WO2014126159A1 - Resin composition for vibration-damping material - Google Patents

Resin composition for vibration-damping material Download PDF

Info

Publication number
WO2014126159A1
WO2014126159A1 PCT/JP2014/053352 JP2014053352W WO2014126159A1 WO 2014126159 A1 WO2014126159 A1 WO 2014126159A1 JP 2014053352 W JP2014053352 W JP 2014053352W WO 2014126159 A1 WO2014126159 A1 WO 2014126159A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration damping
resin composition
damping material
parts
polymer
Prior art date
Application number
PCT/JP2014/053352
Other languages
French (fr)
Japanese (ja)
Inventor
允彦 齊藤
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014023577A external-priority patent/JP2015034275A/en
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority claimed from JP2014025651A external-priority patent/JP2014177626A/en
Publication of WO2014126159A1 publication Critical patent/WO2014126159A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers

Definitions

  • the present invention relates to a resin composition for vibration damping materials. More specifically, vibration damping useful as a material for vibration damping materials used to attenuate vibrations in various structures to prevent mechanical vibration and noise caused by vibrations and maintain stability and quietness.
  • the present invention relates to a resin for a material, a composition for a vibration damping material, and a vibration damping material formed thereby.
  • vibration damping materials are used.
  • the vibration damping material is used, for example, under an indoor floor of an automobile, and is also widely used for railway vehicles, ships, aircraft, electrical equipment, building structures, construction equipment, and the like.
  • a material used for such a vibration damping material conventionally, a molded product such as a plate-shaped molded body or a sheet-shaped molded body made of a material having vibration absorption performance and sound absorption performance has been used.
  • a molded product such as a plate-shaped molded body or a sheet-shaped molded body made of a material having vibration absorption performance and sound absorption performance has been used.
  • the shape of the place where vibration or sound is generated is complicated, it is difficult to apply these molded products to the place where vibration is generated.
  • Various methods for exerting the effect have been studied.
  • vibration damping materials have been developed as substitute materials for molded products, and for example, by coatings formed by spraying or applying an arbitrary method to the corresponding places.
  • Various vibration damping paints that can obtain a vibration damping effect and a sound absorbing effect have been proposed.
  • Vibration damping coatings in which activated carbon is dispersed as a filler in a resin emulsion have been developed.
  • it cannot be said that the vibration damping performance is still at a sufficiently satisfactory level, and there is a need for a technique that can further exhibit the vibration damping performance.
  • a conventional composition used for a vibration damping material for example, an emulsion for an aqueous vibration damping material containing at least two kinds of polymers having different glass transition temperatures and specific weight average molecular weights (see Patent Document 1). Is disclosed.
  • a resin composition used for such a vibration damping material has a hydrogen bond forming ability capable of forming and controlling a hydrogen bond between a resin emulsion having a polar group and the polar group of the resin emulsion.
  • a vibration-damping coating composition containing a specific compound as an aromatic compound having at least one hydroxyl group and further containing an inorganic filler is disclosed (for example, see Patent Document 2).
  • the specific polymer as the base material is composed of one or more selected from a compound having a benzotriazole group that increases the amount of dipole moment in the base material and a compound having a diphenyl acrylate group.
  • An energy conversion composition containing an active ingredient is disclosed (for example, see Patent Document 3).
  • an acrylic polymer substituted with a carboxyl group is disclosed as a coating film component (for example, see Patent Document 4.)
  • An organic damping material having a dispersed phase comprising: the dispersed phase is a dispersed phase in which the compound is microphase-separated in the matrix phase or a completely compatible dispersed phase, and the thermoplastic resin is An organic damping material selected from specific resins is disclosed (for example, see Patent Document 5).
  • JP 2005-281576 A Japanese Patent No. 4172536 Japanese Patent No. 3318593 International Publication No. 01/40391 Japanese Patent No. 4465023
  • the present invention has been made in view of the above situation, and provides a resin composition for a vibration damping material that exhibits excellent vibration damping properties and can be suitably used in applications where a coating film is required to have a vibration damping effect.
  • the purpose is to do.
  • the inventor has studied various resin compositions for vibration damping materials, and found that a composition obtained by polymerizing a monomer component and further containing a plasticizer exhibits excellent vibration damping performance. . Furthermore, the present inventors have found that the polymer exhibits particularly suitable characteristics by being present in the form of an emulsion in an aqueous solvent, and the present invention has been achieved.
  • the present invention includes a polymer obtained by polymerizing monomer components, and a plasticizer, A resin composition for vibration damping material, wherein the polymer is an aqueous composition in the form of an emulsion in an aqueous solvent.
  • the present invention is described in detail below. A combination of two or more preferred embodiments of the present invention described below is also a preferred embodiment of the present invention.
  • the resin composition for vibration damping material of the present invention includes a polymer obtained by polymerizing monomer components and a plasticizer, and may include at least one of each, and includes two or more. There may be. Moreover, as long as the polymer formed by polymerizing the monomer component and the plasticizer are included, other components may be included.
  • the plasticizer contained in the vibration damping material resin composition is a component added to improve the vibration damping properties of the vibration damping material resin composition. By adding a plasticizer, the properties of the resin composition become close to a viscous body, and the vibration damping property (loss coefficient ⁇ ) is increased.
  • the polymer obtained by polymerizing the monomer component contained in the resin composition for vibration damping material of the present invention is not particularly limited as long as the effects of the present invention can be exhibited.
  • the unsaturated carboxylic acid monomer is not particularly limited as long as it is a compound having an unsaturated bond in the molecule and further having a carboxyl group, a salt of the carboxyl group, or an ester derived from the carboxyl group. However, it preferably contains an ethylenically unsaturated carboxylic acid monomer.
  • vinyl chloride, ethylene, butadiene, styrene and the like can also be used as the monomer.
  • the polymer obtained by polymerizing the monomer component vinyl chloride, polyethylene, polypropylene, polystyrene, styrene-butadiene copolymer and the like can also be used.
  • the ethylenically unsaturated carboxylic acid monomer is not particularly limited.
  • One type or two or more types of unsaturated carboxylic acids such as fumarate, monomethyl maleate, monoethyl maleate, or derivatives thereof may be used.
  • acrylic acid, methacrylic acid, esters or salts derived from acrylic acid, and esters or salts derived from methacrylic acid are preferred as monomers.
  • the (meth) acrylic acid monomer has an acryloyl group or a methacryloyl group, or a group in which a hydrogen atom in these groups is replaced with another atom or atomic group, and It is a monomer having a —COOH group.
  • the (meth) acrylic acid monomer includes acrylic acid and methacrylic acid.
  • the (meth) acrylic monomer has an acryloyl group or a methacryloyl group, or a group in which a hydrogen atom in these groups is replaced with another atom or atomic group, and A monomer in the form of a COOH group in the form of an ester or salt, or a derivative of such a monomer.
  • the (meth) acrylic monomer includes acrylate and methacrylate.
  • a (meth) acrylic monomer is preferably contained in an amount of 20% by mass or more based on 100% by mass of all monomer components. More preferably, it is 30 mass% or more. Moreover, it is preferable that a (meth) acrylic-type monomer is 100 mass% or less with respect to 100 mass% of all the monomer components. Such a content ratio of the (meth) acrylic monomer is preferable because of excellent polymerization stability and easy adjustment of Tg.
  • examples of the monomer in which the —COOH group is an ester include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, and isopropyl acrylate.
  • the salt is preferably a metal salt, an ammonium salt, an organic amine salt, or the like.
  • the metal atom forming the metal salt include monovalent metal atoms such as alkali metal atoms such as lithium, sodium and potassium; divalent metal atoms such as alkaline earth metal atoms such as calcium and magnesium; aluminum, Trivalent metal atoms such as iron are preferred.
  • the organic amine salt an alkanolamine salt such as an ethanolamine salt, a diethanolamine salt, or a triethanolamine salt, or a triethylamine salt is preferable.
  • the content ratio of the (meth) acrylic acid monomer in the monomer component used as a raw material for the polymer is 0 to 20% by mass with respect to 100% by mass of the total monomer components from the viewpoint of polymerization stability. It is preferable that the content is 0 to 10% by mass.
  • the polymer may contain another copolymerizable ethylenically unsaturated monomer as a monomer component, an unsaturated monomer having a nitrogen atom, an unsaturated monomer having an aromatic ring. And other monomers copolymerizable with the unsaturated carboxylic acid monomer.
  • other copolymerizable ethylenically unsaturated monomers it becomes easy to adjust the acid value, Tg, physical properties and the like of the polymer.
  • the resin composition for vibration damping material of the present invention is formed from these monomers, it becomes possible to have excellent heat drying properties in addition to vibration damping properties.
  • the unsaturated monomer having an aromatic ring examples include divinylbenzene, styrene, ⁇ -methylstyrene, vinyltoluene, and ethylvinylbenzene.
  • Styrene is preferred. That is, the polymer obtained by polymerizing the monomer component is also a styrene (meth) acrylic polymer obtained from a monomer component containing styrene, which is also a preferred embodiment of the present invention. It is.
  • the monomer component used as a raw material is a styrene monomer with respect to 100% by mass of the monomer component. It is preferable to contain 1 to 90% by mass. More preferably, it is 1 to 80% by mass, and still more preferably 1 to 70% by mass. Further, it is particularly preferably 1 to 50% by mass, particularly preferably 5 to 45% by mass, and most preferably 10 to 40% by mass.
  • Examples of the unsaturated monomer having a nitrogen atom include acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, diacetone acrylamide, N-methylol acrylamide, N-methylol methacrylamide, N-methoxymethyl (meth) acrylamide, Examples thereof include N-methoxyethyl (meth) acrylamide, Nn-butoxymethyl (meth) acrylamide, and Ni-butoxymethyl (meth) acrylamide.
  • Acrylonitrile is preferred.
  • Other monomers that can be copolymerized with the unsaturated carboxylic acid monomer include vinyl formate, vinyl acetate, vinyl propionate, vinyl chloride, ethylene, butadiene, and the like.
  • the polymer obtained by polymerizing the monomer component is preferably obtained from a monomer component containing a polar group-containing monomer. If the polymer contained in the resin composition for vibration damping material has a polar group, the interaction between the polymer and the plasticizer is increased, and vibration damping is more sufficiently exhibited. Furthermore, when the resin composition for vibration damping material contains two or more polymers, the interaction between these polymers becomes larger, and the friction between the polymers becomes larger. Will be demonstrated.
  • the content of the polar group-containing monomer is preferably 40 to 100% by mass with respect to 100% by mass of the monomer component. When the content ratio of the polar group-containing monomer is more than 40% by mass, vibration damping is more sufficiently exhibited. More preferred is 45 to 95% by mass, and still more preferred is 50 to 90% by mass. Furthermore, when the resin composition for vibration damping material contains two or more kinds of polymers, vibration damping properties are more sufficiently exhibited.
  • the polar group in the polar group-containing monomer is not limited as long as it is generally a polar group in an organic compound, but is a group consisting of a carboxylic acid ester, a hydroxyl group, a nitrile group, a carboxyl group, an amide group, and a pyrrolidone group. It is preferable that it is at least one selected from more. More preferably, they are a carboxylic acid ester, a hydroxyl group, and / or a carboxyl group.
  • the monomer component forming the polymer may further contain an unsaturated monomer having a functional group.
  • the functional group in the unsaturated monomer having the functional group include an epoxy group, a glycidyl group, an oxazoline group, a carbodiimide group, an aziridinyl group, an isocyanate group, a methylol group, a vinyl ether group, a cyclocarbonate group, and an alkoxysilane group. Is mentioned.
  • One kind of these functional groups may be present in one molecule of the unsaturated monomer, or two or more kinds thereof may be present.
  • Examples thereof include glycidyl group-containing unsaturated monomers such as glycidyl (meth) acrylate and acrylic glycidyl ether, and these may be used alone or in combination of two or more. Moreover, the monofunctional unsaturated monomer which has one functional group in 1 molecule may be sufficient, and the polyfunctional unsaturated monomer which has two or more may be sufficient.
  • glycidyl group-containing unsaturated monomers such as glycidyl (meth) acrylate and acrylic glycidyl ether
  • polyfunctional unsaturated monomer examples include divinylbenzene, ethylene glycol di (meth) acrylate, N-methoxymethyl (meth) acrylamide, N-methoxyethyl (meth) acrylamide, Nn-butoxymethyl ( (Meth) acrylamide, Ni-butoxymethyl (meth) acrylamide, N-methylol (meth) acrylamide, diallyl phthalate, diallyl terephthalate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) ) Acrylate, tetramethylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentylglycol Di (meth) acrylate. These may be used alone or in combination of two or more.
  • the resin composition for vibration damping material of the present invention contains two or more kinds of polymers obtained by polymerizing monomer components
  • the two kinds of polymers are used, for example, weight average molecular weight, glass transition temperature, SP value, etc. What is necessary is just to be different in any one of various physical properties such as the kind of monomer to be used and the proportion of the monomer used. Among them, it is preferable that there is a difference in at least one of the weight average molecular weight and the glass transition temperature.
  • two or more types of polymers having a difference in glass transition temperature are used in the configuration of the resin composition for vibration damping material of the present invention, a wider temperature range than a configuration in which two or more types of polymers are simply added. With this, vibration damping performance can be exhibited.
  • by appropriately selecting a polymer it is possible to arbitrarily set a temperature range in which vibration damping performance is exhibited.
  • the polymer obtained by polymerizing the monomer components preferably has a glass transition temperature of ⁇ 25 to 180 ° C.
  • the glass transition temperature of the polymer is more preferably ⁇ 20 to 150 ° C., still more preferably ⁇ 20 to 120 ° C. Particularly preferred is -15 to 100 ° C, and most preferred is -10 to 80 ° C.
  • the glass transition temperature (Tg) of the polymer may be determined based on the knowledge already obtained, or may be controlled by the type and proportion of the monomer component described later, but theoretically It can be calculated from the following calculation formula (1).
  • Tg ′ is Tg (absolute temperature) of the polymer.
  • W 1 ′, W 2 ′,... Wn ′ are mass fractions of the respective monomers with respect to the total monomer components.
  • Tg 1 , Tg 2 ,... Tgn are glass transition temperatures (absolute temperatures) of homopolymers (homopolymers) composed of the respective monomer components.
  • the resin composition for vibration damping material of the present invention contains two or more kinds of polymers obtained by polymerizing monomer components, two kinds of polymers having a glass transition temperature difference of 5 to 100 ° C. among them. It is preferable to contain.
  • the difference between the glass transition temperatures of the two types of polymers is 5 ° C. or more and 100 ° C. or less, the temperature range in which high vibration damping properties are sufficiently widened.
  • Tg glass transition temperature
  • the difference in glass transition temperature (Tg) is more preferably 5 to 90 ° C, and further preferably 5 to 80 ° C. Among them, more preferred is 5 to 60 ° C., particularly preferred is 5 to 50 ° C., and most preferred is 5 to 40 ° C. Moreover, 5 degreeC or more is preferable, as for the minimum of the difference of glass transition temperature (Tg), 10 degreeC or more is more preferable, and 15 degreeC or more is still more preferable.
  • the resin composition for vibration damping material of the present invention contains two or more polymers obtained by polymerizing monomer components, the emulsion in which the two or more polymers have a core portion and a shell portion. The case where it exists with this form is also included. In that case, it is preferable that the difference of the glass transition temperature of the polymer which forms a core part and the glass transition temperature of the polymer which forms a shell part exists in the said range.
  • the resin composition for vibration damping material of the present invention contains two or more polymers obtained by polymerizing monomer components
  • at least one of the polymers preferably has a weight average molecular weight of 500 to 1,500,000.
  • the vibration damping property can be further increased. More preferably, it is 500 to 1,000,000, still more preferably 500 to 500,000, and still more preferably 500 to 300,000. Particularly preferred is 500 to 200,000, and particularly preferred is 1000 to 100,000, and most preferred is 2000 to 50,000.
  • the weight average molecular weight of the polymer obtained by polymerizing the monomer component can be measured by a method using GPC described later.
  • the resin composition for vibration damping material of the present invention preferably contains 5 to 80% by mass of a polymer obtained by polymerizing monomer components with respect to 100% by mass of the total amount of the resin composition for vibration damping material. . By setting such a polymer content, vibration damping can be further enhanced. More preferably, it contains 10 to 80% by mass. More preferably, it contains 15 to 70% by mass, and particularly preferably 20 to 70% by mass.
  • the polymer obtained by polymerizing the monomer components preferably has a weight average molecular weight of 10,000 to 1,500,000. By setting the weight average molecular weight within this range, good heat drying properties can be obtained, and vibration damping can be more fully exhibited without impairing the appearance of the coating film.
  • the weight average molecular weight of the polymer is more preferably 10,000 to 1,000,000, still more preferably 20,000 to 400,000, particularly preferably 30,000 to 400,000, and most preferably 40,000 to 40,000. It is ten thousand.
  • the weight average molecular weight of the polymer formed by polymerizing the monomer component can be determined, for example, by GPC (gel permeation chromatography) measurement under the following measurement conditions.
  • Measuring instrument HLC-8120GPC (trade name, manufactured by Tosoh Corporation)
  • Molecular weight column TSK-GEL GMHXL-L and TSK-GELG5000HXL (both manufactured by Tosoh Corporation) are connected in series.
  • Eluent Tetrahydrofuran (THF)
  • Standard material for calibration curve Polystyrene (manufactured by Tosoh Corporation)
  • Measurement method The measurement object is dissolved in THF so that the solid content is about 0.2% by mass, and the molecular weight is measured using an object obtained by filtration through a filter as a measurement sample.
  • the polymer obtained by polymerizing the monomer components preferably has a solubility parameter (SP value) of 7 to 13.
  • SP value solubility parameter
  • the SP value is more preferably 7.3 to 12.5, and still more preferably 7.6 to 12.
  • the SP value of the polymer can be determined by the following Small formula.
  • is the SP value of the polymer.
  • ⁇ e 1 is a calculated value (kcal / mol) of the evaporation energy of each monomer component constituting the polymer, and ⁇ e 1 is a total value of the calculated values of all the monomer components constituting the polymer.
  • ⁇ V m is the calculated value (ml / mol) of the molecular volume of each monomer component constituting the polymer, and ⁇ V m is the sum of the calculated values of all the monomer components constituting the polymer.
  • x is the molar distribution of each monomer component constituting the polymer. Note that normally used calculation values can be used for the evaporation energy of the monomer component and the molecular volume of the monomer component.
  • the SP value of the polymer can be adjusted by adjusting the type of monomer to be constituted and the composition ratio thereof.
  • the resin composition for vibration damping material of the present invention contains a plasticizer.
  • plasticizers include, for example, at least one plasticizer selected from the group consisting of aromatic hydrocarbons, heteroaromatic compounds, organic acids, and modified products thereof.
  • at least one selected from the group consisting of aromatic hydrocarbons, heteroaromatic compounds, organic acids, and modified products thereof means “aromatic hydrocarbons, aromatics”. It is synonymous with “at least one selected from the group consisting of modified hydrocarbons, heteroaromatic compounds, modified heteroaromatic compounds, organic acids, and modified organic acids”.
  • the weight average molecular weight of the plasticizer is preferably 100 to 4000. More preferably, it is 120 to 3000, still more preferably 140 to 2000, and particularly preferably 160 to 1000. It is preferable that the weight average molecular weight of the plasticizer is within the above range because of excellent compatibility with the polymer. By setting the weight average molecular weight of the plasticizer within the above range, it is possible to prevent the plasticizer from bleeding out and volatilization at the time of heating and drying, and to further improve the vibration damping property.
  • the weight average molecular weight of the plasticizer can be determined, for example, by GPC (gel permeation chromatography) measurement under the following measurement conditions.
  • Measuring instrument HLC-8120GPC (trade name, manufactured by Tosoh Corporation)
  • Molecular weight column TSK-GEL SuperHZ1000, TSK-GELSuperMultiporeHZ-M (both manufactured by Tosoh Corporation) are connected in series and used as eluent: tetrahydrofuran (THF)
  • Standard material for calibration curve Polystyrene (manufactured by Tosoh Corporation)
  • Measurement method The measurement object is dissolved in THF so that the solid content is about 0.2% by mass, and the molecular weight is measured using an object obtained by filtration through a filter as a measurement sample.
  • the plasticizer preferably has a polar structure in a ratio of 1 or more to the weight average molecular weight 1000 of the plasticizer. More preferably, it is 1 or more with respect to the weight average molecular weight 900, still more preferably 1 or more with respect to the weight average molecular weight 800, still more preferably 1 or more with respect to the weight average molecular weight 700, Preferably, the number is 1 or more for a weight average molecular weight of 600, and most preferably 1 or more for a weight average molecular weight of 500.
  • the polar structure is a structure containing a hetero atom, preferably an ester group, a hydroxyl group (the hydroxyl group includes a phenolic hydroxyl group), a nitrile group, an amine group, a carboxyl group, a chloro group, a phosphate group, an amide group, a pyrrolidone group. , Ethers (including cyclic ethers), thiazoles, triazoles and quinolines. More preferred are an ester group, a hydroxyl group and an amine group, still more preferred are a hydroxyl group and an amine group, and most preferred is a hydroxyl group.
  • a plasticizer with a weight average molecular weight of 200 when a plasticizer with a weight average molecular weight of 200 has one amine group per molecule, it will have five polar structures when converted to a weight average molecular weight of 1000.
  • the plasticizer has the above-mentioned ratio and the above-mentioned type of polar structure, it becomes easy to obtain a coating film having excellent compatibility with the polymer and no elution of the plasticizer.
  • a preferred pour point of the plasticizer is -70 to 200 ° C. More preferably, it is ⁇ 60 to 170 ° C., further preferably ⁇ 50 to 140 ° C., particularly preferably ⁇ 40 to 110 ° C., and most preferably ⁇ 30 to 80 ° C.
  • DPT peak temperature
  • aromatic hydrocarbons or modified aromatic hydrocarbons as the plasticizer examples include bis (2-ethylhexyl) phthalate, diisononyl phthalate, diisodecyl phthalate, diundecyl phthalate, and bis (2- Butoxyethyl), phthalates such as ditridecyl phthalate, trimellitic esters, terephthalates such as bis (2-ethylhexyl) terephthalate, benzoates such as glycol benzoate, and styrenated phenols Etc.
  • p- (p-toluenesulfonylamide) diphenylamine N-cyclohexyl-p-toluenesulfonamide, 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine, alkylated diphenylamine (eg, octylated diphenylamine), Aromatic secondary amines such as N, N′-di-2-naphthyl-p-phenylenediamine, a reaction product of N-phenylbenzenediamine with styrene and 2,4,4-trimethylpentane, 1,3- Guanidines such as diphenylguanidine, N, N'-diphenylguanidine, N, N'-diortolylguanidine, thioureas such as N, N'-diphenylthiourea, ⁇ , ⁇ '-bis (4-aminophenyl) Anilines such as
  • Heteroaromatic compounds or modified products of heteroaromatic compounds include quinolines such as 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline, N-cyclohexyl-2- Benzothiazole sulfenamide, N-oxydiethylene-2-benzothiazolyl sulfenamide, N- (t-butyl) -2-benzothiazole sulfenamide, N, N-dicyclohexylbenzothiazole-2-sulfen Amido, 2-mercaptobenzothiazole, benzothiazyl such as dibenzothiazyl sulfide, 2- (2′-hydroxy-5′-methylphenyl) -benzotriazole, 2- (3-t-butyl-5-methyl-2- Hydroxyphenyl) -5-chlorobenzotriazole, 3- [3-tert-butyl-5- (5-chloro-2H-) Nzotriazol-2-yl) -4
  • organic acids or modified organic acids include adipate esters such as bis (2-ethylhexyl) adipate, diisononyl adipate, diisodecyl adipate, bis (2-butoxyethyl) adipate, tributyl citrate, Citric acid esters such as tributyl acetyl citrate, sebacic acid esters such as dibutyl sebacate, azelaic acid such as dihexyl azelate and dioctyl azelate, stearic acid esters, tricresyl phosphate, and triphenyl phosphate Esters, epoxidized fats and oils such as epoxidized soybean oil, hydroxyalkyl vinyl ethers such as 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, cyclohexanedimethanol monovinyl ether, glycerin tria Tate, glycerin
  • organic thioacids such as ditridecyl 3,3′-thiobispropionate and didodecyl 3,3′-thiobispropionate, tris (nonylphenyl) phosphite, diphenylisodecylphosphite, di (nonylphenyl) pentaerythritol Diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, hexa (tridecyl) -1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) )
  • Phosphorous acids such as butane triphosphite, triphenyl phosphate, 2-ethylhexyl diphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, cresyl
  • plasticizers include polyethers, polybutenes, chlorinated paraffins, and the like.
  • styrenated phenols are organic low molecules obtained by using phenols and styrenes as reaction raw materials.
  • phenols include polyhydric phenols such as 1,2-dihydroxybenzene, 1,3-dihydroxybenzene, 1,4-dihydroxybenzene, 1,2,3-trihydroxybenzene, and the like in addition to phenol (o -, M-, p-) cresol, 4-t-butylphenol, 4-t-butylcatechol, 4-octylphenol, 2,3-dimethylphenol, 2,4-dimethylphenol, 2,5-dimethylphenol, 2, Alkylphenols such as 6-dimethylphenol, 3,4-dimethylphenol and 3,5-dimethylphenol, polycyclic aromatics such as 1-naphthol, 2-naphthol, 1,4-dihydroxynaphthalene and 9,10-anthracenediol (Polyvalent) phenols are mentioned.
  • styrenes examples include styrene, divinylbenzene, ⁇ -methylstyrene, vinyltoluene, ethylvinylbenzene, 4-t-butylstyrene, 4-vinylbenzoic acid, and styrene is preferable.
  • styrenated phenol obtained by reacting these phenols with styrene
  • mono (or di, tri) ( ⁇ -methylbenzyl) phenol obtained by reacting phenol with styrene is preferable.
  • the styrenated phenol is mono (or di, tri) ( ⁇ -methylbenzyl) phenol
  • one of mono- ⁇ -methylbenzylphenol, di- ⁇ -methylbenzylphenol and tri- ⁇ -methylbenzylphenol 1 type may be included and the mixture containing 2 or more types may be sufficient.
  • the blending ratio thereof is not particularly limited.
  • the plasticizer content in the vibration damping material resin composition of the present invention is 10 to 2000 parts by weight with respect to 100 parts by weight of the polymer obtained by polymerizing the monomer component in the vibration damping material resin composition. It is preferable.
  • the resin composition for vibration damping material exhibits more excellent vibration damping properties. More preferably, it comprises 10 to 1000 parts by weight of a plasticizer, more preferably 10 to 500 parts by weight, per 100 parts by weight of a polymer obtained by polymerizing monomer components. . Further, it is particularly preferred that it comprises 10 to 200 parts by weight, particularly preferred that it comprises 15 to 180 parts by weight, and most preferred that it comprises 20 to 160 parts by weight.
  • the resin composition for vibration damping material of the present invention is an aqueous composition in which a polymer obtained by polymerizing a monomer component is present in the form of an emulsion in an aqueous solvent.
  • the plasticizer and the polymer thickener described below may be included in the polymer, or the plasticizer and the polymer thickener described below are present in the form of an emulsion in the aqueous solvent. However, it is particularly preferred that the thickener is in a state dissolved in the aqueous phase of the emulsion.
  • the viscosity of the polymer emulsion is not particularly limited, but is preferably 10 to 10000 mPa ⁇ s, more preferably 15 to 8000 mPa ⁇ s, and still more preferably 20 to 6000 mPa ⁇ s.
  • the viscosity can be measured using a B-type rotational viscometer under the conditions of 25 ° C. and 20 rpm.
  • the viscosity of the vibration damping material resin composition is not particularly limited. However, when the vibration damping material resin composition includes a polymer, a plasticizer, and a polymer thickener, the polymer thickener is further increased. It is determined as the viscosity measured using a B-type rotational viscometer in the state where the adhesive is mixed. Using a B-type rotational viscometer, the viscosity measured under conditions of 25 ° C. and 20 rpm (hereinafter referred to as high shear viscosity ( ⁇ 2)) and the viscosity measured under conditions of 25 ° C.
  • ⁇ 2 high shear viscosity
  • low shear viscosity (hereinafter referred to as “low shear viscosity”)
  • a more preferred lower limit of the TI value is 2, and a more preferred lower limit is 3.
  • a more preferable upper limit value of the TI value is 8, and a more preferable upper limit value is 7.
  • the viscosity of a composition containing a polymer obtained by polymerizing monomer components and a plasticizer that does not contain a polymer thickener is 10 to 10,000 mPa ⁇ s measured at 25 ° C. and 20 rpm. It is preferably 15 to 8000 mPa ⁇ s, more preferably 20 to 6000 mPa ⁇ s.
  • the resin composition for vibration damping material of the present invention preferably has a nonvolatile content in the composition of 20 to 90% by mass with respect to 100 parts by weight of the entire resin composition for vibration damping material.
  • the non-volatile content is in such a range, the resin composition for vibration damping material can easily form a coating film by coating, and the coating film exhibits more excellent vibration damping properties.
  • the non-volatile content in the composition is more preferably 30 to 87% by mass, and still more preferably 40 to 84% by mass.
  • the non-volatile content here means components other than the aqueous solvent contained in an emulsion.
  • the average particle diameter of the emulsion particles in the vibration damping material resin composition of the present invention is preferably 50 to 450 nm.
  • the upper limit is more preferably 400 nm or less, still more preferably 350 nm or less.
  • the lower limit is particularly preferably 100 nm or more.
  • the lower limit of the average particle diameter is preferably 65 nm or more, more preferably 80 nm or more.
  • the average particle size (volume average particle size) can be determined by, for example, diluting the emulsion with distilled water, thoroughly stirring and mixing, then collecting about 10 ml in a glass cell, and measuring the particle size distribution analyzer (Particle) by the dynamic light scattering method. It can be determined by measuring with “NICOMP Model 380” manufactured by Sizing Systems.
  • the emulsion particles having the above average particle diameter preferably have a particle size distribution defined by a value obtained by dividing the standard deviation by the volume average particle diameter (standard deviation / volume average particle diameter ⁇ 100) of 40% or less. More preferably, it is 30% or less.
  • the particle size distribution is set within such a range, the resin composition for vibration damping material can exhibit sufficient heat drying properties.
  • the pH of the resin composition for vibration damping material of the present invention is not particularly limited, but is preferably 4 to 12, more preferably 5 to 11, and still more preferably 6 to 10.
  • the pH of the vibration damping material resin composition can be adjusted by adding ammonia water, water-soluble amines, alkaline hydroxide aqueous solution, or the like to the resin. When such pH is set, the mechanical stability of the resin composition for vibration damping material is improved, and vibration damping properties can be more fully exhibited without impairing the appearance of the coating film during heat drying.
  • pH can be measured with a pH meter. For example, it is preferable to measure the value at 25 ° C. using a pH meter (“F-23” manufactured by Horiba, Ltd.).
  • the polymer obtained by polymerizing the monomer component may be one kind of polymer as described above, or may be composed of two or more kinds of polymers. Further, the polymer may be composed of two or more kinds of polymers, and may be in a form in which they are combined, but two or more kinds of polymers exist in the form of an emulsion having a core part and a shell part, so-called A core-shell structure is preferred.
  • An emulsion having a core-shell composite structure is excellent in vibration damping properties in a wide range within a practical temperature range. Especially in the high temperature range, it exhibits superior vibration damping properties compared to other forms of vibration damping material blends.
  • the surface of the core part is covered with the shell part.
  • the surface of the core part is completely covered with the shell part, but it may not be completely covered.
  • the core part may be covered in a mesh shape or in some places. The part may be exposed.
  • the emulsion particles having the core part and the shell part can be obtained by using an emulsion polymerization method (multistage polymerization) described later.
  • At least 1 type in the polymer which forms a polymer emulsion is a form of the emulsion particle which has a core part and a shell part.
  • the interface between polymers can be increased and effects, such as a vibration damping improvement, can be enlarged more.
  • the polymer obtained by polymerizing the monomer component has a core part and a shell part
  • an ethylenically unsaturated carboxylic acid monomer and an ethylenically unsaturated carboxylic acid monomer may be contained in either the monomer component that forms the core part of the emulsion or the monomer component that forms the shell part, and is used for both of these. There may be.
  • the preferable content rate of each monomer in the monomer component which forms a core part, and the preferable content rate of each monomer in the monomer component which forms a shell part are the same as what was mentioned above. It is.
  • the total mass of the monomer components constituting the core part and the monomer constituting the shell part is preferably 30/70 to 70/30. Within such a range, the effect of the core / shell composite structure can be more fully exhibited. More preferably, it is 35/65 to 65/35.
  • the polymer and shell part obtained from the monomer component forming the core part
  • the difference in glass transition temperature (Tg) between the polymer obtained from the monomer component forming the core part and the polymer obtained from the monomer component forming the shell part is the glass in the case of containing two or more kinds of the above-mentioned polymers.
  • the same as the difference in transition temperature is preferred.
  • the Tg of the polymer obtained from the total monomer component including the monomer component forming the core portion and the monomer component forming the shell portion is preferably ⁇ 25 to 180 ° C. . More preferably, it is ⁇ 20 to 150 ° C., and further preferably ⁇ 20 to 120 ° C.
  • the emulsion particles having the core part and the shell part can be obtained by using an emulsion polymerization method (multistage polymerization) described later.
  • the aqueous solvent is not particularly limited.
  • water one or more mixed solvents that can be mixed with water, or a mixed solvent in which water is the main component in such a solvent. Etc.
  • water is preferable in consideration of safety and environmental influence when applying a paint containing the vibration damping material resin composition of the present invention.
  • the resin composition for vibration damping material of the present invention preferably includes a polymer thickener. It is preferable that the composition used for the paint application has good dispersion of pigments in the paint, and the appearance after application is good without sagging the paint after application.
  • the resin composition for vibration damping material contains a polymer thickener, pigment dispersibility is improved when used as a paint, and sagging during application is suppressed.
  • the coating film obtained from the resin composition for vibration damping material of the present invention by containing a polymer thickener has no impact, high impact resistance, and excellent flexibility. Even if it bends, it becomes difficult to crack. Moreover, the effect that it becomes a thin film after drying is also acquired.
  • polymeric thickener structures examples include polyvinyl alcohol thickeners, polyvinylpyrrolidone thickeners, unsaturated carboxylic acid (co) polymer thickeners, cellulose derivative thickeners, and poly An ether urethane modified material thickener is mentioned.
  • Examples of the classification of the polymeric thickener of the present invention include thixotropy imparting type thickeners and Newtonian fluidity imparting type thickeners.
  • the thixotropy imparting thickener in the present invention is a thickener that improves the viscosity of a liquid and has a function of imparting thixotropy (thixotropic property).
  • a Newtonian fluidity-providing thickener is a thickener that has the properties of a non-Newtonian liquid such as an emulsion close to Newtonian viscosity, that is, a function that imparts Newtonian fluidity to a non-Newtonian liquid.
  • a thixotropic imparting thickener is more preferable.
  • the thixotropy imparting thickener has a strong effect of increasing the low shear viscosity ( ⁇ 1), and has a weaker effect of increasing the high shear viscosity ( ⁇ 2). This characteristic can be said to be a characteristic suitable as a polymer thickener used in the present invention.
  • thixotropy imparting thickeners include unsaturated carboxylic acid (co) polymer thickeners such as Primal (registered trademark) ASE-60, Primal TT-615 (Rohm & Haas), Zogen (registered) Trademark) 100, Zogen 150, Zogen 200, Zogen 250, Zogen 350 (Daiichi Kogyo Seiyaku Co., Ltd.), RHEOLATE1, RHEOLATE101, RHEOLATE430 (RHEOX), SN Thickener A-815, SN Thickner A-818 (Sannopco) ), RHEOVIS CR (manufactured by Yushi Kogyo Co., Ltd.), Aron B-300K, Aron A-7070 (manufactured by Toagosei Co., Ltd.), Chikuzol K-150B (manufactured by Kyoeisha Yushi Chemical Co., Ltd.) ), Acre Reset (registered trademark) WR-50
  • Newtonian fluidity-providing thickeners include unsaturated carboxylic acid (co) polymer thickeners such as Primal ASE-75, Primal ASE-95, Primal ASE-108, Primal RM-5 (Rohm & Haas) SN thickener A-850 (manufactured by San Nopco), polyether polyol type thickeners such as RHEOLATE300, RHEOLATE310, RHEOLATE350 (RHEOX), SN thickener A-801, SN thickener A-806, SN thickener A-816 (manufactured by Sannopco), Tixol T-210, Tixol T-212 (manufactured by Kyoeisha Oil Chemical Co., Ltd.), polyether urethane modified thickeners such as Adecanol UH-140S, Adecanol UH-420, Adecanol U -438, Adecanol UH-472, Adecanol
  • Newtonian fluidity-providing thickeners other than those mentioned above can further include DK thickener SCT-200 and DK thickener SCT-270 (Daiichi Kogyo Seiyaku Co., Ltd.). One or more of these can be used as a Newtonian fluidity-providing thickener.
  • Examples of the polyvinyl alcohol thickener include PVA-105, PVA-CST, PVA-217, and PVA-420H (manufactured by Kuraray Co., Ltd.).
  • Examples of the polyvinyl pyrrolidone thickener include polyvinyl pyrrolidone K-30, K-85, K-90 (manufactured by Nippon Shokubai Co., Ltd.) and the like.
  • Examples of the unsaturated carboxylic acid (co) polymer thickener include the thickeners listed as specific examples of the thixotropy imparting thickener or the Newton fluidity imparting thickener.
  • Examples of the cellulose derivative-based thickener include CMC Daicel 2200, 2260, 2280, 2450 (manufactured by Daicel Finechem Co., Ltd.), Poise C-60H, C-150L (manufactured by Kao Corporation), and the like.
  • Examples of the polyether urethane-modified thickener include the thickeners listed as specific examples of the thixotropy imparting thickener or the Newton fluidity imparting thickener. Among these, unsaturated carboxylic acid (co) polymer thickeners are more preferable, and alkali-soluble unsaturated carboxylic acid (co) polymer thickeners are more preferable. Unsaturated carboxylic acid (co) polymer thickeners are preferred because they have excellent affinity with polymers when used in combination with polymers obtained by polymerizing saturated carboxylic acid monomers.
  • the amount of the polymeric thickener added is preferably 0.1 parts by weight or more, more preferably 0.2 parts by weight, in terms of solid content with respect to 100 parts by weight of the solid content of the polymer obtained by polymerizing the monomer component. More preferably, it is 0.25 parts by weight or more, preferably 10 parts by weight or less, more preferably 5 parts by weight or less, and still more preferably 2 parts by weight or less.
  • the weight average molecular weight of the polymeric thickener is preferably 300,000 or more, more preferably 500,000 or more, still more preferably 700,000 or more, and most preferably 1,000,000 or more.
  • the weight average molecular weight of the polymeric thickener can be measured by the method using GPC as described above.
  • the loss tangent (tan ⁇ ) peak temperature (TPT) of the resin composition for vibration damping material of the present invention is preferably 0 ° C. or higher and 100 ° C. or lower.
  • the TPT of the resin composition for vibration damping material of the present invention is measured in a state where the polymer and plasticizer included in the resin composition for vibration damping material are mixed with the polymer thickener when the polymer thickener is further included.
  • the TPT of the vibration damping material resin composition is preferably 0 ° C. or higher, more preferably 10 ° C. or higher, and further preferably 20 ° C. or higher.
  • TPT of the resin composition for vibration damping materials is 100 ° C. or less, more preferably 80 ° C. or less, and further preferably 60 ° C. or less.
  • TPT of the resin composition for vibration damping material of the present invention is in such a range, it is preferable because it is easy to adjust the DPT of the resin composition for vibration damping material to a practical temperature range.
  • a method for measuring the loss tangent a method for determining the loss tangent tan ⁇ by dynamic viscoelasticity measurement can be used.
  • the dynamic viscoelasticity measurement can be performed using, for example, a rheometer (RSAIII, manufactured by TA Instruments, or ARES, manufactured by TA Instruments).
  • the loss tangent peak temperature was as follows.
  • the resin composition for vibration damping material was applied on a Teflon (registered trademark) plate with a smooth surface so that the film thickness after drying was 0.2 mm, and dried at 90 ° C. for 30 minutes. It can be measured with a sample which is dried under reduced pressure at 100 ° C. for 30 minutes and cut into a size of 25 mm long ⁇ 5 mm wide.
  • the resin composition for vibration damping material is applied on a Teflon (registered trademark) plate having a smooth surface so that the film thickness after drying is 0.5 mm, dried at 90 ° C. for 30 minutes, and then at 100 ° C. for 30 minutes. It can carry out by the measuring method by a shear mode using the sample dried under reduced pressure and cut out to the size of 25 mm in diameter.
  • the resin composition for vibration damping material of the present invention contains a polymer obtained by polymerizing monomer components and a plasticizer, and further contains other components as long as it contains a polymer thickener as necessary. May be included.
  • the proportion of the other components is preferably 10% by mass or less, and more preferably 5% by mass or less, with respect to the entire resin composition for vibration damping material.
  • other components refers to the non-volatile content (solid content) remaining in the coating film even after the resin composition for vibration damping material is applied and dried by heating. Not included.
  • the solid content is preferably 40 to 90% by mass, more preferably 50 to 80% by mass, based on the entire vibration damping material resin composition. .
  • the heat drying property is improved, and the vibration damping property can be more fully exhibited without impairing the appearance of the coating film.
  • the polymer contained in the vibration damping material resin of the present invention is produced by polymerizing a monomer component by an emulsion polymerization method in the presence of an emulsifier.
  • the form for carrying out the emulsion polymerization is not particularly limited.
  • the emulsion polymerization can be carried out by suitably adding a monomer component, a polymerization initiator and an emulsifier to an aqueous solvent for polymerization.
  • the emulsion is an emulsion having a core part and a shell part
  • it is preferably obtained by using a usual emulsion polymerization method.
  • the monomer component is emulsion-polymerized in an aqueous solvent in the presence of an emulsifier and / or protective colloid to form a core part
  • the monomer component is further emulsion-polymerized into an emulsion containing the core part. It is preferably obtained by multistage polymerization that forms a shell portion.
  • the polymer emulsion is an emulsion having a core part and a shell part, and the emulsion is obtained by multistage polymerization that forms a shell part after the core part is formed, is also of the present invention.
  • the amount of the emulsifier used is preferably 0.1 to 10% by mass with respect to 100% by mass of the total amount of compounds having a polymerizable unsaturated bond group. More preferably, it is 0.5-7% by mass, and still more preferably 1-6% by mass. If the amount used is set within such a range, the mechanical stability can be sufficiently improved and the polymerization stability can be sufficiently maintained.
  • anionic surfactant is not particularly limited, and examples thereof include polyoxyalkylene alkyl ether sulfate, polyoxyalkylene oleyl ether sulfate sodium salt, polyoxyalkylene alkylphenyl ether sulfate, alkyl diphenyl ether disulfonate, poly Oxyalkylene (mono, di, tri) styryl phenyl ether sulfate, polyoxyalkylene (mono, di, tri) benzyl phenyl ether sulfate, alkenyl succinate; sodium dodecyl sulfate, potassium dodecyl sulfate, ammonium alkyl sulfate Alkyl sulfate salts such as sodium dodecyl polyglycol
  • anionic surfactant examples include, for example, Latemul WX, Latemul 118B, Perex SS-H, Emulgen A-60, B-66, defendol WZ (manufactured by Kao Corporation), New Coal 707SF, New Coal 707SN, New Call 714SF, New Call 714SN, AB-26S, ABEX-2010, 2020, 2030, DSB (manufactured by Rhodia Nikka Co., Ltd.) and the like.
  • surfactants corresponding to these nonionic types can also be used.
  • anionic surfactants reactive surfactants, reactive anionic surfactants, sulfosuccinate type reactive anionic surfactants, alkenyl succinate type reactive anionic surfactants, etc. 1 type (s) or 2 or more types can be used.
  • Commercial products of sulfosuccinate-type reactive anionic surfactants include Latemul S-120, S-120A, S-180 and S-180A (all trade names, manufactured by Kao Corporation), Eleminol JS-2 (Product) Name, manufactured by Sanyo Kasei Kogyo Co., Ltd.), ADEKA rear soap SR-10, SR-20, SR-30 (manufactured by ADEKA) and the like.
  • Latemul ASK (trade name, manufactured by Kao Corporation) and the like can be mentioned.
  • (meth) acrylic acid polyoxyethylene sulfonate salts for example, “Eleminol RS-30” manufactured by Sanyo Kasei Kogyo Co., Ltd., “Antox MS-60” manufactured by Nippon Emulsifier Co., Ltd.
  • allyloxymethylalkyloxypolyoxy Sulfate ester (salt) having an allyl group such as sulfonate salt of ethylene for example, “Aqualon KH-10” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • ammonium polyoxyalkylene alkenyl ether sulfate for example, “Latemul PD-” manufactured by Kao Corporation 104 "etc.
  • the anionic surfactant the following surfactants and the like can be used as the reactive surfactant.
  • the nonionic surfactant is not particularly limited.
  • polyoxyethylene alkyl ether polyoxyethylene alkyl aryl ether; sorbitan aliphatic ester; polyoxyethylene sorbitan aliphatic ester; aliphatic such as monolaurate of glycerol Monoglyceride; polyoxyethyleneoxypropylene copolymer; condensation products of ethylene oxide and aliphatic amines, amides or acids.
  • allyloxymethylalkoxyethylhydroxypolyoxyethylene for example, “ADEKA rear soap ER-20” manufactured by ADEKA
  • polyoxyalkylene alkenyl ether for example, “Latemul PD-420”, “Latemul PD-” manufactured by Kao Corporation
  • Nonionic surfactants having reactivity such as “430” and the like can also be used.
  • These 1 type (s) or 2 or more types can be used.
  • the cationic surfactant is not particularly limited, and examples thereof include dialkyldimethylammonium salts, ester-type dialkylammonium salts, amide-type dialkylammonium salts, dialkylimidazolinium salts, and the like. Can be used.
  • amphoteric surfactant is not particularly limited, and examples thereof include alkyldimethylaminoacetic acid betaine, alkyldimethylamine oxide, alkylcarboxymethylhydroxyethylimidazolinium betaine, alkylamidopropylbetaine, alkylhydroxysulfobetaine, and the like. 1 type (s) or 2 or more types can be used.
  • the polymer surfactant is not particularly limited.
  • polyvinyl alcohol and a modified product thereof (meth) acrylic water-soluble polymer; hydroxyethyl (meth) acrylic water-soluble polymer; hydroxypropyl (meth) acrylic Water-soluble polymers such as polyvinyl pyrrolidone, and one or more of them can be used.
  • the protective colloid examples include polyvinyl alcohols such as partially saponified polyvinyl alcohol, fully saponified polyvinyl alcohol, and modified polyvinyl alcohol; cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose, and carboxymethyl cellulose salt; natural polysaccharides such as guar gum Etc., and one or more of these can be used.
  • the protective colloid may be used alone or in combination with a surfactant.
  • the use amount of the protective colloid may be appropriately set according to use conditions and the like, for example, 10 parts by weight or less with respect to 100 parts by weight of the total amount of monomer components used to form the polymer. More preferably, it is 5 parts by weight or less, and particularly preferably 3 parts by weight or less.
  • a protective colloid an emulsion having excellent polymerization stability and mechanical stability can be obtained.
  • the polymerization initiator is not particularly limited as long as it is a substance that decomposes by heat and generates radical molecules.
  • persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; 2,2′-azobis (2-amidinopropane) dihydrochloride, 4,4′-azobis (4-cyanopentanoic acid), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobisisobutyronitrile Azo compounds such as 2,2′-azobis (2,4-dimethylvaleronitrile); organic peroxides such as tert-butylperoxy-2-ethylhexanoate, benzoyl peroxide, di-tert-butyl peroxide Products: Hydrogen peroxide and ascorbic acid, t-butyl hydroperoxide and Rongalite, potassium persulfate and metal salts, ammonium persulfate Redox polymerization
  • the amount of the polymerization initiator used is not particularly limited and may be set as appropriate according to the type of the polymerization initiator.
  • the total amount of monomer components used to form the polymer is 100 parts by weight.
  • the amount is preferably 0.1 to 2 parts by weight, more preferably 0.2 to 1 part by weight.
  • the polymerization initiator may be used in combination with a reducing agent as necessary.
  • a reducing agent include reducing organic compounds such as ascorbic acid, tartaric acid, citric acid, and glucose; for example, reducing inorganic compounds such as sodium thiosulfate, sodium sulfite, sodium bisulfite, and sodium metabisulfite. These 1 type (s) or 2 or more types can be used.
  • the amount of the reducing agent used is not particularly limited. For example, it is preferably 0.05 to 1 part by weight with respect to 100 parts by weight of the total amount of monomer components used to form the polymer.
  • the polymerization chain transfer agent is not particularly limited, and examples thereof include alkyl mercaptans such as hexyl mercaptan, octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-hexadecyl mercaptan, and n-tetradecyl mercaptan; carbon tetrachloride , Halogenated hydrocarbons such as carbon tetrabromide and ethylene bromide; mercaptocarboxylic acid alkyl esters such as mercaptoacetic acid 2-ethylhexyl ester, mercaptopropionic acid 2-ethylhexyl ester, mercaptopyropionic acid tridecyl ester; mercaptoacetic acid methoxybutyl Mercaptocarboxylic acid alkoxyalkyl ester such as ester, mercaptoprop
  • alkyl mercaptans such as hexyl mercaptan, octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-hexadecyl mercaptan, n-tetradecyl mercaptan are preferably used.
  • the amount of the polymerization chain transfer agent used is, for example, preferably 20 parts by weight or less, more preferably 10 parts by weight or less, with respect to 100 parts by weight of all monomer components. More preferably, it is 5.0 parts by weight or less, particularly preferably 2.0 parts by weight or less, and most preferably 1.0 part by weight or less.
  • the polymerization may be performed in the presence of a chelating agent such as sodium ethylenediaminetetraacetate, a dispersing agent such as sodium polyacrylate, an inorganic salt, or the like, if necessary.
  • a chelating agent such as sodium ethylenediaminetetraacetate
  • a dispersing agent such as sodium polyacrylate, an inorganic salt, or the like
  • addition methods such as a monomer component and a polymerization initiator
  • methods such as a batch addition method, a continuous addition method, a multistage addition method, are applicable, for example.
  • you may combine these addition methods suitably.
  • the polymerization temperature is not particularly limited, and for example, it is preferably 0 to 100 ° C., more preferably 40 to 95 ° C.
  • the polymerization time is not particularly limited, and for example, it is preferably 1 to 15 hours, more preferably 5 to 10 hours.
  • the addition method of the monomer component, the polymerization initiator, and the like is not particularly limited, and for example, a batch addition method, a continuous addition method, a multistage addition method, or the like can be applied. Moreover, you may combine these addition methods suitably.
  • the method for producing a polymer contained in the vibration damping material resin composition of the present invention it is preferable to produce an emulsion by emulsion polymerization and then neutralize the emulsion with a neutralizing agent. As a result, the emulsion is stabilized.
  • the neutralizing agent is not particularly limited, and for example, tertiary amines such as triethanolamine, dimethylethanolamine, diethylethanolamine and morpholine; diglycolamine, aqueous ammonia; sodium hydroxide and the like can be used. These may be used alone or in combination of two or more.
  • a volatile base that volatilizes when the coating film is heated.
  • an amine having a boiling point of 80 to 360 ° C. is preferably used because heat drying properties are improved and vibration damping properties are improved.
  • a neutralizing agent for example, tertiary amines such as triethanolamine, dimethylethanolamine, diethylethanolamine, morpholine, and diglycolamine are preferable.
  • an amine having a boiling point of 130 to 280 ° C. is used.
  • the said boiling point is a boiling point in a normal pressure.
  • the molecular weight of the neutralizing agent is not particularly limited, but is preferably 130 to 280 from the viewpoint of volatility. Further, it is preferable to add the amine in an amount of 0.6 to 1.4 equivalents with respect to 1 equivalent of the acid group contained in the polymer emulsion. More preferably, it is 0.8 to 1.2 equivalents.
  • the resin composition for vibration damping material of the present invention can contain other components as necessary.
  • the vibration damping material resin composition further comprising a pigment is one of the preferred embodiments of the present invention, and in particular, the vibration damping material further comprises a pigment and a thickener.
  • the resin composition for use is also a preferred embodiment of the present invention.
  • the thickener the above-described polymer thickener is preferable.
  • Such a resin composition for vibration damping material of the present invention has excellent heat drying properties, can exhibit various functions, and forms a vibration damping material that can exhibit particularly excellent vibration damping properties. It is something that can be done.
  • the solid content is preferably 20 to 90% by mass with respect to 100% by mass of the total amount of the vibration damping material resin composition.
  • the amount is preferably 30 to 90% by mass, and more preferably 40 to 90% by mass.
  • the blending amount of the polymer obtained by polymerizing the monomer component in the vibration damping material resin composition containing the pigment and the thickener for example, with respect to 100% by mass of the solid content of the vibration damping material resin composition
  • the solid content of the polymer obtained by polymerizing the monomer components is preferably set to 10 to 60% by mass, more preferably 15 to 60% by mass.
  • the pH of the vibration damping material resin composition is preferably 7 to 11, more preferably 7 to 9.
  • the pH can be measured by the same method as described above. At such a pH, the performance of the thickener is sufficiently exhibited, and the pigment dispersibility is improved, so that the vibration damping property is more sufficiently exhibited.
  • the vibration damping material resin composition includes a pigment and a thickener
  • the viscosity of the vibration damping material resin composition is preferably 50 to 200 Pa ⁇ s. When the viscosity is such, it is suitable as a resin composition for a coating-type vibration damping material that can be easily applied to a substrate and has no dripping. More preferably, it is 60 to 150 Pa ⁇ s. The viscosity of the vibration damping material resin composition can be measured by the same method as described above.
  • the pigment content is preferably 50 to 700 parts by weight, more preferably 100 parts by weight of the solid content of the polymer obtained by polymerizing the monomer component in the resin composition for vibration damping material. 100 to 550 parts by weight.
  • the amount of the pigment is such, the dispersibility of the pigment is improved and vibration damping is more fully exhibited.
  • vibration damping material resin composition of the present invention include, for example, a foaming agent; a solvent; an aqueous cross-linking agent; a filler; a gelling agent; a dispersing agent; Anticorrosive pigments, stabilizers, wetting agents, preservatives, antifoaming agents, anti-aging agents, antifungal agents, ultraviolet absorbers, antistatic agents, etc., and one or more of these may be vibrationally attenuated It can be suitably selected and used according to the form of the resin composition for materials.
  • the said other component can be mixed with the said resin composition for vibration damping materials etc. using a butterfly mixer, a planetary mixer, a spiral mixer, a kneader, a dissolver etc., for example.
  • the foaming agent for example, a low-boiling hydrocarbon encapsulated heated expansion capsule, an organic foaming agent, an inorganic foaming agent, and the like are suitable, and one or more of these can be used.
  • the heat-expandable capsule include Matsumoto Microsphere F-30, F-50 (manufactured by Matsumoto Yushi Co., Ltd.); EXPANSELL WU642, WU551, WU461, DU551, DU401 (manufactured by Nippon Expandcel).
  • Examples of the organic blowing agent include azodicarbonamide, azobisisobutyronitrile, N, N-dinitrosopentamethylenetetramine, p-toluenesulfonylhydrazine, p-oxybis (benzenesulfohydrazide), and the like.
  • Examples of the foaming agent include sodium bicarbonate, ammonium carbonate, silicon hydride and the like.
  • the blending amount of the foaming agent is 0.5 to 5.0 parts by weight with respect to 100 parts by weight of the solid content of the polymer obtained by polymerizing the monomer component in the vibration damping material resin composition. The amount is preferably 1.0 to 3.0 parts by weight.
  • the solvent examples include ethylene glycol, butyl cellosolve, butyl carbitol, butyl carbitol acetate, and the like. What is necessary is just to set suitably as a compounding quantity of a solvent so that the solid content concentration of the polymer which polymerizes the monomer component in the resin composition for vibration damping materials may become the range mentioned above.
  • water-based crosslinking agent examples include oxazoline compounds such as Epocross WS-500, WS-700, K-2010, 2020, and 2030 (all trade names, manufactured by Nippon Shokubai Co., Ltd.); Adeka Resin EMN-26-60, EM- Epoxy compounds such as 101-50 (both trade names, manufactured by ADEKA); Melamine compounds such as Cymel C-325 (trade name, manufactured by Mitsui Cytec); Block isocyanate compounds; AZO-50 (trade name, 50% by mass) Zinc oxide compounds such as zinc oxide aqueous dispersion (manufactured by Nippon Shokubai Co., Ltd.) are preferred.
  • oxazoline compounds such as Epocross WS-500, WS-700, K-2010, 2020, and 2030 (all trade names, manufactured by Nippon Shokubai Co., Ltd.); Adeka Resin EMN-26-60, EM- Epoxy compounds such as 101-50 (both trade names, manufactured by ADEKA); Melamine
  • the blending amount of the water-based crosslinking agent is, for example, 0.01 to 20 parts by weight in solid content with respect to 100 parts by weight of solid content of the polymer obtained by polymerizing the monomer component in the vibration damping material resin composition.
  • the amount is preferably 0.15 to 15 parts by weight, more preferably 0.5 to 15 parts by weight.
  • the filler examples include inorganic fillers such as calcium carbonate, kaolin, silica, talc, barium sulfate, alumina, iron oxide, titanium oxide, glass talk, magnesium carbonate, aluminum hydroxide, talc, diatomaceous earth, and clay; glass Examples of such inorganic fillers include flakes and mica; and fibrous inorganic fillers such as metal oxide whiskers and glass fibers.
  • the blending amount of the filler is preferably 50 to 700 parts by weight, more preferably 100 parts by weight of the solid content of the polymer obtained by polymerizing the monomer component in the vibration damping material resin composition. 100 to 550 parts by weight.
  • the average particle diameter of the filler is preferably 0.5 to 50 ⁇ m. More preferably, it is 2 to 25 ⁇ m.
  • the dispersibility of the filler and the heat drying property of the coating film are improved, and vibration damping properties can be more fully exhibited without impairing the appearance of the coating film.
  • the particulate filler include calcium carbonate and titanium oxide.
  • NS # 100, NN # 200, SS # 30 manufactured by Nitto Flour Chemical Co., Ltd.
  • R heavy coal manufactured by Maruo Calcium Co., Ltd.
  • the average particle size of the filler can be measured by a fully automatic particle size measuring device, and is a value of 50% by weight from the particle size distribution.
  • Examples of the gelling agent include starch and agar.
  • Examples of the dispersant include inorganic dispersants such as sodium hexametaphosphate and sodium tripolyphosphate, and organic dispersants such as polycarboxylic acid-based dispersants.
  • Examples of the antifoaming agent include silicon-based antifoaming agents.
  • Examples of the colorant include organic or inorganic colorants such as titanium oxide, carbon black, dial, hansa yellow, benzine yellow, phthalocyanine blue, and quinacridone red.
  • Examples of the rust preventive pigment include a metal phosphate, a metal molybdate, and a metal borate.
  • a polyvalent metal compound may be used as the other component.
  • the polyvalent metal compound improves the stability, dispersibility, heat drying property of the vibration damping material resin composition, and the vibration damping properties of the vibration damping material formed from the vibration damping material resin composition. It becomes. It does not specifically limit as a polyvalent metal compound, For example, zinc oxide, zinc chloride, zinc sulfate etc. are mentioned, These 1 type (s) or 2 or more types can be used.
  • Examples of the form of the polyvalent metal compound may include a powder, an aqueous dispersion, an emulsion dispersion, and the like.
  • the dispersibility in the resin composition for vibration damping material is improved, it is preferably used in the form of an aqueous dispersion or an emulsified dispersion, more preferably in the form of an emulsified dispersion.
  • the amount of the polyvalent metal compound used is preferably 0.05 to 5.0 parts by weight, more preferably 0.05 parts by weight with respect to 100 parts by weight of the solid content in the vibration damping material resin composition. -3.5 parts by weight.
  • the resin composition for vibration damping material of the present invention is desirably used as a vibration damping material.
  • a coating film can be formed by applying a resin composition for vibration damping material to a substrate and drying, and can be used as a vibration damping material.
  • the resin composition for vibration damping material of the present invention is preferably used as a paint, and can be used by forming a coating film by applying the resin composition for vibration damping material as a paint to a substrate.
  • a method for applying the vibration damping material resin composition to the substrate for example, a brush, a spatula, an air spray, an airless spray, a mortar gun, a ricin gun or the like can be used.
  • the conditions for drying to form a coating film may be heat drying or room temperature drying, but heat drying may be performed in terms of efficiency. preferable.
  • the lower limit of the heat drying temperature is preferably 110 ° C. or higher, and more preferably 120 ° C. or higher.
  • an upper limit of the temperature of heat drying it is preferable to set it as 210 degrees C or less, More preferably, it is 170 degrees C or less. By setting it to such a drying temperature, heat drying property improves and it becomes possible to exhibit vibration damping more fully, without impairing a coating-film external appearance.
  • it can utilize as a damping material also by drying and shape
  • the vibration attenuating property can be evaluated by measuring a loss factor of a film formed from the resin composition for vibration attenuating material.
  • the loss coefficient is usually expressed by ⁇ and indicates how much the vibration applied to the vibration damping material is attenuated.
  • the loss factor indicates that the higher the numerical value, the better the vibration damping performance.
  • a resonance method for measuring near the resonance frequency is generally used, and there are a half width method, an attenuation rate method, and a mechanical impedance method.
  • the loss factor of the film formed from the vibration damping material resin composition is preferably measured by a resonance method using a cantilever method (3 dB method). is there.
  • the measurement using the cantilever method can be performed using, for example, a CF-5200 type FFT analyzer manufactured by Ono Sokki Co., Ltd.
  • the loss factor is a vibration damping material having a coating capacity of 200 mm length ⁇ 10 mm width ⁇ 3.0 mm thickness on a cold rolled steel plate (SPCC-SD: length 250 mm ⁇ width 10 mm ⁇ thickness 1.6 mm). It is preferable to measure by applying the resin composition for coating, drying at 95 ° C. for 30 minutes, and baking and drying at 130 ° C.
  • the loss factor is measured, for example, by measuring the loss factor at each temperature of 10 ° C., 20 ° C., 30 ° C., 40 ° C., 50 ° C. and 60 ° C. by the resonance method (3 dB method), and measuring each numerical value with a smooth curve.
  • the evaluation is preferably performed based on the peak value of the curve, and the DPT described above is preferably the peak temperature of the curve.
  • the DPT of the resin composition for vibration damping material of the present invention is preferably 0 ° C. or higher and 100 ° C. or lower.
  • the DPT of the vibration damping material resin composition is preferably 0 ° C. or higher, more preferably 10 ° C.
  • the DPT of the vibration damping material resin composition is preferably 100 ° C. or lower, more preferably 80 ° C. or lower, and further preferably 60 ° C. or lower.
  • vibration damping performance in the practical temperature range of the vibration damping material can be more effectively expressed.
  • the practical temperature range of the film formed from the vibration damping material resin composition is usually 10 to 60 ° C., the loss at each temperature of 10, 20 ° C., 30 ° C., 40 ° C., 50 ° C. and 60 ° C.
  • the vibration damping performance may be evaluated by a value obtained by summing the coefficients, and the film formed from the resin composition for vibration damping material is at a temperature of 10, 20 ° C., 30 ° C., 40 ° C., 50 ° C. and 60 ° C. It can be said that the greater the total loss factor, the greater the loss factor, the more excellent vibration damping is exhibited in the practical temperature range of 10 to 60 ° C. of the film formed from the resin composition for vibration damping material.
  • the resin composition for vibration damping material of the present invention has the above-described configuration, exhibits excellent vibration damping properties due to the interaction between the polymer obtained by polymerizing the monomer components and the plasticizer, and the polymer Since it exists in the form of an emulsion in an aqueous solvent, when used as a paint, the dispersion of pigments and the like in the paint becomes good, and the appearance after application becomes good. Therefore, it is a composition that can be suitably used for various applications in which a coating-type vibration damping material is used such as transportation equipment such as railway vehicles, ships, and aircraft, electrical equipment, building structures, and construction equipment.
  • Production Example 2 150 parts of deionized water was charged into a polymerization vessel equipped with a stirrer, a reflux condenser, a thermometer, a nitrogen inlet tube and a dropping funnel. Thereafter, the internal temperature was raised to 75 ° C. while stirring under a nitrogen gas stream.
  • the initial polymerization was started. After 20 minutes, the remaining monomer emulsion was uniformly added dropwise over 120 minutes while maintaining the inside of the reaction system at 80 ° C. At the same time, 25 parts of a 5% aqueous potassium persulfate solution and 25 parts of a 2% aqueous sodium hydrogen sulfite solution were uniformly added dropwise over 120 minutes, and the same temperature was maintained for 60 minutes after completion of the addition.
  • Latemul PD-104 (trade name, A second stage monomer emulsion consisting of 54 parts by Kao Corporation (20% aqueous solution) and 58.2 parts deionized water was charged and added dropwise uniformly over 120 minutes.
  • reaction liquid After cooling the obtained reaction liquid to room temperature, 2.8 parts of 25% ammonia water was added, non-volatile content 54.4%, pH 7.3, viscosity 230 mPa ⁇ s, average particle diameter 190 nm, weight average molecular weight 80,000, An emulsion having a Tg of 9 ° C. was obtained.
  • Nalstar SR-115 (trade name, manufactured by Nippon A & L Co., Ltd., SBR emulsion) was prepared.
  • a monomer emulsion comprising 5 parts, 90 parts of Latemul PD-104 (trade name, manufactured by Kao Corporation, 20% aqueous solution) and 97 parts of deionized water was charged. Next, while maintaining the internal temperature of the polymerization vessel at 80 ° C., 4 parts of the above monomer emulsion, 2.5 parts of 5% potassium persulfate aqueous solution and 5 parts of 2% sodium hydrogensulfite aqueous solution were added. The initial polymerization was started. After 20 minutes, the remaining monomer emulsion was uniformly added dropwise over 240 minutes while maintaining the inside of the reaction system at 80 ° C.
  • Production Example 7 150 parts of deionized water was charged into a polymerization vessel equipped with a stirrer, a reflux condenser, a thermometer, a nitrogen inlet tube and a dropping funnel. Thereafter, the internal temperature was raised to 75 ° C. while stirring under a nitrogen gas stream.
  • the initial polymerization was started. After 20 minutes, the remaining monomer emulsion was uniformly added dropwise over 240 minutes while maintaining the inside of the reaction system at 80 ° C. At the same time, 50 parts of a 5% potassium persulfate aqueous solution and 50 parts of a 2% sodium hydrogensulfite aqueous solution were uniformly added dropwise over 240 minutes. After cooling the obtained reaction liquid to room temperature, 11.2 parts of 25% aqueous ammonia was added, and the non-volatile content was 54.0%, pH 7.4, viscosity 8500 mPa ⁇ s, average particle diameter 180 nm, weight average molecular weight 80,000, An emulsion having a Tg of 144 ° C. was obtained.
  • Production Example 8 400 parts of butyl acetate was charged into a polymerization vessel equipped with a stirrer, a reflux condenser, a thermometer, a nitrogen inlet tube and a dropping funnel. Furthermore, 10% of the monomer premix weighed 260 parts of methyl methacrylate, 240 parts of n-butyl acrylate and 1.0 part of n-dodecyl mercaptan was added to the polymerizer, and the internal temperature was increased while stirring under a nitrogen gas stream. The temperature was raised to 90 ° C. The remaining 90% of the monomer premix was charged into the dropping funnel.
  • plasticizers (1) to (5) were added to the polymers (emulsions or resin solutions) prepared in Production Examples 1 to 10 to prepare mixtures of polymers and plasticizers.
  • Table 1 shows the addition amount of the plasticizer as a ratio (% by weight) to the total nonvolatile content of the polymer and the plasticizer of 100% by weight. Furthermore, the following component was mix
  • ⁇ Vibration suppression test> The obtained resin composition for vibration damping material was applied to a cold-rolled steel plate (SPCC, width 15 mm ⁇ length 250 mm ⁇ thickness 1.5 mm) at a thickness of 3 mm, dried at 150 ° C. for 30 minutes, and cold-rolled. A coating film having a surface density of 4.0 kg / m 2 was formed on the steel plate.
  • the measurement of vibration damping uses the cantilever method (loss factor measurement system, Ono Sokki Co., Ltd.) to resonate the loss factor ⁇ at 10 ° C, 20 ° C, 30 ° C, 40 ° C, 50 ° C and 60 ° C. Measured by the method (3 dB method).
  • the total loss coefficient at 10 ° C., 20 ° C., 30 ° C., 40 ° C., 50 ° C. and 60 ° C. is preferably 0.46 or more, and if it is 0.46 or more, sufficient vibration damping performance is achieved in the practical temperature range. It can be said that it has.
  • the half-value width indicates the temperature width of the peak at a portion where the peak top value of the loss coefficient is halved, and DPT indicates the peak temperature of the loss coefficient.
  • Table 1 the sum of the loss factors of 10 ° C., 20 ° C., 30 ° C., 40 ° C., 50 ° C. and 60 ° C. is 0.46 or more, and less than 0.46 is x.
  • Appearance of smooth and uniform carbon coloring without pigment lumps
  • Appearance of pigment lumps or non-uniform carbon coloring
  • the sagging during coating is an electrodeposited steel plate (epoxy cationic electrodeposition coating plate: Nippon Test Panel Co., Ltd., width 70 mm ⁇ length 150 mm ⁇ thickness 0.8 mm) and thickness 4 mm. It was evaluated by measuring the length of the sagging at the bottom of the coating film after heat treatment at 60 ° C. for 30 minutes. The evaluation criteria are as follows.
  • ⁇ Evaluation of coating film properties About the coating film formed by the said vibration damping test, the coating film impact resistance, coating film bending, and coating film thickness were evaluated. The evaluation results are shown in Table 1. ⁇ Evaluation of impact resistance> The appearance of the coating film was observed when a steel ball having a weight of 100 g was dropped from a height of 30 cm on the coating film surface of the test piece formed in the vibration damping test. The evaluation criteria are as follows. The test temperature was the peak temperature of the loss factor.
  • plasticizers (1) to (5) represent the following, respectively.
  • the peak height of the loss factor is higher than 0.15, and the value of peak height ⁇ half-value width is also higher than 4.5. Furthermore, since the total loss coefficient at 10 ° C. to 60 ° C. exceeds 0.46, the vibration damping action is large and excellent characteristics are exhibited. Moreover, the pigment dispersibility and the coating film appearance were also excellent. Also, in the resin compositions for vibration damping materials of Examples 10 and 11 in which two types of polymers were mixed, the peak height of the loss factor was as high as 0.14 or more, and the value of peak height ⁇ half-value width Furthermore, since the total loss coefficient of 10 ° C. to 60 ° C. exceeds 0.46, the vibration damping action is large and excellent characteristics are exhibited. Moreover, the pigment dispersibility and the coating film appearance were also excellent.

Abstract

Provided is a resin composition for a vibration-damping material, which can exhibit excellent vibration-damping performance and can be used suitably in use applications in which coating films are required to have a vibration-damping effect. A resin composition for a vibration-damping material, which comprises a polymer produced by polymerizing a monomer component and a plasticizer, said resin composition being characterized by being an aqueous composition in which the polymer exists in the form of an emulsion in an aqueous medium.

Description

振動減衰材用樹脂組成物Resin composition for vibration damping material
本発明は、振動減衰材用樹脂組成物に関する。より詳しくは、各種構造体における振動を減衰させて振動に起因する機械的な揺れ及び騒音を防止して安定性及び静寂性を保つために使用される振動減衰材の材料等として有用な振動減衰材用樹脂、振動減衰材用組成物及びそれによって形成される振動減衰材に関する。 The present invention relates to a resin composition for vibration damping materials. More specifically, vibration damping useful as a material for vibration damping materials used to attenuate vibrations in various structures to prevent mechanical vibration and noise caused by vibrations and maintain stability and quietness. The present invention relates to a resin for a material, a composition for a vibration damping material, and a vibration damping material formed thereby.
各種構造体における振動を減衰させて振動に起因する機械的な揺れ及び騒音を防止して安定性及び静寂性を保つために、振動減衰材が用いられている。振動減衰材は、例えば、自動車の室内床下等に用いられている他、鉄道車両、船舶、航空機や電気機器、建築構造物、建設機器等にも広く利用されている。このような振動減衰材に用いられる材料としては、従来、振動吸収性能及び吸音性能を有する材料を素材とする板状成形体やシート状成形体等の成形加工品が使用されている。一方で、振動や音響の発生箇所の形状が複雑な場合には、これらの成形加工品を振動発生箇所に適用することが困難であることから、作業性を改善して振動減衰効果を充分に発揮させるための手法が種々検討されている。例えば、自動車の室内床下等には無機粉体を含んだアスファルトシートが用いられてきたが、熱融着させる必要性があることから、作業性等の改善が望まれており、振動減衰材を形成する種々の振動減衰材用組成物や重合体の検討がなされている。 In order to attenuate vibrations in various structures to prevent mechanical shaking and noise caused by vibrations and maintain stability and quietness, vibration damping materials are used. The vibration damping material is used, for example, under an indoor floor of an automobile, and is also widely used for railway vehicles, ships, aircraft, electrical equipment, building structures, construction equipment, and the like. As a material used for such a vibration damping material, conventionally, a molded product such as a plate-shaped molded body or a sheet-shaped molded body made of a material having vibration absorption performance and sound absorption performance has been used. On the other hand, when the shape of the place where vibration or sound is generated is complicated, it is difficult to apply these molded products to the place where vibration is generated. Various methods for exerting the effect have been studied. For example, asphalt sheets containing inorganic powder have been used under the interior floor of automobiles, etc., but since there is a need for heat fusion, improvement in workability and the like is desired. Various compositions for vibration damping materials and polymers to be formed have been studied.
このように、成形加工品の代替材料として、塗布型振動減衰材(塗料)が開発されており、例えば、該当箇所にスプレーにより吹き付けるか又は任意の方法により塗布することにより形成される塗膜により、振動減衰効果及び吸音効果を得ることが可能な振動減衰塗料が種々提案されるに至っている。具体的には、例えば、アスファルト、ゴム、合成樹脂等の展色剤に合成樹脂粉末を配合して得られる塗膜硬度を改良した水系振動減衰塗料の他、自動車の室内用に適するものとして、樹脂エマルションに充填剤として活性炭を分散させた振動減衰塗料等が開発されている。しかしながら、これらの従来品をもってしても未だ、振動減衰性能が充分に満足できるレベルにあるとはいえず、更に充分に振動減衰性能を発揮できるようにする技術が求められている。 As described above, coating type vibration damping materials (paints) have been developed as substitute materials for molded products, and for example, by coatings formed by spraying or applying an arbitrary method to the corresponding places. Various vibration damping paints that can obtain a vibration damping effect and a sound absorbing effect have been proposed. Specifically, for example, as a water-based vibration damping paint with improved coating film hardness obtained by blending synthetic resin powder with a color developing agent such as asphalt, rubber, synthetic resin, and the like suitable for indoor use in automobiles, Vibration damping coatings in which activated carbon is dispersed as a filler in a resin emulsion have been developed. However, even with these conventional products, it cannot be said that the vibration damping performance is still at a sufficiently satisfactory level, and there is a need for a technique that can further exhibit the vibration damping performance.
振動減衰材に用いられる従来の組成物としては、例えば、ガラス転移温度の異なり、特定の重量平均分子量を有する2種の重合体を少なくとも含む水性制振材用エマルション(特許文献1参照。)等が開示されている。 As a conventional composition used for a vibration damping material, for example, an emulsion for an aqueous vibration damping material containing at least two kinds of polymers having different glass transition temperatures and specific weight average molecular weights (see Patent Document 1). Is disclosed.
このような振動減衰材用途に用いられる樹脂組成物として、極性基を有する樹脂エマルジョンと、該樹脂エマルジョンの極性基との水素結合の形成および制御の可能な水素結合形成能を有し、一分子中少なくとも一つのヒドロキシル基を有する芳香属化合物として特定の化合物とを含み、更に無機充填剤を含む制振塗料組成物が開示されている(例えば、特許文献2参照。)。また、母材となる特定の高分子に、母材における双極子モーメント量を増加させるベンゾトリアゾール基を持つ化合物、及びジフェニルアクリレート基を持つ化合物の中から選ばれた1種若しくは2種以上からなる活性成分が含まれたエネルギー変換組成物が開示されている(例えば、特許文献3参照。)。更に、塗料組成物中に、同塗料成分における双極子モーメント量を増加させる活性成分を含む制振塗料において、塗膜成分としてカルボキシル基で置換したアクリル系ポリマーを用いたものが開示されている(例えば、特許文献4参照。)。更に、熱可塑性樹脂、熱可塑性エラストマー、ゴム、又は水系エマルジョン樹脂により構成されたマトリックス相中に、p-(p-トルエンスルホニルアミド)ジフェニルアミン及びオクチル化ジフェニルアミンから選択された1種若しくは2種の化合物からなる分散相を有する有機減衰材料であって、前記分散相は、前記マトリックス相中において、前記化合物がミクロ相分離した分散相、又は、完全相溶した分散相であり、前記熱可塑性樹脂が特定の樹脂から選択される有機減衰材料が開示されている(例えば、特許文献5参照。)。 As a resin composition used for such a vibration damping material, it has a hydrogen bond forming ability capable of forming and controlling a hydrogen bond between a resin emulsion having a polar group and the polar group of the resin emulsion. A vibration-damping coating composition containing a specific compound as an aromatic compound having at least one hydroxyl group and further containing an inorganic filler is disclosed (for example, see Patent Document 2). Further, the specific polymer as the base material is composed of one or more selected from a compound having a benzotriazole group that increases the amount of dipole moment in the base material and a compound having a diphenyl acrylate group. An energy conversion composition containing an active ingredient is disclosed (for example, see Patent Document 3). Furthermore, in the vibration-damping paint containing an active ingredient that increases the amount of dipole moment in the paint component in the paint composition, an acrylic polymer substituted with a carboxyl group is disclosed as a coating film component ( For example, see Patent Document 4.) Furthermore, one or two compounds selected from p- (p-toluenesulfonylamido) diphenylamine and octylated diphenylamine in a matrix phase composed of a thermoplastic resin, thermoplastic elastomer, rubber, or water-based emulsion resin An organic damping material having a dispersed phase comprising: the dispersed phase is a dispersed phase in which the compound is microphase-separated in the matrix phase or a completely compatible dispersed phase, and the thermoplastic resin is An organic damping material selected from specific resins is disclosed (for example, see Patent Document 5).
特開2005-281576号公報JP 2005-281576 A 特許第4172536号明細書Japanese Patent No. 4172536 特許第3318593号明細書Japanese Patent No. 3318593 国際公開第01/40391号International Publication No. 01/40391 特許第4465023号明細書Japanese Patent No. 4465023
上記のように、振動減衰材用途に用いられる樹脂組成物として種々の構成のものが開示されているが、このような樹脂組成物が用いられる用途においては、更に優れた振動減衰性を発揮する樹脂組成物が求められており、このような要求に応える振動減衰性をより向上させた樹脂組成物を開発することが課題となっている。
また、塗料として用いたときに塗料中の顔料等の分散が良好となる形態の組成物、塗布後の外観が良好となる形態の組成物も望まれている。
As described above, various resin compositions have been disclosed for use in vibration damping material applications. In applications where such resin compositions are used, even better vibration damping properties are exhibited. There is a need for a resin composition, and it has been a challenge to develop a resin composition with improved vibration damping properties that meets such requirements.
In addition, a composition having a form in which dispersion of pigments and the like in the paint is good when used as a paint and a composition having a good appearance after coating are also desired.
本発明は、上記現状に鑑みてなされたものであり、優れた振動減衰性を発揮し、塗膜に振動減衰効果が求められる用途において好適に用いることができる振動減衰材用樹脂組成物を提供することを目的とする。 The present invention has been made in view of the above situation, and provides a resin composition for a vibration damping material that exhibits excellent vibration damping properties and can be suitably used in applications where a coating film is required to have a vibration damping effect. The purpose is to do.
本発明者は、振動減衰材用樹脂組成物について種々検討し、単量体成分を重合してなるポリマーにさらに可塑剤を含有させた組成物が、優れた振動減衰性能を示すことを見出した。さらに、上記ポリマーを水系溶媒中にエマルションの形態で存在させることにより、特に適した特性を示すことを見出し、本発明に到達した。 The inventor has studied various resin compositions for vibration damping materials, and found that a composition obtained by polymerizing a monomer component and further containing a plasticizer exhibits excellent vibration damping performance. . Furthermore, the present inventors have found that the polymer exhibits particularly suitable characteristics by being present in the form of an emulsion in an aqueous solvent, and the present invention has been achieved.
すなわち本発明は、単量体成分を重合してなるポリマーと、可塑剤とを含み、
該ポリマーが水系溶媒中にエマルションの形態で存在した水系の組成物であることを特徴とする振動減衰材用樹脂組成物である。
以下に本発明を詳述する。
なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。
That is, the present invention includes a polymer obtained by polymerizing monomer components, and a plasticizer,
A resin composition for vibration damping material, wherein the polymer is an aqueous composition in the form of an emulsion in an aqueous solvent.
The present invention is described in detail below.
A combination of two or more preferred embodiments of the present invention described below is also a preferred embodiment of the present invention.
本発明の振動減衰材用樹脂組成物は、単量体成分を重合してなるポリマーと可塑剤とを含むものであるが、これらをそれぞれ少なくとも1種ずつ含んでいればよく、2種以上含むものであってもよい。また、単量体成分を重合してなるポリマーと可塑剤とを含む限り、その他の成分を含んでいてもよい。
なお、本発明において、振動減衰材用樹脂組成物が含む可塑剤は、振動減衰材用樹脂組成物の振動減衰性を向上させるために添加される成分である。
可塑剤を加えることによって樹脂組成物の性質が粘性体に近くなり、制振性(損失係数η)が高くなる。
The resin composition for vibration damping material of the present invention includes a polymer obtained by polymerizing monomer components and a plasticizer, and may include at least one of each, and includes two or more. There may be. Moreover, as long as the polymer formed by polymerizing the monomer component and the plasticizer are included, other components may be included.
In the present invention, the plasticizer contained in the vibration damping material resin composition is a component added to improve the vibration damping properties of the vibration damping material resin composition.
By adding a plasticizer, the properties of the resin composition become close to a viscous body, and the vibration damping property (loss coefficient η) is increased.
本発明の振動減衰材用樹脂組成物が含む単量体成分を重合してなるポリマーは、本発明の作用効果を発揮することができる限り特に限定されないが、単量体成分として、不飽和カルボン酸単量体、窒素原子を有する不飽和単量体、芳香環を有する不飽和単量体、及び、不飽和カルボン酸単量体と共重合可能なその他の単量体からなる群から選択された少なくとも1種の単量体を含むことが好ましい。
特に、不飽和カルボン酸単量体を含む単量体成分から得られたものであることが好ましい。より好ましくは、不飽和カルボン酸単量体及び不飽和カルボン酸単量体と共重合可能な他の単量体とを含む単量体成分から得られたものである。不飽和カルボン酸単量体としては、分子中に不飽和結合を含み、さらにカルボキシル基、カルボキシル基の塩、又は、カルボキシル基から誘導されるエステルを有する化合物であれば特に限定されるものではないが、エチレン系不飽和カルボン酸単量体を含むことが好ましい。
また、不飽和カルボン酸単量体の他に、塩化ビニル、エチレン、ブタジエン、スチレン等も単量体として使用可能である。単量体成分を重合してなるポリマーとして、塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、スチレン-ブタジエン共重合体等も使用可能である。
The polymer obtained by polymerizing the monomer component contained in the resin composition for vibration damping material of the present invention is not particularly limited as long as the effects of the present invention can be exhibited. Selected from the group consisting of acid monomers, unsaturated monomers having nitrogen atoms, unsaturated monomers having aromatic rings, and other monomers copolymerizable with unsaturated carboxylic acid monomers. It is preferable that at least one monomer is included.
In particular, it is preferably obtained from a monomer component containing an unsaturated carboxylic acid monomer. More preferably, it is obtained from a monomer component containing an unsaturated carboxylic acid monomer and another monomer copolymerizable with the unsaturated carboxylic acid monomer. The unsaturated carboxylic acid monomer is not particularly limited as long as it is a compound having an unsaturated bond in the molecule and further having a carboxyl group, a salt of the carboxyl group, or an ester derived from the carboxyl group. However, it preferably contains an ethylenically unsaturated carboxylic acid monomer.
In addition to the unsaturated carboxylic acid monomer, vinyl chloride, ethylene, butadiene, styrene and the like can also be used as the monomer. As the polymer obtained by polymerizing the monomer component, vinyl chloride, polyethylene, polypropylene, polystyrene, styrene-butadiene copolymer and the like can also be used.
上記エチレン系不飽和カルボン酸単量体としては特に限定されず、例えば、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、シトラコン酸、フマル酸、マレイン酸、無水マレイン酸、モノメチルフマレート、モノエチルフマレート、モノメチルマレエート、モノエチルマレエート等の不飽和カルボン酸類又はその誘導体等の1種又は2種以上が挙げられる。
これらの中でも、アクリル酸、メタクリル酸、アクリル酸から誘導されるエステル又は塩、及び、メタクリル酸から誘導されるエステル又は塩が単量体として好ましい。
なお、本明細書中、(メタ)アクリル酸系単量体とは、アクリロイル基若しくはメタクリロイル基、又は、これらの基における水素原子が他の原子若しくは原子団に置き換わった基を有し、かつ、-COOH基を有する単量体である。(メタ)アクリル酸系単量体にはアクリル酸及びメタクリル酸が含まれる。
また、本明細書中、(メタ)アクリル系単量体とは、アクリロイル基若しくはメタクリロイル基、又は、これらの基における水素原子が他の原子若しくは原子団に置き換わった基を有し、かつ、-COOH基がエステルとなった形態若しくは塩となった形態の単量体又はそのような単量体の誘導体である。(メタ)アクリル系単量体にはアクリレート及びメタクリレートが含まれる。
The ethylenically unsaturated carboxylic acid monomer is not particularly limited. For example, acrylic acid, methacrylic acid, crotonic acid, itaconic acid, citraconic acid, fumaric acid, maleic acid, maleic anhydride, monomethyl fumarate, monoethyl One type or two or more types of unsaturated carboxylic acids such as fumarate, monomethyl maleate, monoethyl maleate, or derivatives thereof may be used.
Among these, acrylic acid, methacrylic acid, esters or salts derived from acrylic acid, and esters or salts derived from methacrylic acid are preferred as monomers.
In the present specification, the (meth) acrylic acid monomer has an acryloyl group or a methacryloyl group, or a group in which a hydrogen atom in these groups is replaced with another atom or atomic group, and It is a monomer having a —COOH group. The (meth) acrylic acid monomer includes acrylic acid and methacrylic acid.
In this specification, the (meth) acrylic monomer has an acryloyl group or a methacryloyl group, or a group in which a hydrogen atom in these groups is replaced with another atom or atomic group, and A monomer in the form of a COOH group in the form of an ester or salt, or a derivative of such a monomer. The (meth) acrylic monomer includes acrylate and methacrylate.
上記ポリマーの原料となる単量体成分としては、(メタ)アクリル系単量体を、全単量体成分100質量%に対して、20質量%以上含有するものであることが好ましい。より好ましくは、30質量%以上である。また、(メタ)アクリル系単量体を、全単量体成分100質量%に対して、100質量%以下含有するものであることが好ましい。このような(メタ)アクリル系単量体の含有割合にすると、重合安定性に優れ、Tgの調整が容易であるため好ましい。 As a monomer component used as the raw material of the polymer, a (meth) acrylic monomer is preferably contained in an amount of 20% by mass or more based on 100% by mass of all monomer components. More preferably, it is 30 mass% or more. Moreover, it is preferable that a (meth) acrylic-type monomer is 100 mass% or less with respect to 100 mass% of all the monomer components. Such a content ratio of the (meth) acrylic monomer is preferable because of excellent polymerization stability and easy adjustment of Tg.
上記(メタ)アクリル系単量体のうち、-COOH基がエステルとなった形態の単量体としては、例えば、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、プロピルアクリレート、プロピルメタクリレート、イソプロピルアクリレート、イソプロピルメタクリレート、ブチルアクリレート、ブチルメタクリレート、イソブチルアクリレート、イソブチルメタクリレート、tert-ブチルアクリレート、tert-ブチルメタクリレート、ペンチルアクリレート、ペンチルメタクリレート、イソアミルアクリレート、イソアミルメタクリレート、ヘキシルアクリレート、ヘキシルメタクリレート、シクロヘキシルアクリレート、シクロヘキシルメタクリレート、オクチルアクリレート、オクチルメタクリレート、イソオクチルアクリレート、イソオクチルメタクリレート、ノニルアクリレート、ノニルメタクリレート、イソノニルアクリレート、イソノニルメタクリレート、デシルアクリレート、デシルメタクリレート、ドデシルアクリレート、ドデシルメタクリレート、トリデシルアクリレート、トリデシルメタクリレート、ヘキサデシルアクリレート、ヘキサデシルメタクリレート、オクタデシルアクリレート、オクタデシルメタクリレート、2-エチルヘキシルアクリレート、2-エチルヘキシルメタクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート、ジアリルフタレート、トリアリルシアヌレート、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、1,4-ブタンジオールジアクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジアクリレート、1,6-ヘキサンジオールジメタクリレート、ジエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、アリルアクリレート、アリルメタアクリレート、イソボルニルアクリレート、イソボルニルメタクリレート等;が挙げられ、これらの1種又は2種以上を使用することが好適である。 Among the above (meth) acrylic monomers, examples of the monomer in which the —COOH group is an ester include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, and isopropyl acrylate. , Isopropyl methacrylate, butyl acrylate, butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, tert-butyl acrylate, tert-butyl methacrylate, pentyl acrylate, pentyl methacrylate, isoamyl acrylate, isoamyl methacrylate, hexyl acrylate, hexyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, Octyl acrylate, octylme Chryrate, isooctyl acrylate, isooctyl methacrylate, nonyl acrylate, nonyl methacrylate, isononyl acrylate, isononyl methacrylate, decyl acrylate, decyl methacrylate, dodecyl acrylate, dodecyl methacrylate, tridecyl acrylate, tridecyl methacrylate, hexadecyl acrylate, hexadecyl Methacrylate, octadecyl acrylate, octadecyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, diallyl phthalate, triallyl cyanurate, Echile Glycol diacrylate, ethylene glycol dimethacrylate, 1,4-butanediol diacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, diethylene glycol diacrylate, diethylene glycol Dimethacrylate, allyl acrylate, allyl methacrylate, isobornyl acrylate, isobornyl methacrylate, and the like can be mentioned, and it is preferable to use one or more of these.
上記(メタ)アクリル系単量体のうち、-COOH基が塩となった形態の単量体の場合、塩としては、金属塩、アンモニウム塩、有機アミン塩等であることが好ましい。金属塩を形成する金属原子としては、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属原子等の1価の金属原子;カルシウム、マグネシウム等のアルカリ土類金属原子等の2価の金属原子;アルミニウム、鉄等の3価の金属原子が好適である。また、有機アミン塩としては、エタノールアミン塩、ジエタノールアミン塩、トリエタノールアミン塩等のアルカノールアミン塩や、トリエチルアミン塩が好適である。 Among the above (meth) acrylic monomers, in the case of a monomer having a form in which a —COOH group is converted into a salt, the salt is preferably a metal salt, an ammonium salt, an organic amine salt, or the like. Examples of the metal atom forming the metal salt include monovalent metal atoms such as alkali metal atoms such as lithium, sodium and potassium; divalent metal atoms such as alkaline earth metal atoms such as calcium and magnesium; aluminum, Trivalent metal atoms such as iron are preferred. Further, as the organic amine salt, an alkanolamine salt such as an ethanolamine salt, a diethanolamine salt, or a triethanolamine salt, or a triethylamine salt is preferable.
また、上記ポリマーの原料となる単量体成分における(メタ)アクリル酸系単量体の含有割合は、重合安定性の観点から全単量体成分100質量%に対して0~20質量%であることが好ましく、0~10質量%であることがより好ましい。(メタ)アクリル酸系単量体を含むことにより、本発明の振動減衰材用樹脂組成物が、後述する無機質充填剤等の充填剤を含む場合、充填剤の分散性が向上し、振動減衰性がより向上することになる。 In addition, the content ratio of the (meth) acrylic acid monomer in the monomer component used as a raw material for the polymer is 0 to 20% by mass with respect to 100% by mass of the total monomer components from the viewpoint of polymerization stability. It is preferable that the content is 0 to 10% by mass. By including the (meth) acrylic acid-based monomer, when the resin composition for vibration damping material of the present invention includes a filler such as an inorganic filler described later, the dispersibility of the filler is improved and vibration damping is achieved. Will be improved.
また、上記ポリマーは、その他の共重合可能なエチレン系不飽和単量体を単量体成分として含んでいてもよく、窒素原子を有する不飽和単量体、芳香環を有する不飽和単量体、不飽和カルボン酸単量体と共重合可能なその他の単量体が含まれる。
その他の共重合可能なエチレン系不飽和単量体を含むことにより、ポリマーの酸価、Tgや物性等を調整しやすくなる。
本発明の振動減衰材用樹脂組成物がこれらの単量体から形成されるものであると、振動減衰性に加え、加熱乾燥性にも優れたものとすることが可能となる。
The polymer may contain another copolymerizable ethylenically unsaturated monomer as a monomer component, an unsaturated monomer having a nitrogen atom, an unsaturated monomer having an aromatic ring. And other monomers copolymerizable with the unsaturated carboxylic acid monomer.
By including other copolymerizable ethylenically unsaturated monomers, it becomes easy to adjust the acid value, Tg, physical properties and the like of the polymer.
When the resin composition for vibration damping material of the present invention is formed from these monomers, it becomes possible to have excellent heat drying properties in addition to vibration damping properties.
上記芳香環を有する不飽和単量体としては、例えば、ジビニルベンゼン、スチレン、α-メチルスチレン、ビニルトルエン、エチルビニルベンゼン等が挙げられる。好ましくはスチレンである。
すなわち、上記単量体成分を重合してなるポリマーが、スチレンを含む単量体成分から得られたスチレン(メタ)アクリル系重合体であることもまた、本発明の好適な実施形態の1つである。
Examples of the unsaturated monomer having an aromatic ring include divinylbenzene, styrene, α-methylstyrene, vinyltoluene, and ethylvinylbenzene. Styrene is preferred.
That is, the polymer obtained by polymerizing the monomer component is also a styrene (meth) acrylic polymer obtained from a monomer component containing styrene, which is also a preferred embodiment of the present invention. It is.
上記単量体成分を重合してなるポリマーがスチレン(メタ)アクリル系重合体である場合、原料となる単量体成分は、単量体成分100質量%に対して、スチレン系単量体を1~90質量%含むことが好ましい。より好ましくは、1~80質量%であり、更に好ましくは、1~70質量%である。また特に好ましくは、1~50質量%であり、中でも特に好ましくは5~45質量%であり、最も好ましくは10~40質量%である。 When the polymer obtained by polymerizing the monomer component is a styrene (meth) acrylic polymer, the monomer component used as a raw material is a styrene monomer with respect to 100% by mass of the monomer component. It is preferable to contain 1 to 90% by mass. More preferably, it is 1 to 80% by mass, and still more preferably 1 to 70% by mass. Further, it is particularly preferably 1 to 50% by mass, particularly preferably 5 to 45% by mass, and most preferably 10 to 40% by mass.
上記窒素原子を有する不飽和単量体としては、例えば、アクリロニトリル、メタクリロニトリル、アクリルアミド、メタクリルアミド、ジアセトンアクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-メトキシエチル(メタ)アクリルアミド、N-n-ブトキシメチル(メタ)アクリルアミド、N-i-ブトキシメチル(メタ)アクリルアミド等が挙げられる。好ましくはアクリロニトリルである。
また、不飽和カルボン酸単量体と共重合可能なその他の単量体としては、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、塩化ビニル、エチレン、ブタジエン等が挙げられる。
Examples of the unsaturated monomer having a nitrogen atom include acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, diacetone acrylamide, N-methylol acrylamide, N-methylol methacrylamide, N-methoxymethyl (meth) acrylamide, Examples thereof include N-methoxyethyl (meth) acrylamide, Nn-butoxymethyl (meth) acrylamide, and Ni-butoxymethyl (meth) acrylamide. Acrylonitrile is preferred.
Other monomers that can be copolymerized with the unsaturated carboxylic acid monomer include vinyl formate, vinyl acetate, vinyl propionate, vinyl chloride, ethylene, butadiene, and the like.
上記単量体成分を重合してなるポリマーは、極性基含有単量体を含む単量体成分から得られたものであることが好ましい。振動減衰材用樹脂組成物が含むポリマーが極性基を有すると、ポリマーと可塑剤との相互作用が大きくなり、振動減衰性がより充分に発揮されることとなる。更に振動減衰材用樹脂組成物がポリマーを2種以上含む場合には、これらのポリマー間の相互作用がより大きなものとなり、ポリマー間の摩擦がより大きくなることから、振動減衰性がより充分に発揮されることとなる。
極性基含有単量体の含有割合は、単量体成分100質量%に対して40~100質量%であることが好ましい。極性基含有単量体の含有割合が40質量%より多いと、振動減衰性がより充分に発揮される。より好ましくは45~95質量%であり、更に好ましくは50~90質量%である。また更に、振動減衰材用樹脂組成物がポリマーを2種類以上含むと振動減衰性がより充分に発揮される。
The polymer obtained by polymerizing the monomer component is preferably obtained from a monomer component containing a polar group-containing monomer. If the polymer contained in the resin composition for vibration damping material has a polar group, the interaction between the polymer and the plasticizer is increased, and vibration damping is more sufficiently exhibited. Furthermore, when the resin composition for vibration damping material contains two or more polymers, the interaction between these polymers becomes larger, and the friction between the polymers becomes larger. Will be demonstrated.
The content of the polar group-containing monomer is preferably 40 to 100% by mass with respect to 100% by mass of the monomer component. When the content ratio of the polar group-containing monomer is more than 40% by mass, vibration damping is more sufficiently exhibited. More preferred is 45 to 95% by mass, and still more preferred is 50 to 90% by mass. Furthermore, when the resin composition for vibration damping material contains two or more kinds of polymers, vibration damping properties are more sufficiently exhibited.
上記極性基含有単量体が有する極性基としては、有機化合物において一般に極性基とされるものであればよいが、カルボン酸エステル、水酸基、ニトリル基、カルボキシル基、アミド基及びピロリドン基からなる群より選択される少なくとも1種であることが好ましい。より好ましくは、カルボン酸エステル、水酸基、及び/又はカルボキシル基である。 The polar group in the polar group-containing monomer is not limited as long as it is generally a polar group in an organic compound, but is a group consisting of a carboxylic acid ester, a hydroxyl group, a nitrile group, a carboxyl group, an amide group, and a pyrrolidone group. It is preferable that it is at least one selected from more. More preferably, they are a carboxylic acid ester, a hydroxyl group, and / or a carboxyl group.
上記ポリマーを形成する単量体成分は、更に、官能基を有する不飽和単量体を含んでいてもよい。該官能基を有する不飽和単量体における官能基としては、例えば、エポキシ基、グリシジル基、オキサゾリン基、カルボジイミド基、アジリジニル基、イソシアネート基、メチロール基、ビニルエーテル基、シクロカーボネート基、アルコキシシラン基等が挙げられる。これらの官能基は、不飽和単量体の1分子中に1種あってもよく、2種以上あってもよい。例えば、グリシジル(メタ)アクリレート、アクリルグリシジルエーテル等のグリシジル基含有不飽和単量体類等が挙げられ、これらは単独で用いてもよく、2種以上を併用してもよい。
また、官能基を1分子中に1つ有する単官能性不飽和単量体であってもよく、2つ以上有する多官能性不飽和単量体であってもよい。
The monomer component forming the polymer may further contain an unsaturated monomer having a functional group. Examples of the functional group in the unsaturated monomer having the functional group include an epoxy group, a glycidyl group, an oxazoline group, a carbodiimide group, an aziridinyl group, an isocyanate group, a methylol group, a vinyl ether group, a cyclocarbonate group, and an alkoxysilane group. Is mentioned. One kind of these functional groups may be present in one molecule of the unsaturated monomer, or two or more kinds thereof may be present. Examples thereof include glycidyl group-containing unsaturated monomers such as glycidyl (meth) acrylate and acrylic glycidyl ether, and these may be used alone or in combination of two or more.
Moreover, the monofunctional unsaturated monomer which has one functional group in 1 molecule may be sufficient, and the polyfunctional unsaturated monomer which has two or more may be sufficient.
上記多官能性不飽和単量体としては、例えば、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、N-メトキシメチル(メタ)アクリルアミド、N-メトキシエチル(メタ)アクリルアミド、N-n-ブトキシメチル(メタ)アクリルアミド、N-i-ブトキシメチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、ジアリルフタレート、ジアリルテレフタレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。 Examples of the polyfunctional unsaturated monomer include divinylbenzene, ethylene glycol di (meth) acrylate, N-methoxymethyl (meth) acrylamide, N-methoxyethyl (meth) acrylamide, Nn-butoxymethyl ( (Meth) acrylamide, Ni-butoxymethyl (meth) acrylamide, N-methylol (meth) acrylamide, diallyl phthalate, diallyl terephthalate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) ) Acrylate, tetramethylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentylglycol Di (meth) acrylate. These may be used alone or in combination of two or more.
本発明の振動減衰材用樹脂組成物が単量体成分を重合してなるポリマーを2種以上含む場合、2種の重合体は、例えば、重量平均分子量やガラス転移温度、SP値、使用される単量体の種類、単量体の使用割合等の各種物性のうちいずれかにおいて異なるものであればよい。中でも、重量平均分子量、ガラス転移温度の少なくとも1つで差を有するものであることが好適である。ガラス転移温度に差を有する2種類以上のポリマーを本発明の振動減衰材用樹脂組成物の構成で用いると、単純に2種類以上のポリマーを加えただけの構成と比較して、幅広い温度領域で振動減衰性能を発現させることが可能となる。また、ポリマーを適宜選択することで、振動減衰性能を発現させる温度領域も任意に設定することが可能となる。 When the resin composition for vibration damping material of the present invention contains two or more kinds of polymers obtained by polymerizing monomer components, the two kinds of polymers are used, for example, weight average molecular weight, glass transition temperature, SP value, etc. What is necessary is just to be different in any one of various physical properties such as the kind of monomer to be used and the proportion of the monomer used. Among them, it is preferable that there is a difference in at least one of the weight average molecular weight and the glass transition temperature. When two or more types of polymers having a difference in glass transition temperature are used in the configuration of the resin composition for vibration damping material of the present invention, a wider temperature range than a configuration in which two or more types of polymers are simply added. With this, vibration damping performance can be exhibited. In addition, by appropriately selecting a polymer, it is possible to arbitrarily set a temperature range in which vibration damping performance is exhibited.
上記単量体成分を重合してなるポリマーは、ガラス転移温度が-25~180℃であることが好ましい。ポリマーとして、このようなガラス転移温度を有するものを用いると、振動減衰材の実用温度域での振動減衰性能を効果的に発現することができることとなる。ポリマーのガラス転移温度は、より好ましくは-20~150℃であり、更に好ましくは、-20~120℃である。特に好ましくは、-15~100℃であり、最も好ましくは-10~80℃である。
なお、ポリマーのガラス転移温度(Tg)は、既に得られている知見に基づいて決定されてもよいし、後述する単量体成分の種類や使用割合によって制御されてもよいが、理論上は、以下の計算式(1)より算出することができる。
The polymer obtained by polymerizing the monomer components preferably has a glass transition temperature of −25 to 180 ° C. When a polymer having such a glass transition temperature is used as the polymer, vibration damping performance in the practical temperature range of the vibration damping material can be effectively expressed. The glass transition temperature of the polymer is more preferably −20 to 150 ° C., still more preferably −20 to 120 ° C. Particularly preferred is -15 to 100 ° C, and most preferred is -10 to 80 ° C.
The glass transition temperature (Tg) of the polymer may be determined based on the knowledge already obtained, or may be controlled by the type and proportion of the monomer component described later, but theoretically It can be calculated from the following calculation formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
式中、Tg’は、ポリマーのTg(絶対温度)である。W’、W’、・・・Wn’は、全単量体成分に対する各単量体の質量分率である。Tg、Tg、・・・Tgnは、各単量体成分からなるホモポリマー(単独重合体)のガラス転移温度(絶対温度)である。 In the formula, Tg ′ is Tg (absolute temperature) of the polymer. W 1 ′, W 2 ′,... Wn ′ are mass fractions of the respective monomers with respect to the total monomer components. Tg 1 , Tg 2 ,... Tgn are glass transition temperatures (absolute temperatures) of homopolymers (homopolymers) composed of the respective monomer components.
また、本発明の振動減衰材用樹脂組成物が単量体成分を重合してなるポリマーを2種以上含む場合、それらの中にガラス転移温度の差が5~100℃である2種のポリマーを含むことが好ましい。2種のポリマーのガラス転移温度の差が5℃以上100℃以下の場合には、高い振動減衰性を発現する温度域が充分に広くなる。
このようにガラス転移温度(Tg)に差を設けることにより、例えば、振動減衰材用途に適用したときに、幅広い温度領域下でより高い振動減衰性を発現させることが可能となり、特に実用的範囲である10~60℃域での振動減衰性が格段に向上されることとなる。ガラス転移温度(Tg)の差は、より好ましくは5~90℃であり、更に好ましくは5~80℃である。中でも更に好ましくは、5~60℃であり、特に好ましくは、5~50℃であり、最も好ましくは、5~40℃である。また、ガラス転移温度(Tg)の差の下限は、5℃以上が好ましく、10℃以上がより好ましく、15℃以上が更に好ましい。
後述するように、本発明の振動減衰材用樹脂組成物が単量体成分を重合してなるポリマーを2種以上含む場合には、2種以上のポリマーがコア部とシェル部とを有するエマルションの形態で存在する場合も含まれる。その場合には、コア部を形成するポリマーのガラス転移温度とシェル部を形成するポリマーのガラス転移温度の差が上記範囲にあることが好ましい。
Further, when the resin composition for vibration damping material of the present invention contains two or more kinds of polymers obtained by polymerizing monomer components, two kinds of polymers having a glass transition temperature difference of 5 to 100 ° C. among them. It is preferable to contain. When the difference between the glass transition temperatures of the two types of polymers is 5 ° C. or more and 100 ° C. or less, the temperature range in which high vibration damping properties are sufficiently widened.
By providing a difference in the glass transition temperature (Tg) in this way, for example, when applied to a vibration damping material, it becomes possible to express a higher vibration damping property under a wide temperature range. The vibration damping property in the range of 10 to 60 ° C. is significantly improved. The difference in glass transition temperature (Tg) is more preferably 5 to 90 ° C, and further preferably 5 to 80 ° C. Among them, more preferred is 5 to 60 ° C., particularly preferred is 5 to 50 ° C., and most preferred is 5 to 40 ° C. Moreover, 5 degreeC or more is preferable, as for the minimum of the difference of glass transition temperature (Tg), 10 degreeC or more is more preferable, and 15 degreeC or more is still more preferable.
As will be described later, when the resin composition for vibration damping material of the present invention contains two or more polymers obtained by polymerizing monomer components, the emulsion in which the two or more polymers have a core portion and a shell portion. The case where it exists with this form is also included. In that case, it is preferable that the difference of the glass transition temperature of the polymer which forms a core part and the glass transition temperature of the polymer which forms a shell part exists in the said range.
本発明の振動減衰材用樹脂組成物が単量体成分を重合してなるポリマーを2種以上含む場合、そのうち少なくとも1つのポリマーは、重量平均分子量が500~150万であるものが好ましい。このような重量平均分子量のものを用いることで、振動減衰性をより高めることができる。より好ましくは、500~100万であり、更に好ましくは、500~50万であり、更に一層好ましくは、500~30万である。特に好ましくは、500~20万であり、中でも特に好ましくは、1000~10万であり、最も好ましくは2000~5万である。単量体成分を重合してなるポリマーの重量平均分子量は、後述するGPCを用いた方法により測定することができる。 When the resin composition for vibration damping material of the present invention contains two or more polymers obtained by polymerizing monomer components, at least one of the polymers preferably has a weight average molecular weight of 500 to 1,500,000. By using a material having such a weight average molecular weight, the vibration damping property can be further increased. More preferably, it is 500 to 1,000,000, still more preferably 500 to 500,000, and still more preferably 500 to 300,000. Particularly preferred is 500 to 200,000, and particularly preferred is 1000 to 100,000, and most preferred is 2000 to 50,000. The weight average molecular weight of the polymer obtained by polymerizing the monomer component can be measured by a method using GPC described later.
本発明の振動減衰材用樹脂組成物は、振動減衰材用樹脂組成物の総量100質量%に対して、単量体成分を重合してなるポリマーを5~80質量%含んでなるものが好ましい。このようなポリマー含有量にすることで振動減衰性をより高めることができる。より好ましくは、10~80質量%含んでなるものである。更に好ましくは、15~70質量%含んでなるものであり、特に好ましくは、20~70質量%含んでなるものである。 The resin composition for vibration damping material of the present invention preferably contains 5 to 80% by mass of a polymer obtained by polymerizing monomer components with respect to 100% by mass of the total amount of the resin composition for vibration damping material. . By setting such a polymer content, vibration damping can be further enhanced. More preferably, it contains 10 to 80% by mass. More preferably, it contains 15 to 70% by mass, and particularly preferably 20 to 70% by mass.
上記単量体成分を重合してなるポリマーは、重量平均分子量が1万~150万であることが好ましい。重量平均分子量をこの範囲に設定することで、良好な加熱乾燥性が得られ、塗膜外観を損なわずに振動減衰性をより充分に発揮させることが可能となる。ポリマーの重量平均分子量は、より好ましくは1万~100万であり、更に好ましくは、2万~40万であり、特に好ましくは、3万~40万であり、最も好ましくは、4万~40万である。
なお、単量体成分を重合してなるポリマーの重量平均分子量は、例えば、以下の測定条件下で、GPC(ゲルパーミエーションクロマトグラフィー)測定により求めることができる。
測定機器:HLC-8120GPC(商品名、東ソー社製)
分子量カラム:TSK-GEL GMHXL-Lと、TSK-GELG5000HXL(いずれも東ソー社製)とを直列に接続して使用
溶離液:テトラヒドロフラン(THF)
検量線用標準物質:ポリスチレン(東ソー社製)
測定方法:測定対象物を固形分が約0.2質量%となるようにTHFに溶解し、フィルターにてろ過した物を測定サンプルとして分子量を測定する。
The polymer obtained by polymerizing the monomer components preferably has a weight average molecular weight of 10,000 to 1,500,000. By setting the weight average molecular weight within this range, good heat drying properties can be obtained, and vibration damping can be more fully exhibited without impairing the appearance of the coating film. The weight average molecular weight of the polymer is more preferably 10,000 to 1,000,000, still more preferably 20,000 to 400,000, particularly preferably 30,000 to 400,000, and most preferably 40,000 to 40,000. It is ten thousand.
In addition, the weight average molecular weight of the polymer formed by polymerizing the monomer component can be determined, for example, by GPC (gel permeation chromatography) measurement under the following measurement conditions.
Measuring instrument: HLC-8120GPC (trade name, manufactured by Tosoh Corporation)
Molecular weight column: TSK-GEL GMHXL-L and TSK-GELG5000HXL (both manufactured by Tosoh Corporation) are connected in series. Eluent: Tetrahydrofuran (THF)
Standard material for calibration curve: Polystyrene (manufactured by Tosoh Corporation)
Measurement method: The measurement object is dissolved in THF so that the solid content is about 0.2% by mass, and the molecular weight is measured using an object obtained by filtration through a filter as a measurement sample.
上記単量体成分を重合してなるポリマーは、溶解度パラメータ(SP値)が7~13であることが好ましい。ポリマーのSP値がこのような範囲にあると、可塑剤との相溶性に優れる。SP値はより好ましくは、7.3~12.5であり、更に好ましくは、7.6~12である。
ポリマーのSP値は、以下のSmallの式により求めることができる。
The polymer obtained by polymerizing the monomer components preferably has a solubility parameter (SP value) of 7 to 13. When the SP value of the polymer is in such a range, the compatibility with the plasticizer is excellent. The SP value is more preferably 7.3 to 12.5, and still more preferably 7.6 to 12.
The SP value of the polymer can be determined by the following Small formula.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
式中、δは、ポリマーのSP値である。Δeは、ポリマーを構成する単量体各成分の蒸発エネルギーの計算値(kcal/mol)であり、ΣΔeは、ポリマーを構成する全単量体成分の当該計算値の合計値である。ΔVは、ポリマーを構成する単量体各成分の分子容の計算値(ml/mol)であり、ΣΔVは、ポリマーを構成する全単量体成分の当該計算値の合計である。xは、ポリマーを構成する単量体各成分のモル分布である。
なお、単量体成分の蒸発エネルギー、及び、単量体成分の分子容は、通常用いられる計算値を用いることができる。
このように、構成する単量体の種類及びその構成比を調整することによって、ポリマーのSP値を調整することができる。
In the formula, δ is the SP value of the polymer. Δe 1 is a calculated value (kcal / mol) of the evaporation energy of each monomer component constituting the polymer, and ΣΔe 1 is a total value of the calculated values of all the monomer components constituting the polymer. ΔV m is the calculated value (ml / mol) of the molecular volume of each monomer component constituting the polymer, and ΣΔV m is the sum of the calculated values of all the monomer components constituting the polymer. x is the molar distribution of each monomer component constituting the polymer.
Note that normally used calculation values can be used for the evaporation energy of the monomer component and the molecular volume of the monomer component.
Thus, the SP value of the polymer can be adjusted by adjusting the type of monomer to be constituted and the composition ratio thereof.
本発明の振動減衰材用樹脂組成物は、可塑剤を含む。
好ましい可塑剤としては、例えば、芳香族炭化水素類、複素芳香族化合物類、有機酸類、及び、それらの変性物からなる群から選択された少なくとも1種である可塑剤が挙げられる。
本明細書中、「芳香族炭化水素類、複素芳香族化合物類、有機酸類、及び、それらの変性物からなる群から選択された少なくとも1種」とは、「芳香族炭化水素類、芳香族炭化水素類の変性物、複素芳香族化合物類、複素芳香族化合物類の変性物、有機酸類、及び、有機酸類の変性物からなる群から選択された少なくとも1種」と同義である。
The resin composition for vibration damping material of the present invention contains a plasticizer.
Preferable plasticizers include, for example, at least one plasticizer selected from the group consisting of aromatic hydrocarbons, heteroaromatic compounds, organic acids, and modified products thereof.
In the present specification, “at least one selected from the group consisting of aromatic hydrocarbons, heteroaromatic compounds, organic acids, and modified products thereof” means “aromatic hydrocarbons, aromatics”. It is synonymous with “at least one selected from the group consisting of modified hydrocarbons, heteroaromatic compounds, modified heteroaromatic compounds, organic acids, and modified organic acids”.
可塑剤の重量平均分子量としては100~4000であるものが好ましい。より好ましくは120~3000であり、更に好ましくは140~2000であり、特に好ましくは160~1000である。可塑剤の重量平均分子量が上記範囲内であると、ポリマーとの相溶性に優れるため好ましい。可塑剤の重量平均分子量を上記範囲に設定することで可塑剤のブリードアウトや加熱乾燥時の揮発を防止でき、振動減衰性を更に高めることが可能となる。
可塑剤の重量平均分子量は、例えば、以下の測定条件下で、GPC(ゲルパーミエーションクロマトグラフィー)測定により求めることができる。
測定機器:HLC-8120GPC(商品名、東ソー社製)
分子量カラム:TSK-GEL SuperHZ1000、TSK-GELSuperMultiporeHZ-M(いずれも東ソー社製)とを直列に接続して使用
溶離液:テトラヒドロフラン(THF)
検量線用標準物質:ポリスチレン(東ソー社製)
測定方法:測定対象物を固形分が約0.2質量%となるようにTHFに溶解し、フィルターにてろ過した物を測定サンプルとして分子量を測定する。
The weight average molecular weight of the plasticizer is preferably 100 to 4000. More preferably, it is 120 to 3000, still more preferably 140 to 2000, and particularly preferably 160 to 1000. It is preferable that the weight average molecular weight of the plasticizer is within the above range because of excellent compatibility with the polymer. By setting the weight average molecular weight of the plasticizer within the above range, it is possible to prevent the plasticizer from bleeding out and volatilization at the time of heating and drying, and to further improve the vibration damping property.
The weight average molecular weight of the plasticizer can be determined, for example, by GPC (gel permeation chromatography) measurement under the following measurement conditions.
Measuring instrument: HLC-8120GPC (trade name, manufactured by Tosoh Corporation)
Molecular weight column: TSK-GEL SuperHZ1000, TSK-GELSuperMultiporeHZ-M (both manufactured by Tosoh Corporation) are connected in series and used as eluent: tetrahydrofuran (THF)
Standard material for calibration curve: Polystyrene (manufactured by Tosoh Corporation)
Measurement method: The measurement object is dissolved in THF so that the solid content is about 0.2% by mass, and the molecular weight is measured using an object obtained by filtration through a filter as a measurement sample.
可塑剤は極性構造を可塑剤の重量平均分子量1000に対して1個以上の割合で有することが好ましい。より好ましくは重量平均分子量900に対して1個以上であり、更に好ましくは重量平均分子量800に対して1個以上であり、更に一層好ましくは重量平均分子量700に対して1個以上であり、特に好ましくは重量平均分子量600に対して1個以上であり、最も好ましくは重量平均分子量500に対して1個以上である。
極性構造とはヘテロ原子を含む構造であり、好ましくはエステル基、水酸基(水酸基にはフェノール性水酸基を含む)、ニトリル基、アミン基、カルボキシル基、クロロ基、リン酸基、アミド基、ピロリドン基、エーテル(環状エーテルを含む)、チアゾール、トリアゾール、キノリンである。より好ましくはエステル基、水酸基、アミン基であり、更に好ましくは水酸基、アミン基であり、最も好ましくは水酸基である。
例えば、重量平均分子量200の可塑剤が1分子に1個のアミン基を持つ場合、重量平均分子量1000に換算すると5個の極性構造を持つことになる。
可塑剤が上記割合で、上記種類の極性構造を有することにより、ポリマーとの相溶性に優れ、可塑剤の溶出の無い塗膜が得られやすくなる。
The plasticizer preferably has a polar structure in a ratio of 1 or more to the weight average molecular weight 1000 of the plasticizer. More preferably, it is 1 or more with respect to the weight average molecular weight 900, still more preferably 1 or more with respect to the weight average molecular weight 800, still more preferably 1 or more with respect to the weight average molecular weight 700, Preferably, the number is 1 or more for a weight average molecular weight of 600, and most preferably 1 or more for a weight average molecular weight of 500.
The polar structure is a structure containing a hetero atom, preferably an ester group, a hydroxyl group (the hydroxyl group includes a phenolic hydroxyl group), a nitrile group, an amine group, a carboxyl group, a chloro group, a phosphate group, an amide group, a pyrrolidone group. , Ethers (including cyclic ethers), thiazoles, triazoles and quinolines. More preferred are an ester group, a hydroxyl group and an amine group, still more preferred are a hydroxyl group and an amine group, and most preferred is a hydroxyl group.
For example, when a plasticizer with a weight average molecular weight of 200 has one amine group per molecule, it will have five polar structures when converted to a weight average molecular weight of 1000.
When the plasticizer has the above-mentioned ratio and the above-mentioned type of polar structure, it becomes easy to obtain a coating film having excellent compatibility with the polymer and no elution of the plasticizer.
可塑剤の好ましい流動点としては、-70~200℃である。より好ましくは-60~170℃であり、さらに好ましくは-50~140℃であり、特に好ましくは-40~110℃であり、最も好ましくは-30~80℃である。
可塑剤が上記範囲に流動点を有するとポリマーとの相溶性に優れ、ポリマーと可塑剤とを含む本発明の振動減衰材用樹脂組成物の損失係数のピーク温度(DPTとする)の調整が容易になる。
A preferred pour point of the plasticizer is -70 to 200 ° C. More preferably, it is −60 to 170 ° C., further preferably −50 to 140 ° C., particularly preferably −40 to 110 ° C., and most preferably −30 to 80 ° C.
When the plasticizer has a pour point in the above range, the compatibility with the polymer is excellent, and the adjustment of the peak temperature (referred to as DPT) of the loss coefficient of the resin composition for vibration damping material of the present invention containing the polymer and the plasticizer is possible. It becomes easy.
可塑剤としての芳香族炭化水素類又は芳香族炭化水素類の変性物としては、例えば、フタル酸ビス(2-エチルヘキシル)、フタル酸ジイソノニル、フタル酸ジイソデシル、フタル酸ジウンデシル、フタル酸ビス(2-ブトキシエチル)、フタル酸ジトリデシル等のフタル酸エステル類、トリメリット酸エステル類、テレフタル酸ビス(2-エチルヘキシル)等のテレフタル酸エステル類、安息香酸グリコールエステル等の安息香酸エステル類、スチレン化フェノール類等が挙げられる。
さらに、p-(p-トルエンスルホニルアミド)ジフェニルアミン、N-シクロヘキシル-p-トルエンスルホンアミド、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン、アルキル化ジフェニルアミン(例えば、オクチル化ジフェニルアミン)、N,N’-ジ-2-ナフチル-p-フェニレンジアミン、N-フェニルベンゼンジアミンとスチレン、2,4,4-トリメチルペンタンとの反応物等の芳香族第二級アミン類、1,3-ジフェニルグアニジン、N,N’-ジフェニルグアニジン、N,N’-ジオルトトリルグアニジン等のグアニジン類、N,N’-ジフェニルチオ尿素等のチオウレア類、α,α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、n-ブチルアルデヒドアニリン等のアニリン類、エチル-2-シアノ-3,3-ジフェニルアクリレート、オクチル-2-シアノ-3,3-ジフェニルアクリレート等のジフェニルアクリレート類、2-ハイドロキシ-4-メトキシベンゾフェノン、2-ハイドロキシ-4-メトキシベンゾフェノン-5-スルフォニックアシド等のベンゾフェノン類、1,1’-ビス(4-ヒドロキシフェニル)シクロヘキサン、2,2’-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-ノニルフェノール)、2,2’-メチレンビス(4-メチル-6-シクロへキシルフェノール)、2,2’-メチレンビス(4-メチルフェノール)、2,2’-メチレンビス(4-プロピルフェノール)、2,2’-メチレンビス(4-クロロフェノール)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、2,2’-イソブチリデンビス(4,6-ジメチルフェノール)、2,2’-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、4,4’-チオビスフェノール、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、4,4’-チオビス(2-メチル-6-t-ブチルフェノール)、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)、4,4’-メチレンビス(2,5-ジメチルフェノール)、4,4’-メチレンビス(2-メチル-5-エチルフェノール)、4,4’-メチレンビス(2-メチル-5-プロピルフェノール)、4,4’-エチレンビス(2,6-ジ-t-ブチルフェノール)、4,4’-イソプロピリデンビス(2,6-ジ-t-ブチルフェノール)、4,4’-イソプロピリデンビス(2,7-ジ-t-ブチルフェノール)、4,4’-ブチリデンビス(2,6-ジ-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、4,4’-ジヒドロキシビフェニル、1,3,5-トリメチル-2,4,6-トリス-(3,5-ジ-t-ブチル-4ヒドロキシベンジル)-ベンゼン、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、p-クレゾールとジシクロペンタジエンのブチル化反応生成物、1,4-ビス(4-ベンゾイル-3-ヒドロキシフェノキシ)-ブタン、1-[2-{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ}エチル]-4-{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ}-2,2,6,6-テトラメチルピペリジン、1,1,3-トリス(5-t-ブチル-4-ヒドロキシ-2-メチルフェニル)ブタン、2,5-ジ-t-ブチルハイドロキノン、3,9-ビス[1,1-ジメチル-2-〔(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕エチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、4-ビニルフェノール、テトラキス(メチレン-ジ-t-ブチル-4-ヒドロハイドロシンナメート)、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレ-ト、ペンタエリスリチル-テトラ[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、α,α’-ビス(4-ヒドロキシフェニル)-1,4-ジイソプロピルベンゼン、テトラキス(メチレン-3,5-ジ-t-ブチル-4-ヒドロハイドロシンナメート)、ハイドロキノン等のフェノール類、1,5-ジヒドロキシナフタレン、5-アミノ-1-ナフトール、2-アミノ-6-ヒドロキシナフトール等のナフトール類が挙げられる。
Examples of the aromatic hydrocarbons or modified aromatic hydrocarbons as the plasticizer include bis (2-ethylhexyl) phthalate, diisononyl phthalate, diisodecyl phthalate, diundecyl phthalate, and bis (2- Butoxyethyl), phthalates such as ditridecyl phthalate, trimellitic esters, terephthalates such as bis (2-ethylhexyl) terephthalate, benzoates such as glycol benzoate, and styrenated phenols Etc.
In addition, p- (p-toluenesulfonylamide) diphenylamine, N-cyclohexyl-p-toluenesulfonamide, 4,4′-bis (α, α-dimethylbenzyl) diphenylamine, alkylated diphenylamine (eg, octylated diphenylamine), Aromatic secondary amines such as N, N′-di-2-naphthyl-p-phenylenediamine, a reaction product of N-phenylbenzenediamine with styrene and 2,4,4-trimethylpentane, 1,3- Guanidines such as diphenylguanidine, N, N'-diphenylguanidine, N, N'-diortolylguanidine, thioureas such as N, N'-diphenylthiourea, α, α'-bis (4-aminophenyl) Anilines such as 1,4-diisopropylbenzene, n-butyraldehyde aniline, ethyl- -Diphenyl acrylates such as cyano-3,3-diphenyl acrylate and octyl-2-cyano-3,3-diphenyl acrylate, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic Benzophenones such as acid, 1,1′-bis (4-hydroxyphenyl) cyclohexane, 2,2′-bis (4-hydroxy-3-methylphenyl) propane, 2,2′-methylenebis (4-methyl-6) -T-butylphenol), 2,2'-methylenebis (4-methyl-6-nonylphenol), 2,2'-methylenebis (4-methyl-6-cyclohexylphenol), 2,2'-methylenebis (4- Methylphenol), 2,2'-methylenebis (4-propylphenol), 2, '-Methylenebis (4-chlorophenol), 2,2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 2,2' -Isobutylidenebis (4,6-dimethylphenol), 2,2'-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 4,4'- Thiobisphenol, 4,4′-thiobis (3-methyl-6-tert-butylphenol), 4,4′-thiobis (2-methyl-6-tert-butylphenol), 4,4′-methylenebis (2,6- Di-t-butylphenol), 4,4'-methylenebis (2,5-dimethylphenol), 4,4'-methylenebis (2-methyl-5-ethylphenol), 4,4'-methylenebis ( 2-methyl-5-propylphenol), 4,4′-ethylenebis (2,6-di-t-butylphenol), 4,4′-isopropylidenebis (2,6-di-t-butylphenol), 4 , 4'-isopropylidenebis (2,7-di-t-butylphenol), 4,4'-butylidenebis (2,6-di-t-butylphenol), 4,4'-butylidenebis (3-methyl-6- t-butylphenol), 4,4′-dihydroxybiphenyl, 1,3,5-trimethyl-2,4,6-tris- (3,5-di-t-butyl-4hydroxybenzyl) -benzene, 1,6 -Hexanediol-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], butylated reaction product of p-cresol and dicyclopentadiene, 1,4-bis 4-benzoyl-3-hydroxyphenoxy) -butane, 1- [2- {3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy} ethyl] -4- {3- (3 5-di-tert-butyl-4-hydroxyphenyl) propionyloxy} -2,2,6,6-tetramethylpiperidine, 1,1,3-tris (5-tert-butyl-4-hydroxy-2-methyl) Phenyl) butane, 2,5-di-tert-butylhydroquinone, 3,9-bis [1,1-dimethyl-2-[(3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl ] -2,4,8,10-tetraoxaspiro [5.5] undecane, 4-vinylphenol, tetrakis (methylene-di-t-butyl-4-hydrohydrocinnamate), Su- (3,5-di-t-butyl-4-hydroxybenzyl) -isocyanurate, pentaerythrityl-tetra [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], Triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], α, α'-bis (4-hydroxyphenyl) -1,4-diisopropylbenzene, tetrakis (methylene -3,5-di-t-butyl-4-hydrohydrocinnamate), phenols such as hydroquinone, 1,5-dihydroxynaphthalene, 5-amino-1-naphthol, 2-amino-6-hydroxynaphthol, etc. Examples include naphthols.
また、複素芳香族化合物類又は複素芳香族化合物類の変性物としては、6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリン等のキノリン類、N-シクロへキシル-2-ベンゾチアゾールスルフェンアミド、N-オキシジエチレン-2-ベンゾチアゾリルスルフェンアミド、N-(t-ブチル)-2-ベンゾチアゾールスルフェンアミド、N,N-ジシクロへキシルベンゾチアゾール-2-スルフェンアミド、2-メルカプトベンゾチアゾール、ジベンゾチアジルスルフィド等のベンゾチアジル類、2-(2’-ヒドロキシ-5’-メチルフェニル)-ベンゾトリアゾール、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、3-[3-t-ブチル-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシフェニル]プロピオン酸オクチル、3-[3-t-ブチル-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル]プロピオン酸オクチル、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ハイドロキシ-3’-(3,4,5,6-テトラハイドロフタルイミドメチル)-5’-メチルフェニル]ベンゾトリアゾール、2-(2’-ハイドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ハイドロキシ-3’-t-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ハイドロキシ-3’,5’-ジ-t-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ハイドロキシ-5’-t-オクチルフェノール)ベンゾトリアゾール等のベンゾトリアゾール類等が挙げられる。 Heteroaromatic compounds or modified products of heteroaromatic compounds include quinolines such as 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline, N-cyclohexyl-2- Benzothiazole sulfenamide, N-oxydiethylene-2-benzothiazolyl sulfenamide, N- (t-butyl) -2-benzothiazole sulfenamide, N, N-dicyclohexylbenzothiazole-2-sulfen Amido, 2-mercaptobenzothiazole, benzothiazyl such as dibenzothiazyl sulfide, 2- (2′-hydroxy-5′-methylphenyl) -benzotriazole, 2- (3-t-butyl-5-methyl-2- Hydroxyphenyl) -5-chlorobenzotriazole, 3- [3-tert-butyl-5- (5-chloro-2H-) Nzotriazol-2-yl) -4-hydroxyphenyl] propionate, octyl 3- [3-tert-butyl-5- (5-chloro-2H-benzotriazol-2-yl) phenyl] propionate, 2 -[2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy-3 ′-(3,4,5,6-tetrahydrophthalimide) Methyl) -5′-methylphenyl] benzotriazole, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3′-t-butyl-5′-methylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3 ', 5'-di-t-butylphenyl) -5-chlorobenzotriazo Le, 2- (2'-hydroxy-5'-t-octylphenol) benzotriazoles such as benzotriazole, and the like.
また、有機酸類又は有機酸類の変性物としては、アジピン酸ビス(2-エチルヘキシル)、アジピン酸ジイソノニル、アジピン酸ジイソデシル、アジピン酸ビス(2-ブトキシエチル)等のアジピン酸エステル類、クエン酸トリブチル、アセチルクエン酸トリブチル等のクエン酸エステル類、セバシン酸ジブチル等のセバシン酸エステル類、アゼライン酸ジヘキシル、アゼライン酸ジオクチル等のアゼライン酸類、ステアリン酸エステル類、リン酸トリクレジル、リン酸トリフェニル等のリン酸エステル類、エポキシ化大豆油等のエポキシ化油脂類、2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル等のヒドロキシアルキルビニルエーテル類、グリセリントリアセテート、グリセリントリプロピオネート等のグリセリン類、トリエチレングリコールジカプレート類、ポリカプロラクトン類、アジピン酸ポリエステル等のポリエステル類等が挙げられる。
さらに、3,3’-チオビスプロピオン酸ジトリデシル、3,3’-チオビスプロピオン酸ジドデシル等の有機チオ酸類、トリス(ノニルフェニル)ホスファイト、ジフェニルイソデシルホスファイト、ジ(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、ヘキサ(トリデシル)-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタントリホスファイト等の亜リン酸類、リン酸トリフェニル、2-エチルヘキシルジフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、クレジル-ジ-2,6-キシレニルホスフェート、3,9-ビス(4-ノニルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファピロ[5.5]ウンデカン等のリン酸エステル類等が挙げられる。
Examples of organic acids or modified organic acids include adipate esters such as bis (2-ethylhexyl) adipate, diisononyl adipate, diisodecyl adipate, bis (2-butoxyethyl) adipate, tributyl citrate, Citric acid esters such as tributyl acetyl citrate, sebacic acid esters such as dibutyl sebacate, azelaic acid such as dihexyl azelate and dioctyl azelate, stearic acid esters, tricresyl phosphate, and triphenyl phosphate Esters, epoxidized fats and oils such as epoxidized soybean oil, hydroxyalkyl vinyl ethers such as 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, cyclohexanedimethanol monovinyl ether, glycerin tria Tate, glycerin such as glycerin tripropionate, triethylene glycol dicaprate, poly caprolactone, polyesters such as adipic acid polyester.
Furthermore, organic thioacids such as ditridecyl 3,3′-thiobispropionate and didodecyl 3,3′-thiobispropionate, tris (nonylphenyl) phosphite, diphenylisodecylphosphite, di (nonylphenyl) pentaerythritol Diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, hexa (tridecyl) -1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) ) Phosphorous acids such as butane triphosphite, triphenyl phosphate, 2-ethylhexyl diphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, cresyl-di-2,6-xylenyl phosphate, 3 , 9-Bis (4-nonylpheno Shi) tetraoxa-3,9 Jihosufapiro [5.5] phosphoric acid esters such as undecane.
また、その他の可塑剤としては、ポリエーテル類、ポリブテン類、塩素化パラフィン類等が挙げられる。 Other plasticizers include polyethers, polybutenes, chlorinated paraffins, and the like.
本明細書において、スチレン化フェノール類とは、フェノール類とスチレン類を反応原料として得られる有機低分子である。
フェノール類としては、例えば、フェノールの他、1,2-ジヒドロキシベンゼン、1,3-ジヒドロキシベンゼン、1,4-ジヒドロキシベンゼン、1,2,3-トリヒドロキシベンゼン等の多価フェノール類、(o-,m-,p-)クレゾール、4-t-ブチルフェノール、4-t-ブチルカテコール、4-オクチルフェノール、2,3-ジメチルフェノール、2,4-ジメチルフェノール、2,5-ジメチルフェノール、2,6-ジメチルフェノール、3,4-ジメチルフェノール、3,5-ジメチルフェノール等のアルキルフェノール類、1-ナフトール、2-ナフトール、1,4-ジヒドロキシナフタレン、9,10-アントラセンジオール等の多環芳香族(多価)フェノール類が挙げられる。
In this specification, styrenated phenols are organic low molecules obtained by using phenols and styrenes as reaction raw materials.
Examples of phenols include polyhydric phenols such as 1,2-dihydroxybenzene, 1,3-dihydroxybenzene, 1,4-dihydroxybenzene, 1,2,3-trihydroxybenzene, and the like in addition to phenol (o -, M-, p-) cresol, 4-t-butylphenol, 4-t-butylcatechol, 4-octylphenol, 2,3-dimethylphenol, 2,4-dimethylphenol, 2,5-dimethylphenol, 2, Alkylphenols such as 6-dimethylphenol, 3,4-dimethylphenol and 3,5-dimethylphenol, polycyclic aromatics such as 1-naphthol, 2-naphthol, 1,4-dihydroxynaphthalene and 9,10-anthracenediol (Polyvalent) phenols are mentioned.
スチレン類としては、スチレン、ジビニルベンゼン、α-メチルスチレン、ビニルトルエン、エチルビニルベンゼン、4-t-ブチルスチレン、4-ビニル安息香酸等が挙げられ、好ましくはスチレンである。 Examples of styrenes include styrene, divinylbenzene, α-methylstyrene, vinyltoluene, ethylvinylbenzene, 4-t-butylstyrene, 4-vinylbenzoic acid, and styrene is preferable.
これらのフェノール類とスチレン類が反応して得られるスチレン化フェノール類としては、フェノールとスチレンが反応して得られるモノ(又はジ,トリ)(α-メチルベンジル)フェノールが好ましい。
スチレン化フェノール類が、モノ(又はジ,トリ)(α-メチルベンジル)フェノールである場合、モノ-α-メチルベンジルフェノール、ジ-α-メチルベンジルフェノール、トリ-α-メチルベンジルフェノールのうちの1種を含んでもよく、2種以上を含む混合物でもよい。上記2種以上の混合物の場合にそれらの配合割合は特に限定されるものではない。
As the styrenated phenol obtained by reacting these phenols with styrene, mono (or di, tri) (α-methylbenzyl) phenol obtained by reacting phenol with styrene is preferable.
When the styrenated phenol is mono (or di, tri) (α-methylbenzyl) phenol, one of mono-α-methylbenzylphenol, di-α-methylbenzylphenol and tri-α-methylbenzylphenol 1 type may be included and the mixture containing 2 or more types may be sufficient. In the case of the above two or more kinds of mixtures, the blending ratio thereof is not particularly limited.
本発明の振動減衰材用樹脂組成物における可塑剤の含有量は、振動減衰材用樹脂組成物中の単量体成分を重合してなるポリマー100重量部に対して10~2000重量部であることが好ましい。このような割合で可塑剤を含むことで、振動減衰材用樹脂組成物がより優れた振動減衰性を発揮するものとなる。より好ましくは、単量体成分を重合してなるポリマー100重量部に対して可塑剤を10~1000重量部含んでなるものであり、更に好ましくは、10~500重量部含んでなるものである。また特に好ましくは、10~200重量部含んでなるものであり、中でも特に好ましくは、15~180重量部含んでなるものであり、最も好ましくは、20~160重量部含んでなるものである。 The plasticizer content in the vibration damping material resin composition of the present invention is 10 to 2000 parts by weight with respect to 100 parts by weight of the polymer obtained by polymerizing the monomer component in the vibration damping material resin composition. It is preferable. By including the plasticizer at such a ratio, the resin composition for vibration damping material exhibits more excellent vibration damping properties. More preferably, it comprises 10 to 1000 parts by weight of a plasticizer, more preferably 10 to 500 parts by weight, per 100 parts by weight of a polymer obtained by polymerizing monomer components. . Further, it is particularly preferred that it comprises 10 to 200 parts by weight, particularly preferred that it comprises 15 to 180 parts by weight, and most preferred that it comprises 20 to 160 parts by weight.
本発明の振動減衰材用樹脂組成物は、単量体成分を重合してなるポリマーが水系溶媒中にエマルションの形態で存在した水系の組成物である。
可塑剤や後述する高分子系増粘剤は、上記ポリマー中に含まれていてもよく、又は、可塑剤や後述する高分子系増粘剤が水系溶媒中にエマルションの形態で存在していてもよいが、増粘剤は、エマルションの水相に溶解した状態であることがとくに好ましい。
The resin composition for vibration damping material of the present invention is an aqueous composition in which a polymer obtained by polymerizing a monomer component is present in the form of an emulsion in an aqueous solvent.
The plasticizer and the polymer thickener described below may be included in the polymer, or the plasticizer and the polymer thickener described below are present in the form of an emulsion in the aqueous solvent. However, it is particularly preferred that the thickener is in a state dissolved in the aqueous phase of the emulsion.
本発明において、ポリマーのエマルションの粘度としては特に限定されないが、10~10000mPa・sであることが好ましく、より好ましくは15~8000mPa・sであり、更に好ましくは20~6000mPa・sである。このような粘度のエマルションを用いることで顔料の分散性が向上し、振動減衰性をより充分に発揮することが可能となる。
なお、粘度は、B型回転粘度計を用いて、25℃、20rpmの条件下で測定することができる。
In the present invention, the viscosity of the polymer emulsion is not particularly limited, but is preferably 10 to 10000 mPa · s, more preferably 15 to 8000 mPa · s, and still more preferably 20 to 6000 mPa · s. By using an emulsion having such a viscosity, the dispersibility of the pigment is improved, and vibration damping properties can be more fully exhibited.
The viscosity can be measured using a B-type rotational viscometer under the conditions of 25 ° C. and 20 rpm.
本発明において、振動減衰材用樹脂組成物の粘度は、特に限定されないが、振動減衰材用樹脂組成物が含むポリマー、可塑剤及び、高分子系増粘剤を含む場合は更に高分子系増粘剤を混合した状態で、B型回転粘度計を用いて測定した粘度として定められる。
B型回転粘度計を用いて、25℃、20rpmの条件下で測定した粘度(以下、高剪断粘度(η2))と、25℃、2rpmの条件下で測定した粘度(以下、低剪断粘度(η1))を測定して得られる、低剪断粘度(η1)と高剪断粘度(η2)の比(=η1/η2)をTI値と呼び、TI値が1以上9以下であることが好ましい。
TI値のより好ましい下限値は2であり、更に好ましい下限値は3である。
また、TI値のより好ましい上限値は8であり、更に好ましい上限値は7である。
また、高分子増粘剤を含まない、単量体成分を重合してなるポリマーと可塑剤が含まれる組成物の粘度は、25℃、20rpmの条件下で測定した粘度が10~10000mPa・sであることが好ましく、より好ましくは15~8000mPa・sであり、更に好ましくは20~6000mPa・sである。
このような粘度の振動減衰材用樹脂組成物を用いることで顔料の分散性が向上し、振動減衰性をより充分に発揮することが可能となる。
In the present invention, the viscosity of the vibration damping material resin composition is not particularly limited. However, when the vibration damping material resin composition includes a polymer, a plasticizer, and a polymer thickener, the polymer thickener is further increased. It is determined as the viscosity measured using a B-type rotational viscometer in the state where the adhesive is mixed.
Using a B-type rotational viscometer, the viscosity measured under conditions of 25 ° C. and 20 rpm (hereinafter referred to as high shear viscosity (η2)) and the viscosity measured under conditions of 25 ° C. and 2 rpm (hereinafter referred to as low shear viscosity (hereinafter referred to as “low shear viscosity”) The ratio (= η1 / η2) between the low shear viscosity (η1) and the high shear viscosity (η2) obtained by measuring η1)) is called a TI value, and the TI value is preferably 1 or more and 9 or less.
A more preferred lower limit of the TI value is 2, and a more preferred lower limit is 3.
Further, a more preferable upper limit value of the TI value is 8, and a more preferable upper limit value is 7.
In addition, the viscosity of a composition containing a polymer obtained by polymerizing monomer components and a plasticizer that does not contain a polymer thickener is 10 to 10,000 mPa · s measured at 25 ° C. and 20 rpm. It is preferably 15 to 8000 mPa · s, more preferably 20 to 6000 mPa · s.
By using the resin composition for vibration damping material having such a viscosity, the dispersibility of the pigment is improved, and the vibration damping property can be more fully exhibited.
本発明の振動減衰材用樹脂組成物は、振動減衰材用樹脂組成物全体100重量部に対する、組成物中の不揮発分が20~90質量%であることが好ましい。不揮発分量がこのような範囲にあることで、振動減衰材用樹脂組成物が塗布により塗膜を形成しやすく、また、塗膜がより優れた振動減衰性を発揮することとなる。組成物中の不揮発分は、より好ましくは、30~87質量%であり、更に好ましくは、40~84質量%である。
なお、ここでいう不揮発分とは、エマルションに含まれる水系溶媒以外の成分を意味する。
The resin composition for vibration damping material of the present invention preferably has a nonvolatile content in the composition of 20 to 90% by mass with respect to 100 parts by weight of the entire resin composition for vibration damping material. When the non-volatile content is in such a range, the resin composition for vibration damping material can easily form a coating film by coating, and the coating film exhibits more excellent vibration damping properties. The non-volatile content in the composition is more preferably 30 to 87% by mass, and still more preferably 40 to 84% by mass.
In addition, the non-volatile content here means components other than the aqueous solvent contained in an emulsion.
本発明の振動減衰材用樹脂組成物におけるエマルション粒子の平均粒子径は50~450nmであるものであることが好ましい。
平均粒子径がこの範囲にあるエマルション粒子を用いることにより、振動減衰材用に要求される加熱乾燥性、塗工性等の基本性能を充分なものとした上で、振動減衰性をより優れたものとすることができる。上記上限は、より好ましくは400nm以下であり、更に好ましくは350nm以下である。また、上記下限は、特に好ましくは、100nm以上である。エマルション粒子の平均粒子径がこのような範囲であると、本発明の振動減衰材用樹脂組成物の作用効果がより効果的に発揮されることになる。また、平均粒子径の下限は、好ましくは65nm以上であり、より好ましくは80nm以上である。
平均粒子径(体積平均粒子径)は、例えば、エマルションを蒸留水で希釈し、充分に攪拌混合した後、ガラスセルに約10ml採取し、これを動的光散法による粒度分布測定器(Particle Sizing Systems社製「NICOMP Model 380」)で測定することにより求めることができる。
The average particle diameter of the emulsion particles in the vibration damping material resin composition of the present invention is preferably 50 to 450 nm.
By using emulsion particles with an average particle diameter in this range, the basic properties such as heat drying properties and coating properties required for vibration damping materials will be sufficient, and vibration damping properties will be even better. Can be. The upper limit is more preferably 400 nm or less, still more preferably 350 nm or less. The lower limit is particularly preferably 100 nm or more. When the average particle diameter of the emulsion particles is within such a range, the operational effects of the resin composition for vibration damping material of the present invention are more effectively exhibited. Moreover, the lower limit of the average particle diameter is preferably 65 nm or more, more preferably 80 nm or more.
The average particle size (volume average particle size) can be determined by, for example, diluting the emulsion with distilled water, thoroughly stirring and mixing, then collecting about 10 ml in a glass cell, and measuring the particle size distribution analyzer (Particle) by the dynamic light scattering method. It can be determined by measuring with “NICOMP Model 380” manufactured by Sizing Systems.
上記平均粒子径を有するエマルション粒子は、標準偏差をその体積平均粒子径で割った値(標準偏差/体積平均粒子径×100)で定義される粒度分布が、40%以下であることが好ましい。より好ましくは30%以下である。このような範囲に粒度分布を設定すれば振動減衰材用樹脂組成物が充分な加熱乾燥性を発揮することができる。 The emulsion particles having the above average particle diameter preferably have a particle size distribution defined by a value obtained by dividing the standard deviation by the volume average particle diameter (standard deviation / volume average particle diameter × 100) of 40% or less. More preferably, it is 30% or less. When the particle size distribution is set within such a range, the resin composition for vibration damping material can exhibit sufficient heat drying properties.
また、本発明の振動減衰材用樹脂組成物のpHとしては特に限定されないが、4~12であることが好ましく、より好ましくは5~11であり、更に好ましくは6~10である。振動減衰材用樹脂組成物のpHは、当該樹脂に、アンモニア水、水溶性アミン類、水酸化アルカリ水溶液等を添加することによって調整することができる。このようなpHにすると振動減衰材用樹脂組成物の機械的安定性が向上し、加熱乾燥時の塗膜外観を損なわず振動減衰性をより充分に発揮することが可能となる。
本明細書中、pHは、pHメーターにより測定することができる。例えば、pHメーター(堀場製作所社製「F-23」)を用いて25℃での値を測定することが好ましい。
The pH of the resin composition for vibration damping material of the present invention is not particularly limited, but is preferably 4 to 12, more preferably 5 to 11, and still more preferably 6 to 10. The pH of the vibration damping material resin composition can be adjusted by adding ammonia water, water-soluble amines, alkaline hydroxide aqueous solution, or the like to the resin. When such pH is set, the mechanical stability of the resin composition for vibration damping material is improved, and vibration damping properties can be more fully exhibited without impairing the appearance of the coating film during heat drying.
In this specification, pH can be measured with a pH meter. For example, it is preferable to measure the value at 25 ° C. using a pH meter (“F-23” manufactured by Horiba, Ltd.).
本発明において、単量体成分を重合してなるポリマーは、上述したように1種の重合体であってもよく、2種以上の重合体からなるものでもよい。また、ポリマーが2種以上の重合体からなり、それらが複合化した形態のものであってもよいが、2種以上のポリマーがコア部とシェル部とを有するエマルションの形態で存在する、いわゆるコア・シェル構造であることが好ましい。
コア・シェル複合構造を有するエマルションは、実用温度範囲内の幅広い範囲における振動減衰性に優れる。特に高温域においても、他の形態の振動減衰材配合物と比較して優れた振動減衰性を発揮し、その結果、実用温度範囲内において、常温から高温域まで幅広い範囲に渡って振動減衰性能を発揮することができる。
コア・シェル構造においては、コア部の表面がシェル部によって被覆された形態であることが好ましい。この場合、コア部の表面は、シェル部によって完全に被覆されていることが好適であるが、完全に被覆されていなくてもよく、例えば、網目状に被覆されている形態や、所々においてコア部が露出している形態であってもよい。
上記コア部とシェル部とを有するエマルション粒子は、後述する乳化重合法(多段重合)を用いて得ることができる。
In the present invention, the polymer obtained by polymerizing the monomer component may be one kind of polymer as described above, or may be composed of two or more kinds of polymers. Further, the polymer may be composed of two or more kinds of polymers, and may be in a form in which they are combined, but two or more kinds of polymers exist in the form of an emulsion having a core part and a shell part, so-called A core-shell structure is preferred.
An emulsion having a core-shell composite structure is excellent in vibration damping properties in a wide range within a practical temperature range. Especially in the high temperature range, it exhibits superior vibration damping properties compared to other forms of vibration damping material blends. As a result, vibration damping performance over a wide range from room temperature to high temperature within the practical temperature range. Can be demonstrated.
In the core-shell structure, it is preferable that the surface of the core part is covered with the shell part. In this case, it is preferable that the surface of the core part is completely covered with the shell part, but it may not be completely covered. For example, the core part may be covered in a mesh shape or in some places. The part may be exposed.
The emulsion particles having the core part and the shell part can be obtained by using an emulsion polymerization method (multistage polymerization) described later.
また、ポリマーエマルションを形成するポリマーのうち少なくとも1種がコア部とシェル部とを有するエマルション粒子の形態であることが好ましい。これにより、ポリマー間の界面を多くすることができ、振動減衰性向上等の効果をより大きくすることができる。 Moreover, it is preferable that at least 1 type in the polymer which forms a polymer emulsion is a form of the emulsion particle which has a core part and a shell part. Thereby, the interface between polymers can be increased and effects, such as a vibration damping improvement, can be enlarged more.
本発明において、単量体成分を重合してなるポリマーが、コア部とシェル部とを有する形態である場合、エチレン系不飽和カルボン酸単量体及びエチレン系不飽和カルボン酸系単量体と共重合可能な他の単量体は、エマルションのコア部を形成する単量体成分、シェル部を形成する単量体成分のいずれに含まれていてもよく、これらの両方に用いられるものであってもよい。また、コア部を形成する単量体成分中の各単量体の好ましい含有割合、及び、シェル部を形成する単量体成分中の各単量体の好ましい含有割合は、上述したものと同様である。 In the present invention, when the polymer obtained by polymerizing the monomer component has a core part and a shell part, an ethylenically unsaturated carboxylic acid monomer and an ethylenically unsaturated carboxylic acid monomer The other copolymerizable monomer may be contained in either the monomer component that forms the core part of the emulsion or the monomer component that forms the shell part, and is used for both of these. There may be. Moreover, the preferable content rate of each monomer in the monomer component which forms a core part, and the preferable content rate of each monomer in the monomer component which forms a shell part are the same as what was mentioned above. It is.
本発明において、単量体成分を重合してなるポリマーが、コア部とシェル部とを有する形態である場合、コア部を構成する単量体成分の合計質量とシェル部を構成する単量体成分の合計質量との質量比(コア部/シェル部)が、30/70~70/30であることが好ましい。このような範囲にあるとコア・シェル複合構造であることの効果をより充分に発揮することができる。より好ましくは、35/65~65/35である。 In the present invention, when the polymer obtained by polymerizing the monomer component is in a form having a core part and a shell part, the total mass of the monomer components constituting the core part and the monomer constituting the shell part The mass ratio (core part / shell part) to the total mass of the components is preferably 30/70 to 70/30. Within such a range, the effect of the core / shell composite structure can be more fully exhibited. More preferably, it is 35/65 to 65/35.
本発明の振動減衰材用樹脂組成物が含むポリマーの少なくとも1種がコア部とシェル部とを有するエマルション粒子の形態である場合、コア部を形成する単量体成分から得られるポリマーとシェル部を形成する単量体成分から得られるポリマーとは、重量平均分子量やガラス転移温度、SP値(溶解度係数)、使用される単量体の種類、単量体の使用割合等の各種物性のうちいずれかにおいて異なるものであればよいが、中でも、重量平均分子量、ガラス転移温度の少なくとも1つで差を有するものであることが好適である。
コア部を形成する単量体成分から得られるポリマーとシェル部を形成する単量体成分から得られるポリマーとのガラス転移温度(Tg)の差は、上述したポリマーを2種以上含む場合のガラス転移温度の差と同様であることが好ましい。
また、コア部を形成する単量体成分とシェル部を形成する単量体成分とを合わせたトータルの単量体成分からから得られるポリマーのTgは、-25~180℃であることが好ましい。より好ましくは、-20~150℃であり、更に好ましくは、-20~120℃である。中でも更に好ましくは、-20~100℃であり、特に好ましくは-15~100℃であり、中でも特に好ましくは、-10~100℃であり、最も好ましくは、-10~80℃である。
上記コア部とシェル部とを有するエマルション粒子は、後述する乳化重合法(多段重合)を用いて得ることができる。
When at least one of the polymers contained in the resin composition for vibration damping material of the present invention is in the form of emulsion particles having a core part and a shell part, the polymer and shell part obtained from the monomer component forming the core part The polymer obtained from the monomer component that forms the weight average molecular weight, the glass transition temperature, the SP value (solubility coefficient), the type of monomer used, the usage ratio of the monomer, etc. Any one of them may be different, but among them, it is preferable that there is a difference in at least one of the weight average molecular weight and the glass transition temperature.
The difference in glass transition temperature (Tg) between the polymer obtained from the monomer component forming the core part and the polymer obtained from the monomer component forming the shell part is the glass in the case of containing two or more kinds of the above-mentioned polymers. The same as the difference in transition temperature is preferred.
The Tg of the polymer obtained from the total monomer component including the monomer component forming the core portion and the monomer component forming the shell portion is preferably −25 to 180 ° C. . More preferably, it is −20 to 150 ° C., and further preferably −20 to 120 ° C. Among them, it is more preferably −20 to 100 ° C., particularly preferably −15 to 100 ° C., particularly preferably −10 to 100 ° C., and most preferably −10 to 80 ° C.
The emulsion particles having the core part and the shell part can be obtained by using an emulsion polymerization method (multistage polymerization) described later.
水系溶媒としては、特に限定されず、例えば、水、水と混じり合うことができる溶媒の1種又は2種以上の混合溶媒、このような溶媒に水が主成分となるように混合した混合溶媒等が挙げられる。これらの中でも、本発明における振動減衰材用樹脂組成物を含む塗料を塗布する際の安全性や環境への影響を考慮すると、水が好適である。 The aqueous solvent is not particularly limited. For example, water, one or more mixed solvents that can be mixed with water, or a mixed solvent in which water is the main component in such a solvent. Etc. Among these, water is preferable in consideration of safety and environmental influence when applying a paint containing the vibration damping material resin composition of the present invention.
本発明の振動減衰材用樹脂組成物は、高分子系増粘剤を含むことが好ましい。
塗料用途に用いられる組成物は、塗料中の顔料等の分散が良好であることや、塗布後に塗料がタレることがなく塗布後の外観が良好となることが好ましい。振動減衰材用樹脂組成物が高分子系増粘剤を含むことによって、塗料として用いたときに顔料分散性が向上するとともに塗布時のタレが抑制される。また、高分子系増粘剤を含むことで、本発明の振動減衰材用樹脂組成物から得られる塗膜は、外観に割れが生じることがなく、耐衝撃性が高く、柔軟性に優れて曲げても割れがたいものとなる。また、乾燥後に薄膜になるという効果も得られる。
好ましい高分子系増粘剤の構造例としては、ポリビニルアルコール系増粘剤、ポリビニルピロリドン系増粘剤、不飽和カルボン酸(共)重合体系増粘剤、セルロース誘導体系増粘剤、及び、ポリエーテルウレタン変性物系増粘剤が挙げられる。
The resin composition for vibration damping material of the present invention preferably includes a polymer thickener.
It is preferable that the composition used for the paint application has good dispersion of pigments in the paint, and the appearance after application is good without sagging the paint after application. When the resin composition for vibration damping material contains a polymer thickener, pigment dispersibility is improved when used as a paint, and sagging during application is suppressed. In addition, the coating film obtained from the resin composition for vibration damping material of the present invention by containing a polymer thickener has no impact, high impact resistance, and excellent flexibility. Even if it bends, it becomes difficult to crack. Moreover, the effect that it becomes a thin film after drying is also acquired.
Examples of preferred polymeric thickener structures include polyvinyl alcohol thickeners, polyvinylpyrrolidone thickeners, unsaturated carboxylic acid (co) polymer thickeners, cellulose derivative thickeners, and poly An ether urethane modified material thickener is mentioned.
また、本発明の高分子系増粘剤の分類の例としては、チキソトロピー付与型増粘剤及びニュートン流動性付与型増粘剤が挙げられる。
ここで、本発明におけるチキソトロピー付与型増粘剤とは、液体の粘度を向上させる増粘剤であって、チキソトロピー(揺変性)を付与する作用を有するものをいう。一方ニュートン流動性付与型増粘剤とは、エマルションのような非ニュートン粘性の液体の性質を、ニュートン粘性に近づけるもの、即ち非ニュートン粘性の液体にニュートン流動性を付与する作用を有する増粘剤をいう。
これらのうち、本発明の高分子系増粘剤としては、チキソトロピー付与型増粘剤がより好ましい。
チキソトロピー付与型増粘剤は、低剪断粘度(η1)を増大させる作用が強く、それに比べて高剪断粘度(η2)を増大させる作用が弱い。この特性は本発明で用いる高分子系増粘剤として適した特性であるといえる。
Examples of the classification of the polymeric thickener of the present invention include thixotropy imparting type thickeners and Newtonian fluidity imparting type thickeners.
Here, the thixotropy imparting thickener in the present invention is a thickener that improves the viscosity of a liquid and has a function of imparting thixotropy (thixotropic property). On the other hand, a Newtonian fluidity-providing thickener is a thickener that has the properties of a non-Newtonian liquid such as an emulsion close to Newtonian viscosity, that is, a function that imparts Newtonian fluidity to a non-Newtonian liquid. Say.
Among these, as the polymer thickener of the present invention, a thixotropic imparting thickener is more preferable.
The thixotropy imparting thickener has a strong effect of increasing the low shear viscosity (η1), and has a weaker effect of increasing the high shear viscosity (η2). This characteristic can be said to be a characteristic suitable as a polymer thickener used in the present invention.
チキソトロピー付与型増粘剤の具体例としては、不飽和カルボン酸(共)重合体系増粘剤、例えばプライマル(登録商標)ASE-60、プライマルTT-615(ローム&ハース社製)、ゾーゲン(登録商標)100、ゾーゲン150、ゾーゲン200、ゾーゲン250、ゾーゲン350(第一工業製薬(株)製)、RHEOLATE1、RHEOLATE101、RHEOLATE430(RHEOX社製)、SNシックナーA-815、SNシックナーA-818(サンノプコ(株)製)、RHEOVIS CR(一方社油脂工業(株)製)、アロンB-300K、アロンA-7070(東亞合成(株)製)、チクゾールK-150B(共栄社油脂化学工業(株)製)、アクリセット(登録商標)WR-503A、アクリセットWR-507、アクリセットWR-650((株)日本触媒製)、ポリエーテルウレタン変性物系増粘剤、例えばアデカノール(登録商標)UH-462、アデカノールUH-752(旭電化工業(株)製)、RHEOLATE266、RHEOLATE288(RHEOX社製)が挙げられる。チキソトロピー付与型増粘剤として、これらの1種または2種以上を使用することができる。 Specific examples of thixotropy imparting thickeners include unsaturated carboxylic acid (co) polymer thickeners such as Primal (registered trademark) ASE-60, Primal TT-615 (Rohm & Haas), Zogen (registered) Trademark) 100, Zogen 150, Zogen 200, Zogen 250, Zogen 350 (Daiichi Kogyo Seiyaku Co., Ltd.), RHEOLATE1, RHEOLATE101, RHEOLATE430 (RHEOX), SN Thickener A-815, SN Thickner A-818 (Sannopco) ), RHEOVIS CR (manufactured by Yushi Kogyo Co., Ltd.), Aron B-300K, Aron A-7070 (manufactured by Toagosei Co., Ltd.), Chikuzol K-150B (manufactured by Kyoeisha Yushi Chemical Co., Ltd.) ), Acre Reset (registered trademark) WR-503A, Acre Reset WR- 07, Acriset WR-650 (manufactured by Nippon Shokubai Co., Ltd.), polyether urethane modified thickeners such as Adecanol (registered trademark) UH-462, Adecanol UH-752 (Asahi Denka Kogyo Co., Ltd.), RHEOLATE266 and RHEOLATE288 (RHEOX) are listed. One or more of these can be used as a thixotropy imparting thickener.
ニュートン流動性付与型増粘剤の具体例として、不飽和カルボン酸(共)重合体系増粘剤、例えばプライマルASE-75、プライマルASE-95、プライマルASE-108、プライマルRM-5(ローム&ハース社製)、SNシックナーA-850(サンノプコ(株)製)、ポリエーテルポリオール系の増粘剤、例えばRHEOLATE300、RHEOLATE310、RHEOLATE350(RHEOX社製)、SNシックナーA-801、SNシックナーA-806、SNシックナーA-816(サンノプコ(株)製)、チクゾールT-210、チクゾールT-212(共栄社油脂化学工業(株)製)、ポリエーテルウレタン変性物系増粘剤、例えばアデカノールUH-140S、アデカノールUH-420、アデカノールUH-438、アデカノールUH-472、アデカノールUH-450、アデカノールUH-540、アデカノールUH-550、アデカノールUH-541、アデカノールUH-526、アデカノールUH-530(旭電化工業(株)製)、RHEOLATE244、RHEOLATE255、RHEOLATE278(RHEOX社製)、SNシックナーA-803、SNシックナーA-804、SNシックナーA-807、SNシックナーA-812、SNシックナーA-814(サンノプコ(株)製)が挙げられる。上記のもの以外のニュートン流動性付与型増粘剤の具体例として、さらに、DKシックナーSCT-200、DKシックナーSCT-270(第一工業製薬(株)製)を挙げることができる。ニュートン流動性付与型増粘剤として、これらの1種または2種以上を使用することができる。 Specific examples of Newtonian fluidity-providing thickeners include unsaturated carboxylic acid (co) polymer thickeners such as Primal ASE-75, Primal ASE-95, Primal ASE-108, Primal RM-5 (Rohm & Haas) SN thickener A-850 (manufactured by San Nopco), polyether polyol type thickeners such as RHEOLATE300, RHEOLATE310, RHEOLATE350 (RHEOX), SN thickener A-801, SN thickener A-806, SN thickener A-816 (manufactured by Sannopco), Tixol T-210, Tixol T-212 (manufactured by Kyoeisha Oil Chemical Co., Ltd.), polyether urethane modified thickeners such as Adecanol UH-140S, Adecanol UH-420, Adecanol U -438, Adecanol UH-472, Adecanol UH-450, Adecanol UH-540, Adecanol UH-550, Adecanol UH-541, Adecanol UH-526, Adecanol UH-530 (Asahi Denka Kogyo Co., Ltd.), RHEOLATE 244, RHEOLATE25 , RHEOLATE 278 (manufactured by RHEOX), SN thickener A-803, SN thickener A-804, SN thickener A-807, SN thickener A-812, SN thickener A-814 (manufactured by San Nopco). Specific examples of Newtonian fluidity-providing thickeners other than those mentioned above can further include DK thickener SCT-200 and DK thickener SCT-270 (Daiichi Kogyo Seiyaku Co., Ltd.). One or more of these can be used as a Newtonian fluidity-providing thickener.
また、ポリビニルアルコール系増粘剤としては、PVA-105、PVA-CST、PVA-217、PVA-420H((株)クラレ製)等が挙げられる。
ポリビニルピロリドン系増粘剤としては、ポリビニルピロリドンK-30、K-85、K-90((株)日本触媒製)等が挙げられる。
不飽和カルボン酸(共)重合体系増粘剤としては、上記チキソトロピー付与型増粘剤の具体例又はニュートン流動性付与型増粘剤の具体例として挙げた増粘剤が挙げられる。
セルロース誘導体系増粘剤としては、CMCダイセル2200、2260、2280、2450(ダイセルファインケム(株)製)、ポイズC-60H、C-150L(花王社製)等が挙げられる。
ポリエーテルウレタン変性物系増粘剤としては、上記チキソトロピー付与型増粘剤の具体例又はニュートン流動性付与型増粘剤の具体例として挙げた増粘剤が挙げられる。
これらの中でも、不飽和カルボン酸(共)重合体系増粘剤がより好ましく、アルカリ可溶型の不飽和カルボン酸(共)重合体系増粘剤がさらに好ましい。
不飽和カルボン酸(共)重合体系増粘剤は、飽和カルボン酸単量体を重合してなるポリマーと併用した場合にポリマーとの親和性に優れるため好ましい。
Examples of the polyvinyl alcohol thickener include PVA-105, PVA-CST, PVA-217, and PVA-420H (manufactured by Kuraray Co., Ltd.).
Examples of the polyvinyl pyrrolidone thickener include polyvinyl pyrrolidone K-30, K-85, K-90 (manufactured by Nippon Shokubai Co., Ltd.) and the like.
Examples of the unsaturated carboxylic acid (co) polymer thickener include the thickeners listed as specific examples of the thixotropy imparting thickener or the Newton fluidity imparting thickener.
Examples of the cellulose derivative-based thickener include CMC Daicel 2200, 2260, 2280, 2450 (manufactured by Daicel Finechem Co., Ltd.), Poise C-60H, C-150L (manufactured by Kao Corporation), and the like.
Examples of the polyether urethane-modified thickener include the thickeners listed as specific examples of the thixotropy imparting thickener or the Newton fluidity imparting thickener.
Among these, unsaturated carboxylic acid (co) polymer thickeners are more preferable, and alkali-soluble unsaturated carboxylic acid (co) polymer thickeners are more preferable.
Unsaturated carboxylic acid (co) polymer thickeners are preferred because they have excellent affinity with polymers when used in combination with polymers obtained by polymerizing saturated carboxylic acid monomers.
高分子系増粘剤の添加量は、単量体成分を重合してなるポリマーの固形分100重量部に対する固形分換算で、好ましくは0.1重量部以上、より好ましくは0.2重量部以上、さらに好ましくは0.25重量部以上で、好ましくは10重量部以下、より好ましくは5重量部以下、さらに好ましくは2重量部以下である。 The amount of the polymeric thickener added is preferably 0.1 parts by weight or more, more preferably 0.2 parts by weight, in terms of solid content with respect to 100 parts by weight of the solid content of the polymer obtained by polymerizing the monomer component. More preferably, it is 0.25 parts by weight or more, preferably 10 parts by weight or less, more preferably 5 parts by weight or less, and still more preferably 2 parts by weight or less.
また、高分子系増粘剤の重量平均分子量は、好ましくは300,000以上、より好ましくは500,000以上、さらに好ましくは700,000以上、最も好ましくは1,000,000以上である。
高分子系増粘剤の重量平均分子量は、上述するGPCを用いた方法により測定することができる。
The weight average molecular weight of the polymeric thickener is preferably 300,000 or more, more preferably 500,000 or more, still more preferably 700,000 or more, and most preferably 1,000,000 or more.
The weight average molecular weight of the polymeric thickener can be measured by the method using GPC as described above.
本発明の振動減衰材用樹脂組成物の損失正接(tanδ)のピーク温度(TPTとする)は、0℃以上100℃以下であることが好ましい。
本発明の振動減衰材用樹脂組成物のTPTは、振動減衰材用樹脂組成物が含むポリマーと可塑剤と、更に高分子増粘剤を含む場合は高分子増粘剤を混合した状態で測定した動的粘弾性測定での損失正接(tanδ)のピーク温度として定められる。
振動減衰材用樹脂組成物のTPTは0℃以上であることが好ましく、より好ましくは10℃以上であり、さらに好ましくは20℃以上である。
また、振動減衰材用樹脂組成物のTPTは100℃以下であることが好ましく、より好ましくは80℃以下であり、さらに好ましくは60℃以下である。
本発明の振動減衰材用樹脂組成物のTPTがこのような範囲にあると、振動減衰材用樹脂組成物のDPTを実用温度域に調整することが容易であるため好ましい。
上記損失正接の測定方法としては、動的粘弾性測定により、損失正接tanδを求める方法を用いることができる。動的粘弾性測定は、例えば、レオメーター(RSAIII、TAinstruments社製、又は、ARES、TAinstruments社製)を用いて行うことができる。
上記損失正接のピーク温度は、表面が平滑なテフロン(登録商標)板上に乾燥後膜厚が0.2mmとなるように振動減衰材用樹脂組成物を塗布し、90℃で30分乾燥後、100℃で30分減圧乾燥し、長さ25mm×幅5mmのサイズに切り出したサンプルにより測定することができる。
又は、表面が平滑なテフロン(登録商標)板上に乾燥後膜厚が0.5mmとなるように振動減衰材用樹脂組成物を塗布し、90℃で30分乾燥後、100℃で30分減圧乾燥し、直径25mmのサイズに切り出したサンプルを用いた、ずりモードによる測定方法により行うことができる。
The loss tangent (tan δ) peak temperature (TPT) of the resin composition for vibration damping material of the present invention is preferably 0 ° C. or higher and 100 ° C. or lower.
The TPT of the resin composition for vibration damping material of the present invention is measured in a state where the polymer and plasticizer included in the resin composition for vibration damping material are mixed with the polymer thickener when the polymer thickener is further included. The peak temperature of the loss tangent (tan δ) in the dynamic viscoelasticity measurement.
The TPT of the vibration damping material resin composition is preferably 0 ° C. or higher, more preferably 10 ° C. or higher, and further preferably 20 ° C. or higher.
Moreover, it is preferable that TPT of the resin composition for vibration damping materials is 100 ° C. or less, more preferably 80 ° C. or less, and further preferably 60 ° C. or less.
When the TPT of the resin composition for vibration damping material of the present invention is in such a range, it is preferable because it is easy to adjust the DPT of the resin composition for vibration damping material to a practical temperature range.
As a method for measuring the loss tangent, a method for determining the loss tangent tan δ by dynamic viscoelasticity measurement can be used. The dynamic viscoelasticity measurement can be performed using, for example, a rheometer (RSAIII, manufactured by TA Instruments, or ARES, manufactured by TA Instruments).
The loss tangent peak temperature was as follows. The resin composition for vibration damping material was applied on a Teflon (registered trademark) plate with a smooth surface so that the film thickness after drying was 0.2 mm, and dried at 90 ° C. for 30 minutes. It can be measured with a sample which is dried under reduced pressure at 100 ° C. for 30 minutes and cut into a size of 25 mm long × 5 mm wide.
Alternatively, the resin composition for vibration damping material is applied on a Teflon (registered trademark) plate having a smooth surface so that the film thickness after drying is 0.5 mm, dried at 90 ° C. for 30 minutes, and then at 100 ° C. for 30 minutes. It can carry out by the measuring method by a shear mode using the sample dried under reduced pressure and cut out to the size of 25 mm in diameter.
本発明の振動減衰材用樹脂組成物は、単量体成分を重合してなるポリマーと、可塑剤とを含み、更に必要に応じて高分子系増粘剤を含むものである限り、その他の成分を含んでもよい。
その他の成分を含む場合、振動減衰材用樹脂組成物全体に対して、その他の成分の割合は、10質量%以下であることが好ましく、より好ましくは5質量%以下である。なお、ここでいうその他の成分とは、振動減衰材用樹脂組成物を塗布し、加熱乾燥した後も塗膜中に残る不揮発分(固形分)のことを意味し、水系溶媒や有機溶媒は含まれない。
本発明の振動減衰材用樹脂組成物は、固形分の含有割合が振動減衰材用樹脂組成物全体に対して40~90質量%であることが好ましく、より好ましくは50~80質量%である。このような固形分の含有割合にすることで加熱乾燥性が向上し、塗膜外観を損なわず振動減衰性をより充分に発揮することが可能となる。
The resin composition for vibration damping material of the present invention contains a polymer obtained by polymerizing monomer components and a plasticizer, and further contains other components as long as it contains a polymer thickener as necessary. May be included.
When other components are included, the proportion of the other components is preferably 10% by mass or less, and more preferably 5% by mass or less, with respect to the entire resin composition for vibration damping material. The term “other components” as used herein refers to the non-volatile content (solid content) remaining in the coating film even after the resin composition for vibration damping material is applied and dried by heating. Not included.
In the vibration damping material resin composition of the present invention, the solid content is preferably 40 to 90% by mass, more preferably 50 to 80% by mass, based on the entire vibration damping material resin composition. . By making the content of such a solid content, the heat drying property is improved, and the vibration damping property can be more fully exhibited without impairing the appearance of the coating film.
本発明の振動減衰材用樹脂組成物の製造方法において、本発明の振動減衰材用樹脂に含有されるポリマーは、乳化剤の存在下で乳化重合法により単量体成分を重合することよって製造することができる。
乳化重合を行う形態としては特に限定されず、例えば、水系溶媒中に単量体成分、重合開始剤及び乳化剤を適宜加えて重合することにより行うことができる。また、分子量調節のために重合連鎖移動剤等を用いることが好ましい。
In the method for producing a vibration damping material resin composition of the present invention, the polymer contained in the vibration damping material resin of the present invention is produced by polymerizing a monomer component by an emulsion polymerization method in the presence of an emulsifier. be able to.
The form for carrying out the emulsion polymerization is not particularly limited. For example, the emulsion polymerization can be carried out by suitably adding a monomer component, a polymerization initiator and an emulsifier to an aqueous solvent for polymerization. Moreover, it is preferable to use a polymerization chain transfer agent or the like for molecular weight adjustment.
上記エマルションがコア部とシェル部とを有するエマルションである場合、通常の乳化重合法を用いて得ることが好ましい。具体的には、乳化剤及び/又は保護コロイドの存在下、水系溶媒中で単量体成分を乳化重合させてコア部を形成した後、該コア部を含むエマルションに更に単量体成分を乳化重合させてシェル部を形成する多段重合により得ることが好ましい。このように、ポリマーエマルションがコア部とシェル部とを有するエマルションであって、該エマルションがコア部を形成した後、シェル部を形成する多段重合により得られるものである形態もまた、本発明の好適な形態の1つである。 When the emulsion is an emulsion having a core part and a shell part, it is preferably obtained by using a usual emulsion polymerization method. Specifically, after the monomer component is emulsion-polymerized in an aqueous solvent in the presence of an emulsifier and / or protective colloid to form a core part, the monomer component is further emulsion-polymerized into an emulsion containing the core part. It is preferably obtained by multistage polymerization that forms a shell portion. Thus, a form in which the polymer emulsion is an emulsion having a core part and a shell part, and the emulsion is obtained by multistage polymerization that forms a shell part after the core part is formed, is also of the present invention. One preferred form.
上記乳化剤の使用量としては、重合性不飽和結合基を有する化合物の総量100質量%に対して、好ましくは0.1~10質量%である。より好ましくは0.5~7質量%であり、更に好ましくは1~6質量%である。このような範囲に使用量を設定すれば、機械安定性を充分に向上でき、重合安定性が充分に維持できる。 The amount of the emulsifier used is preferably 0.1 to 10% by mass with respect to 100% by mass of the total amount of compounds having a polymerizable unsaturated bond group. More preferably, it is 0.5-7% by mass, and still more preferably 1-6% by mass. If the amount used is set within such a range, the mechanical stability can be sufficiently improved and the polymerization stability can be sufficiently maintained.
上記乳化剤としては、アニオン性(系)、カチオン性(系)、ノニオン性(系)、両性の各種界面活性剤、及び、高分子界面活性剤の1種又は2種以上を用いることができる。
上記アニオン系界面活性剤としては特に限定されず、例えば、ポリオキシアルキレンアルキルエーテル硫酸エステル塩、ポリオキシアルキレンオレイルエーテル硫酸ナトリウム塩、ポリオキシアルキレンアルキルフェニルエーテル硫酸エステル塩、アルキルジフェニルエーテルジスルホン酸塩、ポリオキシアルキレン(モノ、ジ、トリ)スチリルフェニルエーテル硫酸エステル塩、ポリオキシアルキレン(モノ、ジ、トリ)ベンジルフェニルエーテル硫酸エステル塩、アルケニルコハク酸ジ塩;ナトリウムドデシルサルフェート、カリウムドデシルサルフェート、アンモニウムアルキルサルフェート等のアルキルサルフェート塩;ナトリウムドデシルポリグリコールエーテルサルフェート;ナトリウムスルホリシノエート;スルホン化パラフィン塩等のアルキルスルホネート;ナトリウムドデシルベンゼンスルホネート、アルカリフェノールヒドロキシエチレンのアルカリ金属サルフェート等のアルキルスルホネート;高アルキルナフタレンスルホン酸塩;ナフタレンスルホン酸ホルマリン縮合物;ナトリウムラウレート、トリエタノールアミンオレエート、トリエタノールアミンアビエテート等の脂肪酸塩;ポリオキシアルキルエーテル硫酸エステル塩;ポリオキシエチレンカルボン酸エステル硫酸エステル塩;ポリオキシエチレンフェニルエーテル硫酸エステル塩;コハク酸ジアルキルエステルスルホン酸塩;ポリオキシエチレンアルキルアリールサルフェート塩等が挙げられる。これらの1種又は2種以上を用いることができる。
As the emulsifier, one or more of anionic (system), cationic (system), nonionic (system), amphoteric surfactants and polymer surfactants can be used.
The anionic surfactant is not particularly limited, and examples thereof include polyoxyalkylene alkyl ether sulfate, polyoxyalkylene oleyl ether sulfate sodium salt, polyoxyalkylene alkylphenyl ether sulfate, alkyl diphenyl ether disulfonate, poly Oxyalkylene (mono, di, tri) styryl phenyl ether sulfate, polyoxyalkylene (mono, di, tri) benzyl phenyl ether sulfate, alkenyl succinate; sodium dodecyl sulfate, potassium dodecyl sulfate, ammonium alkyl sulfate Alkyl sulfate salts such as sodium dodecyl polyglycol ether sulfate; sodium sulforicinoate; Alkyl sulfonates such as sodium salts; alkyl sulfonates such as sodium dodecylbenzene sulfonate and alkali metal sulfates of alkali phenol hydroxyethylene; high alkyl naphthalene sulfonates; naphthalene sulfonic acid formalin condensates; sodium laurate, triethanolamine oleate, tri Fatty acid salts such as ethanolamine abietate; polyoxyalkyl ether sulfate ester; polyoxyethylene carboxylic ester sulfate salt; polyoxyethylene phenyl ether sulfate ester; succinic acid dialkyl ester sulfonate salt; polyoxyethylene alkyl aryl sulfate Examples include salts. These 1 type (s) or 2 or more types can be used.
上記アニオン系界面活性剤として好適な市販品としては、例えば、ラテムルWX、ラテムル118B、ペレックスSS-H、エマルゲンA-60、B-66、レベノールWZ(花王社製)、ニューコール707SF、ニューコール707SN、ニューコール714SF、ニューコール714SN、AB-26S、ABEX-2010、2020、2030、DSB(ローディア日華社製)等を挙げることができる。
また、これらのノニオンタイプに相当する界面活性剤も使用することができる。
Commercially available products suitable as the anionic surfactant include, for example, Latemul WX, Latemul 118B, Perex SS-H, Emulgen A-60, B-66, Lebenol WZ (manufactured by Kao Corporation), New Coal 707SF, New Coal 707SN, New Call 714SF, New Call 714SN, AB-26S, ABEX-2010, 2020, 2030, DSB (manufactured by Rhodia Nikka Co., Ltd.) and the like.
In addition, surfactants corresponding to these nonionic types can also be used.
上記アニオン系界面活性剤としては、また反応性界面活性剤として、反応性アニオン系界面活性剤、スルホコハク酸塩型反応性アニオン系界面活性剤、アルケニルコハク酸塩型反応性アニオン系界面活性剤等の1種又は2種以上を用いることができる。
スルホコハク酸塩型反応性アニオン系界面活性剤の市販品としては、ラテムルS-120、S-120A、S-180及びS-180A(いずれも商品名、花王社製)、エレミノールJS-2(商品名、三洋化成工業社製)、アデカリアソープSR-10、SR-20、SR-30(ADEKA社製)等が挙げられる。
アルケニルコハク酸塩型反応性アニオン系界面活性剤の市販品としては、ラテムルASK(商品名、花王社製)等が挙げられる。
更に、(メタ)アクリル酸ポリオキシエチレンスルフォネート塩(例えば、三洋化成工業社製「エレミノールRS-30」、日本乳化剤社製「アントックスMS-60」等)、アリルオキシメチルアルキルオキシポリオキシエチレンのスルフォネー卜塩(例えば、第一工業製薬社製「アクアロンKH-10」等)等のアリル基を有する硫酸エステル(塩)、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム(例えば、花王社製「ラテムルPD-104」等)等も用いることができる。
As the above anionic surfactants, reactive surfactants, reactive anionic surfactants, sulfosuccinate type reactive anionic surfactants, alkenyl succinate type reactive anionic surfactants, etc. 1 type (s) or 2 or more types can be used.
Commercial products of sulfosuccinate-type reactive anionic surfactants include Latemul S-120, S-120A, S-180 and S-180A (all trade names, manufactured by Kao Corporation), Eleminol JS-2 (Product) Name, manufactured by Sanyo Kasei Kogyo Co., Ltd.), ADEKA rear soap SR-10, SR-20, SR-30 (manufactured by ADEKA) and the like.
As a commercial item of an alkenyl succinate type reactive anionic surfactant, Latemul ASK (trade name, manufactured by Kao Corporation) and the like can be mentioned.
Furthermore, (meth) acrylic acid polyoxyethylene sulfonate salts (for example, “Eleminol RS-30” manufactured by Sanyo Kasei Kogyo Co., Ltd., “Antox MS-60” manufactured by Nippon Emulsifier Co., Ltd.), allyloxymethylalkyloxypolyoxy Sulfate ester (salt) having an allyl group such as sulfonate salt of ethylene (for example, “Aqualon KH-10” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), ammonium polyoxyalkylene alkenyl ether sulfate (for example, “Latemul PD-” manufactured by Kao Corporation 104 "etc.) can also be used.
また、上記アニオン系界面活性剤としては、更に反応性界面活性剤として、下記の界面活性剤等も用いることができる。
炭素数3~5の脂肪族不飽和カルボン酸のスルホアルキル(炭素数1~4)エステル塩型界面活性剤、例えば、2-スルホエチル(メタ)アクリレートナトリウム塩、3-スルホプロピル(メタ)アクリレートアンモニウム塩等の(メタ)アクリル酸スルホアルキルエステル塩型界面活性剤;スルホプロピルマレイン酸アルキルエステルナトリウム塩、スルホプロピルマレイン酸ポリオキシエチレンアルキルエステルアンモニウム塩、スルホエチルフマル酸ポリオキシエチレンアルキルエステルアンモニウム塩等の脂肪族不飽和ジカルボン酸アルキルスルホアルキルジエステル塩型界面活性剤。
Further, as the anionic surfactant, the following surfactants and the like can be used as the reactive surfactant.
Sulfoalkyl (carbon number 1 to 4) ester salt type surfactant of aliphatic unsaturated carboxylic acid having 3 to 5 carbon atoms, such as 2-sulfoethyl (meth) acrylate sodium salt, 3-sulfopropyl (meth) acrylate ammonium (Meth) acrylic acid sulfoalkyl ester salt type surfactants such as salts; sulfopropylmaleic acid alkylester sodium salt, sulfopropylmaleic acid polyoxyethylene alkylester ammonium salt, sulfoethylfumaric acid polyoxyethylene alkylester ammonium salt, etc. Aliphatic unsaturated dicarboxylic acid alkyl sulfoalkyl diester salt surfactants.
上記ノニオン系界面活性剤としては特に限定されず、例えば、ポリオキシエチレンアルキルエーテル;ポリオキシエチレンアルキルアリールエーテル;ソルビタン脂肪族エステル;ポリオキシエチレンソルビタン脂肪族エステル;グリセロールのモノラウレート等の脂肪族モノグリセライド;ポリオキシエチレンオキシプロピレン共重合体;エチレンオキサイドと脂肪族アミン、アミド又は酸との縮合生成物等が挙げられる。また、アリルオキシメチルアルコキシエチルヒドロキシポリオキシエチレン(例えば、ADEKA社製「アデカリアソープER-20」等)、ポリオキシアルキレンアルケニルエーテル(例えば、花王社製「ラテムルPD-420」、「ラテムルPD-430」等)等の反応性を有するノニオン系界面活性剤も用いることができる。これらの1種又は2種以上を用いることができる。 The nonionic surfactant is not particularly limited. For example, polyoxyethylene alkyl ether; polyoxyethylene alkyl aryl ether; sorbitan aliphatic ester; polyoxyethylene sorbitan aliphatic ester; aliphatic such as monolaurate of glycerol Monoglyceride; polyoxyethyleneoxypropylene copolymer; condensation products of ethylene oxide and aliphatic amines, amides or acids. Further, allyloxymethylalkoxyethylhydroxypolyoxyethylene (for example, “ADEKA rear soap ER-20” manufactured by ADEKA), polyoxyalkylene alkenyl ether (for example, “Latemul PD-420”, “Latemul PD-” manufactured by Kao Corporation Nonionic surfactants having reactivity such as “430” and the like can also be used. These 1 type (s) or 2 or more types can be used.
上記カチオン系界面活性剤としては特に限定されず、例えば、ジアルキルジメチルアンモニウム塩、エステル型ジアルキルアンモニウム塩、アミド型ジアルキルアンモニウム塩、ジアルキルイミダゾリニウム塩等が挙げられ、これらの1種又は2種以上を用いることができる。 The cationic surfactant is not particularly limited, and examples thereof include dialkyldimethylammonium salts, ester-type dialkylammonium salts, amide-type dialkylammonium salts, dialkylimidazolinium salts, and the like. Can be used.
上記両性界面活性剤としては特に限定されず、例えば、アルキルジメチルアミノ酢酸ベタイン、アルキルジメチルアミンオキサイド、アルキルカルボキシメチルヒドロキシエチルイミダゾリニウムベタイン、アルキルアミドプロピルベタイン、アルキルヒドロキシスルホベタイン等が挙げられ、これらの1種又は2種以上を用いることができる。 The amphoteric surfactant is not particularly limited, and examples thereof include alkyldimethylaminoacetic acid betaine, alkyldimethylamine oxide, alkylcarboxymethylhydroxyethylimidazolinium betaine, alkylamidopropylbetaine, alkylhydroxysulfobetaine, and the like. 1 type (s) or 2 or more types can be used.
上記高分子界面活性剤としては特に限定されず、例えば、ポリビニルアルコール及びその変性物;(メタ)アクリル系水溶性高分子;ヒドロキシエチル(メタ)アクリル系水溶性高分子;ヒドロキシプロピル(メタ)アクリル系水溶性高分子;ポリビニルピロリドン等が挙げられ、これらの1種又は2種以上を用いることができる。
上記界面活性剤の中でも、環境面からは、非ノニルフェニル型の界面活性剤を用いることが好適である。
The polymer surfactant is not particularly limited. For example, polyvinyl alcohol and a modified product thereof; (meth) acrylic water-soluble polymer; hydroxyethyl (meth) acrylic water-soluble polymer; hydroxypropyl (meth) acrylic Water-soluble polymers such as polyvinyl pyrrolidone, and one or more of them can be used.
Among the above surfactants, it is preferable to use a non-nonylphenyl type surfactant from the environmental viewpoint.
上記保護コロイドとしては、例えば、部分ケン化ポリビニルアルコール、完全ケン化ポリビニルアルコール、変性ポリビニルアルコール等のポリビニルアルコール類;ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース塩等のセルロース誘導体;グアーガム等の天然多糖類等が挙げられ、これらの1種又は2種以上を用いることができる。なお、保護コロイドは単独で使用されてもよいし、界面活性剤と併用されてもよい。
上記保護コロイドの使用量としては、使用条件等に応じて適宜設定すればよいが、例えば、重合体を形成するのに用いられる単量体成分の総量100重量部に対して、10重量部以下であることが好ましく、より好ましくは5重量部以下であり、特に好ましくは3重量部以下である。このように保護コロイドを使用することで重合安定性や機械的安定性に優れたエマルションを得ることができる。
Examples of the protective colloid include polyvinyl alcohols such as partially saponified polyvinyl alcohol, fully saponified polyvinyl alcohol, and modified polyvinyl alcohol; cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose, and carboxymethyl cellulose salt; natural polysaccharides such as guar gum Etc., and one or more of these can be used. The protective colloid may be used alone or in combination with a surfactant.
The use amount of the protective colloid may be appropriately set according to use conditions and the like, for example, 10 parts by weight or less with respect to 100 parts by weight of the total amount of monomer components used to form the polymer. More preferably, it is 5 parts by weight or less, and particularly preferably 3 parts by weight or less. Thus, by using a protective colloid, an emulsion having excellent polymerization stability and mechanical stability can be obtained.
上記重合開始剤としては、熱によって分解し、ラジカル分子を発生させる物質であれば特に限定されないが、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩類;2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、4,4’-アゾビス(4-シアノペンタン酸)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ化合物;tert-ブチルパーオキシ-2-エチルヘキサノエート、ベンゾイルパーオキサイド、ジ-tert-ブチルパーオキサイド等の有機過酸化物;過酸化水素とアスコルビン酸、t-ブチルヒドロパーオキサイドとロンガリット、過硫酸カリウムと金属塩、過硫酸アンモニウムと亜硫酸水素ナトリウム等のレドックス系重合開始剤等が挙げられ、これらの1種又は2種以上を用いることができる。
上記重合開始剤の使用量としては特に限定されず、重合開始剤の種類等に応じて適宜設定すればよいが、例えば、重合体を形成するのに用いられる単量体成分の総量100重量部に対して、0.1~2重量部であることが好ましく、より好ましくは0.2~1重量部である。
The polymerization initiator is not particularly limited as long as it is a substance that decomposes by heat and generates radical molecules. For example, persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; 2,2′-azobis (2-amidinopropane) dihydrochloride, 4,4′-azobis (4-cyanopentanoic acid), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobisisobutyronitrile Azo compounds such as 2,2′-azobis (2,4-dimethylvaleronitrile); organic peroxides such as tert-butylperoxy-2-ethylhexanoate, benzoyl peroxide, di-tert-butyl peroxide Products: Hydrogen peroxide and ascorbic acid, t-butyl hydroperoxide and Rongalite, potassium persulfate and metal salts, ammonium persulfate Redox polymerization initiators such as sodium hydrogen sulfite and the like, can be used alone or in combination of two or more thereof.
The amount of the polymerization initiator used is not particularly limited and may be set as appropriate according to the type of the polymerization initiator. For example, the total amount of monomer components used to form the polymer is 100 parts by weight. The amount is preferably 0.1 to 2 parts by weight, more preferably 0.2 to 1 part by weight.
上記重合開始剤には、重合を促進させるため、必要に応じて還元剤を併用することができる。還元剤としては、例えば、アスコルビン酸、酒石酸、クエン酸、ブドウ糖等の還元性有機化合物;例えば、チオ硫酸ナトリウム、亜硫酸ナトリウム、重亜硫酸ナトリウム、メタ重亜硫酸ナトリウム等の還元性無機化合物等が挙げられ、これらの1種又は2種以上を用いることができる。
上記還元剤の使用量としては特に限定されず、例えば、重合体を形成するのに用いられる単量体成分の総量100重量部に対して、0.05~1重量部であることが好ましい。
In order to accelerate the polymerization, the polymerization initiator may be used in combination with a reducing agent as necessary. Examples of the reducing agent include reducing organic compounds such as ascorbic acid, tartaric acid, citric acid, and glucose; for example, reducing inorganic compounds such as sodium thiosulfate, sodium sulfite, sodium bisulfite, and sodium metabisulfite. These 1 type (s) or 2 or more types can be used.
The amount of the reducing agent used is not particularly limited. For example, it is preferably 0.05 to 1 part by weight with respect to 100 parts by weight of the total amount of monomer components used to form the polymer.
上記重合連鎖移動剤としては特に限定されず、例えば、ヘキシルメルカプタン、オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-ヘキサデシルメルカプタン、n-テトラデシルメルカプタン等のアルキルメルカプタン類;四塩化炭素、四臭化炭素、臭化エチレン等のハロゲン化炭化水素;メルカプト酢酸2-エチルヘキシルエステル、メルカプトプロピオン酸2-エチルヘキシルエステル、メルカプトピロピオン酸トリデシルエステル等のメルカプトカルボン酸アルキルエステル;メルカプト酢酸メトキシブチルエステル、メルカプトプロピオン酸メトキシブチルエステル等のメルカプトカルボン酸アルコキシアルキルエステル;オクタン酸2-メルカプトエチルエステル等のカルボン酸メルカプトアルキルエステルや、α-メチルスチレンダイマー、ターピノーレン、α-テルピネン、γ-テルピネン、ジペンテン、アニソール、アリルアルコール等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。これらの中でも、ヘキシルメルカプタン、オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-ヘキサデシルメルカプタン、n-テトラデシルメルカプタン等のアルキルメルカプタン類を用いることが好ましい。重合連鎖移動剤の使用量としては、例えば、全単量体成分100重量部に対して、好ましくは20重量部以下、より好ましくは、10重量部以下である。更に好ましくは、5.0重量部以下、特に好ましくは2.0重量部以下、最も好ましくは1.0重量部以下である。 The polymerization chain transfer agent is not particularly limited, and examples thereof include alkyl mercaptans such as hexyl mercaptan, octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-hexadecyl mercaptan, and n-tetradecyl mercaptan; carbon tetrachloride , Halogenated hydrocarbons such as carbon tetrabromide and ethylene bromide; mercaptocarboxylic acid alkyl esters such as mercaptoacetic acid 2-ethylhexyl ester, mercaptopropionic acid 2-ethylhexyl ester, mercaptopyropionic acid tridecyl ester; mercaptoacetic acid methoxybutyl Mercaptocarboxylic acid alkoxyalkyl ester such as ester, mercaptopropionic acid methoxybutyl ester; carboxylic acid mercaptoal such as octanoic acid 2-mercaptoethyl ester Glycol ester or, alpha-methylstyrene dimer, terpinolene, alpha-terpinene, .gamma.-terpinene, dipentene, anisole, allyl alcohol and the like. These may be used alone or in combination of two or more. Of these, alkyl mercaptans such as hexyl mercaptan, octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-hexadecyl mercaptan, n-tetradecyl mercaptan are preferably used. The amount of the polymerization chain transfer agent used is, for example, preferably 20 parts by weight or less, more preferably 10 parts by weight or less, with respect to 100 parts by weight of all monomer components. More preferably, it is 5.0 parts by weight or less, particularly preferably 2.0 parts by weight or less, and most preferably 1.0 part by weight or less.
上記重合は、必要に応じて、エチレンジアミン四酢酸ナトリウム等のキレート剤、ポリアクリル酸ナトリウム等の分散剤や、無機塩等の存在下で行ってもよい。また、単量体成分や重合開始剤等の添加方法としては、例えば、一括添加法、連続添加法、多段添加法等の方法を適用することができる。また、これらの添加方法を適宜組み合わせてもよい。 The polymerization may be performed in the presence of a chelating agent such as sodium ethylenediaminetetraacetate, a dispersing agent such as sodium polyacrylate, an inorganic salt, or the like, if necessary. Moreover, as addition methods, such as a monomer component and a polymerization initiator, methods, such as a batch addition method, a continuous addition method, a multistage addition method, are applicable, for example. Moreover, you may combine these addition methods suitably.
上記製造方法における重合条件に関し、重合温度としては特に限定されず、例えば、0~100℃であることが好ましく、より好ましくは40~95℃である。また、重合時間も特に限定されず、例えば、1~15時間とすることが好適で、より好ましくは5~10時間である。
単量体成分や重合開始剤等の添加方法としては特に限定されず、例えば、一括添加法、連続添加法、多段添加法等の方法を適用することができる。また、これらの添加方法を適宜組み合わせてもよい。
Regarding the polymerization conditions in the above production method, the polymerization temperature is not particularly limited, and for example, it is preferably 0 to 100 ° C., more preferably 40 to 95 ° C. Also, the polymerization time is not particularly limited, and for example, it is preferably 1 to 15 hours, more preferably 5 to 10 hours.
The addition method of the monomer component, the polymerization initiator, and the like is not particularly limited, and for example, a batch addition method, a continuous addition method, a multistage addition method, or the like can be applied. Moreover, you may combine these addition methods suitably.
本発明の振動減衰材用樹脂組成物に含有されるポリマーの製造方法においては、乳化重合によりエマルションを製造した後、中和剤によりエマルションを中和することが好ましい。これにより、エマルションが安定化されることになる。
中和剤としては特に限定されず、例えば、トリエタノールアミン、ジメチルエタノールアミン、ジエチルエタノールアミン、モルホリン等の三級アミン;ジグリコールアミン、アンモニア水;水酸化ナトリウム等を用いることができる。これらは単独で用いてもよく、2種以上を併用してもよい。これらの中でも、振動減衰材用樹脂組成物から形成される塗膜の耐水性等が向上することから、塗膜の加熱時に揮散する揮発性塩基を用いることが好ましい。より好ましくは、加熱乾燥性が良好となり、振動減衰性が向上することから、沸点が80~360℃のアミンを用いることが好ましい。このような中和剤としては、例えば、トリエタノールアミン、ジメチルエタノールアミン、ジエチルエタノールアミン、モルホリン等の三級アミン、ジグリコールアミンが好適である。より好ましくは、沸点が130~280℃のアミンを用いることである。
なお、上記沸点は、常圧での沸点である。
また、上記中和剤の分子量としては、特に限定されないが、揮発性の点から130~280が好ましい。
更に、ポリマーエマルションに含有される重合体が有する酸基1当量に対して、アミンが0.6~1.4当量になるように添加することが好ましい。より好ましくは0.8~1.2当量である。
In the method for producing a polymer contained in the vibration damping material resin composition of the present invention, it is preferable to produce an emulsion by emulsion polymerization and then neutralize the emulsion with a neutralizing agent. As a result, the emulsion is stabilized.
The neutralizing agent is not particularly limited, and for example, tertiary amines such as triethanolamine, dimethylethanolamine, diethylethanolamine and morpholine; diglycolamine, aqueous ammonia; sodium hydroxide and the like can be used. These may be used alone or in combination of two or more. Among these, since the water resistance of the coating film formed from the resin composition for vibration damping materials is improved, it is preferable to use a volatile base that volatilizes when the coating film is heated. More preferably, an amine having a boiling point of 80 to 360 ° C. is preferably used because heat drying properties are improved and vibration damping properties are improved. As such a neutralizing agent, for example, tertiary amines such as triethanolamine, dimethylethanolamine, diethylethanolamine, morpholine, and diglycolamine are preferable. More preferably, an amine having a boiling point of 130 to 280 ° C. is used.
In addition, the said boiling point is a boiling point in a normal pressure.
The molecular weight of the neutralizing agent is not particularly limited, but is preferably 130 to 280 from the viewpoint of volatility.
Further, it is preferable to add the amine in an amount of 0.6 to 1.4 equivalents with respect to 1 equivalent of the acid group contained in the polymer emulsion. More preferably, it is 0.8 to 1.2 equivalents.
本発明の振動減衰材用樹脂組成物は、必要に応じて他成分を含むことができる。さらに顔料含むことを特徴とする振動減衰材用樹脂組成物は、本発明の好適な実施形態の1つであり、特に、さらに顔料と、増粘剤とを含むことを特徴とする振動減衰材用樹脂組成物も本発明の好適な実施形態の1つである。増粘剤としては、上述した高分子系増粘剤が好ましい。
このような本発明の振動減衰材用樹脂組成物は、優れた加熱乾燥性を有し、種々の機能を発揮することができ、特に優れた振動減衰性を発揮し得る振動減衰材を形成することができるものである。
The resin composition for vibration damping material of the present invention can contain other components as necessary. The vibration damping material resin composition further comprising a pigment is one of the preferred embodiments of the present invention, and in particular, the vibration damping material further comprises a pigment and a thickener. The resin composition for use is also a preferred embodiment of the present invention. As the thickener, the above-described polymer thickener is preferable.
Such a resin composition for vibration damping material of the present invention has excellent heat drying properties, can exhibit various functions, and forms a vibration damping material that can exhibit particularly excellent vibration damping properties. It is something that can be done.
上記振動減衰材用樹脂組成物が顔料及び増粘剤を含む場合、振動減衰材用樹脂組成物の総量100質量%に対し、固形分を20~90質量%含有してなることが好ましく、より好ましくは30~90質量%であり、更に好ましくは40~90質量%である。このような固形分の含有割合にすることで加熱乾燥性が向上し、塗膜外観を損なわず振動減衰性をより充分に発揮することが可能となる。
上記顔料及び増粘剤を含む振動減衰材用樹脂組成物における単量体成分を重合してなるポリマーの配合量としては、例えば、振動減衰材用樹脂組成物の固形分100質量%に対し、単量体成分を重合してなるポリマーの固形分が10~60質量%となるように設定することが好ましく、より好ましくは15~60質量%である。このようなポリマーの配合量とすることで振動減衰性がより充分に発揮される。
When the vibration damping material resin composition includes a pigment and a thickener, the solid content is preferably 20 to 90% by mass with respect to 100% by mass of the total amount of the vibration damping material resin composition. The amount is preferably 30 to 90% by mass, and more preferably 40 to 90% by mass. By making the content of such a solid content, the heat drying property is improved, and the vibration damping property can be more fully exhibited without impairing the appearance of the coating film.
As the blending amount of the polymer obtained by polymerizing the monomer component in the vibration damping material resin composition containing the pigment and the thickener, for example, with respect to 100% by mass of the solid content of the vibration damping material resin composition, The solid content of the polymer obtained by polymerizing the monomer components is preferably set to 10 to 60% by mass, more preferably 15 to 60% by mass. By setting the blending amount of such a polymer, vibration damping is more fully exhibited.
上記振動減衰材用樹脂組成物が顔料及び増粘剤を含む場合、振動減衰材用樹脂組成物のpHは、7~11であることが好ましく、より好ましくは7~9である。当該pHは、上述したものと同様の方法により測定することができる。このようなpHであると増粘剤の性能が充分に発揮され、顔料分散性が向上するため振動減衰性がより充分に発揮される。
上記振動減衰材用樹脂組成物が顔料及び増粘剤を含む場合、振動減衰材用樹脂組成物の粘度は、50~200Pa・sであることが好ましい。このような粘度であると、基材への塗工がしやすく、かつ、液ダレのない、塗布型振動減衰材用樹脂組成物として好適なものとなる。より好ましくは60~150Pa・sである。
振動減衰材用樹脂組成物の粘度は、上述したものと同様の方法により測定することができる。
When the vibration damping material resin composition contains a pigment and a thickener, the pH of the vibration damping material resin composition is preferably 7 to 11, more preferably 7 to 9. The pH can be measured by the same method as described above. At such a pH, the performance of the thickener is sufficiently exhibited, and the pigment dispersibility is improved, so that the vibration damping property is more sufficiently exhibited.
When the vibration damping material resin composition includes a pigment and a thickener, the viscosity of the vibration damping material resin composition is preferably 50 to 200 Pa · s. When the viscosity is such, it is suitable as a resin composition for a coating-type vibration damping material that can be easily applied to a substrate and has no dripping. More preferably, it is 60 to 150 Pa · s.
The viscosity of the vibration damping material resin composition can be measured by the same method as described above.
上記顔料としては、例えば、後述する着色剤や防錆顔料等の1種又は2種以上を使用することができる。上記顔料の配合量としては、振動減衰材用樹脂組成物中の単量体成分を重合してなるポリマーの固形分100重量部に対し、50~700重量部とすることが好ましく、より好ましくは100~550重量部である。このような顔料の配合量であると顔料の分散性が向上し、振動減衰性がより充分に発揮される。 As said pigment, 1 type (s) or 2 or more types, such as the coloring agent mentioned later and a rust preventive pigment, can be used, for example. The pigment content is preferably 50 to 700 parts by weight, more preferably 100 parts by weight of the solid content of the polymer obtained by polymerizing the monomer component in the resin composition for vibration damping material. 100 to 550 parts by weight. When the amount of the pigment is such, the dispersibility of the pigment is improved and vibration damping is more fully exhibited.
その他、本発明の振動減衰材用樹脂組成物に配合することのできる他の成分としては、例えば、発泡剤;溶媒;水系架橋剤;充填剤;ゲル化剤;分散剤;消泡剤;着色剤;防錆顔料;安定剤;湿潤剤;防腐剤;発泡防止剤;老化防止剤;防黴剤;紫外線吸収剤;帯電防止剤等が挙げられ、これらの1種又は2種以上を振動減衰材用樹脂組成物の形態に合わせて適宜選択して使用することができる。
なお、上記他の成分は、例えば、バタフライミキサー、プラネタリーミキサー、スパイラルミキサー、ニーダー、ディゾルバー等を用いて、上記振動減衰材用樹脂組成物等と混合され得る。
Other components that can be blended in the vibration damping material resin composition of the present invention include, for example, a foaming agent; a solvent; an aqueous cross-linking agent; a filler; a gelling agent; a dispersing agent; Anticorrosive pigments, stabilizers, wetting agents, preservatives, antifoaming agents, anti-aging agents, antifungal agents, ultraviolet absorbers, antistatic agents, etc., and one or more of these may be vibrationally attenuated It can be suitably selected and used according to the form of the resin composition for materials.
In addition, the said other component can be mixed with the said resin composition for vibration damping materials etc. using a butterfly mixer, a planetary mixer, a spiral mixer, a kneader, a dissolver etc., for example.
上記発泡剤としては、例えば、低沸点炭化水素内包の加熱膨張カプセル、有機発泡剤、無機発泡剤等が好適であり、これらの1種又は2種以上を使用することができる。加熱膨張カプセルとしては、例えば、マツモトマイクロスフィアーF-30、F-50(松本油脂社製);エクスパンセルWU642、WU551、WU461、DU551、DU401(日本エクスパンセル社製)等が挙げられ、有機発泡剤としては、例えば、アゾジカルボンアミド、アゾビスイソブチロニトリル、N,N-ジニトロソペンタメチレンテトラミン、p-トルエンスルホニルヒドラジン、p-オキシビス(ベンゼンスルホヒドラジド)等が挙げられ、無機発泡剤としては、例えば、重炭酸ナトリウム、炭酸アンモニウム、シリコンハイドライド等が挙げられる。
上記発泡剤の配合量としては、振動減衰材用樹脂組成物中の単量体成分を重合してなるポリマーの固形分100重量部に対し、0.5~5.0重量部とすることが好ましく、より好ましくは1.0~3.0重量部である。このような発泡剤の含有量にすることで塗膜の加熱乾燥性が向上し、塗膜外観を損なわず振動減衰性をより充分に発揮することが可能となる。
As the foaming agent, for example, a low-boiling hydrocarbon encapsulated heated expansion capsule, an organic foaming agent, an inorganic foaming agent, and the like are suitable, and one or more of these can be used. Examples of the heat-expandable capsule include Matsumoto Microsphere F-30, F-50 (manufactured by Matsumoto Yushi Co., Ltd.); EXPANSELL WU642, WU551, WU461, DU551, DU401 (manufactured by Nippon Expandcel). Examples of the organic blowing agent include azodicarbonamide, azobisisobutyronitrile, N, N-dinitrosopentamethylenetetramine, p-toluenesulfonylhydrazine, p-oxybis (benzenesulfohydrazide), and the like. Examples of the foaming agent include sodium bicarbonate, ammonium carbonate, silicon hydride and the like.
The blending amount of the foaming agent is 0.5 to 5.0 parts by weight with respect to 100 parts by weight of the solid content of the polymer obtained by polymerizing the monomer component in the vibration damping material resin composition. The amount is preferably 1.0 to 3.0 parts by weight. By setting the content of such a foaming agent, the heat drying property of the coating film is improved, and vibration damping properties can be more fully exhibited without impairing the coating film appearance.
上記溶媒としては、例えば、エチレングリコール、ブチルセロソルブ、ブチルカルビトール、ブチルカルビトールアセテート等が挙げられる。溶媒の配合量としては、振動減衰材用樹脂組成物中の単量体成分を重合してなるポリマーの固形分濃度が上述した範囲となるように適宜設定すればよい。 Examples of the solvent include ethylene glycol, butyl cellosolve, butyl carbitol, butyl carbitol acetate, and the like. What is necessary is just to set suitably as a compounding quantity of a solvent so that the solid content concentration of the polymer which polymerizes the monomer component in the resin composition for vibration damping materials may become the range mentioned above.
上記水系架橋剤としては、例えば、エポクロスWS-500、WS-700、K-2010、2020、2030(いずれも商品名、日本触媒社製)等のオキサゾリン化合物;アデカレジンEMN-26-60、EM-101-50(いずれも商品名、ADEKA社製)等のエポキシ化合物;サイメルC-325(商品名、三井サイテック社製)等のメラミン化合物;ブロックイソシアネート化合物;AZO-50(商品名、50質量%酸化亜鉛水分散体、日本触媒社製)等の酸化亜鉛化合物等が好適である。水系架橋剤の配合量としては、例えば、振動減衰材用樹脂組成物中の単量体成分を重合してなるポリマーの固形分100重量部に対し、固形分で0.01~20重量部とすることが好ましく、より好ましくは0.15~15重量部、更に好ましくは0.5~15重量部である。このような架橋剤の含有量にすることで塗膜の加熱乾燥性が向上し、塗膜外観を損なわず振動減衰性をより充分に発揮することが可能となる。
水系架橋剤は、上記可塑剤及び高分子系増粘剤を加える前の単量体成分を重合してなるポリマーに添加してもよいし、振動減衰材用樹脂組成物として他の成分を配合するときに同時に添加してもよい。上記振動減衰材用樹脂組成物に架橋剤を混合することにより、樹脂の強靱性が向上し、その結果、高温領域でより充分な高振動減衰性が発現する。中でもオキサゾリン化合物を用いることが好ましい。
Examples of the water-based crosslinking agent include oxazoline compounds such as Epocross WS-500, WS-700, K-2010, 2020, and 2030 (all trade names, manufactured by Nippon Shokubai Co., Ltd.); Adeka Resin EMN-26-60, EM- Epoxy compounds such as 101-50 (both trade names, manufactured by ADEKA); Melamine compounds such as Cymel C-325 (trade name, manufactured by Mitsui Cytec); Block isocyanate compounds; AZO-50 (trade name, 50% by mass) Zinc oxide compounds such as zinc oxide aqueous dispersion (manufactured by Nippon Shokubai Co., Ltd.) are preferred. The blending amount of the water-based crosslinking agent is, for example, 0.01 to 20 parts by weight in solid content with respect to 100 parts by weight of solid content of the polymer obtained by polymerizing the monomer component in the vibration damping material resin composition. The amount is preferably 0.15 to 15 parts by weight, more preferably 0.5 to 15 parts by weight. By setting such a content of the crosslinking agent, the heat drying property of the coating film is improved, and the vibration damping property can be more fully exhibited without impairing the appearance of the coating film.
The water-based cross-linking agent may be added to a polymer obtained by polymerizing the monomer component before adding the plasticizer and polymer thickener, and other components are blended as a resin composition for vibration damping material. May be added at the same time. By mixing a crosslinking agent with the resin composition for vibration damping material, the toughness of the resin is improved, and as a result, a sufficiently high vibration damping property is exhibited in a high temperature region. Among them, it is preferable to use an oxazoline compound.
上記充填剤としては、例えば、炭酸カルシウム、カオリン、シリカ、タルク、硫酸バリウム、アルミナ、酸化鉄、酸化チタン、ガラストーク、炭酸マグネシウム、水酸化アルミニウム、タルク、珪藻土、クレー等の無機質充填剤;ガラスフレーク、マイカ等の鱗片状無機質充填剤;金属酸化物ウィスカー、ガラス繊維等の繊維状無機質充填剤等が挙げられる。充填剤の配合量としては、振動減衰材用樹脂組成物中の単量体成分を重合してなるポリマーの固形分100重量部に対し、50~700重量部とすることが好ましく、より好ましくは100~550重量部である。 Examples of the filler include inorganic fillers such as calcium carbonate, kaolin, silica, talc, barium sulfate, alumina, iron oxide, titanium oxide, glass talk, magnesium carbonate, aluminum hydroxide, talc, diatomaceous earth, and clay; glass Examples of such inorganic fillers include flakes and mica; and fibrous inorganic fillers such as metal oxide whiskers and glass fibers. The blending amount of the filler is preferably 50 to 700 parts by weight, more preferably 100 parts by weight of the solid content of the polymer obtained by polymerizing the monomer component in the vibration damping material resin composition. 100 to 550 parts by weight.
上記充填材として、粒子状形状の充填材を用いる場合、充填材の平均粒子径は、0.5~50μmであることが好ましい。より好ましくは、2~25μmである。このような充填剤を用いると、充填剤の分散性や塗膜の加熱乾燥性が向上し、塗膜外観を損なわず振動減衰性をより充分に発揮することが可能となる。
粒子状形状の充填材としては、炭酸カルシウム、酸化チタン等が挙げられる。
充填材として炭酸カルシウムを用いる場合、上記のような好ましい平均粒子径を有することから、NS#100、NN#200、SS#30(日東粉化社製)、R重炭(丸尾カルシウム社製)が好適である。
充填材の平均粒子径は、全自動粒度測定器により測定することができ、粒度分布からの重量50%径の値である。
When a particulate filler is used as the filler, the average particle diameter of the filler is preferably 0.5 to 50 μm. More preferably, it is 2 to 25 μm. When such a filler is used, the dispersibility of the filler and the heat drying property of the coating film are improved, and vibration damping properties can be more fully exhibited without impairing the appearance of the coating film.
Examples of the particulate filler include calcium carbonate and titanium oxide.
When calcium carbonate is used as the filler, NS # 100, NN # 200, SS # 30 (manufactured by Nitto Flour Chemical Co., Ltd.), R heavy coal (manufactured by Maruo Calcium Co., Ltd.) have the above preferred average particle diameter Is preferred.
The average particle size of the filler can be measured by a fully automatic particle size measuring device, and is a value of 50% by weight from the particle size distribution.
上記ゲル化剤としては、例えば、デンプン、寒天等が挙げられる。
上記分散剤としては、例えば、ヘキサメタリン酸ナトリウム、トリポリリン酸ナトリウム等の無機質分散剤、及び、ポリカルボン酸系分散剤等の有機質分散剤が挙げられる。
上記消泡剤としては、例えば、シリコン系消泡剤等が挙げられる。
上記着色剤としては、例えば、酸化チタン、カーボンブラック、弁柄、ハンザイエロー、ベンジンイエロー、フタロシアニンブルー、キナクリドンレッド等の有機又は無機の着色剤が挙げられる。
上記防錆顔料としては、例えば、リン酸金属塩、モリブデン酸金属塩、硼酸金属塩等が挙げられる。
Examples of the gelling agent include starch and agar.
Examples of the dispersant include inorganic dispersants such as sodium hexametaphosphate and sodium tripolyphosphate, and organic dispersants such as polycarboxylic acid-based dispersants.
Examples of the antifoaming agent include silicon-based antifoaming agents.
Examples of the colorant include organic or inorganic colorants such as titanium oxide, carbon black, dial, hansa yellow, benzine yellow, phthalocyanine blue, and quinacridone red.
Examples of the rust preventive pigment include a metal phosphate, a metal molybdate, and a metal borate.
上記他の成分としては更に、多価金属化合物を用いてもよい。この場合、多価金属化合物により、振動減衰材用樹脂組成物の安定性、分散性、加熱乾燥性や、振動減衰材用樹脂組成物から形成される振動減衰材の振動減衰性が向上することとなる。多価金属化合物としては特に限定されず、例えば、酸化亜鉛、塩化亜鉛、硫酸亜鉛等が挙げられ、これらの1種又は2種以上を用いることができる。
上記多価金属化合物の形態としては、例えば、粉体、水分散体や乳化分散体等であってよい。中でも、振動減衰材用樹脂組成物中への分散性が向上することから、水分散体又は乳化分散体の形態で使用することが好ましく、より好ましくは乳化分散体の形態で使用することである。
また、多価金属化合物の使用量は、振動減衰材用樹脂組成物中の固形分100重量部に対して、0.05~5.0重量部とすることが好ましく、より好ましくは0.05~3.5重量部である。
As the other component, a polyvalent metal compound may be used. In this case, the polyvalent metal compound improves the stability, dispersibility, heat drying property of the vibration damping material resin composition, and the vibration damping properties of the vibration damping material formed from the vibration damping material resin composition. It becomes. It does not specifically limit as a polyvalent metal compound, For example, zinc oxide, zinc chloride, zinc sulfate etc. are mentioned, These 1 type (s) or 2 or more types can be used.
Examples of the form of the polyvalent metal compound may include a powder, an aqueous dispersion, an emulsion dispersion, and the like. Among them, since the dispersibility in the resin composition for vibration damping material is improved, it is preferably used in the form of an aqueous dispersion or an emulsified dispersion, more preferably in the form of an emulsified dispersion. .
The amount of the polyvalent metal compound used is preferably 0.05 to 5.0 parts by weight, more preferably 0.05 parts by weight with respect to 100 parts by weight of the solid content in the vibration damping material resin composition. -3.5 parts by weight.
本発明の振動減衰材用樹脂組成物は、制振材として用いられることが望ましい。
例えば振動減衰材用樹脂組成物を基材に塗布して乾燥することにより塗膜を形成し、制振材として利用することができる。
また、本発明の振動減衰材用樹脂組成物は、塗料として用いられることが望ましく、塗料としての振動減衰材用樹脂組成物を基材に塗布して塗膜を形成することにより用いることができる。
振動減衰材用樹脂組成物を基材に塗布する方法としては、例えば、刷毛、へら、エアスプレー、エアレススプレー、モルタルガン、リシンガン等を用いて塗布することができる。
上記振動減衰材用樹脂組成物を塗布した後、乾燥して塗膜を形成させる条件としては、加熱乾燥してもよく、常温乾燥してもよいが、効率性の点で加熱乾燥することが好ましい。加熱乾燥の温度の下限としては、110℃以上とすることが好ましく、より好ましくは120℃以上である。また、加熱乾燥の温度の上限としては、210℃以下とすることが好ましく、より好ましくは170℃以下である。このような乾燥温度にすることで加熱乾燥性が向上し、塗膜外観を損なわず振動減衰性をより充分に発揮することが可能となる。
また、振動減衰材用樹脂組成物を乾燥、成形して塗膜を作製し、上記塗膜を基材の必要部位に貼り付けることによっても、制振材として利用することができる。
The resin composition for vibration damping material of the present invention is desirably used as a vibration damping material.
For example, a coating film can be formed by applying a resin composition for vibration damping material to a substrate and drying, and can be used as a vibration damping material.
The resin composition for vibration damping material of the present invention is preferably used as a paint, and can be used by forming a coating film by applying the resin composition for vibration damping material as a paint to a substrate. .
As a method for applying the vibration damping material resin composition to the substrate, for example, a brush, a spatula, an air spray, an airless spray, a mortar gun, a ricin gun or the like can be used.
After applying the resin composition for vibration damping material, the conditions for drying to form a coating film may be heat drying or room temperature drying, but heat drying may be performed in terms of efficiency. preferable. The lower limit of the heat drying temperature is preferably 110 ° C. or higher, and more preferably 120 ° C. or higher. Moreover, as an upper limit of the temperature of heat drying, it is preferable to set it as 210 degrees C or less, More preferably, it is 170 degrees C or less. By setting it to such a drying temperature, heat drying property improves and it becomes possible to exhibit vibration damping more fully, without impairing a coating-film external appearance.
Moreover, it can utilize as a damping material also by drying and shape | molding the resin composition for vibration damping materials, producing a coating film, and affixing the said coating film on the required site | part of a base material.
上記振動減衰材用樹脂組成物を振動減衰材用途に適用する場合、その振動減衰性は、振動減衰材用樹脂組成物から形成される膜の損失係数を測定することにより評価することができる。
損失係数は、通常ηで表され、振動減衰材に対して与えた振動がどの程度減衰したかを示すものである。上記損失係数は、数値が高いほど振動減衰性能に優れていることを示す。
上記損失係数の測定方法としては、共振周波数付近で測定する共振法が一般的であり、半値幅法、減衰率法、機械インピーダンス法がある。本発明の振動減衰材用樹脂組成物において、振動減衰材用樹脂組成物から形成される膜の損失係数としては、片持ち梁法を用いた共振法(3dB法)により測定することが好適である。片持ち梁法を用いる測定は、例えば、株式会社小野測機製のCF-5200型FFTアナライザーを用いて行うことができる。
また、上記損失係数は、冷間圧延鋼板(SPCC-SD:長さ250mm×幅10mm×厚み1.6mm)上に、長さ200mm×幅10mm×厚み3.0mmの塗膜容量で振動減衰材用樹脂組成物を塗布し、95℃×30分間乾燥後、130℃×60分間焼付け乾燥して被膜を形成することにより、測定することが好ましい。損失係数の測定は、例えば、10℃、20℃、30℃、40℃、50℃及び60℃の各温度における損失係数を共振法(3dB法)により測定し、各測定数値を滑らかな曲線で結び、その曲線のピーク値により評価するのが好ましく、上述したDPTはその曲線のピーク温度とするのが好ましい。本発明の振動減衰材用樹脂組成物のDPTは、0℃以上、100℃以下であることが好ましい。また、振動減衰材用樹脂組成物のDPTは、0℃以上であることが好ましく、より好ましくは10℃以上であり、更に好ましくは20℃以上である。また、振動減衰材用樹脂組成物のDPTは100℃以下であることが好ましく、より好ましくは80℃以下であり、更に好ましくは60℃以下である。本発明の振動減衰材用樹脂組成物のDPTがこのような範囲にあると、振動減衰材の実用温度域での振動減衰性能をより効果的に発現することができることとなる。
また、振動減衰材用樹脂組成物から形成される膜の実用温度範囲が通常では10~60℃であるので、10、20℃、30℃、40℃、50℃及び60℃の各温度における損失係数を合計した値で振動減衰性能を評価してもよく、振動減衰材用樹脂組成物から形成される膜が、10、20℃、30℃、40℃、50℃及び60℃の各温度における損失係数を合計した総損失係数が大きいほど、振動減衰材用樹脂組成物から形成される膜の実用温度範囲である10~60℃において優れた振動減衰性を発揮しているということができる。
When the resin composition for vibration attenuating material is applied to a vibration attenuating material, the vibration attenuating property can be evaluated by measuring a loss factor of a film formed from the resin composition for vibration attenuating material.
The loss coefficient is usually expressed by η and indicates how much the vibration applied to the vibration damping material is attenuated. The loss factor indicates that the higher the numerical value, the better the vibration damping performance.
As a method for measuring the loss factor, a resonance method for measuring near the resonance frequency is generally used, and there are a half width method, an attenuation rate method, and a mechanical impedance method. In the vibration damping material resin composition of the present invention, the loss factor of the film formed from the vibration damping material resin composition is preferably measured by a resonance method using a cantilever method (3 dB method). is there. The measurement using the cantilever method can be performed using, for example, a CF-5200 type FFT analyzer manufactured by Ono Sokki Co., Ltd.
The loss factor is a vibration damping material having a coating capacity of 200 mm length × 10 mm width × 3.0 mm thickness on a cold rolled steel plate (SPCC-SD: length 250 mm × width 10 mm × thickness 1.6 mm). It is preferable to measure by applying the resin composition for coating, drying at 95 ° C. for 30 minutes, and baking and drying at 130 ° C. for 60 minutes to form a film. The loss factor is measured, for example, by measuring the loss factor at each temperature of 10 ° C., 20 ° C., 30 ° C., 40 ° C., 50 ° C. and 60 ° C. by the resonance method (3 dB method), and measuring each numerical value with a smooth curve. In conclusion, the evaluation is preferably performed based on the peak value of the curve, and the DPT described above is preferably the peak temperature of the curve. The DPT of the resin composition for vibration damping material of the present invention is preferably 0 ° C. or higher and 100 ° C. or lower. The DPT of the vibration damping material resin composition is preferably 0 ° C. or higher, more preferably 10 ° C. or higher, and further preferably 20 ° C. or higher. The DPT of the vibration damping material resin composition is preferably 100 ° C. or lower, more preferably 80 ° C. or lower, and further preferably 60 ° C. or lower. When the DPT of the resin composition for vibration damping material of the present invention is in such a range, vibration damping performance in the practical temperature range of the vibration damping material can be more effectively expressed.
Further, since the practical temperature range of the film formed from the vibration damping material resin composition is usually 10 to 60 ° C., the loss at each temperature of 10, 20 ° C., 30 ° C., 40 ° C., 50 ° C. and 60 ° C. The vibration damping performance may be evaluated by a value obtained by summing the coefficients, and the film formed from the resin composition for vibration damping material is at a temperature of 10, 20 ° C., 30 ° C., 40 ° C., 50 ° C. and 60 ° C. It can be said that the greater the total loss factor, the greater the loss factor, the more excellent vibration damping is exhibited in the practical temperature range of 10 to 60 ° C. of the film formed from the resin composition for vibration damping material.
本発明の振動減衰材用樹脂組成物は、上述の構成よりなり、単量体成分を重合してなるポリマーと可塑剤との相互作用により優れた振動減衰性を発揮し、さらに、上記ポリマーが水系溶媒中にエマルションの形態で存在しているため、塗料として用いたときに塗料中の顔料等の分散が良好となり、塗布後の外観が良好になる。そのため、鉄道車両、船舶、航空機等の輸送機器や電気機器、建築構造物、建設機器等の塗布型の振動減衰材が用いられる各種用途に好適に用いることができる組成物である。 The resin composition for vibration damping material of the present invention has the above-described configuration, exhibits excellent vibration damping properties due to the interaction between the polymer obtained by polymerizing the monomer components and the plasticizer, and the polymer Since it exists in the form of an emulsion in an aqueous solvent, when used as a paint, the dispersion of pigments and the like in the paint becomes good, and the appearance after application becomes good. Therefore, it is a composition that can be suitably used for various applications in which a coating-type vibration damping material is used such as transportation equipment such as railway vehicles, ships, and aircraft, electrical equipment, building structures, and construction equipment.
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「重量部」を、「%」は「質量%」を意味するものとする。 The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples. Unless otherwise specified, “part” means “part by weight” and “%” means “mass%”.
製造例1
撹拌機、還流冷却管、温度計、窒素導入管及び滴下ロートを取り付けた重合器に脱イオン水150部を仕込んだ。その後、窒素ガス気流下で撹拌しながら内温を75℃まで昇温した。一方、上記滴下ロートに、メチルメタクリレート56.5部、スチレン90部、2-エチルヘキシルアクリレート96部、アクリル酸7.5部、t-ドデシルメルカプタン0.2部、予め20%水溶液に調整したレベノールWZ(商品名、花王社製)45部及び脱イオン水48.5部からなる第1段目の単量体乳化物を仕込んだ。
次に、重合器の内温を80℃に維持しながら、上記単量体乳化物のうちの4部、5%過硫酸カリウム水溶液2.5部及び2%亜硫酸水素ナトリウム水溶液5部を添加し、初期重合を開始した。20分後、反応系内を80℃に維持したまま、残りの単量体乳化物を120分にわたって均一に滴下した。同時に5%過硫酸カリウム水溶液25部及び2%亜硫酸水素ナトリウム水溶液25部を120分かけて均一に滴下し、滴下終了後60分同温度を維持した。
次いで、滴下ロートにスチレン80部、メチルメタクリレート17.5部、ブチルアクリレート145部、アクリル酸7.5部、t-ドデシルメルカプタン0.2部、予め20%水溶液に調整したレベノールWZ(商品名、花王社製)45部及び脱イオン水48.5部からなる第2段目の単量体乳化物を仕込み、120分にわたって均一に滴下した。同時に5%過硫酸カリウム水溶液25部及び2%亜硫酸水素ナトリウム水溶液25部を120分かけて均一に滴下し、滴下終了後90分同温度を維持し、重合を終了した。
得られた反応液を室温まで冷却後、25%アンモニア水5.7部を添加し、不揮発分54.5%、pH7.3、粘度700mPa・s、平均粒子径190nm、重量平均分子量16万、1段目のTg10℃、2段目のTg-10℃、トータルTg0℃のエマルションを得た。なお、各製造例において重量平均分子量の測定は、単量体成分を重合してなるポリマーのGPCによる重量平均分子量の測定方法により測定した。
Production Example 1
150 parts of deionized water was charged into a polymerization vessel equipped with a stirrer, a reflux condenser, a thermometer, a nitrogen inlet tube and a dropping funnel. Thereafter, the internal temperature was raised to 75 ° C. while stirring under a nitrogen gas stream. On the other hand, 56.5 parts of methyl methacrylate, 90 parts of styrene, 96 parts of 2-ethylhexyl acrylate, 7.5 parts of acrylic acid, 0.2 part of t-dodecyl mercaptan, lebenol WZ previously adjusted to a 20% aqueous solution were added to the dropping funnel. A first stage monomer emulsion consisting of 45 parts (trade name, manufactured by Kao Corporation) and 48.5 parts deionized water was charged.
Next, while maintaining the internal temperature of the polymerization vessel at 80 ° C., 4 parts of the above monomer emulsion, 2.5 parts of 5% potassium persulfate aqueous solution and 5 parts of 2% sodium hydrogensulfite aqueous solution were added. The initial polymerization was started. After 20 minutes, the remaining monomer emulsion was uniformly added dropwise over 120 minutes while maintaining the inside of the reaction system at 80 ° C. At the same time, 25 parts of a 5% aqueous potassium persulfate solution and 25 parts of a 2% aqueous sodium hydrogen sulfite solution were uniformly added dropwise over 120 minutes, and the same temperature was maintained for 60 minutes after completion of the addition.
Next, 80 parts of styrene, 17.5 parts of methyl methacrylate, 145 parts of butyl acrylate, 7.5 parts of acrylic acid, 0.2 part of t-dodecyl mercaptan, and Lebenol WZ (trade name; A second stage monomer emulsion consisting of 45 parts by Kao Corporation and 48.5 parts deionized water was charged and added dropwise uniformly over 120 minutes. At the same time, 25 parts of a 5% aqueous potassium persulfate solution and 25 parts of a 2% aqueous sodium hydrogen sulfite solution were uniformly added dropwise over 120 minutes, and the same temperature was maintained for 90 minutes after completion of the addition to complete the polymerization.
After cooling the obtained reaction liquid to room temperature, 5.7 parts of 25% ammonia water was added, non-volatile content 54.5%, pH 7.3, viscosity 700 mPa · s, average particle diameter 190 nm, weight average molecular weight 160,000, An emulsion having a first stage Tg of 10 ° C., a second stage Tg of −10 ° C., and a total Tg of 0 ° C. was obtained. In each production example, the weight average molecular weight was measured by a method of measuring the weight average molecular weight by GPC of a polymer obtained by polymerizing the monomer component.
製造例2
撹拌機、還流冷却管、温度計、窒素導入管及び滴下ロートを取り付けた重合器に脱イオン水150部を仕込んだ。その後、窒素ガス気流下で撹拌しながら内温を75℃まで昇温した。一方、上記滴下ロートに、メチルメタクリレート70部、n-ブチルアクリレート25.5部、イソボルニルメタクリレート100部、アクリル酸4.5部、t-ドデシルメルカプタン0.16部、ラテムルPD-104(商品名、花王社製、20%水溶液)36部及び脱イオン水38.8部からなる第1段目の単量体乳化物を仕込んだ。
次に、重合器の内温を80℃に維持しながら、上記単量体乳化物のうちの4部、5%過硫酸カリウム水溶液2.5部及び2%亜硫酸水素ナトリウム水溶液5部を添加し、初期重合を開始した。20分後、反応系内を80℃に維持したまま、残りの単量体乳化物を120分にわたって均一に滴下した。同時に5%過硫酸カリウム水溶液25部及び2%亜硫酸水素ナトリウム水溶液25部を120分かけて均一に滴下し、滴下終了後60分同温度を維持した。
次いで、滴下ロートにメチルメタクリレート30部、2-エチルヘキシルアクリレート63部、イソボルニルメタクリレート200.3部、アクリル酸6.75部、t-ドデシルメルカプタン0.24部、ラテムルPD-104(商品名、花王社製、20%水溶液)54部及び脱イオン水58.2部からなる第2段目の単量体乳化物を仕込み、120分にわたって均一に滴下した。同時に5%過硫酸カリウム水溶液25部及び2%亜硫酸水素ナトリウム水溶液25部を120分かけて均一に滴下し、滴下終了後90分同温度を維持し、重合を終了した。
得られた反応液を室温まで冷却後、25%アンモニア水4.3部を添加し、不揮発分54.2%、pH7.4、粘度500mPa・s、平均粒子径200nm、重量平均分子量15万、1段目のTg100℃、2段目のTg80℃、トータルTg88℃のエマルションを得た。
Production Example 2
150 parts of deionized water was charged into a polymerization vessel equipped with a stirrer, a reflux condenser, a thermometer, a nitrogen inlet tube and a dropping funnel. Thereafter, the internal temperature was raised to 75 ° C. while stirring under a nitrogen gas stream. On the other hand, 70 parts of methyl methacrylate, 25.5 parts of n-butyl acrylate, 100 parts of isobornyl methacrylate, 4.5 parts of acrylic acid, 0.16 part of t-dodecyl mercaptan, LATEMUL PD-104 (product) (First name, manufactured by Kao Corporation, 20% aqueous solution) 36 parts of deionized water and 38.8 parts of deionized water were charged.
Next, while maintaining the internal temperature of the polymerization vessel at 80 ° C., 4 parts of the above monomer emulsion, 2.5 parts of 5% potassium persulfate aqueous solution and 5 parts of 2% sodium hydrogensulfite aqueous solution were added. The initial polymerization was started. After 20 minutes, the remaining monomer emulsion was uniformly added dropwise over 120 minutes while maintaining the inside of the reaction system at 80 ° C. At the same time, 25 parts of a 5% aqueous potassium persulfate solution and 25 parts of a 2% aqueous sodium hydrogen sulfite solution were uniformly added dropwise over 120 minutes, and the same temperature was maintained for 60 minutes after completion of the addition.
Next, 30 parts of methyl methacrylate, 63 parts of 2-ethylhexyl acrylate, 200.3 parts of isobornyl methacrylate, 6.75 parts of acrylic acid, 0.24 part of t-dodecyl mercaptan, Latemul PD-104 (trade name, A second stage monomer emulsion consisting of 54 parts by Kao Corporation (20% aqueous solution) and 58.2 parts deionized water was charged and added dropwise uniformly over 120 minutes. At the same time, 25 parts of a 5% aqueous potassium persulfate solution and 25 parts of a 2% aqueous sodium hydrogen sulfite solution were uniformly added dropwise over 120 minutes, and the same temperature was maintained for 90 minutes after completion of the addition to complete the polymerization.
After cooling the obtained reaction liquid to room temperature, 4.3 parts of 25% aqueous ammonia was added, and the nonvolatile content was 54.2%, pH 7.4, viscosity 500 mPa · s, average particle diameter 200 nm, weight average molecular weight 150,000, An emulsion having a first stage Tg of 100 ° C., a second stage Tg of 80 ° C., and a total Tg of 88 ° C. was obtained.
製造例3
撹拌機、還流冷却管、温度計、窒素導入管及び滴下ロートを取り付けた重合器に脱イオン水150部を仕込んだ。その後、窒素ガス気流下で撹拌しながら内温を75℃まで昇温した。一方、上記滴下ロートに、メチルメタクリレート277.5部、2-エチルヘキシルアクリレート90部、n-ブチルアクリレート125部、アクリル酸7.5部、t-ドデシルメルカプタン2.5部、ラテムルPD-104(商品名、花王社製、20%水溶液)90部及び脱イオン水97部からなる単量体乳化物を仕込んだ。次に、重合器の内温を80℃に維持しながら、上記単量体乳化物のうちの4部、5%過硫酸カリウム水溶液2.5部及び2%亜硫酸水素ナトリウム水溶液5部を添加し、初期重合を開始した。20分後、反応系内を80℃に維持したまま、残りの単量体乳化物を240分にわたって均一に滴下した。同時に5%過硫酸カリウム水溶液50部及び2%亜硫酸水素ナトリウム水溶液50部を240分かけて均一に滴下し、滴下終了後90分同温度を維持し、重合を終了した。
得られた反応液を室温まで冷却後、25%アンモニア水2.8部を添加し、不揮発分54.4%、pH7.3、粘度230mPa・s、平均粒子径190nm、重量平均分子量8万、Tg9℃のエマルションを得た。
Production Example 3
150 parts of deionized water was charged into a polymerization vessel equipped with a stirrer, a reflux condenser, a thermometer, a nitrogen inlet tube and a dropping funnel. Thereafter, the internal temperature was raised to 75 ° C. while stirring under a nitrogen gas stream. On the other hand, 277.5 parts of methyl methacrylate, 90 parts of 2-ethylhexyl acrylate, 125 parts of n-butyl acrylate, 7.5 parts of acrylic acid, 2.5 parts of t-dodecyl mercaptan, LATEMUL PD-104 (product) (Name, Kao Corporation, 20% aqueous solution) 90 parts of monomer and 97 parts of deionized water were charged. Next, while maintaining the internal temperature of the polymerization vessel at 80 ° C., 4 parts of the above monomer emulsion, 2.5 parts of 5% potassium persulfate aqueous solution and 5 parts of 2% sodium hydrogensulfite aqueous solution were added. The initial polymerization was started. After 20 minutes, the remaining monomer emulsion was uniformly added dropwise over 240 minutes while maintaining the inside of the reaction system at 80 ° C. At the same time, 50 parts of a 5% potassium persulfate aqueous solution and 50 parts of a 2% sodium hydrogensulfite aqueous solution were uniformly added dropwise over 240 minutes, and the same temperature was maintained for 90 minutes after completion of the dropwise addition to complete the polymerization.
After cooling the obtained reaction liquid to room temperature, 2.8 parts of 25% ammonia water was added, non-volatile content 54.4%, pH 7.3, viscosity 230 mPa · s, average particle diameter 190 nm, weight average molecular weight 80,000, An emulsion having a Tg of 9 ° C. was obtained.
製造例4
サランラテックスL123D(商品名、旭化成ケミカルズ社製、塩化ビニルエマルション)を準備した。
Production Example 4
Saran latex L123D (trade name, manufactured by Asahi Kasei Chemicals Corporation, vinyl chloride emulsion) was prepared.
製造例5
ナルスターSR-115(商品名、日本エイアンドエル社製、SBRエマルション)を準備した。
Production Example 5
Nalstar SR-115 (trade name, manufactured by Nippon A & L Co., Ltd., SBR emulsion) was prepared.
製造例6
撹拌機、還流冷却管、温度計、窒素導入管及び滴下ロートを取り付けた重合器に脱イオン水150部を仕込んだ。その後、窒素ガス気流下で撹拌しながら内温を75℃まで昇温した。一方、上記滴下ロートに、メチルメタクリレート250.0部、スチレン52.5部、2-エチルヘキシルアクリレート50.0部、n-ブチルアクリレート140.0部、アクリル酸7.5部、t-ドデシルメルカプタン2.5部、ラテムルPD-104(商品名、花王社製、20%水溶液)90部及び脱イオン水97部からなる単量体乳化物を仕込んだ。次に、重合器の内温を80℃に維持しながら、上記単量体乳化物のうちの4部、5%過硫酸カリウム水溶液2.5部及び2%亜硫酸水素ナトリウム水溶液5部を添加し、初期重合を開始した。20分後、反応系内を80℃に維持したまま、残りの単量体乳化物を240分にわたって均一に滴下した。同時に5%過硫酸カリウム水溶液50部及び2%亜硫酸水素ナトリウム水溶液50部を240分かけて均一に滴下し、滴下終了後90分同温度を維持し、重合を終了した。
得られた反応液を室温まで冷却後、25%アンモニア水2.8部を添加し、不揮発分54.3%、pH7.2、粘度800mPa・s、平均粒子径190nm、重量平均分子量7万、Tg19℃のエマルションを得た。
Production Example 6
150 parts of deionized water was charged into a polymerization vessel equipped with a stirrer, a reflux condenser, a thermometer, a nitrogen inlet tube and a dropping funnel. Thereafter, the internal temperature was raised to 75 ° C. while stirring under a nitrogen gas stream. Meanwhile, 250.0 parts of methyl methacrylate, 52.5 parts of styrene, 50.0 parts of 2-ethylhexyl acrylate, 140.0 parts of n-butyl acrylate, 7.5 parts of acrylic acid, t-dodecyl mercaptan 2 were added to the dropping funnel. A monomer emulsion comprising 5 parts, 90 parts of Latemul PD-104 (trade name, manufactured by Kao Corporation, 20% aqueous solution) and 97 parts of deionized water was charged. Next, while maintaining the internal temperature of the polymerization vessel at 80 ° C., 4 parts of the above monomer emulsion, 2.5 parts of 5% potassium persulfate aqueous solution and 5 parts of 2% sodium hydrogensulfite aqueous solution were added. The initial polymerization was started. After 20 minutes, the remaining monomer emulsion was uniformly added dropwise over 240 minutes while maintaining the inside of the reaction system at 80 ° C. At the same time, 50 parts of a 5% potassium persulfate aqueous solution and 50 parts of a 2% sodium hydrogensulfite aqueous solution were uniformly added dropwise over 240 minutes, and the same temperature was maintained for 90 minutes after completion of the dropwise addition to complete the polymerization.
After cooling the obtained reaction liquid to room temperature, 2.8 parts of 25% aqueous ammonia was added, 54.3% nonvolatile content, pH 7.2, viscosity 800 mPa · s, average particle diameter 190 nm, weight average molecular weight 70,000, An emulsion having a Tg of 19 ° C. was obtained.
製造例7
撹拌機、還流冷却管、温度計、窒素導入管及び滴下ロートを取り付けた重合器に脱イオン水150部を仕込んだ。その後、窒素ガス気流下で撹拌しながら内温を75℃まで昇温した。一方、上記滴下ロートに、メチルメタクリレート45.0部、n-ブチルアクリレート25.0部、イソボルニルメタクリレート400.0部、アクリル酸30.0部、t-ドデシルメルカプタン2.5部、ラテムルPD-104(商品名、花王社製、20%水溶液)90部及び脱イオン水97部からなる単量体乳化物を仕込んだ。次に、重合器の内温を80℃に維持しながら、上記単量体乳化物のうちの4部、5%過硫酸カリウム水溶液2.5部及び2%亜硫酸水素ナトリウム水溶液5部を添加し、初期重合を開始した。20分後、反応系内を80℃に維持したまま、残りの単量体乳化物を240分にわたって均一に滴下した。同時に5%過硫酸カリウム水溶液50部及び2%亜硫酸水素ナトリウム水溶液50部を240分かけて均一に滴下し、滴下終了後90分同温度を維持し、重合を終了した。
得られた反応液を室温まで冷却後、25%アンモニア水11.2部を添加し、不揮発分54.0%、pH7.4、粘度8500mPa・s、平均粒子径180nm、重量平均分子量8万、Tg144℃のエマルションを得た。
Production Example 7
150 parts of deionized water was charged into a polymerization vessel equipped with a stirrer, a reflux condenser, a thermometer, a nitrogen inlet tube and a dropping funnel. Thereafter, the internal temperature was raised to 75 ° C. while stirring under a nitrogen gas stream. On the other hand, 45.0 parts of methyl methacrylate, 25.0 parts of n-butyl acrylate, 400.0 parts of isobornyl methacrylate, 30.0 parts of acrylic acid, 2.5 parts of t-dodecyl mercaptan, LATEMUL PD A monomer emulsion consisting of 90 parts of -104 (trade name, manufactured by Kao Corporation, 20% aqueous solution) and 97 parts of deionized water was charged. Next, while maintaining the internal temperature of the polymerization vessel at 80 ° C., 4 parts of the above monomer emulsion, 2.5 parts of 5% potassium persulfate aqueous solution and 5 parts of 2% sodium hydrogensulfite aqueous solution were added. The initial polymerization was started. After 20 minutes, the remaining monomer emulsion was uniformly added dropwise over 240 minutes while maintaining the inside of the reaction system at 80 ° C. At the same time, 50 parts of a 5% potassium persulfate aqueous solution and 50 parts of a 2% sodium hydrogensulfite aqueous solution were uniformly added dropwise over 240 minutes.
After cooling the obtained reaction liquid to room temperature, 11.2 parts of 25% aqueous ammonia was added, and the non-volatile content was 54.0%, pH 7.4, viscosity 8500 mPa · s, average particle diameter 180 nm, weight average molecular weight 80,000, An emulsion having a Tg of 144 ° C. was obtained.
製造例8
撹拌機、還流冷却管、温度計、窒素導入管及び滴下ロートを取り付けた重合器に酢酸ブチル400部を仕込んだ。さらに、メチルメタクリレート260部、n-ブチルアクリレート240部、n-ドデシルメルカプタン1.0部を計量したモノマープレミックスのうち1割を重合器に添加し、窒素ガス気流下で撹拌しながら内温を90℃まで昇温した。モノマープレミックスの残り9割は滴下ロートに仕込んだ。次に、重合器の内温を90℃に維持しながら、2.1%濃度になるように酢酸ブチルに溶解した2,2’-アゾビス(2-メチルブチロニトリル)溶液を7.3部添加し、初期重合を開始した。10分後、反応系内を90℃に維持したまま、残りのモノマープレミックスを180分にわたって均一に滴下した。同時に2.1%濃度になるように酢酸ブチルに溶解した2,2’-アゾビス(2-メチルブチロニトリル)溶液65.7部を180分かけて均一に滴下した。滴下終了30分後と60分後に、ブースターとして2.1%濃度になるように酢酸ブチルに溶解した2,2’-アゾビス(2-メチルブチロニトリル)溶液20部を2分割して添加した。ブースター添加後90分同温度を維持し、重合を終了した。
得られた反応液を室温まで冷却後、不揮発分50.4%、粘度3,200mPa・s、重量平均分子量11万、Tg6℃の樹脂溶液を得た。
Production Example 8
400 parts of butyl acetate was charged into a polymerization vessel equipped with a stirrer, a reflux condenser, a thermometer, a nitrogen inlet tube and a dropping funnel. Furthermore, 10% of the monomer premix weighed 260 parts of methyl methacrylate, 240 parts of n-butyl acrylate and 1.0 part of n-dodecyl mercaptan was added to the polymerizer, and the internal temperature was increased while stirring under a nitrogen gas stream. The temperature was raised to 90 ° C. The remaining 90% of the monomer premix was charged into the dropping funnel. Next, while maintaining the internal temperature of the polymerization vessel at 90 ° C., 7.3 parts of a 2,2′-azobis (2-methylbutyronitrile) solution dissolved in butyl acetate to a concentration of 2.1% was added. Was added to initiate the initial polymerization. After 10 minutes, the remaining monomer premix was uniformly added dropwise over 180 minutes while maintaining the inside of the reaction system at 90 ° C. At the same time, 65.7 parts of a 2,2′-azobis (2-methylbutyronitrile) solution dissolved in butyl acetate so as to have a concentration of 2.1% was uniformly added dropwise over 180 minutes. 30 minutes and 60 minutes after completion of the dropping, 20 parts of a 2,2′-azobis (2-methylbutyronitrile) solution dissolved in butyl acetate to a 2.1% concentration as a booster was added in two portions. . The same temperature was maintained for 90 minutes after addition of the booster, and the polymerization was terminated.
After cooling the obtained reaction liquid to room temperature, a resin solution having a nonvolatile content of 50.4%, a viscosity of 3,200 mPa · s, a weight average molecular weight of 110,000, and Tg of 6 ° C. was obtained.
製造例9
撹拌機、還流冷却管、温度計、窒素導入管及び滴下ロートを取り付けた重合器に酢酸ブチル400部を仕込んだ。さらに、メチルメタクリレート250部、スチレン52.5部、n-ブチルアクリレート140部、2-エチルヘキシルアクリレート50部、アクリル酸7.5部、n-ドデシルメルカプタン0.8部を計量したモノマープレミックスのうち1割を重合器に添加し、窒素ガス気流下で撹拌しながら内温を90℃まで昇温した。モノマープレミックスの残り9割は滴下ロートに仕込んだ。次に、重合器の内温を90℃に維持しながら、2.1%濃度になるように酢酸ブチルに溶解した2,2’-アゾビス(2-メチルブチロニトリル)溶液を7.3部添加し、初期重合を開始した。10分後、反応系内を90℃に維持したまま、残りのモノマープレミックスを180分にわたって均一に滴下した。同時に2.1%濃度になるように酢酸ブチルに溶解した2,2’-アゾビス(2-メチルブチロニトリル)溶液65.7部を180分かけて均一に滴下した。滴下終了30分後と60分後に、ブースターとして2.1%濃度になるように酢酸ブチルに溶解した2,2’-アゾビス(2-メチルブチロニトリル)溶液20部を2分割して添加した。ブースター添加後90分同温度を維持し、重合を終了した。
得られた反応液を室温まで冷却後、不揮発分49.8%、粘度2,500mPa・s、重量平均分子量7万、Tg19℃の樹脂溶液を得た。
Production Example 9
400 parts of butyl acetate was charged into a polymerization vessel equipped with a stirrer, a reflux condenser, a thermometer, a nitrogen inlet tube and a dropping funnel. Furthermore, among the monomer premixes weighed 250 parts of methyl methacrylate, 52.5 parts of styrene, 140 parts of n-butyl acrylate, 50 parts of 2-ethylhexyl acrylate, 7.5 parts of acrylic acid and 0.8 part of n-dodecyl mercaptan 10% was added to the polymerization vessel, and the internal temperature was raised to 90 ° C. while stirring under a nitrogen gas stream. The remaining 90% of the monomer premix was charged into the dropping funnel. Next, while maintaining the internal temperature of the polymerization vessel at 90 ° C., 7.3 parts of a 2,2′-azobis (2-methylbutyronitrile) solution dissolved in butyl acetate to a concentration of 2.1% was added. Was added to initiate the initial polymerization. After 10 minutes, the remaining monomer premix was uniformly added dropwise over 180 minutes while maintaining the inside of the reaction system at 90 ° C. At the same time, 65.7 parts of a 2,2′-azobis (2-methylbutyronitrile) solution dissolved in butyl acetate so as to have a concentration of 2.1% was uniformly added dropwise over 180 minutes. 30 minutes and 60 minutes after completion of the dropping, 20 parts of a 2,2′-azobis (2-methylbutyronitrile) solution dissolved in butyl acetate to a 2.1% concentration as a booster was added in two portions. . The same temperature was maintained for 90 minutes after addition of the booster, and the polymerization was terminated.
After cooling the obtained reaction liquid to room temperature, a resin solution having a nonvolatile content of 49.8%, a viscosity of 2,500 mPa · s, a weight average molecular weight of 70,000 and Tg of 19 ° C. was obtained.
製造例10
撹拌機、還流冷却管、温度計、窒素導入管及び滴下ロートを取り付けた重合器に脱イオン水150部を仕込んだ。その後、窒素ガス気流下で撹拌しながら内温を75℃まで昇温した。一方、上記滴下ロートに、メチルメタクリレート214部、n-ブチルアクリレート34.5部、アクリル酸1.5部、t-ドデシルメルカプタン0.1部、予め20%水溶液に調整したレベノールWZ(商品名、花王社製)45部及び脱イオン水48.5部からなる第1段目の単量体乳化物を仕込んだ。
次に、重合器の内温を80℃に維持しながら、上記単量体乳化物のうちの4部、5%過硫酸カリウム水溶液2.5部及び2%亜硫酸水素ナトリウム水溶液5部を添加し、初期重合を開始した。20分後、反応系内を80℃に維持したまま、残りの単量体乳化物を120分にわたって均一に滴下した。同時に5%過硫酸カリウム水溶液25部及び2%亜硫酸水素ナトリウム水溶液25部を120分かけて均一に滴下し、滴下終了後60分同温度を維持した。
次いで、滴下ロートにメチルメタクリレート147部、n-ブチルアクリレート97.5部、アクリル酸5.5部、t-ドデシルメルカプタン0.1部、予め20%水溶液に調整したレベノールWZ(商品名、花王社製)45部及び脱イオン水48.5部からなる第2段目の単量体乳化物を仕込み、120分にわたって均一に滴下した。同時に5%過硫酸カリウム水溶液25部及び2%亜硫酸水素ナトリウム水溶液25部を120分かけて均一に滴下し、滴下終了後90分同温度を維持し、重合を終了した。得られた反応液を室温まで冷却後、25%アンモニア水2.6部を添加し、不揮発分54.9%、pH7.2、粘度300mPa・s、平均粒子径190nm、重量平均分子量20万、1段目のTg20℃、2段目のTg90℃、トータルTg43℃のエマルションを得た。
Production Example 10
150 parts of deionized water was charged into a polymerization vessel equipped with a stirrer, a reflux condenser, a thermometer, a nitrogen inlet tube and a dropping funnel. Thereafter, the internal temperature was raised to 75 ° C. while stirring under a nitrogen gas stream. Meanwhile, in the dropping funnel, 214 parts of methyl methacrylate, 34.5 parts of n-butyl acrylate, 1.5 parts of acrylic acid, 0.1 part of t-dodecyl mercaptan, Levenol WZ (trade name, A first stage monomer emulsion consisting of 45 parts Kao) and 48.5 parts deionized water was charged.
Next, while maintaining the internal temperature of the polymerization vessel at 80 ° C., 4 parts of the above monomer emulsion, 2.5 parts of 5% potassium persulfate aqueous solution and 5 parts of 2% sodium hydrogensulfite aqueous solution were added. The initial polymerization was started. After 20 minutes, the remaining monomer emulsion was uniformly added dropwise over 120 minutes while maintaining the inside of the reaction system at 80 ° C. At the same time, 25 parts of a 5% aqueous potassium persulfate solution and 25 parts of a 2% aqueous sodium hydrogen sulfite solution were uniformly added dropwise over 120 minutes, and the same temperature was maintained for 60 minutes after completion of the addition.
Next, 147 parts of methyl methacrylate, 97.5 parts of n-butyl acrylate, 5.5 parts of acrylic acid, 0.1 part of t-dodecyl mercaptan, and Lebenol WZ (trade name, Kao Corporation) previously adjusted to a 20% aqueous solution were added to the dropping funnel. (Manufactured) A second stage monomer emulsion consisting of 45 parts and deionized water 48.5 parts was charged and added dropwise uniformly over 120 minutes. At the same time, 25 parts of a 5% aqueous potassium persulfate solution and 25 parts of a 2% aqueous sodium hydrogen sulfite solution were uniformly added dropwise over 120 minutes. After cooling the obtained reaction liquid to room temperature, 2.6 parts of 25% aqueous ammonia was added, and the non-volatile content was 54.9%, pH 7.2, viscosity 300 mPa · s, average particle diameter 190 nm, weight average molecular weight 200,000, An emulsion having a first stage Tg of 20 ° C., a second stage Tg of 90 ° C., and a total Tg of 43 ° C. was obtained.
(実施例1~11、比較例1~4)
表1に示すように、製造例1~10で準備したポリマー(エマルション又は樹脂溶液)に、可塑剤(1)~(5)を加えてポリマーと可塑剤の混合物を調製した。
表1には可塑剤の添加量を、ポリマーと可塑剤の不揮発分の合計100重量%に対する割合(重量%)で示した。
さらに、ポリマーと可塑剤の混合物に下記成分を配合し、振動減衰材用樹脂組成物を得た。
(Examples 1 to 11, Comparative Examples 1 to 4)
As shown in Table 1, plasticizers (1) to (5) were added to the polymers (emulsions or resin solutions) prepared in Production Examples 1 to 10 to prepare mixtures of polymers and plasticizers.
Table 1 shows the addition amount of the plasticizer as a ratio (% by weight) to the total nonvolatile content of the polymer and the plasticizer of 100% by weight.
Furthermore, the following component was mix | blended with the mixture of a polymer and a plasticizer, and the resin composition for vibration damping materials was obtained.
ポリマーと可塑剤の混合物 359部
炭酸カルシウム(NN♯200※1) 620部
カーボンブラック 1部
デンプン 46.8部
分散剤(アクアリックDL-40S※2) 6部
増粘剤 4部
(実施例1、4~7、11、比較例1~3はAを、実施例2、8、10はBを、実施例3はCを、実施例9はDを使用した)
A:アクリセットWR-650※3
B:アクリセットWR-503A※4
C:プライマルTT-615※5
D:プライマルASE-95※6
消泡剤(ノプコ8034L※7) 1部
発泡剤(F-30※8) 6部
※1:日東粉化工業株式会社製 充填材(平均粒子径20μm)
※2:株式会社日本触媒製 ポリカルボン酸型分散剤(有効成分44%)
※3:株式会社日本触媒製 アルカリ可溶性のアクリル系増粘剤(有効成分30%)
※4:株式会社日本触媒製 アルカリ可溶性のアクリル系増粘剤(有効成分30%)
※5:ローム&ハース株式会社製 アルカリ可溶性のアクリル系増粘剤(有効成分30%)
※6:ローム&ハース株式会社製 アルカリ可溶性のアクリル系増粘剤、ニュートン流動性付与型(有効成分30%)
※7:サンノプコ株式会社製 消泡剤(主成分:疎水性シリコーン+鉱物油)
※8:松本油脂社製 発泡剤
Polymer and plasticizer mixture 359 parts Calcium carbonate (NN # 200 * 1 ) 620 parts Carbon black 1 part Starch 46.8 parts Dispersant (Aquaric DL-40S * 2 ) 6 parts Thickener 4 parts (Example 1, (4-7, 11, Comparative Examples 1-3 used A, Examples 2, 8, 10 used B, Example 3 used C, and Example 9 used D)
A: Acre Reset WR-650 * 3
B: Axle reset WR-503A * 4
C: Primal TT-615 * 5
D: Primal ASE-95 * 6
Defoaming agent (Nopco 8034L * 7 ) 1 part Foaming agent (F-30 * 8 ) 6 parts * 1: Filling material (average particle size 20μm) manufactured by Nitto Flourishing Co., Ltd.
* 2: Nippon Shokubai Co., Ltd. polycarboxylic acid type dispersant (active ingredient 44%)
* 3: Nippon Shokubai Co., Ltd. alkali-soluble acrylic thickener (active ingredient 30%)
* 4: Made by Nippon Shokubai Co., Ltd. Alkali-soluble acrylic thickener (active ingredient 30%)
* 5: Rohm & Haas Co., Ltd. Alkali-soluble acrylic thickener (30% active ingredient)
* 6: Rohm & Haas Co., Ltd. Alkali-soluble acrylic thickener, Newton fluidity-imparting type (30% active ingredient)
* 7: Defoaming agent (main component: hydrophobic silicone + mineral oil) manufactured by San Nopco Co., Ltd.
* 8: Matsumoto Yushi Co., Ltd. foaming agent
<制振性試験>
得られた振動減衰材用樹脂組成物を冷間圧延鋼板(SPCC・幅15mm×長さ250mm×厚み1.5mm)上に3mmの厚みで塗布して150℃で30分間乾燥し、冷間圧延鋼板上に面密度4.0Kg/mの塗膜を形成した。制振性の測定は、片持ち梁法(損失係数測定システム、小野測機社製)を用いて、10℃、20℃、30℃、40℃、50℃及び60℃における損失係数ηを共振法(3dB法)により測定した。損失係数のピーク高さが大きいほど制振性に優れる。10℃、20℃、30℃、40℃、50℃及び60℃の損失係数の合計は0.46以上であることが好ましく、0.46以上であれば実用温度範囲で充分な振動減衰性能を有するといえる。
なお、半値幅とは損失係数のピークトップ値を1/2にした部分のピークの温度幅を示し、DPTは、損失係数のピーク温度を示す。評価結果を表1に示した。表1では、10℃、20℃、30℃、40℃、50℃及び60℃の損失係数の合計が0.46以上を○、0.46未満を×とした。
<Vibration suppression test>
The obtained resin composition for vibration damping material was applied to a cold-rolled steel plate (SPCC, width 15 mm × length 250 mm × thickness 1.5 mm) at a thickness of 3 mm, dried at 150 ° C. for 30 minutes, and cold-rolled. A coating film having a surface density of 4.0 kg / m 2 was formed on the steel plate. The measurement of vibration damping uses the cantilever method (loss factor measurement system, Ono Sokki Co., Ltd.) to resonate the loss factor η at 10 ° C, 20 ° C, 30 ° C, 40 ° C, 50 ° C and 60 ° C. Measured by the method (3 dB method). The greater the peak height of the loss factor, the better the damping performance. The total loss coefficient at 10 ° C., 20 ° C., 30 ° C., 40 ° C., 50 ° C. and 60 ° C. is preferably 0.46 or more, and if it is 0.46 or more, sufficient vibration damping performance is achieved in the practical temperature range. It can be said that it has.
Note that the half-value width indicates the temperature width of the peak at a portion where the peak top value of the loss coefficient is halved, and DPT indicates the peak temperature of the loss coefficient. The evaluation results are shown in Table 1. In Table 1, the sum of the loss factors of 10 ° C., 20 ° C., 30 ° C., 40 ° C., 50 ° C. and 60 ° C. is 0.46 or more, and less than 0.46 is x.
<顔料分散性及び塗膜外観の観察>
上記制振性試験で形成した塗膜の外観を観察し、顔料分散性、塗布時のタレ及び塗膜外観を評価した。
評価結果を表1に示した。
<顔料分散性>
顔料分散性は、得られた振動減衰材用樹脂組成物を目視観察して評価した。評価基準は以下のとおりである。
○:顔料のダマが無くカーボンの着色が均一で滑らかな外観
×:顔料のダマがあったりカーボンの着色が不均一な外観
<塗布時のタレ>
塗布時のタレは、電着塗装鋼板(エポキシ系カチオン電着塗装板:日本テストパネル社製、幅70mm×長さ150mm×厚み0.8mm)に、振動減衰材用樹脂組成物を厚みが4mmとなるように塗布し、垂直に立てて60℃30分熱処理後の、塗膜下部のタレた長さを計測することにより評価した。評価基準は以下のとおりである。
◎:10mm未満
○:10mm以上~15mm未満
×:15mm以上
<塗膜外観>
上記制振性試験で形成した塗膜の目視外観を確認した。評価基準は以下のとおりである。
○:塗膜に割れ無し
×:塗膜の割れ有り
割れとは鋼板との界面で剥れるような状態の割れや、塗膜表面のひび割れ等のことである。
<Observation of pigment dispersibility and coating film appearance>
The appearance of the coating film formed in the vibration damping test was observed, and the pigment dispersibility, the sagging during coating, and the coating film appearance were evaluated.
The evaluation results are shown in Table 1.
<Pigment dispersibility>
The pigment dispersibility was evaluated by visual observation of the obtained resin composition for vibration damping material. The evaluation criteria are as follows.
○: Appearance of smooth and uniform carbon coloring without pigment lumps ×: Appearance of pigment lumps or non-uniform carbon coloring <sag during application>
The sagging during coating is an electrodeposited steel plate (epoxy cationic electrodeposition coating plate: Nippon Test Panel Co., Ltd., width 70 mm × length 150 mm × thickness 0.8 mm) and thickness 4 mm. It was evaluated by measuring the length of the sagging at the bottom of the coating film after heat treatment at 60 ° C. for 30 minutes. The evaluation criteria are as follows.
A: Less than 10 mm B: 10 mm to less than 15 mm X: 15 mm or more <Appearance of coating film>
The visual appearance of the coating film formed in the vibration damping test was confirmed. The evaluation criteria are as follows.
○: No crack in the coating film ×: Cracking of the coating film means cracking in a state of peeling at the interface with the steel sheet, cracking of the coating film surface, and the like.
<塗膜特性の評価>
上記制振性試験で形成した塗膜について、塗膜耐衝撃性、塗膜曲げ及び塗膜膜厚を評価した。
評価結果を表1に示した。
<耐衝撃性の評価>
上記制振性試験で形成した試験片の塗膜面に対して、重量100gの鋼球を高さ30cmの高さから落とした時の塗膜外観を観察した。評価基準は以下のとおりである。
試験温度は損失係数のピーク温度とした。
○:塗膜の割れや剥離無し
×:塗膜の割れや剥離有り
<塗膜曲げの評価>
上記制振性試験で形成した試験片の中央部を塗膜の塗布面とは逆方向に30度曲げた時の塗膜の状態を確認した。評価基準は以下のとおりである。
試験温度は損失係数のピーク温度とした。
○:塗膜の割れや剥離無し
×:塗膜の割れや剥離有り
<塗膜膜厚の評価>
上記制振性試験で形成した試験片の、鋼板を除いた塗膜の膜厚を評価した。
膜厚は、比較例1の膜厚を1.0とした相対値で示した。
<Evaluation of coating film properties>
About the coating film formed by the said vibration damping test, the coating film impact resistance, coating film bending, and coating film thickness were evaluated.
The evaluation results are shown in Table 1.
<Evaluation of impact resistance>
The appearance of the coating film was observed when a steel ball having a weight of 100 g was dropped from a height of 30 cm on the coating film surface of the test piece formed in the vibration damping test. The evaluation criteria are as follows.
The test temperature was the peak temperature of the loss factor.
○: No cracking or peeling of coating film ×: Cracking or peeling of coating film <Evaluation of coating film bending>
The state of the coating film when the center part of the test piece formed by the vibration damping test was bent 30 degrees in the direction opposite to the coating surface of the coating film was confirmed. The evaluation criteria are as follows.
The test temperature was the peak temperature of the loss factor.
○: No cracking or peeling of coating film ×: Cracking or peeling of coating film <Evaluation of coating film thickness>
The thickness of the coating film excluding the steel plate of the test piece formed in the vibration damping test was evaluated.
The film thickness was shown as a relative value with the film thickness of Comparative Example 1 being 1.0.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
表1中、可塑剤(1)~(5)はそれぞれ以下のものを表す。
(1):2,2’―メチレンビス(4-エチル-6-tert-ブチルフェノール)(大内新興化学工業社製、商品名:ノクラックNS-6)
(2):N,N-ジシクロヘキシルベンゾチアゾール-2-スルフェンアミド(和光純薬工業社製)
(3):スチレン化フェノール(大内新興化学工業社製、商品名:ノクラックSP)
(4):オクチル化ジフェニルアミン(大内新興化学工業社製、商品名:ノクラックAD-F)
(5):アルキル化ジフェニルアミン(大内新興化学工業社製、商品名:ノクラックODA)
In Table 1, plasticizers (1) to (5) represent the following, respectively.
(1): 2,2′-methylenebis (4-ethyl-6-tert-butylphenol) (trade name: NOCRACK NS-6, manufactured by Ouchi Shinsei Chemical Co., Ltd.)
(2): N, N-dicyclohexylbenzothiazole-2-sulfenamide (manufactured by Wako Pure Chemical Industries, Ltd.)
(3): Styrenated phenol (Ouchi Shinsei Chemical Co., Ltd., trade name: NOCRACK SP)
(4): Octylated diphenylamine (Ouchi Shinsei Chemical Co., Ltd., trade name: NOCRACK AD-F)
(5): Alkylated diphenylamine (Ouchi Shinsei Chemical Co., Ltd., trade name: NOCRACK ODA)
実施例1~9の振動減衰材用樹脂組成物は、損失係数のピーク高さが0.15を超えて高くなっており、ピーク高さ×半値幅の値も4.5を超えて大きく、更に、10℃~60℃の損失係数の合計も0.46を超えていることから、振動減衰作用が大きく、優れた特性を示した。また、顔料分散性と塗膜外観にも優れていた。
また、2種類のポリマーを混合した実施例10、11の振動減衰材用樹脂組成物においても、損失係数のピーク高さが0.14以上と高くなっており、ピーク高さ×半値幅の値も4.5以上と大きく、更に、10℃~60℃の損失係数の合計も0.46を超えていることから、振動減衰作用が大きく、優れた特性を示した。また、顔料分散性と塗膜外観にも優れていた。
In the resin compositions for vibration damping materials of Examples 1 to 9, the peak height of the loss factor is higher than 0.15, and the value of peak height × half-value width is also higher than 4.5. Furthermore, since the total loss coefficient at 10 ° C. to 60 ° C. exceeds 0.46, the vibration damping action is large and excellent characteristics are exhibited. Moreover, the pigment dispersibility and the coating film appearance were also excellent.
Also, in the resin compositions for vibration damping materials of Examples 10 and 11 in which two types of polymers were mixed, the peak height of the loss factor was as high as 0.14 or more, and the value of peak height × half-value width Furthermore, since the total loss coefficient of 10 ° C. to 60 ° C. exceeds 0.46, the vibration damping action is large and excellent characteristics are exhibited. Moreover, the pigment dispersibility and the coating film appearance were also excellent.

Claims (8)

  1. 単量体成分を重合してなるポリマーと、可塑剤とを含み、
    該ポリマーが水系溶媒中にエマルションの形態で存在した水系の組成物であることを特徴とする振動減衰材用樹脂組成物。
    Including a polymer obtained by polymerizing monomer components and a plasticizer,
    A resin composition for vibration damping material, wherein the polymer is an aqueous composition in the form of an emulsion in an aqueous solvent.
  2. 前記可塑剤が前記ポリマー中に含まれるか、又は、前記可塑剤が水系溶媒中にエマルションの形態で存在した水系の組成物であることを特徴とする請求項1に記載の振動減衰材用樹脂組成物。 2. The vibration damping material resin according to claim 1, wherein the plasticizer is contained in the polymer, or the plasticizer is an aqueous composition in the form of an emulsion in an aqueous solvent. Composition.
  3. 前記可塑剤は、芳香族炭化水素類、複素芳香族化合物類、有機酸類、及び、それらの変性物からなる群から選択された少なくとも1種であることを特徴とする請求項1又は2に記載の振動減衰材用樹脂組成物。 The plasticizer is at least one selected from the group consisting of aromatic hydrocarbons, heteroaromatic compounds, organic acids, and modified products thereof. A resin composition for vibration damping materials.
  4. さらに高分子系増粘剤とを含むことを特徴とする請求項1~3のいずれかに記載の振動減衰材用樹脂組成物。 The resin composition for vibration damping material according to any one of claims 1 to 3, further comprising a polymer thickener.
  5. 前記高分子系増粘剤は、ポリビニルアルコール系増粘剤、ポリビニルピロリドン系増粘剤、不飽和カルボン酸(共)重合体系増粘剤、セルロース誘導体系増粘剤、及び、ポリエーテルウレタン変性物系増粘剤からなる群から選択された少なくとも1種であることを特徴とする請求項4に記載の振動減衰材用樹脂組成物。 The polymer thickener includes polyvinyl alcohol thickener, polyvinylpyrrolidone thickener, unsaturated carboxylic acid (co) polymer thickener, cellulose derivative thickener, and modified polyether urethane. The resin composition for vibration damping material according to claim 4, wherein the resin composition is at least one selected from the group consisting of a system thickener.
  6. 前記高分子系増粘剤の重量平均分子量は、300,000以上であることを特徴とする請求項4又は5に記載の振動減衰材用樹脂組成物。 The resin composition for vibration damping materials according to claim 4 or 5, wherein the polymer-based thickener has a weight average molecular weight of 300,000 or more.
  7. 前記振動減衰材用樹脂組成物の、B型回転粘度計を用いて2rpmで測定した低剪断粘度(η1)と、B型回転粘度計を用いて20rpmで測定した高剪断粘度(η2)の比(η1/η2)が1~9であることを特徴とする請求項1~6のいずれかに記載の振動減衰材用樹脂組成物。 Ratio of low shear viscosity (η1) measured at 2 rpm using a B-type rotational viscometer and high shear viscosity (η2) measured at 20 rpm using a B-type rotational viscometer of the resin composition for vibration damping material 7. The resin composition for vibration damping material according to claim 1, wherein (η1 / η2) is 1 to 9.
  8. さらに顔料を含むことを特徴とする請求項1~7のいずれかに記載の振動減衰材用樹脂組成物。 The resin composition for vibration damping material according to any one of claims 1 to 7, further comprising a pigment.
PCT/JP2014/053352 2013-02-14 2014-02-13 Resin composition for vibration-damping material WO2014126159A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2013026961 2013-02-14
JP2013-026960 2013-02-14
JP2013026960 2013-02-14
JP2013-026961 2013-02-14
JP2013145495 2013-07-11
JP2013-145495 2013-07-11
JP2014-023577 2014-02-10
JP2014023577A JP2015034275A (en) 2013-02-14 2014-02-10 Resin composition for vibration damping material
JP2014-025651 2014-02-13
JP2014025651A JP2014177626A (en) 2013-02-14 2014-02-13 Resin composition for vibration damping material

Publications (1)

Publication Number Publication Date
WO2014126159A1 true WO2014126159A1 (en) 2014-08-21

Family

ID=51354158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053352 WO2014126159A1 (en) 2013-02-14 2014-02-13 Resin composition for vibration-damping material

Country Status (1)

Country Link
WO (1) WO2014126159A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018528310A (en) * 2015-09-29 2018-09-27 ローム アンド ハース カンパニーRohm And Haas Company Water-soluble film and its use in detergent packets

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004503652A (en) * 2000-06-14 2004-02-05 ザ ダウ ケミカル カンパニー Damping material based on asphalt emulsion
JP2006063190A (en) * 2004-08-26 2006-03-09 Cemedine Co Ltd Coating type vibration-damping material composition and building composite plate
JP2009179717A (en) * 2008-01-31 2009-08-13 Jsr Corp Restrained type vibration control sheet
WO2012010632A1 (en) * 2010-07-22 2012-01-26 Basf Se Anti-drumming compound comprising emulsion polymer stabilized by protective colloid
JP2012126775A (en) * 2010-12-14 2012-07-05 Nippon Shokubai Co Ltd Emulsion resin composition for damping material and damping material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004503652A (en) * 2000-06-14 2004-02-05 ザ ダウ ケミカル カンパニー Damping material based on asphalt emulsion
JP2006063190A (en) * 2004-08-26 2006-03-09 Cemedine Co Ltd Coating type vibration-damping material composition and building composite plate
JP2009179717A (en) * 2008-01-31 2009-08-13 Jsr Corp Restrained type vibration control sheet
WO2012010632A1 (en) * 2010-07-22 2012-01-26 Basf Se Anti-drumming compound comprising emulsion polymer stabilized by protective colloid
JP2012126775A (en) * 2010-12-14 2012-07-05 Nippon Shokubai Co Ltd Emulsion resin composition for damping material and damping material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018528310A (en) * 2015-09-29 2018-09-27 ローム アンド ハース カンパニーRohm And Haas Company Water-soluble film and its use in detergent packets

Similar Documents

Publication Publication Date Title
JP5485503B2 (en) Damping emulsion
JP5660779B2 (en) Damping emulsion
JP5030778B2 (en) Damping emulsion
JP5030780B2 (en) Damping emulsion
JP5172458B2 (en) Emulsion composition for damping material
WO2009139314A1 (en) Emulsion composition for vibration damping material
JP2010106168A (en) Emulsion for vibration damping material and vibration damping material composition
JP5260187B2 (en) Emulsion composition for damping material and damping material composition
JP5685001B2 (en) Damping emulsion and damping composition
JP2014177626A (en) Resin composition for vibration damping material
JP5815233B2 (en) Emulsion resin composition for damping material and damping material
JP5284914B2 (en) Resin composition for damping material
JP2009270064A (en) Emulsion composition for damping materials
JP2015034275A (en) Resin composition for vibration damping material
JP5770432B2 (en) Emulsion composition for heat drying, method for producing the same, and damping material composition
JP5685002B2 (en) Emulsion for damping material and damping material composition
JP6247347B2 (en) Damping emulsion and damping composition
WO2014126159A1 (en) Resin composition for vibration-damping material
JP5977123B2 (en) Damping material
JP6125799B2 (en) Resin composition for damping material
JP2016003252A (en) Resin composition for vibration damping material
JP6243206B2 (en) Resin composition for vibration damping material
WO2014126212A1 (en) Emulsion composition for vibration damping materials
JP2014177624A (en) Resin composition for vibration damping material
JP2015063651A (en) Emulsion composition for vibration-damping material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751736

Country of ref document: EP

Kind code of ref document: A1