水质在线监测仪的双波长双光程比色装置
KR20090038476A (ko) 비색 적정 측정 시스템 및 방법
CN105277518A (zh) 水质色度的测量方法及装置
JP2007085881A (ja) 成分濃度の測定方法および測定装置
US9989475B2 (en) Method for automatically measuring concentration of dissolved substance
CN215574675U (zh) 一种测量地质水等水质中离子含量的装置
JP2006046985A (ja) 液体濃度測定用組成物並びにこの組成物を使用する液体濃度測定方法および液体濃度測定装置
JP2015083945A (ja) シリカ濃度測定装置
CN205262965U (zh) 水质色度的测量装置
CN206505018U (zh) 化学分析用颜色测定仪
CN105372239B (zh) 基于光纤的尿液干化分析装置及分析方法
JP2008241382A (ja) 試料水中のアルカリ成分濃度の測定方法
US20230017495A1 (en) Method and apparatus for detecting trace amounts of copper and silver in water
WO2021039228A1 (ja) 過酢酸製剤濃度判定方法
JP2014130055A (ja) 鉄分濃度測定装置および方法
TWM506037U (zh) 利用uv cyan混合投光於多色印刷對版之感測器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480010051.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14753586

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14764817

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015019834

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2014753586

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112015019834

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150818