WO2014121621A1 - 一种激光淬火方法及装置 - Google Patents

一种激光淬火方法及装置 Download PDF

Info

Publication number
WO2014121621A1
WO2014121621A1 PCT/CN2013/086691 CN2013086691W WO2014121621A1 WO 2014121621 A1 WO2014121621 A1 WO 2014121621A1 CN 2013086691 W CN2013086691 W CN 2013086691W WO 2014121621 A1 WO2014121621 A1 WO 2014121621A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
quenching
scanning
unit
workpiece
Prior art date
Application number
PCT/CN2013/086691
Other languages
English (en)
French (fr)
Inventor
曾晓雁
胡乾午
郑寅岚
蒋明
李重洋
任昭
李昆
Original Assignee
武汉新瑞达激光工程有限责任公司
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉新瑞达激光工程有限责任公司, 华中科技大学 filed Critical 武汉新瑞达激光工程有限责任公司
Priority to US14/765,516 priority Critical patent/US10106864B2/en
Publication of WO2014121621A1 publication Critical patent/WO2014121621A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/70Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching

Definitions

  • the invention belongs to a laser surface strengthening treatment technology, and relates to a repeated scanning laser quenching method and device based on a scanning galvanometer.
  • the invention is particularly suitable for laser surface quenching treatment of large-sized metal workpieces.
  • the laser quenching technique also known as laser heat treatment or laser phase transformation hardening, irradiates a metal workpiece with a laser beam such that its surface temperature is higher than the austenitizing temperature T a .
  • the base material is still in a normal temperature state because it is not directly heated, and its rapid heat conduction causes the cooling rate of the laser heating region to be greater than the critical cooling rate of the quenching, and the temperature of the laser-applied region is rapidly lowered to the horse.
  • a hardened layer of martensite structure is formed on the surface of the workpiece. Since the laser quenching cooling speed is fast, no cooling medium such as water or oil is required, so the process belongs to the self-cooling quenching process.
  • the laser quenching process is divided into two categories, one is a quenching process in which the metal surface does not melt under the action of the laser, and only the solid phase transformation occurs, which is also called a laser phase transformation hardening process, or a laser heat treatment process,
  • the basic feature is to ensure that the maximum temperature of the metal surface during laser irradiation is lower than the melting point temperature T m , so the process parameters of laser quenching (including laser power, spot size, scanning speed, etc.) must be properly selected;
  • the quenching process in which the surface melts is called a laser fused quenching process, in which case the temperature of the metal surface can exceed its melting point.
  • the laser fused quenching process causes the surface of the workpiece to melt, higher laser power can be used, and the slower scanning speed and depth of the hardened layer are deeper than the pure laser quenching process.
  • the laser fused quenching process will seriously change the surface roughness of the metal material, so the use of the process will be limited in some states where high precision is required and subsequent machining is not allowed.
  • local surface micro-melting occurs on the surface of the metal workpiece during laser quenching.
  • the micro-melting layer can be removed only by slightly polishing or grinding, so it is still generally classified as a laser quenching process. .
  • the laser quenching described later in the present invention refers to a solid phase transformation hardening process in which the metal material does not substantially melt or only local micro-melting occurs.
  • the depth of the laser quench hardened layer is not only related to the process parameters such as laser power, scanning speed and spot size, but also related to the heat transfer characteristics and hardenability of the metal.
  • the austenitizing temperature T a and the melting point temperature T m are substantially stable, but vary with the uniformity of the overall composition and the fluctuation of the microstructure.
  • the depth of the laser-hardened layer is higher than the austenitizing temperature T a determined by the laser process parameters and the heat conduction process in the laser workpiece during laser quenching.
  • the depth of the laser quench hardened layer is not only related to the laser quenching process parameters used, but also to the heat transfer of the metal matrix.
  • the conduction process, especially the thermal conductivity of the material is closely related, and is determined by the combination of the laser quenching process parameters and the heat transfer characteristics of the substrate.
  • the laser output method includes continuous output scanning quenching or pulse output scanning quenching.
  • the existing laser scanning quenching process whether continuous laser quenching or pulsed laser quenching, can be analyzed by the heat conduction equation of a point-like continuous fixed heat source.
  • the heat conduction temperature equation is:
  • R the distance from a point to the point heat source
  • T(R,t) the distance from the surface of the workpiece to the laser point heat source is R
  • p the effective power of the heat source
  • the heat conduction time in the t-metal ⁇ the thermal conductivity of the metal
  • a the thermal diffusivity of the metal
  • u the probability integral function.
  • T sp is proportional to the laser input energy and inversely proportional to the distance R from the point heat source.
  • T sp obviously cannot exceed the melting point of the metal material. Since the necessary condition for forming the laser hardened layer is that the temperature of the region exceeds the austenitizing temperature, T sp >T a , the prerequisite for obtaining martensite by laser quenching is that the temperature range of the temperature T sp of the laser heating region is: T m >T sp >T a .
  • the depth R of the laser hardened layer is closely related to the laser power (p) size, spot size, power density and duration of action.
  • the existing laser quenching process is a process of focusing spot scanning and quenching.
  • the selective laser quenching process has been more and more widely used. Different from the general laser quenching process, it is required to harden the entire surface of the metal workpiece.
  • the laser quenching process in the selection process is based on the performance requirements of the workpiece.
  • the laser beam is used to selectively harden the surface of the material, that is, the hardened area does not cover the entire hardened layer. Instead, a soft, hard phase composite hardened layer is formed, or the array is hardened.
  • This method can make the surface of the metal material have good wear resistance and toughness.
  • there are many methods for realizing the laser hardening process of the selected area such as the multi-axis linkage control of the laser beam or the stepwise scanning of the workpiece, or the combination of the pulsed laser output and the control of the machine tool motion trajectory.
  • the pulse laser quenching method can directly output the pulse laser by using the switching power supply, or the continuous laser beam can be changed into the pulse mode by using the ⁇ disc, and the latter method has higher requirements on the precision of the control system of the laser quenching machine.
  • the selective laser quenching enhancement can also be carried out by using a continuous laser through the mask. At this time, only the portion that transmits the laser can heat the metal workpiece, and the portion that is blocked by the mask has no quenching effect, which is characterized by simple process. There is no need for complicated control systems and programming processes, but the processing efficiency is relatively low. It must be pointed out that in either case, the existing laser quenching method is performed by laser beam single-shot quenching.
  • the existing laser beam single-scan heating method is used, whether it is laser continuous heating quenching or pulse laser heating quenching method.
  • the laser power and power density are not too high, and the laser quenching speed must be controlled to a lower range.
  • the depth of the laser quench hardened layer is relatively shallow (generally less than 1 mm), and the laser quenching production efficiency cannot be effectively improved.
  • the power of solid-state lasers has reached a high level (for example, fiber lasers up to 40 kW and gas lasers up to 20 kW). These high-power lasers can only be used. Welding, cutting, cladding, alloying, fusing and other materials are in a laser processing process in a molten state.
  • the actual laser power and scanning speed are limited to a lower level.
  • a typical laser quenching power is generally 1 to 3 kw
  • a scanning speed is generally 300 to 2000 mm/min.
  • the quench hardened layer of the existing laser quenching process has a low depth and low production efficiency, and it is difficult to meet the demand for high-efficiency laser processing production in many industrial applications, hindering the further application of laser quenching technology.
  • the present invention provides a repetitive scanning laser quenching method based on scanning galvanometer, which can greatly improve the production efficiency and hardening of laser quenching. Layer depth; The invention also provides an apparatus for carrying out the method.
  • the invention provides a laser quenching method, which irradiates a laser beam to a surface of a workpiece after passing through a scanning galvanometer, and the laser beam intermittently irradiates each processing unit intermittently, so that the laser quenching area of the workpiece surface is higher than the workpiece.
  • the austenitizing temperature of the material but always lower than the melting point of the workpiece material, and the laser quenching layer is formed by the cumulative thermal effect of repeated heating of the laser, and reaches the desired depth of the hardened layer; the processing unit means not moving In the case of the position of the galvanometer and the position of the workpiece, the laser beam is passed through the scanning galvanometer and irradiated onto the surface of the workpiece and continuously applied to the surface of the workpiece at one time.
  • the method performs laser quenching by controlling laser quenching process parameters, including laser power, scanning speed, spot size, scanning period and number of scans, wherein the scanning period refers to a set laser The sum of one continuous irradiation heating time of one beam to one processing unit and one gap time; the number of scanning times refers to the number of times that a quenching unit reaches a desired hardened layer depth for repeated scanning.
  • laser quenching process parameters including laser power, scanning speed, spot size, scanning period and number of scans, wherein the scanning period refers to a set laser The sum of one continuous irradiation heating time of one beam to one processing unit and one gap time; the number of scanning times refers to the number of times that a quenching unit reaches a desired hardened layer depth for repeated scanning.
  • the laser quenching process parameter when the quenching unit is required to continuously fill to cover the entire region to be quenched, the laser quenching process parameter further includes a relative moving speed, which refers to a speed at which the beam moves from one quenching unit to another quenching unit.
  • the laser quenching method includes a repeated scanning laser quenching method and a repetitive scanning flying laser quenching method.
  • the total number of quenching units on the workpiece is N, the serial number of the quenching unit currently processed on the workpiece is j, the quenching period is T, the number of scans required in one quenching unit is Q, and the parameter of the actual number of scans is q;
  • the quenching period T refers to the product of the number of scans in a quenching unit and the scanning period; the quenching unit refers to a collection of processing units in which the laser beam is irradiated on the surface of the workpiece in a quenching period T;
  • the total number of quenching units on the workpiece is N
  • the serial number of the quenching unit currently processed is j
  • the number of scans required for the quenching unit is Q
  • the quenching period is T
  • the actual number of scans is The parameter is q
  • the relative movement speed between the workpiece and the mechanical motion mechanism (including the galvanometer) is set to V
  • the compensation movement speed of the galvanometer output laser beam is -V
  • the quenching period T refers to a quenching unit The product of the number of scans and the scan period.
  • the quenching unit refers to the processing unit of the processing unit that irradiates the laser beam on the surface of the workpiece during a quenching period T;
  • the laser beam is irradiated to the starting position of the j-th quenching unit after scanning the galvanometer, and the starting time point is recorded as t Q; the laser beam is in accordance with the designed processing unit and the set scanning speed
  • Each processing unit in the j quenching units performs a single scan, and also performs a flight reverse compensation motion at a speed of -V, and then enters (3); the laser energy distribution in a processing unit is substantially uniform during the laser scanning process. Consistent
  • the laser power is 300-30000 W
  • the spot size is 0.5-60 mm
  • the scanning speed is 100-10000 mm/s
  • the processing unit size is 0.2-60000 mm 2
  • the number of scans is 2- 10000
  • laser heating time is l-10000ms
  • processing gap time t 2 is l-10000ms
  • quenching period T It is 2-200000ms.
  • the spot size is l-30mm
  • the scanning speed is 300-8000mm/s
  • the processing unit size is l-30000mm 2
  • the scanning times are 2-5000
  • the laser heating time ⁇ is l-1000ms.
  • the processing gap time t 2 is 1-1000 ms
  • the quenching period T is 2-20000 mS o
  • the laser power is 1500-15000W
  • the spot size is 2-15mm
  • the scanning speed is 300-7000mm/s
  • the processing unit size is 10-15000mm 2
  • the scanning times are 2-3000
  • the laser heating time is l-500ms.
  • the machining gap time t 2 is 1 - 500ms
  • the quenching period T is 2 - 10000ms
  • the laser power is 2000-10000W
  • the spot size is 3-10mm
  • the scanning speed is 300-5000mm/s
  • the processing unit size is 15-10000mm 2
  • the scanning times are 2-1000
  • the laser heating time ⁇ is l-300ms.
  • the processing gap time t 2 is 1 - 300ms
  • the quenching period T is 2 - 6000mS o
  • the invention provides a device for realizing the above laser quenching method, the device comprising a laser, a control system, a light guiding system, a mechanical moving device and a scanning galvanometer;
  • the laser is connected to the optical path through the light guiding system and the scanning galvanometer; the control system is connected with the laser, the mechanical motion device and the scanning galvanometer to control the operation, and the mechanical motion device drives the scanning galvanometer or the workpiece to move.
  • the scanning galvanometer adopts a front focus scanning galvanometer form or a rear f- ⁇ type focus scanning galvanometer.
  • the laser is a fiber laser, a semiconductor laser, YAG laser, or a laser disk type C0 2 laser.
  • the method of the invention utilizes the characteristics of high acceleration, high scanning speed and high jumping speed of the scanning galvanometer to change the single heating in the existing laser quenching process into multiple or even high frequency repeated scanning heating, and the laser energy is heated in a short time.
  • the method of multiple superimposition is injected into the surface of the workpiece, so that the accumulation of laser energy absorbed by the metal substrate is increased.
  • the surface of the workpiece is prevented from melting due to overheating, and on the other hand, the continuous high surface temperature causes a large increase in the heat conduction depth. Therefore, even when a higher laser power is used, the surface temperature of the metal is always controlled below the melting point due to the high scanning speed, short heating time, and scanning intermittent time, while ensuring that the energy of the laser input can be continuously conducted by heat conduction. It is effectively conducted from the surface of the workpiece to the inside of the workpiece, thereby improving the depth of the austenitizing region on the surface of the workpiece and avoiding the laser quenching production efficiency while avoiding the melting of the metal surface. Specifically, the main technical features of the present invention are:
  • the method of the present invention can make full use of the intermittent time of one processing unit to laser quench the other processing units, and thus significantly improve the laser quenching efficiency.
  • the present invention is based on a scanning galvanometer multiple repeated scanning laser quenching process, the spot size of which is not necessarily limited to the minimum focused spot, but can be adjusted within a wide range according to the actual requirements of the workpiece, which is also beneficial to improve Laser quenching efficiency and depth of hardened layer.
  • the method of the invention can significantly increase the depth of laser quenching under the same laser power; or use higher laser power, in the same quenching time and the same hardened layer depth condition Lower, significantly improve the efficiency of laser quenching. Therefore, the invention can break the limitation of laser power, scanning speed and laser power density under the condition of the existing laser quenching process (single laser scanning quenching process), and solve the technology that the existing laser quenching hardened layer has limited depth and low production efficiency. problem.
  • the repeated scanning laser quenching method changes the existing single laser scanning heating mode into multiple laser scanning heating by using the characteristics of high acceleration, high scanning speed and high jumping speed of the scanning galvanometer.
  • the method changes the heat conduction process of the existing laser quenching process, avoids the phenomenon that the surface of the metal material is melted and the depth of the hardened layer is shallow when using high power density laser quenching, and the depth and efficiency of laser quenching can be significantly improved, effectively It solves the technical problem of low production efficiency of the existing laser quenching process, and has important practical value and engineering value.
  • Fig. 1 is a schematic view showing the structure of a scanning galvanometer of a F- ⁇ type rear focusing mode.
  • FIG. 2 is a schematic structural view of a scanning galvanometer in the form of a front focusing mirror.
  • FIG. 3 is a schematic diagram of the definition of a laser scanning period according to the present invention.
  • FIG. 4 is a schematic view showing the principle of a laser quenching device based on a scanning galvanometer according to the present invention.
  • Fig. 5 is a schematic view showing the principle of the temperature change of the metal surface during the laser quenching of Example 1.
  • Fig. 6 is a schematic view showing the principle of the temperature change of the metal surface during the laser quenching of Example 2.
  • Fig. 7 is a schematic view showing the principle of the temperature change of the metal surface during the laser quenching of Example 3.
  • FIG. 8 is a schematic view showing the application principle of the repeated scanning laser quenching process of the large mold of the example 3.
  • Fig. 9 is a schematic view showing the principle of the temperature change of the metal surface in the single-scan continuous laser quenching and the repeated scanning pulse laser quenching of the example 4.
  • Fig. 10 is a schematic view showing the application principle of the repeated scanning laser quenching process of the large bearing race of the example 4.
  • Figure 11 is a schematic diagram of the application principle of the repetitive scanning flight laser quenching process of the machine tool guide of Example 6.
  • Fig. 12 is a schematic diagram showing the relationship between the number of scans and the laser power in the repeated scanning laser quenching of Example 8.
  • Figure 13 is a schematic diagram showing the relationship between the number of scans in the repeated scanning laser quenching and the depth of the hardened layer in Example 8.
  • the method of the invention utilizes the high-speed and high-precision control function of the scanning galvanometer to change the heating mode of the laser beam to the surface of the workpiece from the single scanning process of the existing laser beam to the intermittent repeated scanning process, and the processing is repeated by controlling the laser scanning.
  • the heating time, intermittent time and number of scans of the unit increase the total energy of the injected laser and increase the surface temperature of the workpiece rapidly, but the temperature is always controlled below the melting point, relying on the cumulative thermal effect generated by the gap laser heating and obtaining deeper heat through heat conduction.
  • the hardened layer enables high-power, high-scanning laser quenching and a deeper hardened layer.
  • Processing unit The laser beam is irradiated to the surface of the workpiece after passing through the scanning galvanometer without moving the position of the galvanometer and the position of the workpiece.
  • the area that acts continuously on the surface of the workpiece at a time is called the processing unit.
  • the position of the galvanometer does not move because the overall position of the galvanometer does not move, and the deflection behavior of the inner lens of the galvanometer is not included.
  • the laser energy distribution in a processing unit should be substantially uniform.
  • Scan period It is the sum of one continuous irradiation heating time (tl) and one gap time (t2) of a set laser beam to a processing unit, which is denoted as Tb.
  • Quenching unit A set of processing units irradiated by a set laser beam during a scan cycle.
  • a quenching unit can include one or more processing units.
  • Number of scans refers to the number of times that a quenching unit needs to repeat the scan to reach the desired depth of the hardened layer, denoted as Q.
  • Quenching period refers to the product of the number of scans in a quenching unit and the scan period, denoted as T.
  • Relative moving speed When the workpiece includes a plurality of quenching units, the laser beam needs to move from one quenching unit to the other, and the relative moving speed is equal to the distance between the irradiation starting positions of the adjacent two quenching units. The required time is divided by the time required to move from the irradiation start position of one quenching unit to the irradiation start position of the next quenching unit.
  • the relative movement speed can be realized by the deflection of the galvanometer, and the motion of the galvanometer can be driven by the mechanical motion mechanism, or the motion of the workpiece can be driven by the mechanical motion mechanism, or the combination motion of the above three can be realized.
  • the relative movement speed is Refers to the real-time moving speed of the workpiece or the galvanometer during quenching, or the galvanometer does not move, but the actual moving speed of the laser quenching unit due to the deflection of the galvanometer; when the relative motion is discontinuous, the relative moving speed is Refers to the average moving speed of the laser quenching unit caused by the whole workpiece or galvanometer during the quenching process or the deflection of the galvanometer.
  • the laser energy distribution in a processing unit is substantially uniform, and the laser beam intermittently irradiates each processing unit intermittently, so that the total energy of the laser injected in each processing unit does not cause the surface of the workpiece to be fast due to heat accumulation. Melting, but using the cumulative thermal effect of multiple heating to form a laser quench layer and achieve the desired depth.
  • the repeated scanning laser quenching method of the present invention can be implemented by the following specific processes:
  • the total number of quenching units on the workpiece is N, the serial number of the quenching unit currently processed on the workpiece is j, the quenching period is T, the number of scans required in one quenching unit is Q, and the parameter of the actual number of scans is q;
  • the laser beam after scanning the galvanometer is irradiated to the starting position of the j-th quenching unit, and the time point is recorded as to; the laser beam scans each processing unit in the quenching unit to complete After entering (3);
  • the laser beam incident on the scanning galvanometer is referred to as an incident laser beam.
  • the beam size of the incident laser beam must be smaller than or equal to the size of the entrance aperture of the scanning galvanometer.
  • the actual laser power used depends on the size of the laser beam.
  • the energy distribution pattern of the incident laser beam can be Gaussian mode or flat-top mode, flat top
  • the mode of the laser beam is beneficial to ensure the uniformity of the depth and hardness of the quench hardened layer and improve the quality of laser quenching.
  • Step (2) The laser beam is scanned according to a set process parameter, and the process parameters include: laser power, spot size, scanning speed, processing unit size, laser action time in a processing unit, and a plus The processing interval time t 2 in the work unit.
  • the scanning galvanometer used in the present invention may be a post-f- ⁇ type focus scanning galvanometer or a front focus scanning galvanometer structure.
  • the structure of the rear f- ⁇ type focus scanning galvanometer is as follows:
  • the incident laser beam 55 is yawed by the X-axis deflection mirror 57 and the Y-axis deflection mirror 53, and then focused by the f- ⁇ lens 51.
  • a scanning area 59 is obtained at the focusing plane 50, wherein the X-axis motor 56 drives the X-axis deflection mirror 57, and the Y-axis motor 58 drives the Y-axis deflection mirror 53, which drives the laser beam to be large under the rapid yaw driving of the galvanometer. Range of scanning processing.
  • the f- ⁇ lens 51 of the post-focusing form is an optical lens with an optimized structure, which can effectively compensate the difference between the spot size or the energy density caused by the optical path difference in the central portion and the edge portion of the processing region, and improves the galvanometer. Consistency of laser power density over the sweep range.
  • the front focus scanning galvanometer includes a front focusing mirror 54, an X-axis deflection mirror 57, a Y-axis deflection mirror 53, a protective mirror 52, an X-axis motor 56, and a Y-axis motor 58;
  • the X-axis deflection mirror 57 Mounted on the X-axis motor 56
  • the Y-axis deflection mirror 53 is mounted on the Y-axis motor 58
  • the front focusing mirror 54 is mounted in the optical path of the incident laser beam 55
  • the protective mirror 52 is mounted on the outgoing optical path of the Y-axis deflection mirror 53.
  • the pre-focus scanning galvanometer structure (Fig. 2) is the control of focusing the incident laser beam 55 through the front focusing mirror 54 and then scanning the galvanometer to achieve beam motion, at the exit of the galvanometer.
  • a protective mirror 52 is provided without an f- ⁇ focusing mirror.
  • the front focusing mirror 54 may be a conventional optical focusing mirror or a beam focusing shaping mirror. The beam focusing mirror is used to focus the laser beam while shaping the Gaussian mode or other non-uniform mode laser beam into a uniform energy laser beam to obtain the desired laser-hard spot of the flat-top mode.
  • the size of the laser spot obtained on the surface of the workpiece after scanning the galvanometer is generally selected according to the size of the laser quenching area required by the workpiece, and may be a small spot at the focus focus or a large spot with defocus.
  • the spot size refers to its diameter, rectangular or other shape of the spot, which can be expressed by the side length.
  • a machining unit corresponds to a laser machining pattern
  • the laser machining pattern can be a point, a line, a surface pattern, or any other shape of an arc, a line segment, a circle, a rectangle, a square, or a triangle.
  • the quenching unit may be a single processing unit or a combination of a plurality of processing units, and the pattern formed by the quenching unit may be a complex combination pattern composed of the processing patterns corresponding to the processing unit or any other pattern. They can be discrete, continuous or interlaced.
  • the heating time is different from the duty ratio during normal pulse laser processing, and the intermittent time is not equivalent to the laser not outputting the laser.
  • the laser beam is not output, or the laser beam is laser-scanned to other processing units (such as B 2 , B 3 , etc.), but the laser beam spot scans the B 2 and B 3 processing units, and the thermal action is processed. There is no substantial effect on the depth and hardness of the hardened layer of the unit.
  • the laser processing pattern corresponding to the processing unit may be formed by scanning fill or by direct irradiation of the focused spot.
  • the laser processing pattern is a discrete unit pattern
  • the unit pattern is a pattern that completely matches the laser spot
  • the laser processing pattern does not need to be filled, and only the laser spot overlap irradiation for Q times can cause the processing unit to generate a laser phase. It hardens and reaches the designed depth of the hardened layer.
  • scan fill is required for other laser processing graphics, including dot matrix, line or polygon.
  • the scanning period T b is the sum of the primary heating time and the first gap time of the laser beam irradiating a single processing unit, which is the scanning speed, the jumping speed, the acceleration of the scanning galvanometer and the way the laser outputs the laser beam. Determined together.
  • the scanning laser heating time period T b in FIG. 3 ⁇ laser scanning cycle, the processing time interval t 2 is defined as follows: ⁇ laser action within a processing unit time, t 2 is the irradiation time of the laser processing The processing interval before the unit. In other words, for a certain processing unit, the scan period T b is equal to t 1+ t 2 .
  • the scanning process within the quenching unit can be continuous or pulsed.
  • multiple processing units can be processed simultaneously in one quenching cycle, which is beneficial to adopt higher laser power and relative moving speed to improve laser quenching. effectiveness.
  • the key to the method of the present invention is that by repeatedly repeating the scanning process, laser quenching can be performed with higher laser power and higher scanning speed, and a hardened layer of a greater depth can be obtained while ensuring that the surface of the workpiece does not melt significantly. Or, higher laser hardening efficiency can be obtained under the same depth of the hardened layer.
  • the technician can select the appropriate process parameters based on the type of material being quenched, the type of application, and the type and power of the laser used.
  • the laser used in the method of the present invention may be a fiber laser, a semiconductor laser, a YAG laser, a disk laser or the like. 0 2 laser.
  • laser quenching and absorptive coating such as Si0 2 coating, graphite coating or other coatings with high absorption rate of 10.6 ⁇ mC0 2 laser
  • laser quenching is carried out using a fiber laser, a semiconductor laser, a disc laser or a YAG laser, it is possible to perform laser quenching by using a pretreatment method of spraying a specific light absorbing paint, or laser quenching the workpiece directly without using any light absorbing paint.
  • the repetitive scanning flight laser quenching method can be used, which can effectively improve the laser processing efficiency.
  • the so-called repetitive scanning flight laser quenching process requires two conditions at the same time: the first is that the workpiece and the galvanometer remain in a continuous relative motion form at a relative moving speed V, and the second is that the laser beam maintains a repetitive scanning quenching of the quenching unit. the way.
  • the galvanometer is required to perform the compensation motion during the repeated scanning.
  • the specific process is as follows: when the laser beam output by the scanning galvanometer is repeatedly scanned and quenched in a quenching period T during the quenching period T, the workpiece and the galvanometer The whole movement is continuously moved at a relative moving speed V. At this time, the laser beam outputted by the galvanometer needs to undergo a reverse compensation motion at a speed of -V during the quenching period T, and jumps to the next before the start of the next quenching period T. Repeat the above process after a quenching unit.
  • the relative motion of the repetitive scanning flight laser quenching can be either the motion of the workpiece or the movement of the scanning galvanometer in other motion mechanisms (referred to as mechanical motion mechanism in the present invention), and also the simultaneous movement of the two, as long as the workpiece and
  • the relative positional displacement between the scanning galvanometers requires real-time compensation of the moving coordinates and calculation of the flight compensation jump distance.
  • the compensated motion speed of the galvanometer output laser beam is numerically equal to the relative moving speed, which is opposite in direction.
  • the motion coordinate system coincides with the reference reference point ⁇ in the fixed coordinate system, and the compensation coordinate (x t , Y t ) of the reference reference point ⁇ of the machining unit at time t is the formula II:
  • Equation II can be simplified to formula III: ⁇ Formula III
  • Equation III is the calculation formula for the scanning coordinates of the repetitive scanning flight laser quenching.
  • the t(t > t.) time flight compensation jump distance is:
  • the method of the present invention specifically includes the following steps:
  • the laser beam after scanning the galvanometer is irradiated to the starting position of the j-th quenching unit, and the time point is recorded as to; the laser beam scans each processing unit in the quenching unit at the same time , also carry out the flight reverse compensation movement with speed - V, and enter (3) after completion;
  • the j-th quenching unit is quenched, that is, all the processing units included undergo laser phase transformation hardening and reach the designed hardened layer depth.
  • the quenching unit j is scanned for exactly one quenching period T. , the laser beam immediately jumps to the next quenching unit, the jump distance is equal to the flight compensation jump distance calculated by Equation IV at the time of ,, and then proceeds to step (4);
  • the method of the invention utilizes the flight compensation technology whether or not it utilizes the laser beam after scanning the galvanometer to intermittently scan and quench each processing unit, so that the total energy of the laser injected in each processing unit does not cause the surface of the workpiece. Rapid melting, but using the cumulative thermal effect of multiple heating to form a laser quench layer and achieve the desired depth. Any of the laser quenching process parameters that enable this approach can be used to implement the method of the present invention. In general, when the laser power is 300-30000W, the spot size is 0.5-60mm, the scanning speed is 100-10000mm/s, the processing unit size is 0.2-60000mm 2 , the scanning times are 2-10000, and the laser heating time is l.
  • the machining gap time t 2 is l-10000ms
  • the quenching period T is 2-200000ms.
  • the laser power is 1000-20000
  • the spot size is l-30mm
  • the scanning speed is 300-8000mm/s
  • the processing unit size is l-30000mm 2
  • the scanning times are 2-5000
  • the laser heating time is l-1000ms
  • processing The gap time t 2 is l-1000 ms
  • the quenching period T is 2-20000 ms.
  • the laser power is 1500-15000W
  • the spot size is 2-15mm
  • the scanning speed is 300-7000mm/s
  • the processing unit size is 10-15000mm 2
  • the scanning times are 2-3000
  • the laser heating time is l-500ms
  • processing The gap time t 2 is 1-500 ms
  • the quenching period T is 2-10000 ms.
  • the laser power is 2000-10000W
  • the spot size is 3-10mm
  • the scanning speed is 300-5000mm/s
  • the processing unit size is 15-10000mm 2
  • the scanning times are 2-1000
  • the laser heating time is l-300ms
  • processing The gap time t 2 is 1 - 300 ms
  • the quenching period T is 2 - 6000 ms.
  • the apparatus of the present invention comprises a laser 1, a control system 3, a light guiding system 4, a mechanical motion device 5 and a scanning galvanometer 6.
  • the laser 1 is connected to the scanning galvanometer 6 through the light guiding system 4; the control system 3 and the laser 1, the mechanical motion device 5 and the scanning galvanometer 6 are electrically connected to control their operation.
  • the mechanical motion device 5 drives the scanning galvanometer 6 or the workpiece 8 moves accordingly.
  • the scanning galvanometer 6 is in the form of a front focus scanning galvanometer or a rear f- ⁇ type focusing scanning galvanometer.
  • the mechanical motion device 5 can be a motion mechanism such as a general machine tool, a numerical control machine tool or a multi-joint robot (mechanical arm).
  • the machine tool can adopt a single-axis or multi-axis linkage mode according to actual machining requirements.
  • the light guiding system 4 may be a fiber optic transmission system or a hard optical path light guiding system composed of an optical lens group.
  • the light guiding system 4 transmits the laser beam of the laser 1 to the light entrance of the scanning galvanometer 6.
  • the process of using the device of the present invention is:
  • step 1 the scanning galvanometer 6 is adjusted above the workpiece 8, and the laser beam output from the laser 1 is conducted to the light entrance of the scanning galvanometer 6 through the light guiding system.
  • Step 2 Run the scanning galvanometer 6 to confirm the processing unit obtained by the scanning galvanometer according to the programmed parameters (including the processing unit size, the number of scans, the t 2 , the scanning period) or the quenching without outputting the laser beam. Single Whether the yuan is consistent with the design.
  • Step 3 turn on the laser 1, perform repeated scanning laser quenching according to the set laser quenching process parameters, and obtain a laser quenching unit on the surface of the workpiece.
  • Step 4 under the control of the control system, the mechanical motion device 5 drives the scanning galvanometer 6 to move, so that the emitted laser beam is irradiated to the next quenching unit on the surface of the workpiece;
  • Step 5 repeat steps 3 through 4 until all the quenching units on the surface of the workpiece are traversed, and a laser phase change quenching layer is obtained on the surface of the workpiece.
  • the invention can perform laser quenching strengthening on large bearing races, large molds, machine tool guides and rails, and significantly improve the depth of laser quenching, or greatly improve the efficiency of laser quenching. Or, while greatly increasing the depth of laser quenching, the production efficiency is greatly improved.
  • Example 1 Application of repeated scanning laser quenching process in large gear laser quenching.
  • This example uses a semiconductor laser to laser quench a large gear of 42CrMo material.
  • the spot size is ⁇ 6mm
  • the laser power is 6000W
  • the laser processing pattern corresponding to the processing unit is 6mmX 15mm rectangle
  • the scanning speed is 1000mm/s
  • the number of scans 50 times % 0.015s heating
  • t 2 is 0.0167s intermittent
  • the quenching period T is 1.6s
  • the relative moving speed is 400mm/min
  • the vector direction of the relative moving speed is perpendicular to the length direction of the processing unit
  • single pass quenching can A quenched area of 15 mm width was obtained, without a lap joint, and the obtained hardened layer depth was 0.8 mm.
  • the temperature curve of the workpiece surface during high-power repeated scanning laser quenching in this example is shown in Fig. 5.
  • the amount of overlap refers to the width of the tempering effect produced by two adjacent quenching units.
  • the amount of overlap can be 0 to 3 mm.
  • the total processing time required for this example is approximately 1/3 of the current process.
  • Example 2 Application of repeated scanning laser quenching process in laser quenching of large rolls.
  • a large roll of 75CrMnMo material is laser-quenched using a 10.6 ⁇ m C0 2 laser.
  • the spot size is D 5mm
  • the laser power is 8000W
  • the laser processing pattern corresponding to the processing unit is 5mmX 35mm rectangle
  • the scanning speed is 350mm/s
  • the scanning times are 12 times
  • 0.18, 0.1258, and the quenching period T is 2.7s.
  • the relative moving speed is 300mm/min
  • the vector direction of the relative moving speed is perpendicular to the longitudinal direction of the processing unit.
  • the quenching area of 35mm wide can be obtained by single pass quenching, and the overlap amount is 2mm.
  • a special SiO 2 absorbing coating is sprayed on the surface of the workpiece, and the subsequent absorbing of the absorbing coating on the surface of the workpiece is followed by laser quenching.
  • the depth of the hardened layer obtained by the galvanometer scanning filling method was 1.0 mm.
  • the temperature curve of the surface of the workpiece during high-power repeated scanning laser quenching in this example is shown in Fig. 6.
  • the preferred process parameters used in the prior art are: spot size D 5mm, laser power 1000W, relative moving speed 600mm/min, single pass quenching can only obtain a quenching area of 5mm width, the amount of overlap is Lmm.
  • special SiO 2 absorbing paint is sprayed on the surface of the workpiece. After the absorbing coating on the surface of the workpiece is dried, the subsequent laser quenching is performed. The depth of the hardened layer obtained by one scan quenching is 0.6 mm.
  • the total processing time required for this example is about 1/4 of the existing process, and the depth of the hardened layer is about 1.67 times that of the existing process.
  • Example 3 Application of repeated scanning laser quenching process in laser hardening of large molds.
  • This example uses a fiber laser to laser quench a large mold made of 50CrNiMo material.
  • the spot size is 6mmX 6mm
  • the laser power is 12000W
  • the laser processing pattern corresponding to the processing unit is 6mmX 140mm rectangle
  • the scanning speed is 420mm/s
  • the number of scans 7 times 0.333s
  • t 2 is 0.349s
  • the quenching period T is 4.8s
  • the relative moving speed is 300mm/min
  • the vector direction of the relative moving speed is perpendicular to the length direction of the processing unit
  • 140mm can be obtained by single pass quenching.
  • the resulting hardened layer has a depth of 0.6 mm.
  • the temperature curve of the workpiece surface during high-power repeated scanning laser quenching in this example is shown in Fig. 7.
  • the existing process cannot be quenched with a 12,000 watt laser, otherwise the surface of the workpiece is easily melted.
  • the preferred process parameters used are: laser power 1200W, spot size 6mmX 6mm, relative moving speed 600mm/min, single quenching can only obtain a quenching area of 6mm width, the lapping amount is lmm, and the obtained hardened layer depth is 0.6mm.
  • the overall processing efficiency of this example is approximately 12 times that of the prior art.
  • the specific implementation process of the example 3 can take the form shown in FIG. 8.
  • the numerically controlled laser machining machine includes an X-axis 30, a column 31, a Y-axis 32, and a Z-axis 33.
  • a 45° reflecting device 41 is mounted on the Y-axis 32, and a 45° reflecting device 42 is mounted on the Z-axis 33.
  • the scanning galvanometer 6 is fixed to the Z-axis 33 of the CNC machine tool.
  • the light reflecting device 41 reflects and transmits the laser beam input in the X-axis direction to the light reflecting device 42 on the Y-axis; the reflecting device 42 transmits the laser beam reflection to the light-injecting port of the scanning galvanometer 6.
  • the X-axis 30 and Z-axis 33 of the CNC laser processing machine are set at In a fixed position, the Y-axis 32 drives the Z-axis 33 and the scanning galvanometer 6 to move according to a set program, and the repeated scanning laser output from the scanning galvanometer 6 performs high-efficiency laser quenching on the large mold 43.
  • Example 4 Application of repeated scanning laser quenching process in laser quenching of bearing races.
  • This example uses a 1070 ⁇ m solid-state laser to laser quench the 42CrMo large bearing race, the spot size is 7mmX 7mm, the laser power is 5000W, the laser processing pattern corresponding to the processing unit is 20mmX 20mm rectangle, the scanning speed is 2000mm/s, the number of scans is 180 times, 0.02s, t 2 is 0.024s, the quenching period T is 7.92s, the relative moving speed is 152mm/min, the vector direction of the relative moving speed is perpendicular to the length direction of the processing unit, and the single pass quenching can be 20mm wide. Quenching area, no lap joint, the obtained hardened layer depth is 2.0mm
  • the preferred process parameters used in the prior art are: spot size is 7mmX 7mm, laser power is 2000W, relative moving speed is 300mm/min, single quenching can only obtain a quenching area of 10mm width, the amount of overlap is 1.5 Mm, the obtained hardened layer has a depth of 1.0 mm.
  • the schematic diagram of the temperature variation curve of the metal surface in the single-scan continuous laser quenching and the repeated scanning pulse laser quenching in the present example 4 is shown in FIG.
  • the hardened layer depth obtained in this example is twice that of the conventional single-scan laser quenching process, and the total processing time required is the same as in the prior art.
  • the specific implementation process of the present example may take the form shown in FIG. 10, and the numerical control laser processing machine tool includes an X-axis 30, a column 31, a Y-axis 32, a Z-axis 33, and a vertical rotary shaft 36.
  • the bearing race 35 is provided by a dedicated tray 34.
  • the carrier is positioned, the tray 34 is fixed on the vertical rotary shaft 36, and the scanning galvanometer 6 is fixed on the Z-axis 33 of the numerically controlled machining machine.
  • the X-axis 30, Y-axis 32 and Z-axis 33 of the CNC laser processing machine are set at a fixed position; the vertical rotary shaft 36 rotates, and the bearing race 35 is rotated according to the set process parameters; the scanning galvanometer 6 The output laser is subjected to repeated scanning laser quenching of the bearing race 35.
  • Example 5 Application of repeated scanning laser quenching process in laser quenching of railway rails.
  • the long surface of the 71Mn rail is laser-quenched by a semiconductor laser with a spot size of 10mm X 10mm.
  • the size of the processing unit is the same as the laser spot.
  • the pitch of the processing unit is 5mm
  • the laser power is 6000W
  • the laser scanning frequency is 90 times
  • 1 1 is 0.0048, 0.01058,
  • the quenching unit is two processing units arranged in a 1 X 2 array.
  • the quenching period T is 1.3 s
  • the relative moving speed (average speed) is 1384 mm/min
  • the hardening is obtained.
  • the layer depth is 0.8 mm.
  • the preferred process parameters for the existing single-scan laser quenching process are laser power 3000W, spot size lOmmX IOmm, pitch between dots is 5mm, quenching time is 1.5s, relative moving speed (average The speed) is 600 mm/min, and the obtained hardened layer has a depth of 0.8 mm.
  • the total processing time required for this example is about 1/2 of the current process.
  • Example 6 Application of repeated scanning flight laser quenching process in laser quenching of machine tool guides.
  • the present invention proposes a scanning scanning galvanometer-based repetitive scanning type flying laser quenching method, which specifically includes three forms, namely: workpiece-fixed, galvanometric motion-based repeated scanning Laser quenching method; flying repetitive scanning laser quenching method for galvanometer fixation and workpiece motion; flight repetitive scanning laser quenching method for moving workpiece and galvanometer.
  • the spot size is 8mm X 8mm
  • the size of the processing unit is the same as the spot size
  • the quenching unit is four processing units arranged in 1 X 4 array, processing
  • the spacing between the units is 4mm
  • the fiber laser is used
  • the laser power is 8000W
  • the laser scanning frequency is 253 times
  • the 1 1 is 0.0018
  • the quenching period T is l.Ols
  • the relative moving speed during the flight quenching For 2860 mm/min
  • the compensation speed of the galvanometer output laser beam is -2860 mm/min
  • the maximum hardened layer depth is 0.8 mm.
  • the preferred process parameters for the single-shot pulse laser quenching process are as follows: laser power 2000W, spot size 8mm X 8mm, spacing between dots is 4mm, pulse quenching time is ls, relative moving speed (Average speed) was 430 mm/min, and the obtained hardened layer had a depth of 0.8 mm.
  • the total processing time required for this example is approximately 1/7 of the current process.
  • the CNC laser machining system includes an industrial robot (mechanical arm) 51, an external motion X-axis component 50, an optical fiber transmission system 52, a beam expander system 54 and scanning. Galvanometer 6.
  • the industrial robot (mechanical arm) 51 is fixed to the external motion X-axis member 50, and the scanning galvanometer 6 is fixed to the forearm 53 of the industrial robot (mechanical arm) 51.
  • the laser beam enters the scanning galvanometer 6 through the fiber optic transmission system 52 and the beam expanding system 54.
  • the respective moving axes of the industrial robot (mechanical arm) 51 are set at a fixed position, and the external moving X-axis member 50 drives the industrial robot (mechanical arm) 51 and the scanning galvanometer 6 to move, and the scanning galvanometer 6 outputs the laser.
  • Repeated scanning flight laser quenching is performed on the machine tool guide 55.
  • This example uses a fiber laser to laser quench the small bearing race of the GCrl5 material.
  • the spot size is ⁇ 3mm
  • the laser power is 500W
  • the processing unit size is 3mm X 6mm
  • the scanning speed is 1000mm/s
  • the number of scans is 120 times.
  • the quenching period T is 1.52s
  • the relative moving speed (average speed) is 400mm/min
  • the vector direction of the relative moving speed is parallel to the length direction of the processing unit, no overlap
  • the obtained hardened layer depth It is 0.5mm.
  • the preferred process parameters for the existing single-scan laser quenching process are laser power 300W, spot size d) 3mm, relative moving speed 400mm/min, and hardened layer depth of 0.3mm.
  • the depth of the hardened layer obtained in this example is 1.7 times that of the conventional single-scan laser quenching process. Total required
  • the working time is the same as the existing process.
  • the fiber laser is used to perform laser quenching on the automotive mold of 50CrNiMo material.
  • the spot size used in this example is 7mm X 7mm.
  • the size of the processing unit is the same as the spot size.
  • the distance between the processing units is 3.5mm, and the quenching unit is 1 X.
  • 3 array processing of three processing units, 0.004s, t 2 is 0.008s, the process parameters used in dot matrix repeated scanning laser quenching are as follows: Laser power range 2000W ⁇ 6000W, scan times range 25 ⁇ 483, quenching cycle The range is 0.3s ⁇ 5.8s, and the relative moving speed is 110/min ⁇ 2000mm/min.
  • the corresponding quenching depth ranges from 0.3 mm to 1.5 mm.
  • the effect of process parameters on the depth of the hardened layer is shown in Table 1.
  • the laser power has an important influence on the number of scans. As shown in Fig. 12, the laser power is increased from 2000W to 6000W, the number of scans for repeated scanning laser quenching is reduced from 483 to 25, and the relative moving speed (average speed) is increased from 110mm/min to 2000mm/min.
  • the influence of the number of scans on the depth of the hardened layer is shown in Fig. 13. The number of scans is reduced from 483 to 25, and the corresponding laser hardened layer depth is reduced from 1.5 mm to 0.3 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明公开了一种激光淬火方法及其装置。本发明方法利用扫描振镜(8)的快速跳转将现有激光淬火工艺中单次加热改变为多次甚至高频次重复扫描加热,激光能量输入导致的热传导过程是短加热时间、多次叠加方式注入到工件(8)表面,它使得金属基体吸收的激光能量累积增加,热传导深度也累积增大。装置包括激光器(1)、控制系统(3)、导光系统(4)、机械运动装置(5)和扫描振镜(6)。即使当工艺参数选用较高的激光功率时,由于扫描速度高并有扫描间歇存在,使金属的表面温度始终控制在熔点以下,使得热量能够有效地、不断地从工件(8)表面扩展到工件(8)内部,从而在避免金属表面熔化的前提下,提高工件(8)表面的奥氏体化区域的深度,并显著提高激光淬火效率。

Description

一种激光淬火方法及装置
【技术领域】
本发明属于激光表面强化处理技术,涉及一种基于扫描振镜的重复扫描激光淬火方 法及装置, 本发明特别适用于大尺寸金属工件的激光表面淬火处理。
【背景技术】
激光淬火技术, 又称激光热处理或者激光相变硬化工艺, 是采用激光束辐照金属工 件, 使其表层温度高于奥氏体化温度 Ta。 激光束移去后, 基体材料由于未直接受热, 因 此仍然处于常温状态,其快速的热传导作用使激光加热区域的冷却速度大于淬火的临界 冷却速度, 并使激光作用过的区域温度迅速降到马氏体相变温度以下, 从而在工件表面 形成马氏体组织的硬化层。 由于激光淬火冷却速度快, 不需要水或油等冷却介质, 因此 该工艺属于自冷淬火工艺过程。
一般而言, 激光淬火工艺分为两类, 一类是激光作用下, 金属表面不发生熔化、 只 发生固态相变的淬火工艺过程, 又称为激光相变硬化工艺, 或激光热处理工艺, 其基本 特点是确保激光辐照过程中金属表面的最高温度低于熔点温度 Tm, 因此激光淬火的工 艺参数 (包括激光功率、 光斑尺寸、 扫描速度等) 必须选择得当; 另一类是激光作用下 表面发生熔化的淬火过程, 称为激光熔凝淬火工艺, 此时金属表面的温度可以超过其熔 点。 由于激光熔凝淬火工艺使得工件表面发生熔化, 因此可以使用更高的激光功率, 更 慢的扫描速度, 硬化层深度也比单纯的激光淬火工艺要深。 但是, 激光熔凝淬火工艺将 严重改变金属材料的表面粗糙度,因此在一些精度要求高、不允许后续机加工的状态下, 该工艺的使用将受到限制。 有时候, 由于工艺参数选择不当, 或者工艺参数存在波动, 激光淬火时金属工件表面会发生局部微熔, 只需要稍微抛光或者打磨就可以去掉微熔 层, 因此一般仍然将其归结为激光淬火工艺。 如果没有特殊说明, 本发明中后文所述的 激光淬火都是指金属材料基本不发生熔化或者只发生局部微熔的固态相变硬化工艺。
激光淬火硬化层深度不仅与所采用的激光功率、 扫描速度、 光斑尺寸等工艺参数有 关, 而且和金属的热传导特性、 淬透性等参数有关。 对于特定的金属材料而言, 其奥氏 体化温度 Ta和熔点温度 Tm基本稳定, 只是随着整体成分均匀性和显微组织的波动而有 所变化。 一般而言, 激光淬火时金属工件中由于激光工艺参数和热传导过程决定的高于 奥氏体化温度 Ta的传导深度就对应着激光淬火硬化层的深度。
激光淬火硬化层深度不仅与所采用的激光淬火工艺参数有关,还和金属基体的热传 导过程特别是材料的热传导系数密切相关, 由激光淬火工艺参数和基体的热传导特性共 同决定。
实际激光淬火加工时,激光输出的方式包括连续输出扫描淬火或者脉冲输出扫描淬 火两种方式。 现有的激光扫描淬火工艺不管是连续激光淬火还是脉冲激光淬火, 其传热 过程可以用点状连续固定热源的热传导方程进行分析, 其热传导温度方程为:
T(R,t) - 式 (1 )
Figure imgf000004_0001
式(1 )中 , R—某点距点热源的距离; T(R,t)—工件表面距离激光点热源距离为 R 处的温度; p—热源的有效功率; t一金属中的热传导时间; λ—金属的导热系数; a— 金属的热扩散系数; u)—或然率积分函数。
当 t =时, 可以认为是热源作用时间无限长, 则 u) =0, 故距离激光点热源 R处 的极限温度 Tsp为,
Tsp =—^- 式 (2) 或 R = J~ 式 (3) 式中 Tsp与激光输入能量成正比, 与距点热源的距离 R的大小成反比。 对于激光淬 火工艺而言, Tsp显然不能够超过金属材料的熔点。 由于形成激光硬化层的必要条件是 该区域的温度超过奥氏体化温度, Tsp>Ta, 因此激光淬火获得马氏体的前提条件是激光 加热区域的温度 Tsp的温度区间为: Tm>Tsp>Ta
根据热传导方程式 (1 ) 和极限饱和状态的热传导方程式 (2) 或 (3) , 可以导出 如下的结论:
① 激光加热时间越长, 或者所注入能量密度越高, 或金属材料对激光束的吸收率 越高, 或金属材料的热扩散系数越大, 则金属内部温度 T (R, t) 越高, 能够达到奥氏 体化温度的表面区间越深, 相应的激光淬火硬化层深度 (R) 越大;
② 当所需要淬火的材料确定后, 激光硬化层深度 R与激光功率(p)大小、 光斑尺 寸、 功率密度及作用时间长短密切相关。
现有的激光淬火工艺都是采用聚焦光斑扫描淬火的工艺方式。激光光斑形状通常有 两种: 第一种是圆形光斑, 第二种是经过光学整形的矩形光斑。 由于激光淬火时不允许 材料表面熔化, 因此不能够采用过高的激光功率或激光功率密度、 过长的作用时间。 故 此, 根据以上三个公式, 现有激光淬火工艺的硬化层深度是非常有限的。 近年来, 选区激光淬火工艺得到越来越广泛的应用。 与一般的激光淬火工艺要求对 金属工件的整个表面进行硬化处理不同, 选区激光淬火工艺是根据工件性能要求, 采用 激光束对材料表面局部进行选择性硬化处理, 即硬化区域不是覆盖整个硬化层, 而是形 成软、 硬相间的复合硬化层, 或者硬化阵列。 这种方式能使金属材料表面兼有良好的耐 磨性和强韧性。 当前, 实现选区激光淬火硬化工艺的方法很多, 如采用多轴联动控制激 光束或者工件的运动方式逐步扫描完成,或者采用脉冲激光输出与控制机床运动轨迹相 结合的方式来实现。 其中, 脉冲激光淬火方式可以利用开关电源的关断作用直接输出脉 冲激光, 也可以利用斩光盘将连续激光束改变为脉冲方式, 后一种方式对激光淬火机床 的控制系统精度要求较高。 此外, 选区激光淬火强化还可以采用连续激光通过掩模进行 扫描, 此时只有透过激光的部位能使金属工件受热淬火, 而被掩模遮挡住的部位则无淬 火效应, 其特点是工艺简单, 不需要复杂的控制系统和编程过程, 但是加工效率相对较 低。 必须指出, 无论哪一种方式, 现有激光淬火方式都是采用激光束单次扫描淬火方式 进行的。
由于激光淬火工艺方法要求工件表面基本不发生熔化, 而机床的运动速度一般较 低, 因此采用现有的激光束单次扫描加热方式, 无论是激光连续加热淬火还是脉冲激光 加热淬火方式, 所使用的激光功率和功率密度都不能太高, 激光淬火速度也必须控制在 较低的范围内。 加上金属材料热传导特性和淬透性的限制, 因此激光淬火硬化层深度相 对较浅 (一般低于 lmm) , 激光淬火生产效率无法有效提高。
随着激光器件水平的不断发展, 固体激光器(含光纤激光器)和气体激光器的功率 都已经达到较高的水准 (例如光纤激光器最高达到 40kW, 气体激光器达到 20kW) , 这些高功率激光只能够用于焊接、 切割、 熔覆、 合金化、 熔凝等材料处于熔化状态的激 光加工工艺中。 对于激光淬火工艺而言, 为避免工件在激光淬火过程中发生熔化, 实际 采用的激光功率和扫描速度都限制在较低的水平。例如,典型的激光淬火功率一般为 1〜 3kw, 扫描速度一般为 300~2000mm/min。 其结果是, 现有激光淬火工艺的淬火硬化层 深偏低、 生产效率偏低, 在许多工业应用场合难以满足高效激光加工生产的需求, 阻碍 了激光淬火技术的进一步应用。
因此, 能否开发出新型的激光表面淬火技术与方法, 大幅度提高激光淬火速度和生 产效率, 成为该技术能否进一步扩大工业应用的关键技术难题之一。
【发明内容】 为了解决现有激光淬火技术生产效率较低和硬化层深度较浅的难题,本发明提供了 一种基于扫描振镜的重复扫描激光淬火方法,该方法可以大幅度提高激光淬火的生产效 率和硬化层深度; 本发明还提供了实现该方法的装置。
本发明提供的一种激光淬火方法, 该方法将激光束通过扫描振镜后辐照到工件表 面, 激光束对每个加工单元进行间歇式重复辐照, 使工件表面的激光淬火区域高于工件 材料的奥氏体化温度, 但始终低于其工件材料的熔点, 并利用激光多次重复加热的累积 热效应形成激光淬火层, 并达到所需硬化层深度; 所述加工单元是指在不移动振镜位置 和工件位置的情况下,将激光束通过扫描振镜后辐照到工件表面并一次连续作用于工件 表面的区域。
作为上述技术方法的改进, 该方法通过控制激光淬火工艺参数完成激光淬火, 激光 淬火工艺参数包括激光功率、 扫描速度、 光斑尺寸、 扫描周期和扫描次数等, 其中, 扫 描周期是指设定的激光束对一个加工单元的一次连续辐照加热时间与一次间隙时间之 和; 扫描次数是指使一个淬火单元达到所需硬化层深度进行重复扫描的次数。
作为上述技术方法的进一步改进, 当需要淬火单元连续填充才能覆盖整个待淬火区 域时, 所述激光淬火工艺参数还包括相对移动速度, 它是指光束从一个淬火单元向另一 个淬火单元移动的速度。所述激光淬火方法包括重复扫描激光淬火方法和重复扫描式飞 行激光淬火方法。
作为上述技术方法的更进一步改进, 其特征在于, 该方法包括下述具体步骤:
( 1 ) 设工件上淬火单元总数为 N, 当前处理的淬火单元在工件上的序号为 j, 淬火 周期为 T, 一个淬火单元内所需的扫描次数为 Q, 实际扫描次数的参量为 q;
淬火周期 T是指一个淬火单元内的扫描次数与扫描周期的乘积;淬火单元是指在一 个淬火周期 T内激光束在工件表面辐照的加工单元的集合;
令 j=l, q=l ; 并且在整个激光淬火过程中一个加工单元内的激光能量分布基本均匀 一致;
(2)经过扫描振镜后的激光束辐照到第 j个淬火单元的起始位置,并记录该时间点 为 所述激光束对淬火单元中的每一个加工单元进行一次扫描, 完成后进入 (3) ;
(3)判断 q是否等于设定的扫描次数 Q, 如果是, 则第 j个淬火单元淬火完毕, 即 第 j个淬火单元中所包含的所有加工单元发生激光相变硬化, 并达到所设计的硬化层深 度, 然后转入步骤 (4) ; 如果否, 令 = +1, 设当前时间为 t, 扫描周期 Tb, 当 t-to=Tb 时, 转入步骤 (2) ; (4)判断 j是否等于1^。如果是, 则说明所包含的所有淬火单元发生激光相变硬化, 形成激光淬火硬化区域, 并达到所设计的硬化层深度, 然后转入步骤 (5 ) ; 如果否, 令 j=j+l, 转入步骤 (2) ;
(5) 结束。
作为上述技术方法的以一更进一步改进, 设工件上淬火单元总数为 N, 当前处理的 淬火单元的序号为 j, 设淬火单元所需的扫描次数为 Q, 淬火周期为 T, 实际扫描次数 的参量为 q; 设定工件与机械运动机构 (包括振镜) 之间的相对移动速度为 V, 振镜输 出激光束的补偿运动速度为 -V; 其中, 淬火周期 T是指一个淬火单元内的扫描次数与扫 描周期的乘积,淬火单元是指在一个淬火周期 T内激光束在工件表面辐照的加工单元的 朱口;
( 1 ) 令 j=l, q=l ;
(2)激光束经过扫描振镜后辐照到第 j个淬火单元的起始位置,并记录此开始时间 点为 tQ; 所述激光束按照设计的加工单元和设定的扫描速度对第 j个淬火单元内的各加 工单元进行单次扫描的同时, 还以速度 -V进行飞行反向补偿运动, 完成后进入 (3) ; 在激光扫描过程中一个加工单元内的激光能量分布基本均匀一致;
(3)判断 q是否等于设定的扫描次数 Q, 如果是, 则第 j个淬火单元淬火完毕, 即 该淬火单元中所包含的所有加工单元发生激光相变硬化, 并达到所设计的硬化层深度, 然后转入步骤(4); 如果否, 令 = +1, 设当前时间为 t, 设定扫描周期为 Tb, 当 t-to=Tb 时, 转入步骤 (2) ;
对淬火单元进行一次扫描的时间正好等于一个扫描周期 Tb,则激光束立即从最后一 个加工单元跳转到第一个加工单元,跳转距离等于公式 IV在 Tb时刻计算的飞行补偿跳转 距离, 并开始对淬火单元进行下一次重复扫描飞行激光淬火, 如果还没有到达一个扫描 周期 Tb, 则需要等待, 当满足 t-tQ=Tb时才开始下一次重复扫描式飞行激光淬火过程;
(4) 判断 j是否等于 N, 如果是, 则所有淬火单元均淬火完毕, 即所有淬火单元均 发生激光相变硬化, 形成激光淬火硬化层, 并达到所设计的硬化层深度; 然后进入步骤
(5) , 否则, 令』=]+1, 转入步骤 (2) ;
(5) 结束。
作为上述技术方法的另一更进一步改进, 当激光功率为 300-30000W时, 光斑尺寸 为 0.5-60mm, 扫描速度为 100-10000mm/s, 加工单元尺寸为 0.2-60000mm2, 扫描次数 为 2-10000, 激光加热时间 为 l-10000ms, 加工间隙时间 t2为 l-10000ms, 淬火周期 T 为 2-200000ms。
当激光功率为 1000-20000时, 光斑尺寸为 l-30mm, 扫描速度为 300-8000mm/s, 加 工单元尺寸为 l-30000mm2, 扫描次数为 2-5000, 激光加热时间 ^为 l-1000ms, 加工间 隙时间 t2为 1- 1000ms, 淬火周期 T为 2-20000mS o
当激光功率为 1500-15000W时, 光斑尺寸为 2-15mm, 扫描速度为 300-7000mm/s, 加工单元尺寸为 10-15000mm2, 扫描次数为 2-3000, 激光加热时间 ^为 l-500ms, 加工 间隙时间 t2为 1 -500ms, 淬火周期 T为 2- 10000ms
当激光功率为 2000-10000W时, 光斑尺寸为 3-10mm, 扫描速度为 300-5000mm/s, 加工单元尺寸为 15-10000mm2, 扫描次数为 2-1000, 激光加热时间 ^为 l-300ms, 加工 间隙时间 t2为 1 -300ms, 淬火周期 T为 2-6000mS o
本发明提供的一种实现上述激光淬火方法的装置, 该装置包括激光器、 控制系统、 导光系统、 机械运动装置和扫描振镜;
激光器通过导光系统与扫描振镜实现光路连接; 控制系统与激光器、机械运动装置 和扫描振镜为电信号连接,控制其工作,机械运动装置带动扫描振镜或者工件随之运动。
所述扫描振镜采用前置聚焦扫描振镜形式或后置 f-θ型聚焦扫描振镜。 所述激光器 是光纤激光器、 半导体激光器、 YAG激光器、 碟片式激光器或者 C02激光器。 本发明方法利用扫描振镜的高加速度、 高扫描速度和高跳转速度的特点, 将现有激 光淬火工艺中单次加热改变为多次甚至高频次重复扫描加热, 激光能量以短时间加热、 多次叠加的方式注入到工件表面, 使得金属基体吸收的激光能量累积增加, 其特点是: 一方面可防止工件表面因为过热而熔化, 另一方面持续的表面高温使得热传导深度大幅 度增加。 因此, 即使选用较高的激光功率时, 由于高的扫描速度、 短的加热时间以及扫 描间歇时间的存在, 使金属的表面温度始终控制在熔点以下, 同时确保激光输入的能量 能够以热传导方式不断有效地从工件表面传导到工件内部,从而在避免金属表面熔化的 前提下,提高工件表面奥氏体化区域的深度,并显著提高激光淬火生产效率。具体而言, 本发明的主要技术特点在于:
( 1 )将现有的单次激光扫描加热淬火工艺转变为多次重复扫描加热激光淬火工艺, 通过选择合适的激光淬火工艺参数(包括激光功率、 扫描速度、 光斑尺寸、 扫描周期和 扫描次数等) , 使得实际注入和热积累的激光总能量所导致的工件表面最高温度低于金 属材料的熔点温度, 避免金属表面因为短时间内吸收过多的能量而发生明显熔化现象。 (2) 由于扫描振镜可以实现高扫描速度、 高跳转速率和高加速度, 使得本发明方 法可以在保证金属工件表面不熔化的前提下,采用高功率激光束对金属材料表面进行高 速扫描加热成为可能, 从而可以显著提高激光淬火生产效率。
(3 ) 本发明方法可以充分利用一个加工单元的间歇时间对其它加工单元进行激光 淬火, 并因此显著提高激光淬火效率。
(4) 本发明基于扫描振镜的多次重复扫描激光淬火工艺, 其光斑尺寸不必限定为 最小聚焦光斑, 而是根据工件的实际要求, 可以在较宽的范围内调整, 这样也有利于提 高激光淬火效率和硬化层深度。
(5 ) 在采用飞行淬火技术时, 可以避免机械运动装置频繁启停造成的运动滞后, 可以有效提高激光淬火效率。
(6) 相比于现有技术, 本发明方法在相同激光功率的条件下, 可以显著提高激光 淬火的深度; 或者采用更高的激光功率, 在相同的淬火时间内和相同的硬化层深度条件 下, 显著提高激光淬火效率。 因此, 本发明能够突破现有激光淬火工艺 (单次激光扫描 淬火工艺)条件下激光功率、 扫描速度和激光功率密度的限制, 解决现有激光淬火的硬 化层深度有限、 生产效率偏低等技术问题。
综上所述, 本发明提供的重复扫描激光淬火方法, 利用扫描振镜的高加速度、 高扫 描速度和高跳转速度特点,将现有单次激光扫描加热方式改变成多次的激光扫描加热方 式, 改变了现有激光淬火工艺的热传导过程, 避免了因为采用高功率密度激光淬火时容 易导致金属材料表面发生熔化、 硬化层深度浅等现象, 可以显著提高激光淬火的深度和 效率, 有效地解决现有激光淬火工艺生产效率低的技术难题, 具有重要的实用价值和工 程价值。
【附图说明】
图 1为 F-θ型后聚焦方式的扫描振镜的结构示意图。
图 2为前置聚焦镜形式的扫描振镜的结构示意图。
图 3为本发明激光扫描周期定义示意图。
图 4为本发明基于扫描振镜的激光淬火装置原理示意图。
图 5为实例 1的激光淬火时金属表面的温度变化曲线原理示意图。
图 6为实例 2的激光淬火时金属表面的温度变化曲线原理示意图。
图 7为实例 3的激光淬火时金属表面的温度变化曲线原理示意图。
图 8为实例 3大型模具重复扫描激光淬火工艺应用原理示意图。 图 9为实例 4的单次扫描连续激光淬火与重复扫描脉冲激光淬火时金属表面的温度 变化曲线原理示意图。
图 10为实例 4大型轴承座圈重复扫描激光淬火工艺应用原理示意图。
图 11为实例 6机床导轨重复扫描式飞行激光淬火工艺应用原理示意图。
图 12为实例 8重复扫描激光淬火中扫描次数与激光功率的关系曲线原理示意图。 图 13为实例 8重复扫描激光淬火中扫描次数与硬化层深度的关系曲线原理示意图。 【具体实肺式】
本发明方法是利用扫描振镜的高速、 高精度调控功能, 使激光束对工件表面的加热 方式由现有的激光束单次扫描过程转变为间歇式重复扫描过程,通过控制激光重复扫描 对加工单元的加热时间、 间歇时间和扫描次数, 增加注入的激光总能量并使工件表面快 速升温, 但是温度始终控制在熔点之下, 依靠间隙式激光加热产生的累积热效应并通过 热传导的方式获得更深的硬化层, 使得高功率、 高扫描速度激光淬火方式得以实现, 并 可以获得更深的硬化层。
为了更清晰地说明本发明的实施方式, 在此将本发明相关术语定义如下: 加工单元: 在不移动振镜位置和工件位置的情况下, 将激光束通过扫描振镜后辐照 到工件表面并一次连续作用于工件表面的区域称之为加工单元。所述振镜位置不移动是 指振镜整体位置不移动, 振镜内部镜片的偏转行为不包含在内。一个加工单元内的激光 能量分布应基本均匀一致。
扫描周期: 是指设定的激光束对一个加工单元的一次连续辐照加热时间 (tl ) 与一 次间隙时间 (t2) 之和, 记为 Tb。
淬火单元: 在一个扫描周期内, 设定的激光束所辐照的加工单元的集合。 一个淬火 单元可以包括一个或多个加工单元。
扫描次数:是指使一个淬火单元达到所需硬化层深度需要重复扫描的次数,记为 Q。 淬火周期: 是指一个淬火单元内的扫描次数与扫描周期的乘积, 记为 T。
相对移动速度: 当工件包括多个淬火单元时, , 激光束需要从一个淬火单元向另一 个淬火单元移动,相对移动速度的值等于相邻两个淬火单元的辐照起始位置之间的距离 除以所需的时间,该所需的时间是指从一个淬火单元的辐照起始位置移动到下一个淬火 单元的辐照起始位置所花费的时间。 相对移动速度既可以通过振镜的偏转来实现, 又可 以通过机械运动机构带动振镜运动, 也可以是机械运动机构带动工件运动, 还可以是上 述三者之间的任意组合运动的方式来实现。 当相对运动为连续运动时, 相对移动速度是 指淬火过程中工件或者振镜整体的实时运动速度, 也可以是振镜不运动, 但是激光淬火 单元由于振镜偏转而导致的实际移动速度; 当相对运动为非连续运动时, 相对移动速度 是指淬火过程中工件或振镜整体、 或者振镜偏转导致的激光淬火单元的平均移动速度。
本发明中, 在一个加工单元内的激光能量分布基本均匀一致, 激光束对每个加工单 元进行间歇式重复辐照,使各加工单元内注入的激光总能量不会因为热积累导致工件表 面快速熔化, 而是利用多次加热的累积热效应形成激光淬火层, 并达到所需深度。
本发明重复扫描激光淬火方法可以采用下述具体过程实现:
( 1 )设工件上淬火单元总数为 N, 当前处理的淬火单元在工件上的序号为 j, 淬火 周期为 T, 一个淬火单元内所需的扫描次数为 Q, 实际扫描次数的参量为 q;
令 j=l, q=l ; 并且在整个激光淬火过程中一个加工单元内的激光能量分布基本均匀 一致;
(2)经过扫描振镜后的激光束辐照到第 j个淬火单元的起始位置,并记录该时间点 为 to; 所述激光束对淬火单元中的每一个加工单元进行一次扫描, 完成后进入 (3) ;
(3)判断 q是否等于设定的扫描次数 Q, 如果是, 则第 j个淬火单元淬火完毕, 即 所包含的所有加工单元发生激光相变硬化, 并达到所设计的硬化层深度, 然后转入步骤
(4); 如果否, 令 = +1, 设当前时间为 t, 扫描周期 Tb, 当 t-tQ=Tb时, 转入步骤(2) ; 对淬火单元进行一次扫描的时间正好等于一个扫描周期 Tb,则立即开始对淬火单元 进行下一次扫描, 如果还没有到达一个扫描周期 Tb, 则需要等待, 当满足 t-tQ=Tb时才 开始下一次扫描淬火过程。
(4)判断 j是否等于 N,如果是,则说明所包含的所有淬火单元发生激光相变硬化, 形成激光淬火硬化区域, 并达到所设计的硬化层深度, 然后转入步骤 (5) ; 如果否, 令 j=j+l, 转入步骤 (2) ;
(5) 结束。
上述步骤 (1 ) , 入射到扫描振镜的激光束本发明称之为入射激光束, 入射激光束 的光束尺寸必须小于等于扫描振镜的进光口尺寸, 实际所采用的激光功率大小取决于所 采用激光器的最高功率水平、振镜所能够承受的功率密度和激光淬火时工件基本不发生 熔化所能够承受的功率密度; 入射激光束的能量分布模式可以是高斯模式或平顶模式, 平顶模式的激光束有利于保证淬火硬化层深度和硬度的均匀性, 提高激光淬火的质量。
步骤 (2) 所述激光束按照设定的工艺参数进行扫描, 所述工艺参数包括: 激光功 率、 光斑尺寸、 扫描速度、 加工单元尺寸、 一个加工单元内的激光作用时间 ^和一个加 工单元内的加工间歇时间 t2等。 本发明所采用的扫描振镜可以是后置 f-θ型聚焦扫描振 镜, 也可以是前置聚焦扫描振镜结构形式。
如图 1所示, 后置 f-θ型聚焦扫描振镜的结构形式为: 入射激光束 55经过 X轴偏 转镜 57和 Y轴偏转镜 53的偏摆后, 再通过 f-θ透镜 51聚焦后在聚焦平面 50处获得扫 描区域 59, 其中, X轴电机 56驱动 X轴偏转镜 57, Y轴电机 58驱动 Y轴偏转镜 53, 在振镜的快速偏摆驱动下, 带动激光束进行大范围的扫描加工。其中,后聚焦形式的 f-θ 透镜 51是经过优化结构设计的光学镜片, 它能够有效补偿加工区域中央部位和边缘部 位因为光程差带来的光斑尺寸或者能量密度的差异,提高了振镜扫场范围内激光功率密 度的一致性。
如图 2所示, 前置聚焦扫描振镜包括前置聚焦镜 54、 X轴偏转镜 57、 Y轴偏转镜 53、 保护镜 52、 X轴电机 56和 Y轴电机 58 ; X轴偏转镜 57安装在 X轴电机 56上, Y 轴偏转镜 53安装在 Y轴电机 58上,前置聚焦镜 54安装在入射激光束 55的光路中,保 护镜 52安装在 Y轴偏转镜 53的出射光路上。
两种结构形式的差别在于, 前置聚焦扫描振镜结构 (图 2) 是将入射激光束 55经 过前置聚焦镜 54聚焦后再通过振镜扫描实现光束运动的控制, 在振镜的出光处设置有 保护镜 52, 而没有 f-θ型聚焦镜。 所述前置聚焦镜 54可以是常规光学聚焦镜, 也可以 是光束聚焦整形镜。 光束聚焦整形镜的作用是对激光束进行聚焦处理的同时, 还将高斯 模式或其它非均匀模式的激光束整形为能量均匀的激光束, 以获得所需要的平顶模式的 激光淬火光斑。
所述的经过扫描振镜后在工件表面获得的激光光斑尺寸一般根据工件所需要激光 淬火的区域大小进行选择,可以是在聚焦焦点处的小光斑,也可以采用离焦的较大光斑。 对于圆形光斑而言, 光斑尺寸是指其直径, 矩形或其它形状的光斑而言, 则可以用边长 表示。
一个加工单元对应一个激光加工图形, 激光加工图形可以是点、 线、 面图形, 也可 以是其他任意形状的弧线、 线段、 圆形、 矩形、 方形或三角形等。
淬火单元可以是单个加工单元, 也可以是多个加工单元的组合, 淬火单元所构成的 图形可以是上述加工单元对应的加工图形组成的复杂组合图形或者其它任意图形。它们 之间可以是离散的、 连续的或者交错的。
需要特别说明的是, 加热时间不同于通常脉冲激光加工时的占空比, 间歇时间不等 同于激光器不输出激光。 进一步说, 对于某一加工单元 而言, 加工间歇期间既可以 不输出激光, 也可以是激光束在对其它加工单元 (如 B2、 B3等加工单元) 进行激光扫 描, 只是激光束斑对 B2、 B3加工单元进行扫描时, 其热作用对于 加工单元的硬化层 深度与硬度无实质影响。 加工单元所对应的激光加工图形可以由扫描填充形成, 也可以 由聚焦光斑的直接辐照形成。 当激光加工图形为离散的单元图形, 如果该单元图形是与 激光光斑完全吻合的图形,则对激光加工图形不需要填充,只需激光光斑重叠辐照 Q次 就可以使该加工单元发生激光相变硬化, 并达到所设计的硬化层深度。 对于其它的激光 加工图形, 包括点阵、 线型或面型, 均需要进行扫描填充才可以实现。
如前所述, 扫描周期 Tb是激光束辐照单个加工单元的一次加热时间与一次间隙时 间之和, 它是由扫描振镜的扫描速度、 跳转速度、 加速度和激光器输出激光束的方式共 同决定的。激光扫描周期如图 3所示, 扫描周期 Tb中的激光加热时间 ^、加工间歇时间 t2的定义如下: ^为一个加工单元内的激光作用时间, t2为激光下一次辐照该加工单元 之前的加工间歇时间。 换句话说, 对于某个加工单元而言, 扫描周期 Tb等于 t1+t2
淬火单元内的扫描过程可以是连续或者脉冲的方式。 利用振镜扫描的高加速度, 高 扫描速度和高跳转速度的特点, 可以在一个淬火周期内同时处理多个加工单元, 有利于 采用更高的激光功率和相对移动速度, 以提高激光淬火的效率。
本发明方法的关键在于通过多次重复扫描处理, 可以采用更高的激光功率、 更高的 扫描速度进行激光淬火, 并在确保工件表面不发生明显熔化的前提下获得更大深度的硬 化层。 或者在硬化层深度相同的前提下, 获得更高的激光淬火加工效率。 技术人员可以 根据所需淬火工件的材料种类,用途及所使用激光器的种类及功率来选择合适的工艺参 数。
本发明方法采用的激光器可以是光纤激光器、 半导体激光器、 YAG 激光器、 碟片 式激光器或者。02激光器。
当采用。02激光器进行激光淬火时,需要在工件表面喷涂专用。02激光淬火吸光涂 料(如 Si02涂料、 石墨涂料或其它对 10.6μ mC02激光吸收率高的涂料等) , 待工件表 面的吸光涂料干燥后, 再进行激光淬火。 当采用光纤激光器、 半导体激光器、 碟片激光 器或 YAG激光器进行激光淬火时, 既可以采用喷涂专用吸光涂料的预处理方法进行激 光淬火, 也可以不用任何吸光涂料, 直接对工件进行激光淬火。
对需要大面积淬火的工件进行重复扫描激光淬火时, 为了避免机械运动装置频繁启 停造成的运动滞后, 可以采用重复扫描式飞行激光淬火方法, 可以有效提高激光加工效 所谓重复扫描式飞行激光淬火工艺要求同时满足两个条件:第一是工件与振镜整体 之间以相对移动速度 V保持连续的相对运动形式,第二是激光束对淬火单元保持重复扫 描的淬火方式。 为同时满足上述要求, 需要振镜在重复扫描时进行补偿运动, 具体过程 说明如下:当扫描振镜输出的激光束在淬火周期 T内对某个淬火单元进行重复扫描淬火 时, 工件与振镜整体之间以相对移动速度 V进行连续运动, 此时振镜输出的激光束在淬 火周期 T内还需要以 -V的速度进行反向补偿运动, 并在下一个淬火周期 T开始之前跳 转到下一个淬火单元后再重复上述过程。 这样, 就可以确保扫描振镜在飞行过程中对工 件表面实施重复扫描淬火的实际效果与振镜静止时获得的效果相同,而又避免了机床的 频繁启停, 从而可以进一步提高激光淬火的生产效率。 重复扫描式飞行激光淬火时的相 对运动既可以是工件运动, 也可以是扫描振镜在其它运动机构(本发明称之为机械运动 机构)带动下运动, 也包括二者同时运动, 只要工件与扫描振镜之间的位置关系发生了 相对位移, 就需要对移动坐标进行实时补偿, 并计算飞行补偿跳转距离。 振镜输出激光 束的补偿运动速度在数值上等于相对移动速度, 在方向上相反。
设其中工件或机械运动机构所在的坐标系为参考坐标系, 记为(X,Y), 另一个所在 的坐标系为运动坐标系, 设为 (U,V), 设 t时刻工件与机械运动机构在 x,y方向相对移动 速度分别为 vxtVyt,对任意一个加工单元而言,将激光光斑的中心点作用在加工单元上 的第一个点称为加工单元的基准参考点 A, t。时刻的基准参考点为 ^, t 时刻的基准参 考点为^。已知, t。时刻固定坐标系(Χ,Υ)和运动坐标系 (U,V)的原点重合, 因此, t。时 刻加工单元中点^的运动坐标(1^。,¥^)与固定坐标系中的坐标( 。, 。)重合, 可表述 为公式 I:
Figure imgf000014_0001
公式 I t(t > t。;)时刻后, 运动坐标系与固定坐标系中的基准参考点 ^又重合, t 时刻加工 单元的基准参考点 Λ的补偿坐标(xt,Yt)为公式 II:
X, =UA0 + ί vxtdt
J to
X = VAO + ί Vytdt
jt。 公式 II 实际应用中, 可以使得工件与机械运动机构只在 x轴或 y轴发生相对运动, 则公式 II可以简化为公式 III: < 公式 III
Figure imgf000015_0001
公式 III为重复扫描式飞行激光淬火的扫描坐标计算公式, t(t > t。)时刻飞行补偿跳 转距离为:
St = f vxtdt 或者 St = I" vytdt。 公式 IV
J to J to
具体而言, 采用重复扫描式飞行激光淬火技术时, 本发明方法具体包括下述步骤:
( 1 ) 设工件上淬火单元总数为 N, 当前处理的淬火单元在工件上的序号为 j, 扫 描周期为 Tb, 淬火周期为 T, 一个淬火单元内所需的扫描次数为 Q, 实际扫描次数的 参量为 q, 设定工件与振镜整体之间以相对移动速度 V进行相对运动, 设定振镜输出激 光束的补偿运动速度为 - V ;
令 j=l, q=l ; 并且在整个激光淬火过程中一个加工单元内的激光能量分布基本均匀 一致;
(2)经过扫描振镜后的激光束辐照到第 j个淬火单元的起始位置,并记录该时间点 为 to; 所述激光束对淬火单元中的每一个加工单元进行一次扫描的同时, 还以速度 - V进 行飞行反向补偿运动, 完成后进入 (3 ) ;
( 3 ) 设当前时间为 t, 判断 q是否等于设定的扫描次数 Q;
如果是,则第 j个淬火单元淬火完毕,即所包含的所有加工单元发生激光相变硬化, 并达到所设计的硬化层深度,此时对淬火单元 j进行扫描的时间正好等于一个淬火周期 T, 激光束立即跳转到下一个淬火单元, 跳转距离等于公式 IV在 Τ时刻计算的飞行补偿 跳转距离, 然后转入步骤 (4) ;
如果否, 令 q=q+l, 此时 t-tQ=Tb, 对淬火单元进行一次扫描的时间正好等于一个 扫描周期 Tb, 激光束立即从最后一个加工单元跳转到第一个加工单元, 跳转距离等于 公式 IV在 Tb时刻计算的飞行补偿跳转距离, 并开始对淬火单元进行下一次重复扫描飞 行激光淬火。 如果还没有到达一个扫描周期 Tb, 则需要等待, 当满足 t-tQ=Tb时才开始 下一次重复扫描式飞行激光淬火过程, 然后转入步骤 (2) ;
(4)判断 j是否等于 N, 如果是, 则说明所包含的所有淬火单元都已经实现激光淬 火硬化, 形成激光淬火硬化区域, 并达到所设计的硬化层深度, 然后转入步骤 (5 ) ; 如果否, 令』=]+1, 转入步骤 (2) ;
( 5 ) 结束。 本发明方法不管是否利用飞行补偿技术,其实质都是利用经过扫描振镜后的激光束 对每个加工单元进行间歇式重复扫描淬火,使各加工单元内注入的激光总能量不会导致 工件表面快速熔化,而是利用多次加热的累积热效应形成激光淬火层,并达到所需深度。 只要能够实现该方案的激光淬火工艺参数都可以用于实现本发明方法。 一般而言, 当激 光功率为 300-30000W时, 光斑尺寸为 0.5-60mm, 扫描速度为 100-10000mm/s, 加工单 元尺寸为 0.2-60000mm2, 扫描次数为 2-10000, 激光加热时间 为 l-10000ms, 加工间 隙时间 t2为 l-10000ms, 淬火周期 T为 2-200000ms。 当激光功率为 1000-20000时, 光 斑尺寸为 l-30mm, 扫描速度为 300-8000mm/s, 加工单元尺寸为 l-30000mm2, 扫描次 数为 2-5000, 激光加热时间 为 l-1000ms, 加工间隙时间 t2为 l-1000ms, 淬火周期 T 为 2-20000ms。 当激光功率为 1500-15000W 时, 光斑尺寸为 2-15mm, 扫描速度为 300-7000mm/s, 加工单元尺寸为 10-15000mm2, 扫描次数为 2-3000, 激光加热时间 为 l-500ms, 加工间隙时间 t2为 l-500ms, 淬火周期 T为 2-10000ms。 当激光功率为 2000-10000W 时, 光斑尺寸为 3-10mm, 扫描速度为 300-5000mm/s, 加工单元尺寸为 15- 10000mm2, 扫描次数为 2-1000, 激光加热时间 为 l-300ms, 加工间隙时间 t2为 1 -300ms, 淬火周期 T为 2-6000ms。
如图 4所示, 本发明装置包括激光器 1、 控制系统 3、 导光系统 4、 机械运动装置 5 和扫描振镜 6。
其中, 激光器 1通过导光系统 4与扫描振镜 6实现光路连接; 控制系统 3与激光器 1、 机械运动装置 5和扫描振镜 6为电信号连接, 控制其工作。 机械运动装置 5带动扫 描振镜 6或者工件 8随之运动。
扫描振镜 6采用前置聚焦扫描振镜形式或后置 f-θ型聚焦扫描振镜。
机械运动装置 5可以是普通机床、数控机床或多关节机器人(机械臂)等运动机构, 根据实际加工的要求机床可以采用单轴或多轴联动形式。
导光系统 4可以是光纤传输系统, 也可以是由光学镜片组组成的硬光路导光系统。 导光系统 4将激光器 1的激光束传输至扫描振镜 6的入光口。
本发明装置的使用过程为:
步骤一, 将扫描振镜 6调整到工件 8的上方, 通过导光系统将激光器 1输出的激光 束传导至扫描振镜 6的入光口。
步骤二, 运行扫描振镜 6, 在不输出激光束的前提下, 确认使扫描振镜按照编程设 计的参数(包括加工单元尺寸、 扫描次数、 、 t2、 扫描周期)获得的加工单元或淬火单 元是否与设计相符合。
步骤三, 开启激光器 1, 按照设定的激光淬火工艺参数, 进行重复扫描式激光淬火, 在工件表面获得一个激光淬火单元。
步骤四, 在控制系统的控制下机械运动装置 5带动扫描振镜 6移动, 使其出射的激 光束照射到工件表面的下一个淬火单元;
步骤五, 重复步骤三至步骤四, 直到遍历工件表面的所有淬火单元, 在工件表面得 到激光相变淬火层。
本发明可以对大型轴承座圈、大型模具、机床导轨和钢轨等工件进行激光淬火强化, 并显著提高激光淬火的深度, 或者大幅度提高激光淬火的效率。 或者在大幅度提高激光 淬火深度的同时, 大幅提高生产效率。
下面结合附图对本发明的具体实施方式作进一步说明。 在此需要说明的是, 对于这 些实施方式的说明用于帮助理解本发明, 但并不构成对本发明的限定。 此外, 下面所描 述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互 组合。
实例 1 : 重复扫描激光淬火工艺在大型齿轮激光淬火中的应用。
本实例采用半导体激光器对 42CrMo材料的大型齿轮进行激光淬火, 光斑尺寸为 Φ 6mm, 激光功率为 6000W, 加工单元所对应的激光加工图形尺寸为 6mmX 15mm的矩 形, 扫描速度为 1000mm/s, 扫描次数为 50次, % 0.015s加热、 t2为 0.0167s间歇, 淬火周期 T的时间是 1.6s, 相对移动速度 400mm/min, 相对移动速度的矢量方向与加工 单元的长度方向垂直, 单道淬火可以获得 15mm宽的淬火区域, 无搭接量, 得到的硬化 层深度为 0.8mm。 本实例高功率重复扫描激光淬火时工件表面的温度曲线如图 5所示。
在此功率和光斑条件下, 若采用现有的技术, 常规运动机构一般无法达到如此高的 扫描速度, 因此无法实现 6000W的高功率激光淬火。 为了保证工件表面不发生熔化现 象, 必须采用较低激光功率进行淬火。 采用现有工艺优选的工艺参数如: 激光功率 2000W, 光斑尺寸为D 6mm, 相对移动速度 300mm/min, 单道淬火只能获得 6mm宽的 淬火区域, 搭接量 1.5mm, 一次扫描淬火所得到的硬化层深度 0.8mm。
搭接量是指相邻两个淬火单元产生回火效应的宽度。 搭接量可以为 0至 3mm。 对本工件而言, 本实例所需的总加工时间约为现有工艺的 1/3。
实例 2: 重复扫描激光淬火工艺在大型轧辊激光淬火中的应用。
本实例采用 10.6μ m的 C02激光器对 75CrMnMo材料的大型轧辊进行激光淬火, 光斑尺寸为D 5mm, 激光功率 8000W, 加工单元所对应的激光加工图形为 5mmX 35mm 矩形, 扫描速度为 350mm/s, 扫描次数为 12次, 为0.18、 为0.1258, 淬火周期 T的 时间是 2.7s, 相对移动速度 300mm/min, 相对移动速度的矢量方向与加工单元的长度方 向垂直, 单道淬火可以获得 35mm宽的淬火区域, 搭接量 2mm。 激光淬火前, 先在工 件表面喷涂专用 Si02吸光涂料, 待工件表面的吸光涂料干燥后再进行后续的激光淬火。 通过振镜扫描填充方法, 得到的硬化层深度为 1.0mm。本实例高功率重复扫描激光淬火 时工件表面的温度曲线如图 6所示。
与实例 1同理, 现有工艺采用的优选工艺参数为: 光斑尺寸为D 5mm, 激光功率为 1000W, 相对移动速度 600mm/min, 单道淬火只能获得 5mm宽的淬火区域, 搭接量为 lmm。 先在工件表面喷涂专用 Si02吸光涂料, 待工件表面的吸光涂料干燥后再进行后 续的激光淬火, 一次扫描淬火得到的硬化层深度 0.6mm。
对本工件而言, 本实例所需的总的加工时间约为现有工艺的 1/4, 硬化层深度约为 现有工艺的 1.67倍。
实例 3: 重复扫描激光淬火工艺在大型模具激光淬火中的应用。
本实例采用光纤激光器对 50CrNiMo材料制成的大型模具进行激光淬火, 光斑尺寸 为 6mmX 6mm,激光功率为 12000W,加工单元所对应的激光加工图形为 6mmX 140mm 矩形, 扫描速度为 420mm/s, 扫描次数为 7次, 为 0.333s、 t2为 0.349s, 淬火周期 T 的时间是 4.8s, 相对移动速度 300mm/min, 相对移动速度的矢量方向与加工单元的长度 方向垂直, 单道淬火可以获得 140mm宽的淬火区域, 得到的硬化层深度为 0.6mm。 本 实例高功率重复扫描激光淬火时工件表面的温度曲线如图 7所示。
与实例 1同理, 现有工艺不能够采用 12000瓦的激光进行淬火, 否则容易使得工件 表面熔化。 采用的优选的工艺参数如: 激光功率 1200W, 光斑尺寸为 6mmX 6mm, 相 对移动速度 600mm/min, 单道淬火只能获得 6mm宽的淬火区域, 搭接量 lmm, 得到的 硬化层深度 0.6mm。
本实例总的加工效率约为现有工艺的 12倍。
实例 3的具体实现过程可采用图 8所示的形式, 数控激光加工机床包括 X轴 30、 立柱 31、 Y轴 32、 Z轴 33。 在 Y轴 32上安装有 45° 反光装置 41, Z轴 33上安装有 45° 反光装置 42, 扫描振镜 6固定在数控加工机床的 Z轴 33上。 反光装置 41将 X轴 方向输入的激光束反射传输到 Y轴上的反光装置 42; 反光装置 42再将激光束反射传输 到扫描振镜 6的入光口。 激光淬火时, 数控激光加工机床的 X轴 30和 Z轴 33设定在 一个固定位置, Y轴 32带动 Z轴 33和扫描振镜 6按照设定程序运动, 扫描振镜 6输出 的重复扫描激光对大型模具 43进行高效激光淬火。
实例 4: 重复扫描激光淬火工艺在轴承座圈激光淬火中的应用。
本实例采用 1070μ m固体激光器对 42CrMo大型轴承座圈进行激光淬火、光斑尺寸 为 7mmX 7mm, 激光功率 5000W, 加工单元所对应的激光加工图形为 20mmX 20mm矩 形, 扫描速度为 2000mm/s, 扫描次数为 180次, 为 0.02s、 t2为 0.024s, 淬火周期 T 的时间是 7.92s, 相对移动速度 152mm/min, 相对移动速度的矢量方向与加工单元的长 度方向垂直, 单道淬火可以获得 20mm宽的淬火区域, 无搭接量, 获得的硬化层深度为 2.0mm
与实例 1 同理, 现有工艺采用的优选的工艺参数如: 光斑尺寸为 7mmX 7mm, 激 光功率 2000W, 相对移动速度 300mm/min, 单道淬火只能获得 10mm宽的淬火区域, 搭接量 1.5mm, 得到的硬化层深度 1.0mm。本实例 4的单次扫描连续激光淬火与重复扫 描脉冲激光淬火时金属表面的温度变化曲线原理示意图如图 9所示。
本实例得到的硬化层深度是常规单次扫描激光淬火工艺的 2倍,所需总的加工时间 与现有工艺相同。
本实例的具体实现过程可采用如图 10所示的形式,数控激光加工机床包括 X轴 30、 立柱 31、 Y轴 32、 Z轴 33和立式回转轴 36, 轴承座圈 35由专用托盘 34承载定位, 托 盘 34固定在立式回转轴 36上, 扫描振镜 6固定在数控加工机床的 Z轴 33上。 激光淬 火时, 数控激光加工机床的 X轴 30、 Y轴 32和 Z轴 33设定在一个固定位置; 立式回 转轴 36旋转, 带动轴承座圈 35按照设定工艺参数旋转; 扫描振镜 6输出的激光对轴承 座圈 35进行重复扫描式激光淬火。
实例 5: 重复扫描激光淬火工艺在铁路钢轨激光淬火中的应用。
本实例采用半导体激光器对 71Mn钢轨长表面进行点阵式激光淬火, 光斑尺寸为 10mm X 10mm, 加工单元的尺寸与激光光斑相同, 加工单元的间距为 5mm, 激光功率 为 6000W, , 激光扫描次数为 90次, 11为0.0048、 为0.01058, 淬火单元为 1 X 2阵列 排列的两个加工单元, 淬火周期 T 的时间是 1.3s, 相对移动速度 (平均速度) 为, 1384mm/min, 得到的硬化层深度为 0.8mm。
与实例 1 同理, 现有单次扫描激光淬火工艺采用的优选工艺参数如激光功率 3000W, 光斑尺寸为 lOmmX IOmm, 点阵之间的间距为 5mm, 淬火时间为 1.5s, 相对 移动速度 (平均速度) 为, 600mm/min, 所得到的硬化层深度 0.8mm。 本实例所需的总的加工时间约为现有工艺的 1/2。
实例 6: 重复扫描式飞行激光淬火工艺在机床导轨激光淬火中的应用。
为了解决离散硬化图形激光淬火效率低的问题,本发明提出了一种基于扫描振镜的 重复扫描式飞行激光淬火方法, 具体包括三种形式, 即: 工件固定、 振镜运动的飞行式 重复扫描激光淬火方法; 振镜固定、 工件运动的飞行式重复扫描激光淬火方法; 工件和 振镜都相互运动的飞行式重复扫描激光淬火方法。
对 40Cr机床导轨长条形金属部件表面进行离散点阵型重复扫描飞行式激光淬火, 光斑为 8mm X 8mm, 加工单元的尺寸与光斑相同, 淬火单元为 1 X 4阵列排列的四个加 工单元, 加工单元之间的间距为 4mm, 采用光纤激光器, 激光功率为 8000W, 激光扫 描次数为 253次, 11为0.0018、 为 0.003s, 淬火周期 T的时间是 l .Ols, 飞行淬火时的 相对移动速度为 2860mm/min, 振镜输出激光束的补偿速度为 -2860mm/min, 得到的最 大硬化层深度为 0.8mm。与实例 1同理, 现有单次扫描脉冲激光淬火工艺采用的优选工 艺参数如激光功率 2000W, 光斑尺寸为 8mm X 8mm, 点阵之间的间距为 4mm, 脉冲淬 火时间为 ls, 相对移动速度 (平均速度) 为 430mm/min, 所得到的硬化层深度 0.8mm。
本实例所需的总的加工时间约为现有工艺的 1/7。
重复扫描式飞行激光淬火工艺在机床导轨方面的应用如图 11所示, 数控激光加工 系统包括工业机器人 (机械臂) 51、 外部运动 X轴部件 50、 光纤传输系统 52、 扩束系 统 54和扫描振镜 6。 工业机器人(机械臂) 51固定在外部运动 X轴部件 50上, 扫描振 镜 6固定在工业机器人(机械臂) 51的前臂 53上。激光束经过光纤传输系统 52和扩束 系统 54进入扫描振镜 6。 激光淬火时, 工业机器人 (机械臂) 51的各个运动轴设定在 一个固定位置,外部运动 X轴部件 50带动工业机器人(机械臂) 51和扫描振镜 6运动, 扫描振镜 6输出的激光对机床导轨 55进行重复扫描式飞行激光淬火。
实例 7 :
本实例采用光纤激光器对 GCrl5 材料的小轴承座圈进行激光淬火, 光斑尺寸为 Φ 3mm, 激光功率为 500W, 加工单元的尺寸 3mm X 6mm, 扫描速度为 1000mm/s, 扫描 次数为 120次, 为 0.006s、 为 0.0067s, 淬火周期 T的时间是 1.52s, 相对移动速度 (平均速度) 400mm/min, 相对移动速度的矢量方向与加工单元的长度方向平行, 无搭 接, 得到的硬化层深度为 0.5mm。现有单次扫描激光淬火工艺采用的优选工艺参数如激 光功率 300W, 光斑尺寸为 d) 3mm, 相对移动速度为 400mm/min, 获得的硬化层深度为 0.3mm。 本实例得到的硬化层深度是常规单次扫描激光淬火工艺的 1.7倍。 所需总的加 工时间与现有工艺相同。
实例 8:
采用光纤激光对 50CrNiMo材料的汽车模具进行点阵式激光淬火, 本实例采用的光 斑尺寸为 7mm X 7mm, 加工单元的尺寸与光斑相同, 加工单元之间的间距为 3.5mm, 淬火单元为 1 X 3阵列排列的三个加工单元, 为 0.004s, t2为 0.008s, 进行点阵式重复 扫描激光淬火时采用的工艺参数如下: 激光功率范围 2000W〜6000W, 扫描次数范围 25〜483, 淬火周期范围 0.3s~5.8s, 相对移动速度范 110/min〜2000mm/min。 相应的淬 火深度范围为 0.3mm〜1.5mm。
工艺参数对硬化层深度的影响如表 1所示。激光功率对扫描次数有重要影响, 如图 12所示, 激光功率从 2000W升高到 6000W, 重复扫描激光淬火的扫描次数从 483降低 为 25, 相对移动速度(平均速度)从 110mm/min提高到 2000mm/min。 与上述参数相同 的情况下,扫描次数对硬化层深度的影响规律如图 13所示,扫描次数从 483降低为 25, 相应的激光硬化层深度由 1.5mm降低为 0.3mm。
通常而言, 在初次对某种材料的工件进行淬火处理时, 可以利用样品或者对工件上 某一个淬火单元进行激光淬火后,检查工件淬火硬化层表面的粗糙度和硬化层深度是否 达到技术要求, 如果是则确认采用的工艺参数合理, 否则可以进行参数调整, 直到满足 要求, 以获得准确的工艺参数。
以上所述为本发明的较佳实例而已,但本发明不应该局限于该实例和附图所公开的 内容。 所以凡是不脱离本发明所公开的精神下完成的等效或修改, 都落入本发明保护的 范围。
实例 8的工艺参数对硬化层深度的影响如规律 激光功率 淬火周期 相对移动速度 硬化层深度 扫描次数
(W) ( S ) (mm/min) (mm)
2000 483 5.8 110 1.5
3000 167 2.0 310 1.2
4000 67 0.8 750 0.7
5000 40 0.48 1400 0.5
6000 25 0.3 2000 0.3

Claims

1、 一种激光淬火方法, 该方法将激光束通过扫描振镜后辐照到工件表面, 激光束 对每个加工单元进行间歇式重复辐照,使工件表面的激光淬火区域高于工件材料的奥氏 体化温度, 但始终低于其工件材料的熔点, 并利用激光多次重复加热的累积热效应形成 激光淬火层, 并达到所需硬化层深度; 所述加工单元是指在不移动振镜位置和工件位置 的情况下, 将激光束通过扫描振镜后辐照到工件表面并一次连续作用于工件表面的区 域。
2、 根据权利要求 1所述的激光淬火方法, 其特征在于, 该方法通过控制激光淬火 工艺参数完成激光淬火, 激光淬火工艺参数包括激光功率、 扫描速度、 光斑尺寸、 扫描 周期和扫描次数等, 其中, 扫描周期是指设定的激光束对一个加工单元的一次连续辐照 加热时间与一次间隙时间之和; 扫描次数是指使一个淬火单元达到所需硬化层深度进行 重复扫描的次数。
3、 根据权利要求 1所述的激光淬火方法, 其特征在于, 当需要淬火单元连续填充 才能覆盖整个待淬火区域时, 所述激光淬火工艺参数还包括相对移动速度, 它是指光束 从一个淬火单元向另一个淬火单元移动的速度。所述激光淬火方法包括重复扫描激光淬 火方法和重复扫描式飞行激光淬火方法。
4、 根据权利要求 1、 2或 3中任一所述的重复扫描激光淬火方法, 其特征在于, 该 方法包括下述具体步骤:
( 1 )设工件上淬火单元总数为 N, 当前处理的淬火单元在工件上的序号为 j, 淬火 周期为 T, 一个淬火单元内所需的扫描次数为 Q, 实际扫描次数的参量为 q;
淬火周期 T是指一个淬火单元内的扫描次数与扫描周期的乘积;淬火单元是指在一 个淬火周期 T内激光束在工件表面辐照的加工单元的集合;
令 j=l, q=l ; 并且在整个激光淬火过程中一个加工单元内的激光能量分布基本均匀 一致;
(2)经过扫描振镜后的激光束辐照到第 j个淬火单元的起始位置,并记录该时间点 为 所述激光束对淬火单元中的每一个加工单元进行一次扫描, 完成后进入 (3) ;
(3)判断 q是否等于设定的扫描次数 Q, 如果是, 则第 j个淬火单元淬火完毕, 即 第 j个淬火单元中所包含的所有加工单元发生激光相变硬化, 并达到所设计的硬化层深 度, 然后转入步骤 (4) ; 如果否, 令 = +1, 设当前时间为 t, 扫描周期 Tb, 当 t-to=Tb 时, 转入步骤 (2) ;
(4)判断 j是否等于 N。如果是,则说明所包含的所有淬火单元发生激光相变硬化, 形成激光淬火硬化区域, 并达到所设计的硬化层深度, 然后转入步骤 (5) ; 如果否, 令 j=j+l, 转入步骤 (2) ;
(5) 结束。
5、 根据权利要求 1、 2或 3所述的重复扫描式飞行激光淬火方法, 设工件上淬火单 元总数为 N, 当前处理的淬火单元的序号为 j, 设淬火单元所需的扫描次数为 Q, 淬火 周期为 T, 实际扫描次数的参量为 q; 设定工件与机械运动机构 (包括振镜) 之间的相 对移动速度为 V, 振镜输出激光束的补偿运动速度为 -V; 其中, 淬火周期 T是指一个淬 火单元内的扫描次数与扫描周期的乘积,淬火单元是指在一个淬火周期 T内激光束在工 件表面辐照的加工单元的集合;
( 1 ) 令 j=l, q=l ;
(2)激光束经过扫描振镜后辐照到第 j个淬火单元的起始位置,并记录此开始时间 点为 tQ; 所述激光束按照设计的加工单元和设定的扫描速度对第 j个淬火单元内的各加 工单元进行单次扫描的同时, 还以速度 -V进行飞行反向补偿运动, 完成后进入 (3) ; 在激光扫描过程中一个加工单元内的激光能量分布基本均匀一致;
(3)判断 q是否等于设定的扫描次数 Q, 如果是, 则第 j个淬火单元淬火完毕, 即 该淬火单元中所包含的所有加工单元发生激光相变硬化, 并达到所设计的硬化层深度, 然后转入步骤(4); 如果否, 令 = +1, 设当前时间为 t, 设定扫描周期为 Tb, 当 t-to=Tb 时, 转入步骤 (2) ;
对淬火单元进行一次扫描的时间正好等于一个扫描周期 Tb,则激光束立即从最后一 个加工单元跳转到第一个加工单元,跳转距离等于公式 IV在 Tb时刻计算的飞行补偿跳转 距离, 并开始对淬火单元进行下一次重复扫描飞行激光淬火, 如果还没有到达一个扫描 周期 Tb, 则需要等待, 当满足 t-tQ=Tb时才开始下一次重复扫描式飞行激光淬火过程;
(4) 判断 j是否等于 N, 如果是, 则所有淬火单元均淬火完毕, 即所有淬火单元均 发生激光相变硬化, 形成激光淬火硬化层, 并达到所设计的硬化层深度; 然后进入步骤 (5) , 否则, 令』=]+1, 转入步骤 (2) ; ( 5 ) 结束。
6、 根据权利要求 2至 5中任一所述的激光淬火方法, 其特征在于, 当激光功率为 300-30000W时, 光斑尺寸为 0.5-60mm, 扫描速度为 100-10000mm/s, 加工单元尺寸为 0.2-60000mm2, 扫描次数为 2-10000, 激光加热时间 为 l-10000ms, 加工间隙时间 t2 为 1- 10000ms, 淬火周期 T为 2-200000ms。
7、根据权利要求 2至 5所述的激光淬火方法,其特征在于,当激光功率为 1000-20000 时, 光斑尺寸为 l-30mm, 扫描速度为 300-8000mm/s, 加工单元尺寸为 l-30000mm2, 扫描次数为 2-5000, 激光加热时间 为 l-1000ms, 加工间隙时间 t2为 l-1000ms, 淬火 周期 T为 2-20000ms。
8、 根据权利要求 2 至 5 所述的激光淬火方法, 其特征在于, 当激光功率为 1500-15000W 时, 光斑尺寸为 2-15mm, 扫描速度为 300-7000mm/s, 加工单元尺寸为 10- 15000mm2, 扫描次数为 2-3000, 激光加热时间 为 l-500ms, 加工间隙时间 t2为 1 -500ms, 淬火周期 T为 2- 10000ms
9、 根据权利要求 2 至 5 所述的激光淬火方法, 其特征在于, 当激光功率为 2000-10000W 时, 光斑尺寸为 3-10mm, 扫描速度为 300-5000mm/s, 加工单元尺寸为 15- 10000mm2, 扫描次数为 2-1000, 激光加热时间 为 l-300ms, 加工间隙时间 t2为 1 -300ms, 淬火周期 T为 2-6000ms。
10、一种实现权利要求 1所述激光淬火方法的装置,该装置包括激光器、控制系统、 导光系统、 机械运动装置和扫描振镜;
激光器通过导光系统与扫描振镜实现光路连接; 控制系统与激光器、机械运动装置 和扫描振镜为电信号连接,控制其工作,机械运动装置带动扫描振镜或者工件随之运动。
11、 一种权利要求 10所述的装置, 其特征在于, 所述扫描振镜采用前置聚焦扫描 振镜形式或后置 f-θ型聚焦扫描振镜; 所述激光器是光纤激光器、 半导体激光器、 YAG 激光器、 碟片式激光器或者 C02激光器。
PCT/CN2013/086691 2013-02-06 2013-11-07 一种激光淬火方法及装置 WO2014121621A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/765,516 US10106864B2 (en) 2013-02-06 2013-11-07 Method and apparatus for laser quenching

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310047363.6A CN103215411B (zh) 2013-02-06 2013-02-06 一种激光淬火方法及装置
CN201310047363.6 2013-02-06

Publications (1)

Publication Number Publication Date
WO2014121621A1 true WO2014121621A1 (zh) 2014-08-14

Family

ID=48813557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086691 WO2014121621A1 (zh) 2013-02-06 2013-11-07 一种激光淬火方法及装置

Country Status (3)

Country Link
US (1) US10106864B2 (zh)
CN (1) CN103215411B (zh)
WO (1) WO2014121621A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113278768A (zh) * 2021-05-28 2021-08-20 丹阳宏图激光科技有限公司 一种提高激光淬火层深度的激光淬火工艺
US20210331277A1 (en) * 2020-04-24 2021-10-28 Laserax Inc. Methods and system for laser-processing a metal workpiece
CN114891963A (zh) * 2022-05-09 2022-08-12 西安必盛激光科技有限公司 一种导轨激光淬火方法

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2884465C (en) 2012-09-06 2022-11-08 Etxe-Tar, S.A. Method and system for laser hardening of a surface of a workpiece
CN103215411B (zh) 2013-02-06 2015-07-08 武汉新瑞达激光工程有限责任公司 一种激光淬火方法及装置
CN103667607B (zh) * 2013-12-11 2015-09-09 广州中国科学院先进技术研究所 一种基于扫描振镜的激光淬火方法及装置
WO2015087349A1 (en) * 2013-12-13 2015-06-18 Tata Steel Limited Multi-track laser surface hardening of low carbon cold rolled closely annealed (crca) grades of steels
US10648056B2 (en) 2014-03-11 2020-05-12 Etxe-Tar, S.A. Method and system for laser hardening of a surface of a workplace
BR102014031075A2 (pt) * 2014-12-11 2016-06-14 Mahle Int Gmbh processo de obtenção de um anel de pistão, anel de pistão e motor a combustão interna
WO2016131021A1 (en) 2015-02-12 2016-08-18 Glowforge Inc. Safety and reliability guarantees for laser fabrication
US10509390B2 (en) 2015-02-12 2019-12-17 Glowforge Inc. Safety and reliability guarantees for laser fabrication
CN110699516A (zh) * 2015-02-12 2020-01-17 武汉飞能达激光技术有限公司 一种运载工具中零件的制备方法
WO2016146646A1 (en) 2015-03-17 2016-09-22 Ikergune A.I.E. Method and system for heat treatment of sheet metal
ES2770827T3 (es) 2015-05-08 2020-07-03 Ikergune A I E Método y aparato para el tratamiento térmico de un material ferroso utilizando un haz de energía
US11821053B2 (en) * 2015-06-30 2023-11-21 Magna International Inc. System for conditioning material using a laser and method thereof
CN104911303A (zh) * 2015-07-07 2015-09-16 中原内配集团股份有限公司 一种表面微熔处理气缸套及其制备方法
CN105238908A (zh) * 2015-11-03 2016-01-13 天津工业大学 一种挤出压延设备斜槽盘半导体激光宽带强化方法
CN105448274A (zh) * 2015-12-21 2016-03-30 宜昌金宝乐器制造有限公司 共鸣盘铁板弦枕激光热处理装置
US20180094334A1 (en) * 2016-09-30 2018-04-05 Lear Corporation Laser spot hardening
CN106755755B (zh) * 2016-11-11 2018-08-31 西安必盛激光科技有限公司 一种粉末冶金汽车发动机链轮锁销孔激光淬火方法
WO2018098397A1 (en) 2016-11-25 2018-05-31 Glowforge Inc. Calibration of computer-numerically-controlled machine
WO2018098398A1 (en) * 2016-11-25 2018-05-31 Glowforge Inc. Preset optical components in a computer numerically controlled machine
CN106755756B (zh) * 2017-01-10 2019-01-29 中国科学院半导体研究所 一种轴承表面无回火软带的激光淬火装置及方法
DE102018111543A1 (de) * 2017-05-22 2018-11-22 Schott Ag Verfahren und Vorrichtung zur Dickenkontrolle eines Materialbands
DE102017121526A1 (de) * 2017-09-15 2019-03-21 Rollomatic S.A. Vorrichtung zur Ausrichtung und Positionierung eines Werkstücks relativ zu einem Laserstrahl einer Laserbearbeitungsmaschine
CN107937707B (zh) * 2017-11-28 2019-11-08 广东工业大学 一种脉冲激光强化金属的方法及系统
CN108384926B (zh) * 2018-03-15 2019-11-12 温州市赢创新材料技术有限公司 一种奥氏体不锈钢的局部激光表面处理工艺
CN110373531B (zh) * 2018-04-13 2021-07-27 杭州巨星科技股份有限公司 刃口的处理方法、具有刃口的构件及具有刃口的工具
CN109136518B (zh) * 2018-08-20 2020-09-15 南通大学 一种海工平台重载齿轮表面激光合金化方法
CN109266811B (zh) * 2018-12-06 2023-11-14 淮南舜立机械有限责任公司 立柱油缸激光表面处理装置
CN110052703A (zh) * 2019-05-23 2019-07-26 桂林电子科技大学 连续激光与超声复合表面微加工系统及方法
CN110919184B (zh) * 2019-12-27 2021-10-29 广东工业大学 一种移动激光振镜焊接系统的补偿方法
BE1027475B1 (fr) * 2020-01-22 2021-02-26 Laser Eng Applications Procédé de traitement thermique en volume et système associé
CN111748682A (zh) * 2020-07-08 2020-10-09 中国航发湖南动力机械研究所 齿轮齿面的激光强化方法
CN112442576A (zh) * 2020-11-11 2021-03-05 武汉材料保护研究所有限公司 一种采用激光淬火制备薄壁衬套的方法
CN112705853A (zh) * 2020-12-14 2021-04-27 安阳睿恒数控机床股份有限公司 一种高速激光点状热处理方法
CN113122701B (zh) * 2021-03-22 2022-09-27 首钢集团有限公司 一种热成型零件制备软区的方法及装置
CN113549737B (zh) * 2021-07-09 2022-10-04 华中科技大学 一种多光束激光淬火方法与装置
CN114015838A (zh) * 2021-10-26 2022-02-08 武汉武钢华工激光大型装备有限公司 一种圆筒形工件的高效率激光淬火设备及其使用方法
CN114085957A (zh) * 2021-10-29 2022-02-25 上海柴孚机器人有限公司 一种机器人跟进式激光淬火方法
CN114891995B (zh) * 2022-05-20 2024-03-15 西安必盛激光科技有限公司 一种动态控制激光淬火参数的方法
CN115161446B (zh) * 2022-07-05 2024-01-19 德清集通实业有限公司 余热利用自动化控制淬火设备
CN116586789A (zh) * 2023-07-13 2023-08-15 盛合晶微半导体(江阴)有限公司 激光开孔方法及半导体器件的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798620A (en) * 1980-12-08 1982-06-18 Agency Of Ind Science & Technol Laser working device
JPS5891117A (ja) * 1981-11-26 1983-05-31 Toshiba Corp 熱処理方法
JPS6179715A (ja) * 1984-09-28 1986-04-23 Mitsubishi Electric Corp レ−ザ加工装置
CN103215411A (zh) * 2013-02-06 2013-07-24 武汉新瑞达激光工程有限责任公司 一种激光淬火方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6085122A (en) * 1997-05-30 2000-07-04 Dtm Corporation End-of-vector laser power control in a selective laser sintering system
EP1308525A3 (en) * 2001-10-30 2004-01-28 Yamazaki Mazak Kabushiki Kaisha Method of controlling hardening with laser beam and laser beam hardening device
CN101240367A (zh) * 2008-03-10 2008-08-13 华中科技大学 一种用于铁路钢轨表面强韧化处理的在线激光加工设备
CN101328567B (zh) * 2008-07-28 2010-06-02 中国航空工业第一集团公司北京航空制造工程研究所 高温钛合金焊后双重电子束局部热处理方法
JP5012732B2 (ja) * 2008-08-19 2012-08-29 トヨタ自動車株式会社 エネルギビームによる焼入方法および焼入システム
CN102127620A (zh) * 2010-01-20 2011-07-20 湖南大学 移动式半导体激光模具表面强化系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798620A (en) * 1980-12-08 1982-06-18 Agency Of Ind Science & Technol Laser working device
JPS5891117A (ja) * 1981-11-26 1983-05-31 Toshiba Corp 熱処理方法
JPS6179715A (ja) * 1984-09-28 1986-04-23 Mitsubishi Electric Corp レ−ザ加工装置
CN103215411A (zh) * 2013-02-06 2013-07-24 武汉新瑞达激光工程有限责任公司 一种激光淬火方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, TONGDAO ET AL.: "Study on Microstructure and Performance of 45 Steel Treated by Malti-time Laser Transformation Hardening", CHINA SURFACE ENGINEERING, vol. 20, no. 2, April 2007 (2007-04-01), pages 36 *
SHAN, GUOYOU ET AL.: "Study of repeat laser quenching on inner wall of cylinder jacket of automobile engine", CHINA SURFACE ENGINEERING, 1992, pages 28 - 32 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210331277A1 (en) * 2020-04-24 2021-10-28 Laserax Inc. Methods and system for laser-processing a metal workpiece
CN113278768A (zh) * 2021-05-28 2021-08-20 丹阳宏图激光科技有限公司 一种提高激光淬火层深度的激光淬火工艺
CN114891963A (zh) * 2022-05-09 2022-08-12 西安必盛激光科技有限公司 一种导轨激光淬火方法
CN114891963B (zh) * 2022-05-09 2024-04-30 西安必盛激光科技有限公司 一种导轨激光淬火方法

Also Published As

Publication number Publication date
CN103215411B (zh) 2015-07-08
CN103215411A (zh) 2013-07-24
US10106864B2 (en) 2018-10-23
US20160076115A1 (en) 2016-03-17

Similar Documents

Publication Publication Date Title
WO2014121621A1 (zh) 一种激光淬火方法及装置
CN103290176B (zh) 一种多次辐照激光淬火方法及装置
CN109593919B (zh) 基于分布式三维光束扫描的轴承表面激光淬火装置及方法
CN106755756B (zh) 一种轴承表面无回火软带的激光淬火装置及方法
EP3117014B1 (en) Method and system for laser hardening of a surface of a workpiece
CN100491048C (zh) 分光式激光毛化调制装置
CN108816964B (zh) 随机激光清洗装置与方法
CN108188581B (zh) 一种送丝式激光增材制造方法
CN106498389B (zh) 基于多焦点透镜产生预热和缓冷光的激光熔覆装置
CN103774137A (zh) 采用多激光器进行激光熔覆的方法
CN110315078A (zh) 一种多功能的激光选区熔化成形设备
EP3511106B1 (en) Laser based machining of glass material
CN201693296U (zh) 聚焦光点无规则偏转的激光辊类表面毛化加工装置
CN202877731U (zh) 聚焦光点可控偏摆的激光毛化加工装置
CN105583525A (zh) 一种用于聚合物/金属混合结构中界面微结构加工新方法
JP2003311459A (ja) レーザ表面加工装置
CN214032577U (zh) 一种高速激光点状热处理装置
CN103255267B (zh) 激光淬火方法及设备
CN204848934U (zh) 一种分能量激光淬火头
CN201693292U (zh) 聚焦光点小范围二维摆动式激光辊类表面毛化加工装置
EA023676B1 (ru) Способ поверхностного упрочнения металлических изделий перемещающимся лазерным лучом
CN104107979B (zh) 轧辊表面激光毛化强化集成加工装置
JPS6199622A (ja) レ−ザビ−ム加工装置
CN210711626U (zh) 一种对薄板表面激光淬火装置
JPH04143092A (ja) レーザ加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14765516

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13874749

Country of ref document: EP

Kind code of ref document: A1