WO2014128956A1 - 電気泳動用キャピラリユニット及びそのキャピラリユニットを備えた電気泳動装置 - Google Patents

電気泳動用キャピラリユニット及びそのキャピラリユニットを備えた電気泳動装置 Download PDF

Info

Publication number
WO2014128956A1
WO2014128956A1 PCT/JP2013/054717 JP2013054717W WO2014128956A1 WO 2014128956 A1 WO2014128956 A1 WO 2014128956A1 JP 2013054717 W JP2013054717 W JP 2013054717W WO 2014128956 A1 WO2014128956 A1 WO 2014128956A1
Authority
WO
WIPO (PCT)
Prior art keywords
capillary
unit
reservoir
sample
nozzle
Prior art date
Application number
PCT/JP2013/054717
Other languages
English (en)
French (fr)
Inventor
松本 博幸
中村 伸
加地 徹
知則 野澤
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to US14/769,181 priority Critical patent/US9778222B2/en
Priority to JP2015501219A priority patent/JP5928651B2/ja
Priority to PCT/JP2013/054717 priority patent/WO2014128956A1/ja
Publication of WO2014128956A1 publication Critical patent/WO2014128956A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44743Introducing samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/44721Arrangements for investigating the separated zones, e.g. localising zones by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems

Definitions

  • the present invention relates to a capillary unit including a capillary used as an electrophoresis channel for electrophoresis analysis and an electrophoresis apparatus including the capillary unit.
  • an electrophoresis apparatus has been used to analyze a very small amount of protein or nucleic acid.
  • Typical examples of the electrophoresis apparatus include a microchip electrophoresis apparatus and a capillary electrophoresis apparatus.
  • the microchip electrophoresis apparatus is an apparatus that uses a microchip having a fine channel inside a substrate and having wells and reservoirs formed at both ends of the channel.
  • the microchip is horizontally arranged and adjusted to a constant temperature, and an autosampler, a polymer (separation medium) filling mechanism, a suction nozzle, an electrode and the like access the wells and reservoirs at both ends of the flow path to the capillary.
  • the separation medium is filled, the sample is introduced, the buffer solution is filled into the reservoir, and the electrophoretic analysis is performed (see, for example, Patent Document 1).
  • a capillary electrophoresis apparatus is an apparatus that uses a capillary as an electrophoresis channel.
  • a capillary is horizontally arranged, and members having reservoirs are fixed at both ends of the capillary, and the capillary is connected to the capillary via the member. Achieve separation medium filling, sample introduction, and electrophoretic analysis.
  • the capillary is bent halfway, the anode end side is horizontally arranged, an anode reservoir equipped with a separation medium filling mechanism or the like is fixed to the anode end, and the cathode end side is fixed.
  • an electrophoresis apparatus which is arranged vertically downward and opened so that a cathode end of a capillary can directly access a sample storage portion in which a sample is stored. In such an electrophoresis apparatus, since the cathode end of the capillary can directly access the sample, an autosampler for introducing the sample into the capillary is unnecessary.
  • the capillary in order to curve the capillary, the capillary needs to have a certain length, and there is a limit to shortening the length of the capillary when speeding up the electrophoresis.
  • the detection peak band becomes broad and the separation performance deteriorates.
  • the influence of the difference in the migration length of the curved portion of the capillary can be reduced by increasing the capillary length, it is not possible to increase the speed of electrophoresis.
  • an electrophoresis device that installs a reservoir, capillary, and electrode cartridge that are pre-sealed with a separation medium so that the capillary is vertical and allows the lower end of the cartridge capillary to directly access the sample and buffer solution.
  • the separation medium is preliminarily filled in the capillary of the cartridge, and the sample is introduced by directly accessing the sample at the lower end of the capillary. It is unnecessary. Since the capillary of the cartridge is straight and has a short capillary length, electrophoresis can be performed at high speed. However, since the separation medium is prefilled in the capillary of the cartridge, the manufacturing cost of the cartridge is high, and the separation medium in the capillary cannot be replaced, so that the number of times of use is limited. Therefore, the cartridge is an expensive disposable item.
  • an object of the present invention is to make it possible to accurately and easily fill a separation medium into a migration channel and to form a sample plug, and to shorten the length of a capillary to increase the speed of electrophoresis. It is what.
  • a capillary unit includes a reservoir composed of a recess capable of storing a liquid, a linear capillary having one end fixed to the bottom side of the reservoir and extending in a direction opposite to the opening of the reservoir, A nozzle connecting portion that is provided between the bottom and one end of the capillary, and that removably connects a nozzle for injecting liquid into the capillary from the reservoir side while maintaining liquid tightness.
  • the electrophoresis apparatus has a capillary unit installation portion in which the capillary unit of the present invention is installed with the capillary vertical, and a nozzle that discharges a separation medium from the tip, and the nozzle is installed in the capillary unit installation portion
  • a separation medium filling mechanism that connects to the nozzle connection portion of the capillary unit and fills the capillary with a separation medium
  • a buffer liquid supply mechanism that supplies the buffer liquid to the reservoir of the capillary unit, a sample is contained therein, and the lower end of the capillary is
  • the upper part opens so as to contact the sample, and when the lower end of the capillary is brought into contact with the sample, the sample storage part is positioned below the capillary unit installation part, the buffer liquid is stored therein, and the lower end of the capillary is used as the buffer liquid.
  • a buffer reservoir that is positioned below the capillary unit installation portion when being brought into contact with the electrode, an electrode for applying a voltage to both ends of the capillary, and a detector that optically detects a sample migrating in the capillary Is.
  • one end of a linear capillary is fixed to the bottom side of a reservoir comprising a recess capable of storing a liquid, the capillary extends in a direction opposite to the opening of the reservoir, and the bottom of the reservoir and the capillary
  • the nozzle unit for connecting the nozzle for injecting the liquid from the reservoir side into the capillary is detachably connected between the one end and the end of the nozzle so that the configuration of the capillary unit is simple. Therefore, it can be manufactured at a low cost and can be easily attached to and detached from the electrophoresis apparatus. Since the capillaries are linear, it is possible to shorten the capillary length and increase the speed of electrophoresis.
  • the capillary unit of the present invention is provided with a capillary unit installation portion for installing the capillary unit vertically, and the capillary is filled with the separation medium from the upper end side of the capillary with the lower end of the capillary open.
  • the sample is introduced into the capillary by directly accessing the sample and buffer solution, so that the excess separation medium and sample are removed by suction. No work is required.
  • FIG. 5 is a cross-sectional view taken along the line XX in FIG. It is a block diagram which shows roughly the control system of the Example. It is a flowchart which shows an example of operation
  • a plurality of capillaries and a plurality of reservoirs individually corresponding to the capillaries may be provided, and these reservoirs may be integrated. Then, a multicapillary electrophoresis apparatus can be realized using the capillary unit of the present invention.
  • a plurality of capillaries may be provided, and each capillary may be connected to a common reservoir via an individual nozzle connection portion.
  • a multi-capillary electrophoresis apparatus can be realized using the capillary unit of the present invention.
  • the capillary unit installation portion includes a heat conductive block for holding a portion other than the lower end portion of the capillary and a heater for heating the block. If it does so, the temperature control of the capillary which is an electrophoresis channel will be attained, and the separation performance can be stabilized.
  • the heater is preferably a rubber heater attached to the entire surface of the block. Since the capillary unit installation part is used to install the capillary vertically, the length in the vertical direction becomes long and a temperature gradient is likely to be formed. For this reason, by attaching a rubber heater to the entire surface of the block constituting the capillary unit installation portion so as to heat the entire surface of the block, it becomes difficult to form a temperature gradient in the vertical direction on the block, and the temperature of the capillary The uniformity of control can be improved.
  • the sample storage portion and the buffer reservoir are provided on a moving stage that can move in the horizontal plane direction and the vertical direction, and the tip of the capillary is placed on the sample in the sample storage portion.
  • the movement of bringing the capillary into contact with the buffer solution in the buffer reservoir is performed by moving the stage.
  • control unit for controlling the operation of the electrophoresis apparatus, after introducing the sample into the capillary, filling the capillary with the separation medium, and filling the reservoir of the capillary unit with the buffer solution, You may provide the control part comprised so that the lower end of a capillary may contact the sample of a sample storage part, and it may apply by applying a voltage to the both ends of a capillary.
  • the sample is introduced into the capillary, the nozzle is connected to the nozzle connection part of the capillary unit and the capillary is filled with the separation medium, and then the nozzle is connected to the nozzle connection part.
  • a control unit configured to insert the lower end of the capillary into the sample storage unit in a connected state and suck the separation medium in the capillary with a suction nozzle may be further provided.
  • FIG. 1 is a partial sectional view showing an embodiment of a capillary unit.
  • the capillary 2 is shown in a front view, and a portion other than the capillary 2 is shown in a sectional view.
  • the capillary unit 1 includes a linear capillary 2 and a reservoir block 4.
  • the reservoir block 4 includes a reservoir 8 formed of a recess that can store a liquid.
  • One end of the capillary 2 is fixed by a ferrule 6 on the bottom side of the reservoir 8 of the reservoir block 4 so as to extend in a direction opposite to the opening of the reservoir 8.
  • the material of the reservoir block 4 is, for example, polybutylene terephthalate (PBT).
  • PBT polybutylene terephthalate
  • the capillary 2 may be fixed to the reservoir block 4 by bonding with an adhesive.
  • a part of the capillary 2 serves as a detection position 2a, and the protective film covering the surface of the capillary 2 is removed, and optical measurement in the capillary 2 such as absorbance measurement and fluorescence measurement is possible.
  • the reservoir block 4 is connected to the bottom of the reservoir 8 and one end of the capillary 2, and a nozzle for injecting a liquid from the reservoir 8 into the capillary 2 is connected in a liquid-tight manner.
  • Part 10 is provided.
  • FIG. 2 is a partial sectional view showing another embodiment of the capillary unit. Also in this figure, the capillary 2 is shown by a front view, and parts other than the capillary 2 are shown by sectional views.
  • the capillary unit 1a of this embodiment is composed of a plurality of capillaries 2 and a reservoir block 4a.
  • the reservoir block 4 a is provided with a reservoir 8 corresponding to each capillary 2, and one end of each capillary 2 is fixed to the reservoir block 4 a with ferrule 6 on the bottom side of each reservoir 8.
  • a nozzle connection 10 is provided between the bottom of each reservoir 8 and one end of the capillary 2, and the nozzle for injecting the liquid can be detachably connected while maintaining liquid tightness.
  • the capillary 2 may be fixed to the reservoir block 4a by bonding with an adhesive.
  • FIG. 3 is a partial sectional view showing still another embodiment of the capillary unit.
  • the capillary 2 is shown by a front view, and parts other than the capillary 2 are shown by sectional views.
  • the capillary unit 1b of this embodiment is composed of a plurality of capillaries 2 and a reservoir block 4b.
  • the reservoir block 4 b is provided with a reservoir 9 common to all the capillaries 2, and one end of each capillary 2 is fixed to the reservoir block 4 b with ferrule 6 on the bottom side of the common reservoir 9.
  • a nozzle connecting portion 10 is provided between the bottom of the reservoir 9 and one end of each capillary 2, and the nozzle for injecting the liquid can be detachably connected while maintaining liquid tightness.
  • the capillary 2 may be fixed to the reservoir block 4a by bonding with an adhesive.
  • the capillary unit 1 described with reference to FIG. 1 is used.
  • the capillary unit 1a described with reference to FIG. 2 and the capillary unit 1b described with reference to FIG. It can be applied to the device.
  • a capillary unit installation section 12 for installing the capillary unit 1 is provided.
  • the capillary unit installation unit 12 holds the capillary unit 1 so that the capillary 2 is vertical.
  • the lower end portion of the capillary 2 protrudes downward from the capillary unit installation portion 12, and the lower end portion of the capillary 2 can directly access the inside of a sample tube 28 and a buffer reservoir 30, which will be described later.
  • the capillary unit installation unit 12 is provided with a heater 13 and a temperature sensor 14, and the temperature of the capillary 2 is controlled to a constant temperature.
  • the capillary unit installation portion 12 is composed of two blocks 12-1 and 12-2 made of a metal having good thermal conductivity such as aluminum, for example. A part of the ferrule 6 of the capillary unit 12 and a part of the capillary 2 (excluding the lower end part) are sandwiched and held between 12-2. Grooves into which the capillary unit 1 is fitted are formed on the inner surfaces of the two blocks.
  • the heater 13 is a sheet-like rubber heater, and is attached to the entire surface of one block 12-1 constituting the capillary unit installation unit 12.
  • Holes 12 a and 13 a are provided at predetermined positions of the block 12-1 and the heater 13, respectively, and the sample component that migrates in the capillary 2 at the detection position 2 a of the capillary 2 can be optically detected by the detection unit 15. It can be done.
  • the detection unit 15 includes a detector and a light source that are arranged opposite to each other with the optical measurement unit 2a of the capillary 2 interposed therebetween, and detects a change in absorbance in the capillary 2 from the intensity of light transmitted through the capillary 2.
  • the optical measurement unit 2a is irradiated with excitation light from a light source, and fluorescence from a component excited by the excitation light is detected by a detector.
  • the detection signal obtained by the detection unit 15 is taken into the calculation unit 20 to identify the sample components.
  • the computing unit 20 is realized by, for example, a personal computer (PC) connected to the electrophoresis apparatus or a dedicated computer provided in the electrophoresis apparatus.
  • a detection unit 15 that performs optical detection for each capillary 2 may be provided individually.
  • One detection unit 15 and a mechanism for moving the detection unit 15 in the horizontal direction are provided, and the detection unit 15 is sequentially moved to a measurement position where optical detection is performed on each capillary 2 to sequentially perform optical detection. Good.
  • a separation medium filling mechanism 22 and a buffer liquid supply mechanism 24 are provided.
  • the separation medium filling mechanism 22 is a mechanism for filling the capillary 2 with a polymer as a separation medium.
  • the buffer liquid supply mechanism 24 is a mechanism for supplying the buffer liquid to the reservoir 8 of the capillary unit 1.
  • the separation medium filling mechanism 22 has a nozzle 22a and a syringe pump 22b, and the nozzle 22a and the syringe pump 22b are connected via a tube.
  • the nozzle 22 a can move in the horizontal direction and the vertical direction, and can be connected to the capillary 2 by inserting the tip into the nozzle connection portion 10 provided in the reservoir block 4 of the capillary unit 1.
  • the buffer liquid supply mechanism 24 has a nozzle 24a and a syringe pump 24b, and the nozzle 24a and the syringe pump 24b are connected via a tube.
  • the nozzle 24a can move in the horizontal direction and the vertical direction.
  • a moving stage 26 is provided below the capillary unit installation section 12.
  • a sample tube 28 sample storage unit
  • a buffer reservoir 30 are placed on the moving stage 26, and a drain port 32 is mounted.
  • the moving stage 26 can be moved in the horizontal direction and the vertical direction by the stage driving mechanism 27, and any one of the sample tube 28, the buffer reservoir 30, or the drain port 32 can be accessed with respect to the lower end portion of the capillary 2. it can.
  • the sample tube 28 contains a sample inside
  • the buffer reservoir 30 contains a buffer solution inside.
  • a drain tube 34 is connected to the drain port 32, and unnecessary liquid can be discharged through the drain port 32.
  • Both the sample tube 28 and the buffer reservoir 30 have open upper surfaces, and the lower end of the capillary 2 can be accessed by the movement of the moving stage 26 to the sample in the sample tube 28 or the buffer solution in the buffer reservoir 30.
  • the electrophoresis apparatus is arranged so that the end is inserted into the sample tube 28 and the buffer reservoir 30 together with the electrode 16 having the end inserted into the reservoir 8 of the capillary unit 1 and the lower end of the capillary 2.
  • An electrode 18 is provided.
  • the electrophoresis apparatus includes a nozzle 22 a of the separation medium filling mechanism 22, a separation medium filling mechanism driving unit 36 that drives the syringe pump 22 b, and a nozzle 24 a of the buffer liquid supply mechanism 24. And a buffer liquid supply mechanism driving unit 38 for driving the syringe pump 24b, a stage driving mechanism 42 for driving the moving stage 26, and a voltage applying unit 44 for applying a voltage to the electrodes 16 and 18. These are controlled by the controller 46 together with the heater 13.
  • the analyst inputs information such as sample information and analysis conditions to the calculation unit 20.
  • the computing unit 20 gives information such as analysis conditions to the control unit 46 based on the information input by the analyst.
  • the control unit 46 controls the operation by giving control signals to the separation medium filling mechanism driving unit 36, the buffer liquid supply mechanism driving unit 38, the stage driving mechanism 42, and the voltage applying unit 44 based on the information given by the calculation unit 20. . Further, the control unit 46 takes in a detection signal from the temperature sensor 14 provided in the capillary unit installation unit 12 and controls the output of the heater 13 so that the temperature of the capillary 2 becomes a constant temperature.
  • the calculation unit 20 receives the detection signal obtained by the detection unit 15, and the calculation unit 20 executes detection of a change in absorbance in the capillary 2 or identification of a sample component by fluorescence detection from the capillary 2. .
  • the lower end of the capillary 2 is placed in the drain port 32 by the movement of the moving stage 26.
  • the nozzle 22a is connected to the nozzle connection portion 10 of the capillary unit 1 while the polymer is sucked into the syringe pump 22b.
  • the capillary 2 is filled with the polymer (step S1).
  • the polymer filled in the capillary 2 may be prepared in advance by the syringe pump 22b sucking a large amount of polymer in advance, or the syringe pump 22b in a state in which a certain amount of water is sucked is used in the capillary 2. It may have been sucked from a container containing a polymer during the filling operation of the separation medium.
  • the polymer is sucked by the syringe pump 22b in a state where a certain amount of water is sucked, air is sucked before the polymer is sucked to form an air gap between the water and the polymer. Can be prevented from being mixed.
  • the nozzle 22a is moved to a position different from the reservoir 8 while the buffer liquid is sucked into the syringe pump 24b, and the nozzle 24a of the buffer liquid supply mechanism 24 is moved to the reservoir. 8 Position to the top.
  • the syringe pump 24b is driven to discharge to discharge the buffer liquid from the tip of the nozzle 24a, thereby supplying the buffer liquid to the reservoir 8 (step S2).
  • the end of the electrode 16 is disposed in the reservoir 8 in advance, and the end of the electrode 16 is inserted into the buffer solution when the reservoir 8 is filled with the buffer solution.
  • the supply of the buffer solution to the reservoir 8 may be performed by discharging the buffer solution that has been sucked in advance into the syringe pump 24 from the nozzle 24a, or the buffer solution in the buffer reservoir 30 may be discharged from the nozzle 24a. You may make it inhale each time through.
  • the sample tube 28 in which the sample to be analyzed is accommodated by the movement of the moving stage 26 is placed at the lower end position of the capillary 2, and the lower end of the capillary 2 is accessed to the sample to be analyzed.
  • the electrode 18 is also inserted into the sample to be analyzed together with the lower end of the capillary 2.
  • a sample is electrically introduced into the capillary 2 by applying a predetermined voltage between the electrodes 16 and 18 (step S3).
  • the buffer reservoir 30 is arranged at the lower end of the capillary 2 by the movement of the moving stage 26, and the lower end of the capillary 2 is accessed to the buffer solution (step S4).
  • the electrode 18 is also inserted into the buffer solution together with the lower end of the capillary 2. Electrophoresis of the sample is executed by applying a predetermined voltage between the electrodes 16 and 18 (step S5). Each component contained in the sample has a different migration speed depending on its molecular weight, and passes through the detection position 2a in order from the component having the smallest molecular weight.
  • FIG. 8 is a flowchart showing an example of the operation when the sample is introduced into the capillary 2 using the separation medium filling mechanism 22. In this operation, the introduction of the separation medium into the capillary 2 is the same as the operation described with reference to FIG.
  • step S11 After the introduction of the separation medium into the capillary 2 is completed (step S11), the moving stage 26 is moved while the nozzle 22a is connected to the nozzle connecting portion 10, and the lower end of the capillary 2 is accessed to the sample to be analyzed.
  • the syringe pump 22b is inhaled by a predetermined amount. Thereby, a predetermined amount of sample is introduced to the lower end side of the capillary 2 (step S12).
  • the nozzle 22a is moved to a position different from the reservoir 8 while the buffer liquid is being sucked into the syringe pump 24b, and the nozzle 24a of the buffer liquid supply mechanism 24 is disposed at a position on the reservoir 8 so as to be nozzle 24a.
  • the buffer liquid is discharged from the tip of the liquid and supplied to the reservoir 8 (step S13).
  • the buffer reservoir 30 is arranged at the lower end position of the capillary 2, and the lower end of the capillary 2 is accessed to the buffer solution (step S14).
  • electrophoresis of the sample is executed by applying a predetermined voltage between the electrodes 16 and 18 (step S15).
  • FIG. 9 shows another embodiment of the electrophoresis apparatus.
  • the separation medium filling mechanism 22 and the buffer liquid supply mechanism 24 of FIG. 4 are realized by a common liquid suction / discharge mechanism 50.
  • the liquid suction / discharge mechanism 50 includes a nozzle 50a and a syringe pump 50b that can move in the horizontal and vertical directions.
  • a separation medium container 54 containing a separation medium is disposed at a position where the nozzle 36a can move.
  • the syringe pump 50 b is connected to the nozzle 50 a and the cleaning liquid container 52 via the switching valve 56. Both the separation medium and the buffer solution are sucked by the nozzle 50 a and the syringe pump 50 b and injected into the capillary 2 or the reservoir 8. Further, the inside of the flow path of the liquid suction / discharge mechanism 50 can be cleaned as necessary.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

キャピラリユニットは液を貯留できるリザーバを備え、そのリザーバの底部側に直線形状のキャピラリの一端が固定されている。キャピラリはリザーバの底部側からリザーバの開口部とは反対の方向へ延びている。リザーバの底部とキャピラリの一端側端部との間に、リザーバ側からキャピラリ内に液を注入するためのノズルを液密を保って着脱可能に接続するノズル接続部が設けられている。

Description

電気泳動用キャピラリユニット及びそのキャピラリユニットを備えた電気泳動装置
 本発明は、電気泳動分析の泳動流路として使用されるキャピラリを備えたキャピラリユニット及びそのキャピラリユニットを備えた電気泳動装置に関するものである。
 従来から、ごく微量のたんぱく質や核酸などを分析するために電気泳動装置が用いられている。代表的な電気泳動装置としてマイクロチップ電気泳動装置やキャピラリ電気泳動装置がある。
 マイクロチップ電気泳動装置は、基板内部に微細な流路を有し、その流路の両端にウエルやリザーバが形成されたマイクロチップを使用する装置である。一般的に、マイクロチップは水平に配置されて一定温度に調節され、流路の両端のウエル及びリザーバにオートサンプラ、ポリマー(分離媒体)充填機構、吸入ノズル、電極などがアクセスすることでキャピラリへの分離媒体の充填、サンプルの導入、リザーバへのバッファ液の充填及び電気泳動分析が実現される(例えば、特許文献1参照。)。
 キャピラリ電気泳動装置は、泳動流路としてキャピラリを使用する装置であり、一般的に、キャピラリを水平に配置し、そのキャピラリの両端にリザーバを有する部材が固定され、その部材を介してキャピラリへの分離媒体の充填やサンプルの導入、電気泳動分析を実現する。
米国特許第7655125B2 米国特許公開2010/0170799
 上記のマイクロチップ電気泳動装置やキャピラリ電気泳動装置では、水平に配置された流路の一端側から流路内に分離媒体を充填した後、流路端部のリザーバ内に残った余剰の分離媒体を吸入ノズルで吸入して除去するという動作が実行される。流路内へのサンプルの導入後も、流路端部のサンプルリザーバ内に残った余剰サンプルを吸入ノズルで吸入して除去するという動作が実行される。
 上記の吸入除去動作を不要とするために、キャピラリを途中で湾曲させ、アノード端側を水平に配置してそのアノード端に分離媒体充填機構などを備えたアノードリザーバを固定し、カソード端側を鉛直下向きに配置して開放し、サンプルの収容されたサンプル収容部にキャピラリのカソード端が直接的にアクセスできるようにした電気泳動装置もある。かかる電気泳動装置では、キャピラリのカソード端がサンプルに対して直接的にアクセスできるため、キャピラリにサンプルを導入するオートサンプラは不要である。
 しかし、キャピラリを湾曲させるためにはキャピラリにある程度の長さが必要であり、電気泳動の高速化を図る際にキャピラリの長さの短縮に限界がある。また、湾曲部の内側と外側で泳動長に差が生じるため、検出ピークのバンドがブロードになり、分離性能が悪くなる。キャピラリの湾曲部の泳動長の差の影響はキャピラリ長を長くすることで小さくすることが可能であるが、電気泳動の高速化が実現できない。さらに、途中で湾曲したキャピラリを装置へ設置する作業は容易ではなく、キャピラリを破損させてしまうなどの問題が発生することもある。
 分離媒体が予め封入されたリザーバやキャピラリ、電極が一体化されたカートリッジをキャピラリが鉛直になるように設置し、カートリッジのキャピラリの下端をサンプルやバッファ液に直接的にアクセスさせる電気泳動装置も提案されている(特許文献2参照。)。かかる電気泳動装置では、カートリッジのキャピラリ内に予め分離媒体が充填されており、キャピラリの下端を直接的にサンプルにアクセスさせてサンプルの導入を行なうため、余剰の分離媒体やサンプルの吸入除去作業が不要である。カートリッジのキャピラリは直線でキャピラリ長が短いため、電気泳動を高速で行なうことも可能である。しかし、カートリッジのキャピラリに予め分離媒体を充填しておくためカートリッジの製作コストが高く、キャピラリ内の分離媒体の置換ができないため使用回数に制限があることから、カートリッジは高価な使い捨て品である。
 そこで、本発明は、泳動流路への分離媒体の充填やサンプルプラグの形成が正確かつ容易にでき、キャピラリの長さを短くして電気泳動の高速化を図ることも可能にすることを目的とするものである。
 本発明にかかるキャピラリユニットは、液を貯留することができる凹部からなるリザーバと、一端がリザーバの底部側に固定され、リザーバの開口部と反対の方向へ延びた直線形状のキャピラリと、リザーバの底部とキャピラリの一端側端部との間に設けられ、リザーバ側からキャピラリ内に液を注入するためのノズルを液密を保って着脱可能に接続するノズル接続部と、を備えたものである。
 本発明にかかる電気泳動装置は、本発明のキャピラリユニットをキャピラリを鉛直にして設置するキャピラリユニット設置部と、先端から分離媒体を吐出するノズルを有し、ノズルをキャピラリユニット設置部に設置されたキャピラリユニットのノズル接続部に接続してキャピラリに分離媒体を充填する分離媒体充填機構と、キャピラリユニットのリザーバにバッファ液を供給するバッファ液供給機構と、内部にサンプルを収容し、キャピラリの下端をサンプルに接触させるように上方が開口し、キャピラリの下端をサンプルに接触させる時にキャピラリユニット設置部の下方に位置決めされるサンプル収容部と、内部にバッファ液を収容し、キャピラリの下端をバッファ液に接触させるように上方が開口し、キャピラリの下端をバッファ液に接触させる時にキャピラリユニット設置部の下方に位置決めされるバッファリザーバと、キャピラリの両端に電圧を印加するための電極と、キャピラリ内を泳動するサンプルを光学的に検出する検出器と、を備えたものである。
 本発明のキャピラリユニットは、液を貯留することができる凹部からなるリザーバの底部側に直線形状のキャピラリの一端が固定され、リザーバの開口部と反対の方向へキャピラリが延び、リザーバの底部とキャピラリの一端側端部との間に、リザーバ側からキャピラリ内に液を注入するためのノズルを液密を保って着脱可能に接続するノズル接続部が設けられているので、キャピラリユニットの構成が簡単なものとなり、安価に製作することが可能となり、電気泳動装置への着脱も容易にある。キャピラリは直線形状であるので、キャピラリ長を短くして電気泳動の高速化を図ることも可能である。
 本発明の電気泳動装置では、本発明のキャピラリユニットをキャピラリを鉛直にして設置するキャピラリユニット設置部を備え、キャピラリへの分離媒体の充填はキャピラリの下端を開放した状態でキャピラリの上端側からノズルで分離媒体を注入することによって行ない、キャピラリへのサンプルの導入はキャピラリの下端をサンプルやバッファ液に直接的にアクセスさせて行なうようになっているので、余剰の分離媒体やサンプルを吸入除去する作業が不要である。
キャピラリユニットの一実施例を示す部分断面図である。 キャピラリユニットの他の実施例を示す部分断面図である。 キャピラリユニットのさらに他の実施例を示す部分断面図である。 電気泳動装置の一実施例を示す概略断面構成図である。 同実施例のキャピラリユニット設置部の構造を示す図4のX-X位置における断面図である。 同実施例の制御系統を概略的に示すブロック図である。 同実施例の動作の一例を示すフローチャートである。 同実施例の動作の他の例を示すフローチャートである。 電気泳動装置の他の実施例を示す概略断面構成図である。
 本発明のキャピラリユニットでは、複数のキャピラリと各キャピラリに個別に対応する複数のリザーバが設けられ、それらのリザーバが一体化されていてもよい。そうすれば、本発明のキャピラリユニットを用いてマルチキャピラリ電気泳動装置を実現することができる。
 また、本発明のキャピラリユニットでは、複数のキャピラリが設けられており、各キャピラリが個別のノズル接続部を介して共通のリザーバに接続されていてもよい。そうすることで、本発明のキャピラリユニットを用いてマルチキャピラリ電気泳動装置を実現することができる。
 本発明の電気泳動装置においては、キャピラリユニット設置部がキャピラリの下端部以外の部分を保持する熱伝導性のブロック及びブロックを加熱するヒータを備えていることが好ましい。そうすれば、泳動流路であるキャピラリの温度制御が可能となり、分離性能を安定させることができる。
 上記の場合、ヒータはブロックの一表面全体に貼付されたラバーヒータであることが好ましい。キャピラリユニット設置部はキャピラリを鉛直に設置するものであるため、鉛直方向の長さが長くなり、温度勾配が形成されやすい。そのため、キャピラリユニット設置部を構成するブロックの一表面全体にラバーヒータを添付してブロックの表面全体を加熱するようにすることで、ブロックに鉛直方向の温度勾配が形成されにくくなり、キャピラリの温度制御の均一性を高めることができる。
 本発明の電気泳動装置の好ましい実施態様は、サンプル収容部及びバッファリザーバは、水平面内方向と鉛直方向への移動が可能な移動ステージ上に設けられており、キャピラリの先端をサンプル収容部内のサンプルに接触させる動作及びキャピラリの先端をバッファリザーバ内のバッファ液に接触させる動作をステージの移動によって行なうようになっているものである。
 本発明の電気泳動装置は、当該電気泳動装置の動作を制御する制御部として、キャピラリへのサンプルの導入を、キャピラリに分離媒体を充填し、キャピラリユニットのリザーバにバッファ液を充填した後で、キャピラリの下端をサンプル収容部のサンプルに接触させ、キャピラリの両端に電圧を印加することにより行なうように構成された制御部を備えていてもよい。
 また、当該電気泳動装置の動作を制御する制御部として、キャピラリへのサンプルの導入を、キャピラリユニットのノズル接続部にノズルを接続してキャピラリに分離媒体を充填した後、ノズル接続部にノズルを接続した状態でキャピラリの下端をサンプル収容部内に挿入し、吸入ノズルでキャピラリ内の分離媒体を吸入することにより行なうように構成された制御部をさらに備えていてもよい。
 キャピラリユニットの一実施例について図1を用いて説明する。図1はキャピラリユニットの一実施例を示す部分断面図である。この図においては、キャピラリ2を正面図で示し、キャピラリ2以外の部分を断面図で示している。
 キャピラリユニット1は直線形状のキャピラリ2とリザーバブロック4により構成されている。リザーバブロック4は液を貯留することができる凹部からなるリザーバ8を備えている。キャピラリ2はリザーバ8の開口部とは反対の方向へ延びるように、一端がリザーバブロック4のリザーバ8の底部側においてフェルル6により固定されている。リザーバブロック4の材質は例えばポリブチレンテレフタレート(PBT)である。なお、リザーバブロック4に対するキャピラリ2の固定は接着剤による接着によって行なわれていてもよい。
 キャピラリ2の一部は検出位置2aとなっており、キャピラリ2の表面を覆っている保護膜が除去され、吸光度測定や蛍光測定などキャピラリ2内の光学的な測定が可能である。
 リザーバブロック4には、リザーバ8の底部とキャピラリ2の一端側端部との間を接続し、リザーバ8側から液をキャピラリ2内に注入するためのノズルを液密を保って接続するノズル接続部10が設けられている。
 図2はキャピラリユニットの他の実施例を示す部分断面図である。この図においても、キャピラリ2を正面図で示し、キャピラリ2以外の部分を断面図で示している。
 この実施例のキャピラリユニット1aは、複数のキャピラリ2とリザーバブロック4aにより構成されている。リザーバブロック4aには各キャピラリ2に対応するリザーバ8が設けられており、各キャピラリ2の一端がそれぞれのリザーバ8の底部側においてリザーバブロック4aにフェルル6によって固定されている。
 各リザーバ8の底部とキャピラリ2の一端側端部との間にはノズル接続部10が設けられ、液を注入するノズルを液密を保って着脱可能に接続することができる。なお、リザーバブロック4aに対するキャピラリ2の固定は接着剤による接着によって行なわれていてもよい。
 図3はキャピラリユニットのさらに他の実施例を示す部分断面図である。この図においても、キャピラリ2を正面図で示し、キャピラリ2以外の部分を断面図で示している。
 この実施例のキャピラリユニット1bは、複数のキャピラリ2とリザーバブロック4bにより構成されている。リザーバブロック4bには全てのキャピラリ2に共通のリザーバ9が設けられており、各キャピラリ2の一端が共通のリザーバ9の底部側においてリザーバブロック4bにフェルル6によって固定されている。
 リザーバ9の底部と各キャピラリ2の一端側端部との間にはノズル接続部10が設けられ、液を注入するノズルを液密を保って着脱可能に接続することができる。なお、リザーバブロック4aに対するキャピラリ2の固定は接着剤による接着によって行なわれていてもよい。
 次に、電気泳動装置の一実施例について図4を用いて説明する。なお、この電気泳動装置では図1を用いて説明したキャピラリユニット1が用いられているが、図2を用いて説明したキャピラリユニット1a、図3を用いて説明したキャピラリユニット1bも同様に電気泳動装置に適用することができる。
 キャピラリユニット1を設置するキャピラリユニット設置部12が設けられている。キャピラリユニット設置部12はキャピラリ2が鉛直になるようにキャピラリユニット1を保持する。キャピラリ2の下端部はキャピラリユニット設置部12よりも下方へ突出しており、後述するサンプルチューブ28やバッファリザーバ30の内部へキャピラリ2の下端部が直接的にアクセスすることが可能である。キャピラリユニット設置部12にはヒータ13と温度センサ14が設けられており、キャピラリ2の温度が一定温度に制御される。
 キャピラリユニット設置部12は、図5に示されているように、例えばアルミニウムなど熱伝導性のよい金属からなる2つのブロック12-1,12-2により構成されており、それらブロック12-1,12-2の間にキャピラリユニット12のフェルル6の一部とキャピラリ2部分(下端部を除く)を挟み込んで保持するものである。2つのブロックの互いの内側の面にはキャピラリユニット1を嵌め込む溝が形成されている。ヒータ13はシート状のラバーヒータであり、キャピラリユニット設置部12を構成する一方のブロック12-1の表面全体に貼付されている。ヒータ13によってブロック12-1の表面全体を加熱する構造であるため、キャピラリ2を垂直に保持するブロック12-1及びキャピラリ2に垂直方向への温度勾配が生じにくくなり、キャピラリ2の温度を垂直方向に対して均一に制御することができる。
 ブロック12-1及びヒータ13の所定の位置にそれぞれ穴12a,13aが設けられており、キャピラリ2の検出位置2aにおいてキャピラリ2内を泳動するサンプル成分を検出部15により光学的に検出することができるようになっている。検出部15としては、検出器と光源がキャピラリ2の光学的測定部2aを挟んで対向して配置され、キャピラリ2を透過した光の強度からキャピラリ2内の吸光度変化を検出するもののほか、キャピラリ2の光学的測定部2aに対して光源から励起光を照射し、その励起光によって励起された成分からの蛍光を検出器によって検出するものが挙げられる。検出部15で得られた検出信号は演算部20に取り込まれ、サンプル成分の同定などが行なわれる。演算部20は例えば電気泳動装置に接続されたパーソナルコンピュータ(PC)又は電気泳動装置に設けられた専用のコンピュータによって実現される。
 なお、複数のキャピラリ2を有する図2や図3のキャピラリユニットを使用する電気泳動装置の場合には、各キャピラリ2に対する光学的検出をそれぞれ行なう検出部15を個別に設けてもよいし、1つの検出部15とその検出部15を水平方向へ移動させる機構を設け、検出部15を各キャピラリ2に対する光学的検出を行なう測定位置へ順に移動させて光学的検出を順に実行するようにしてもよい。
 この実施例では、分離媒体充填機構22とバッファ液供給機構24が設けられている。分離媒体充填機構22はキャピラリ2に分離媒体であるポリマーを充填する機構である。バッファ液供給機構24はキャピラリユニット1のリザーバ8にバッファ液を供給する機構である。
 分離媒体充填機構22はノズル22aとシリンジポンプ22bを有し、ノズル22aとシリンジポンプ22bはチューブを介して接続されている。ノズル22aは水平方向と鉛直方向への移動が可能であり、キャピラリユニット1のリザーバブロック4に設けられたノズル接続部10に先端を挿入してキャピラリ2に接続することができる。
 バッファ液供給機構24はノズル24aとシリンジポンプ24bを有し、ノズル24aとシリンジポンプ24bはチューブを介して接続されている。ノズル24aは水平方向と鉛直方向への移動が可能である。
 キャピラリユニット設置部12の下方に移動ステージ26が設けられている。移動ステージ26にはサンプルチューブ28(サンプル収容部)及びバッファリザーバ30が載置されているとともにドレインポート32が搭載されている。移動ステージ26は、ステージ駆動機構27によって水平方向と鉛直方向への移動が可能であり、いずれかのサンプルチューブ28、バッファリザーバ30又はドレインポート32をキャピラリ2の下端部に対してアクセスさせることができる。
 サンプルチューブ28は内部にサンプルを収容しており、バッファリザーバ30は内部にバッファ液を収容している。ドレインポート32にはドレインチューブ34が接続されており、このドレインポート32を通じて不要な液を廃液することができる。サンプルチューブ28とバッファリザーバ30はともに上面が開放されており、移動ステージ26の移動によってキャピラリ2の下端をサンプルチューブ28内のサンプル又はバッファリザーバ30内のバッファ液にアクセスさせることができる。
 また、この電気泳動装置は、キャピラリユニット1のリザーバ8に端部が挿入された電極16と、キャピラリ2の下端部とともにサンプルチューブ28やバッファリザーバ30に端部が挿入されるように配置された電極18を備えている。
 図4の電気泳動装置の制御系統について図6を用いて説明する。
 この電気泳動装置には、図4において図示は省略されているが、分離媒体充填機構22のノズル22aとシリンジポンプ22bを駆動する分離媒体充填機構駆動部36と、バッファ液供給機構24のノズル24aとシリンジポンプ24bを駆動するバッファ液供給機構駆動部38と、移動ステージ26を駆動するステージ駆動機構42と、電極16,18に電圧を印加する電圧印加部44が設けられている。これらはヒータ13とともに制御部46により制御されている。
 分析者はサンプル情報や分析条件などの情報を演算部20に入力する。演算部20は分析者により入力された情報に基づき制御部46に分析条件等の情報を与える。制御部46は演算部20により与えられた情報に基づいて分離媒体充填機構駆動部36、バッファ液供給機構駆動部38、ステージ駆動機構42及び電圧印加部44に制御信号を与えて動作を制御する。さらに制御部46は、キャピラリユニット設置部12に設けられた温度センサ14から検出信号を取り込み、キャピラリ2の温度が一定温度になるようにヒータ13の出力を制御する。また、演算部20には検出部15で得られた検出信号が取り込まれ、演算部20においてキャピラリ2内の吸光度変化の検出又はキャピラリ2内からの蛍光検出によるサンプル成分の同定などが実行される。
 同実施例の動作の一例を図1とともに図7を用いて説明する。
 移動ステージ26の移動によりキャピラリ2の下端をドレインポート32内に配置する。シリンジポンプ22b内にポリマーが吸入されている状態で、ノズル22aをキャピラリユニット1のノズル接続部10に接続する。シリンジポンプ22bを吐出駆動してノズル22aの先端からポリマーを吐出することにより、キャピラリ2にポリマーを充填する(ステップS1)。
 なお、キャピラリ2に充填されるポリマーは、シリンジポンプ22bが予めポリマーを大量に吸入することによって用意されたものであってもよいし、一定量の水を吸入した状態のシリンジポンプ22bがキャピラリ2への分離媒体の充填動作の際にポリマーを収容した容器から吸入したものであってもよい。一定量の水を吸入した状態のシリンジポンプ22bでポリマーを吸入する場合には、ポリマーを吸入する前にエアーを吸入して水とポリマーとの間にエアーギャップを形成することで、水とポリマーが混合されることを防止することができる。
 キャピラリ2へのポリマーの充填が終了した後、シリンジポンプ24b内にバッファ液が吸入されている状態でノズル22aをリザーバ8とは別の位置へ移動させ、バッファ液供給機構24のノズル24aをリザーバ8上の位置へ配置する。シリンジポンプ24bを吐出駆動してノズル24aの先端からバッファ液を吐出することにより、リザーバ8にバッファ液を供給する(ステップS2)。リザーバ8内には電極16の端部が予め配置されており、リザーバ8がバッファ液で満たされることで電極16の端部がバッファ液内に挿入された状態となる。
 なお、リザーバ8へのバッファ液の供給は、シリンジポンプ24内に予め大量に吸入しておいたバッファ液をノズル24aから吐出するようにしてもよいし、バッファリザーバ30内のバッファ液をノズル24aを介してその都度吸入するようにしてもよい。
 移動ステージ26の移動により分析対象のサンプルが収容されたサンプルチューブ28をキャピラリ2の下端の位置に配置し、キャピラリ2の下端を分析対象のサンプルにアクセスさせる。このとき、電極18もキャピラリ2の下端とともに分析対象のサンプル内に挿入される。電極16と18の間に所定の電圧を印加することによりキャピラリ2内にサンプルを電気的に導入する(ステップS3)。
 その後、移動ステージ26の移動によりバッファリザーバ30をキャピラリ2の下端の位置に配置し、キャピラリ2の下端をバッファ液にアクセスさせる(ステップS4)。このとき電極18もキャピラリ2の下端とともにバッファ液内に挿入される。電極16と18の間に所定の電圧を印加することによりサンプルの電気泳動を実行する(ステップS5)。サンプルに含まれる各成分はその分子量によって泳動速度が異なり、分子量の小さい成分から順に検出位置2aを通過する。
 なお、上記の動作はキャピラリ2へのサンプルの導入を電気的に行なうが、分離媒体充填機構22を利用してキャピラリ2へのサンプルの導入を行なうことも可能である。図8は分離媒体充填機構22を利用してキャピラリ2へのサンプルの導入を行なう場合の動作の一例を示すフローチャートである。この動作において、キャピラリ2への分離媒体の導入は図7を用いて説明した動作と同じである。
 キャピラリ2への分離媒体の導入が終了した後(ステップS11)、ノズル22aをノズル接続部10に接続した状態のまま、移動ステージ26を移動させてキャピラリ2の下端を分析対象のサンプルにアクセスさせ、シリンジポンプ22bを所定量分だけ吸入駆動する。これにより、キャピラリ2の下端側に所定量のサンプルが導入される(ステップS12)。
 その後、シリンジポンプ24b内にバッファ液が吸入されている状態でノズル22aをリザーバ8とは別の位置へ移動させ、バッファ液供給機構24のノズル24aをリザーバ8上の位置へ配置してノズル24aの先端からバッファ液を吐出し、リザーバ8にバッファ液を供給する(ステップS13)。移動ステージ26の移動によりバッファリザーバ30をキャピラリ2の下端の位置に配置し、キャピラリ2の下端をバッファ液にアクセスさせる(ステップS14)。そして、電極16と18の間に所定の電圧を印加することによりサンプルの電気泳動を実行する(ステップS15)。
 図9に電気泳動装置の他の実施例を示す。この実施例では、図4の分離媒体充填機構22とバッファ液供給機構24を共通の液吸入吐出機構50によって実現している。液吸入吐出機構50は、水平方向と鉛直方向への移動が可能なノズル50aとシリンジポンプ50bを備えている。ノズル36aが移動可能な位置に分離媒体を収容した分離媒体容器54が配置されている。シリンジポンプ50bは切換バルブ56を介してノズル50aと洗浄液容器52に接続されている。分離媒体とバッファ液はともにノズル50aとシリンジポンプ50bによって吸入され、キャピラリ2内又はリザーバ8へ注入される。また、必要に応じて液吸入吐出機構50の流路内の洗浄を行なうことができる。
   1,1a,1b   キャピラリユニット
   2   キャピラリ
   2a   検出位置
   4,4a,4b   リザーバブロック
   6   フェルル
   8,9   リザーバ
   10   ノズル接続部
   12,12-1,12-2   キャピラリユニット設置部
   12a,13a   検出用の穴
   13   ヒータ
   14   温度センサ
   15   検出部
   16,18   電極
   20   演算部
   22   分離媒体充填機構
   22a,24a、50a   ノズル
   22b,24b、50b   シリンジポンプ
   24   バッファ液供給機構
   26   移動ステージ
   27   ステージ駆動機構
   28   サンプルチューブ
   30   バッファリザーバ
   32   ドレインポート
   34   ドレインチューブ
   36   分離媒体充填機構駆動部
   38   バッファ液供給機構駆動部
   42   ステージ駆動機構
   44   電圧印加部
   46   制御部
   50   液吸入吐出機構
   52   洗浄液容器
   54   分離媒体容器
   56   切換バルブ

Claims (9)

  1.  液を貯留することができる凹部からなるリザーバと、
     一端が前記リザーバの底部側に固定され、前記リザーバの開口部と反対の方向へ延びた直線形状のキャピラリと、
     前記リザーバの底部と前記キャピラリの前記一端側端部との間に設けられ、前記リザーバ側から前記キャピラリ内に液を注入するためのノズルを液密を保って着脱可能に接続するノズル接続部と、を備えたキャピラリユニット。
  2.  複数の前記キャピラリと各キャピラリに個別に対応する複数の前記リザーバが設けられ、前記リザーバが一体化されている請求項1に記載のキャピラリユニット。
  3.  複数の前記キャピラリが設けられており、各キャピラリが個別の前記ノズル接続部を介して共通のリザーバに接続されている請求項1に記載のキャピラリユニット。
  4.  請求項1に記載のキャピラリユニットを前記キャピラリを鉛直にして設置するキャピラリユニット設置部と、
     先端から分離媒体を吐出するノズルを有し、前記ノズルを前記キャピラリユニット設置部に設置された前記キャピラリユニットのノズル接続部に接続して前記キャピラリに分離媒体を充填する分離媒体充填機構と、
     前記キャピラリユニットのリザーバにバッファ液を供給するバッファ液供給機構と、
     内部にサンプルを収容し、前記キャピラリの下端をサンプルに接触させるように上方が開口し、前記キャピラリの下端をサンプルに接触させる時に前記キャピラリユニット設置部の下方に位置決めされるサンプル収容部と、
     内部にバッファ液を収容し、前記キャピラリの下端をバッファ液に接触させるように上方が開口し、前記キャピラリの下端をバッファ液に接触させる時に前記キャピラリユニット設置部の下方に位置決めされるバッファリザーバと、
     前記キャピラリの両端に電圧を印加するための電極と、
     前記キャピラリ内を泳動するサンプルを光学的に検出する検出器と、を備えた電気泳動装置。
  5.  前記キャピラリユニット設置部は、前記キャピラリの下端部以外の部分を保持する熱伝導性のブロック及び前記ブロックを加熱するヒータを備えている請求項4に記載の電気泳動装置。
  6.  前記ヒータは前記ブロックの一表面全体に貼付されたラバーヒータである請求項5に記載の電気泳動装置。
  7.  前記サンプル収容部及び前記バッファリザーバは、水平面内方向と鉛直方向へ移動する移動ステージ上に設けられており、
     前記キャピラリの先端を前記サンプル収容部内のサンプルに接触させる動作及び前記キャピラリの先端を前記バッファリザーバ内のバッファ液に接触させる動作を前記ステージの移動によって行なう請求項4から6のいずれか一項に記載の電気泳動装置。
  8.  当該電気泳動装置の動作を制御する制御部であって、前記キャピラリへのサンプルの導入を、前記キャピラリに分離媒体を充填し、前記キャピラリユニットのリザーバにバッファ液を充填した後で、前記キャピラリの下端を前記サンプル収容部のサンプルに接触させ、前記キャピラリの両端に電圧を印加することにより行なうように構成された制御部をさらに備えた請求項4から7のいずれか一項に記載の電気泳動装置。
  9.  当該電気泳動装置の動作を制御する制御部であって、前記キャピラリへのサンプルの導入を、前記キャピラリユニットの前記ノズル接続部に前記ノズルを接続して前記キャピラリに分離媒体を充填した後、前記ノズル接続部に前記ノズルを接続した状態で前記キャピラリの下端を前記サンプル収容部内に挿入し、前記吸入ノズルで前記キャピラリ内の分離媒体を吸入することにより行なうように構成された制御部をさらに備えた請求項4から7のいずれか一項に記載の電気泳動装置。
PCT/JP2013/054717 2013-02-25 2013-02-25 電気泳動用キャピラリユニット及びそのキャピラリユニットを備えた電気泳動装置 WO2014128956A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/769,181 US9778222B2 (en) 2013-02-25 2013-02-25 Capillary unit for electrophoresis and electrophoresis device comprising the capillary unit
JP2015501219A JP5928651B2 (ja) 2013-02-25 2013-02-25 電気泳動用キャピラリユニット及びそのキャピラリユニットを備えた電気泳動装置
PCT/JP2013/054717 WO2014128956A1 (ja) 2013-02-25 2013-02-25 電気泳動用キャピラリユニット及びそのキャピラリユニットを備えた電気泳動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/054717 WO2014128956A1 (ja) 2013-02-25 2013-02-25 電気泳動用キャピラリユニット及びそのキャピラリユニットを備えた電気泳動装置

Publications (1)

Publication Number Publication Date
WO2014128956A1 true WO2014128956A1 (ja) 2014-08-28

Family

ID=51390779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054717 WO2014128956A1 (ja) 2013-02-25 2013-02-25 電気泳動用キャピラリユニット及びそのキャピラリユニットを備えた電気泳動装置

Country Status (3)

Country Link
US (1) US9778222B2 (ja)
JP (1) JP5928651B2 (ja)
WO (1) WO2014128956A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105259241A (zh) * 2015-11-02 2016-01-20 中国人民解放军第四军医大学 一种用于蛋白跑胶的多v形管上样器
CN106680250A (zh) * 2015-11-10 2017-05-17 北京万泰生物药业股份有限公司 用于聚合酶链式反应的检测机构及聚合酶链式反应装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170299547A1 (en) * 2016-04-18 2017-10-19 Shimadzu Corporation Capillary electrophoresis apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248678A (ja) * 1998-03-06 1999-09-17 Shimadzu Corp キャピラリー電気泳動チップ
JP2001124736A (ja) * 1999-10-29 2001-05-11 Hitachi Ltd キャピラリー電気泳動装置
JP2001281221A (ja) * 2000-03-30 2001-10-10 Hitachi Ltd プランジャ検知機能を備えた電気泳動装置
JP2004251680A (ja) * 2003-02-19 2004-09-09 Shimadzu Corp 複数の電気泳動流路を備えた電気泳動装置
JP2006201188A (ja) * 2001-04-02 2006-08-03 Hitachi Ltd キャピラリアレイ装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3562460B2 (ja) * 2000-10-25 2004-09-08 株式会社島津製作所 電気泳動装置
US6878256B2 (en) 2001-04-02 2005-04-12 Hitachi, Ltd. Capillary array device
CN100514053C (zh) 2003-04-11 2009-07-15 比奥卡尔技术公司 多毛细管电泳盒接合机构
JP4681433B2 (ja) * 2005-11-29 2011-05-11 株式会社日立ハイテクノロジーズ キャピラリ電気泳動装置
JP4893209B2 (ja) 2006-10-03 2012-03-07 株式会社島津製作所 電気泳動装置
JP5040422B2 (ja) * 2007-05-08 2012-10-03 株式会社島津製作所 マイクロチップ電気泳動装置
US8506688B2 (en) * 2008-01-18 2013-08-13 Restek Corporation Gas chromatographic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248678A (ja) * 1998-03-06 1999-09-17 Shimadzu Corp キャピラリー電気泳動チップ
JP2001124736A (ja) * 1999-10-29 2001-05-11 Hitachi Ltd キャピラリー電気泳動装置
JP2001281221A (ja) * 2000-03-30 2001-10-10 Hitachi Ltd プランジャ検知機能を備えた電気泳動装置
JP2006201188A (ja) * 2001-04-02 2006-08-03 Hitachi Ltd キャピラリアレイ装置
JP2004251680A (ja) * 2003-02-19 2004-09-09 Shimadzu Corp 複数の電気泳動流路を備えた電気泳動装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105259241A (zh) * 2015-11-02 2016-01-20 中国人民解放军第四军医大学 一种用于蛋白跑胶的多v形管上样器
CN105259241B (zh) * 2015-11-02 2018-01-30 中国人民解放军第四军医大学 一种用于蛋白跑胶的多v形管上样器
CN106680250A (zh) * 2015-11-10 2017-05-17 北京万泰生物药业股份有限公司 用于聚合酶链式反应的检测机构及聚合酶链式反应装置
KR20180081064A (ko) * 2015-11-10 2018-07-13 베이징 완타이 바이오로지컬 파마시 엔터프라이즈 코포레이션 리미티드 중합효소 연쇄 반응의 검출 메카니즘 및 중합효소 연쇄 반응 장치
KR102246869B1 (ko) 2015-11-10 2021-04-30 베이징 완타이 바이오로지컬 파마시 엔터프라이즈 코포레이션 리미티드 중합효소 연쇄 반응의 검출 메카니즘 및 중합효소 연쇄 반응 장치
CN106680250B (zh) * 2015-11-10 2023-06-30 北京万泰生物药业股份有限公司 用于聚合酶链式反应的检测机构及聚合酶链式反应装置

Also Published As

Publication number Publication date
US9778222B2 (en) 2017-10-03
JPWO2014128956A1 (ja) 2017-02-02
JP5928651B2 (ja) 2016-06-01
US20150377829A1 (en) 2015-12-31

Similar Documents

Publication Publication Date Title
US10274460B2 (en) Capillary array cartridge for capillary electrophoresis systems
US10408787B2 (en) Electrophoresis apparatus, capillary array, and capillary unit
ES2848532T3 (es) Electroforesis capilar mediante tubos capilares con recubrimiento transparente
JP4893209B2 (ja) 電気泳動装置
JP4720419B2 (ja) マイクロチップへの分離バッファ液充填装置とそれを備えたマイクロチップ処理装置
US8257569B2 (en) Capillary array unit and capillary electrophoresis apparatus
US20120168312A1 (en) Disposible bio-analysis cartridge and instrument for conducting bio-analysis using same
JP5928651B2 (ja) 電気泳動用キャピラリユニット及びそのキャピラリユニットを備えた電気泳動装置
JP5802499B2 (ja) 分析装置
JP2007107918A (ja) マイクロチップ処理装置
US20160216235A1 (en) Electrophoresis Medium Receptacle and Electrophoresis Apparatus
JP2007107915A (ja) キャピラリ流路における電気泳動方法及びマイクロチップ処理装置
JP6151359B2 (ja) キャピラリ電気泳動装置
JPWO2008136057A1 (ja) 電気泳動チップ及び電気泳動方法
JP3562460B2 (ja) 電気泳動装置
US20070175757A1 (en) Device for charging separation buffer liquid to microchip, and microchip processing device equipped with the charging device, electrophoresis method in capillary channel and its microchip processing device
JP3136062U (ja) 気泡除去が容易な電気泳動装置
JP6072619B2 (ja) 電気泳動装置
US20060070880A1 (en) Methods and apparatus for manipulating separation media
JP6047448B2 (ja) キャピラリ電気泳動装置における分離媒体充填方法
JP2013195240A (ja) キャピラリー組立品
JP2014163714A (ja) 蒸発防止膜
JP5310605B2 (ja) マイクロチップ電気泳動方法及び装置
JP4994250B2 (ja) キャピラリ電気泳動装置及び電気泳動媒体のリーク検査方法
JP5573771B2 (ja) マイクロチップ電気泳動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876053

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501219

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14769181

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876053

Country of ref document: EP

Kind code of ref document: A1