WO2014125748A1 - 吸入空気量推定装置及び吸入空気量推定方法 - Google Patents

吸入空気量推定装置及び吸入空気量推定方法 Download PDF

Info

Publication number
WO2014125748A1
WO2014125748A1 PCT/JP2013/084954 JP2013084954W WO2014125748A1 WO 2014125748 A1 WO2014125748 A1 WO 2014125748A1 JP 2013084954 W JP2013084954 W JP 2013084954W WO 2014125748 A1 WO2014125748 A1 WO 2014125748A1
Authority
WO
WIPO (PCT)
Prior art keywords
throttle valve
air amount
intake air
intake
amount
Prior art date
Application number
PCT/JP2013/084954
Other languages
English (en)
French (fr)
Inventor
俊一 吉川
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2015500121A priority Critical patent/JP6004077B2/ja
Publication of WO2014125748A1 publication Critical patent/WO2014125748A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0234Variable control of the intake valves only changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an apparatus and method for estimating an intake air amount of an internal combustion engine.
  • the detected value of the air flow meter is regarded as the intake air amount and the fuel injection amount is set according to the intake air amount.
  • the difference between the detected value of the air flow meter and the actual intake air amount is, for example, in a transient state such as during acceleration. It increases and the accuracy of control falls. Therefore, in JP2008-151145A, the throttle valve passing air amount is calculated based on the pressure ratio between the throttle valve upstream side and the throttle valve downstream side and the throttle valve opening area, and this throttle valve passing air amount is regarded as the intake air amount. ing.
  • the throttle valve passage is based on the throttle valve upstream / downstream pressure ratio, which is the ratio of the pressure upstream of the throttle valve and the pressure downstream of the throttle valve, and the opening area of the throttle valve.
  • an intake air amount estimation device that includes a throttle valve passage air amount calculation means for calculating an air amount and estimates the intake air amount of an internal combustion engine based on the throttle valve passage air amount.
  • the intake air amount estimation device includes correction means for correcting the throttle valve passage air amount according to the actual cylinder volume calculated based on the intake valve closing timing.
  • the amount of air passing through the throttle valve is corrected according to the actual cylinder volume by the correction means, even when the intake air amount is controlled by changing the intake valve closing timing while the pressure ratio is constant, The amount of air passing through the throttle valve can be calculated. As a result, the intake air amount can be accurately estimated.
  • FIG. 1 is a configuration diagram of a system to which an embodiment of the present invention is applied.
  • FIG. 2 is a flowchart showing a control routine for estimating the intake air amount.
  • FIG. 3 is a diagram for explaining the adaptation of the internal EGR rate.
  • FIG. 1 is a configuration diagram of a system to which an intake air amount estimation device according to an embodiment of the present invention is applied.
  • the internal combustion engine 1 is configured such that an intake valve 11 and an exhaust valve 12 are driven by an intake camshaft 9 and an exhaust camshaft 10, respectively, and a variable valve that can variably set the valve timing of the intake valve 11 on the intake side.
  • a mechanism 17 is provided.
  • An air filter 20, an air flow meter 4, a supercharger 5, a throttle upstream sensor 6 that detects temperature and pressure, a throttle valve 7, a collector tank 8, and a fuel injection valve 16 are arranged in the intake passage 2 from the upstream side. .
  • a bypass passage 18 that communicates the upstream side and the downstream side of the supercharger 5 of the intake passage 2 and a bypass valve 19 that opens and closes the flow path of the bypass passage 18 are disposed.
  • the supercharger 5 As the supercharger 5, a mechanical supercharger that is driven using the driving force of the internal combustion engine 1 is used.
  • the throttle valve 7 is a so-called electronically controlled throttle, and is set to an opening corresponding to the accelerator opening by an actuator such as an electric motor.
  • an actuator such as an electric motor.
  • a sensor for detecting the throttle opening is also included.
  • the collector tank 8 communicates with a branch pipe 2A to each cylinder. It also has an intercooler function.
  • an exhaust purification catalyst 21 and an air-fuel ratio sensor 31 for detecting the air-fuel ratio of exhaust flowing into the exhaust purification catalyst 21 are disposed in the exhaust passage 3.
  • the detected value is read by the controller (throttle valve passage air amount calculation means, correction means) 50.
  • the controller 50 also reads detection values of an accelerator opening sensor (not shown) and the like, and based on the detection values, the fuel injection amount, fuel injection timing, ignition timing, throttle opening, variable valve mechanism 17 The conversion angle, the opening degree of the bypass valve 19 and the like are set.
  • the controller 50 is composed of a microcomputer having a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
  • the controller 50 can be composed of a plurality of microcomputers.
  • the detection value (voltage value) of the air flow meter 4 is read, and the intake air amount is calculated from the relationship between the preset voltage value and the intake air amount.
  • the amount of air that has passed through the air flow meter 4 and the amount of air that has passed through the throttle valve 7 can be regarded as the same.
  • various controls such as calculation of the fuel injection amount are performed.
  • the calculation is based on the detection value of the air flow meter 4. If the intake air amount thus used is used, the accuracy of various controls decreases. Therefore, in such a case, the intake air amount is estimated by the control described later.
  • FIG. 2 is a flowchart showing a control routine for estimating the intake air amount, which is executed by the controller 50 in the transient state as described above. That is, prior to execution of the control routine of FIG. 2, it is determined whether it is a steady state or a transient state, and when it is determined that it is a transient state, the control routine of FIG. 2 is executed. To determine whether or not the engine is in a transient state, for example, a table in which an accelerator pedal opening change amount threshold value is assigned for each engine speed is prepared in advance. It is determined that there is. Hereinafter, it demonstrates according to the step of a flowchart.
  • step S100 the controller 50 determines whether or not the pressure ratio between the upstream side and the downstream side of the throttle valve 7 is 1. If 1, the process of step S102 is executed. If not, the process of step S104 is executed. Execute. It is determined whether or not the pressure ratio is not less than a predetermined value that is slightly smaller than 1. If the pressure ratio is not less than the predetermined value, the process of step S102 is executed. May be. That is, when the pressure ratio is near 1, the process of step S102 may be executed.
  • Detected value of upstream sensor 6 is used for upstream pressure.
  • the downstream pressure may be detected directly using a sensor, or may be estimated by a known estimation method using the previous calculated value, intake air temperature, or the like.
  • the determination may be made using the throttle opening.
  • the throttle opening at which the pressure ratio between the upstream side and the downstream side of the throttle valve 7 is 1 is checked for each engine speed and set as a throttle opening threshold, and the engine speed and the throttle opening are read and determined. .
  • step S102 the controller 50 calculates the throttle valve passing air amount Qth by the equation (1), and sets this as the intake air amount.
  • is the air density, which is calculated based on the temperature and pressure of the air detected by the upstream sensor 6.
  • A is the throttle valve opening area.
  • the throttle valve opening area A is calculated based on the detected value of the opening sensor of the throttle valve 7 by checking the relationship between the opening and the opening area of the throttle valve 7 in advance.
  • v is the flow velocity of air passing through the throttle valve.
  • the throttle valve passing air flow velocity is calculated based on the pressure ratio between the upstream side and the downstream side of the throttle valve 7.
  • Vnow is the current cylinder volume (actual cylinder volume), and is calculated by equation (2).
  • Vnow (Vivc + fuel chamber volume) ⁇ (1-internal EGR rate) (2)
  • Vivc is a stroke volume at the intake valve closing timing.
  • the intake valve closing timing is obtained from the conversion angle of the variable valve mechanism 17. If the intake valve closing timing is obtained, the piston position at the intake valve closing timing is also obtained, and the stroke volume at the intake valve closing timing can be calculated.
  • the combustion chamber volume is calculated geometrically.
  • the internal EGR rate is calculated by adaptation as will be described later.
  • Vstd in equation (1) is a cylinder volume reference value, and is a cylinder volume in a maximum load state for each engine speed.
  • the calculation method itself is the same as the current cylinder volume Vnow, and the calculation is performed at the intake valve closing timing when the load is maximized at the engine speed.
  • FIG. 3 is a simplified diagram of the downstream portion of the throttle valve 7 of FIG.
  • the controller 50 controls the amount of air flowing into the collector tank 8, that is, the throttle passing air amount Qth [g / s], and the amount of air flowing from the collector tank 8 into the internal combustion engine 1, that is, the cylinder intake air amount Qcyl [g / s].
  • the air mass Mcol [g] in the collector tank is obtained by the balance calculation.
  • Expression (3) is an expression showing the contents of the balance calculation.
  • the cylinder intake air amount Qcyl in Equation (3) is obtained as a function of the cylinder intake air amount Mcyl [g] per cylinder in one cycle and the engine speed [rpm]. That is, the unit of the cylinder intake air amount Qcyl is [g / s].
  • ⁇ col is the collector tank density [g / L]
  • Vcyl is the cylinder volume [L]
  • Vcol is the collector tank volume [L].
  • the cylinder volume Vcyl [L] in the equation (4) is the current cylinder volume Vnow calculated by the equation (2).
  • the controller 50 calculates the collector tank internal pressure Pcol by the equation (5).
  • the internal EGR rate of equation (2) is adapted so that the calculation result of equation (5) matches the pressure actually detected by the pressure sensor.
  • the internal EGR rate determined in this way is used for calculating the throttle valve passing air amount Qth in step S102.
  • step S104 the controller 50 calculates the air density ⁇ ⁇ throttle valve opening area A ⁇ throttle valve passage air flow velocity v as the throttle valve passage air amount Qth and sets this as the intake air amount.
  • the current cylinder volume (actual cylinder volume) is calculated based on the intake valve closing timing according to the expression (2), and the air flow rate ⁇ calculated from the upstream and downstream pressure ratio of the throttle valve and the throttle valve opening area A is calculated. * A * v is corrected based on the actual cylinder volume.
  • step S102 The execution of the correction based on the actual cylinder volume (step S102) is limited to the case where the pressure ratio between the upstream side and the downstream side of the throttle valve 7 is 1.
  • the pressure ratio between the upstream side and the downstream side of the throttle valve 7 is not 1, the influence of the current cylinder volume in the equation (1) is so small that it can be ignored. Therefore, the correction is limited to the case where the pressure ratio is 1. By doing so, the calculation load can be reduced. If the calculation load is not taken into consideration, S102 may always be executed without determining in step S100.
  • the accuracy of estimation of the amount of air passing through the throttle valve can be further increased by considering the internal EGR rate when determining the actual cylinder volume.
  • step S102 a step for determining whether or not the variable valve mechanism 17 changes the intake air amount with the throttle opening kept constant is inserted between steps S100 and S102. If the determination result is yes, step S102 is performed. , No, the process of S104 may be executed. Thereby, the calculation load can be reduced.
  • the specific determination contents differ depending on the contents of the cooperative control of the throttle valve 7 and the variable valve mechanism 17, for example, the intake air amount necessary for realizing the target torque determined from the accelerator pedal opening is determined by closing the intake valve. The determination result is set to “yes” when it can be covered only by changing the timing.
  • the supercharger 5 may be a turbocharger driven by exhaust energy or an electric supercharger driven by an electric motor. In the case with a supercharger, the frequency at which the pressure ratio becomes close to 1 is higher than in the case without a supercharger, so that the effect of applying this embodiment becomes greater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Measuring Volume Flow (AREA)

Abstract

 吸入空気量推定装置は、スロットル弁より上流側の圧力とスロットル弁より下流側の圧力との比であるスロットル弁上下流圧力比と、スロットル弁の開口面積と、に基づいてスロットル弁通過空気量を算出するスロットル弁通過空気量算出手段を備え、スロットル弁通過空気量に基づいて内燃機関の吸入空気量を推定する。さらに、吸入空気量推定装置は、吸気弁閉タイミングに基づいて実シリンダ容積を算出し、かつ、実シリンダ容積に応じてスロットル弁通過空気量を補正する補正手段を備える。

Description

吸入空気量推定装置及び吸入空気量推定方法
 本発明は、内燃機関の吸入空気量を推定する装置及び方法に関する。
 内燃機関の燃料噴射量を設定する手法として、エアフローメータの検出値を吸入空気量とみなし、吸入空気量に応じて燃料噴射量を設定する手法が知られている。しかし、空気がエアフローメータを通過してから内燃機関に流入するまでには遅れ時間が生じるため、例えば加速時等の過渡状態においては、エアフローメータの検出値と実際の吸入空気量との差が増大し、制御の精度が低下してしまう。そこでJP2008-151145Aでは、スロットル弁上流側とスロットル弁下流側の圧力比と、スロットル弁開口面積と、に基づいてスロットル弁通過空気量を算出し、このスロットル弁通過空気量を吸入空気量とみなしている。
 しかしながら、上記文献に記載の手法では、圧力比一定のまま、吸気弁閉タイミングを可変制御することで要求負荷に応じた吸入空気量を実現する場合に、正確なスロットル弁通過空気量を算出できず、結果的に吸入空気量を精度良く推定できない。
 そこで、吸気弁閉タイミングを可変制御し得る可変動弁機構を備える場合であっても、精度良く吸入空気量を推定することを目的とする。
 本発明のある態様によれば、スロットル弁より上流側の圧力とスロットル弁より下流側の圧力との比であるスロットル弁上下流圧力比と、スロットル弁の開口面積と、に基づいてスロットル弁通過空気量を算出するスロットル弁通過空気量算出手段を備え、スロットル弁通過空気量に基づいて内燃機関の吸入空気量を推定する吸入空気量推定装置が提供される。吸入空気量推定装置は、吸気弁閉タイミングに基づいて算出した実シリンダ容積に応じてスロットル弁通過空気量を補正する補正手段を備える。
 上記態様によれば、補正手段によってスロットル弁通過空気量をシリンダ実容積に応じて補正するので、圧力比一定のまま吸気弁閉タイミングを変更することで吸入空気量を制御する場合でも、正確なスロットル弁通過空気量を算出できる。その結果、吸入空気量を精度良く推定することができる。
図1は、本発明の実施形態を適用するシステムの構成図である。 図2は、吸入空気量を推定するための制御ルーチンを示すフローチャートである。 図3は、内部EGR率の適合を説明するための図である。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 図1は、本発明の実施形態に係る吸入空気量推定装置を適用するシステムの構成図である。
 内燃機関1は、吸気弁11及び排気弁12がそれぞれ吸気カムシャフト9及び排気カムシャフト10により駆動されるよう構成され、吸気側には吸気弁11のバルブタイミングを可変に設定し得る可変動弁機構17が備えられる。吸気通路2には、上流側からエアフィルタ20、エアフローメータ4、過給機5、温度及び圧力を検出するスロットル上流側センサ6、スロットル弁7、コレクタタンク8、燃料噴射弁16が配置される。また、吸気通路2の過給機5より上流側と下流側を連通するバイパス通路18、及びバイパス通路18の流路を開閉するバイパス弁19が配置される。
 過給機5としては、内燃機関1の駆動力を用いて駆動する機械式の過給機を用いる。
 スロットル弁7は、いわゆる電子制御スロットルであり、電動モータ等のアクチュエータによりアクセル開度等に応じた開度に設定される。また、スロットル開度を検出するセンサも含んで構成されている。
 コレクタタンク8は、各気筒への分岐管2Aが連通している。また、インタークーラ機能も併せ持つ。
 一方、排気通路3には、排気浄化触媒21、及び排気浄化触媒21に流入する排気の空燃比を検出する空燃比センサ31が配置されている。
 エアフローメータ4、上流側センサ6、空燃比センサ31、クランクシャフト14の回転数(エンジン回転数)を検出するクランク角センサ30、可変動弁機構17の変換角を検出するカム角センサ32の各検出値は、コントローラ(スロットル弁通過空気量算出手段、補正手段)50に読み込まれる。
 コントローラ50は、上記各センサの他にも図示しないアクセル開度センサ等の検出値も読込み、検出値に基づいて、燃料噴射量、燃料噴射タイミング、点火時期、スロットル開度、可変動弁機構17の変換角、バイパス弁19の開度等を設定する。
 なお、コントローラ50は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。コントローラ50を複数のマイクロコンピュータで構成することも可能である。
 ここで、コントローラ50が実行する吸入空気量の推定演算について説明する。
 基本的には、エアフローメータ4の検出値(電圧値)を読み込み、予め設定した電圧値と吸入空気量との関係から吸入空気量を算出する。アクセルペダル開度及び道路勾配が一定のいわゆる定常状態では、エアフローメータ4を通過した空気量とスロットル弁7を通過する空気量は同一とみなすことができるので、この算出方法で算出した吸入空気量に基づいて燃料噴射量の算出等の各種制御を行なう。
 しかし、過給圧が変化するような過渡状態であって、エアフローメータ4を通過する空気量とスロットル弁7を通過する空気量が同一ではなくなる状態では、エアフローメータ4の検出値に基づいて算出した吸入空気量を用いると、各種制御の精度が低下してしまう。そこで、このような場合には、後述する制御により吸入空気量を推定することとする。
 図2は、上述したような過渡状態においてコントローラ50が実行する、吸入空気量を推定するための制御ルーチンを示すフローチャートである。すなわち、図2の制御ルーチンの実行に先立って定常状態か過渡状態かを判定し、過渡状態であると判定した場合に図2の制御ルーチンを実行する。過渡状態か否かの判定は、例えば、エンジン回転数毎にアクセルペダル開度変化量閾値を割り付けたテーブルを予め作成しておき、アクセルペダル開度が当該閾値を超えた場合には過渡状態である、と判定する。以下、フローチャートのステップにしたがって説明する。
 ステップS100で、コントローラ50はスロットル弁7の上流側と下流側の圧力比が1であるか否かを判定し、1の場合はステップS102の処理を実行し、1でない場合はステップS104の処理を実行する。なお、圧力比が1よりもわずかに小さい所定値以上か否かを判定し、所定値以上の場合はステップS102の処理を実行し、所定値より小さい場合はステップS104の処理を実行するようにしてもよい。すなわち、圧力比が1近傍の場合にステップS102の処理を実行するようにしてもよい。
 上流側の圧力は上流側センサ6の検出値を用いる。下流側の圧力は、センサを用いて直接検出してもよいし、前回演算値や吸気温度等を用いる公知の推定方法によって推定してもよい。
 また、スロットル弁7の上流側と下流側の圧力比に代えて、スロットル開度を用いて判定してもよい。この場合、スロットル弁7の上流側と下流側の圧力比が1となるスロットル開度をエンジン回転数毎に調べてスロットル開度閾値として設定し、エンジン回転数及びスロットル開度を読み込んで判定する。
 ステップS102で、コントローラ50は、式(1)によりスロットル弁通過空気量Qthを算出し、これを吸入空気量とする。
  Qth=ρ×A×v×Vnow/Vstd   ・・・(1)
 式(1)において、ρは空気密度であり、上流側センサ6で検出した空気の温度及び圧力に基づいて算出する。
 同じくAはスロットル弁開口面積である。このスロットル弁開口面積Aは、スロットル弁7の開度と開口面積との関係を予め調べておき、スロットル弁7の開度センサの検出値に基づいて算出する。
 同じくvはスロットル弁通過空気流速である。スロットル弁通過空気流速は、スロットル弁7の上流側と下流側の圧力比に基づいて算出する。
 同じくVnowは現在のシリンダボリューム(実シリンダ容積)であり、式(2)により算出する。
  Vnow=(Vivc+燃料室容積)×(1-内部EGR率)・・・(2)
 ここで、Vivcは吸気弁閉タイミングにおける行程容積である。吸気弁閉タイミングは可変動弁機構17の変換角から求まる。吸気弁閉タイミングが求まれば吸気弁閉タイミングにおけるピストン位置も求まり、吸気弁閉タイミングにおける行程容積を算出できる。燃焼室容積は幾何的に算出する。内部EGR率は、後述するように適合により算出する。
 式(1)のVstdはシリンダボリューム基準値であり、エンジン回転数毎の最大負荷状態におけるシリンダ容積である。すなわり、算出方法自体は現在のシリンダボリュームVnowと同様であり、当該エンジン回転数において負荷を最大とした場合の吸気弁閉タイミングで算出する。
 ここで、内部EGR率の適合について説明する。図3は、図1のスロットル弁7より下流側部分を簡略化した図である。
 コントローラ50は、コレクタタンク8に流入する空気量、つまりスロットル通過空気量Qth[g/s]と、コレクタタンク8から内燃機関1に流入する空気量、つまりシリンダ吸入空気量Qcyl[g/s]の収支演算により、コレクタタンク内空気質量Mcol[g]を求めている。式(3)は上記収支演算の内容を示す式である。
Figure JPOXMLDOC01-appb-M000001
 式(3)のシリンダ吸入空気量Qcylは、1サイクルの1シリンダ当たりのシリンダ吸入空気量Mcyl[g]とエンジン回転数[rpm]の関数として求める。すなわち、シリンダ吸入空気量Qcylの単位を[g/s]とする。
 また、1サイクルの1シリンダ当たりのシリンダ吸入空気量Mcylは、式(4)により求める。
Figure JPOXMLDOC01-appb-M000002
 なお、ρcolはコレクタタンク内密度[g/L]、Vcylはシリンダ容積[L]、Vcolはコレクタタンク容積[L]である。
 式(4)におけるシリンダ容積Vcyl[L]は、式(2)により算出する現在のシリンダボリュームVnowである。
 一方、コントローラ50は、式(5)によりコレクタタンク内圧力Pcolを算出している。
Figure JPOXMLDOC01-appb-M000003
 式(5)の算出結果が実際に圧力センサで検出する圧力と一致するように、式(2)の内部EGR率を適合させる。
 このようにして決定した内部EGR率を、ステップS102におけるスロットル弁通過空気量Qthの算出に用いる。
 一方、ステップS104で、コントローラ50は、空気密度ρ×スロットル弁開口面積A×スロットル弁通過空気流速vをスロットル弁通過空気量Qthとして算出し、これを吸入空気量とする。
 上記のように、スロットル弁7の上流側と下流側の圧力比が1の場合は、圧力比及びスロットル開口面積Aに基づいて算出したスロットル弁通過空気量を実シリンダ容積に基づいて補正し、圧力比が1以外の場合は、上記補正を実行しない。
 上記制御ルーチンによる作用効果について説明する。
 式(2)により吸気弁閉タイミングに基づいて現在のシリンダボリューム(実シリンダ容積)を算出し、スロットル弁の上流側と下流側の圧力比と、スロットル弁開口面積Aとから算出した空気流量ρ×A×vを、実シリンダ容積に基づいて補正する。これにより、圧力比が一定のまま吸気弁閉タイミングを変更することで吸入空気量を制御する場合でも、正確なスロットル弁通過空気量を算出でき、吸入空気量を精度良く推定できる。また、吸入空気量の推定精度が高まることで、例えば、高地と低地のように気圧が異なる場合でも、運転者が所望するトルクを発生させるために必要なアクセル開度を同じにすることができるので、運転性が向上する。
 上記の実シリンダ容積に基づく補正の実行(ステップS102)を、スロットル弁7の上流側と下流側の圧力比が1の場合に限定する。スロットル弁7の上流側と下流側の圧力比が1でない場合は、式(1)における現在のシリンダボリュームの影響が無視し得る程度に小さいので、補正の実行を圧力比が1の場合に限定することで、演算負荷を軽減することができる。なお、演算負荷を考慮しない場合は、ステップS100の判定無しにして、常にS102を実行してもよい。
 式(2)に示すように、実シリンダ容積を求める際に内部EGR率を考慮することで、スロットル弁通過空気量の推定精度をより高めることができる。
 なお、ステップS100とS102の間に、スロットル開度一定のまま可変動弁機構17で吸入空気量を変化させる場合か否かを判定するステップを挿入して、判定結果がyesの場合はステップS102、noの場合はS104の処理を実行するようにしてもよい。これにより演算負荷を軽減できる。具体的な判定内容は、スロットル弁7と可変動弁機構17の協調制御の内容により異なるが、例えば、アクセルペダル開度から定まる目標トルクを実現するために必要な吸入空気量を、吸気弁閉タイミングの変更だけで賄うことができる場合に判定結果をyesとする。
 また、過給機5は排気エネルギにより駆動するターボ式過給機や、電動機により駆動する電動式過給機であってもよい。過給機付きの場合、圧力比が1近傍になる頻度が過給機無しの場合に比べて高いので、本実施形態を適用することによる効果がより大きくなる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2013年2月12日に日本国特許庁に出願された特願2013-24630に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (5)

  1.  スロットル弁より上流側の圧力とスロットル弁より下流側の圧力との比であるスロットル弁上下流圧力比と、スロットル弁の開口面積と、に基づいてスロットル弁通過空気量を算出するスロットル弁通過空気量算出手段を備え、
     前記スロットル弁通過空気量に基づいて内燃機関の吸入空気量を推定する吸入空気量推定装置において、
     吸気弁閉タイミングに基づいて実シリンダ容積を算出し、前記実シリンダ容積に応じて前記スロットル弁通過空気量を補正する補正手段を備える吸入空気量推定装置。
  2.  請求項1に記載の吸入空気量推定装置において、
     前記補正手段は、前記スロットル弁上下流圧力比が1の場合に補正を行なう吸入空気量推定装置。
  3.  請求項1または2に記載の吸入空気量推定装置において、
     前記補正手段は、前記吸気弁閉タイミングの他に内部EGR率も用いて前記実シリンダ容積を算出する吸入空気量推定装置。
  4.  請求項1から3のいずれかに記載の吸入空気量推定装置において、
     前記スロットル弁の上流側に過給機を備える吸入空気量推定装置。
  5.  スロットル弁より上流側の圧力とスロットル弁より下流側の圧力との比であるスロットル弁上下流圧力比と、スロットル弁の開口面積と、に基づいてスロットル弁通過空気量を算出し、
     前記スロットル弁通過空気量に基づいて内燃機関の吸入空気量を推定する吸入空気量推定方法において、
     吸気弁閉タイミングに基づいて実シリンダ容積を算出し、前記実シリンダ容積に応じて前記スロットル弁通過空気量を補正する吸入空気量推定方法。
PCT/JP2013/084954 2013-02-12 2013-12-26 吸入空気量推定装置及び吸入空気量推定方法 WO2014125748A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015500121A JP6004077B2 (ja) 2013-02-12 2013-12-26 吸入空気量推定装置及び吸入空気量推定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-024630 2013-02-12
JP2013024630 2013-02-12

Publications (1)

Publication Number Publication Date
WO2014125748A1 true WO2014125748A1 (ja) 2014-08-21

Family

ID=51353767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084954 WO2014125748A1 (ja) 2013-02-12 2013-12-26 吸入空気量推定装置及び吸入空気量推定方法

Country Status (2)

Country Link
JP (1) JP6004077B2 (ja)
WO (1) WO2014125748A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020153356A (ja) * 2019-03-22 2020-09-24 トヨタ自動車株式会社 空燃比センサの異常検出装置、空燃比センサの異常検出システム、データ解析装置、内燃機関の制御装置、および空燃比センサの異常検出方法
JP2021050631A (ja) * 2019-09-24 2021-04-01 本田技研工業株式会社 内燃機関の制御装置
WO2022168946A1 (ja) * 2021-02-05 2022-08-11 いすゞ自動車株式会社 内燃機関における制御装置および内燃機関

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050091A (ja) * 1999-08-06 2001-02-23 Nissan Motor Co Ltd 可変動弁エンジンのシリンダ吸入空気量算出装置
JP2008151145A (ja) * 2003-07-10 2008-07-03 Toyota Motor Corp 内燃機関の吸入空気量推定装置
JP2010037990A (ja) * 2008-08-01 2010-02-18 Mitsubishi Motors Corp 燃焼室の吸入空気量の推定装置
WO2011086707A1 (ja) * 2010-01-18 2011-07-21 トヨタ自動車株式会社 内燃機関のガス状態推定装置
JP2013002306A (ja) * 2011-06-13 2013-01-07 Honda Motor Co Ltd 内燃機関の吸入空気量算出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050091A (ja) * 1999-08-06 2001-02-23 Nissan Motor Co Ltd 可変動弁エンジンのシリンダ吸入空気量算出装置
JP2008151145A (ja) * 2003-07-10 2008-07-03 Toyota Motor Corp 内燃機関の吸入空気量推定装置
JP2010037990A (ja) * 2008-08-01 2010-02-18 Mitsubishi Motors Corp 燃焼室の吸入空気量の推定装置
WO2011086707A1 (ja) * 2010-01-18 2011-07-21 トヨタ自動車株式会社 内燃機関のガス状態推定装置
JP2013002306A (ja) * 2011-06-13 2013-01-07 Honda Motor Co Ltd 内燃機関の吸入空気量算出装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020153356A (ja) * 2019-03-22 2020-09-24 トヨタ自動車株式会社 空燃比センサの異常検出装置、空燃比センサの異常検出システム、データ解析装置、内燃機関の制御装置、および空燃比センサの異常検出方法
CN111720229A (zh) * 2019-03-22 2020-09-29 丰田自动车株式会社 空燃比传感器的异常检测装置及其异常检测系统和方法、数据解析装置及内燃机控制装置
US10844803B2 (en) 2019-03-22 2020-11-24 Toyota Jidosha Kabushiki Kaisha Abnormality detection device for air-fuel ratio sensor, abnormality detection system for air-fuel ratio sensor, data analysis device, and control device for internal combustion engine
JP2021050631A (ja) * 2019-09-24 2021-04-01 本田技研工業株式会社 内燃機関の制御装置
WO2022168946A1 (ja) * 2021-02-05 2022-08-11 いすゞ自動車株式会社 内燃機関における制御装置および内燃機関
JP2022120640A (ja) * 2021-02-05 2022-08-18 いすゞ自動車株式会社 内燃機関における制御装置および内燃機関
JP7327423B2 (ja) 2021-02-05 2023-08-16 いすゞ自動車株式会社 内燃機関における制御装置および内燃機関

Also Published As

Publication number Publication date
JPWO2014125748A1 (ja) 2017-02-02
JP6004077B2 (ja) 2016-10-05

Similar Documents

Publication Publication Date Title
JP4600932B2 (ja) 内燃機関の制御装置
JP4335249B2 (ja) 内燃機関の制御装置
JP4583313B2 (ja) 車両用制御装置
US9222426B2 (en) Transient air flow control
JP5761379B2 (ja) 内燃機関の制御装置
US6328007B1 (en) Internal cylinder intake-air quantity calculating apparatus and method for variable valve open/closure timing controlled engine
JP5734478B1 (ja) 過給機付き内燃機関の制御装置
JP5940126B2 (ja) 過給機付き内燃機関の制御装置及び過給機付き内燃機関の制御方法
US9938912B2 (en) Control device for internal combustion engine
US10221794B1 (en) Measurement, modeling, and estimation of scavenging airflow in an internal combustion engine
US20200132002A1 (en) Throttle controller and throttle controlling method
JP2001050090A (ja) 可変動弁エンジンの吸入空気量算出装置
JP2007092531A (ja) 内燃機関の制御装置
JP5146619B2 (ja) 内燃機関の制御装置
JP6004077B2 (ja) 吸入空気量推定装置及び吸入空気量推定方法
JP4849588B2 (ja) 内燃機関の制御装置
JP4706865B2 (ja) 過給機付内燃機関の燃料噴射制御装置
EP3707360B1 (en) Boost control techniques for a turbocharged engine with scavenging
JP5472165B2 (ja) エンジンの制御装置
JP4133288B2 (ja) 内燃機関の可変バルブタイミング制御方法
JP2007262986A (ja) 内燃機関の吸気制御装置
JP2011226311A (ja) 内燃機関の吸入空気量補正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500121

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874911

Country of ref document: EP

Kind code of ref document: A1