WO2014121483A1 - 开关传动机构和功率开关 - Google Patents

开关传动机构和功率开关 Download PDF

Info

Publication number
WO2014121483A1
WO2014121483A1 PCT/CN2013/071504 CN2013071504W WO2014121483A1 WO 2014121483 A1 WO2014121483 A1 WO 2014121483A1 CN 2013071504 W CN2013071504 W CN 2013071504W WO 2014121483 A1 WO2014121483 A1 WO 2014121483A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixed plate
transmission mechanism
switch
driving
mechanism according
Prior art date
Application number
PCT/CN2013/071504
Other languages
English (en)
French (fr)
Inventor
柴茂
马平
游一民
Original Assignee
厦门华电开关有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门华电开关有限公司 filed Critical 厦门华电开关有限公司
Priority to PCT/CN2013/071504 priority Critical patent/WO2014121483A1/zh
Priority to CN201380051692.6A priority patent/CN104704592B/zh
Publication of WO2014121483A1 publication Critical patent/WO2014121483A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/42Driving mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/32Driving mechanisms, i.e. for transmitting driving force to the contacts
    • H01H3/42Driving mechanisms, i.e. for transmitting driving force to the contacts using cam or eccentric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H2033/028Details the cooperating contacts being both actuated simultaneously in opposite directions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/32Driving mechanisms, i.e. for transmitting driving force to the contacts
    • H01H3/40Driving mechanisms, i.e. for transmitting driving force to the contacts using friction, toothed, or screw-and-nut gearing

Definitions

  • the invention relates to a switch transmission mechanism with reverse motion and work with the switch transmission
  • the power switch includes a first contact and a second contact.
  • the first contact member can be connected or disconnected from the second contact member by the driving device to realize the closing and opening of the switch.
  • the first contact transmits motion to the second contact through a transmission mechanism for movement in a direction opposite the first contact. By this opposite movement, the contact member can achieve a high separation speed while reducing the operating work of the drive unit.
  • document EP 0 809 269 discloses a high voltage electrical switch comprising two coaxial, relatively movable arcing contacts.
  • a two-arm lever that can be rotated about the fixed shaft is driven by a drive rod fixed to the insulating nozzle to drive the arc contact for reverse movement.
  • the reverse arc contact movement curve discloses an electrical switch, which includes two reversibles, compared with the single document CN1357901A. Moving arc contacts.
  • the lever is driven to rotate about the fixed shaft by a driving rod fixed on the insulating nozzle.
  • the follower arm of the lever is designed as a cam, and the two arc contacts are driven by the cam to perform reverse movement.
  • the lever drive end will be long and take up a lot of space.
  • Document EP 0 822 565 discloses an electrical switch comprising two reversibly movable contacts.
  • the two contacts are coupled to the lever mechanism via an insulating nozzle, and the lever mechanism is driven by a drive rod on the insulating nozzle to effect reverse movement of the two arc contacts. If the switch has a large stroke operation, the lever drive end will be long, occupying a large space, and the reverse arc contact movement curve is relatively simple.
  • Document CN1128892A discloses an electrical switch comprising two arcuate contacts that are relatively movable.
  • the rack and pinion mechanism or the gear link mechanism is driven by a rack bar fixed on the insulating nozzle, thereby driving the two arc contacts to perform relative motion.
  • the electric switch arc contact movement curve is relatively simple, and the transmission is relatively small.
  • Document CN101548351A discloses a transmission for an electric circuit breaker to effect the reverse movement of two arcing contacts.
  • the driving rod is hinged with a connecting rod, and the connecting rod is coupled to the driving arm of the two-arm lever through a sliding hinge, the two-arm lever is rotatable about a fixed shaft, and the driven arm of the lever is connected to the arc contact through a connecting rod or a rack gear .
  • the drive end link slides over the lever.
  • the reverse arc contact movement curve of the transmission device is relatively simple.
  • Document CN101202175A discloses a power switch having a dead center transmission mechanism.
  • the driving mechanism driving rod is fixed on the insulating nozzle, the driving rod is hinged with a connecting rod, and the connecting rod is hinged with a driving arm of the two-arm lever which is rotatable about the fixed shaft, and the driven arm of the lever is coupled with the arc contact through the connecting rod.
  • the transmission mechanism has a first dead point.
  • the power switch is constrained by the length of the connecting rod and the lever, and the adjustment of the moving curve of the reverse arc contact is inconvenient.
  • An object of the present invention is to solve the above problems in the prior art and to provide a switching transmission mechanism having a small footprint
  • Another object of the present invention is to provide a power switch having the transmission mechanism of the present invention.
  • the present invention adopts the following technical solutions:
  • the switch transmission mechanism of the invention is used for a switch. a push rod for connecting the first contact, a connecting rod for connecting the second arc contact of the second contact, a drive mechanism coupled to the push rod, and transmitting the motion of the drive mechanism to The driven mechanism of the connecting rod.
  • the switch transmission mechanism further comprises a fixing plate.
  • the fixing plate is provided with a first fixing plate guiding groove for sliding the push rod therein, a second fixing plate guiding groove for sliding the connecting rod therein, and a fixing plate sliding groove.
  • One end of the fixing plate chute is adjacent to the first fixing plate guiding groove, and the other end portion extends toward the second fixing plate guiding groove and extends beyond a portion of the second fixing plate guiding groove.
  • the driving mechanism includes a driving rod, a driving pin and a driving arm, wherein the driving arm is provided with a driving arm chute, and is capable of rotating around a fixed shaft fixed to the fixing plate, one end of the driving rod By rotating A hinge is hinged to the push rod, and the other end fixes the drive pin, and the drive pin is slidable along the drive arm chute and the fixed plate chute.
  • the driven jaw mechanism includes a driven rod and a driven arm, one end of the driven arm is fixed to the driving arm, and the other end is connected to one end of the driven rod through a rotary hinge.
  • the other end of the driven rod is hinged to the connecting rod by a rotary hinge.
  • the first fixing plate guiding groove and the second fixing plate guiding groove are parallel to each other.
  • the center line of the second fixing plate guiding groove is the same as the switch axis.
  • the fixing shaft is fixed to the center of the second fixing plate guiding groove.
  • the fixed plate chute is a straight groove or an arc groove.
  • the fixed plate chute includes a first fixed plate straight groove and at least one circular arc groove which are connected in series at the beginning and the end, and each of the grooves is a smooth transition connection.
  • the fixed plate chute further includes a second fixing plate straight groove connected to the last segment of the arc groove.
  • the second fixing plate straight groove is parallel to the first fixing plate guide
  • one end of the fixed plate sliding groove adjacent to the first fixed plate guiding groove is a proximal end
  • the other end of the guiding plate away from the first fixed plate is a distal end
  • the center of the fixed shaft is
  • the change of the linear distance between the points on the center line of the fixed plate chute is: the linear distance from the distal end to the proximal end is changed from large to small, and the linear distance from the distal end is greater than the distance The straight line distance of the proximal end is 1.3 times.
  • the driving arm chute is a straight groove or an arc groove.
  • the drive arm chute includes a first drive arm straight slot and a second drive arm straight slot at an angle between 120° and 180°.
  • the driving arm and the driven arm are of a unitary structure, or are separated structures and fixedly coupled together.
  • the center line of the driving arm is at an angle to a center line of the slave arm, and the angle is 90°-180°. In an embodiment of the invention, the angle is between 120° and 170°.
  • the ratio of the length of the follower rod to the length of the slave arm is 3: l o
  • the ratio of the length of the follower rod to the length of the slave arm is 2:1.
  • the ratio of the length of the follower rod to the length of the slave arm is 3:
  • the length of the driving rod is 20% to 80% of the switching operation stroke. In an embodiment of the invention, the length of the driving rod is 30% to 70% of the switching operation stroke. In an embodiment of the invention, the length of the driving rod is 40% to 60% of the switching operation stroke. In an embodiment of the invention, in the closed state of the switch, the drive arm chute partially overlaps with the fixed plate chute to form a coincident region.
  • the overlapping area is formed at one end of the drive arm chute and the fixed plate chute.
  • the relationship between the overlapped area to the center line of the first fixed plate guiding groove is L1
  • the relationship between the maximum effective distance L2 and the effective length M of the driving rod is: L1 ⁇ M ⁇ L2.
  • the relationship between the minimum effective distance of the coincidence region to the center line of the first fixed plate guiding groove is L1 and the effective length M of the driving rod is: L1 ⁇ 0.7M.
  • the relationship between the minimum effective distance L1 of the overlapping area to the center line of the first fixed plate guiding groove and the effective length M of the driving rod is: L1 ⁇ 0.8M.
  • the relationship between the minimum effective distance L1 of the overlapping area to the center line of the first fixed plate guiding groove and the effective length M of the driving rod is: L1 ⁇ 0.9M.
  • the driven jaw mechanism includes a driven arm fixed to the driving arm at one end and a driven pin fixed to the other end of the driven arm, and the connecting rod is provided with a connecting rod a sliding groove, the driven pin projects into the connecting rod chute and can slide along the connecting rod chute, thereby converting the rotation of the driven arm into a linear motion of the connecting rod.
  • the connecting rod chute has a "one" shape.
  • a longitudinal center line of the connecting rod chute is perpendicular to a center line of the second fixing plate guiding groove.
  • the driven jaw mechanism includes a rack provided on the connecting rod and a follower disc rotatable with the driving arm, and the outer edge of the driving disc is provided with a movable body The plurality of teeth of the rack fit, by the engagement of the plurality of teeth with the rack, convert the rotation of the drive arm into a linear motion of the connecting rod.
  • the outer edge of the follower disk is curved.
  • the power switch of the present invention comprises a housing, a first contact member disposed in the housing, a second contact member having a second arc contact, and a switching transmission mechanism.
  • the first contact and the second contact can be combined or separated under the action of the driving device to realize the closing and opening of the power switch.
  • the switch transmission mechanism is the switch transmission mechanism of the present invention.
  • the second contact further includes a second main contact.
  • the second main contact is connected to the connecting rod.
  • the fixing plate is provided with a fixing plate chute for sliding the driving pin, and a part of the fixing plate chute is located at the guiding groove of the first fixing plate. Between the second fixed plate guiding groove and the second fixing plate guiding groove, the other portion extends outward beyond the second fixing plate guiding groove, so that the driving mechanism can maintain a small vertical direction perpendicular to the moving direction of the push rod in the necessary large range of motion.
  • the lateral size therefore, the invention takes up less space.
  • the driving arm chute partially overlaps with the fixed plate chute to form a coincident region, so that the second contact member is kept stationary during the initial stage of the switch opening operation, which reduces the motion quality at the initial stage of the opening, and reduces Wear between the two contacts and help speed up the drive.
  • Figure la is a schematic structural view of a first embodiment of the switching transmission mechanism of the present invention.
  • Figure 1b is a partial structural view of the first embodiment of the switch transmission mechanism of the present invention, in which the drive rod is removed to indicate the effective distance L1, L2 of the coincidence area to the center line of the first fixed plate guide groove;
  • Figure 2a to Figure 2g A schematic structural view showing a opening operation process of the first embodiment of the switching transmission mechanism of the present invention;
  • Figure 3a is a view showing the displacement curve of the push rod of the opening process of the first embodiment of the switch transmission mechanism of the present invention and the displacement curve of the connecting rod
  • Figure 3b is a diagram showing the speed curve of the push rod of the opening process of the first embodiment of the switching transmission mechanism of the present invention and the speed curve of the connecting rod;
  • FIG. 4 is a schematic structural view of a second embodiment of the switch transmission mechanism of the present invention.
  • FIG. 5 is a schematic view showing the structure of a third embodiment of the switching transmission mechanism of the present invention. detailed description
  • the first contact member has a first arc contact
  • the second contact member has a second arc contact, but not limited thereto.
  • the power switch is applied.
  • the first contact member and the second contact member should be understood in a broad sense.
  • the first contact member may also have a first main contact at the same time, and the second contact member may have a second main contact. head.
  • Switch transmission mechanism embodiment 1
  • the embodiment of the switch transmission mechanism of the present invention includes a fixing plate 30, a push rod 10 for connecting the first contact member, a connecting rod 20, a driving mechanism connected to the push rod 10, and a driving mechanism.
  • the motion of the mechanism is transmitted to the driven jaw mechanism of the connecting rod 20.
  • the fixing plate 30 is provided with first fixing plate guiding grooves 31 and second fixing plate guiding grooves 32 which are parallel to each other, and fixing plate sliding grooves 33.
  • One end of the fixing plate chute 33 is adjacent to the first fixing plate guiding groove 31, and the other end portion extends toward the second fixing plate guiding groove 32 and extends beyond the second fixing plate guiding groove 32, as shown in FIG.
  • the chute 33 extends obliquely from the lower left to the upper right. That is, in the embodiment, a portion of the fixed plate chute 33 is located between the first fixed plate guide groove 31 and the second fixed plate guide groove 32, and the other portion is outwardly beyond the second fixed plate guide groove 32.
  • the center line of the second fixed plate guide groove 32 is on the same line as the switch axis.
  • the drive mechanism includes a drive rod 11, a drive pin 12, and a drive arm 24.
  • One end of the drive rod 11 is hinged to the push rod 10 by a rotary hinge, and the other end fixes the drive pin 12.
  • the driving arm 24 is rotatable about the fixed shaft 23, and the fixed shaft 23 is fixed to the fixing plate 30.
  • the fixed shaft 23 can be fixed to the center line of the second fixed plate guide groove 32 or two lines at the center line as needed.
  • the axis of the fixed shaft 23 is perpendicular to the center line of the second fixed plate guide groove 32, that is, the axis of the fixed shaft 23 is perpendicular to the switch axis.
  • a drive arm chute 25 is opened on the drive arm 24.
  • the drive pin 12 is slidable along the drive arm chute 25 and the fixed plate chute 33.
  • the drive arm chute 25 and the fixed plate chute 33 partially overlap each other to form a coincident region 36.
  • the minimum effective distance of the coincidence region 36 to the center line of the first fixed plate guiding groove 31 is L1
  • the maximum effective distance of the coincident region 36 to the center line of the first fixed plate guiding groove 31 is L2, then L1, L2 and the driving rod 11
  • the relationship between the lengths M should satisfy L1 ⁇ M ⁇ L2.
  • the ratio of L1 to M should be not less than 0.9: 1, or not less than 0.8: 1, or even not less than 0.7:1.
  • the minimum effective distance L1 and the maximum effective distance L2 of the coincidence region 36 to the center line of the first fixed plate guiding groove 31 are defined as follows: In the closed state of the switch, the driving pin 12 is overlapped under the constraint of the driving rod 11 In the region 36, the minimum distance between the center line of the driving pin 12 and the center line of the first fixed plate guiding groove 31 is L1, and the maximum distance is L2.
  • the coincidence region 36 corresponds to the initial stage of the switch opening operation (ie, the end of the switch closing operation).
  • the second arc contact remains stationary at the beginning of the opening operation, thereby reducing the motion quality at the initial stage of the opening and speeding up the speeding up of the drive unit.
  • the arc contact has not been separated at the beginning of the switch opening operation; at the end of the switch closing operation, the arc contact has been touched.
  • the shape of the chute of the overlapping area can be designed as a circular arc groove, a straight groove or the like, and is preferably a straight groove.
  • the driven jaw mechanism includes a follower lever 21 and a follower arm 22.
  • One end of the driven arm 22 is fixed to the driving arm 24, and the other end is connected to one end of the driven rod 21 through a rotary hinge.
  • the other end of the driven rod 21 is hinged to the connecting rod 20 through a rotary hinge, and the other end of the connecting rod 20 is used for connection.
  • the second arc contact (not shown).
  • the connecting rod 20 is slidable along the second fixed plate guide groove 32, i.e., in the direction of the switch axis.
  • the driving arm 24 and the driven arm 22 may be an integral structure, or may be a separate structure and fixedly connected by welding or the like.
  • the drive arm 24 and the follower arm 22 form a lever structure, and the fixed shaft 23 can be provided at the junction of the drive arm 24 and the follower arm 22.
  • the follower rod 21 is preferably a straight rod, of course not limited thereto.
  • the driving rod 11 is preferably a straight rod, of course not limited thereto.
  • the length M of the driving rod 11 is about 40% to 60% of the switching operation stroke, which may be 30% to 70%, or even 20% to 80% of the switching operation stroke.
  • One end of the driving rod 11 is hinged to the push rod 10 through a rotary hinge, and the other end of the push rod 10 is fixedly coupled to the first contact member, and the push rod 10 is slidable along the first fixed plate guiding groove 31 by the first contact member.
  • the other end of the driving rod 11 is fixed with a driving pin 12 which is disposed in the fixing plate sliding groove 33 or penetrates the fixing plate sliding groove 33 and penetrates through the driving arm sliding groove 25.
  • the drive pin 12 can simultaneously be in the fixed plate chute 33 and the drive arm chute
  • the inner portion of the second arc guide is moved by the second fixed plate guide groove 32, and the second arc contact is moved. Since the connecting rod 20 is fixedly connected with the second arc contact, the push rod 10 is fixedly connected with the first contact member, so the speed ratio of the connecting rod 20 to the push rod 10 is the transmission ratio of the transmission mechanism.
  • the drive arm chute 25 can be a straight slot or an arcuate slot.
  • the drive arm chute 25 is formed by the intersection of two straight grooves, that is, the drive arm chute 25 includes a first drive arm straight groove 251 and a second drive arm straight groove 252 at an angle ⁇ therebetween. , angle ⁇ is 120 ° -180 °. And the intersection of the first drive arm straight groove 251 and the second drive arm straight groove 252 smoothly transitions through the circular arc, so that the resistance of the drive pin 12 along the drive arm chute 25 is small.
  • the drive pin 12 slides along the fixed plate chute 33, so that the shape of the fixed plate chute 33 defines the trajectory of the drive pin 12.
  • the fixed plate chute 33 may be a continuous groove or an arc groove as a whole.
  • the fixed plate sliding groove 33 is a combination of a straight groove and a circular groove, and the circular groove portion is composed of two tangential circular arc grooves, and each of the sliding grooves smoothly transitions, and the sliding groove of the overlapping portion is a straight groove.
  • the fixed plate chute 33 includes a first fixed plate straight groove 331 and a first circular arc groove 332 and a second circular arc groove 333 which are sequentially connected end to end, and a smooth transition connection between each of the sliding grooves is performed.
  • the tangent to the end of the second circular arc groove 333 is parallel to the first fixed plate guide groove 31.
  • the fixed plate chute 33 is designed such that the moving curve of the arc contact can better meet the needs of current breaking.
  • the coincidence region 36 is formed by the first drive arm straight groove 251 in the drive arm chute 25 being overlapped with the first fixed plate straight groove 331 in the fixed plate chute 33.
  • the fixing plate chute 33 further includes a second straight groove 334 connected to the second circular arc groove 333.
  • the second straight groove 334 extends along a tangential direction of the end of the second circular arc groove 333, and the second straight groove 334 Adjacent and parallel to the first fixed plate guiding groove 31.
  • the first straight groove 331 is located at an upper portion of the fixed plate 30 and above the second fixed plate guide groove 32.
  • the arc groove portion of the fixed plate chute 33 may be only one segment, or may be connected by more segments along the tangential direction, and the arrangement order and position of each segment arc groove may also be changed, adjacent to the first fixed
  • the straight groove of the plate guide groove 31 can also cancel or change the inclination angle as needed.
  • One end of the fixed plate chute 33 adjacent to the first fixed plate guiding groove 31 is a proximal end, and the other end of the fixed plate guiding groove 31 is a distal end, and the center of the fixed shaft 23 is The change of the linear distance between the points on the center line of the fixed plate chute 33 is: the linear distance from the distal end to the proximal end is changed from large to small, and the linear distance from the distal end is greater than the distance.
  • the straight line distance of the proximal end is 1.3 times. In this way, the rotational angular velocity of the drive arm 24 is made smaller and smaller, so that a more suitable gear ratio is obtained.
  • the ratio of the length of the follower lever 21 to the slave arm 22 should be controlled within a certain range. If the follower lever 21 is long and the slave arm 22 is short, the maximum output speed ratio of the transmission mechanism will be small; if the follower lever 21 is close to the length of the slave arm 22, the maximum output speed of the transmission mechanism is relatively large. However, at the same time, the sliding resistance of the connecting rod 20 is increased, and the burden on the transmission mechanism is heavier. In the present invention, the ratio of the length of the driven rod 21 to the driven arm 22 is designed to be about 1.5.
  • the ratio is not limited thereto, and considering the overall size of the switch, the operating stroke, the opening and closing speed, etc.,
  • the length ratio of the moving rod 21 to the driven arm 22 is designed to be 1 to 2, and even in the range of 1 to 3 is feasible.
  • the centerline of the drive arm 24 is at an angle to the centerline of the follower arm 22, and the angle ⁇ can be adjusted to change the timing of the maximum output speed of the transmission.
  • the angle ⁇ may be from 90° to 180°, preferably from 120° to 170°, and in the embodiment, the bending angle of the driving arm and the follower arm is about 150°.
  • the distance dl between the center line of the first fixing plate guiding groove 31 and the center line of the second fixing plate guiding groove 32 is smaller than the length of the driving rod 11, and the one end of the fixing plate sliding groove 33 away from the first fixing plate guiding groove 31
  • the vertical distance d2 to the first fixed plate guide groove 31 is larger than the length of the drive rod 11.
  • the coincidence region 36 and the first fixing plate guiding groove 31 are respectively located at two turns of the second fixing plate guiding groove 32.
  • the transmission mechanism has a large range of motion necessary for the first contact member, that is, a large operation stroke of the switch (the operating stroke of the switch refers to the moving distance of the first contact member, that is, the moving distance of the push rod 10). It is also possible to maintain a small transverse dimension perpendicular to the direction of movement of the first contact.
  • FIG. 1 when the first contact member (not shown) drives the push rod 10 to move to the right, the switch performs a closing operation; when the first contact member (not shown) drives the push rod 10 to move to the left, The switch performs the opening operation.
  • the position shown in FIG. 1 is the switch closing position.
  • the driving pin 12 slides in the overlapping area 36, because the guiding path of the first driving arm straight groove 251 and the first fixing plate straight groove 331 is identical, Therefore, the drive arm 24 is not driven to remain stationary, so that the connecting rod 20 and the second arc contact fixedly connected thereto remain stationary.
  • FIG. 2a to FIG. 2g are schematic diagrams showing the opening operation process of the embodiment of the switching transmission mechanism of the present invention.
  • Fig. 2a shows the switch closing position.
  • the first contact member (not shown) drives the push rod 10 to move to the left.
  • 2a to 2c are the initial stages of the switch opening operation, during which the driving pin 12 moves in the overlapping area 36, the driving arm 24 is not driven, the connecting rod 20 and the second arcing contact (not shown) Out) Keep still.
  • the driving pin 12 will move out of the overlapping area 36 and slide along the fixed plate chute 33 in the direction of the first fixed plate guiding groove 31.
  • the middle driving arm 24 is driven by the driving pin 12 to rotate about the fixed shaft 23, and the driven arm 22 rotates to drive the follower rod 21, and the driven rod 21 pulls the connecting rod 20 and the second arc contact along the second fixed
  • the plate guide groove 32 slides to the right. During this period of time, the sliding speed of the connecting member 20 and the second arcing contact gradually increases from small to then decreases.
  • Figure 2g shows the end position of the switch.
  • Figure 3a shows the displacement curve 19 of the push rod 10 (first contact) and the displacement curve 29 of the connecting rod 20 (second arc contact), where 29a to 29g correspond to the respective states in Figures 2a to 2g, respectively.
  • Figure 3b shows the speed curve 39 of the push rod 10 (first contact) and the speed curve 49 of the connecting rod 20 (second arc contact), which is assumed to be a constant value.
  • 49a to 49g correspond to the respective states in Figs. 2a to 2g.
  • the switch opening process is divided into three stages, 49a to 49c are the first stage of opening, in which the contact parts have not been separated, the transmission ratio of the transmission mechanism is zero, and the contact parts have a lower relative speed. Movement, the quality of the movement is small, and the wear between the contacts is also small.
  • 49c to 49e are the second stage of opening, the connecting rod 20 (second arc contact) starts to move in the opposite direction with respect to the push rod 10 (first contact), and the transmission ratio of the transmission mechanism increases from zero, the arc contact In the second phase of the opening, the arc is separated and an arc is generated, and then the transmission ratio of the transmission reaches a maximum value due to the false
  • the speed of the push rod 10 is constant, and the reverse movement speed of the connecting rod 20 (second arc contact) also reaches a maximum value, so that the arc is rapidly elongated.
  • the transmission ratio of the transmission mechanism is not more than 1.5:1, preferably not more than 1:1, particularly preferably not more than 0.5:1.
  • 49e to 49g is the third stage of the opening, and the transmission ratio of the transmission mechanism is reduced from the maximum value.
  • the arc is further elongated and extinguished, and the speed of the connecting rod 20 (second arc contact) also decreases from the maximum value.
  • the abscissa is time and the ordinate is the speed of the second arc contact (connecting rod 20).
  • the opening process is divided into three stages along the abscissa: the first stage is the time corresponding to 49a-49c, and the second stage is the time corresponding to 49c-49e, the first The three stages are the time corresponding to 49e-49g.
  • the ratio of the time of the first stage to the time taken for the entire operation stroke is not more than 50%, preferably not more than 40%, and particularly preferably not more than 30%.
  • the ratio of the second phase of the switch opening process to the time taken for the entire operating stroke is no more than 50%. Since the speed of the push rod 10 is assumed to be constant, the above time ratio is also equivalent to the ratio between the strokes, that is, the ratio of the time of the first stage to the time taken by the entire operation stroke is equal to the ratio of the stroke of the first stage to the entire operation stroke, second The ratio of the time of the phase to the time taken for the entire operating stroke is equivalent to the ratio of the stroke of the second phase to the entire operating stroke.
  • Fig. 4a is a second embodiment of the switch gear mechanism of the present invention, and the switch gear mechanism of the second embodiment is different from the first embodiment in that the slave mechanism includes a follower arm 22 and a follower pin 26.
  • the slave mechanism includes a follower arm 22 and a follower pin 26.
  • one end of the slave arm 22 is fixedly coupled to the driving arm 24, and the other end fixes the driven pin 26.
  • the connecting rod 20 is provided with a connecting rod chute 201, and the driven pin 26 extends into the connecting rod chute 201 and can slide along the connecting rod chute 201, thereby converting the rotation of the driven arm 22 into the linear motion of the connecting rod 20.
  • the connecting rod chute 201 has a "one" shape, and further preferably, the longitudinal center line of the "one" shaped connecting rod chute 201 is perpendicular to the center line of the second fixed plate guiding groove 32.
  • Switch transmission mechanism embodiment 3 The structure of the other portions of the switching transmission mechanism of the second embodiment is the same as that of the first embodiment, and will not be described again.
  • Switch transmission mechanism embodiment 3 is the same as that of the first embodiment, and will not be described again.
  • Figure 4b is a third embodiment of the switching transmission mechanism of the present invention, the switching transmission of the third embodiment
  • the mechanism differs from the first embodiment in that the slave mechanism includes a rack 202 and a follower disk 27 that is rotatable with the drive arm 24.
  • the rack 202 is disposed on the connecting rod 20, and the follower disc 27 is disposed at the end of the driving arm 24.
  • the outer edge of the follower disk 27 is provided with a plurality of teeth 271 that can be engaged with the rack 202.
  • the rotation of the drive arm 24 is converted into a linear motion of the connecting rod 20 by the engagement of the rack 202 with the plurality of teeth 271.
  • the shape of the outer edge of the follower disk 27 is preferably an arc shape, and is particularly preferably a circular arc shape.
  • the outer edge of the follower disk 27 can also be designed in other shapes.
  • the rack 202 and the connecting rod 20 may be of independent construction, joined together by welding, preferably both.
  • the follower disk 27 and the drive arm 24 may be of independent construction, joined together by welding, preferably both.
  • the driven mechanism can also be a crank slider, a fork, etc., which are not one by one.
  • Power switch
  • the power switch of the present invention comprises a housing, a first contact member, a second contact member and a switch transmission mechanism disposed in the housing, wherein the first contact member and the second contact member can be combined under the action of the driving device or The closing and opening of the power switch are achieved by separation.
  • the switch transmission mechanism is the switch transmission mechanism of the present invention.
  • the second contact member includes a second main contact (not shown) in addition to the second arc contact.
  • the connecting rod 20 is simultaneously connected to the second main contact, the second main contact and the second arc contact can be driven to perform reverse movement together.
  • the switching transmission mechanism and the power switch of the invention can be widely used in the electrical field.
  • the switch transmission mechanism and the power switch of the invention are simple and reliable, occupy small space, especially the transverse dimension perpendicular to the moving direction is small, and the diameter of the pole of the switch product is not increased; the switching transmission mechanism of the invention can achieve better reverse The motion characteristics, the motion curve of the reverse arc contact can better meet the needs of current breaking and improve the breaking performance of the electrical switch.
  • the switching transmission mechanism and the power switch of the invention can be widely used in the electrical field. While the invention has been described with reference to the exemplary embodiments of the embodiments, the The present invention may be embodied in a variety of forms without departing from the spirit or scope of the invention. It is to be understood that the invention is not limited to the details of the invention. All changes and modifications that come within the scope of the claims and their equivalents are intended to be embraced by the appended claims.

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

本发明提供一种开关传动机构和功率开关。开关传动机构包括用于连接第一接触件的推杆、用于连接第二弧触头的连接杆、驱动侧机构及从动侧机构。固定板上设有供推杆在其内滑动的第一固定板导向槽、供连接杆在其内滑动的第二固定板导向槽以及固定板滑槽。固定板滑槽的一端部邻近第一固定板导向槽,另一端部向第二固定板导向槽方向延伸并超出第二固定板导向槽一部分。驱动侧机构包括驱动杆、驱动销和驱动臂,驱动臂上设有驱动臂滑槽,并能绕固定于固定板的固定轴转动的驱动臂,驱动杆的一端通过旋转铰链与推杆铰接,另一端固定驱动销,驱动销能沿驱动臂滑槽和固定板滑槽滑动。本发明的开关传动机构占用空间小,并且弧触头的运动曲线能更好地满足电流开断的需要。

Description

开关传动机构和功率开关
技术领域
本发明涉及一种具有反向运动的开关传动机构以及具有该开关传动的功
背景技术
功率开关包括第一接触件和第二接触件。 第一接触件可在驱动装置驱动 下与第二接触件连接或分离, 实现开关的合闸与分闸。 在操作过程中, 第一 接触件通过一传动机构将运动传递给第二接触件, 使其以与第一接触件相反 的方向运动。 通过这种相反方式运动, 能使接触件实现高的分离速度, 同时 降低驱动装置的操作功。
例如, 文献 EP 0809269公开了一种高压电气开关, 其包括两个同轴的、 可相对移动的弧触头。 通过固定在绝缘喷嘴上的驱动杆来驱动可绕固定轴转 动的两臂杠杆, 从而带动弧触头做反向运动。 该高压电气开关若开关操作行 程较大, 则杠杆驱动端会很长, 占用空间较大, 且反向弧触头运动曲线较单 文献 CN1357901A公开了一种电气开关, 其包括两个可反向移动的弧触 头。 通过固定在绝缘喷嘴上的驱动杆来驱动杠杆绕固定轴转动, 杠杆的从动 臂设计成凸轮, 由凸轮带动两个弧触头做反向运动。 该电气开关当开关操作 行程较大时, 杠杆驱动端会很长, 占用较大空间。
文献 EP 0822565公开了一种电气开关, 其包括两个可反向移动的触头。 这两个触头通过绝缘喷嘴与杠杆机构联接, 由绝缘喷嘴上的驱动杆来驱动杠 杆机构, 从而实现两个弧触头的反向运动。该电气开关若开关操作行程较大, 则杠杆驱动端会很长, 占用空间较大, 且反向弧触头运动曲线较单一。
文献 CN1128892A公开了一种电气开关, 其包括两个可相对移动的弧触 头。 通过固定在绝缘喷嘴上的齿杆来驱动齿轮齿条机构或齿轮连杆机构, 从 而带动两个弧触头做相对运动。 该电气开关弧触头运动曲线较单一, 且传动 比较小。 文献 CN101548351A公开了一种用于电断路器的传动装置, 以实现两个 弧触头的反向运动。 驱动杆与一连杆铰接, 该连杆通过滑移铰链联接两臂杠 杆的驱动臂, 该两臂杠杆可绕固定轴转动, 杠杆的从动臂通过连杆或齿轮齿 条与弧触头连接。 操作时, 驱动端连杆可在杠杆上滑动。 该传动装置反向弧 触头运动曲线较单一。
文献 CN101202175A公开了一种具有带死点传动机构的功率开关。 传动 机构驱动杆固定在绝缘喷嘴上, 驱动杆与一连杆铰接, 该连杆与可绕固定轴 转动的两臂杠杆的驱动臂铰接, 杠杆的从动臂通过连杆与弧触头联接, 其中 传动机构具有第一死点。 该功率开关受连杆及杠杆长度约束, 反向弧触头运 动曲线调整不方便。
综上所述, 现有的开关中, 可实现两个弧触头的相对运动 (反向或同向 运动) , 但这些开关中的传动机构大多需占用较大的空间, 影响灭弧室或断 路器的尺寸, 尤其是垂直于运动方向的横向尺寸, 当开关的操作行程较大时, 此问题尤为突出。 另外, 传统的功率开关中, 弧触头的运动曲线常常不令人 满意, 不能很好地满足电流开断的需要。 发明内容
本发明的一个目的在于解决上述现有技术中的问题, 提供一种占用空间 小的开关传动机构;
本发明的另一个目的在于,提供一种具有本发明的传动机构的功率开关。 为实现上述目的, 本发明采用如下技术方案:
本发明的开关传动机构, 用于开关。 包括用于连接第一接触件的推杆、 用于连接第二接触件的第二弧触头的连接杆、 与所述推杆连接的驱动恻机构 以及将所述驱动恻机构的运动传递至所述连接杆的从动恻机构。 其中, 所述 开关传动机构还包括固定板。 所述固定板上设有供所述推杆在其内滑动的第 一固定板导向槽、 供所述连接杆在其内滑动的第二固定板导向槽以及固定板 滑槽。 所述固定板滑槽的一端部邻近所述第一固定板导向槽, 另一端部向所 述第二固定板导向槽方向延伸并超出所述第二固定板导向槽一部分。 所述驱 动恻机构包括驱动杆、 驱动销和驱动臂, 所述驱动臂上设有驱动臂滑槽, 并 能绕固定于所述固定板的固定轴转动的驱动臂, 所述驱动杆的一端通过旋转 铰链与所述推杆铰接, 另一端固定所述驱动销, 所述驱动销能沿所述驱动臂 滑槽和所述固定板滑槽滑动。
在本发明一实施例中, 所述从动恻机构包括从动杆和从动臂, 所述从动 臂的一端固定于所述驱动臂, 另一端通过旋转铰链连接所述从动杆的一端, 所述从动杆的另一端通过旋转铰链与所述连接杆铰接。
在本发明一实施例中, 所述第一固定板导向槽与所述第二固定板导向槽 相互平行。
在本发明一实施例中, 所述第二固定板导向槽的中心线与开关轴线在同 在本发明一实施例中, 所述固定轴固定于所述第二固定板导向槽的中心 在本发明一实施例中, 所述固定板滑槽为一直槽或弧形槽。
在本发明一实施例中, 所述固定板滑槽包括首尾依次连接的第一固定板 直槽和至少一段圆弧槽, 且各段槽为圆滑过渡连接。
在本发明一实施例中, 所述固定板滑槽还包括连接于最末一段圆弧槽的 第二固定板直槽。
在本发明一实施例中, 所述第二固定板直槽平行于所述第一固定板导向
1曰。
在本发明一实施例中, 固定板滑槽邻近所述第一固定板导向槽的一端为 近端, 远离所述第一固定板导向槽的另一端为远端, 所述固定轴的中心到所 述固定板滑槽的中心线上各点之间的直线距离的变化为: 由所述远端到近端 所述直线距离由大变小再变大, 且距离远端的直线距离大于距离近端的直线 距离 1.3倍。
在本发明一实施例中, 所述驱动臂滑槽为一直槽或一弧形槽。
在本发明一实施例中, 所述驱动臂滑槽包括第一驱动臂直槽和第二驱动 臂直槽, 二者之间成一角度, 该角度为 120° -180° 。
在本发明一实施例中, 所述驱动臂和从动臂为一体结构, 或者是分体结 构并固定连接在一起。
在本发明一实施例中, 所述驱动臂的中心线与所述从动臂的中心线成一 角度, 所述角度为 90°-180°。 在本发明一实施例中, 所述角度为 120°-170°。
在本发明一实施例中, 所述从动杆的长度与所述从动臂的长度之比为 3 : l o
在本发明一实施例中, 所述从动杆的长度与所述从动臂的长度之比为 2: 1。
在本发明一实施例中, 所述从动杆的长度与所述从动臂的长度之比为 3 :
2。
在本发明一实施例中, 所述驱动杆的长度是开关操作行程的 20%~80%。 在本发明一实施例中, 所述驱动杆的长度是开关操作行程的 30%~70%。 在本发明一实施例中, 所述驱动杆的长度是开关操作行程的 40%~60%。 在本发明一实施例中, 在所述开关合闸状态下, 驱动臂滑槽与固定板滑 槽有部分重合, 形成重合区域。
在本发明一实施例中, 所述重合区域形成于所述驱动臂滑槽与固定板滑 槽的一端部。
在本发明一实施例中, 所述重合区域到所述第一固定板导向槽中心线的 最小有效距离为 Ll、最大有效距离为 L2与所述驱动杆的有效长度 M之间的 关系为: L1<M <L2。
在本发明一实施例中, 所述重合区域到所述第一固定板导向槽中心线的 最小有效距离为 L1与所述驱动杆的有效长度 M之间的关系为: L1≥0.7M。
在本发明一实施例中, 所述重合区域到所述第一固定板导向槽中心线的 最小有效距离为 L1与所述驱动杆的有效长度 M之间的关系为: L1≥0.8M。
在本发明一实施例中, 所述重合区域到所述第一固定板导向槽中心线的 最小有效距离为 L1与所述驱动杆的有效长度 M之间的关系为: L1≥0.9M。
在本发明一实施例中, 所述从动恻机构包括一端固定于所述驱动臂的从 动臂和固定于所述从动臂另一端部的从动销,所述连接杆上设有连接杆滑槽, 所述从动销伸入所述连接杆滑槽并能沿着所述连接杆滑槽滑动, 从而将所述 从动臂的转动转变成连接杆的直线运动。
在本发明一实施例中, 所述连接杆滑槽呈 "一"字形。
在本发明一实施例中, 所述连接杆滑槽的纵向中心线垂直于所述第二固 定板导向槽的中心线。 在本发明一实施例中, 所述从动恻机构包括设于所述连接杆的齿条和能 随所述驱动臂转动的随动盘, 所述随动盘的外边缘设有能与所述齿条配合的 若干个齿, 通过所述若干个齿与所述齿条的啮合配合, 将所述驱动臂的转动 转换成所述连接杆的直线运动。
在本发明一实施例中, 所述随动盘的外边缘为弧形。
本发明的功率开关, 包括壳体、 设于所述壳体内的第一接触件、 具有第 二弧触头的第二接触件及开关传动机构。 所述第一接触件和第二接触件在驱 动装置作用下能够结合或分离而实现所述功率开关的合闸和分闸。 其中所述 开关传动机构是本发明所述的开关传动机构。
在本发明一实施例中, 所述第二接触件还包括第二主触头。
在本发明一实施例中, 所述第二主触头连接于所述连接杆。
由上述技术方案可知, 本发明开关传动机构和功率开关的优点和积极效 果在于: 固定板上设有供驱动销滑动的固定板滑槽, 且固定板滑槽的一部分 位于第一固定板导向槽和第二固定板导向槽之间, 另一部分向外超出第二固 定板导向槽, 使得推杆在必备的大的运动范围情况下, 传动机构能保持较小 的垂直于推杆运动方向的横向尺寸, 因此, 本发明占用空间小。 进一步地, 驱动臂滑槽与固定板滑槽有部分重合而形成重合区域, 使第二接触件在开关 分闸操作的初始阶段保持静止, 减小了分闸起始阶段的运动质量, 降低了两 个接触件间的磨损, 并有利于加快驱动装置提速。
本发明中通过以下参照附图对优选实施例的说明, 本发明的上述以及其 它目的、 特征和优点将更加明显。 附图说明
图 la是本发明的开关传动机构第一实施例的结构示意图;
图 lb是本发明的开关传动机构第一实施例的部分结构示意图,其中拆除 了驱动杆,以示意出重合区域到第一固定板导向槽中心线的有效距离 L1、L2; 图 2a至图 2g表示本发明的开关传动机构第一实施例的分闸操作过程的 结构示意图;
图 3a表示本发明的开关传动机构第一实施例分闸过程推杆的位移曲线 和连接杆的位移曲线; 图 3b表示本发明的开关传动机构第一实施例分闸过程推杆的速度曲线 和连接杆的速度曲线;
图 4是本发明的开关传动机构第二实施例的结构示意图;
图 5是本发明的开关传动机构第三实施例的结构示意图。 具体实施方式
下面将详细描述本发明的具体实施例。 应当注意, 这里描述的实施例只 用于举例说明, 并不用于限制本发明。
本发明实施例中, 第一接触件带有第一弧触头, 第二接触件带有第二弧 触头, 但不以此为限, 在其它一些实施例中, 例如应用于除功率开关之外的 其它断路器等装置中, 第一接触件、 第二接触件应作广义理解, 例如第一接 触件还可以同时带有第一主触头, 第二接触件带有第二主触头。 开关传动机构实施例 1
如图 1所示, 本发明的开关传动机构实施例中, 包括固定板 30、 用于连 接第一接触件的推杆 10、 连接杆 20、 与推杆 10连接的驱动恻机构以及将驱 动恻机构的运动传递至连接杆 20的从动恻机构。
固定板 30上设有相互平行的第一固定板导向槽 31和第二固定板导向槽 32, 以及固定板滑槽 33。固定板滑槽 33的一端部邻近第一固定板导向槽 31, 另一端部向第二固定板导向槽 32方向延伸并超出第二固定板导向槽 32—部 分, 如图 1所示, 固定板滑槽 33由左下方向右上方倾斜延伸。 也就是说, 本 实施例中, 固定板滑槽 33的一部分位于第一固定板导向槽 31和第二固定板 导向槽 32之间, 另一部分向外超出第二固定板导向槽 32。 第二固定板导向 槽 32的中心线与开关轴线在同一条直线上。
驱动恻机构包括驱动杆 11、驱动销 12和驱动臂 24。驱动杆 11的一端通 过旋转铰链与推杆 10铰接, 另一端固定驱动销 12。驱动臂 24可绕固定轴 23 转动, 固定轴 23固定于固定板 30上。根据需要, 固定轴 23可固定于第二固 定板导向槽 32的中心线上或在中心线两恻。 固定轴 23的轴线与第二固定板 导向槽 32的中心线垂直, 即固定轴 23轴线与开关轴线垂直。驱动臂 24上开 有驱动臂滑槽 25。 驱动销 12能沿驱动臂滑槽 25和固定板滑槽 33滑动。 在 开关合闸状态下, 驱动臂滑槽 25与固定板滑槽 33有部分相互重合, 形成重 合区域 36。设重合区域 36到第一固定板导向槽 31中心线的最小有效距离为 L1 , 重合区域 36到第一固定板导向槽 31中心线的最大有效距离为 L2, 则 Ll、 L2与驱动杆 11的长度 M之间的关系应满足 L1<M<L2。 L1与 M之比应 不小于 0.9: 1, 也可不小于 0.8: 1, 甚至不小于 0.7: 1。 其中重合区域 36 到第一固定板导向槽 31中心线的最小有效距离 L1和最大有效距离 L2的定 义如下: 在开关合闸状态下, 让驱动销 12在不受驱动杆 11的约束下在重合 区域 36里滑动,在驱动销 12所能到达的最大范围内, 驱动销 12中心线到第 一固定板导向槽 31中心线的最小距离即为 L1 , 最大距离即为 L2。
重合区域 36对应于开关分闸操作的初期(即开关合闸操作的末期) 。 通 过设置该重合区域 36, 第二弧触头在分闸操作的开始阶段保持静止, 从而减 小了分闸起始阶段的运动质量, 加快驱动装置提速过程。 同时, 开关分闸操 作的初期, 弧触头尚未分离; 开关合闸操作的末期, 弧触头已经接触上。 在 这两个时间段内, 最好使两个触头以较低的相对速度运动, 以减小触头间的 磨损。通过上述重合区域 36的设置, 可将这两个时间段内弧触头间的磨损降 到最小。 该重合区域的滑槽形状可设计为圆弧槽、 直槽等, 优选为直槽。
开关传动机构第一实施例中, 从动恻机构包括从动杆 21和从动臂 22。 从动臂 22的一端固定于驱动臂 24, 另一端通过旋转铰链连接从动杆 21的一 端, 从动杆 21的另一端通过旋转铰链与连接杆 20铰接, 连接杆 20的另一端 用于连接第二弧触头 (图中未示出) 。 连接杆 20能沿着第二固定板导向槽 32滑动,即沿着开关轴线方向滑动。驱动臂 24与从动臂 22可以是一体结构, 也可以是分体结构再经焊接等方式固定连接在一起。 驱动臂 24和从动臂 22 形成杠杆结构, 固定轴 23可设于驱动臂 24和从动臂 22的连接处。
从动杆 21优选为一根直杆, 当然不以此为限。 驱动杆 11优选为一根直 杆,当然不以此为限。驱动杆 11的长度 M是开关操作行程的 40%~60%左右, 其可以是开关操作行程的 30%~70%, 甚至 20%~80%。驱动杆 11的一端通过 旋转铰链与推杆 10铰接, 推杆 10的另一端与第一接触件固定连接, 且推杆 10可在第一接触件带动下沿第一固定板导向槽 31滑动。驱动杆 11的另一端 固定有驱动销 12,驱动销 12设置于固定板滑槽 33内或者贯穿固定板滑槽 33, 并同时贯穿驱动臂滑槽 25。驱动销 12可同时在固定板滑槽 33和驱动臂滑槽 25内滑动, 从而推动驱动臂 24绕固定轴 23转动, 进一步带动连接杆 20沿 第二固定板导向槽 32运动, 同时带动第二弧触头运动。 由于连接杆 20与第 二弧触头固定连接, 推杆 10与第一接触件固定连接, 所以连接杆 20与推杆 10的速度比即为该传动机构的传动比。
驱动臂滑槽 25可以是一直槽或弧形槽。 在一实施例中, 驱动臂滑槽 25 由两段直槽相交而成,即驱动臂滑槽 25包括第一驱动臂直槽 251和第二驱动 臂直槽 252, 二者之间成一角度 γ, 角度 γ为 120 ° -180° 。 且第一驱动臂直 槽 251和第二驱动臂直槽 252的相交处通过圆弧平滑过渡, 这样使得驱动销 12沿着驱动臂滑槽 25滑动时阻力较小。
驱动销 12沿着固定板滑槽 33滑移,因此固定板滑槽 33的形状限定了驱 动销 12的滑行轨迹。 固定板滑槽 33可以整体为一直槽或弧形槽。 优选地, 固定板滑槽 33为直槽与圆弧槽的组合, 圆弧槽部分为两段相切的圆弧槽组 成, 各段滑槽之间平滑过渡, 重合区域的滑槽为直槽。 在一优选实施例中, 固定板滑槽 33包括首尾依次连接的第一固定板直槽 331和第一圆弧槽 332、 第二圆弧槽 333, 且各段滑槽之间平滑过渡连接, 第二圆弧槽 333末端的切 线与第一固定板导向槽 31平行。 如此设计的固定板滑槽 33, 使弧触头的运 动曲线能更好地满足电流开断的需要。 此时, 重合区域 36由驱动臂滑槽 25 中的第一驱动臂直槽 251与固定板滑槽 33中的第一固定板直槽 331重合而形 成。
进一步地,固定板滑槽 33还包括连接于第二圆弧槽 333的第二直槽 334, 第二直槽 334沿着第二圆弧槽 333末端的切线方向延伸, 且第二直槽 334邻 近并平行于第一固定板导向槽 31。 第一直槽 331位于固定板 30的上部, 并 位于第二固定板导向槽 32上方。 根据需要, 固定板滑槽 33中的圆弧槽部分 可仅为一段, 亦可由更多段沿切线方向连接而成, 且各段圆弧槽的布置顺序 及位置亦可改变,邻近第一固定板导向槽 31的直槽亦可根据需要取消或改变 倾斜角度。
沿着固定板滑槽 33, 在距离驱动臂转动轴 23越近的位置, 驱动臂 24的 转动角速度越大, 越有利于提高传动机构的传动比; 同时, 传动机构需要的 驱动力也越大。固定板滑槽 33邻近所述第一固定板导向槽 31的一端为近端, 远离所述第一固定板导向槽 31的另一端为远端, 所述固定轴 23的中心到所 述固定板滑槽 33的中心线上各点之间的直线距离的变化为:由所述远端到近 端所述直线距离由大变小再变大, 且距离远端的直线距离大于距离近端的直 线距离 1.3倍。 通过这种方式, 使驱动臂 24的转动角速度由小变大再变小, 从而获得更适合的传动比。
从动杆 21与从动臂 22的长度比例应控制在一定范围。 如果从动杆 21 很长, 从动臂 22很短, 则传动机构的最大输出速度比会较小; 如果从动杆 21与从动臂 22的长度相近, 则传动机构的最大输出速度比较大, 但同时连 接杆 20的滑动阻力增加, 传动机构的负担较重。 本发明中将从动杆 21与从 动臂 22的长度比设计为 1.5左右, 当然该比例不以此为限, 综合考虑开关的 总体尺寸、 操作行程、 分合闸速度等因素, 可将从动杆 21与从动臂 22的长 度比设计为 1~2, 甚至设计为 1~3的范围内均是可行的。
另外, 驱动臂 24的中心线与从动臂 22的中心线成一角度 Θ, 调整该角 度 Θ可改变传动机构最大输出速度的出现时刻。 当该角度 Θ较小时, 则传动 机构最大速度比出现时刻较早。 该角度 Θ较大时, 则传动机构最大速度比出 现时刻较晚。 该角度 Θ可以为 90°-180°, 优选为 120°-170°, 实施例中驱动臂 与从动臂的弯曲角度为 150°左右。
第一固定板导向槽 31的中心线与第二固定板导向槽 32的中心线之间的 距离 dl小于驱动杆 11的长度, 固定板滑槽 33的远离第一固定板导向槽 31 的一端部到第一固定板导向槽 31的垂直距 d2大于驱动杆 11的长度。在开关 合闸位置, 重合区域 36与第一固定板导向槽 31分别位于第二固定板导向槽 32的两恻。 另外, 如前所述, 重合区域 36到第一固定板导向槽 31中心线的 最小有效距离 L1和最大有效距离 L2与驱动杆 11长度 M之间的关系为 L1<M <L2o 在这样的尺寸配合下, 传动机构在第一接触件必须的较大运动范围, 即开关的较大操作行程 (开关的操作行程是指第一接触件的移动距离, 即推 杆 10的移动距离)情况下, 也能保持较小的垂直于第一接触件运动方向的横 向尺寸。
图 1中, 第一接触件(图中未示出)带动推杆 10向右运动时, 开关进行 合闸操作; 第一接触件(图中未示出)带动推杆 10往左运动时, 开关进行分 闸操作。 图 1所示位置为开关合闸终了位置, 此时, 驱动销 12在重合区域 36滑动, 由于第一驱动臂直槽 251与第一固定板直槽 331的导向轨迹一致, 所以驱动臂 24不被驱动保持静止, 从而连接杆 20以及与之固定连接的第二 弧触头保持静止。
请参见图 2a至图 2g, 图 2a至图 2g为本发明的开关传动机构实施例的 分闸操作过程示意图。
图 2a为开关合闸终了位置, 当进行开关分闸操作时, 第一接触件(图中 未示出)带动推杆 10向左运动。 图 2a至图 2c为开关分闸操作的初期, 在该 时间段内, 驱动销 12在重合区域 36内移动, 驱动臂 24不被驱动, 连接杆 20及第二弧触头 (图中未示出) 保持静止。 如图 2c至图 2g所示, 随着推杆 10继续向左运动, 驱动销 12将运动出重合区域 36, 并沿着固定板滑槽 33 向第一固定板导向槽 31方向滑动,此过程中驱动臂 24被驱动销 12驱动而绕 固定轴 23转动, 从动臂 22随着转动, 带动从动杆 21运动, 从动杆 21拉动 连接杆 20及第二弧触头沿着第二固定板导向槽 32向右滑动。在该时间段内, 连接件 20及第二弧触头的滑动速度由小逐渐增大, 随后再减小。 图 2g为开 关分闸终了位置。
图 3a显示了推杆 10 (第一接触件) 的位移曲线 19和连接杆 20 (第二弧 触头)的位移曲线 29,其中 29a至 29g分别对应图 2a至图 2g中的各个状态。
图 3b显示了推杆 10 (第一接触件)的速度曲线 39和连接杆 20 (第二弧 触头) 的速度曲线 49, 推杆 10速度假定为恒定值。 其中 49a至 49g分别对 应图 2a至图 2g中的各个状态。
从图 3b可以看出, 在开关分闸操作过程中, 第二弧触头在 49a至 49c阶 段速度为零, 在 49c之后速度开始增大, 并在 49e达到最大值, 随后又减小, 49g为第二弧触头的最终速度。 由于推杆 10 (第一接触件) 的速度假定为恒 定, 所以传动机构的传动比变化趋势与第二弧触头的速度曲线 49一致, 只是 数值及量纲不同。
如图 3b, 将开关分闸过程分为三个阶段, 49a至 49c为分闸第一阶段, 该阶段内, 接触件尚未分离, 传动机构的传动比为零, 接触件以较低的相对 速度运动, 运动质量较小, 接触件之间的磨损也较小。
49c至 49e为分闸第二阶段, 连接杆 20 (第二弧触头) 开始相对于推杆 10 (第一接触件) 反向运动, 传动机构的传动比从零开始增大, 弧触头在该 分闸第二阶段分离并产生电弧, 然后传动机构的传动比达到最大值, 由于假 定推杆 10速度恒定, 连接杆 20 (第二弧触头) 的反向运动速度也达到最大 值,使电弧被迅速拉长。在弧触头刚分离时,传动机构的传动比不大于 1.5: 1, 优选不大于 1 : 1, 特别优选不大于 0.5: 1。
49e至 49g为分闸第三阶段, 传动机构的传动比从最大值开始减小。 在 该分闸第三阶段, 电弧被进一步拉长并熄灭, 连接杆 20 (第二弧触头) 的速 度也从最大值开始减小。
参见图 3b, 横坐标为时间, 纵坐标为第二弧触头 (连接杆 20) 的速度。 按照第二弧触头(连接杆 20) 的速度特征沿横坐标将分闸过程划分为三个阶 段: 第一阶段为 49a-49c对应的时间, 第二阶段为 49c-49e对应的时间, 第三 阶段为 49e-49g对应的时间。 上述开关分闸过程的三个阶段中, 第一阶段的 时间与整个操作行程所用时间的比例不大于 50%, 优选不大于 40%, 特别优 选不大于 30%。 开关分闸过程的第二阶段的时间与整个操作行程所用时间的 比例不大于 50%。由于假定推杆 10速度恒定,上述时间比例也等同于行程之 间的比例, 即第一阶段的时间与整个操作行程所用时间的比例等同于第一阶 段的行程与整个操作行程的比例, 第二阶段的时间与整个操作行程所用时间 的比例等同于第二阶段的行程与整个操作行程的比例。 开关传动机构实施例 1
图 4a为本发明的开关传动机构的第二实施例,该第二实施例的开关传动 机构与第一实施例不同之处在于: 从动恻机构包括从动臂 22和从动销 26。 其中, 从动臂 22的一端固定连接于驱动臂 24, 另一端固定所述从动销 26。 连接杆 20上设有连接杆滑槽 201, 从动销 26伸入连接杆滑槽 201内并能沿 着连接杆滑槽 201滑动, 从而将从动臂 22的转动转换成连接杆 20的直线运 动。 优选地, 连接杆滑槽 201呈 "一"字形, 进一步优选地, "一"字形的 连接杆滑槽 201的纵向中心线垂直于第二固定板导向槽 32的中心线。
该第二实施例的开关传动机构的其它部分的结构与第一实施例相同, 这 里不再赘述。 开关传动机构实施例 3
图 4b为本发明的开关传动机构的第三实施例,该第三实施例的开关传动 机构与第一实施例不同之处在于: 从动恻机构包括齿条 202和能随驱动臂 24 转动的随动盘 27。 其中齿条 202设于连接杆 20, 随动盘 27设于驱动臂 24 的端部。 随动盘 27的外边缘设有能与齿条 202配合的若干个齿 271, 通过齿 条 202与若干个齿 271的啮合配合, 将驱动臂 24的转动转换成连接杆 20的 直线运动。 随动盘 27的外边缘形状优选为弧形, 特别优选为圆弧形, 当然不 以此为限, 随动盘 27的外边缘也可以设计成其它形状。 齿条 202与连接杆 20可以是各自独立的结构, 通过焊接连接在一起, 优选地二者为一体成型。 随动盘 27与驱动臂 24可以是各自独立的结构, 通过焊接连接在一起, 优选 地二者为一体成型。
该第三实施例的开关传动机构的其它部分的结构与第一实施例相同, 这 里不再赘述。
以上仅是本发明的开关传动机构的具体结构举例, 实际设计、 使用中不 以此为限, 特别是其中的从动恻机构还可以是曲柄滑块、 拨叉等机构, 在此 不一一例举。 功率开关
本发明的功率开关, 包括壳体、 设于所述壳体内的第一接触件、 第二接 触件及开关传动机构, 所述第一接触件和第二接触件在驱动装置作用下能够 结合或分离而实现所述功率开关的合闸和分闸。 其中所述开关传动机构是本 发明所述的开关传动机构。
本发明的功率开关中, 第二接触件除了第二弧触头之外, 还包括第二主 触头(图中未示出) 。 当连接杆 20同时连接第二主触头时, 可带动第二主触 头和第二弧触头一起做反向运动。 工业实用性
本发明开关传动机构和功率开关可广泛应用于电气领域。 本发明的开关 传动机构和功率开关, 简单可靠, 占用空间小, 尤其是垂直于运动方向的横 向尺寸小, 不增加开关产品极柱的直径; 本发明的开关传动机构可以实现较 好的反向运动特性,反向弧触头的运动曲线能够更好的满足电流开断的需要, 改善电气开关的开断性能。 本发明开关传动机构和功率开关可广泛应用于电 气领域。 虽然已参照几个典型实施例描述了本发明, 但应当理解, 所用的术语是 说明和示例性、 而非限制性的术语。 由于本发明能够以多种形式具体实施而 不脱离发明的精神或实质, 所以应当理解, 上述实施例不限于任何前述的细 节, 而应在随附权利要求所限定的精神和范围内广泛地解释, 因此落入权利 要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims

权 利 要 求
1.一种开关传动机构,用于开关,包括用于连接第一接触件的推杆(10)、 用于连接第二接触件的第二弧触头的连接杆 (20) 、 与所述推杆 (10) 连接 的驱动恻机构以及将所述驱动恻机构的运动传递至所述连接杆 (20) 的从动 恻机构, 其特征在于, 所述开关传动机构还包括固定板 (30) , 所述固定板 (30) 上设有供所述推杆 (10) 在其内滑动的第一固定板导向槽 (31 ) 、 供 所述连接杆(20)在其内滑动的第二固定板导向槽(32)以及固定板滑槽(33 ), 所述固定板滑槽 (33 ) 的一端部邻近所述第一固定板导向槽 (31 ) , 另一端 部向所述第二固定板导向槽 (32)方向延伸并超出所述第二固定板导向槽 (32) 一部分; 所述驱动恻机构包括驱动杆 (11 ) 、 驱动销 (12)和驱动臂 (24) , 所述驱动臂 (24)上设有驱动臂滑槽(25 ) , 并能绕固定于所述固定板(30) 的固定轴(23 )转动,所述驱动杆(11 )的一端通过旋转铰链与所述推杆(10) 铰接, 另一端固定所述驱动销 (12) , 所述驱动销 (12) 能沿所述驱动臂滑 槽 (25 ) 和所述固定板滑槽 (33 ) 滑动。
2.如权利要求 1所述的开关传动机构, 其特征在于, 所述从动恻机构包 括从动杆 (21 ) 和从动臂 (22) , 所述从动臂 (22) 的一端固定于所述驱动 臂 (24) , 另一端通过旋转铰链连接所述从动杆 (21 ) 的一端, 所述从动杆 (21 ) 的另一端通过旋转铰链与所述连接杆 (20) 铰接。
3.如权利要求 1所述的开关传动机构, 其特征在于, 所述第一固定板导 向槽 (31 ) 与所述第二固定板导向槽 (32) 相互平行。
4.如权利要求 1所述的开关传动机构, 其特征在于, 所述第二固定板导 向槽 (32) 的中心线与开关轴线在同一条直线上。
5.如权利要求 1所述的开关传动机构, 其特征在于, 所述固定轴 (23 ) 固定于所述第二固定板导向槽 (32) 的中心线上。
6.如权利要求 1所述的开关传动机构,其特征在于,所述固定板滑槽(33 ) 为一直槽或弧形槽。
7.如权利要求 1所述的开关传动机构,其特征在于,所述固定板滑槽(33 ) 包括首尾依次连接的第一固定板直槽(331 )和至少一段圆弧槽, 且各段槽为 圆滑过渡连接。
8.如权利要求 7所述的开关传动机构,其特征在于,所述固定板滑槽(33 ) 还包括连接于最末一段圆弧槽的第二固定板直槽 (334) 。
9.如权利要求 8所述的开关传动机构, 其特征在于, 所述第二固定板直 槽 (334) 平行于所述第一固定板导向槽 (31 ) 。
10.如权利要求 1所述的开关传动机构, 其特征在于, 固定板滑槽 (33 ) 邻近所述第一固定板导向槽 (31 ) 的一端为近端, 远离所述第一固定板导向 槽(31 ) 的另一端为远端, 所述固定轴 (23 ) 的中心到所述固定板滑槽(33 ) 的中心线上各点之间的直线距离的变化为: 由所述远端到近端所述直线距离 由大变小再变大, 且距离远端的直线距离大于距离近端的直线距离 1.3倍。
11.如权利要求 1所述的开关传动机构,其特征在于,所述驱动臂滑槽 (25 ) 为一直槽或一弧形槽。
12.如权利要求 1所述的开关传动机构,其特征在于,所述驱动臂滑槽 (25 ) 包括第一驱动臂直槽 (251 ) 和第二驱动臂直槽 (252 ) , 二者之间成一角度
(λ) , 该角度 (λ) 为 120° -180° 。
13.如权利要求 2所述的开关传动机构, 其特征在于, 所述驱动臂 (24) 和从动臂 (22) 为一体结构, 或者是分体结构并固定连接在一起。
14.如权利要求 13所述的开关传动机构, 其特征在于, 所述驱动臂 (24) 的中心线与所述从动臂(22 )的中心线成一角度(Θ),所述角度(Θ)为 90°-180°。
15.如权利要求 14所述的开关传动机构, 其特征在于, 所述角度 (Θ) 为 120°-170
16.如权利要求 13所述的开关传动机构, 其特征在于, 所述从动杆 (21 ) 的长度与所述从动臂 (22 ) 的长度之比为 3 : 1。
17.如权利要求 16所述的开关传动机构, 其特征在于, 所述从动杆 (21 ) 的长度与所述从动臂 (22 ) 的长度之比为 2: 1。
18.如权利要求 17所述的开关传动机构, 其特征在于, 所述从动杆 (21 ) 的长度与所述从动臂 (22 ) 的长度之比为 3 : 2。
19.如权利要求 1所述的开关传动机构, 其特征在于, 所述驱动杆 (11 ) 的长度是开关操作行程的 20%~80%。
20.如权利要求 19所述的开关传动机构, 其特征在于, 所述驱动杆 (11 ) 的长度是开关操作行程的 30%~70%。
21.如权利要求 20所述的开关传动机构, 其特征在于, 所述驱动杆 (11 ) 的长度是开关操作行程的 40%~60%。
22.如权利要求 1-21中任一项所述的开关传动机构,其特征在于,在所述 开关合闸状态下, 驱动臂滑槽 (25 ) 与固定板滑槽 (33 ) 有部分重合, 形成 重合区域 (36) 。
23.如权利要求 22所述的开关传动机构,其特征在于,所述重合区域(36) 形成于所述驱动臂滑槽 (25) 与固定板滑槽 (33 ) 的一端部。
24. 如权利要求 23所述的开关传动机构,其特征在于,所述重合区域 (36) 到所述第一固定板导向槽 (31 ) 中心线的最小有效距离为 (L1 ) 、 最大有效 距离为(L2)与所述驱动杆(11 )的有效长度(M)之间的关系为: LKM <L2o
25.如权利要求 24所述的开关传动机构,其特征在于,所述重合区域(36) 到所述第一固定板导向槽 (31 ) 中心线的最小有效距离为 (L1 ) 与所述驱动 杆 (11 ) 的有效长度 (M) 之间的关系为: L1≥0.7M。
26.如权利要求 25所述的开关传动机构,其特征在于,所述重合区域(36) 到所述第一固定板导向槽 (31 ) 中心线的最小有效距离为 (L1 ) 与所述驱动 杆 (11 ) 的有效长度 (M) 之间的关系为: L1≥0.8M。
27.如权利要求 26所述的开关传动机构,其特征在于,所述重合区域(36) 到所述第一固定板导向槽 (31 ) 中心线的最小有效距离为 (L1 ) 与所述驱动 杆 (11 ) 的有效长度 (M) 之间的关系为: L1≥0.9M。
28.如权利要求 1所述的开关传动机构, 其特征在于, 所述从动恻机构包 括一端固定于所述驱动臂 (24) 的从动臂 (22) 和固定于所述从动臂 (22) 另一端部的从动销 (26) , 所述连接杆 (20) 上设有连接杆滑槽 (201 ) , 所 述从动销 (26)伸入所述连接杆滑槽(201 )并能沿着所述连接杆滑槽(201 ) 滑动, 从而将所述从动臂 (22) 的转动转变成连接杆 (20) 的直线运动。
29.如权利要求 28所述的开关传动机构, 其特征在于, 所述连接杆滑槽 (201 ) 呈 "一"字形。
30.如权利要求 29所述的开关传动机构, 其特征在于, 所述连接杆滑槽 (201 ) 的纵向中心线垂直于所述第二固定板导向槽 (32) 的中心线。
31.如权利要求 1所述的开关传动机构, 其特征在于, 所述从动恻机构包 括设于所述连接杆(20) 的齿条(202)和能随所述驱动臂 (24)转动的随动 盘(27) , 所述随动盘(27) 的外边缘设有能与所述齿条(202) 配合的若干 个齿 (271 ) , 通过所述若干个齿 (271 ) 与所述齿条(202 ) 的啮合配合, 将 所述驱动臂 (24) 的转动转换成所述连接杆 (20) 的直线运动。
32.如权利要求 31所述的开关传动机构, 其特征在于, 所述随动盘 (27) 的外边缘为弧形。
33.—种功率开关, 包括壳体、 设于所述壳体内的第一接触件、 具有第二 弧触头的第二接触件及开关传动机构, 所述第一接触件和第二接触件在驱动 装置作用下能够结合或分离而实现所述功率开关的合闸和分闸,其特征在于, 所述开关传动机构是如权利要求 1-32中任一项所述的开关传动机构。
34.如权利要求 33所述的功率开关, 其特征在于, 所述第二接触件还包 括第二主触头。
35.如权利要求 34所述的功率开关, 其特征在于, 所述第二主触头连接 于所述连接杆 (20) 。
PCT/CN2013/071504 2013-02-07 2013-02-07 开关传动机构和功率开关 WO2014121483A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/071504 WO2014121483A1 (zh) 2013-02-07 2013-02-07 开关传动机构和功率开关
CN201380051692.6A CN104704592B (zh) 2013-02-07 2013-02-07 开关传动机构和功率开关

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/071504 WO2014121483A1 (zh) 2013-02-07 2013-02-07 开关传动机构和功率开关

Publications (1)

Publication Number Publication Date
WO2014121483A1 true WO2014121483A1 (zh) 2014-08-14

Family

ID=51299191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071504 WO2014121483A1 (zh) 2013-02-07 2013-02-07 开关传动机构和功率开关

Country Status (2)

Country Link
CN (1) CN104704592B (zh)
WO (1) WO2014121483A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020073848A1 (zh) * 2018-10-11 2020-04-16 西安西电开关电气有限公司 断路器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180087745A (ko) * 2017-01-25 2018-08-02 엘에스산전 주식회사 다중 레버를 가진 듀얼 모션 방식의 가스절연 개폐장치
CN109192597B (zh) * 2018-10-11 2020-02-04 西安西电开关电气有限公司 断路器及其双动传动装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1357901A (zh) * 2000-11-30 2002-07-10 施耐德电器高电压产品公司 具有复式运动的高压电气开关设备
CN101202175A (zh) * 2006-12-11 2008-06-18 Abb技术有限公司 具有带死点的传动机构的功率开关
CN101548351A (zh) * 2006-12-06 2009-09-30 Abb技术有限公司 用于电断路器的传动装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4427163A1 (de) * 1994-08-01 1996-02-08 Abb Management Ag Druckgasschalter
DE19622460C2 (de) * 1996-05-24 1998-04-02 Siemens Ag Hochspannungs-Leistungsschalter mit zwei antreibbaren Schaltkontaktstücken
DE19631323C1 (de) * 1996-08-01 1997-10-16 Aeg Energietechnik Gmbh Druckgasschalter
CN203277201U (zh) * 2013-02-07 2013-11-06 厦门华电开关有限公司 开关传动机构和功率开关

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1357901A (zh) * 2000-11-30 2002-07-10 施耐德电器高电压产品公司 具有复式运动的高压电气开关设备
CN101548351A (zh) * 2006-12-06 2009-09-30 Abb技术有限公司 用于电断路器的传动装置
CN101202175A (zh) * 2006-12-11 2008-06-18 Abb技术有限公司 具有带死点的传动机构的功率开关

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020073848A1 (zh) * 2018-10-11 2020-04-16 西安西电开关电气有限公司 断路器

Also Published As

Publication number Publication date
CN104704592B (zh) 2017-01-18
CN104704592A (zh) 2015-06-10

Similar Documents

Publication Publication Date Title
CN102339684B (zh) 带有接地开闭器的断路器
US8173927B2 (en) High and medium voltage switch apparatus with two interrupters, having common means for actuating the movable contacts of the interrupters
CN110444417A (zh) 双电源转换开关及其切换机构
RU2625809C2 (ru) Компоновка устройства переключения
WO2014121483A1 (zh) 开关传动机构和功率开关
US9543081B2 (en) Electrical apparatus with dual movement of contacts comprising a return device with two levers
WO2017190490A1 (zh) 一种高压开关及其断路器单元
TWI570758B (zh) Gas circuit breakers
CN208142045U (zh) 双电源转换开关及其切换机构
US9127751B2 (en) Gearbox for a tap changer, a tap changer and a transformer
KR20140044822A (ko) 이중-모션 가스 절연형 회로 차단기
CN203277201U (zh) 开关传动机构和功率开关
WO2020073847A1 (zh) 断路器及其双动传动装置
KR101736935B1 (ko) 버스바 연결 해제부 및 접지 연결 해제부와 같은 2 개의 차단부들을 가지고, 차단부들의 가동 접촉부들을 위한 공통 액튜에이터 수단을 포함하는, 전기 스위치 장치
US20090071809A1 (en) Combined circuit breaker and disconnector for an alternator with actuation by an assembly of a main shaft and secondaries shafts
CN101202175B (zh) 电气功率开关及用来使电气功率开关断开接触的方法
EP2670009A1 (en) Switch
WO2016125535A1 (ja) ガス遮断器
CN106340410B (zh) 一种能够实现触点快速闭合的电机继电器
CN104766729B (zh) 用于断路器通断的自动切换装置
JP6132744B2 (ja) ガス遮断器
CN102306566A (zh) 发电机断路器触头异步双速运动执行机构
CN100428383C (zh) 一种按机械程序操作的开关柜
RU2496173C1 (ru) Независимый привод выключателя
TW201939538A (zh) 負載分接開關及具有負載分接開關之配電變壓器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874347

Country of ref document: EP

Kind code of ref document: A1