WO2014125885A1 - 無線基地局、ユーザ端末、セル選択方法及び無線通信システム - Google Patents

無線基地局、ユーザ端末、セル選択方法及び無線通信システム Download PDF

Info

Publication number
WO2014125885A1
WO2014125885A1 PCT/JP2014/051251 JP2014051251W WO2014125885A1 WO 2014125885 A1 WO2014125885 A1 WO 2014125885A1 JP 2014051251 W JP2014051251 W JP 2014051251W WO 2014125885 A1 WO2014125885 A1 WO 2014125885A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
base station
user terminal
carrier
offset value
Prior art date
Application number
PCT/JP2014/051251
Other languages
English (en)
French (fr)
Inventor
アナス ベンジャブール
祥久 岸山
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US14/767,124 priority Critical patent/US20150373601A1/en
Priority to CN201480008281.3A priority patent/CN104982065B/zh
Publication of WO2014125885A1 publication Critical patent/WO2014125885A1/ja
Priority to US15/828,043 priority patent/US10645622B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/06Hybrid resource partitioning, e.g. channel borrowing
    • H04W16/08Load shedding arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to a radio base station, a user terminal, a cell selection method, and a radio communication system in a next-generation mobile communication system in which macro cells and small cells are overlapped.
  • LTE-A Long Term Evolution
  • HetNet radio communication system
  • a small cell for example, a pico cell, a femto cell, etc.
  • Heterogeneous Network has been studied (for example, Non-Patent Document 1).
  • a first carrier having a relatively low frequency band for example, 2 GHz
  • a second carrier having a relatively high frequency band for example, 3.5 GHz
  • the capacity of the small cell is higher than the capacity of the macro cell. For this reason, in order to improve a transmission rate (throughput), it is preferable that a user terminal communicates in a small cell.
  • the path loss of the second carrier in the high frequency band increases compared to the path loss of the first carrier in the low frequency band. For this reason, in the cell selection in the user terminal, there is a problem that even if it is preferable to perform communication in the small cell, the small cell using the second carrier in the high frequency band may not be selected.
  • the present invention has been made in view of such a point, and in a wireless communication system in which a macro cell and a small cell are overlapped, a wireless base station capable of actively selecting a small cell by a user terminal
  • An object is to provide a user terminal, a cell selection method, and a wireless communication system.
  • the cell selection method of the present invention provides a cell in a radio communication system in which a first cell in which a first carrier is used and a second cell in which a second carrier in a higher frequency band than the first carrier is used are overlapped.
  • an offset value used for cell selection in the user terminal is determined based on transmission characteristic information using the second carrier in the second cell.
  • a step of measuring reception quality, a step of receiving an offset value notified from the first radio base station, the measured reception quality, and the received offset Based on the bets value, characterized in that it and a step of performing cell selection.
  • a user terminal in a wireless communication system in which a macro cell and a small cell are arranged in an overlapping manner, a user terminal can be made to actively select a small cell.
  • HetNet It is a conceptual diagram of HetNet. It is explanatory drawing of an example of the carrier used by HetNet. It is explanatory drawing of three-dimensional / Massive MIMO. It is explanatory drawing of the relationship (one dimension) of the frequency f and the number of antenna elements. It is explanatory drawing of the relationship (two dimensions) of the frequency f and the number of antenna elements. It is explanatory drawing of the beam forming which applied three-dimensional / Massive MIMO. It is a sequence diagram which shows the cell selection method which concerns on the 1st aspect of this invention. It is a flowchart which shows the cell selection method which concerns on the 1st aspect of this invention. It is explanatory drawing of the cell selection method which concerns on the 2nd aspect of this invention.
  • FIG. 1 is a conceptual diagram of HetNet.
  • HetNet is a wireless communication system in which a large number of small cells SC are arranged so as to overlap geographically with a macro cell MC.
  • the HetNet includes a radio base station (hereinafter referred to as a macro base station) M that forms a macro cell MC, a radio base station (hereinafter referred to as a small base station) S that forms each small cell SC, a macro base station M, and a small base station S.
  • a user terminal UE communicating with at least one.
  • a method in which the user terminal UE mainly performs communication between the macro base station M and the C plane and communication between the small base station S and the U plane (“Macro-assisted” method) is also considered. ing.
  • control data and system information are transmitted and received in a macro cell MC having a larger coverage than the small cell SC.
  • user data is transmitted and received in the small cell SC having a smaller number of users per cell than the macro cell MC. For this reason, the throughput in the entire system can be improved.
  • the carrier F1 having a relatively low frequency band in the macro cell MC while using the carrier F2 having a relatively high frequency band in the small S.
  • An example of the carrier F1 used in the macro cell MC and the carrier F2 used in the small cell SC will be described in detail with reference to FIG.
  • the carrier F1 for example, an existing cellular band carrier such as 800 Hz or 2 GHz can be used.
  • the carrier F2 for example, a carrier in a higher frequency band than the existing frequency band such as 3.5 GHz or 10 GHz can be used.
  • the transmission power density of carrier F1 is higher than the transmission power density of carrier F2, so the coverage of macro cell MC is larger than that of small cell SC. Further, since the bandwidth of the carrier F2 is wider than the bandwidth of the carrier F1, the transmission rate (capacity) of the small cell SC is higher than that of the macro cell MC.
  • the path loss increases in proportion to the frequency f. Specifically, the path loss is represented by approximately 20 * log10 (f). For this reason, in a small cell SC in which a carrier F2 in a high frequency band such as 3.5 GHz or 10 GHz is used, it has been studied to compensate for path loss by using three-dimensional (3D) / Massive MIMO.
  • FIG. 3 is an explanatory diagram of 3D / Massive MIMO.
  • a plurality of antenna elements are arranged in a two-dimensional plane.
  • a plurality of antenna elements may be arranged equally in the horizontal direction and the vertical direction in the two-dimensional plane. In such a case, the number of antenna elements that can be arranged on the two-dimensional surface theoretically increases in proportion to the square of the frequency f.
  • FIGS. 4 and 5 are diagrams for explaining the relationship between the frequency f and the number of antenna elements.
  • FIG. 4 illustrates a case where the antenna elements are arranged one-dimensionally.
  • the frequency f when the frequency f is 2 GHz, it is assumed that six antenna elements are arranged in the antenna length L.
  • the number of antenna elements that can be arranged with the antenna length L increases in proportion to the frequency f.
  • the number of antenna elements in FIG. 4B is twice the number of antenna elements in FIG. 4A.
  • the beamforming gain of the transmission beam formed by the twelve antenna elements shown in FIG. 4B is 2G, twice that of FIG. 4A.
  • the beamforming gain increases in proportion to the number of antenna elements.
  • FIG. 5 illustrates a case where the antenna element is arranged on a two-dimensional plane (that is, a case where 3D / Massive MIMO is applied).
  • the frequency f is 2.5 GHz
  • the number of antenna elements Tx is proportional to the square of the frequency f.
  • the frequency f is 5 GHz, 10 GHz, and 20 GHz
  • the antenna elements are arranged two-dimensionally, the number of antenna elements that can be arranged with the antenna length L increases in proportion to the square of the frequency f.
  • the beamforming gain increases as the number of antenna elements increases.
  • the path loss can be compensated by the beam forming gain.
  • the user terminal UE measures the reception quality (including RSRQ: Reference Signal Received Quality, RSRP: Reference Signal Received Power, etc.) of the reference signal transmitted from the macro base station M or the small base station S, and displays the measurement result. Based on this, cell selection is performed. In addition, cell selection is selecting the cell (radio base station) with which the user terminal UE communicates.
  • reception quality including RSRQ: Reference Signal Received Quality, RSRP: Reference Signal Received Power, etc.
  • the coverage C of the signal that is not beamformed is smaller than the coverage C ′ of the beamformed signal. .
  • the user terminal UE located in the coverage C ′ cannot receive a reference signal that is not beamformed with sufficient reception quality.
  • the user terminal UE cannot select the small cell SC formed by the small base station S even if it can communicate with the small base station S by the beamforming gain, and is connected to the macro cell MC. End up.
  • the small cell SC using the carrier F2 has a larger signal transmission bandwidth than the macro cell MC using the carrier F1 (see FIG. 2). For this reason, in order to improve a transmission rate (throughput), it is preferable that the user terminal UE communicates in the small cell SC.
  • the user terminal UE does not consider the transmission bandwidth of the signal transmitted using the carrier F2 in the above cell selection. For this reason, even if it is preferable to communicate with the small cell SC from the viewpoint of transmission rate (throughput), the macro cell MC is selected based on the reception quality of the reference signal, and the small cell SC cannot be selected. Is assumed.
  • the small cell SC in which the carrier F2 is used is different from the macro cell MC in which the carrier F1 is used in various transmission characteristics such as a beamforming gain and a transmission bandwidth.
  • the user terminal UE performs cell selection without considering transmission characteristics using the carrier F2, the user terminal UE cannot select the small cell SC and cannot realize offload from the macro cell MC to the small cell SC. Is assumed.
  • the present inventors have various transmission characteristics in the small cell SC (for example, the number of transmit antenna elements capable of calculating the beamforming gain, in the wireless communication system in which the macro cell MC and the small cell SC are arranged overlappingly, By enabling cell selection in consideration of beam forming gain, transmission bandwidth, and the like, the idea of causing the user terminal UE to actively select the small cell SC has been obtained and the present invention has been achieved.
  • the cell selection method according to the present invention includes a macro cell MC (first cell) in which the first carrier is used and a small cell SC (second cell) in which the second carrier having a higher frequency band than the first carrier is used. Used in overlapping wireless communication systems.
  • the macro cell MC is formed by the macro base station M (first radio base station), and the small cell SC is formed by the small base station S (second radio base station).
  • the carrier of any frequency band may be used as long as the frequency of the second carrier is higher than that of the first carrier.
  • the macro base station M determines an offset value used for cell selection in the user terminal UE based on transmission characteristic information using the carrier F2 in the small cell SC, and is determined for the user terminal UE. Notify the offset value.
  • the user terminal UE measures the reception quality of the reference signal from the macro base station M and the small base station S and receives the offset value notified from the macro base station M. The user terminal UE performs cell selection based on the measured reception quality and the received offset value.
  • the transmission characteristic information using the carrier F2 is the number of transmission antenna elements provided in the small base station S, the transmission bandwidth used in the small base station S, and the beam of the transmission beam used in the small base station S. And at least one of forming gain and the like.
  • FIG. 7 is a sequence diagram showing a cell selection method according to the first aspect of the present invention.
  • the macro base station M uses the carrier characteristic F2 in the small cell SC based on the transmission characteristic information (the number of transmission antenna elements, the transmission bandwidth, the beamforming gain, etc.) in the user terminal UE.
  • An offset value used for cell selection is determined (step S101). For example, the macro base station M may increase the offset value as the above transmission characteristics are improved.
  • the transmission characteristic information described above may be notified to the macro base station M from the small base station S, the host control device, or the like, or may be stored in advance in the macro base station M. Further, the beamforming gain may be calculated based on the number of transmission antenna elements provided in the small base station S.
  • the macro base station M may determine the offset value based on the transmission characteristic information described above and interference information from neighboring cells of the small cell SC.
  • the macro base station M may increase the offset value as the interference from the adjacent cell decreases.
  • the macro base station M notifies the user terminal UE of the offset value determined as described above (step S102).
  • the offset value may be notified by higher layer signaling such as RRC signaling, or may be included in broadcast information and downlink control information (DCI) for the user terminal UE.
  • DCI downlink control information
  • the small base station S and the macro base station M each transmit a reference signal (steps S103 and S104).
  • a reference signal for example, CSI-RS (Channel State Information-Reference Signal), a discovery signal, or the like may be used.
  • the user terminal UE measures the reception quality of the reference signal from the small base station S and the macro base station M (step S105).
  • RSRQ Reference Signal Received Quality
  • RSRP Reference Signal Received Power
  • a combination thereof may be used as the reception quality.
  • the user terminal UE adds an offset value notified from the macro base station M to the reception quality of the reference signal from the small base station S (step S106). Note that the user terminal UE does not add an offset value to the reception quality of the reference signal from the macro base station M.
  • the user terminal UE performs cell selection based on the reception quality to which the offset value is added (step S107).
  • FIG. 8 is a flowchart showing a cell selection operation in the user terminal UE.
  • the user terminal UE determines whether or not the best reception quality among the reception qualities of the reference signal from the small base station S satisfies a predetermined threshold (step S201).
  • a predetermined threshold As described above, an offset value notified from the macro base station M is added to the reception quality of the reference signal from the small base station S.
  • the user terminal UE compares the reception quality of the reference signal from the small base station S, and based on the comparison result, the small cell SC (small Base station S) is selected (step S202). For example, the user terminal UE may select a small cell SC (small base station S) having the best reception quality.
  • the user terminal UE receives the reference signal reception quality from the small base station S and the reference signal reception quality from the macro base station M. And the small cell SC (small base station S) or the macro cell MC (macro base station M) is selected based on the comparison result (step S203). For example, the user terminal UE may select a small cell SC (small base station S) or a macro cell MC (macro base station M) having the best reception quality.
  • the offset determined based on the transmission characteristic information using the carrier F2 in the small cell SC (the number of transmission antenna elements, the transmission bandwidth, the beamforming gain, etc. described above). Since the cell selection in the user terminal UE is performed based on the value, the small cell SC can be positively selected.
  • the user terminal The UE since the offset value notified from the macro base station M is added to the reception quality of the reference signal from the small base station S, the user terminal The UE can positively select the small cell SC based on the reception quality to which the offset value is added, and can realize offload from the macro cell MC to the small cell SC.
  • FIG. 9 is an explanatory diagram of a reference signal transmitted from the small base station S.
  • a reference signal is transmitted at a predetermined cycle.
  • the predetermined period may be a relatively long period of, for example, about several seconds, but is not limited thereto.
  • the reference signal for example, a CSI-RS or a newly defined small cell discovery signal is used, but the reference signal is not limited thereto.
  • beam forming is performed in the data transmission period. Thereby, a beam forming gain can be obtained for data transmitted in the data transmission period.
  • the data transmitted in the data transmission period may include not only user data but also control information.
  • beam forming cannot be performed in the reference signal transmission period. This is because feedback information such as CSI (Channel State Information) cannot be acquired in the reference signal transmission period, and AOA (Angle of Arrival) and AOD (Angle of Departure) used for weighting multiple antenna elements are unknown. . For this reason, a beam forming gain cannot be obtained for the reference signal.
  • CSI Channel State Information
  • AOA Angle of Arrival
  • AOD Angle of Departure
  • the reference signal in the second mode, is transmitted with the transmission power increased from the transmission power (transmission power density) in the data transmission period according to the beamforming gain obtained in the data transmission period.
  • the small cell SC using the carrier F2 has a larger signal transmission bandwidth than the macro cell MC using the carrier F1 (see FIG. 2). Therefore, in the second mode, in the reference signal transmission period, the reference signal is transmitted with the transmission power increased according to the increase amount of the transmission bandwidth of the carrier F2 with respect to the carrier F1.
  • the macro cell MC may notify the small cell SC of the amplification amount of the reference signal in the small cell SC.
  • the small base station S transmits the reference signal transmission power based on the transmission characteristic information using the carrier F2 (for example, the above-mentioned beamforming gain, transmission bandwidth, number of transmission antenna elements). And the reference signal is transmitted with the determined transmission power.
  • the carrier F2 for example, the above-mentioned beamforming gain, transmission bandwidth, number of transmission antenna elements.
  • FIG. 10 is a sequence diagram showing a cell selection method according to the second aspect of the present invention.
  • the small base station S determines the transmission power of the reference signal based on transmission characteristic information using the carrier F2 (the above-described beamforming gain, transmission bandwidth, number of transmission antenna elements, and the like). (Step S301).
  • the small base station S may increase the transmission power of the reference signal in proportion to at least one of the beamforming gain and transmission bandwidth of the transmission beam used in the data transmission period (see FIG. 9).
  • the beamforming gain may be calculated based on the number of transmission antenna elements provided in the small base station S.
  • the small base station S may determine the transmission power of the reference signal based on the above-described transmission characteristic information and interference information from neighboring cells of the small cell SC.
  • the transmission power of the reference signal may be decreased in consideration of a decrease in interference from adjacent cells.
  • the small base station S transmits the reference signal with the transmission power determined as described above (step S302).
  • the macro base station M also transmits a reference signal (step S303).
  • the user terminal UE measures the reception quality of the reference signal from the small base station S and the macro base station M (step S304).
  • the reception quality for example, RSRQ, RSRP, or a combination thereof may be used.
  • the user terminal UE performs cell selection based on the reception quality measured in step S304 (step S305). Specifically, the user terminal UE performs cell selection without using the offset value described in the first mode. In step S305, cell selection may be performed using the same determination as in FIG. When the determination of FIG. 8 is used, unlike the first aspect, no offset value is added to the reception quality of the reference signal from the small base station S.
  • the reference signal used for cell selection in the user terminal UE is transmitted with the transmission power determined based on the transmission characteristic information using the carrier F2.
  • the transmission power of the reference signal from the small base station S is determined by the small base station S, but is not limited thereto.
  • the macro base station M may determine the transmission power of the reference signal from the small base station S based on the transmission characteristic information using the carrier F2 in the small cell SC. In such a case, the macro base station M may notify the determined transmission power to the small base station S, and the small base station S may transmit the reference signal with the notified transmission power.
  • the cell selection method uses the macro cell MC (first cell) in which the carrier F1 (first carrier) is used and the carrier F2 (second carrier) in a higher frequency band than the carrier F1.
  • FIG. 11 is a schematic configuration diagram of the radio communication system according to the present embodiment.
  • the radio communication system shown in FIG. 11 is a system including, for example, an LTE system, an LTE-A system, IMT-Advanced, 4G, FRA (Future Radio Access), and the like.
  • the radio communication system 1 includes a macro base station 11 that forms a macro cell C1, and small base stations 12a and 12b that are arranged in the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. I have. Moreover, the user terminal 20 is arrange
  • a carrier F1 having a relatively low frequency band such as 800 MHz or 2 GHz is used.
  • a carrier F2 having a relatively high frequency band such as 3.5 GHz or 10 GHz is used.
  • the carrier F1 may be called an existing carrier, a legacy carrier, a coverage carrier, or the like.
  • the carrier F2 may be referred to as an additional carrier, a capacity carrier, or the like.
  • the macro base station 11 and each small base station 12 may be wired or wirelessly connected.
  • the macro base station 11 and each small base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • the macro base station 11 is a radio base station having a relatively wide coverage, and may be called an eNodeB, a radio base station apparatus, a transmission point, or the like.
  • the small base station 12 is a radio base station having local coverage, and may be called an RRH (Remote Radio Head), a pico base station, a femto base station, a Home eNodeB, a transmission point, an eNodeB, or the like.
  • RRH Remote Radio Head
  • the small cell C2 formed by the small base station 12 may be a cell of a type in which the PDCCH is arranged in the first maximum 3 OFDM symbols of the subframe, or a type in which the PDCCH is not arranged (new carrier type, additional Carrier type) cells (phantom cells) may be used.
  • Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single carrier transmission method that reduces interference between terminals by dividing a system band into bands each consisting of one or continuous resource blocks for each terminal, and a plurality of terminals using different bands. .
  • the downlink communication channel includes PDSCH (downlink shared data channel) shared by each user terminal 20 and downlink L1 / L2 control channels (PDCCH, PCFICH, PHICH, EPDCCH).
  • PDSCH downlink shared data channel
  • PCFICH Physical Control Format Indicator Channel
  • HARQ ACK / NACK for PUSCH is transmitted by PHICH (Physical Hybrid-ARQ Indicator Channel).
  • scheduling information and the like of PDSCH and PUSCH may be transmitted by EPDCCH.
  • This EPDCCH (enhanced downlink control channel) is frequency division multiplexed with the PDSCH.
  • the uplink communication channel includes a PUSCH (uplink shared data channel) shared by each user terminal 20 and a PUCCH (Physical Uplink Control Channel) that is an uplink control channel.
  • PUSCH uplink shared data channel
  • PUCCH Physical Uplink Control Channel
  • User data and higher layer control information are transmitted by this PUSCH.
  • downlink radio quality information CQI: Channel Quality Indicator
  • ACK / NACK and the like are transmitted by PUCCH.
  • FIG. 12 is an overall configuration diagram of the radio base station 10 (including the macro base station 11 and the small base station 12) according to the present embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101 for MIMO transmission, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Yes.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • the baseband signal processing unit 104 performs PDCP layer processing, user data division / combination, RLC layer transmission processing such as RLC (Radio Link Control) retransmission control transmission processing, MAC (Medium Access Control) retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, and precoding processing are performed and transferred to each transceiver 103.
  • RLC layer transmission processing such as RLC (Radio Link Control) retransmission control transmission processing, MAC (Medium Access Control) retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, and precoding processing are performed and transferred to each transceiver 103.
  • RLC layer transmission processing such as RLC (Radio Link Control) retransmission control transmission processing, MAC (Medium Access Control) retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, inverse fast Four
  • Each transmitting / receiving unit 103 converts the downlink signal output by precoding from the baseband signal processing unit 104 for each antenna to a radio frequency band.
  • the amplifier unit 102 amplifies the frequency-converted radio frequency signal and transmits the amplified signal using the transmission / reception antenna 101.
  • the radio frequency signal received by each transmitting / receiving antenna 101 is amplified by the amplifier unit 102, frequency-converted by each transmitting / receiving unit 103, converted into a baseband signal, and sent to the baseband signal processing unit 104. Entered.
  • the baseband signal processing unit 104 performs FFT processing, IDFT processing, error correction decoding, MAC retransmission control reception processing, RLC layer, and PDCP layer reception processing on user data included in the input uplink signal.
  • the data is transferred to the higher station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, status management of the radio base station 10, and radio resource management.
  • FIG. 13 is an overall configuration diagram of the user terminal 20 according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • radio frequency signals received by a plurality of transmission / reception antennas 201 are respectively amplified by an amplifier unit 202, frequency-converted by a transmission / reception unit 203, and input to a baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, reception processing for retransmission control, and the like.
  • User data included in the downlink signal is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information in the downlink data is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission processing for retransmission control (H-ARQ (Hybrid ARQ)), channel coding, precoding, DFT processing, IFFT processing, and the like, and transfers them to each transmission / reception unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band. Thereafter, the amplifier unit 202 amplifies the frequency-converted radio frequency signal and transmits the amplified signal using the transmitting / receiving antenna 201.
  • FIG. 14 is a functional configuration diagram of the macro base station 11 according to the present embodiment.
  • the following functional configuration is configured by the baseband signal processing unit 104 included in the macro base station 11 and the like.
  • the macro base station 11 includes a reference signal generation unit 111, an offset value determination unit 112, and a control information generation unit 113.
  • the offset value determining unit 112 constitutes a determining unit (first aspect) of the present invention.
  • the offset value determination unit 112 may be omitted in the second aspect of the present invention.
  • the control information generation part 113 and the transmission / reception part 103 comprise the notification part (1st aspect) of this invention.
  • the reference signal generation unit 111 generates a reference signal and outputs the reference signal to the transmission / reception unit 103.
  • the reference signal include CRS (Cell-specific Reference Signal), CSI-RS (Channel State Information-Reference Signal), DM-RS (DeModulation-Reference Signal), and the like.
  • the reference signal output to the transmission / reception unit 103 is transmitted using the carrier F1.
  • the offset value determination unit 112 determines an offset value used for cell selection in the user terminal 20 and outputs it to the control information generation unit 113. Specifically, the offset value determination unit 112 determines the offset value based on transmission characteristic information using the carrier F2 in the small cell C2. For example, the offset value determination unit 112 may increase the offset value as the transmission characteristics using the carrier F2 improve.
  • the transmission characteristic information using the carrier F2 includes the number of transmission antenna elements provided in the small base station 12, the transmission bandwidth used in the small base station 12, and the beam forming of the transmission beam used in the small base station 12. And at least one of gain.
  • the number of transmission antenna elements may be the number of transmission antenna elements of the transmission / reception antenna 101 of the small base station 12. Further, the beamforming gain may be calculated based on the number of transmission antenna elements.
  • the offset value determination unit 112 may determine the offset value based on transmission characteristic information using the carrier F2 and interference information from a neighboring cell of the small cell C2. For example, the offset value determination unit 112 may increase the offset value as the interference from adjacent cells decreases.
  • the control information generation unit 113 generates control information and outputs it to the transmission / reception unit 103. Specifically, the control information generation unit 113 generates control information including the offset value input from the offset value determination unit 112. Control information including the offset value is transmitted to the user terminal 20 by higher layer signaling. Note that the control information including the offset value may be transmitted to the user terminal 20 via a broadcast channel (BCH) or a downlink control channel (PDCCH, EPDCCH).
  • BCH broadcast channel
  • PDCCH downlink control channel
  • FIG. 15 is a functional configuration diagram of the small base station 12 according to the present embodiment.
  • the following functional configuration is configured by the baseband signal processing unit 104 included in the small base station 12 and the like.
  • the small base station 12 includes a data generation unit 121, a reference signal generation unit 122, and a transmission power determination unit 123.
  • the transmission power determination unit 123 may be omitted.
  • the transmission power determination unit 123 configures a determination unit that determines the transmission power of the reference signal based on transmission characteristic information using the carrier F2 in the small cell SC.
  • the data generation unit 121 generates data to be transmitted with a transmission beam directed to the user terminal 20 and outputs the data to the transmission / reception unit 103.
  • the data may include control information as well as user data.
  • the data output to the transmission / reception unit 103 is transmitted using the carrier F2 in the data transmission period (FIG. 9).
  • the data generation unit 121 generates beam forming information based on feedback information (for example, CSI) from the user terminal 20 and outputs the beam forming information to the transmission / reception unit 103.
  • the beam forming information includes, for example, AOA (Angle of Arrival) and AOD (Angle of Departure) used for weighting the transmitting antenna elements.
  • AOA Angle of Arrival
  • AOD Angle of Departure
  • the reference signal generation unit 122 generates a reference signal and outputs it to the transmission / reception unit 103.
  • Examples of the reference signal include CSI-RS, DM-RS, and discovery signal.
  • the reference signal output to the transmission / reception unit 103 is transmitted using the carrier F2 in the reference signal transmission period (FIG. 9).
  • the transmission power determination unit 123 determines the transmission power of the reference signal based on the transmission characteristic information of the carrier F2 in the small cell C2. In addition, the transmission power determination unit 123 outputs transmission power information indicating the determined transmission power to the reference signal generation unit 122, and causes the reference signal to be transmitted with the determined transmission power. For example, the transmission power determination unit 123 may increase the transmission power of the reference signal as the transmission characteristics using the carrier F2 improve.
  • the transmission characteristic information using the carrier F2 includes the number of transmission antenna elements provided in the small base station 12, the transmission bandwidth used in the small base station 12, and the transmission used in the small base station 12. And at least one of a beam forming gain of the beam. Further, the beamforming gain may be calculated based on the number of transmitting antenna elements, beam forming information generated by the data generation unit 121 (for example, AOA, AOD, etc.), and the like.
  • FIG. 16 is a functional configuration diagram of the user terminal 20 according to the present embodiment.
  • the following functional configuration is configured by the baseband signal processing unit 204 included in the user terminal 20.
  • the user terminal 20 includes a measurement unit 211 and a cell selection unit 212.
  • the measuring unit 211 measures the reception quality of the reference signal from the macro base station 11 and the small base station 12.
  • the reception quality may be RSRQ, RSRP, a combination thereof, or the like.
  • the cell selection unit 212 performs cell selection based on the reception quality measured by the measurement unit 211.
  • the cell selection unit 212 receives the offset value notified from the macro base station 11 via the transmission / reception unit 203 or the like.
  • the cell selection unit 212 performs cell selection based on the offset value notified from the macro base station 11 and the reception quality measured by the measurement unit 211.
  • the cell selection unit 212 adds the offset value to the reception quality of the reference signal from the small base station 12.
  • the cell selection unit 212 performs cell selection based on the reception quality to which the offset value is added. The details of the cell selection are as described with reference to FIG.
  • the cell selection unit 212 performs cell selection without using the offset value.
  • the reference signal is transmitted with the transmission power increased in proportion to the transmission characteristics (for example, beamforming gain, transmission bandwidth) using the carrier F2.
  • the transmission characteristic information using the carrier F2 in the small cell C2 (the number of transmission antenna elements described above, An offset value determined based on the transmission bandwidth, beamforming gain, and the like is added to the reception quality of the reference signal from the small base station 12. Therefore, the user terminal 20 can positively select the small cell C2 based on the reception quality to which the offset value is added, and can realize offload from the macro cell C1 to the small cell C2.
  • the reference signal used for cell selection in the user terminal 20 is transmitted with the transmission power determined based on the transmission characteristic information using the carrier F2.
  • the user terminal 20 can receive the reference signal with sufficient reception quality, it is possible to actively activate the small cell C2 without adding an offset value to the reception quality of the reference signal from the small base station 12. Can be selected automatically. As a result, offload from the macro cell C1 to the small cell C2 can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 マクロセルとスモールセルとが重複して配置される無線通信システムにおいて、ユーザ端末にスモールセルを積極的に選択させる。本発明のセル選択方法は、マクロセルを形成するマクロ基地局(M)において、スモールセルにおける第2キャリアを用いた送信特性情報に基づいて、ユーザ端末(UE)におけるセル選択に用いられるオフセット値を決定する工程と、ユーザ端末(UE)に対して、前記オフセット値を通知する工程と、を有する。また、ユーザ端末(UE)において、マクロ基地局(M)及びスモール基地局(S)からの参照信号の受信品質を測定する工程と、マクロ基地局(M)から通知されるオフセット値を受信する工程と、測定された前記受信品質と受信された前記オフセット値とに基づいて、セル選択を行う工程と、を有する。

Description

無線基地局、ユーザ端末、セル選択方法及び無線通信システム
 本発明は、マクロセルとスモールセルとが重複して配置される次世代移動通信システムにおける無線基地局、ユーザ端末、セル選択方法及び無線通信システムに関する。
 ロングタームエボリューション(LTE)からのさらなる広帯域化及び高速化を目的として、LTEの後継システムが検討されてきた(例えば、LTEアドバンスト又はLTEエンハンスメントと呼ぶこともある(以下、「LTE-A」という))。LTE-Aシステムでは、半径数キロメートル程度の広いカバレッジを有するマクロセル内に、半径数十メートル程度の局所的なカバレッジ有するスモールセル(例えば、ピコセル、フェムトセルなど)が形成される無線通信システム(HetNet(Heterogeneous Network)ともいう)が検討されている(例えば、非特許文献1)。
 上述の無線通信システムでは、マクロセルにおいて相対的に低い周波数帯(例えば、2GHz)の第1キャリアを用い、スモールセルにおいて相対的に高い周波数帯(例えば、3.5GHz)の第2キャリアを用いることも検討されている。
 スモールセルで高周波数帯の第2キャリアが用いられる場合、スモールセルのキャパシティは、マクロセルのキャパシティよりも高くなる。このため、伝送速度(スループット)を向上させるためには、ユーザ端末は、スモールセルにおいて通信を行うことが好ましい。
 一方で、高周波数帯の第2キャリアのパスロスは、低周波数帯の第1キャリアのパスロスと比較して増加する。このため、ユーザ端末におけるセル選択において、スモールセルにおいて通信を行うことが好ましい場合であっても、高周波数帯の第2キャリアが用いられるスモールセルを選択できない恐れがあるという問題点があった。
 本発明は、かかる点に鑑みてなされたものであり、マクロセルとスモールセルとが重複して配置される無線通信システムにおいて、ユーザ端末にスモールセルを積極的に選択させることが可能な無線基地局、ユーザ端末、セル選択方法及び無線通信システムを提供することを目的とする。
 本発明のセル選択方法は、第1キャリアが用いられる第1セルと前記第1キャリアよりも高い周波数帯の第2キャリアが用いられる第2セルとが重複して配置される無線通信システムにおけるセル選択方法であって、前記第1セルを形成する第1無線基地局において、前記第2セルにおける前記第2キャリアを用いた送信特性情報に基づいて、ユーザ端末におけるセル選択に用いられるオフセット値を決定する工程と、前記ユーザ端末に対して、前記オフセット値を通知する工程と、前記ユーザ端末において、前記第1無線基地局及び前記第2セルを形成する第2無線基地局からの参照信号の受信品質を測定する工程と、前記第1無線基地局から通知されるオフセット値を受信する工程と、測定された前記受信品質と受信された前記オフセット値とに基づいて、セル選択を行う工程と、を有することを特徴とする。
 本発明によれば、マクロセルとスモールセルとが重複して配置される無線通信システムにおいて、ユーザ端末にスモールセルを積極的に選択させることができる。
HetNetの概念図である。 HetNetで用いられるキャリアの一例の説明図である。 3次元/Massive MIMOの説明図である。 周波数fとアンテナ素子数との関係(1次元)の説明図である。 周波数fとアンテナ素子数との関係(2次元)の説明図である。 3次元/Massive MIMOを適用したビームフォーミングの説明図である。 本発明の第1態様に係るセル選択方法を示すシーケンス図である。 本発明の第1態様に係るセル選択方法を示すフローチャートである。 本発明の第2態様に係るセル選択方法の説明図である。 本発明の第2態様に係るセル選択方法を示すシーケンス図である。 本実施の形態に係る無線通信システムの一例を示す概略図である。 本実施の形態に係る無線基地局の全体構成の説明図である。 本実施の形態に係るユーザ端末の全体構成の説明図である。 本実施の形態に係るマクロ基地局の機能構成の説明図である。 本実施の形態に係るスモール基地局の機能構成の説明図である。 本実施の形態に係るユーザ端末の機能構成の説明図である。
 図1は、HetNetの概念図である。図1に示すように、HetNetは、マクロセルMCと地理的に重複するように多数のスモールセルSCが配置される無線通信システムである。HetNetは、マクロセルMCを形成する無線基地局(以下、マクロ基地局という)M、各スモールセルSCを形成する無線基地局(以下、スモール基地局)S、マクロ基地局M及びスモール基地局Sの少なくとも一つと通信するユーザ端末UEとを含む。
 図1に示すHetNetでは、ユーザ端末UEが、主に、マクロ基地局MとCプレーンの通信を行い、スモール基地局SとUプレーンの通信を行う方式(“Macro-assisted”方式)も検討されている。“Macro-assisted”方式では、スモールセルSCよりもカバレッジが大きいマクロセルMCにおいて、制御データやシステム情報が送受信される。一方、マクロセルMCよりも1セルあたりのユーザ数が少ないスモールセルSCにおいて、ユーザデータが送受信される。このため、システム全体におけるスループットを向上させることができる。
 また、図1に示すHetNetでは、マクロセルMCにおいて相対的に低い周波数帯のキャリアF1を用いる一方、スモールSにおいて相対的に高い周波数帯のキャリアF2を用いることも検討されている。図2を参照し、マクロセルMCで用いられるキャリアF1とスモールセルSCで用いられるキャリアF2の一例について、詳述する。
 図2に示すように、キャリアF1としては、例えば、800Hzや2GHzなどの既存の周波数帯(Existing cellular bands)のキャリアを用いることができる。一方、キャリアF2としては、例えば、3.5GHzや10GHzなど、既存の周波数帯よりも高い周波数帯(Higher frequency bands)のキャリアを用いることができる。
 また、図2に示すように、キャリアF1の送信電力密度(Transmit power density)は、キャリアF2の送信電力密度より高いため、マクロセルMCのカバレッジはスモールセルSCよりも大きくなる。また、キャリアF2の帯域幅(bandwidth)は、キャリアF1の帯域幅よりも広いため、スモールセルSCの伝送速度(キャパシティ)はマクロセルMCよりも高くなる。
 ところで、パスロス(path-loss)は、周波数fに比例して増加する。具体的には、パスロスは、およそ20log10(f)で示される。このため、3.5GHzや10GHzなどの高周波数帯のキャリアF2が用いられるスモールセルSCにおいては、3次元(3D)/Massive MIMOを用いることで、パスロスを補償することが検討されている。
 図3は、3D/Massive MIMOの説明図である。3D/Massive MIMOを用いる場合、複数のアンテナ素子が2次元面に配置される。例えば、図3に示すように、2次元面における水平方向と垂直方向とで均等に、複数のアンテナ素子が配置されてもよい。かかる場合、2次元面に配置可能なアンテナ素子数は、理論上、周波数fの2乗に比例して増加する。
 図4及び図5を参照し、周波数fとアンテナ素子数との関係を説明する。図4及び5は、周波数fとアンテナ素子数との関係を説明するための図である。
 図4では、アンテナ素子が1次元で配列される場合を説明する。図4Aに示すように、周波数fが2GHzである場合、アンテナ長Lに6個のアンテナ素子が配列されるとする。ここで、図4Bに示すように、周波数fが4GHz(図4Aの2倍)となると、同じアンテナ長Lに12個(=6×2)となる。このように、アンテナ素子が1次元で配置される場合、周波数fに比例して、アンテナ長Lで配置可能なアンテナ素子数が増加する。
 また、図4Bのアンテナ素子数は、図4Aのアンテナ素子数の2倍となる。このため、図4Bに示される12個のアンテナ素子で形成される送信ビームのビームフォーミングゲインは、図4Aの2倍の2Gとなる。このように、アンテナ素子が一次元で配置される場合、アンテナ素子数に比例して、ビームフォーミングゲインが増加する。
 一方、図5では、アンテナ素子が2次元面に配置される場合(すなわち、3D/Massive MIMOを適用する場合)を説明する。図5に示すように、周波数fが2.5GHzである場合、所定の2次元面に1個のアンテナ素子が配置されるとする。上述のように、アンテナ素子数Txは、周波数fの2乗に比例する。このため、図5では、比例定数を1/2.5=0.16として、Tx=0.16*fの関係が成立する。
 これにより、周波数fが3.5GHzとなると、同じ2次元面に配置可能なアンテナ素子数は、2(≒0.16*3.5=1.96)となる。同様に、周波数fが5GHz、10GHz、20GHz、となると、同じ2次元面に配置可能なアンテナ素子数は、それぞれ、4(=0.16*5)、16(=0.16×10)、64(=0.16*20)となる。このように、アンテナ素子が2次元に配置される場合、周波数fの2乗に比例して、アンテナ長Lで配置可能なアンテナ素子数が増加する。
 また、図5でも、アンテナ素子数の増加に応じて、ビームフォーミングゲインが増加する。
 以上のように、高周波数帯のキャリアF2が用いられるスモールセルSCにおいて3D/Massive MIMOを適用してビームフォーミングを行う場合、ビームフォーミングゲインにより、パスロスを補償することができる。
 ところで、ユーザ端末UEは、マクロ基地局Mやスモール基地局Sから送信される参照信号の受信品質(RSRQ:Reference Signal Received Quality、RSRP:Reference Signal Received Powerなどを含む)を測定し、測定結果に基づいて、セル選択を行う。なお、セル選択とは、ユーザ端末UEが通信を行うセル(無線基地局)を選択することである。
 しかしながら、スモールセルSCにおいて3D/Massive MIMOを適用してビームフォーミングを行う場合であっても、スモール基地局Sからの参照信号に対しては、ビームフォーミングが行われない。このため、ユーザ端末UEが、スモール基地局Sからの参照信号を十分な受信品質で受信することができず、スモールセルSCを選択できないことが想定される。
 例えば、図6に示すように、スモールセルSCで3D/Massive MIMOを適用してビームフォーミングを行う場合、ビームフォーミングされていない信号のカバレッジCは、ビームフォーミングされた信号のカバレッジC’よりも小さい。このため、カバレッジC’内に位置するユーザ端末UEであっても、ビームフォーミングされない参照信号を十分な受信品質で受信することができない。この結果、ユーザ端末UEは、ビームフォーミングゲインによりスモール基地局Sと通信可能な状態であっても、スモール基地局Sによって形成されるスモールセルSCを選択することができなくてマクロセルMCに接続されてしまう。
 また、上述のように、キャリアF2が用いられるスモールセルSCでは、キャリアF1が用いられるマクロセルMCと比較して、信号の送信帯域幅が大きい(図2参照)。このため、伝送速度(スループット)を向上させるためには、ユーザ端末UEは、スモールセルSCにおいて通信を行うことが好ましい。
 しかしながら、ユーザ端末UEは、上述のセル選択において、キャリアF2を用いて送信される信号の送信帯域幅を考慮しない。このため、伝送速度(スループット)の観点からスモールセルSCと通信を行うことが好ましい場合であっても、参照信号の受信品質に基づいてマクロセルMCを選択してしまい、スモールセルSCを選択できないことが想定される。
 このように、キャリアF2が用いられるスモールセルSCでは、ビームフォーミングゲインや送信帯域幅などの種々の送信特性において、キャリアF1が用いられるマクロセルMCとは異なる。しかしながら、ユーザ端末UEは、キャリアF2を用いた送信特性を考慮せずにセル選択を行うため、スモールセルSCを選択することができず、マクロセルMCからスモールセルSCへのオフロードを実現できないことが想定される。
 そこで、本発明者らは、マクロセルMCとスモールセルSCとが重複して配置される無線通信システムにおいて、スモールセルSCにおける種々の送信特性(例えば、ビームフォーミングゲインを算出可能な送信アンテナ素子数、ビームフォーミングゲイン、送信帯域幅など)を考慮したセル選択を可能とすることで、ユーザ端末UEにスモールセルSCを積極的に選択させるという着想を得て、本発明に至った。
 以下、本発明に係るセル選択方法を説明する。なお、本発明に係るセル選択方法は、第1キャリアが用いられるマクロセルMC(第1セル)と第1キャリアよりも周波数帯の高い第2キャリアが用いられるスモールセルSC(第2セル)とが重複して配置される無線通信システムで用いられる。なお、マクロセルMCは、マクロ基地局M(第1無線基地局)によって形成され、スモールセルSCは、スモール基地局S(第2無線基地局)によって形成される。
 以下では、第1キャリアとして上述のキャリアF1が用いられ、第2キャリアとして上述のキャリアF2が用いられる場合(図2参照)を説明するが、これに限られない。本発明に係るセル選択方法では、第2キャリアの周波数が第1キャリアよりも高ければ、どのような周波数帯のキャリアであってもよい。
(第1態様)
 図7及び図8を参照し、本発明の第1態様に係るセル選択方法を説明する。第1態様では、マクロ基地局Mが、スモールセルSCにおけるキャリアF2を用いた送信特性情報に基づいて、ユーザ端末UEにおけるセル選択に用いられるオフセット値を決定し、ユーザ端末UEに対して決定されたオフセット値を通知する。また、第1態様では、ユーザ端末UEは、マクロ基地局M及びスモール基地局Sからの参照信号の受信品質を測定し、マクロ基地局Mから通知されるオフセット値を受信する。ユーザ端末UEは、測定された受信品質と受信されたオフセット値とに基づいて、セル選択を行う。
 ここで、キャリアF2を用いた送信特性情報とは、スモール基地局Sに設けられる送信アンテナ素子数と、スモール基地局Sで用いられる送信帯域幅と、スモール基地局Sで用いられる送信ビームのビームフォーミングゲインと、の少なくとも一つを含む。
 図7は、本発明の第1態様に係るセル選択方法を示すシーケンス図である。図7に示すように、マクロ基地局Mは、スモールセルSCにおけるキャリアF2を用いた送信特性情報(上述の送信アンテナ素子数、送信帯域幅、ビームフォーミングゲインなど)に基づいて、ユーザ端末UEにおけるセル選択に用いられるオフセット値を決定する(ステップS101)。例えば、マクロ基地局Mは、上述の送信特性が良くなるに従って、オフセット値を増加させてもよい。
 なお、上述の送信特性情報は、スモール基地局Sや上位制御装置などからマクロ基地局Mに通知されてもよいし、予めマクロ基地局Mに記憶されていてもよい。また、ビームフォーミングゲインは、スモール基地局Sに設けられる送信アンテナ素子数に基づいて算出されてもよい。
 また、マクロ基地局Mは、上述の送信特性情報と、スモールセルSCの隣接セルからの干渉情報に基づいて、上記オフセット値を決定してもよい。スモールセルSCでは、ビームフォーミングゲインにより所望信号が増加するにつれて、隣接セルからの干渉が減少する。このため、マクロ基地局Mは、隣接セルからの干渉が減少するに従って、オフセット値を増加させてもよい。
 マクロ基地局Mは、以上のように決定されたオフセット値をユーザ端末UEに通知する(ステップS102)。なお、オフセット値は、RRCシグナリングなどの上位レイヤシグナリングにより通知されてもよいし、ユーザ端末UEに対する報知情報や下り制御情報(DCI)に含まれてもよい。
 スモール基地局S及びマクロ基地局Mは、それぞれ、参照信号を送信する(ステップS103、S104)。ここで、参照信号としては、例えば、CSI-RS(Channel State Information-Reference Signal)やディスカバリー信号などが用いられてもよい。
 ユーザ端末UEは、スモール基地局S及びマクロ基地局Mからの参照信号の受信品質を測定する(ステップS105)。ここで、受信品質としては、例えば、RSRQ(Reference Signal Received Quality)、RSRP(Reference Signal Received Power)、これらの組み合わせなどが用いられてもよい。
 ユーザ端末UEは、スモール基地局Sからの参照信号の受信品質に対して、マクロ基地局Mから通知されるオフセット値を付加する(ステップS106)。なお、ユーザ端末UEは、マクロ基地局Mからの参照信号の受信品質に対しては、オフセット値を付加しない。ユーザ端末UEは、オフセット値が付加された受信品質に基づいて、セル選択を行う(ステップS107)。
 図8を参照し、図7のステップS107におけるセル選択動作を詳述する。図8は、ユーザ端末UEにおけるセル選択動作を示すフローチャートである。図8に示すように、ユーザ端末UEは、スモール基地局Sからの参照信号の受信品質のうち、最良の受信品質が所定の閾値を満たすか否かを判定する(ステップS201)。なお、上述のように、スモール基地局Sからの参照信号の受信品質には、マクロ基地局Mから通知されるオフセット値が付加される。
 上記最良の受信品質が所定の閾値を満たす場合(ステップS201;Yes)、ユーザ端末UEは、スモール基地局Sからの参照信号の受信品質を比較し、比較結果に基づいて、スモールセルSC(スモール基地局S)を選択する(ステップS202)。例えば、ユーザ端末UEは、最良の受信品質を有するスモールセルSC(スモール基地局S)を選択してもよい。
 一方、上記最良の受信品質が所定の閾値を満たさない場合(ステップS201;No)、ユーザ端末UEは、スモール基地局Sからの参照信号の受信品質とマクロ基地局Mからの参照信号の受信品質とを比較し、比較結果に基づいて、スモールセルSC(スモール基地局S)又はマクロセルMC(マクロ基地局M)を選択する(ステップS203)。例えば、ユーザ端末UEは、最良の受信品質を有するスモールセルSC(スモール基地局S)又はマクロセルMC(マクロ基地局M)を選択してもよい。
 以上、第1態様に係るセル選択方法によれば、スモールセルSCにおけるキャリアF2を用いた送信特性情報(上述の送信アンテナ素子数、送信帯域幅、ビームフォーミングゲインなど)に基づいて決定されるオフセット値に基づいて、ユーザ端末UEにおけるセル選択が行なわれるので、スモールセルSCを積極的に選択させることができる。
 より具体的には、第1態様に係るセル選択方法によれば、マクロ基地局Mから通知されるオフセット値がスモール基地局Sからの参照信号の受信品質に対して付加されるため、ユーザ端末UEは、オフセット値が付加された受信品質に基づいてスモールセルSCを積極的に選択することができ、マクロセルMCからスモールセルSCへのオフロードを実現できる。
(第2態様)
 図9及び図10を参照し、本発明の第2態様に係るセル選択方法を説明する。第2態様では、ユーザ端末UEにおいてマクロ基地局Mから通知されるオフセット値に基づいてセル選択を行う代わりに、スモールセルSCにおけるキャリアF2を用いた送信特性情報に基づいてスモール基地局Sからの参照信号の送信電力を増加させる。以下では、第1態様に係るセル選択方法との相違点を中心に説明を行う。
 図9は、スモール基地局Sから送信される参照信号の説明図である。図9に示すように、スモールセルSCでは、所定周期で、参照信号が送信される。なお、所定周期は、例えば、数秒程度の比較的長い周期であってもよいが、これに限られない。また、参照信号としては、例えば、CSI-RSや新規に規定するスモールセルディスカバリー信号などが用いられるが、これに限られない。
 図9において、データ送信期間では、ビームフォーミングが行なわれる。これにより、データ送信期間で送信されるデータについてはビームフォーミングゲインを得ることができる。なお、データ送信期間で送信されるデータは、ユーザデータだけでなく、制御情報を含んでもよい。
 一方、参照信号送信期間では、ビームフォーミングを行うことができない。参照信号送信期間では、CSI(Channel State Information)などのフィードバック情報を取得できず、複数のアンテナ素子に対する重み付けに用いられるAOA(Angle of Arrival)やAOD(Angle of Departure)が未知であるためである。このため、参照信号については、ビームフォーミングゲインを得ることができない。
 そこで、第2態様において、参照信号送信期間では、データ送信期間で得られるビームフォーミングゲインに従って、データ送信期間における送信電力(送信電力密度)よりも増加させた送信電力で、参照信号を送信する。
 また、上述のように、キャリアF2が用いられるスモールセルSCでは、キャリアF1が用いられるマクロセルMCと比較して、信号の送信帯域幅が大きい(図2参照)。このため、第2態様では、参照信号送信期間では、キャリアF1に対するキャリアF2の送信帯域幅の増加量に従って増加させた送信電力で、参照信号を送信する。なお、スモールセルSCにおける参照信号の増幅量はマクロセルMCがスモールセルSCに対して通知してもよい。
 このように、第2態様では、スモール基地局Sが、キャリアF2を用いた送信特性情報(例えば、上述のビームフォーミングゲイン、送信帯域幅、送信アンテナ素子数)に基づいて、参照信号の送信電力を決定し、決定された送信電力で参照信号を送信する。これにより、ユーザ端末UEは、参照信号を十分な受信品質で受信することができるので、スモール基地局Sからの参照信号の受信品質に対してオフセット値を付加せずとも、スモールセルSCを積極的に選択させることができる。
 図10は、本発明の第2態様に係るセル選択方法を示すシーケンス図である。図10に示すように、スモール基地局Sは、キャリアF2を用いた送信特性情報(上述のビームフォーミングゲイン、送信帯域幅、送信アンテナ素子数など)に基づいて、参照信号の送信電力を決定する(ステップS301)。
 例えば、スモール基地局Sは、データ送信期間(図9参照)で用いられる送信ビームのビームフォーミングゲインと送信帯域幅との少なくとも一つに比例して、参照信号の送信電力を増加させてもよい。なお、ビームフォーミングゲインは、スモール基地局Sに設けられる送信アンテナ素子数に基づいて算出されてもよい。
 また、スモール基地局Sは、上述の送信特性情報と、スモールセルSCの隣接セルからの干渉情報に基づいて、参照信号の送信電力を決定してもよい。スモールセルSCでは、ビームフォーミングゲインにより所望信号が増加するにつれて、隣接セルからの干渉が減少する。このため、隣接セルからの干渉の減少を考慮して、参照信号の送信電力を減少させてもよい。
 スモール基地局Sは、以上のように決定された送信電力で参照信号を送信する(ステップS302)。一方、マクロ基地局Mも、参照信号を送信する(ステップS303)。
 ユーザ端末UEは、スモール基地局S及びマクロ基地局Mからの参照信号の受信品質を測定する(ステップS304)。ここで、受信品質としては、例えば、RSRQ、RSRP、これらの組み合わせなどが用いられてもよい。
 ユーザ端末UEは、ステップS304で測定された受信品質に基づいて、セル選択を行う(ステップS305)。具体的には、ユーザ端末UEは、第1態様で説明したオフセット値を用いずに、セル選択を行う。また、ステップS305においても、図8と同様の判定を用いて、セル選択が行なわれてもよい。図8の判定を用いる場合、第1態様とは異なり、スモール基地局Sからの参照信号の受信品質にオフセット値は付加されない。
 以上、第2態様に係るセル選択方法によれば、ユーザ端末UEにおけるセル選択に用いられる参照信号が、キャリアF2を用いた送信特性情報に基づいて決定された送信電力で送信される。これにより、ユーザ端末UEは、参照信号を十分な受信品質で受信することができるので、スモール基地局Sからの参照信号の受信品質に対してオフセット値を付加せずとも、スモールセルSCを積極的に選択させることができる。この結果、マクロセルMCからスモールセルSCへのオフロードを実現できる。
 なお、図10では、スモール基地局Sからの参照信号の送信電力は、スモール基地局Sで決定されるが、これに限られない。マクロ基地局Mが、スモールセルSCにおけるキャリアF2を用いた送信特性情報に基づいて、スモール基地局Sからの参照信号の送信電力を決定してもよい。かかる場合、マクロ基地局Mは、決定した送信電力をスモール基地局Sに通知し、スモール基地局Sは、通知された送信電力で参照信号を送信してもよい。
 以上のように、第2態様に係るセル選択方法は、キャリアF1(第1キャリア)が用いられるマクロセルMC(第1セル)とキャリアF1よりも高い周波数帯のキャリアF2(第2キャリア)が用いられるスモールセルSC(第2セル)とが重複して配置される無線通信システムにおけるセル選択方法であって、スモールセルSCを形成するスモール基地局S(第2無線基地局)において、スモールセルSCにおけるキャリアF2を用いた送信特性情報に基づいて決定される送信電力で、参照信号を送信する工程を有し、ユーザ端末UEにおいて、スモール基地局Sからの前記参照信号とマクロセルMCを形成するマクロ基地局M(第1無線基地局)からの参照信号との受信品質を測定する工程と、測定された前記受信品質に基づいて、セル選択を行う工程と、を有する。
(無線通信システムの構成)
 以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上述のセル選択方法(第1態様、第2態様を含む)が適用される。図11-図16を参照し、本実施の形態に係る無線通信システムの概略構成を説明する。
 図11は、本実施の形態に係る無線通信システムの概略構成図である。なお、図11に示す無線通信システムは、例えば、LTEシステム、LTE-Aシステム、IMT-Advanced、4G、FRA(Future Radio Access)などが包含されるシステムである。
 図11に示すように、無線通信システム1は、マクロセルC1を形成するマクロ基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成するスモール基地局12a及び12bとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。ユーザ端末20は、マクロ基地局11及びスモール基地局12の双方と無線通信可能に構成されている。
 マクロセルC1では、例えば、800MHzや2GHzなど、相対的に低い周波数帯のキャリアF1が用いられる。一方、スモールセルC2では、例えば、3.5GHz、10GHzなど、相対的に高い周波数帯のキャリアF2が用いられる。なお、キャリアF1は、既存キャリア、レガシーキャリア、カバレッジキャリアなどと呼ばれてもよい。また、キャリアF2は、追加(additional)キャリア、キャパシティキャリアなどと呼ばれてもよい。
 マクロ基地局11及び各スモール基地局12は、有線接続されてもよいし、無線接続されてもよい。マクロ基地局11及び各スモール基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)等が含まれるが、これに限定されるものではない。
 なお、マクロ基地局11は、相対的に広いカバレッジを有する無線基地局であり、eNodeB、無線基地局装置、送信ポイントなどと呼ばれてもよい。スモール基地局12は、局所的なカバレッジを有する無線基地局であり、RRH(Remote Radio Head)、ピコ基地局、フェムト基地局、Home eNodeB、送信ポイント、eNodeBなどと呼ばれてもよい。
 また、スモール基地局12によって形成されるスモールセルC2は、サブフレームの先頭最大3OFDMシンボルにPDCCHが配置されるタイプのセルであってもよいし、当該PDCCHが配置されないタイプ(新キャリアタイプ、追加キャリアタイプ)のセル(ファントムセル)であってもよい。
 以下、マクロ基地局11及びスモール基地局12を区別しない場合は、無線基地局10と総称する。各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクについてはOFDMA(直交周波数分割多元接続)が適用され、上りリンクについてはSC-FDMA(シングルキャリア-周波数分割多元接続)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。
 ここで、図11に示す無線通信システムで用いられる通信チャネルについて説明する。下りリンクの通信チャネルは、各ユーザ端末20で共有されるPDSCH(下り共有データチャネル)と、下りL1/L2制御チャネル(PDCCH、PCFICH、PHICH、EPDCCH)とを有する。PDSCHにより、ユーザデータ及び上位レイヤ制御情報が伝送される。PDCCHにより、PDSCHおよびPUSCHのスケジューリング情報等が伝送される。PCFICH(Physical Control Format Indicator Channel)により、PDCCHに用いるOFDMシンボル数が伝送される。PHICH(Physical Hybrid-ARQ Indicator Channel)により、PUSCHに対するHARQのACK/NACKが伝送される。また、EPDCCHにより、PDSCH及びPUSCHのスケジューリング情報等が伝送されてもよい。このEPDCCH(拡張下り制御チャネル)は、PDSCHと周波数分割多重される。
 上りリンクの通信チャネルは、各ユーザ端末20で共有されるPUSCH(上り共有データチャネル)と、上りリンクの制御チャネルであるPUCCH(Physical Uplink Control Channel)とを有する。このPUSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、ACK/NACK等が伝送される。
 図12は、本実施の形態に係る無線基地局10(マクロ基地局11及びスモール基地局12を含む)の全体構成図である。無線基地局10は、MIMO伝送のための複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、PDCPレイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御の送信処理などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御、例えば、HARQの送信処理、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理が行われて各送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換等の送信処理が行われて、各送受信部103に転送される。
 各送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力された下り信号を無線周波数帯に変換する。アンプ部102は、周波数変換された無線周波数信号を増幅して送受信アンテナ101により送信する。
 一方、上り信号については、各送受信アンテナ101で受信された無線周波数信号がそれぞれアンプ部102で増幅され、各送受信部103で周波数変換されてベースバンド信号に変換され、ベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、FFT処理、IDFT処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放等の呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 図13は、本実施の形態に係るユーザ端末20の全体構成図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205とを備えている。
 下り信号については、複数の送受信アンテナ201で受信された無線周波数信号がそれぞれアンプ部202で増幅され、送受信部203で周波数変換され、ベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、FFT処理や、誤り訂正復号、再送制御の受信処理等がなされる。この下り信号に含まれるユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理等を行う。また、下りリンクのデータの内、報知情報もアプリケーション部205に転送される。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御(H-ARQ(Hybrid ARQ))の送信処理や、チャネル符号化、プリコーディング、DFT処理、IFFT処理等が行われて各送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換する。その後、アンプ部202は、周波数変換された無線周波数信号を増幅して送受信アンテナ201により送信する。
 次に、図14-図16を参照し、マクロ基地局11、スモール基地局12、ユーザ端末20の機能構成について詳述する。
 図14は、本実施の形態に係るマクロ基地局11の機能構成図である。なお、以下の機能構成は、マクロ基地局11が有するベースバンド信号処理部104などによって構成される。図14に示すように、マクロ基地局11は、参照信号生成部111、オフセット値決定部112、制御情報生成部113を具備する。
 なお、オフセット値決定部112は、本発明の決定部(第1態様)を構成する。オフセット値決定部112は、本発明の第2態様においては省略されてもよい。また、制御情報生成部113及び送受信部103は、本発明の通知部(第1態様)を構成する。
 参照信号生成部111は、参照信号を生成して送受信部103に出力する。参照信号としては、例えば、CRS(Cell-specific Reference Signal)、CSI-RS(Channel State Information-Reference Signal)、DM-RS(DeModulation-Reference Signal)などが挙げられる。送受信部103に出力された参照信号は、キャリアF1を用いて送信される。
 オフセット値決定部112は、ユーザ端末20におけるセル選択に用いられるオフセット値を決定して制御情報生成部113に出力する。具体的には、オフセット値決定部112は、スモールセルC2におけるキャリアF2を用いた送信特性情報に基づいて、上記オフセット値を決定する。例えば、オフセット値決定部112は、キャリアF2を用いた送信特性が良くなるに従って、オフセット値を増加させてもよい。
 なお、キャリアF2を用いた送信特性情報とは、スモール基地局12に設けられる送信アンテナ素子数と、スモール基地局12で用いられる送信帯域幅と、スモール基地局12で用いられる送信ビームのビームフォーミングゲインと、の少なくとも一つを含む。なお、送信アンテナ素子数は、スモール基地局12の送受信アンテナ101の送信アンテナ素子数であってもよい。また、ビームフォーミングゲインは、送信アンテナ素子数に基づいて算出されてもよい。
 また、オフセット値決定部112は、キャリアF2を用いた送信特性情報と、スモールセルC2の隣接セルからの干渉情報に基づいて、上記オフセット値を決定してもよい。例えば、オフセット値決定部112は、隣接セルからの干渉が減少するに従って、オフセット値を増加させてもよい。
 制御情報生成部113は、制御情報を生成して送受信部103に出力する。具体的には、制御情報生成部113は、オフセット値決定部112から入力されたオフセット値を含む制御情報を生成する。オフセット値を含む制御情報は、上位レイヤシグナリングにより、ユーザ端末20に送信される。なお、オフセット値を含む制御情報は、報知チャネル(BCH)や、下り制御チャネル(PDCCH、EPDCCH)を介して、ユーザ端末20に送信されてもよい。
 図15は、本実施の形態に係るスモール基地局12の機能構成図である。なお、以下の機能構成は、スモール基地局12が有するベースバンド信号処理部104などによって構成される。図15に示すように、スモール基地局12は、データ生成部121、参照信号生成部122、送信電力決定部123を具備する。
 なお、本発明の第1態様において、送信電力決定部123は、省略されてもよい。本発明の第2態様において、送信電力決定部123は、スモールセルSCにおけるキャリアF2を用いた送信特性情報に基づいて、参照信号の送信電力を決定する決定部を構成する。
 データ生成部121は、ユーザ端末20に向けた送信ビームで送信されるデータを生成して送受信部103に出力する。当該データには、ユーザデータだけでなく、制御情報が含まれてもよい。送受信部103に出力されたデータは、データ送信期間(図9)において、キャリアF2を用いて送信される。
 また、データ生成部121は、ユーザ端末20からのフィードバック情報(例えば、CSIなど)に基づいて、ビーム形成情報が生成して送受信部103に出力する。当該ビーム形成情報には、例えば、送信アンテナ素子の重み付けに用いられるAOA(Angle of Arrival)やAOD(Angle of Departure)などが含まれる。データ送信期間(図9)では、当該形成情報に基づいて形成される送信ビームが用いられる。
 参照信号生成部122は、参照信号を生成して送受信部103に出力する。参照信号としては、例えば、CSI-RS、DM-RS、ディスカバリー信号などが挙げられる。送受信部103に出力された参照信号は、参照信号送信期間(図9)において、キャリアF2を用いて送信される。
 送信電力決定部123は、スモールセルC2におけるキャリアF2の送信特性情報に基づいて、参照信号の送信電力を決定する。また、送信電力決定部123は、決定された送信電力を示す送信電力情報を参照信号生成部122に出力し、決定された送信電力で参照信号を送信させる。例えば、送信電力決定部123は、キャリアF2を用いた送信特性が良くなるに従って、参照信号の送信電力を増加させてもよい。
 なお、上述のように、キャリアF2を用いた送信特性情報は、スモール基地局12に設けられる送信アンテナ素子数と、スモール基地局12で用いられる送信帯域幅と、スモール基地局12で用いられる送信ビームのビームフォーミングゲインと、の少なくとも一つを含む。また、ビームフォーミングゲインは、送信アンテナ素子数や、データ生成部121において生成されるビーム形成情報(例えば、AOAやAODなど)などに基づいて、算出されてもよい。
 図16は、本実施の形態に係るユーザ端末20の機能構成図である。なお、以下の機能構成は、ユーザ端末20が有するベースバンド信号処理部204などによって構成される。図16に示すように、ユーザ端末20は、測定部211、セル選択部212を具備する。
 測定部211は、マクロ基地局11及びスモール基地局12からの参照信号の受信品質を測定する。上述のように、受信品質は、RSRQ、RSRP、これらの組み合わせなどであってもよい。
 セル選択部212は、測定部211によって測定された受信品質に基づいて、セル選択を行う。本発明の第1態様において、セル選択部212は、マクロ基地局11から通知されるオフセット値を、送受信部203などを介して受信する。セル選択部212は、マクロ基地局11から通知されたオフセット値と、測定部211によって測定された受信品質とに基づいて、セル選択を行う。
 具体的には、本発明の第1態様において、セル選択部212は、スモール基地局12からの参照信号の受信品質に対して、上記オフセット値を付加する。セル選択部212は、オフセット値が付加された受信品質に基づいて、セル選択を行う。なお、当該セル選択の詳細については、図8で説明した通りであるため、説明を省略する。
 一方、本発明の第2態様において、セル選択部212は、上記オフセット値を用いずに、セル選択を行う。上述のように、第2態様では、キャリアF2を用いた送信特性(例えば、ビームフォーミングゲイン、送信帯域幅)に比例して増加した送信電力で、参照信号が送信される。これにより、ユーザ端末UEは、参照信号を十分な受信品質で受信することができるので、スモール基地局12からの参照信号の受信品質に対してオフセット値を付加せずとも、スモールセルC2を積極的に選択させることができる。
 以上のように、本実施の形態に係る無線通信システム1によれば、ユーザ端末20がセル選択を行う場合に、スモールセルC2におけるキャリアF2を用いた送信特性情報(上述の送信アンテナ素子数、送信帯域幅、ビームフォーミングゲインなど)に基づいて決定されるオフセット値が、スモール基地局12からの参照信号の受信品質に対して付加される。したがって、ユーザ端末20は、オフセット値が付加された受信品質に基づいてスモールセルC2を積極的に選択することができ、マクロセルC1からスモールセルC2へのオフロードを実現できる。
 また、本実施の形態に係る無線通信システム1によれば、ユーザ端末20におけるセル選択に用いられる参照信号が、キャリアF2を用いた送信特性情報に基づいて決定された送信電力で送信される。これにより、ユーザ端末20は、参照信号を十分な受信品質で受信することができるので、スモール基地局12からの参照信号の受信品質に対してオフセット値を付加せずとも、スモールセルC2を積極的に選択させることができる。この結果、マクロセルC1からスモールセルC2へのオフロードを実現できる。
 以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2013年2月12日出願の特願2013-024338に基づく。この内容は、全てここに含めておく。

Claims (10)

  1.  第1キャリアが用いられる第1セルと前記第1キャリアよりも高い周波数帯の第2キャリアが用いられる第2セルとが重複して配置される無線通信システムにおいて、前記第1セルを形成する無線基地局であって、
     前記第2セルにおける前記第2キャリアを用いた送信特性情報に基づいて、ユーザ端末におけるセル選択に用いられるオフセット値を決定する決定部と、
     前記ユーザ端末に対して、前記オフセット値を通知する通知部と、
    を具備することを特徴とする無線基地局。
  2.  前記送信特性情報は、前記第2セルを形成する無線基地局に設けられる送信アンテナ素子数と、前記第2セルを形成する無線基地局で用いられる送信帯域幅と、前記第2セルを形成する無線基地局で用いられる送信ビームのビームフォーミングゲインと、の少なくとも一つを含むことを特徴とする請求項1に記載の無線基地局。
  3.  前記決定部は、前記第2セルの隣接セルからの干渉情報に基づいて、前記オフセット値を決定することを特徴とする請求項1又は請求項2に記載の無線基地局。
  4.  第1キャリアが用いられる第1セルと前記第1キャリアよりも高い周波数帯の第2キャリアが用いられる第2セルとが重複して配置される無線通信システムにおいて用いられるユーザ端末であって、
     第1セルを形成する第1無線基地局及び前記第2セルを形成する第2無線基地局からの参照信号の受信品質を測定する測定部と、
     前記第1無線基地局から通知されるオフセット値を受信する受信部と、
     前記測定部によって測定された前記受信品質と前記受信部によって受信された前記オフセット値とに基づいて、セル選択を行うセル選択部と、を具備し、
     前記オフセット値は、前記第2セルにおける前記第2キャリアを用いた送信特性情報に基づいて決定されることを特徴とするユーザ端末。
  5.  前記送信特性情報は、前記第2無線基地局に設けられる送信アンテナ素子数と、前記第2無線基地局で用いられる送信帯域幅と、前記第2無線基地局で用いられる送信ビームのビームフォーミングゲインと、の少なくとも一つを含むことを特徴とする請求項4に記載のユーザ端末。
  6.  前記セル選択部は、前記第2無線基地局からの参照信号の受信品質に対して前記オフセット値を付加することを特徴とする請求項4又は請求項5に記載のユーザ端末。
  7.  前記セル選択部は、前記オフセット値が付加された最良の受信品質が所定の閾値を満たす場合、前記第2無線基地局からの参照信号の受信品質の比較結果に基づいて、前記第2セルを選択することを特徴とする請求項6に記載のユーザ端末。
  8.  前記セル選択部は、前記オフセット値が付加された最良の受信品質が所定の閾値を満たさない場合、前記第2無線基地局からの参照信号の受信品質と前記第1無線基地局からの参照信号の受信品質との比較結果に基づいて、前記第1セル又は前記第2セルを選択することを特徴とする請求項6に記載のユーザ端末。
  9.  第1キャリアが用いられる第1セルと前記第1キャリアよりも高い周波数帯の第2キャリアが用いられる第2セルとが重複して配置される無線通信システムにおけるセル選択方法であって、
     前記第1セルを形成する第1無線基地局において、
     前記第2セルにおける前記第2キャリアを用いた送信特性情報に基づいて、ユーザ端末におけるセル選択に用いられるオフセット値を決定する工程と、
     前記ユーザ端末に対して、前記オフセット値を通知する工程と、
     前記ユーザ端末において、
     前記第1無線基地局及び前記第2セルを形成する第2無線基地局からの参照信号の受信品質を測定する工程と、
     前記第1無線基地局から通知されるオフセット値を受信する工程と、
     測定された前記受信品質と受信された前記オフセット値とに基づいて、セル選択を行う工程と、を有することを特徴とするセル選択方法。
  10.  第1キャリアが用いられる第1セルと前記第1キャリアよりも高い周波数帯の第2キャリアが用いられる第2セルとが重複して配置される無線通信システムであって、
     前記第1セルを形成する第1無線基地局が、
     前記第2セルにおける前記第2キャリアを用いた送信特性情報に基づいて、ユーザ端末におけるセル選択に用いられるオフセット値を決定する決定部と、
     前記ユーザ端末に対して、前記オフセット値を通知部と、を具備し、
     前記ユーザ端末が、
     前記第1無線基地局及び前記第2セルを形成する第2無線基地局からの参照信号の受信品質を測定する測定部と、
     前記第1無線基地局から通知されるオフセット値を受信する受信部と、
     測定された前記受信品質と受信された前記オフセット値とに基づいて、セル選択を行うセル選択部と、を具備することを特徴とする無線通信システム。
     
     
PCT/JP2014/051251 2013-02-12 2014-01-22 無線基地局、ユーザ端末、セル選択方法及び無線通信システム WO2014125885A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/767,124 US20150373601A1 (en) 2013-02-12 2014-01-22 Radio base station, user terminal, cell selection method and radio communication system
CN201480008281.3A CN104982065B (zh) 2013-02-12 2014-01-22 无线基站、用户终端、小区选择方法以及无线通信系统
US15/828,043 US10645622B2 (en) 2013-02-12 2017-11-30 Radio base station, user terminal, cell selection method and radio communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013024338A JP5781103B2 (ja) 2013-02-12 2013-02-12 無線基地局、ユーザ端末、セル選択方法及び無線通信システム
JP2013-024338 2013-02-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/767,124 A-371-Of-International US20150373601A1 (en) 2013-02-12 2014-01-22 Radio base station, user terminal, cell selection method and radio communication system
US15/828,043 Continuation US10645622B2 (en) 2013-02-12 2017-11-30 Radio base station, user terminal, cell selection method and radio communication system

Publications (1)

Publication Number Publication Date
WO2014125885A1 true WO2014125885A1 (ja) 2014-08-21

Family

ID=51353895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051251 WO2014125885A1 (ja) 2013-02-12 2014-01-22 無線基地局、ユーザ端末、セル選択方法及び無線通信システム

Country Status (4)

Country Link
US (2) US20150373601A1 (ja)
JP (1) JP5781103B2 (ja)
CN (1) CN104982065B (ja)
WO (1) WO2014125885A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162687A (zh) * 2015-04-01 2016-11-23 索尼公司 用于无线通信的用户设备侧和基站侧的装置和方法
CN107211332A (zh) * 2015-01-29 2017-09-26 华为技术有限公司 一种小区选择方法及装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2894923T3 (es) * 2013-05-31 2022-02-16 Qualcomm Inc Precodificación lineal en sistemas MIMO de dimensión completa
US9998974B2 (en) * 2013-11-28 2018-06-12 Nec Corporation Wireless communication terminal, storage medium, and cell selection method
EP3140922B1 (en) * 2014-05-08 2019-03-27 Telefonaktiebolaget LM Ericsson (publ) Beam forming using a dual polarized antenna arrangement
WO2016006560A1 (ja) * 2014-07-08 2016-01-14 シャープ株式会社 端末装置、基地局装置、通信システム、通信方法および集積回路
KR101582598B1 (ko) * 2014-07-31 2016-01-05 에스케이텔레콤 주식회사 단말장치 및 단말장치의 동작 방법
US9426759B2 (en) * 2014-09-15 2016-08-23 Qualcomm Incorporated Aligning wireless local area network operations with power headroom reporting
JP2016096478A (ja) * 2014-11-14 2016-05-26 株式会社Nttドコモ 基地局、オフセット値算出方法、及び接続セル決定方法
JP2016143916A (ja) 2015-01-29 2016-08-08 ソニー株式会社 装置
CN107950057B (zh) * 2015-04-10 2021-07-23 瑞典爱立信有限公司 用于卸载无线装置的系统、方法和设备
WO2017019116A1 (en) * 2015-07-29 2017-02-02 Intel IP Corporation User equipment (ue) and methods for dynamic millimeter wave pencil cell communication
KR102328451B1 (ko) * 2015-10-22 2021-11-18 삼성전자주식회사 셀 선택 방법 및 전자 장치
CN106998580B (zh) * 2016-01-25 2020-08-11 上海无线通信研究中心 大规模mimo系统小区选择方法及基站
US20170339675A1 (en) * 2016-05-18 2017-11-23 Futurewei Technologies, Inc. Method of Operating a Cellular Network including High Frequency Burst Transmission
KR20180027305A (ko) * 2016-09-06 2018-03-14 삼성전자주식회사 무선 통신 시스템에서 셀을 선택하기 위한 장치 및 방법
CN108282869A (zh) * 2017-01-05 2018-07-13 华为技术有限公司 通信方法、网络设备、及终端设备
EP3603201A1 (en) * 2017-03-23 2020-02-05 Telefonaktiebolaget LM Ericsson (publ) First network node, third network node, wireless device, and methods performed thereby for facilitating cell selection
US10405202B2 (en) * 2017-05-05 2019-09-03 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods of determining a transmitter or receiver configuration
JP7085347B2 (ja) * 2017-12-27 2022-06-16 シャープ株式会社 基地局装置、端末装置および通信方法
WO2019200550A1 (zh) * 2018-04-18 2019-10-24 北京小米移动软件有限公司 无线接入方法及装置
WO2020101266A1 (ko) * 2018-11-12 2020-05-22 엘지전자 주식회사 측위를 위한 상향링크 참조 신호를 송수신하는 방법 및 이를 위한 장치
CN115250523A (zh) * 2021-04-27 2022-10-28 中国移动通信有限公司研究院 信息配置方法、装置、相关设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011238981A (ja) * 2010-04-30 2011-11-24 Ntt Docomo Inc 基地局装置、移動端末装置及び通信制御方法
WO2012029237A1 (ja) * 2010-09-03 2012-03-08 パナソニック株式会社 無線通信システム、低送信電力セル基地局、マクロセル基地局、無線端末及び負荷分散方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100290674B1 (ko) * 1998-08-24 2001-07-12 윤종용 다중밴드시스템에서셀선택방법
US8670415B2 (en) * 2005-08-05 2014-03-11 Samsung Electronics Co., Ltd. Apparatus and method for performing handoff in a communication system
KR20090130293A (ko) 2007-03-13 2009-12-22 인터디지탈 테크날러지 코포레이션 무선 통신에 대한 셀 재선택 프로세스
US8126499B2 (en) * 2007-07-06 2012-02-28 Qualcomm Incorporated Processing Qoffset parameter
US8731576B2 (en) 2007-10-01 2014-05-20 Nec Corporation Wireless communication system, wireless communication method, base station, mobile station, base station control method, mobile station control method, and control program
CN101547484B (zh) * 2008-03-26 2010-12-29 上海摩波彼克半导体有限公司 移动通信系统中移动设备实现小区重选的方法
US8285321B2 (en) * 2008-05-15 2012-10-09 Qualcomm Incorporated Method and apparatus for using virtual noise figure in a wireless communication network
US8515426B2 (en) * 2008-12-15 2013-08-20 Panasonic Corporation User equipment, base station device, communication system, and handover control method
GB2467351B (en) * 2009-01-30 2012-05-16 Samsung Electronics Co Ltd User equipment and method of its operation
US8457074B2 (en) * 2009-08-17 2013-06-04 Motorola Mobility Llc Method and apparatus for mobile communication device measurement reporting
US8868091B2 (en) * 2010-01-18 2014-10-21 Qualcomm Incorporated Methods and apparatus for facilitating inter-cell interference coordination via over the air load indicator and relative narrowband transmit power
US8532660B2 (en) * 2010-04-10 2013-09-10 Alcatel Lucent Method and apparatus for directing traffic between overlying macrocells and microcells
CN102378311B (zh) * 2010-08-16 2016-01-06 株式会社Ntt都科摩 一种多载波系统中服务小区的选择方法以及多载波系统
US9838925B2 (en) * 2011-01-26 2017-12-05 Telefonaktiebolaget L M Ericsson (Publ) Method and a network node for determining an offset for selection of a cell of a first radio network node
WO2012135627A1 (en) * 2011-04-01 2012-10-04 Interdigital Patent Holdings, Inc. Multi-cell operation in non-cell_dch states
US8744449B2 (en) * 2012-03-16 2014-06-03 Blackberry Limited Mobility parameter adjustment and mobility state estimation in heterogeneous networks
US9130688B2 (en) * 2012-05-11 2015-09-08 Intel Corporation User equipment and methods for handover enhancement using reference signal received quality (RSRQ)
CN103781136B (zh) * 2012-08-07 2017-10-31 诺基亚通信公司 用于终端设备的自主移动的控制机制

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011238981A (ja) * 2010-04-30 2011-11-24 Ntt Docomo Inc 基地局装置、移動端末装置及び通信制御方法
WO2012029237A1 (ja) * 2010-09-03 2012-03-08 パナソニック株式会社 無線通信システム、低送信電力セル基地局、マクロセル基地局、無線端末及び負荷分散方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS INC.: "Early detection of non- member CSG cell", 3GPP R2-110452, 17 January 2011 (2011-01-17) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107211332A (zh) * 2015-01-29 2017-09-26 华为技术有限公司 一种小区选择方法及装置
EP3244656A4 (en) * 2015-01-29 2017-12-06 Huawei Technologies Co. Ltd. Cell selection method and apparatus
US10009808B2 (en) 2015-01-29 2018-06-26 Huawei Technologies Co., Ltd. Cell selection method and apparatus
US10327182B2 (en) 2015-01-29 2019-06-18 Huawei Technologies Co., Ltd. Cell selection method and apparatus
CN107211332B (zh) * 2015-01-29 2020-04-28 华为技术有限公司 一种小区选择方法及装置
CN106162687A (zh) * 2015-04-01 2016-11-23 索尼公司 用于无线通信的用户设备侧和基站侧的装置和方法
EP3280179A4 (en) * 2015-04-01 2019-01-16 Sony Corporation DEVICE AND METHOD FOR THE USER EQUIPMENT SIDE AND THE BASE STATION SIDE IN WIRELESS COMMUNICATION
US10911969B2 (en) 2015-04-01 2021-02-02 Sony Corporation Device and method for user equipment side and base station side in wireless communication
CN106162687B (zh) * 2015-04-01 2021-06-11 索尼公司 用于无线通信的用户设备侧和基站侧的装置和方法
US11356878B2 (en) 2015-04-01 2022-06-07 Sony Corporation Device and method for user equipment side and base station side in wireless communication

Also Published As

Publication number Publication date
JP2014155093A (ja) 2014-08-25
JP5781103B2 (ja) 2015-09-16
US20180092008A1 (en) 2018-03-29
CN104982065A (zh) 2015-10-14
US10645622B2 (en) 2020-05-05
CN104982065B (zh) 2019-11-05
US20150373601A1 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5781103B2 (ja) 無線基地局、ユーザ端末、セル選択方法及び無線通信システム
JP6151108B2 (ja) 無線基地局、ユーザ端末及び参照信号送信方法
CN110086501B (zh) 无线基站、用户终端以及无线通信方法
US9838908B2 (en) Radio base station, user terminal and radio communication method
JP6715768B2 (ja) 無線基地局および無線通信方法
JP6161347B2 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2018147346A1 (ja) ユーザ端末及び無線通信方法
US20160337993A1 (en) User terminal, radio base station and radio communication method
JP6219110B2 (ja) 無線基地局、ユーザ端末及び通信制御方法
WO2015174328A1 (ja) 無線基地局、ユーザ端末及び無線通信方法
JP6301065B2 (ja) 無線基地局、ユーザ端末および無線通信方法
US20160128073A1 (en) Radio base station, radio communication system and radio communication method
WO2015015950A1 (ja) 無線基地局、ユーザ端末および無線通信方法
JP2017038320A (ja) ユーザ端末、無線基地局及び無線通信方法
US9854538B2 (en) Base station, user terminals and wireless communication method
US10609652B2 (en) User terminal, radio base station and radio communication method
WO2018025907A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751190

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14767124

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751190

Country of ref document: EP

Kind code of ref document: A1