WO2014119927A1 - Fuel-cell cell production method - Google Patents

Fuel-cell cell production method Download PDF

Info

Publication number
WO2014119927A1
WO2014119927A1 PCT/KR2014/000855 KR2014000855W WO2014119927A1 WO 2014119927 A1 WO2014119927 A1 WO 2014119927A1 KR 2014000855 W KR2014000855 W KR 2014000855W WO 2014119927 A1 WO2014119927 A1 WO 2014119927A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte layer
layer
electrolyte
forming
vapor deposition
Prior art date
Application number
PCT/KR2014/000855
Other languages
French (fr)
Korean (ko)
Inventor
권오웅
Original Assignee
지브이퓨얼셀 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지브이퓨얼셀 주식회사 filed Critical 지브이퓨얼셀 주식회사
Publication of WO2014119927A1 publication Critical patent/WO2014119927A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a stack for a fuel cell, and more particularly, to a method for manufacturing a fuel cell for improving an electrolyte layer in which pinholes are generated in a solid oxide fuel cell.
  • Solid Oxide Fuel Cells operate at the highest temperatures (700–1000 ° C) of fuel cells, using solid oxides with oxygen or hydrogen ion conductivity as electrolytes.
  • solid oxide fuel cells have a simpler structure than other fuel cells because all components are solid, there is no problem of electrolyte loss, replenishment and corrosion, no precious metal catalyst, and fuel supply through direct internal reforming. This is easy.
  • it has the advantage that thermal combined cycle power generation using waste heat is possible because the high-temperature gas is discharged.
  • a typical solid oxide fuel cell is composed of a dense electrolyte layer of oxygen ion conductivity and a porous cathode and anode positioned on both sides thereof.
  • the operating principle is that oxygen permeates through the porous cathode and reaches the electrolyte surface. Oxygen ions generated by the oxygen reduction reaction move to the fuel electrode through the dense electrolyte and react with hydrogen supplied to the porous anode to generate water. At this time, since electrons are generated at the anode and electrons are consumed at the cathode, electricity flows when the two electrodes are connected to each other.
  • the solid oxide fuel cell generates electricity in one cell, but the amount of electricity is very small to be used in real life, so the cells are stacked and used as a large amount of electrical energy. The collection of several cells is called a stack.
  • Figure 1 is a photograph showing a cross-sectional view of a single cell of the anode-supported solid oxide fuel cell according to the prior art 1.
  • a unit cell includes a porous anode support, a cathode functional layer, an electrolyte layer, and a composite air electrode layer, and the composite air electrode layer is composed of a cathode functional layer, an air electrode, and a current collector layer.
  • the metal support-type metal oxide fuel cell of the related art 2 includes a metal support 101; A first electrode 103 formed on one surface of the metal support 101; An electrolyte 107 formed on one surface of the first electrode 103 and a second electrode 109 formed on one surface of the electrolyte 107 are formed in a stacked stack to supply and discharge fuel or air. It includes a manifold 110, the first electrode 103 and the second electrode 109 is composed of different electrodes of the air electrode or fuel electrode.
  • the electrolyte material flows through the pores in the process of forming the electrolyte on the porous support to form pinholes or the like.
  • a separate method is required.
  • the thin film fuel cell 100 based on the conventional porous substrate shown in FIG. 3 in common with the prior arts 1 and 2 has an electrolyte thin film under the influence of the rough electrode (mainly anode) surface during fabrication. Defects such as pinholes may occur in the 120, and these defects may cause problems such as shorting or leakage, which may adversely affect cell performance.
  • the rough electrode mainly anode
  • An object of the present invention is to solve the problems of the prior art as described above, and by removing a part of the upper end of the first electrolyte layer in which the pinholes are formed to planarize the surface, a second electrolyte layer having a dense structure is formed.
  • the present invention provides a method for manufacturing a cell for a fuel cell that can prevent a problem such as shorting or leakage by improving an electrolyte layer in which pinholes are formed by stacking.
  • the present invention comprises the steps of forming a porous first electrode layer; Forming a first electrolyte layer on the first electrode layer; Removing the top of the first electrolyte layer to planarize the removal surface; Forming a second electrolyte layer having a dense structure on the planarized surface of the first electrolyte layer; And forming a second electrode layer on the second electrolyte layer.
  • planarization of the first electrolyte layer and the formation of the second electrolyte layer may be performed in one step, or the planarization of the first electrolyte layer and the formation of the second electrolyte layer may be performed in several steps by dividing the entire height. Can proceed.
  • the second electrolyte layer in the present invention may be formed of the same material or different materials than the first electrolyte layer.
  • the second electrolyte layer in the present invention may be formed by the same process as the first electrolyte layer or may be formed by a different process.
  • the first electrolyte layer in the present invention is performed by any one of physical vapor deposition (Physical vapor deposition, PVD), chemical vapor deposition (CVD: Chemical Vapor Deposition) process
  • the second electrolyte layer is chemical vapor deposition It may be performed by a chemical vapor deposition (CVD) process.
  • the upper surface of the first electrolyte layer in which the pinholes are formed is partially removed to planarize the surface, and then a second electrolyte layer having a dense structure is laminated to improve the electrolyte layer in which the pinholes are generated.
  • a second electrolyte layer having a dense structure is laminated to improve the electrolyte layer in which the pinholes are generated.
  • FIG. 1 is a cross-sectional view of a single cell of a cathode support solid oxide fuel cell according to the related art.
  • FIG. 2 is a cross-sectional view showing an example of a metal support-type solid oxide fuel cell according to the prior art 2.
  • FIG 3 is a reference diagram showing a state in which a pin hole is formed in the electrolyte layer in the prior art.
  • FIG. 4 is a block diagram of a fuel cell manufacturing method according to a first embodiment of the present invention.
  • 5A to 5E are flowcharts illustrating a method for manufacturing a fuel cell according to a first embodiment of the present invention.
  • the present invention comprises the steps of forming a porous first electrode layer; Forming a first electrolyte layer on the first electrode layer; Removing the top of the first electrolyte layer to planarize the removal surface; Forming a second electrolyte layer having a dense structure on the planarized surface of the first electrolyte layer; And forming a second electrode layer on the second electrolyte layer.
  • planarization of the first electrolyte layer and the formation of the second electrolyte layer may be performed in one step, or the planarization of the first electrolyte layer and the formation of the second electrolyte layer may be performed in several steps by dividing the entire height. Can proceed.
  • the second electrolyte layer in the present invention may be formed of the same material or different materials than the first electrolyte layer.
  • the second electrolyte layer in the present invention may be formed by the same process as the first electrolyte layer or may be formed by a different process.
  • the first electrolyte layer in the present invention is performed by any one of physical vapor deposition (Physical vapor deposition, PVD), chemical vapor deposition (CVD: Chemical Vapor Deposition) process
  • the second electrolyte layer is chemical vapor deposition It may be performed by a chemical vapor deposition (CVD) process.
  • ... unit means a unit for processing at least one function or operation, which may be implemented in hardware or software or a combination of hardware and software.
  • FIG. 4 is a block diagram showing a fuel cell manufacturing method according to a first embodiment of the present invention
  • Figure 5a to 5e is a flowchart showing a fuel cell manufacturing method according to a first embodiment of the present invention. .
  • the fuel cell manufacturing method is a porous first electrode layer forming step (S200), the first electrolyte layer forming step (S210), the first electrolyte layer surface planarization step (S220), A second electrolyte layer forming step S230 and a second electrode layer forming step S240 are included.
  • the porous first electrode layer forming step (S200) is a step of forming the first electrode layer 310 to have a porous (porous). (See Figure 5A)
  • the first electrode layer forming step (S200) is made of a material such as platinum (platinum, Pt), palladium (Pd), nickel (Ni), ruthenium (Ru), etc., which is a high-performance catalyst, sputtering, pulsed laser deposition Anodes are deposited by chemical vapor deposition (CVD), such as physical vapor deposition (PVD), atomic layer deposition (ALD), etc. (Pulsed Laser Deposition, PLD).
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • ALD atomic layer deposition
  • PLD Pulsed Laser Deposition
  • the first electrolyte layer forming step (S210) is a step of depositing and forming the first electrolyte layer 320 on the first electrode layer 310. At this time, in the first electrolyte layer forming step (S210), the first electrode layer 310 is formed to have a porosity, so that small pin-holes are formed under the influence of the uneven electrode surface. (See Figure 5b)
  • the first electrolyte layer 320 is zirconium oxide (ZrxOy), cerium oxide (CexOy), lanthanum galate, barium cerate, barium zirconate, bismuth-based Oxygen ion conducting materials such as oxides or various doping phases of the above materials, or ion conductors such as proton conducting materials, may be selected and used in a comprehensive category.
  • the first electrolyte layer 320 may be applied with an electrolyte material such as Gd-doped CeO 2 (GDC) or Yttria-stabilized zirconia (YSZ), sputtering, pulsed laser deposition (PLD), or the like. It is deposited by a method such as chemical vapor deposition (CVD) such as physical vapor deposition (PVD), atomic layer deposition (ALD).
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • ALD atomic layer deposition
  • the first electrolyte layer surface planarization step (S220) is a step of removing and planarizing an upper end of the first electrolyte layer 320 to finish the surface of the first electrolyte layer 320 with the second electrolyte layer 330.
  • the first electrolyte layer surface planarization step (S220) may be performed by reactive ion etching (RIE). (See Figure 5c)
  • the second electrolyte layer forming step S230 is performed by depositing the second electrolyte layer 330 having a dense structure on the planarized surface of the first electrolyte layer 320 in a thin film form. (See FIG. 5D)
  • the second electrolyte layer 330 is zirconium oxide (ZrxOy), cerium oxide (CexOy), lanthanum galate (Lanthanum Gallate), barium cerate (barium Cerate), barium zirconate, bismuth-based Oxygen ion conducting materials such as oxides or various doping phases of the above materials, or ion conductors such as proton conducting materials, may be selected and used in a comprehensive category.
  • the second electrolyte layer 330 may be applied with an electrolyte material such as Gd-doped CeO 2 (GDC) or Yttria-stabilized zirconia (YSZ), and may be sputtered or pulsed laser deposition (PLD). It is deposited by a method such as chemical vapor deposition (CVD) such as physical vapor deposition (PVD), atomic layer deposition (ALD).
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • ALD atomic layer deposition
  • the first electrolyte layer 320 may be affected by the rough surface of the uneven first electrode layer 310 in the process of forming the first electrolyte layer 320.
  • Small pin holes are generated in the N-th and subsequent short-circuit or leakage occurs in the fuel cell.
  • the second electrolyte layer 330 is closed so that the pin holes are not connected.
  • first electrolyte layer surface planarization step S220 and the second electrolyte layer forming step S230 may be performed by a height corresponding to the removal height of the first electrolyte layer 320 and the formation height of the second electrolyte layer 330.
  • the total height corresponding to the removal height of the first electrolyte layer 320 and the formation height of the second electrolyte layer 330 may be divided into a plurality of steps by the divided heights, and the steps may be sequentially performed. .
  • the electrolyte materials forming the first electrolyte layer 320 and the second electrolyte layer 330 are the same material. It may be formed of or made of different materials.
  • first electrolyte layer forming step S210 and the second electrolyte layer forming step S230 are performed, the processes of forming the first electrolyte layer 320 and the second electrolyte layer 330 are the same. It may be carried out in a process or in a different process.
  • the first electrolyte layer 320 and the second electrolyte layer 330 may be made of the same material (eg, YSZ), but may use another material (eg, GDC), and the first electrolyte layer may be used in a deposition process.
  • the chemical vapor deposition method 320 may include chemical vapor deposition (CVD) such as physical vapor deposition (PVD), atomic layer deposition (ALD), and the like, such as sputtering and pulsed laser deposition (PLD). Chemical Vapor Deposition) and the second electrolyte layer 330 may be performed by a process such as chemical vapor deposition (CVD) such as atomic layer deposition (ALD). Can be.
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • the second electrode layer forming step (S240) is a step of forming the second electrode layer 340 on the second electrolyte layer 330. (See Figure 5E)
  • the second electrode layer forming step (S240) is a high-performance catalyst, such as platinum (platinum, Pt), palladium (Pd), nickel (Ni), ruthenium (Ru), sputtering (sputtering), pulse laser deposition method
  • Cathode is deposited by chemical vapor deposition (CVD), such as physical vapor deposition (PVD), atomic layer deposition (ALD), etc.
  • the second electrode layer 340 is formed as an electrode.
  • the fuel cell 300 manufactured by the fuel cell manufacturing method of the present invention includes a first electrode layer 310, a first electrolyte layer 320, a second electrolyte layer 330, and a second electrode layer 340. do.
  • first and second electrolyte layers 320 and 330 provide a passage for the movement of ions between the electrodes but block the movement of electrons and separate fuel and oxygen, and are formed by the catalyst.
  • the 310 and the second electrode layer 340 serve to provide a large surface area for the electrochemical reaction to occur and to provide a movement path of electrons generated at this time.
  • the first electrode layer 310 is an anode electrode and is made of a material such as platinum (platinum, Pt), palladium (Pd), nickel (Ni), ruthenium (Ru), etc., which is a high-performance catalyst, and is formed by sputtering and pulse laser deposition ( Physical vapor deposition (PVD) such as Pulsed Laser Deposition (PLD), etc., is deposited by chemical vapor deposition (CVD) such as Atomic Layer Deposition (ALD). .
  • PVD Physical vapor deposition
  • PLD Pulsed Laser Deposition
  • CVD chemical vapor deposition
  • ALD Atomic Layer Deposition
  • the first electrode layer 310 is formed to have a porous (porous) for gas infiltration and expansion of the reaction area.
  • the first electrolyte layer 320 is formed on the first electrode layer 310 and includes zirconium oxide (ZrxOy), cerium oxide (CexOy), lanthanum galate, barium cerate, and barium zirco. Choose from a range of ionic conductors, such as Oxygen ion conducting materials, such as Barium Zirconate, bismuth-based oxides, or various doping phases of these materials, or Proton conducting materials Can be used.
  • an electrolyte material such as Gd-doped CeO 2 (GDC) or Yttria-stabilized zirconia (YSZ) may be applied to the first electrolyte layer 320.
  • GDC Gd-doped CeO 2
  • YSZ Yttria-stabilized zirconia
  • the first electrolyte layer 320 is formed such that the first electrode layer 310 has a porosity, and small pin-holes are formed therein under the influence of the uneven surface of the first electrode layer 310. .
  • the second electrolyte layer 330 is formed in a dense structure on the first electrolyte layer 320 having a flat surface, so that cracks do not occur due to pin holes formed in the first electrolyte layer 320.
  • the upper surface of the first electrolyte layer 320 is finished.
  • the second electrolyte layer 330 may be formed of the same material or different materials from the first electrolyte layer 320 and the electrolyte material.
  • the first electrolyte layer 320 and the second electrolyte layer 330 are the same material (eg, YSZ), an application using another material (eg, GDC) may be used.
  • the second electrode layer 340 is a cathode electrode formed on the second electrolyte layer 330, and is made of a high performance catalyst such as platinum (platinum, Pt), palladium (Pd), nickel (Ni), ruthenium (Ru), or the like.
  • Chemical vapor deposition Chemical Vapor
  • PVD physical vapor deposition
  • ALD atomic layer deposition
  • PLD pulsed laser deposition
  • It is formed by vapor deposition by a method such as Deposition).
  • the present invention relates to a fuel cell manufacturing method, the present invention comprises the steps of forming a porous first electrode layer; Forming a first electrolyte layer on the first electrode layer; Removing the top of the first electrolyte layer to planarize the removal surface; Forming a second electrolyte layer having a dense structure on the planarized surface of the first electrolyte layer; And forming a second electrode layer on the second electrolyte layer.
  • the upper surface of the first electrolyte layer in which the pinholes are formed is partially removed to planarize the surface, and then a second electrolyte layer having a dense structure is laminated to improve the electrolyte layer in which the pinholes are generated.
  • a second electrolyte layer having a dense structure is laminated to improve the electrolyte layer in which the pinholes are generated.

Abstract

The present invention relates to a fuel-cell cell production method, and the present invention comprises: a step of forming a porous first electrode layer; a step of forming a first electrolyte layer on the first electrode layer; a step of removing the upper edge and so planarising the surface of the first electrolyte layer; a step of forming a second electrolyte layer having a dense structure on the planarised surface of the first electrolyte layer; and a step of forming a second electrode layer on the second electrolyte layer. When the present invention is employed, there is the advantage that it is possible to prevent problems such as short-circuiting (shorting) and leakage because an electrolyte layer in which pinholes have been produced is improved by removing part of the upper edge and so planarising the surface of the first electrolyte layer in which pinholes have been formed, and then laminating the second electrolyte layer having the dense structure.

Description

연료전지용 셀 제조방법Fuel Cell Manufacturing Method
본 발명은 연료전지용 스택 제조방법에 관한 것으로, 더욱 상세하게는 고체 산화물 연료전지에서 핀 홀이 생성된 전해질층을 개선하는 연료전지용 셀 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a stack for a fuel cell, and more particularly, to a method for manufacturing a fuel cell for improving an electrolyte layer in which pinholes are generated in a solid oxide fuel cell.
고체 산화물 연료전지(Solid Oxide Fuel Cell: SOFC)는 산소 또는 수소 이온전도성을 띄는 고체 산화물을 전해질로 사용하여 연료 전지 중 가장 높은 온도(700~1000℃)에서 작동한다.Solid Oxide Fuel Cells (SOFCs) operate at the highest temperatures (700–1000 ° C) of fuel cells, using solid oxides with oxygen or hydrogen ion conductivity as electrolytes.
특히, 고체 산화물 연료전지는 모든 구성 요소가 고체로 이루어져 있기 때문에 다른 연료 전지에 비해 구조가 간단하고, 전해질의 손실 및 보충과 부식의 문제가 없으며, 귀금속 촉매가 필요 없고 직접 내부 개질을 통한 연료 공급이 용이하다. 또한, 고온의 가스를 배출하기 때문에 폐열을 이용한 열 복합 발전이 가능하다는 장점도 지니고 있다.In particular, solid oxide fuel cells have a simpler structure than other fuel cells because all components are solid, there is no problem of electrolyte loss, replenishment and corrosion, no precious metal catalyst, and fuel supply through direct internal reforming. This is easy. In addition, it has the advantage that thermal combined cycle power generation using waste heat is possible because the high-temperature gas is discharged.
일반적인 고체 산화물 연료전지는 산소 이온전도성의 치밀한 전해질층과 그 양면에 위치한 다공성의 공기극(cathode) 및 연료극(anode)으로 이루어져 있다. 작동원리는 다공성의 공기극에서는 산소가 투과하여 전해질 면에 이르고 산소의 환원 반응에 의해 생성된 산소이온이 치밀한 전해질을 통해 연료극으로 이동하여 다시 다공성의 연료극에 공급된 수소와 반응함으로써 물을 생성하게 되고, 이때, 연료극에서는 전자가 생성되고 공기극에서는 전자가 소모되므로 두 전극을 서로 연결하면 전기가 흐르게 되는 것이다. 한편, 고체 산화물 연료전지는 한 개의 셀(cell)에서 전기가 발생하지만 이 전기의 양은 실생활에 사용하기에는 매우 적으므로 셀(cell)들을 여러 개 포개서 많은 양의 전기에너지로 사용하게 된다. 여러 개의 셀(cell)들을 모아 놓은 것을 스택(Stack)이라고 한다.A typical solid oxide fuel cell is composed of a dense electrolyte layer of oxygen ion conductivity and a porous cathode and anode positioned on both sides thereof. The operating principle is that oxygen permeates through the porous cathode and reaches the electrolyte surface. Oxygen ions generated by the oxygen reduction reaction move to the fuel electrode through the dense electrolyte and react with hydrogen supplied to the porous anode to generate water. At this time, since electrons are generated at the anode and electrons are consumed at the cathode, electricity flows when the two electrodes are connected to each other. On the other hand, the solid oxide fuel cell generates electricity in one cell, but the amount of electricity is very small to be used in real life, so the cells are stacked and used as a large amount of electrical energy. The collection of several cells is called a stack.
이러한 고체 산화물 연료전지와 관련된 기술이 특허등록 제0717130호와, 공개특허 제2012-0075242호에 제안된 바 있다.The technology related to such a solid oxide fuel cell has been proposed in Patent Registration No. 0717130 and Patent Publication No. 2012-0075242.
이하에서 종래기술로서 특허등록 제0717130호와, 공개특허 제2012-0075242호에 개시된 고체 산화물 연료전지를 간략히 설명한다.Hereinafter, a solid oxide fuel cell disclosed in Korean Patent No. 0817130 and Japanese Patent Laid-Open No. 2012-0075242 will be briefly described.
도 1에는 종래기술 1에 의한 연료극 지지형 고체산화물 연료전지의 단전지 단면을 보인 사진이 기재되어 있다. 도 1을 참조하면, 단전지는 다공성 연료극지지체, 연료극 기능성층, 전해질층, 복합공기극층으로 구성을 가지며, 복합공기극층은 다시 공기극 기능성층과 공기극 그리고 집전층으로 구성된다. Figure 1 is a photograph showing a cross-sectional view of a single cell of the anode-supported solid oxide fuel cell according to the prior art 1. Referring to FIG. 1, a unit cell includes a porous anode support, a cathode functional layer, an electrolyte layer, and a composite air electrode layer, and the composite air electrode layer is composed of a cathode functional layer, an air electrode, and a current collector layer.
도 2에는 종래기술 2에 의한 금속 지지체형 고체 산화물 연료전지의 일 예가 단면도로 도시되어 있다. 도 2를 참조하면, 종래 기술 2의 금속 지지체형 금속 산화물 연료전지는 금속 지지체(101); 상기 금속 지지체(101)의 일면에 형성된 제1 전극(103); 상기 제1 전극(103)의 일면에 형성되는 전해질(107) 및 상기 전해질(107)의 일면에 형성되는 제2 전극(109)이 적층된 적층체에 형성되어, 연료 또는 공기의 공급 및 배출을 위한 매니폴드(110)를 포함하고, 상기 제1 전극(103) 및 제2 전극(109)은 공기극 또는 연료극의 서로 다른 전극으로 구성된다.2 is a cross-sectional view of an example of a metal support-type solid oxide fuel cell according to the related art 2. Referring to FIG. 2, the metal support-type metal oxide fuel cell of the related art 2 includes a metal support 101; A first electrode 103 formed on one surface of the metal support 101; An electrolyte 107 formed on one surface of the first electrode 103 and a second electrode 109 formed on one surface of the electrolyte 107 are formed in a stacked stack to supply and discharge fuel or air. It includes a manifold 110, the first electrode 103 and the second electrode 109 is composed of different electrodes of the air electrode or fuel electrode.
그러나 종래기술 1에 의한 연료극 지지형 고체산화물 연료전지의 단전지와, 종래기술 2에 의한 고체 산화물 연료전지는 다공성 지지체 상에 전해질을 형성하는 과정에서 다공으로 전해질 물질이 흘러내려 핀 홀 등이 형성되며, 이를 해결하기 위한 별도의 방법이 요구되고 있다.However, in the unit cell of the anode-supported solid oxide fuel cell according to the prior art 1 and the solid oxide fuel cell according to the prior art 2, the electrolyte material flows through the pores in the process of forming the electrolyte on the porous support to form pinholes or the like. In order to solve this problem, a separate method is required.
결국, 종래기술 1, 2와 공통적으로 도 3에 도시된 종래의 다공성 기판을 기반으로 한 박막 연료전지(100)는 제작 시 거친(rough) 전극[(110)주로 애노드] 표면의 영향으로 전해질 박막(120)에 핀 홀 등의 결함이 발생할 수 있으며, 이러한 결함들은 단락(short)이나 누설(leakage) 등의 문제를 유발하여 셀 성능에 악영향을 미치게 되는 문제점이 있었다.As a result, the thin film fuel cell 100 based on the conventional porous substrate shown in FIG. 3 in common with the prior arts 1 and 2 has an electrolyte thin film under the influence of the rough electrode (mainly anode) surface during fabrication. Defects such as pinholes may occur in the 120, and these defects may cause problems such as shorting or leakage, which may adversely affect cell performance.
본 발명의 목적은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 핀 홀이 형성된 제1 전해질층의 상단을 일부 제거하여 표면을 평탄화한 후 조밀(dense)한 구조의 제2 전해질층을 적층하여 핀 홀이 생성된 전해질층을 개선함에 따라 단락(short)이나 누설(leakage) 등의 문제를 방지할 수 있게 한 연료전지용 셀 제조방법을 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art as described above, and by removing a part of the upper end of the first electrolyte layer in which the pinholes are formed to planarize the surface, a second electrolyte layer having a dense structure is formed. The present invention provides a method for manufacturing a cell for a fuel cell that can prevent a problem such as shorting or leakage by improving an electrolyte layer in which pinholes are formed by stacking.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명은, 다공성 제1 전극층을 형성하는 단계; 상기 제1 전극층 상에 제1 전해질층을 형성하는 단계; 상기 제1 전해질층의 상단을 제거하여 제거 표면을 평탄화하는 단계; 상기 제1 전해질층의 평탄화된 표면에 조밀(dense)한 구조의 제2 전해질층을 형성하는 단계; 및 상기 제2 전해질층 상에 제2 전극층을 형성하는 단계를 포함하는 연료전지용 셀 제조방법을 통해 달성된다.According to a feature of the present invention for achieving the above object, the present invention comprises the steps of forming a porous first electrode layer; Forming a first electrolyte layer on the first electrode layer; Removing the top of the first electrolyte layer to planarize the removal surface; Forming a second electrolyte layer having a dense structure on the planarized surface of the first electrolyte layer; And forming a second electrode layer on the second electrolyte layer.
또한, 본 발명에서는 상기 제1 전해질층의 평탄화와 상기 제2 전해질층 형성이 한 단계로 진행되거나, 상기 제1 전해질층의 평탄화와 상기 제2 전해질층 형성이 전제 높이를 분할하여 여러 단계로 순차 진행될 수 있다.Further, in the present invention, the planarization of the first electrolyte layer and the formation of the second electrolyte layer may be performed in one step, or the planarization of the first electrolyte layer and the formation of the second electrolyte layer may be performed in several steps by dividing the entire height. Can proceed.
또한, 본 발명에서의 상기 제2 전해질층은 상기 제1 전해질층과 동일한 재질로 형성되거나 상이한 재질로 형성될 수 있다.In addition, the second electrolyte layer in the present invention may be formed of the same material or different materials than the first electrolyte layer.
또한, 본 발명에서의 상기 제2 전해질층은 상기 제1 전해질층과 동일한 공정으로 형성되거나 상이한 공정으로 형성될 수 있다.In addition, the second electrolyte layer in the present invention may be formed by the same process as the first electrolyte layer or may be formed by a different process.
또한, 본 발명에서의 상기 제1 전해질층은 물리적 기상증착법(Physical vapor deposition, PVD), 화학 기상 증착법(CVD : Chemical Vapor Deposition) 중 어느 하나의 공정으로 수행되고, 상기 제2 전해질층은 화학 기상 증착법(CVD : Chemical Vapor Deposition) 공정으로 수행될 수 있다.In addition, the first electrolyte layer in the present invention is performed by any one of physical vapor deposition (Physical vapor deposition, PVD), chemical vapor deposition (CVD: Chemical Vapor Deposition) process, the second electrolyte layer is chemical vapor deposition It may be performed by a chemical vapor deposition (CVD) process.
본 발명에 의하면, 핀 홀이 형성된 제1 전해질층의 상단을 일부 제거하여 표면을 평탄화한 후 조밀(dense)한 구조의 제2 전해질층을 적층하여 핀 홀이 생성된 전해질층을 개선함에 따라 단락(short)이나 누설(leakage) 등의 문제를 방지할 수 있는 효과가 있다.According to the present invention, the upper surface of the first electrolyte layer in which the pinholes are formed is partially removed to planarize the surface, and then a second electrolyte layer having a dense structure is laminated to improve the electrolyte layer in which the pinholes are generated. There is an effect that can prevent problems such as (short) and leakage (leakage).
도 1은 종래기술 1에 대한 연료극 지지형 고체산화물 연료전지의 단전지 단면을 보인 사진이다.1 is a cross-sectional view of a single cell of a cathode support solid oxide fuel cell according to the related art.
도 2는 종래기술 2에 대한 금속 지지체형 고체 산화물 연료전지의 일 예가 도시된 단면도이다.2 is a cross-sectional view showing an example of a metal support-type solid oxide fuel cell according to the prior art 2.
도 3은 종래기술에서의 전해질층에 핀 홀이 형성되는 상태를 도시한 참고도이다.3 is a reference diagram showing a state in which a pin hole is formed in the electrolyte layer in the prior art.
도 4는 본 발명의 제1 실시예에 의한 연료전지용 셀 제조방법의 블록도이다.4 is a block diagram of a fuel cell manufacturing method according to a first embodiment of the present invention.
도 5a 내지 도 5e는 본 발명의 제1 실시예에 의한 연료전지용 셀 제조방법의 공정도이다. 5A to 5E are flowcharts illustrating a method for manufacturing a fuel cell according to a first embodiment of the present invention.
< 도면의 주요부분에 대한 부호의 설명 ><Description of Symbols for Major Parts of Drawings>
300: 연료전지용 셀300: fuel cell
310: 제1 전극층310: first electrode layer
320: 제1 전해질층320: first electrolyte layer
330: 제2 전해질층330: second electrolyte layer
340: 제2 전극층340: second electrode layer
상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명은, 다공성 제1 전극층을 형성하는 단계; 상기 제1 전극층 상에 제1 전해질층을 형성하는 단계; 상기 제1 전해질층의 상단을 제거하여 제거 표면을 평탄화하는 단계; 상기 제1 전해질층의 평탄화된 표면에 조밀(dense)한 구조의 제2 전해질층을 형성하는 단계; 및 상기 제2 전해질층 상에 제2 전극층을 형성하는 단계를 포함하는 연료전지용 셀 제조방법을 통해 달성된다.According to a feature of the present invention for achieving the above object, the present invention comprises the steps of forming a porous first electrode layer; Forming a first electrolyte layer on the first electrode layer; Removing the top of the first electrolyte layer to planarize the removal surface; Forming a second electrolyte layer having a dense structure on the planarized surface of the first electrolyte layer; And forming a second electrode layer on the second electrolyte layer.
또한, 본 발명에서는 상기 제1 전해질층의 평탄화와 상기 제2 전해질층 형성이 한 단계로 진행되거나, 상기 제1 전해질층의 평탄화와 상기 제2 전해질층 형성이 전제 높이를 분할하여 여러 단계로 순차 진행될 수 있다.Further, in the present invention, the planarization of the first electrolyte layer and the formation of the second electrolyte layer may be performed in one step, or the planarization of the first electrolyte layer and the formation of the second electrolyte layer may be performed in several steps by dividing the entire height. Can proceed.
또한, 본 발명에서의 상기 제2 전해질층은 상기 제1 전해질층과 동일한 재질로 형성되거나 상이한 재질로 형성될 수 있다.In addition, the second electrolyte layer in the present invention may be formed of the same material or different materials than the first electrolyte layer.
또한, 본 발명에서의 상기 제2 전해질층은 상기 제1 전해질층과 동일한 공정으로 형성되거나 상이한 공정으로 형성될 수 있다.In addition, the second electrolyte layer in the present invention may be formed by the same process as the first electrolyte layer or may be formed by a different process.
또한, 본 발명에서의 상기 제1 전해질층은 물리적 기상증착법(Physical vapor deposition, PVD), 화학 기상 증착법(CVD : Chemical Vapor Deposition) 중 어느 하나의 공정으로 수행되고, 상기 제2 전해질층은 화학 기상 증착법(CVD : Chemical Vapor Deposition) 공정으로 수행될 수 있다.In addition, the first electrolyte layer in the present invention is performed by any one of physical vapor deposition (Physical vapor deposition, PVD), chemical vapor deposition (CVD: Chemical Vapor Deposition) process, the second electrolyte layer is chemical vapor deposition It may be performed by a chemical vapor deposition (CVD) process.
본 명세서 및 청구범위에 사용된 용어나 단어는 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the present specification and claims are meant to be consistent with the technical spirit of the present invention on the basis of the principle that the inventor can appropriately define the concept of the term in order to best explain his invention. It must be interpreted as and concepts.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부"라는 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수도 있다.Throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding other components unless otherwise stated. In addition, the term "... unit" described in the specification means a unit for processing at least one function or operation, which may be implemented in hardware or software or a combination of hardware and software.
이하 도면을 참고하여 본 발명에 의한 연료전지용 셀 제조방법에 대한 실시 예의 구성단계를 상세하게 설명하기로 한다.Hereinafter, the configuration steps of the embodiment of the fuel cell manufacturing method according to the present invention with reference to the drawings will be described in detail.
도 4에는 본 발명의 제1 실시예에 의한 연료전지용 셀 제조방법이 블록도로 도시되어 있고, 도 5a 내지 도 5e에는 본 발명의 제1 실시예에 의한 연료전지용 셀 제조방법이 공정도로 도시되어 있다.4 is a block diagram showing a fuel cell manufacturing method according to a first embodiment of the present invention, Figure 5a to 5e is a flowchart showing a fuel cell manufacturing method according to a first embodiment of the present invention. .
이들 도면에 의하면, 본 발명의 일실시예에 의한 연료전지용 셀 제조방법은 다공성 제1 전극층 형성 단계(S200), 제1 전해질층 형성 단계(S210), 제1 전해질층 표면 평탄화 단계(S220), 제2 전해질층 형성 단계(S230) 및 제2 전극층 형성 단계(S240)를 포함한다.According to these drawings, the fuel cell manufacturing method according to an embodiment of the present invention is a porous first electrode layer forming step (S200), the first electrolyte layer forming step (S210), the first electrolyte layer surface planarization step (S220), A second electrolyte layer forming step S230 and a second electrode layer forming step S240 are included.
다공성 제1 전극층 형성 단계(S200)는 다공성(porous)을 가지도록 제1 전극층(310)을 형성하는 단계이다. (도 5a 참조)The porous first electrode layer forming step (S200) is a step of forming the first electrode layer 310 to have a porous (porous). (See Figure 5A)
이때, 상기 제1 전극층 형성 단계(S200)는 고성능 촉매인 플래티넘(백금, Pt), 팔라듐(Pd), 니켈(Ni), 루세늄(Ru) 등의 재질로, 스퍼터링(sputtering), 펄스 레이저 증착법(Pulsed Laser Deposition, PLD) 등과 같은 물리적 기상증착법(Physical vapor deposition, PVD), 원자층 증착(ALD: Atomic Layer Deposition) 등과 같은 화학 기상 증착법(CVD : Chemical Vapor Deposition) 등의 방법에 의해 증착하여 애노드 전극인 제1 전극층(310)을 형성하는 단계이다. At this time, the first electrode layer forming step (S200) is made of a material such as platinum (platinum, Pt), palladium (Pd), nickel (Ni), ruthenium (Ru), etc., which is a high-performance catalyst, sputtering, pulsed laser deposition Anodes are deposited by chemical vapor deposition (CVD), such as physical vapor deposition (PVD), atomic layer deposition (ALD), etc. (Pulsed Laser Deposition, PLD). In this step, the first electrode layer 310, which is an electrode, is formed.
제1 전해질층 형성 단계(S210)는 제1 전극층(310) 상에 제1 전해질층(320)을 증착하여 형성하는 단계이다. 이때, 상기 제1 전해질층 형성 단계(S210)에서는 상기 제1 전극층(310)이 다공성을 가지도록 형성되어 고르지 못한 전극 표면의 영향으로 작은 핀 홀(pin-hole)들이 형성하게 된다. (도 5b 참조)The first electrolyte layer forming step (S210) is a step of depositing and forming the first electrolyte layer 320 on the first electrode layer 310. At this time, in the first electrolyte layer forming step (S210), the first electrode layer 310 is formed to have a porosity, so that small pin-holes are formed under the influence of the uneven electrode surface. (See Figure 5b)
더욱이, 상기 제1 전해질층(320)은 지르코늄 산화물(ZrxOy), 세륨 산화물(CexOy), 란타늄 갈레이트(Lanthanum Gallate), 바륨 세레이트(Barium Cerate), 바륨 지르코네이트(Barium Zirconate), 비스무스 계열 산화물 또는 상기 재료들의 여러 도핑(doping)상과 같은 산소 이온 전도체(Oxygen ion conducting materials), 혹은 프로톤 전도체(Proton conducting materials) 등의 이온 전도체를 포괄하는 범주에서 선택하여 사용할 수 있다. 여기서, 제1 전해질층(320)은 GDC(Gd-doped CeO2) 또는 YSZ(Yttria-stabilized zirconia) 등의 전해질 물질이 적용될 수 있으며, 스퍼터링(sputtering), 펄스 레이저 증착법(Pulsed Laser Deposition, PLD) 등과 같은 물리적 기상증착법(Physical vapor deposition, PVD), 원자층 증착(ALD: Atomic Layer Deposition) 등과 같은 화학 기상 증착법(CVD : Chemical Vapor Deposition) 등의 방법에 의해 증착된다.Further, the first electrolyte layer 320 is zirconium oxide (ZrxOy), cerium oxide (CexOy), lanthanum galate, barium cerate, barium zirconate, bismuth-based Oxygen ion conducting materials such as oxides or various doping phases of the above materials, or ion conductors such as proton conducting materials, may be selected and used in a comprehensive category. Here, the first electrolyte layer 320 may be applied with an electrolyte material such as Gd-doped CeO 2 (GDC) or Yttria-stabilized zirconia (YSZ), sputtering, pulsed laser deposition (PLD), or the like. It is deposited by a method such as chemical vapor deposition (CVD) such as physical vapor deposition (PVD), atomic layer deposition (ALD).
제1 전해질층 표면 평탄화 단계(S220)는 상기 제1 전해질층(320)의 표면을 제2 전해질층(330)으로 마감하기 위해 제1 전해질층(320)의 상단을 제거하여 평탄화하는 단계이다. 이때, 상기 제1 전해질층 표면 평탄화 단계(S220)는 반응성 이온 에칭(RIE, Reactive Ion Etching) 등으로 수행될 수 있다. (도 5c 참조)The first electrolyte layer surface planarization step (S220) is a step of removing and planarizing an upper end of the first electrolyte layer 320 to finish the surface of the first electrolyte layer 320 with the second electrolyte layer 330. In this case, the first electrolyte layer surface planarization step (S220) may be performed by reactive ion etching (RIE). (See Figure 5c)
제2 전해질층 형성 단계(S230)는 제1 전해질층(320)의 평탄화된 표면에 조밀(dense)한 구조의 제2 전해질층(330)을 박막 형태로 증착하여 형성하는 단계이다. (도 5d 참조)The second electrolyte layer forming step S230 is performed by depositing the second electrolyte layer 330 having a dense structure on the planarized surface of the first electrolyte layer 320 in a thin film form. (See FIG. 5D)
여기서, 상기 제2 전해질층(330)은 지르코늄 산화물(ZrxOy), 세륨 산화물(CexOy), 란타늄 갈레이트(Lanthanum Gallate), 바륨 세레이트(Barium Cerate), 바륨 지르코네이트(Barium Zirconate), 비스무스 계열 산화물 또는 상기 재료들의 여러 도핑(doping)상과 같은 산소 이온 전도체(Oxygen ion conducting materials), 혹은 프로톤 전도체(Proton conducting materials) 등의 이온 전도체를 포괄하는 범주에서 선택하여 사용할 수 있다. 여기서, 제2 전해질층(330)은 GDC(Gd-doped CeO2) 또는 YSZ(Yttria-stabilized zirconia) 등의 전해질 물질이 적용될 수 있으며, 스퍼터링(sputtering), 펄스 레이저 증착법(Pulsed Laser Deposition, PLD) 등과 같은 물리적 기상증착법(Physical vapor deposition, PVD), 원자층 증착(ALD: Atomic Layer Deposition) 등과 같은 화학 기상 증착법(CVD : Chemical Vapor Deposition) 등의 방법에 의해 증착된다.Here, the second electrolyte layer 330 is zirconium oxide (ZrxOy), cerium oxide (CexOy), lanthanum galate (Lanthanum Gallate), barium cerate (barium Cerate), barium zirconate, bismuth-based Oxygen ion conducting materials such as oxides or various doping phases of the above materials, or ion conductors such as proton conducting materials, may be selected and used in a comprehensive category. Here, the second electrolyte layer 330 may be applied with an electrolyte material such as Gd-doped CeO 2 (GDC) or Yttria-stabilized zirconia (YSZ), and may be sputtered or pulsed laser deposition (PLD). It is deposited by a method such as chemical vapor deposition (CVD) such as physical vapor deposition (PVD), atomic layer deposition (ALD).
한편, 상기 제2 전해질층 형성 단계(S230)는 상기 제1 전해질층(320)을 형성하는 과정에서 고르지 못한 제1 전극층(310)의 거친(rough) 표면의 영향으로 상기 제1 전해질층(320) 내에 작은 핀 홀들이 발생하여 차후 연료전지에 단락(short)이나 누설(leakage) 현상이 발생하게 되는데 이를 해소하기 위해 핀 홀이 연결되지 않도록 제2 전해질층(330)으로 마감하는 것이다.Meanwhile, in the forming of the second electrolyte layer (S230), the first electrolyte layer 320 may be affected by the rough surface of the uneven first electrode layer 310 in the process of forming the first electrolyte layer 320. Small pin holes are generated in the N-th and subsequent short-circuit or leakage occurs in the fuel cell. In order to solve the problem, the second electrolyte layer 330 is closed so that the pin holes are not connected.
더욱이, 제1 전해질층 표면 평탄화 단계(S220)와 제2 전해질층 형성 단계(S230)는 제1 전해질층(320)의 제거 높이와 제2 전해질층(330)의 형성 높이와 대응하는 높이만큼 한 번에 진행되거나, 상기 제1 전해질층(320)의 제거 높이와 상기 제2 전해질층(330)의 형성 높이와 대응하는 전체 높이를 다수 분할하여 분할한 높이만큼 여러 단계로 나눠 조금씩 순차 진행할 수 있다.Further, the first electrolyte layer surface planarization step S220 and the second electrolyte layer forming step S230 may be performed by a height corresponding to the removal height of the first electrolyte layer 320 and the formation height of the second electrolyte layer 330. In some cases, the total height corresponding to the removal height of the first electrolyte layer 320 and the formation height of the second electrolyte layer 330 may be divided into a plurality of steps by the divided heights, and the steps may be sequentially performed. .
그리고 상기 제1 전해질층 형성 단계(S210)와, 상기 제2 전해질층 형성 단계(S230)의 수행 시 상기 제1 전해질층(320)과 상기 제2 전해질층(330)을 이루는 전해질 물질이 동일한 재질로 형성되거나 상이한 재질로 형성될 수 있다.In addition, when the first electrolyte layer forming step S210 and the second electrolyte layer forming step S230 are performed, the electrolyte materials forming the first electrolyte layer 320 and the second electrolyte layer 330 are the same material. It may be formed of or made of different materials.
더욱이, 상기 제1 전해질층 형성 단계(S210)와, 상기 제2 전해질층 형성 단계(S230)의 수행 시 상기 제1 전해질층(320)과 상기 제2 전해질층(330)을 형성하는 공정이 동일한 공정으로 수행되거나 상이한 공정으로 수행될 수 있다.Further, when the first electrolyte layer forming step S210 and the second electrolyte layer forming step S230 are performed, the processes of forming the first electrolyte layer 320 and the second electrolyte layer 330 are the same. It may be carried out in a process or in a different process.
예컨대, 상기 제1 전해질층(320)과 상기 제2 전해질층(330)은 같은 물질(예: YSZ)이지만 다른 물질(예: GDC)을 쓰는 응용도 가능하며, 증착 공정에서 상기 제1 전해질층(320)은 스퍼터링(sputtering), 펄스 레이저 증착법(Pulsed Laser Deposition, PLD) 등과 같은 물리적 기상증착법(Physical vapor deposition, PVD), 원자층 증착(ALD: Atomic Layer Deposition) 등과 같은 화학 기상 증착법(CVD : Chemical Vapor Deposition) 중 어느 하나의 공정으로 수행되고, 상기 제2 전해질층(330)은 원자층 증착(ALD: Atomic Layer Deposition) 등과 같은 화학 기상 증착법(CVD : Chemical Vapor Deposition) 등의 공정으로 수행될 수 있다.For example, the first electrolyte layer 320 and the second electrolyte layer 330 may be made of the same material (eg, YSZ), but may use another material (eg, GDC), and the first electrolyte layer may be used in a deposition process. The chemical vapor deposition method 320 may include chemical vapor deposition (CVD) such as physical vapor deposition (PVD), atomic layer deposition (ALD), and the like, such as sputtering and pulsed laser deposition (PLD). Chemical Vapor Deposition) and the second electrolyte layer 330 may be performed by a process such as chemical vapor deposition (CVD) such as atomic layer deposition (ALD). Can be.
제2 전극층 형성 단계(S240)는 제2 전해질층(330) 상에 제2 전극층(340)을 형성하는 단계이다. (도 5e 참조)The second electrode layer forming step (S240) is a step of forming the second electrode layer 340 on the second electrolyte layer 330. (See Figure 5E)
이때, 상기 제2 전극층 형성 단계(S240)는 고성능 촉매인 플래티넘(백금, Pt), 팔라듐(Pd), 니켈(Ni), 루세늄(Ru) 등의 재질로, 스퍼터링(sputtering), 펄스 레이저 증착법(Pulsed Laser Deposition, PLD) 등과 같은 물리적 기상증착법(Physical vapor deposition, PVD), 원자층 증착(ALD: Atomic Layer Deposition) 등과 같은 화학 기상 증착법(CVD : Chemical Vapor Deposition)등의 방법에 의해 증착하여 캐소드 전극인 제2 전극층(340)을 형성하는 단계이다.At this time, the second electrode layer forming step (S240) is a high-performance catalyst, such as platinum (platinum, Pt), palladium (Pd), nickel (Ni), ruthenium (Ru), sputtering (sputtering), pulse laser deposition method Cathode is deposited by chemical vapor deposition (CVD), such as physical vapor deposition (PVD), atomic layer deposition (ALD), etc. The second electrode layer 340 is formed as an electrode.
본 발명의 연료전지용 셀 제조방법에 의해 제조되는 연료전지용 셀(300)은 제1 전극층(310), 제1 전해질층(320), 제2 전해질층(330) 및 제2 전극층(340)을 포함한다. The fuel cell 300 manufactured by the fuel cell manufacturing method of the present invention includes a first electrode layer 310, a first electrolyte layer 320, a second electrolyte layer 330, and a second electrode layer 340. do.
여기서, 상기 제1, 2 전해질층(320, 330)은 전극 사이에서 이온의 이동통로를 제공하지만 전자의 이동은 차단하고 연료와 산소를 분리하는 기능을 하며, 상기 촉매에 의해 형성되는 제1 전극층(310)과 제2 전극층(340)은 전기화학반응이 일어날 수 있도록 넓은 표면적을 제공하고 이때 발생하는 전자의 이동통로를 제공하는 기능을 한다.Here, the first and second electrolyte layers 320 and 330 provide a passage for the movement of ions between the electrodes but block the movement of electrons and separate fuel and oxygen, and are formed by the catalyst. The 310 and the second electrode layer 340 serve to provide a large surface area for the electrochemical reaction to occur and to provide a movement path of electrons generated at this time.
제1 전극층(310)은 애노드 전극으로, 고성능 촉매인 플래티넘(백금, Pt), 팔라듐(Pd), 니켈(Ni), 루세늄(Ru) 등의 재질로, 스퍼터링(sputtering), 펄스 레이저 증착법(Pulsed Laser Deposition, PLD) 등과 같은 물리적 기상증착법(Physical vapor deposition, PVD), 원자층 증착(ALD: Atomic Layer Deposition) 등과 같은 화학 기상 증착법(CVD : Chemical Vapor Deposition) 등의 방법에 의해 증착하여 형성된다.The first electrode layer 310 is an anode electrode and is made of a material such as platinum (platinum, Pt), palladium (Pd), nickel (Ni), ruthenium (Ru), etc., which is a high-performance catalyst, and is formed by sputtering and pulse laser deposition ( Physical vapor deposition (PVD) such as Pulsed Laser Deposition (PLD), etc., is deposited by chemical vapor deposition (CVD) such as Atomic Layer Deposition (ALD). .
한편, 상기 제1 전극층(310)은 기체의 침투 및 반응 면적 확대를 위해 다공성(porous)을 가지도록 형성된다.On the other hand, the first electrode layer 310 is formed to have a porous (porous) for gas infiltration and expansion of the reaction area.
제1 전해질층(320)은 제1 전극층(310) 상에 형성되되, 지르코늄 산화물(ZrxOy), 세륨 산화물(CexOy), 란타늄 갈레이트(Lanthanum Gallate), 바륨 세레이트(Barium Cerate), 바륨 지르코네이트(Barium Zirconate), 비스무스 계열 산화물 또는 상기 재료들의 여러 도핑(doping)상과 같은 산소 이온 전도체(Oxygen ion conducting materials), 혹은 프로톤 전도체(Proton conducting materials) 등의 이온 전도체를 포괄하는 범주에서 선택하여 사용할 수 있다. 여기서, 제1 전해질층(320)은 GDC(Gd-doped CeO2) 또는 YSZ(Yttria-stabilized zirconia) 등의 전해질 물질이 적용될 수 있다.The first electrolyte layer 320 is formed on the first electrode layer 310 and includes zirconium oxide (ZrxOy), cerium oxide (CexOy), lanthanum galate, barium cerate, and barium zirco. Choose from a range of ionic conductors, such as Oxygen ion conducting materials, such as Barium Zirconate, bismuth-based oxides, or various doping phases of these materials, or Proton conducting materials Can be used. Here, an electrolyte material such as Gd-doped CeO 2 (GDC) or Yttria-stabilized zirconia (YSZ) may be applied to the first electrolyte layer 320.
여기서, 상기 제1 전해질층(320)은 제1 전극층(310)이 다공성을 가지도록 형성되어 고르지 못한 상기 제1 전극층(310) 표면의 영향으로 작은 핀 홀(pin-hole)들이 내부에 형성된다.Here, the first electrolyte layer 320 is formed such that the first electrode layer 310 has a porosity, and small pin-holes are formed therein under the influence of the uneven surface of the first electrode layer 310. .
제2 전해질층(330)은 표면이 평탄화된 제1 전해질층(320) 상에 조밀(dense)한 구조로 형성되어 상기 제1 전해질층(320) 내에 형성된 핀 홀에 의해 크랙이 발생하지 않도록 상기 제1 전해질층(320)의 상면을 마감하는 것이다.The second electrolyte layer 330 is formed in a dense structure on the first electrolyte layer 320 having a flat surface, so that cracks do not occur due to pin holes formed in the first electrolyte layer 320. The upper surface of the first electrolyte layer 320 is finished.
한편, 상기 제2 전해질층(330)은 제1 전해질층(320)과 전해질 물질이 동일한 재질로 형성되거나 상이한 재질로 형성될 수 있다. 예컨대, 상기 제1 전해질층(320)과 상기 제2 전해질층(330)은 같은 물질(예: YSZ)이지만 다른 물질(예: GDC)을 쓰는 응용도 가능하다.Meanwhile, the second electrolyte layer 330 may be formed of the same material or different materials from the first electrolyte layer 320 and the electrolyte material. For example, although the first electrolyte layer 320 and the second electrolyte layer 330 are the same material (eg, YSZ), an application using another material (eg, GDC) may be used.
제2 전극층(340)은 제2 전해질층(330) 상에 형성되는 캐소드 전극이며, 고성능 촉매인 플래티넘(백금, Pt), 팔라듐(Pd), 니켈(Ni), 루세늄(Ru) 등의 재질로, 스퍼터링(sputtering), 펄스 레이저 증착법(Pulsed Laser Deposition, PLD) 등과 같은 물리적 기상증착법(Physical vapor deposition, PVD), 원자층 증착(ALD: Atomic Layer Deposition) 등과 같은 화학 기상 증착법(CVD : Chemical Vapor Deposition) 등의 방법에 의해 증착하여 형성된다. The second electrode layer 340 is a cathode electrode formed on the second electrolyte layer 330, and is made of a high performance catalyst such as platinum (platinum, Pt), palladium (Pd), nickel (Ni), ruthenium (Ru), or the like. Chemical vapor deposition (CVD: Chemical Vapor) such as physical vapor deposition (PVD), atomic layer deposition (ALD), etc., such as sputtering, pulsed laser deposition (PLD), etc. It is formed by vapor deposition by a method such as Deposition).
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.As described above, the present invention has been described by way of limited embodiments and drawings, but the present invention is not limited to the above embodiments, and those skilled in the art to which the present invention pertains various modifications and variations from such descriptions. This is possible.
그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined not only by the claims below but also by the equivalents of the claims.
본 발명은 연료전지용 셀 제조방법에 관한 것으로, 본 발명은, 다공성 제1 전극층을 형성하는 단계; 상기 제1 전극층 상에 제1 전해질층을 형성하는 단계; 상기 제1 전해질층의 상단을 제거하여 제거 표면을 평탄화하는 단계; 상기 제1 전해질층의 평탄화된 표면에 조밀(dense)한 구조의 제2 전해질층을 형성하는 단계; 및 상기 제2 전해질층 상에 제2 전극층을 형성하는 단계를 포함한다.The present invention relates to a fuel cell manufacturing method, the present invention comprises the steps of forming a porous first electrode layer; Forming a first electrolyte layer on the first electrode layer; Removing the top of the first electrolyte layer to planarize the removal surface; Forming a second electrolyte layer having a dense structure on the planarized surface of the first electrolyte layer; And forming a second electrode layer on the second electrolyte layer.
본 발명에 의하면, 핀 홀이 형성된 제1 전해질층의 상단을 일부 제거하여 표면을 평탄화한 후 조밀(dense)한 구조의 제2 전해질층을 적층하여 핀 홀이 생성된 전해질층을 개선함에 따라 단락(short)이나 누설(leakage) 등의 문제를 방지할 수 있는 효과가 있다.According to the present invention, the upper surface of the first electrolyte layer in which the pinholes are formed is partially removed to planarize the surface, and then a second electrolyte layer having a dense structure is laminated to improve the electrolyte layer in which the pinholes are generated. There is an effect that can prevent problems such as (short) and leakage (leakage).

Claims (5)

  1. 다공성 제1 전극층을 형성하는 단계;Forming a porous first electrode layer;
    상기 제1 전극층 상에 제1 전해질층을 형성하는 단계; Forming a first electrolyte layer on the first electrode layer;
    상기 제1 전해질층의 상단을 제거하여 제거 표면을 평탄화하는 단계;Removing the top of the first electrolyte layer to planarize the removal surface;
    상기 제1 전해질층의 평탄화된 표면에 조밀(dense)한 구조의 제2 전해질층을 형성하는 단계; 및Forming a second electrolyte layer having a dense structure on the planarized surface of the first electrolyte layer; And
    상기 제2 전해질층 상에 제2 전극층을 형성하는 단계를 포함하는 연료전지용 셀 제조방법.And forming a second electrode layer on the second electrolyte layer.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1 전해질층의 평탄화와 상기 제2 전해질층 형성이 한 단계로 진행되거나, 상기 제1 전해질층의 평탄화와 상기 제2 전해질층 형성이 전제 높이를 분할하여 여러 단계로 순차 진행되는 연료전지용 셀 제조방법.A fuel cell cell in which the planarization of the first electrolyte layer and the formation of the second electrolyte layer are performed in one step, or the planarization of the first electrolyte layer and the formation of the second electrolyte layer are performed in several steps by dividing the entire height. Manufacturing method.
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 제2 전해질층은 상기 제1 전해질층과 동일한 재질로 형성되거나 상이한 재질로 형성되는 연료전지용 셀 제조방법.And the second electrolyte layer is formed of the same material as the first electrolyte layer or formed of a different material.
  4. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 제2 전해질층은 상기 제1 전해질층과 동일한 공정으로 형성되거나 상이한 공정으로 형성되는 연료전지용 셀 제조방법.And the second electrolyte layer is formed in the same process as the first electrolyte layer or is formed in a different process.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 제1 전해질층은 물리적 기상증착법(Physical vapor deposition, PVD), 화학 기상 증착법(CVD : Chemical Vapor Deposition) 중 어느 하나의 공정으로 수행되고, The first electrolyte layer is performed by one of physical vapor deposition (Physical vapor deposition, PVD), chemical vapor deposition (CVD: Chemical Vapor Deposition) process,
    상기 제2 전해질층은 화학 기상 증착법(CVD : Chemical Vapor Deposition) 공정으로 수행되는 연료전지용 셀 제조방법.The second electrolyte layer is a fuel cell cell manufacturing method performed by a chemical vapor deposition (CVD) process.
PCT/KR2014/000855 2013-01-29 2014-01-29 Fuel-cell cell production method WO2014119927A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0009594 2013-01-29
KR20130009594 2013-01-29

Publications (1)

Publication Number Publication Date
WO2014119927A1 true WO2014119927A1 (en) 2014-08-07

Family

ID=51262578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000855 WO2014119927A1 (en) 2013-01-29 2014-01-29 Fuel-cell cell production method

Country Status (1)

Country Link
WO (1) WO2014119927A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002239352A (en) * 2001-02-16 2002-08-27 Sumitomo Electric Ind Ltd Hydrogen permeable structure and its production method
KR20040099149A (en) * 2003-05-16 2004-11-26 산요덴키가부시키가이샤 Fuel Cell
JP2007087747A (en) * 2005-09-21 2007-04-05 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2011142042A (en) * 2010-01-08 2011-07-21 Kyushu Univ Power generation cell for solid oxide fuel battery and its manufacturing method
KR20120008390A (en) * 2010-07-16 2012-01-30 한국과학기술연구원 Dense film and fuel cell using that film and the fabrication method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002239352A (en) * 2001-02-16 2002-08-27 Sumitomo Electric Ind Ltd Hydrogen permeable structure and its production method
KR20040099149A (en) * 2003-05-16 2004-11-26 산요덴키가부시키가이샤 Fuel Cell
JP2007087747A (en) * 2005-09-21 2007-04-05 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2011142042A (en) * 2010-01-08 2011-07-21 Kyushu Univ Power generation cell for solid oxide fuel battery and its manufacturing method
KR20120008390A (en) * 2010-07-16 2012-01-30 한국과학기술연구원 Dense film and fuel cell using that film and the fabrication method therefor

Similar Documents

Publication Publication Date Title
WO2016080681A1 (en) Method for manufacturing solid oxide fuel cell
CN1591949B (en) Current collector supported fuel cell
CN1976108A (en) Solid porous supporting body flat-plate series micro solid oxide fuel battery
WO2018062693A1 (en) Solid oxide fuel cell
KR101277885B1 (en) Tube type fuel celland method for manufacturing the same
KR20100134347A (en) Anode-supported electrolyte for solid oxide fuel cell and manufacturing method of the same
Guangyao et al. New solid state fuel cells-green power source for 21st century
US20110053045A1 (en) Solid oxide fuel cell and method of manufacturing the same
WO2015050409A1 (en) Method for manufacturing anode support of solid oxide fuel cell, and anode support of solid oxide fuel cell
WO2014119927A1 (en) Fuel-cell cell production method
WO2014119931A1 (en) Method for manufacturing stack of thin film-type solid oxide fuel cell using nanopowder
EP4243129A1 (en) Solid oxide cell chip with double-electrolyte structure and preparation method
KR20160058275A (en) Metal-supported solid oxide fuel cell and method of manufacturing the same
WO2014119929A1 (en) Method for fabricating cell for fuel battery
WO2014109600A1 (en) Stack for fuel cell and method for manufacturing same
WO2014119925A1 (en) Reformer integrated thin film solid oxide fuel cell and method for fabricating same
WO2014119926A1 (en) Fuel-cell cell production method
WO2018034489A1 (en) Planar solid oxide fuel cell
KR20160025197A (en) Unit cell for solid oxide fuel cell and manufacturing method thereof
WO2014119924A1 (en) Single chamber type thin film sofc and method for fabricating same
WO2014081177A1 (en) Thin film-type sofc stack for reducing agglomeration
US20050019637A1 (en) Method for manufacturing fuel cell components by low temperature processing
JP7080090B2 (en) Method for manufacturing metal support of electrochemical element, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell and metal support
WO2014109586A1 (en) Thin film-type sofc stack for reducing agglomeration
KR20140082400A (en) Solid oxide fuel cell and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14745472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14745472

Country of ref document: EP

Kind code of ref document: A1