WO2014127563A1 - 一种发光结构 - Google Patents

一种发光结构 Download PDF

Info

Publication number
WO2014127563A1
WO2014127563A1 PCT/CN2013/073802 CN2013073802W WO2014127563A1 WO 2014127563 A1 WO2014127563 A1 WO 2014127563A1 CN 2013073802 W CN2013073802 W CN 2013073802W WO 2014127563 A1 WO2014127563 A1 WO 2014127563A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
emitting structure
semiconductor layer
conductive material
Prior art date
Application number
PCT/CN2013/073802
Other languages
English (en)
French (fr)
Inventor
康学军
李鹏
祝进田
张翼
Original Assignee
佛山市国星半导体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市国星半导体技术有限公司 filed Critical 佛山市国星半导体技术有限公司
Publication of WO2014127563A1 publication Critical patent/WO2014127563A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction

Definitions

  • the present application claims priority to Chinese Patent Application No. 201310054962.0, the entire disclosure of which is incorporated herein in TECHNICAL FIELD
  • the present invention relates to the field of semiconductor manufacturing technology, and in particular to a light emitting structure having a quantum tunneling effect. Background technique
  • GaN-based light-emitting diodes have the advantages of high brightness, low energy consumption, long life, fast response, etc. As a new high-efficiency solid-state light source, they are widely used in indoor lighting, landscape lighting, display, signal indication, etc. .
  • the positive pole of the power supply is connected to the positive pole of the LED
  • the negative pole of the power supply is connected to the negative pole of the LED.
  • the voltage at this time is the forward voltage.
  • the forward voltage generally includes the sum of the PN junction voltage, the N-type gallium nitride voltage, the P-type gallium nitride voltage, and the metal-semiconductor contact voltage.
  • Metal-semiconductor contact is a very important problem in the fabrication of semiconductor devices. Metal-semiconductor contacts can be divided into two types: Schottky contact and ohmic contact. The contact condition directly affects the performance of the device. The resistance generated by Schottky contact or ohmic contact Will reduce the light output efficiency of the device.
  • an object of the present invention is to provide a light-emitting structure having a high light-emitting efficiency of a device.
  • an embodiment of the present invention provides a light emitting structure including a first semiconductor layer, a light emitting layer, a second semiconductor layer, and a conductive material layer, which are sequentially arranged, wherein the first semiconductor layer and the second semiconductor The layer uses different types of semiconductor materials, and the light emitting structure further includes an insulating layer between the second semiconductor layer and the conductive material layer to bond the second semiconductor layer and the conductive material The layer is electrically insulated.
  • the insulating layer has a thickness of not more than 10 nm.
  • the insulating layer is made of silicon oxide or silicon nitride.
  • the conductive material layer is made of one or a combination of doped gallium nitride, doped silicon carbide, doped silicon, indium tin oxide, alloy or metal.
  • the first semiconductor layer is made of an N-type semiconductor material
  • the second semiconductor layer is made of a P-type semiconductor material.
  • the light emitting structure further includes a first substrate, a first electrode and a second electrode, wherein the first semiconductor layer is located between the first substrate and the light emitting layer, and the first electrode is located at Below the first semiconductor layer, the second electrode is over the layer of conductive material.
  • the first substrate is made of sapphire, gallium nitride, silicon carbide or silicon.
  • the light emitting structure further includes a second substrate, a first electrode and a second electrode, the conductive material layer is located between the second substrate and the insulating layer, and the first electrode is located at the Above the first semiconductor layer, the second electrode is located below the second substrate.
  • the second substrate is made of an electrically and thermally conductive material.
  • the first semiconductor layer is made of a P-type semiconductor material
  • the second semiconductor layer is made of an N-type semiconductor material.
  • a thin insulating layer is added between the second semiconductor layer and the conductive material layer to electrically insulate the second semiconductor layer from the conductive material layer.
  • the Schottky contact or the ohmic contact generated by the direct contact between the conductive material layer and the semiconductor layer in the light-emitting structure is avoided, thereby reducing the forward series resistance in the light-emitting structure, thereby improving the light-emitting efficiency of the entire light-emitting structure.
  • FIG. 1 is a schematic structural view of a light emitting structure according to an embodiment of the present invention.
  • FIGS. 2 to 5 are schematic structural views of a light emitting structure according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic structural view of a light emitting structure according to Embodiment 2 of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • the light emitting structure includes a first semiconductor layer 101, a light emitting layer 102, a second semiconductor 103, an insulating layer 104, and a conductive material layer 105, wherein the first semiconductor
  • the layer 101 may be an N-type semiconductor material
  • the luminescent layer 102 may be a luminescent material commonly used in the art
  • the second semiconductor layer 103 may be a P-type semiconductor material
  • the insulating layer 104 may be silicon oxide or silicon nitride.
  • the thickness of the insulating layer 104 may be determined according to design requirements
  • the conductive material layer 105 may be a commonly used conductive material, such as doping.
  • the thickness of the insulating layer 104 may be 0.1 nm, 0.5 nm, 1 nm, 2 nm, 5 nm, lOnm, and the like. Miscellaneous gallium nitride, doped silicon carbide, doped silicon, indium tin oxide, metal or alloy, etc.
  • the conductive material layer 105 may be metal.
  • a positive voltage may be applied on the side of the conductive material layer 105, in the first semiconductor layer.
  • 101—side applying a negative voltage, specifically, a negative voltage and a positive voltage may be applied through the first electrode 106 and the second electrode 107 (as shown in FIG. 2 ), wherein the specific shape and size of the first electrode 106 and the second electrode 107 may be
  • the present invention is not limited by the design requirements.
  • the carriers in the conductive material layer 105 move toward the first semiconductor layer (N-type semiconductor material layer) 101, but these carriers are blocked by the insulating layer 104 and cannot reach the second semiconductor layer (P-type semiconductor) Material layer) 103.
  • carriers in the conductive material layer 105 blocked by the insulating layer 104 accumulate to a certain amount, most carriers in the P-type semiconductor material layer 103 are depleted, and minority carriers are accumulated in the P-type semiconductor material layer.
  • the contact interface between the 103 and the insulating layer 104 at this time, carriers in the conductive material layer 105 can penetrate the insulating layer 104 to reach the P-type semiconductor material layer 103 to form a tunneling current.
  • the "P-type semiconductor material layer 103-insulating layer 104-conductive material layer 105" structure produces a quantum tunneling effect, and the operation of the light-emitting structure is neither based on Schottky contact nor ohmic contact, but based on quantum tunneling.
  • the tunneling current produced by the effect is neither based on Schottky contact nor ohmic contact, but based on quantum tunneling.
  • a thin insulating layer 104 is added between the second semiconductor layer 103 and the conductive material layer 105 to electrically insulate the second semiconductor layer 103 from the conductive material layer 105.
  • the Schottky contact or the ohmic contact generated by the direct contact between the conductive material layer and the semiconductor layer in the light-emitting structure is avoided, thereby reducing the forward series resistance in the light-emitting structure, thereby improving the overall light-emitting efficiency of the light-emitting structure.
  • the light emitting structure in the first embodiment of the present invention may further include a village bottom 100, the village bottom 100 is located on the N-type semiconductor material layer 101, and the N-type semiconductor material layer 101 is located between the village bottom 100 and the light-emitting layer 102.
  • the village bottom 100 may be made of sapphire, gallium nitride, silicon carbide or silicon.
  • the light emitting structure shown in FIG. 3 may further include an electrode, and FIG. 4 is a schematic structural view thereof.
  • the light emitting structure further includes a first electrode 106 and a second electrode 107, and the first electrode 106 is configured to provide a negative voltage, The two electrodes 107 are used to provide a positive voltage.
  • the N-type semiconductor material layer 101 forms a mesa
  • the first electrode 106 is on one mesa on the N-type semiconductor material layer 101
  • the second electrode 107 is on the conductive material layer 105.
  • the shape and size of the first electrode 106 and the second electrode 107 can be determined by a person skilled in the art as needed, which is not limited in the present invention.
  • the light emitting structure in the first embodiment of the present invention may further include a village bottom 100'.
  • the conductive material layer 105 is located between the village bottom 100' and the insulating layer 104, and the bottom 100' is heat-conducting.
  • a conductive material such as one or more of doped gallium nitride, doped silicon carbide, doped silicon, metal or alloy.
  • the second electrode 107 located on the side of the substrate 100' is used for The first electrode 106 on the other side of the first semiconductor layer (N-type semiconductor material) 101 is connected to a positive voltage for receiving a negative voltage.
  • the first semiconductor layer 101 is made of an N-type semiconductor material and the second semiconductor layer 103.
  • the first semiconductor layer 101 may also be a P-type semiconductor material, the second semiconductor layer 103 or an N-type semiconductor material, which is specifically described in the second embodiment.
  • the structure of the light emitting structure of the second embodiment of the present invention is as shown in FIG. 6.
  • the difference from the first embodiment is that the first semiconductor layer 101 in the second embodiment uses a P-type semiconductor material, and the second semiconductor layer 103 uses a N. Type semiconductor material.
  • the insulating layer 104 is located between the N-type semiconductor material layer (second semiconductor layer) 103 and the conductive material layer 105, and the first electrode 106 on the side of the first semiconductor layer (P-type semiconductor material layer) 101 is used for connection.
  • a positive voltage, the second electrode 107 on the other side of the conductive material layer 105 is used to connect a negative voltage.
  • the operation principle of the light-emitting structure shown in FIG. 6 is as follows: When a positive voltage is applied to the first electrode 106, carriers in the P-type semiconductor material layer 101 move toward the conductive material layer 105, but these carriers are insulated. The layer 104 blocks and cannot reach the conductive material layer 105, thereby accumulating at the contact interface of the N-type semiconductor material layer 103 and the insulating layer 104.
  • the "N-type semiconductor material layer 103 - insulating layer 104 - conductive material layer 105" structure produces a quantum tunneling effect, and the operation of the light-emitting structure is neither based on Schottky contact nor based on ohmic contact, but based on quantum tunneling.
  • the tunneling current produced by the effect is neither based on Schottky contact nor based on ohmic contact, but based on quantum tunneling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Devices (AREA)

Abstract

一种发光结构,包括依次排布的第一半导体层(101)、发光层(102)、第二半导体层(103)以及导电材料层(105),其中所述第一半导体层(101)和所述第二半导体层(103)采用不同类型的半导体材料,所述发光结构还包括绝缘层(104),所述绝缘层(104)位于所述第二半导体层(103)与所述导电材料层(105)之间,以将所述第二半导体层(103)与所述导电材料层(105)电绝缘。通过在第二半导体层(103)和导电材料层(105)之间增加一薄绝缘层(104),从而将第二半导体层(103)和导电材料层(105)电绝缘;避免了发光结构中的导电材料层(105)和半导体层直接接触而产生的肖特基接触或者欧姆接触,从而降低了发光结构中的正向串联电阻,进而提高了发光结构整体的出光效率。

Description

一种发光结构
本申请要求于 2013 年 2 月 20 日提交中国专利局、 申请号为 201310054962.0、 发明名称为 "一种发光结构"的中国专利申请的优先权, 其 全部内容通过引用结合在本申请中。 技术领域 本发明属于半导体制造技术领域,具体涉及一种具有量子隧穿效应的发光 结构。 背景技术
GaN基发光二级管(LED )具有高亮度、 低能耗、 长寿命、 响应速度快等 优点, 作为新型高效固体光源, 在室内照明、 景观照明、 显示屏、 信号指示等 领域都有广泛的应用。 当电源的正极与 LED的正极相连, 电源的负极与 LED的 负极相连, 此时的电压为正向电压。 正向电压一般包括 PN结电压、 N型氮化镓 电压、 P型氮化镓电压及金属 -半导体接触电压的总和。
金属-半导体接触是制作半导体器件中十分重要的问题, 金属 -半导体接触 可分为肖特基接触和欧姆接触两种,接触情况直接影响到器件的性能, 肖特基 接触或欧姆接触产生的电阻会降低器件的出光效率。
发明内容
有鉴于此, 本发明的目的在于提供一种器件出光效率较高的发光结构。 为实现上述目的, 本发明实施例提供一种发光结构, 包括依次排布的第一 半导体层、 发光层、 第二半导体层以及导电材料层, 其中所述第一半导体层和 所述第二半导体层采用不同类型的半导体材料, 所述发光结构还包括绝缘层, 所述绝缘层位于所述第二半导体层与所述导电材料层之间,以将所述第二半导 体层与所述导电材料层电绝缘。
优选地, 所述绝缘层的厚度不大于 10nm。 优选地, 所述绝缘层采用氧化硅或者氮化硅。
优选地, 所述导电材料层采用掺杂的氮化镓、 掺杂的碳化硅、 掺杂的硅、 氧化铟锡、 合金或者金属中的一种或者几种的组合。
优选地, 所述第一半导体层采用 N型半导体材料, 所述第二半导体层采 用 P型半导体材料。
优选地, 所述发光结构还包括第一村底、 第一电极和第二电极, 所述第一 半导体层位于所述第一村底与所述发光层之间,所述第一电极位于所述第一半 导体层之下, 所述第二电极位于导电材料层之上。
优选地, 所述第一村底采用蓝宝石、 氮化镓、 碳化硅或者硅。
优选地, 所述发光结构还包括第二村底、 第一电极和第二电极, 所述导电 材料层位于所述第二村底与所述绝缘层之间,所述第一电极位于所述第一半导 体层之上, 所述第二电极位于所述第二村底之下。
优选地, 所述第二村底采用导电导热材质。
优选地,所述第一半导体层采用 P型半导体材料,所述第二半导体层采用 N型半导体材料。
根据本发明实施例, 在第二半导体层和导电材料层之间增加一薄绝缘层, 从而将第二半导体层和导电材料层电绝缘。避免了发光结构中的导电材料层和 半导体层直接接触而产生的肖特基接触或者欧姆接触,从而降低了发光结构中 的正向串联电阻, 进而提高了发光结构整体的出光效率。
附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述 中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创 造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例的发光结构的结构示意图;
图 2~5是本发明实施例一的发光结构的结构示意图;
图 6是本发明实施例二的发光结构的结构示意图。 具体实施方式 为使本发明实施例的目的、技术方案和优点更加清楚, 下面将结合本发明 实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。基于本发明中 的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其 他实施例, 都属于本发明保护的范围。
为提供一种出光效率较高的发光结构,避免发光结构中的肖特基接触或欧 姆接触产生的电阻降低器件的出光效率,本申请的发明人经过研究提出以下技 术方案。
实施例一
图 1示出了本发明实施例一的发光结构的结构示意图,该发光结构包括第 一半导体层 101、 发光层 102、 第二半导体 103、 绝缘层 104以及导电材料层 105 , 其中, 第一半导体层 101可以采用 N型半导体材料, 发光层 102可以采 用本领域常用的发光材料, 第二半导体层 103可以采用 P型半导体材料, 绝缘 层 104可以采用氧化硅或者氮化硅, 该绝缘层 104的厚度可以不大于 10nm, 例如可以为 0.1nm、 0.5nm、 lnm、 2nm、 5nm、 lOnm等, 绝缘层 104的实际 厚度可以按设计需求而定,导电材料层 105可以采用常用的导电材料,如掺杂 的氮化镓、 掺杂的碳化硅、 掺杂的硅、 氧化铟锡、 金属或者合金等, 在一个具 体实施例中, 该导电材料层 105可以采用金属。
在工作过程中, 当图 1中的第一半导体层 101采用 N型半导体材料、 第 二半导体层 103采用 P型半导体材料时,可以在导电材料层 105—侧施加正电 压、在第一半导体层 101—侧施加负电压, 具体地可以通过第一电极 106和第 二电极 107施加负电压和正电压 (如图 2所示), 其中第一电极 106和第二电 极 107的具体形状和尺寸可以依设计要求而定, 本发明对此不作限定。 此时, 导电材料层 105中的载流子向第一半导体层(N型半导体材料层) 101方向运 动, 但是这些载流子被绝缘层 104阻挡而无法到达第二半导体层(P型半导体 材料层) 103。 继续施加正电压, 导电材料层 105中被绝缘层 104阻挡的载流 子积累到一定数量, P型半导体材料层 103中的多数载流子耗尽、 少数载流子 积累在 P型半导体材料层 103和绝缘层 104的接触界面, 此时导电材料层 105 中的载流子能够遂穿绝缘层 104而到达 P型半导体材料层 103,形成隧穿电流。 这样, "P型半导体材料层 103-绝缘层 104-导电材料层 105" 结构产生了量子 隧穿效应,发光结构的工作既不基于肖特基接触也不基于欧姆接触, 而是基于 量子隧穿效应产生的隧穿电流。
本发明实施例一的发光结构中, 在第二半导体层 103 和导电材料层 105 之间增加一薄绝缘层 104,从而将第二半导体层 103和导电材料层 105电绝缘。 避免了发光结构中的导电材料层和半导体层直接接触而产生的肖特基接触或 者欧姆接触,从而降低了发光结构中的正向串联电阻, 进而提高了发光结构整 体的出光效率。
另外, 本发明实施例一中的发光结构还可以包括村底 100, 该村底 100位 于 N型半导体材料层 101之上, 且 N型半导体材料层 101位于村底 100和发 光层 102之间, 如图 3所示, 该村底 100可以采用蓝宝石、 氮化镓、 碳化硅或 者硅等。 另外, 图 3所示的发光结构还可以包括电极, 图 4示出了其结构示意 图, 该发光结构还包括第一电极 106和第二电极 107, 且第一电极 106用于提 供负电压、 第二电极 107用于提供正电压。 N型半导体材料层 101形成一个台 面, 第一电极 106位于 N型半导体材料层 101上的一个台面上, 第二电极 107 位于导电材料层 105 之上。 本领域普通技术人员可以依据需要确定第一电极 106和第二电极 107的形状和尺寸, 本发明对此不作限定。
另夕卜,本发明实施例一中的发光结构还可以包括村底 100' ,如图 5所示, 导电材料层 105位于村底 100' 与绝缘层 104之间, 且村底 100' 采用导热导 电材质, 例如掺杂的氮化镓、 掺杂的碳化硅、 掺杂的硅、 金属或者合金中的一 种或者几种, 此时, 位于村底 100' —侧的第二电极 107用于接正电压、 位于 第一半导体层(N型半导体材料) 101另一侧的第一电极 106用于接负电压。
上述介绍了第一半导体层 101采用 N型半导体材料、 第二半导体层 103 采用 P型半导体材料的情况,本发明实施例中, 第一半导体层 101还可以采用 P型半导体材料、第二半导体层 103还可以采用 N型半导体材料, 以下在实施 例二中作具体介绍。
实施例二
本发明实施例二的发光结构的结构示意图如图 6所示,与实施例一的不同 之处在于, 实施例二中的第一半导体层 101采用 P型半导体材料, 第二半导体 层 103采用 N型半导体材料。 此时, 绝缘层 104位于 N型半导体材料层(第 二半导体层) 103与导电材料层 105之间, 位于第一半导体层(P型半导体材 料层) 101—侧的第一电极 106用于接正电压、 位于导电材料层 105另一侧的 第二电极 107用于接负电压。
图 6所示的发光结构的工作原理如下: 当正电压施加于第一电极 106时, P型半导体材料层 101内的载流子向导电材料层 105的方向运动,但是这些载 流子被绝缘层 104阻挡而无法到达导电材料层 105 ,从而积累在 N型半导体材 料层 103和绝缘层 104的接触界面。 继续向第一电极 106施加正电压, P型半 导体材料层 101中被绝缘层 104阻挡的载流子积累到一定数量, N型半导体材 料层 103中的多数载流子耗尽、 少数载流子积累在 N型半导体材料层 103与 绝缘层 104的接触界面,此时这些载流子能够遂穿绝缘层 104而到达导电材料 层 105 , 形成隧穿电流。 这样, "N型半导体材料层 103-绝缘层 104-导电材料 层 105" 结构产生了量子隧穿效应, 发光结构的工作既不基于肖特基接触也不 基于欧姆接触, 而是基于量子隧穿效应产生的隧穿电流。
需要说明的是,本发明实施例一中的相应技术特征也可以应用于本发明实 施例二,本领域普通技术人员可以在本发明实施例二的技术方案的基础上结合 本发明实施例一中的相应技术特征从而获得其他技术方案,这对本领域技术人 员来说是容易实现的, 在此不再赘述。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通 技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求
1、 一种发光结构, 包括依次排布的第一半导体层、 发光层、 第二半导体 层以及导电材料层,其中所述第一半导体层和所述第二半导体层采用不同类型 的半导体材料, 其特征在于, 所述发光结构还包括绝缘层, 所述绝缘层位于所 述第二半导体层与所述导电材料层之间,以将所述第二半导体层与所述导电材 料层电绝缘。
2、 根据权利要求 1所述的发光结构, 其特征在于, 所述绝缘层的厚度不 大于 10nm。
3、 根据权利要求 1所述的发光结构, 其特征在于, 所述绝缘层采用氧化 硅或者氮化硅。
4、 根据权利要求 1所述的发光结构, 其特征在于, 所述导电材料层采用 掺杂的氮化镓、 掺杂的碳化硅、 掺杂的硅、 氧化铟锡、 合金或者金属中的一种 或者几种的组合。
5、 根据权利要求 1-4任一项所述的发光结构, 其特征在于, 所述第一半 导体层采用 N型半导体材料, 所述第二半导体层采用 P型半导体材料。
6、 根据权利要求 5所述的发光结构, 其特征在于, 所述发光结构还包括 第一村底、第一电极和第二电极, 所述第一半导体层位于所述第一村底与所述 发光层之间, 所述第一电极位于所述第一半导体层之下, 所述第二电极位于导 电材料层之上。
7、 根据权利要求 6所述的发光结构, 其特征在于, 所述第一村底采用蓝 宝石、 氮化镓、 碳化硅或者硅。
8、 根据权利要求 5所述的发光结构, 其特征在于, 所述发光结构还包括 第二村底、第一电极和第二电极, 所述导电材料层位于所述第二村底与所述绝 缘层之间, 所述第一电极位于所述第一半导体层之上, 所述第二电极位于所述 第二村底之下。
9、 根据权利要求 8所述的发光结构, 其特征在于, 所述第二村底采用导 电导热材质。
10、 根据权利要求 1-4任一项所述的发光结构, 其特征在于, 所述第一半 导体层采用 P型半导体材料, 所述第二半导体层采用 N型半导体材料。
PCT/CN2013/073802 2013-02-20 2013-04-07 一种发光结构 WO2014127563A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310054962.0A CN103094430B (zh) 2013-02-20 2013-02-20 一种发光结构
CN201310054962.0 2013-02-20

Publications (1)

Publication Number Publication Date
WO2014127563A1 true WO2014127563A1 (zh) 2014-08-28

Family

ID=48206780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073802 WO2014127563A1 (zh) 2013-02-20 2013-04-07 一种发光结构

Country Status (2)

Country Link
CN (1) CN103094430B (zh)
WO (1) WO2014127563A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106920827B (zh) 2017-03-08 2019-11-01 京东方科技集团股份有限公司 一种发光二极管、阵列基板、发光器件及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1661826A (zh) * 2004-02-25 2005-08-31 三垦电气株式会社 半导体发光元件及其制造方法
CN1667847A (zh) * 2004-03-10 2005-09-14 三洋电机株式会社 氮化物系半导体发光元件
CN1750286A (zh) * 2004-09-15 2006-03-22 三垦电气株式会社 设有保护元件的半导体发光装置及其制造方法
CN1773737A (zh) * 2004-11-11 2006-05-17 松下电器产业株式会社 半导体发光装置及其制造方法
CN102169885A (zh) * 2010-01-29 2011-08-31 日本冲信息株式会社 半导体发光装置和图像形成设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986440B1 (ko) * 2009-04-28 2010-10-08 엘지이노텍 주식회사 발광소자 및 그 제조방법
CN102891232B (zh) * 2012-09-29 2015-09-02 中国科学院半导体研究所 半导体发光器件及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1661826A (zh) * 2004-02-25 2005-08-31 三垦电气株式会社 半导体发光元件及其制造方法
CN1667847A (zh) * 2004-03-10 2005-09-14 三洋电机株式会社 氮化物系半导体发光元件
CN1750286A (zh) * 2004-09-15 2006-03-22 三垦电气株式会社 设有保护元件的半导体发光装置及其制造方法
CN1773737A (zh) * 2004-11-11 2006-05-17 松下电器产业株式会社 半导体发光装置及其制造方法
CN102169885A (zh) * 2010-01-29 2011-08-31 日本冲信息株式会社 半导体发光装置和图像形成设备

Also Published As

Publication number Publication date
CN103094430B (zh) 2015-06-17
CN103094430A (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
US9356213B2 (en) Manufacturing method of a light-emitting device having a patterned substrate
US8263998B2 (en) Light-emitting device
CN101969089B (zh) 一种具有电流阻挡层氮化镓基发光二极管的制作方法
US8373152B2 (en) Light-emitting element and a production method therefor
TW201444117A (zh) 經粗化之高折射率引層/用在高光提取之發光二極體
TW201143135A (en) Optoelectronic device and the manufacturing method thereof
JP2012054570A5 (zh)
TW201427077A (zh) 發光二極體晶片
WO2017101522A1 (zh) 发光二极管及其制作方法
CN104600166A (zh) 一种发光二极管芯片结构及其制备方法
KR20160043868A (ko) 수직형 반도체 발광소자 및 그 제조 방법
TW201230393A (en) Light-emitting device
TW201015752A (en) Light emitting diode chip and fabricating method thereof
CN204216064U (zh) 一种发光二极管
KR101132885B1 (ko) 질화물계 발광 다이오드 및 그 제조방법
WO2014127563A1 (zh) 一种发光结构
CN109728137A (zh) Led衬底转移的方法以及垂直结构led芯片
CN103050595A (zh) 氮化物发光二极管
KR101350923B1 (ko) 반도체 발광 소자 및 그 제조 방법
KR101285925B1 (ko) 그라핀을 이용하는 발광 다이오드
CN100470866C (zh) 一种半导体固态光源器件
CN205723602U (zh) 一种防顶伤倒装led芯片
TWI528590B (zh) Flip - chip light - emitting diode structure
CN209822687U (zh) 一种发光二极管
TW201349569A (zh) 發光元件及其製作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875888

Country of ref document: EP

Kind code of ref document: A1