WO2014119389A1 - 非接触電力伝送装置及び非接触電力伝送方法 - Google Patents

非接触電力伝送装置及び非接触電力伝送方法 Download PDF

Info

Publication number
WO2014119389A1
WO2014119389A1 PCT/JP2014/050812 JP2014050812W WO2014119389A1 WO 2014119389 A1 WO2014119389 A1 WO 2014119389A1 JP 2014050812 W JP2014050812 W JP 2014050812W WO 2014119389 A1 WO2014119389 A1 WO 2014119389A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
power
characteristic
transmission
frequency
Prior art date
Application number
PCT/JP2014/050812
Other languages
English (en)
French (fr)
Inventor
宮内靖
戸高義弘
井戸寛
田中淳史
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013016975A external-priority patent/JP6172956B2/ja
Priority claimed from JP2013046544A external-priority patent/JP6420025B2/ja
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Publication of WO2014119389A1 publication Critical patent/WO2014119389A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings

Definitions

  • the present invention relates to a non-contact power transmission apparatus and a non-contact power transmission method that perform power transmission between a power transmission coil and a power reception coil in a non-contact (wireless) manner.
  • Non-contact power transmission methods include electromagnetic induction using electromagnetic induction (several hundreds of kHz), electric / magnetic resonance using electric field or magnetic resonance, microwave power transmission using radio waves (several GHz), or visible light.
  • electromagnetic induction severe hundreds of kHz
  • electric / magnetic resonance using electric field or magnetic resonance
  • microwave power transmission using radio waves severe GHz
  • visible light A laser power transmission type using electromagnetic waves (light) in a region is known.
  • the electromagnetic induction type has already been put into practical use. This can be realized with a simple circuit configuration using transformer coupling, but there is also a problem that the transmission distance is short.
  • the advantage of non-contact power transmission is that power can be transmitted even if a gap, non-magnetic or non-metallic object is interposed between the power transmission side and the power receiving side. For example, even if a non-metallic wall or window glass is sandwiched, electric power can be transmitted without making a hole.
  • the distance between the power transmission side and the power reception side is increased, the amount of magnetic flux or the like diverges and the amount guided to the power reception side decreases, and it becomes difficult to efficiently supply power.
  • Electric field / magnetic resonance type power transmission is possible for short distance transmission of about 2 m and is effective in solving the problem of transmission distance.
  • the human body in the case of the electric field resonance type, when a hand or the like is put in the transmission path, the human body is a dielectric, so that energy is absorbed as heat and dielectric loss occurs.
  • the magnetic field resonance type the human body hardly absorbs energy, and dielectric loss can be avoided.
  • FIG. 18 is a diagram showing an outline of a general configuration of a conventional non-contact power transmission device using magnetic field resonance.
  • the power transmission device 1 includes a power transmission coil 2, and the power reception device 3 includes a power reception coil 4.
  • the power transmission coil 2 is configured by combining a loop coil 2a and a power transmission resonance coil 2b.
  • the power receiving coil 4 is configured by combining a loop coil 4a and a power receiving resonance coil 4b.
  • a power feeding circuit 5 including a high frequency power driver is connected to the loop coil 2a of the power transmission device 1, and the power of the AC power source 6 is converted into high frequency power that can be transmitted and supplied.
  • a load 8 such as a rechargeable battery is connected to the loop coil 4a of the power receiving device 3 via a power receiving circuit 7 including a rectifier.
  • the loop coil 2a is excited by an electric signal supplied from the power supply circuit 5, and transmits the electric signal to the power transmission resonance coil 2b by electromagnetic induction.
  • the power transmission resonance coil 2b generates a magnetic field based on the electric signal output from the loop coil 2a.
  • the electric power supplied to the power transmission resonance coil 2b is transmitted in a non-contact manner to the power reception resonance coil 4b by magnetic field resonance.
  • the transmitted power is transmitted from the power receiving resonance coil 4 b to the loop coil 4 a by electromagnetic induction, rectified by the rectifier of the power receiving circuit 7 and supplied to the load 8.
  • the resonance frequencies of the power transmission resonance circuit configured by the power transmission resonance coil 2b and the power reception resonance circuit configured by the power reception resonance coil 4b are set to be the same. Furthermore, efficient power transmission can be performed by adjusting the distance between the coils and the distance between the loop coils to achieve matching.
  • Non-contact power transmission device is being applied to an electric vehicle (EV).
  • EV electric vehicle
  • non-contact power transmission through a thick wall used in a normal residence is also possible.
  • a metal intervenes in the space between the power transmission device and the power reception device it becomes a failure factor for power transmission (hereinafter simply referred to as “failure factor”). That is, the metal may be abnormally heated or the power transmission efficiency may be reduced due to the influence of the magnetic field. Therefore, for example, Patent Document 1 detects whether or not there is a failure factor such as metal in the space between the power transmission device and the power reception device, and if there is a failure factor, performs control to stop power transmission. An apparatus configured to do so is disclosed.
  • Patent Document 2 discloses disposing a sensor for measuring the magnetic field strength in the vicinity of the power transmission coil. That is, characteristics such as a bimodal characteristic are detected by the magnetic field intensity sensor when performing non-contact power transmission through the wall, and transmission is controlled accordingly. In the case of the bimodal characteristic, if power is transferred at a higher frequency of the two peak frequencies, the magnetic field strength between the power transmission and the power receiving coil is minimized. Therefore, it is suggested that appropriate power transmission through a wall or the like is possible by setting in this state.
  • Patent Document 2 if a bimodal characteristic or the like is obtained from the output of the magnetic field strength measurement sensor, it can be determined that the other party exists, and if power is transmitted at a higher frequency, the power transmission coil and the power receiving coil Since a portion where the magnetic field strength is lowest is generated between them, it is suggested that it can be determined that it is suitable for feeding through the wall.
  • Patent Document 3 discloses a configuration in which a magnetic material is disposed on the back surface of the power supply coil on the power transmission side, and a magnetic material is disposed on the back surface of the power extraction coil on the power reception side. As a result, the magnetic field distribution can be further displaced toward both the power transmission coil and the power reception coil to generate strong coupling, thereby improving the power transmission efficiency.
  • Patent Document 3 describes an example in which a power transmission unit is embedded in a wall or the like with such a configuration.
  • Patent Documents 1 and 2 do not disclose a contactless power transmission method suitable for such a case.
  • setting the portion with the lowest magnetic field strength as the wall portion corresponds to setting the portion with high electric field strength at the center of the wall. For this reason, when the wall acts as a dielectric, dielectric loss occurs and transmission efficiency is reduced. Therefore, it is difficult to improve transmission efficiency, and it is difficult to say that the method is suitable for wireless power feeding.
  • the present invention has a function of detecting a state of a factor that has an influence on power transmission by using a simple configuration that does not require a state detection-dedicated coil. It is an object of the present invention to provide a non-contact power transmission device having the above-mentioned.
  • the present invention further provides a non-contact power transmission device and a non-contact power that enable stable power transmission by detecting the arrangement state of the power receiving device across the wall relative to the power transmission device with a simple configuration that does not require a dedicated sensor.
  • An object is to provide a transmission method.
  • a non-contact power transmission device of the present invention includes a power transmission device having a power transmission resonator configured by a power transmission coil and a resonance capacitor, and a power reception device having a power reception resonator configured by a power reception coil and a resonance capacitor, the power transmission Electric power is transmitted from the power transmitting device to the power receiving device through an action between the coil and the power receiving coil.
  • the contactless power transmission device includes a power transmission control unit that controls the magnitude and frequency setting of the high-frequency power that the power transmission device supplies to the power transmission resonator, and the power transmission control.
  • a transmission characteristic detection unit that detects a transmission characteristic related to a factor corresponding to a resonance frequency of the power transmission resonator based on a response to high-frequency power controlled by the unit, and a magnetic flux arrival range in front of the power transmission coil is in a reference state
  • a reference characteristic storage unit that stores the transmission characteristic as a reference characteristic, and a transmission characteristic comparison unit that compares the transmission characteristic detected by the transmission characteristic detection unit with the reference characteristic, and based on the comparison by the transmission characteristic comparison unit And a function for determining a state of a factor affecting power transmission from the power transmission coil.
  • the non-contact power transmission method of the present invention uses a power transmission device having a power transmission resonator constituted by a power transmission coil and a resonance capacitor, and a power reception device having a power reception resonator constituted by a power reception coil and a resonance capacitor, and In this method, electric power is transmitted from the power transmitting device to the power receiving device via an action between a coil and the power receiving coil.
  • the contactless power transmission method of the present invention supplies high-frequency power set to a predetermined magnitude and a predetermined frequency to the power transmission resonator, and based on the response of the power transmission resonator, A transmission characteristic detection step for detecting a transmission characteristic related to a factor corresponding to a resonance frequency of the power transmission resonator, and the transmission characteristic measured by the transmission characteristic detection step in a state where the magnetic flux arrival range in front of the power transmission coil is in a reference state.
  • a reference characteristic storing step for storing the transmission characteristic as a reference characteristic
  • a transmission characteristic comparison step for comparing the transmission characteristic detected by the transmission characteristic detection step with the stored reference characteristic, and a comparison by the transmission characteristic comparison step.
  • a state determination step of determining a state of a factor affecting power transmission from the power transmission coil, That.
  • a transmission characteristic such as a resonance frequency of a power transmission resonator is detected using a power transmission coil, and a state of a factor affecting power transmission is determined based on the change.
  • the power transmission device can have a function of detecting a state independently while adopting a simple configuration that does not require a coil dedicated to state detection.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a non-contact power transmission apparatus according to Embodiment 1.
  • FIG. FIG. 2 is a block diagram showing a power transmission device constituting the contactless power transmission device
  • FIG. 3A is a schematic cross-sectional view showing a measurement system for examining a change in inductance L when a metal approaches the power transmission resonance coil of the power transmission device
  • FIG. 3B is a diagram showing a change in inductance L when a metal approaches the power transmission resonance coil of the power transmission device.
  • FIG. 4A is a schematic cross-sectional view showing a measurement system for examining a change in resonance frequency fr when a metal approaches a power transmission resonance coil of the power transmission device
  • FIG. 4B is a diagram illustrating a change in the resonance frequency fr when a metal approaches the power transmission resonance coil of the power transmission device.
  • FIG. 5 is a flowchart showing an example of an operation for detecting a failure factor in the contactless power transmission apparatus.
  • FIG. 6 is a diagram showing an arrangement example in the case of transmitting power through a concrete wall in which reinforcing bars are arranged, (a) is a front view, and (b) is a cross-sectional view.
  • FIG. 7A is a diagram illustrating an arrangement relationship of power transmission resonance coils with respect to reinforcing bars arranged at a mesh interval W in the contactless power transmission method according to the second embodiment.
  • FIG. 7B is a diagram illustrating an arrangement relationship of the power transmission resonance coils with respect to the reinforcing bars arranged at a mesh interval W different from that in FIG. 7A.
  • FIG. 7C is a diagram showing the arrangement relationship of the power transmission resonance coils with respect to the reinforcing bars arranged at another mesh interval W.
  • FIG. 8A is a diagram showing an arrangement relationship of a power transmission resonance coil with respect to a reinforcing bar based on the first aspect of the non-contact power transmission method in the second embodiment.
  • FIG. 8B is a diagram showing the dependence of the transmission efficiency on the ratio D / W measured based on the first aspect.
  • FIG. 9A is a diagram showing an arrangement relationship of power transmission resonance coils with respect to reinforcing bars based on the second mode of the non-contact power transmission method according to Embodiment 2.
  • FIG. 9B is a diagram showing the dependence of the transmission efficiency on the ratio D / W measured according to the second aspect.
  • FIG. 10A is a diagram showing an arrangement relationship of a power transmission resonance coil with respect to a reinforcing bar based on the third aspect of the non-contact power transmission method in the second embodiment.
  • FIG. 10B is a diagram showing an arrangement relationship of the power transmission resonance coil with respect to the reinforcing bar based on the fourth aspect of the contactless power transmission method.
  • FIG. 10C is a diagram showing an arrangement relationship of the power transmission resonance coil with respect to the reinforcing bar based on the fifth aspect of the contactless power transmission method.
  • FIG. 11 is a block diagram of the non-contact power transmission apparatus according to the third embodiment.
  • FIG. 12 is a waveform diagram showing changes in the frequency characteristics of the resonance voltage of the contactless power transmission device
  • FIG. 13 is a block diagram of a power receiving device constituting the non-contact power transmission device according to the fourth embodiment.
  • FIG. 14A is a circuit diagram showing an output circuit constituting a power feeding circuit included in the power transmission device of the non-contact power transmission device according to the fifth embodiment.
  • FIG. 14B is a circuit diagram showing a configuration example of a resonance voltage detection unit included in the power transmission device FIG.
  • FIG. 15A is a circuit diagram illustrating another configuration example of the resonance voltage detection unit included in the power transmission device.
  • FIG. 15B is a conceptual diagram illustrating a configuration example of a cable extension type of the power transmission device
  • FIG. 16 is a conceptual diagram illustrating a configuration example of a cable extension type power receiving device according to the fifth embodiment.
  • FIG. 17 is a circuit diagram illustrating a configuration example of a power reception voltage adjustment unit included in the power reception device in the sixth embodiment.
  • FIG. 18 is a schematic diagram illustrating a configuration of a conventional non-contact power transmission apparatus.
  • the non-contact power transmission apparatus of the present invention can take the following aspects based on the above configuration.
  • the resonance frequency of the power transmission resonator the inductance of the power transmission coil, or the resonance voltage of the power transmission coil is used.
  • the reference characteristic storage unit uses the transmission characteristic at the time of opening in which no inclusion is present in the magnetic flux arrival range in front of the power transmission coil as the reference characteristic.
  • the transmission characteristic comparison unit detects a change in the transmission characteristic according to the presence or absence of inclusions in the magnetic flux arrival range in front of the power transmission coil, and based on the detection result by the transmission characteristic comparison unit It is configured to detect the degree of influence on power transmission due to a failure factor present in an object.
  • the power transmission device includes a resonance frequency adjustment unit that makes a resonance frequency of the power transmission resonator variable, and the transmission characteristic detection unit detects the resonance frequency of the power transmission resonator.
  • the resonance frequency of the power transmission resonator has changed from a predetermined value when the power transmission device is fixed to the surface of the inclusion.
  • the resonance frequency adjusting unit is controlled to return to the resonance frequency before the power transmission device is attached to the inclusion.
  • the frequency applied from the high-frequency power driver to the power transmission coil is changed by the microcomputer, and the frequency at which the resonance voltage of the power transmission coil at that time is maximized is determined by the microcomputer.
  • the resonance frequency adjustment unit for example, a configuration is employed in which the oscillation frequency of the high-frequency power driver is changed, or the inductance or resonance capacity of the power transmission resonator is changed.
  • the transmission characteristic detection unit detects a resonance voltage frequency characteristic of the power transmission resonator as the transmission characteristic
  • the reference characteristic storage unit is not arranged in the power receiving device.
  • the resonance voltage frequency characteristic at no load measured in the state is stored as the reference characteristic, and at the start of power transmission, the power transmission control unit causes the transmission characteristic detection unit to detect the resonance voltage frequency characteristic, and
  • the transmission characteristic comparison unit compares the reference characteristic with the reference characteristic and controls the power transmission operation according to the comparison result.
  • the power transmission control unit when the resonance voltage frequency characteristic before the start of power transmission corresponds to (a) the resonance voltage frequency characteristic at the time of no load, (b) at the time of the no load If the frequency is the same as the peak frequency f0 of the resonance voltage frequency characteristic and has a lower voltage peak, or (c) if it has a peak at a frequency different from the peak frequency f0 in the single peak characteristic, power transmission is stopped. It is set as the structure which performs control to perform. Thereby, it is possible to avoid the occurrence of an inconvenient situation because power transmission is started in a state incompatible with non-contact power transmission.
  • the power transmission control unit sets the frequency of the high-frequency power to one of the peaks of the bimodal characteristic and starts power transmission.
  • the configuration is to be controlled. Thereby, power transmission can be performed in a state suitable for non-contact power transmission.
  • the power transmission device and the power reception device each include a power transmission side response unit and a power reception side response unit for performing information communication with each other, and the power transmission control unit has a resonance voltage frequency characteristic before the power transmission starts, When the frequency is equal to the peak frequency f0 of the resonance voltage frequency characteristic at no load and has a lower voltage peak, small power is transmitted at the frequency f0, and according to the small power transmission, When a response indicating that power is being received from the power receiving apparatus is received, the transmission power is increased to continue power transmission with normal power, and when there is no response, control is performed to stop power transmission. Thereby, power transmission can be performed after confirming an appropriate state for non-contact power transmission.
  • the power transmission control unit when detecting the transmission characteristic, controls the high-frequency power to be set smaller than the high-frequency power set during normal power transmission. Thereby, when the power transmission coil and the power reception coil are not coupled, it is possible to avoid the resonance voltage of the power transmission resonator from exceeding the allowable voltage value of the resonance capacitance due to the no-load state of the power transmission coil.
  • the power transmission control unit controls the high-frequency power to be set to a constant magnitude and to be supplied to the power transmission resonator while sweeping the frequency.
  • the power receiving circuit module of the power receiving device includes a detection circuit that rectifies high-frequency power to be transmitted and converts it into DC power, a received voltage adjustment unit that performs control to keep the detected output voltage constant, and a power storage unit.
  • the received voltage adjustment unit includes a step-down DC-DC converter, and the DC-DC converter transmits control power to the power storage unit so that the detection voltage of the detection circuit does not exceed a set value. I do. Thereby, contactless power transmission can be performed while maintaining good transmission efficiency.
  • the power receiving circuit module is configured to detect a charging voltage of the power storage unit and suppress a conversion operation of the DC-DC converter when the detected charging voltage exceeds a set value.
  • the power receiving device includes an overvoltage limiting unit that flows received power to a load and consumes the received power, and the overvoltage limiting unit operates when a detection voltage of the detection circuit exceeds the set value, and receives an extra power reception Dissipates power through the load.
  • the overvoltage limiting unit operates when a detection voltage of the detection circuit exceeds the set value, and receives an extra power reception Dissipates power through the load.
  • the DC-DC converter can be configured to stop the conversion operation when the power storage unit is fully charged. This is because the operation of the overvoltage limiting unit can avoid damage to the DC-DC converter circuit due to an increase in the detection voltage.
  • a protection unit for preventing a backflow of power from the power storage unit to the DC-DC converter is inserted between the DC-DC converter and the power storage unit.
  • a short-circuit control unit that detects whether or not the current flowing through the protection unit is in the forward direction and short-circuits the protection unit when the forward current is detected is provided.
  • the contactless power transmission method of the present invention can take the following aspects based on the above configuration.
  • the reference characteristic storing step the transmission characteristic at the time of opening in which no inclusion is present in the magnetic flux arrival range in front of the power transmission coil is stored as the reference characteristic, and the state determination step Then, as the state of the factor affecting the power transmission, the degree of the influence on the power transmission due to the failure factor existing in the inclusion is detected, and before performing the non-contact power transmission, only the power transmission device is used. A state determination step is performed.
  • the power transmission device when power is transmitted through the inclusion, only the power transmission device is arranged on one side of the inclusion, and the power receiving device is arranged on the other side of the inclusion. In a state in which is not arranged, the degree of influence on power transmission due to the failure factor is detected using only the power transmission device.
  • the power transmission device is disposed at a position where the influence is minimum, and the power reception device is disposed so as to face the position of the power transmission device.
  • the positions of the power transmitting device and the power receiving device are adjusted so that the power transmission efficiency between the coils is maximized.
  • the interval when the reinforcing bars (main bars, ribs, etc.) in the reinforced concrete used for the outer wall is a deformed steel bar 10D (diameter is about 10 mm) is said to be within 300 mm according to the Housing Corporation standards.
  • the diameter of the power transmission coil is changed according to the distance between the reinforcing bars in the wall where power transmission is to be performed. Specifically, it is as follows.
  • the mesh interval W of the metal and the diameter D of the power transmission coil are D It is preferable to set so as to satisfy the relationship of / W ⁇ 1. Thereby, practically sufficient power transmission efficiency can be obtained.
  • this condition is applied when the portion where the reinforcing bars near the power transmission coil intersect is conductive between both reinforcing bars. In this case, since the power transmission efficiency varies depending on the state of the crossing portion of the reinforcing bars, it is necessary to search for a place where the power transmission efficiency is high when attaching the power transmission device.
  • the mesh interval W of the metal and the diameter D of the power transmission coil satisfy the relationship of D / W ⁇ 2. It is preferable to set so as to satisfy. If this condition is satisfied, the same power transmission efficiency can be obtained no matter where the power transmission coil is fixed.
  • power transmission can be performed through the inclusions in which the insulated metal is disposed only in one direction of the mesh and every other. Thereby, the number of insulated reinforcing bars can be further reduced.
  • the inclusions are not limited to concrete walls with reinforcing bars, but in situations where walls using ceramic siding or mortar, wood walls, or where walls are filled with water Even when there is a possibility that a failure factor exists, the non-contact power transmission method of the present invention can be applied.
  • the transmission characteristic detection step the voltage across the power transmission coil is detected, and the transmission resonator is used as the transmission characteristic based on the detected output.
  • the resonance voltage frequency characteristic at no load detected by the transmission characteristic detection step in a state where the power receiving device is not disposed is stored as the reference characteristic.
  • the resonance voltage frequency characteristic before the start of power transmission is detected by the transmission characteristic detection step, and the power transmission operation is controlled according to the determination result by the state determination step.
  • the transmission characteristic detection step is performed while transmitting power with low power, the resonance voltage frequency characteristic before the start of power transmission is measured, and the resonance voltage before the start of power transmission is measured.
  • the frequency characteristic is a bimodal characteristic, high-frequency power having a frequency matched to the peak frequency is transmitted, the resonance voltage frequency characteristic before the start of transmission is a single-peak characteristic, and the peak-frequency resonance stored in the peak frequency is stored. If it is equal to the peak frequency f0 of the voltage frequency characteristic, the power transmission is continued with the small power and a response from the power receiving apparatus is waited. If there is no response, the power transmission is stopped, and the resonance voltage frequency characteristic before the power transmission is started. Is a single-peak characteristic, and when the peak frequency is different from the peak frequency f0 of the resonance voltage frequency characteristic at the time of no load, power transmission is stopped.
  • ⁇ Embodiment 1> 1 is a schematic cross-sectional view showing a configuration of a non-contact power transmission apparatus according to Embodiment 1.
  • FIG. the same reference number is attached
  • the power transmission device 1 and the power reception device 3 are arranged so as to face each other via an inclusion such as a wall 9 and the action such as magnetic coupling between the power transmission coil and the power reception coil, for example, magnetic field resonance.
  • the power transmission device 1 and the power reception device 3 are arranged so as to face each other via an inclusion such as a wall 9 and the action such as magnetic coupling between the power transmission coil and the power reception coil, for example, magnetic field resonance.
  • the power transmission device 1 and the power reception device 3 are arranged so as to face each other via an inclusion such as a wall 9 and the action such as magnetic coupling between the power transmission coil and the power reception coil, for example, magnetic field resonance.
  • the action such as magnetic coupling between the power transmission coil and the power reception coil, for example, magnetic field resonance.
  • the power transmission device 1 is configured by connecting a power transmission circuit module 10 to a power transmission resonance coil 2b.
  • the power transmission circuit module 10 includes a high-frequency power driver that converts the power of the AC power source 6 into high-frequency power that can be transmitted. Although illustration is omitted, since it is desirable to provide the power transmission device 1 with a shielding function, the power transmission circuit module 10 and the power transmission resonance coil 2b are surrounded by metal. A ferrite sheet is provided between the power transmission resonance coil 2 b and the power transmission circuit module 10.
  • the power transmission coil is configured by only the power transmission resonance coil 2b without using the loop coil, and the power from the high frequency driver is directly supplied to the power transmission resonance coil 2b (series resonance).
  • a power transmission loop coil 2a (see FIG. 18) may be provided.
  • a power transmission resonator is configured by connecting a resonance capacitor to the power transmission resonance coil 2b.
  • a variable capacitor variable capacitor or trimmer capacitor
  • a fixed capacitor may be connected as a circuit element, or a configuration using a stray capacitance may be used.
  • a power receiving resonance coil 4b and a loop coil 4a are combined as a power receiving coil, and the loop coil 4a is connected to the power receiving circuit module 11.
  • the power receiving circuit module 11 includes a detection circuit, a rectifier, and the like (not shown).
  • the electric power obtained by the loop coil 4a is converted from high-frequency electric power to DC electric power through a detection circuit, a rectifier, etc., and supplied to the load 8.
  • a rechargeable battery, a monitoring camera, an electric lamp, or the like can be applied.
  • a resonant capacitor (not shown) is connected to the power receiving resonance coil 4b to constitute a power receiving resonator.
  • a variable capacitor variable capacitor or trimmer capacitor
  • a fixed capacitor may be connected as a circuit element, or a configuration using a stray capacitance may be used.
  • a ferrite sheet is provided between the power receiving loop coil 4 a and the power receiving circuit module 11. In some cases, the power receiving resonance coil 4b and the power receiving circuit module 11 may be directly connected without using the power receiving loop coil 4a.
  • the power transmission device 1 When performing power transmission using this non-contact power transmission device, the power transmission device 1 is installed on the inner wall surface 12 of the wall 9 with the power transmission resonance coil 2b facing each other.
  • the power receiving device 3 is installed with the power receiving resonance coil 4 b facing the outer wall surface 13. In the illustrated state, the central axes of the power transmission resonance coil 2b and the power reception resonance coil 4b are substantially coincident.
  • FIG. 2 is a block diagram of the power transmission device 1 and shows a specific configuration of the power transmission circuit module 10.
  • the power feeding circuit 5 included in the power transmission circuit module 10 includes a high-frequency power driver and is connected to the power transmission resonance coil 2b.
  • a current / voltage monitor unit 14 is connected to the power feeding circuit 5 to monitor a current flowing through the power transmission resonance coil 2b, a resonance voltage, and the like.
  • the output signal of the current / voltage monitor unit 14 is supplied to the power transmission control unit 15 and the characteristic change detection unit 16.
  • a power transmission frequency setting unit 17 and a transmission power setting unit 18 are further connected to the power feeding circuit 5.
  • the resonance frequency adjusting unit 19 is provided to adjust the resonance capacity of the power transmission resonance coil 2b to make the resonance frequency fr of the power transmission resonator variable.
  • the power transmission frequency setting unit 17 has a function of adjusting the high frequency oscillation circuit of the power feeding circuit 5 and appropriately setting the frequency of the high frequency power.
  • the transmission power setting unit 18 has a function of setting the magnitude of the high frequency power supplied by the power supply circuit 5.
  • a configuration in which the high frequency power is generated by a switching circuit such as a bridge circuit can be employed.
  • a switching circuit such as a bridge circuit
  • PAM control for changing the voltage applied to the circuit
  • PWM control for changing the duty ratio of the driving pulse of the switching circuit
  • the power transmission control unit 15 controls the power feeding circuit 5, the characteristic change detection unit 16, the power transmission frequency setting unit 17, the power transmission frequency setting unit 18, and the resonance frequency adjustment unit 19. Thereby, normal power transmission by the power transmission circuit module 10 and a failure detection operation performed before power transmission are executed. At that time, the power transmission control unit 15 controls the power transmission frequency setting unit 17 and the transmission power setting unit 18 to set the magnitude and frequency of the high frequency power supplied to the power transmission resonator. During normal power transmission, the power feeding circuit 5 and the resonance frequency adjusting unit 19 are operated. When a failure is detected before power transmission, the power feeding circuit 5 and the characteristic change detection unit 16 are operated.
  • a communication circuit for transmitting and receiving information between the power transmission device 1 and the power reception device 3 is also provided.
  • An element for monitoring the reflected power of the power transmission resonator, the inductance of the power transmission resonator, or the like may be included as necessary.
  • the characteristic change detection unit 16 includes a resonance frequency detection unit 20, a reference characteristic storage unit 21, and a resonance frequency comparison unit 22.
  • the resonance frequency detector 20 detects the resonance frequency fr of the power transmission resonator.
  • the resonance frequency fr is an example of transmission characteristics.
  • the transmission characteristic is defined as a factor corresponding to the resonance frequency of the power transmission resonator, and is detected based on a response when high-frequency power controlled by the power transmission control unit 15 is supplied to the power transmission resonance coil 2b.
  • the resonance frequency detection unit 20 is an example of a transmission characteristic detection unit.
  • the transmission characteristic obtained when the region in the magnetic flux arrival range ahead of the power transmission resonance coil 2b is in the reference state is defined as the reference characteristic.
  • the reference state a state serving as a reference for determining the state of a factor affecting power transmission is appropriately set.
  • the desired level of the presence or state of factors affecting power transmission is set as the reference state.
  • a state in which no inclusion such as the wall 9 is present in a region within the magnetic flux arrival range in front of the power transmission resonance coil 2b is set as a reference state, and the transmission characteristic in that state is used as the reference characteristic.
  • a case where the power receiving device 3 is in an appropriate positional relationship with respect to the power transmission device 1 is set as a reference state, and the transmission characteristics at that time may be used as the reference characteristics.
  • the open state in which the wall 9 is not interposed in the magnetic flux reachable range in front of the power transmission resonance coil 2b is set as the reference state. Accordingly, the open resonance frequency fro detected by the resonance frequency detection unit 20 in the open state is used as the reference characteristic and stored in the reference characteristic storage unit 21.
  • the opening resonance frequency fro is measured in advance during the manufacturing process of the device and stored in the reference characteristic storage unit 21. Or it is good also as a structure measured and memorize
  • a shielded resonance frequency frs is defined as a transmission characteristic detected by the resonance frequency detection unit 20 when the power transmission resonance coil 2b is disposed facing an inclusion such as the wall 9 or the like.
  • the resonance frequency comparison unit 22 detects the change in the shielding resonance frequency frs with respect to the opening resonance frequency fr by comparing the shielding resonance frequency frs with the opening resonance frequency fr.
  • the resonance frequency comparison unit 22 is an example of a transmission characteristic comparison unit that detects the change by comparing the detected transmission characteristic with the reference characteristic.
  • the characteristic change detection unit 16 is based on the result of detecting the change in the resonance frequency frs at the time of shielding by the resonance frequency comparison unit 22, a failure factor for power transmission existing in the inclusion such as the wall 9, for example, the presence of metal, It is configured to detect the degree of influence on power transmission thereby.
  • the characteristic change detection unit 16 is based on the change from the reference characteristic of the transmission characteristic detected by the resonance frequency comparison unit 22, and the power within the magnetic flux arrival range ahead of the power transmission resonance coil 2b. This is a means for realizing a function of determining the state of a factor affecting transmission.
  • the detection result by the resonance frequency comparison unit 22 is displayed on the display unit 23.
  • the display unit 23 only needs to notify the operator of the power transmission device in some form of the degree of influence on the power transmission due to the failure factor. That is, it is good also as a structure which alert
  • the arrangement of the power transmission device 1 and the power reception device 3 can be automatically adjusted based on the output signal of the resonance frequency comparison unit 22 without using the display unit 23.
  • the resonance frequency detection unit 20 detects the resonance frequency fr of the power transmission resonator based on the output signal of the current / voltage monitor unit 14 that changes according to the control of the power feeding circuit 5 by the power transmission control unit 15. For example, the frequency of the high-frequency power supplied from the power feeding circuit 5 is changed by a microcomputer with a specific value, and the frequency at which the resonance voltage of the power transmission resonance coil 2b is maximized is calculated by the microcomputer. The frequency at which the resonance voltage of the power transmission resonance coil 2b becomes maximum is the resonance frequency fr of the power transmission resonator.
  • the power transmission control unit 15 detects the amount of power supplied to the power transmission resonance coil 2b detected by the current / voltage monitoring unit 14, or a circuit that generates power in the power feeding circuit 5, such as a high-frequency power amplification amplifier, or power
  • the operation of the resonance frequency adjusting unit 19 is controlled based on the current value of the direct current supplied to the switching circuit that generates the. That is, the variable capacitor or the like is adjusted so that one of these values is maximized.
  • a resonance adjustment control system can be constructed by creating and implementing control software according to the control circuit.
  • the contactless power transmission device is based on a failure factor included in the inclusion when the power transmission device 1 and the power reception device 3 are arranged with the inclusion such as the wall 9 interposed. It has a feature in the configuration for detecting the influence. That is, whether there is a decrease in power transmission efficiency due to the presence of a failure factor such as metal around the inside of the wall 9 or around the inner wall surface 12 or the outer wall surface 13 to which the power transmitting device 1 and the power receiving device 3 are to be attached. Is detected. The detection of the influence due to the failure factor is performed only by the power transmission device 1 and uses the change in the resonance frequency fr of the power transmission resonator due to the failure factor.
  • the resonance frequency detection unit 20 is an example of a transmission characteristic detection unit that detects transmission characteristics that are values of factors corresponding to the resonance frequency of the power transmission resonator.
  • FIG. 3A shows a measurement system for examining a change in inductance L when a metal 24 (a copper plate having a thickness of 0.5 mm in this example) approaches the power transmission resonance coil 2b. Measurement is performed by connecting the power transmission resonance coil 2 b to a measurement terminal of the LC meter 25 capable of measuring the inductance L.
  • the distance between the power transmission resonance coil 2b and the metal 24 is a distance X.
  • a change in inductance L at a predetermined frequency (for example, about 100 kHz) with respect to a change in distance X is obtained. That is, when the metal 24 is moved closer to the power transmission resonance coil 2b from a position far away, the inductance L starts to change due to the influence of the metal 24 from a certain distance X.
  • the change in inductance L at that time is shown in FIG. 3B.
  • the inductance L decreases.
  • the inductance L started to change when the distance X was around 100 mm.
  • FIG. 4A shows a measurement system for examining a change in resonance frequency when the metal 24 (in this example, a copper plate having a thickness of 0.5 mm) approaches the power transmission resonance coil 2b.
  • film capacitors (not shown) are attached as resonance capacitors to both ends of the power transmission resonance coil 2b.
  • Measurement is performed by connecting both ends of the loop coil 2a to measurement terminals of a VNA (vector network analyzer) 26 capable of measuring the resonance frequency.
  • the distance between the power transmission resonance coil 2b and the metal 24 is a distance X.
  • the change in the resonance frequency with respect to the change in the distance X is measured (S parameter: S21). That is, when the metal 24 is brought closer to the power transmission resonance coil 2b from a position far away, the resonance frequency fr starts to change due to the influence of the metal 24 from a certain distance.
  • the change of the resonance frequency fr at that time is shown in FIG. 4B.
  • the resonance frequency similarly to the change of the inductance L, the resonance frequency started to change gradually from the distance X near 100 mm. By examining such a change in the resonance frequency, it is possible to detect the presence or absence of the influence of the metal 24.
  • the application frequency from the power feeding circuit 5 to the power transmission resonance coil 2b is variously changed by the microcomputer, and at that time What is necessary is just to obtain
  • FIG. 5 is a flowchart showing an example of an operation of detecting a failure factor by the non-contact power transmission apparatus of the present embodiment.
  • FIG. 1 when power transmission is performed with a wall 9 interposed between the power transmission device 1 and the power reception device 3, the influence of a failure factor such as a metal 24 is detected, and power is transmitted to an unaffected location.
  • An example of a procedure until the apparatus 1 is attached is shown. By this procedure, before attaching the power transmission device 1 or the power reception device 3, it is possible to detect a failure factor such as the metal 24 existing between the power transmission resonance coil 2b and the power reception resonance coil 4b using only the power transmission device 1.
  • step S1 in the state where there are no inclusions such as the wall 9, the resonance frequency fr when the power transmission resonator is opened is obtained (step S1).
  • the open resonance frequency fro is stored in the reference characteristic storage unit 21. It should be noted that step S1 does not necessarily have to be executed every time power is transmitted, as long as the open resonance frequency fro is measured in the manufacturing process of the device and stored in the reference characteristic storage unit 21.
  • the power transmission device 1 is temporarily fixed to the inner wall surface 12 of the wall 9 that may include a failure factor such as a metal so that the power transmission resonance coil 2b faces the wall 9 (step S2). If the failure factor detection result is obtained immediately, it may be held by hand and need not be temporarily fixed.
  • the shielding resonance frequency frs of the power transmission resonator is measured with the power transmission device 1 in contact with the inner wall surface 12 (step S3). Then, the values of the resonance frequencies fro and frs are immediately compared by the microcomputer (step S4).
  • step S4 If, as a result of the comparison, the amount of change in the shielding resonance frequency frs with respect to the opening resonance frequency fr is less than a predetermined value (for example, 1%) set in advance (Yes in step S4), the power transmission device 1 is permanently fixed at that position. (Step S5). On the other hand, when the amount of change in the shielding resonance frequency frs is 1% or more (step S4, No), there is a possibility that the metal is affected. Therefore, the power transmission device 1 is moved to another place and temporarily fixed (step S6). Further, returning to step S3, the shielded resonance frequency frs is measured at that position and compared with the resonance frequency ft0 (step S4). Then, steps S6, S3, and S4 are repeated until the amount of change in the shielding resonance frequency frs with respect to the opening resonance frequency fr is less than 1%.
  • a predetermined value for example, 1%) set in advance
  • the prescribed value of the change amount of the resonance frequency frs when shielded with respect to the resonance frequency fr when open is determined in advance according to the wall 9 to be attached and the coil characteristics.
  • the difference (absolute value) between fr and frs may be calculated instead of the amount of change in frs with respect to fr. For example, when fro is 240 kHz and frs is 242 kHz, the difference 2 kHz may be compared with a predetermined value determined in advance.
  • the power reception device 3 is attached to the outer wall 13 on the opposite side. At this time, it is preferable to move the power receiving device 3 in various ways to obtain the power received at that position, and to fix the power receiving device 3 at the optimum position where the power received is maximized.
  • the power transmission power for determining the optimum position is preferably smaller than the power transmission power when power is actually transmitted from the viewpoint of safety. At this time, the received power data may be sent to the power transmission device 1 by communication as necessary. Finally, after both the power transmission device 1 and the power reception device 3 are fixed to the wall 9, power transmission is started.
  • the resonance frequency adjusting unit 19 may be controlled.
  • the power transmission device 1 can be provided with a function for detecting a failure factor independently with a simple configuration that does not require a coil dedicated to failure factor detection.
  • a failure factor such as a metal that may be interposed between the power transmission resonance coil 2 b and the power reception resonance coil 4 b is detected as the power reception device 3. Can be detected only by the power transmission device 1.
  • Embodiment 2 A non-contact power transmission method according to Embodiment 2 will be described with reference to FIGS. 6 to 10C.
  • the present embodiment relates to a non-contact power transmission method suitable for transmitting power through an inclusion in which metal is arranged in a mesh shape between a power transmission coil and a power reception coil, for example, a reinforced concrete wall.
  • FIG. 6 shows an example of an arrangement relationship between the reinforcing bar 27, the power transmission resonance coil 2b, and the power reception resonance coil 4b when electric power is transmitted through a concrete wall on which the reinforcing bar 27 is arranged as an experimental example.
  • the illustration of the concrete wall is omitted.
  • (A) is the front view seen from the power transmission resonance coil 2b side in the case where the reinforcing bars 27 (diameter d) are arranged in a mesh shape at intervals of a distance W in the concrete wall, that is, at a mesh interval W.
  • FIG. 4B is a sectional view taken along line AA in FIG.
  • the power receiving resonance coil 4b is disposed so as to face the power transmission resonance coil 2b with the reinforcing bar 27 interposed therebetween.
  • D the diameter of the power transmission resonance coil 2b
  • W the mesh interval W
  • the distance between the power transmission resonance coil 2b and the power reception resonance coil 4b is X, and the reinforcing bar 27 is disposed at the center between the power transmission and reception coils.
  • FIG. 7A to 7C show the positional relationship between the power transmission resonance coil 2b and the reinforcing bar 27 in various modes when electric power is transmitted in a non-contact manner through a wall in which the reinforcing bar 27 is inserted in a mesh shape.
  • the coil diameter D is all fixed at 200 mm, and only the mesh interval W of the reinforcing bars 27 is different.
  • FIG. 7A to 7C show the mutual relationship when the power transmission resonance coil 2b is arranged at three different parts with respect to the reinforcing bar 27.
  • the “blank part” means a part corresponding to the center position of the mesh (quadrangle) where the reinforcing bars 27 intersect each other.
  • One part means a part corresponding to the central part of one of the meshes (squares) where the reinforcing bars 27 intersect each other.
  • Cross section means a portion corresponding to an intersection where the reinforcing bars 27 intersect each other.
  • the non-insulating rebar 28 is an inexpensive deformed steel bar rebar (D10 having a diameter d of 10 mm) which is generally sold.
  • D10 having a diameter d of 10 mm
  • the reinforcing portions 28 are conductive. Therefore, the intersecting portions 29 where the reinforcing bars 28 contact each other are in a conductive state in many places. Yes.
  • an oxide film may be formed at a high temperature at the time of production, but since the thickness is thin, it is often conductive depending on the location.
  • FIG. 8B shows the result of measuring the power transmission efficiency by performing power transmission using the non-contact power transmission device of the present invention with the concrete wall having the non-insulated rebar 28 disposed as shown in FIG. 8A.
  • the power transmission resonance coil 2b was arranged in the above-described three types of parts, (a) a blank part, (b) one part, and (c) a cross part, and each measurement was performed.
  • the power transmission efficiency without the reinforcing bars 28 is 74%, and is shown by a broken line in the figure for comparison.
  • the power transmission resonance coil 2b in the “cross section”, power transmission can be performed with a decrease of 10% or less compared to the case without the reinforcing bar 28 under the condition of D / W ⁇ 1.0.
  • the reduction in the power transmission efficiency due to the reinforcing bars 28 corresponds to the eddy current loss occurring in the reinforcing bars 28, so the reinforcing bars 28 become hot.
  • the wall 9 is made of reinforced concrete, the surroundings of the reinforcing bar 28 that generates heat are surrounded by concrete, so that there is a case where the temperature rise is lower than in the air and does not cause a problem.
  • the ratio between the coil diameter D and the mesh interval W of the reinforcing bars 28 and the position where the power transmission resonance coil 2b is arranged are appropriately selected, so that the non-transmission through the reinforced concrete wall is not performed. Contact power transmission is possible.
  • the used reinforcing bars 30 are subjected to insulation treatment by covering with an epoxy resin. Thereby, the crossing part 31 where the reinforcing bars 30 arranged vertically and horizontally intersect is surely in an insulated state.
  • FIG. 9B shows the result of measuring the power transmission efficiency by performing power transmission using the non-contact power transmission device of the present invention with the concrete wall having the insulated reinforcing bars 30 arranged as shown in FIG. 9A interposed therebetween.
  • the power transmission resonance coil 2b was arranged in the above-described three types of parts, and the measurement was performed.
  • the power transmission efficiency without the reinforcing bar 30 is 74%, and is shown by a broken line in the figure for comparison.
  • the crossing portions 31 (C5 to C8) of the four reinforcing bars around the power transmission resonance coil 2b are not conducted by ensuring that the crossing portion 31 is in an insulated state. It can be seen that the part is not coiled. Unless a kind of coil state is formed in the vicinity of the outer periphery and the inner periphery of the power transmission resonance coil 2b, it is considered that a large decrease in power transmission efficiency is avoided. In other words, insulation processing is performed at the intersection 31 of each reinforcing bar 30 so that both reinforcing bars 30 do not conduct in the vicinity of the power transmission resonance coil 2b, and at least satisfy the condition of D / W ⁇ 2. It can be seen that the same power transmission efficiency can be obtained no matter where the power transmission resonance coil 2b is fixed.
  • the power transmission resonance coil 2b is arranged at three locations: (a) a blank portion, (b) a single portion, and (c) a cross portion.
  • FIG. 10A shows an example in which a reinforcing bar 30 that is insulated only in one direction of the mesh (in this figure, the horizontal direction) is used, and a non-insulated reinforcing bar 28 is used in the vertical direction in order to reduce costs.
  • the reinforcing bars 28 and the reinforcing bars 30 are in an insulated state at all the intersecting portions 32. Therefore, the same result as that shown in FIG. 9B can be obtained no matter where the power transmission resonance coil 2b is arranged.
  • the insulated reinforcing bars 30 are arranged only in every other horizontal direction of the mesh, the reinforcing bars 28 without insulation treatment are arranged between the reinforcing bars 30, and the reinforcing bars 28 without insulation treatment are arranged in the vertical direction of the mesh.
  • An example using is shown. This further reduces the cost compared to FIG. 10A.
  • the arrangement of the (b) cross portion as in the “blank portion” in FIG. 8A (b), at least four corners (for example, the crossing portion 29) of the power transmission resonance coil 2b are in a conductive state, resulting in power transmission. The efficiency drops. Therefore, in the arrangement as shown in FIG. 10B, it is necessary to appropriately select the arrangement of the power transmission resonance coil 2b (such as “blank part” or “one part”).
  • FIG. 10C is a modified example of the arrangement of FIG. 10B and basically has a structure in which insulated reinforcing bars 34 are arranged every other horizontal direction. However, the reinforcing treatment of the reinforcing bars 34 is performed only on the intersections 33 that intersect with the reinforcing bars 28 that are not insulated. By disposing the partially insulated reinforcing bar 34, the same effect as in the case of FIG. 10B can be obtained, and the cost can be further reduced.
  • the inclusion an example in which power is supplied through a wall of concrete (also including a reinforcing bar) has been shown.
  • the inclusion other inclusions such as glass and power supply through water are passed.
  • the present invention can also be applied to power feeding.
  • FIG. 11 is a block diagram illustrating a magnetic resonance type non-contact power transmission apparatus according to the third embodiment.
  • the power transmission device 41 and the power reception device 42 constituting the device correspond to the power transmission device 1 and the power reception device 3 illustrated in FIG. 1.
  • the power transmission resonance circuit and the power reception resonance circuit resonate at the same frequency, so that the power can be transmitted efficiently even if the distance is long.
  • This resonance state varies depending on the coupling state of the resonance circuits and the surrounding conditions depending on the presence or absence of metal.
  • a feature of the present invention is that the resonance state is determined, and power feeding is controlled accordingly.
  • the power transmission device 41 converts the power of the AC power supply (AC 100 V) 6 into high-frequency power that can be transmitted by the power feeding circuit 5 and transmits the power.
  • the power actually transmitted varies depending on the state of the load even if the power supply voltage is fixed.
  • the power transmission setting unit 18 is used as means for configuring the power supply power to be changeable.
  • the configuration in which the high-frequency power transmitted by the power feeding circuit 5 is variable will be described by taking a configuration using PAM control as an example for the sake of simplicity in the following description.
  • the characteristic change detection unit 43 has the same function as the characteristic change detection unit 16 in the power transmission device 1 illustrated in FIG. 2, and includes a resonance voltage detection unit 44, a reference characteristic storage unit 45, and a resonance voltage comparison unit 46. ing.
  • the current / voltage monitor unit 14 When the power transmission control unit 15 operates the power supply circuit 5 or the like, the current / voltage monitor unit 14 outputs a signal in which the current and voltage are detected.
  • the resonance voltage detection unit 44 detects the frequency characteristic of the resonance voltage of the resonance circuit of the power transmission coil 2 (hereinafter referred to as “resonance voltage frequency characteristic”) based on the output signal of the current / voltage monitor unit 14.
  • the resonance voltage frequency characteristic is an example of the transmission characteristic of the power transmission resonator, and is supplied to the power transmission control unit 15 and the resonance voltage comparison unit 46.
  • the power transmission control unit 15 controls the overall power transmission operation of the power transmission device 41 as in the first embodiment, and uses the information such as the detection signal from the resonance voltage detection unit 44 to set the power transmission frequency. It has a function of controlling settings by the unit 17 and the transmission power setting unit 18. The power transmission control unit 15 also performs control according to the detection output of the resonance voltage comparison unit 46. The power transmission control unit 15 is further connected to a power transmission side response unit 47 for performing communication with the power receiving device 42, and can receive information regarding the state of the power receiving device 42.
  • the reference state is defined as a no-load state in which the power receiving device 42 is in a non-arranged state.
  • the resonance voltage frequency characteristic obtained by the resonance voltage detection unit 44 is stored in the reference characteristic storage unit 45 as the reference characteristic. That is, the arrangement state of the power receiving device 42 is set as a factor that affects power transmission from the power transmission coil 2.
  • the resonance voltage comparison unit 46 is an example of a transmission characteristic comparison unit, and compares the resonance voltage frequency characteristic detected by the resonance voltage detection unit 44 with the reference characteristic stored in the reference characteristic storage unit 45. Based on this comparison, a function for determining the arrangement state of the power receiving device 42 is realized.
  • the resonance voltage comparison unit 46 generates a signal representing the comparison result and supplies the signal to the power transmission control unit 15.
  • the power transmission control unit 15 controls the power transmission operation according to the comparison result. A specific example of control will be described later.
  • the resonance voltage comparison unit 46 may be configured to display the resonance voltage frequency characteristics detected by the resonance voltage detection unit 44 and the reference characteristics stored in the reference characteristic storage unit 45 on the display unit 23. That is, the arrangement state of the power receiving device 42 can be determined by visually comparing the resonance voltage frequency characteristic with the reference characteristic.
  • the power receiving coil 4 of the power receiving device 42 has a power receiving resonance coil and a loop coil similarly to the configuration shown in FIG. 18, and propagates power to the loop coil via a magnetic field generated by the resonance of the power receiving resonance coil. From the loop coil output, a detection circuit (not shown) provided in the power receiving circuit 7 generates substantially DC received power.
  • the power receiving resonance coil forms a resonance circuit in combination with the stray capacitance C.
  • the resonance circuit may be formed by connecting a resonance capacitor to the power receiving resonance coil. In that case, it is necessary to configure the power receiving circuit 7 in consideration of the withstand voltage of the capacity (the same applies to the resonance capacity on the power transmission side).
  • a power reception detection unit 48 is connected to the power reception circuit 7 to detect a state in which power is transmitted from the power transmission coil 2 and received power is generated.
  • the power reception side response unit 49 is provided to communicate with the power transmission side response unit 47 and transmits information from the power reception detection unit 48 to the power transmission side.
  • the power receiving circuit 7 outputs power to the output terminal 50 and supplies power to the power storage unit 51 formed of a capacitor or a secondary battery.
  • the power storage unit 51 supplies power when the output from the output terminal 50 increases or when the power supplied to the power receiving coil 4 decreases and the power supply from the power receiving circuit 7 to the output terminal 50 is insufficient. Provided to stabilize the output. However, if the response of the necessary power supply control from the power transmission device 41 to the power reception device 42 is sufficiently fast, the power required by the output terminal 50 can be instantaneously varied and supplied to stabilize the output. There is a case where the power storage unit 51 is not required. In the present embodiment, it is handled as a part of the load of the power receiving circuit 7.
  • the power transmission device 41 is configured to measure the resonance voltage frequency characteristics at no load as follows. That is, in a single state of the power transmission device 41, the transmission power setting unit 18 sets the transmission power to be low and constant, and transmits power from the power feeding circuit 5 to the power transmission coil 2. Further, the resonance voltage detection unit 44 detects the resonance voltage while changing (sweeping) the frequency of the transmission power by the transmission frequency setting unit 17. As a result, the frequency vs. resonance voltage characteristic is measured and stored in the reference characteristic storage unit 45 as the resonance voltage frequency characteristic at no load.
  • the transmission power is set low for the following reasons. That is, when the power transmission coil 2 and the power reception coil 4 are not coupled, the resonance characteristic of the no-load Q in the power transmission coil 2 alone appears. Since Q at that time is often high, the resonance voltage of the resonance circuit rises when resonance occurs. This is that when the resonance circuit of the power transmission coil 2 is constituted by a power transmission resonance coil and a resonance capacitor, a voltage about Q times the high-frequency voltage supplied to the resonance circuit is generated. In this state, depending on the magnitude of the high frequency voltage, the resonance voltage may exceed the allowable voltage value of the resonance capacitor, and the resonance capacitor may be damaged.
  • the resonance circuit voltage is equal to or lower than the breakdown voltage of the elements constituting the resonance circuit, for example, a resonance voltage of about 1 ⁇ 2 of the breakdown voltage.
  • the value of the supply voltage at which the above occurs and the duty value of the PWM control are obtained. By setting this value, a lower transmission power can be set.
  • the horizontal axis represents the frequency of the transmission power set by the transmission frequency setting unit 17, and the vertical axis represents the resonance voltage detected by the resonance voltage detection unit 44.
  • the frequency f0 is the resonance frequency of the resonance circuit built in the power transmission coil 2 and the resonance circuit built in the power reception coil 4.
  • the resonance voltage frequency characteristics vary depending on the positional relationship between the power transmission coil 2 and the power reception coil 4 and the presence or absence of metal in the periphery.
  • the frequency characteristics indicated by the curves a to e in FIG. 12 correspond to the respective positional relationships and the like. The correspondence between the state such as the positional relationship and each of the curves a to e will be described, including the control method when those states are detected.
  • a curve a indicates a characteristic when no load is connected to the resonance circuit, that is, a frequency characteristic indicated by the no-load Q. It has a steep peak near f0. This characteristic is stored in the reference characteristic storage unit 45 as a resonance voltage frequency characteristic at no load. When this characteristic appears, there is a possibility that the power receiving device 42 does not exist, so power is transmitted with the frequency f0 and small power. Accordingly, when the power reception detection unit 48 detects that power is being received and a response from the power reception side response unit 49 to the power transmission side response unit 47 occurs, the transmission power is increased for the first time. If there is no response, it is determined that the power receiving device 42 does not exist, and power transmission is stopped.
  • a curve b shows a resonant voltage frequency characteristic having a bimodal characteristic in which two peaks appear. When this characteristic appears, it indicates that the power receiving device 42 exists and is within a distance where power can be received. Therefore, after setting the frequency to the frequency of any peak of the bimodal characteristics, the transmission power is increased to start feeding.
  • a curve c shows a resonance voltage frequency characteristic that is further away from the peak frequency of the bimodal characteristic as compared with the case of the curve b.
  • this characteristic indicates that the power receiving device 42 exists and is located closer than the case of the curve b and is within a distance that can receive power. Also in this case, after setting the frequency to the peak frequency of the bimodal characteristic, the transmission power is increased to start feeding.
  • a curve d shows a resonance voltage frequency characteristic that can be discriminated when the peak voltage is lower than the peak in the case of no load Q where there is no counterpart.
  • power transmission is performed with a frequency f0 and small power. Accordingly, when the power reception detection unit 48 detects that the power is being received, and when a response from the power reception side response unit 49 to the power transmission side response unit 47 occurs, the power transmission power is increased for the first time. If there is no response, it is determined that there is no power receiving device 42 and power transmission is stopped.
  • a curve e indicates a case where metal exists in the vicinity of the power transmission coil 2. Since the Q value of the resonance circuit is lowered due to eddy current loss in the metal, the peak is lowered as compared with the case of the characteristic of the curve a. Furthermore, since the peripheral magnetic permeability increases due to the presence of metal, the inductance of the resonance coil of the resonance circuit increases and the peak frequency decreases. If power transmission is performed in such a case, heat may be generated due to metal eddy current loss, so power transmission is stopped.
  • the power receiving circuit 7 detects the state, and the power receiving side response unit 49 notifies the power transmission side response unit 47 that power transmission is not required. Power transmission can be performed safely and efficiently by cutting off or reducing the transmission power by the power transmission control unit 15 that detects this.
  • the start of power transmission or the like is determined while referring to the resonance voltage frequency characteristics. Therefore, even when the mutual arrangement
  • FIG. 13 is a block diagram showing a power receiving device 52 constituting the magnetic field resonance type non-contact power transmission device according to the fourth embodiment.
  • elements similar to those shown in FIGS. 11 and 18 are denoted by the same reference numerals, and description thereof will not be repeated.
  • the present embodiment is characterized in that the safety during power transmission and the transmission efficiency are further improved by providing a protection means for the power storage unit 51, a protection means for the power receiving circuit 7, and the like. Therefore, this embodiment is characterized by the configuration of the power receiving device 52, and will be described with reference to FIG.
  • the power transmitted from the power transmission device and received by the power receiving coil 4 is detected by the power receiving circuit 7 and converted to DC power.
  • the overvoltage limiting unit 53 connected to the power receiving circuit 7 limits the excessive voltage from being applied to the power receiving circuit 7 when receiving power from the power receiving coil 4.
  • a load resistor is connected to the power receiving circuit 7 via an SW FET so that the detected power is consumed.
  • excess received power is consumed by the load resistance, the ON resistance of the SW FET, and the like. That is, when it is detected by the detection voltage detection unit (not shown) that the voltage is equal to or higher than a certain voltage, further boosting is prevented by energizing the load resistance through the FET.
  • a simple configuration using a Zener diode can be adopted. That is, a Zener diode and a resistor are connected in series, a detected voltage is applied, and a voltage across the resistor is applied to the gate of the FET. When the detected voltage becomes a constant voltage and the diode starts energization, a voltage is generated in the resistor, and the FET is turned on by this voltage.
  • the gate voltage of the FET increases and the FET starts to conduct, but the gate voltage of the FET decreases when an energization current flows beyond the surplus power. For this reason, the FET is operated at an intermediate operating point between the ON and OFF states of the FET while surplus power is consumed.
  • the FET itself operates as a resistance of the same order as the load resistance. Therefore, power is consumed by the load resistance and the resistance of the FET, and the FET itself generates heat.
  • a circuit configuration in which a drive pulse of the FET is generated and surplus power is consumed by the load resistance by PWM control is suitable.
  • the power receiving circuit 7 is further connected to a power receiving voltage setting unit 54, and performs control to keep the output voltage from the power receiving coil 4 constant in order to improve transmission efficiency.
  • the operation of the power reception voltage setting unit 54 is controlled by the power reception control unit 55 to adjust to the optimum power reception voltage.
  • the non-contact power transmission device In order to increase the transmission efficiency in the non-contact power transmission device, it is necessary to match the output impedance on the power transmission side and the input impedance on the power reception side when the transmission coil 2 and the power reception coil 4 are viewed as a transmission path.
  • the on-resistance of the FET corresponds to the output impedance, but the power receiving side must be configured to be regarded as a constant input impedance as well.
  • a PFC circuit power factor control circuit
  • a PFC circuit power factor control circuit
  • power conversion is performed by switching an SW element such as an FET at a frequency that is at least 10 times the frequency of commercial power supply 50 Hz or 60 Hz.
  • a step-down DC-DC converter is configured using an inductor, and detection power is transmitted to the power storage unit via the inductor so that the detection voltage does not exceed a certain value. Can be adopted. As a result, a constant current flows on the power storage unit side while keeping the detection voltage constant on the power receiving side, so that constant power charging to the power storage unit 51 can be performed according to the transmitted power and the like.
  • the transmission efficiency can be improved and the power storage unit can be charged appropriately.
  • the power storage unit 51 when the power storage unit 51 is fully charged and it is no longer necessary to pass a current beyond the DC-DC converter, power does not flow out from the detection output of the power receiving coil 4, so the detection voltage increases. In such a case, the circuit may be damaged by exceeding the rated input voltage of the DC-DC converter. Therefore, the excessive power consumption by the above-described overvoltage limiting unit 53 functions to suppress the voltage rise, so that the circuit can be protected.
  • the transmission power can be reduced or stopped by communication from the power reception side response unit 49 to the power transmission side response unit 47 shown in FIG. Configure as follows.
  • the power receiving circuit is composed of a step-down DC-DC converter.
  • a step-down DC-DC converter is configured to transmit power from a high voltage input side to a low voltage output side. For this reason, when the input side becomes a low voltage, the power from the power storage unit 51 flows backward through the DC-DC converter of the power receiving circuit 7. In such a case, a large amount of power flows from the power storage unit 51 and there is a risk of circuit burnout.
  • a protection circuit 56 including a backflow prevention diode or the like is inserted between the power receiving circuit 7 and the power storage unit 51.
  • FIG. 14A shows an output circuit 5 a constituting the power feeding circuit 5.
  • the output circuit 5a is configured to generate high-frequency power by switching with a so-called full bridge circuit.
  • FIG. 14B shows an example of the resonance voltage detection unit 44 configured by the double wave detection method, and converts a high-frequency voltage of kV order into a DC voltage that can be handled by a microcomputer or the like.
  • the voltage supplied from the power supply 58 is switched by switches (SW) 59a to 59d configured by FETs schematically shown, and the direction of the current flowing through the load 60 is changed.
  • SW switches
  • the SWs 59a to 59d are controlled to be turned on and off by a drive output from a control circuit (not shown).
  • a control circuit not shown.
  • SW59a and SW59d are turned on, the current in the direction of the arrow flows through the load 60, and when SW59b and SW59c are turned on, the current flows in the opposite direction.
  • PAM control for adjusting the output power is performed.
  • Setting of the voltage of the power source 58 is performed by the transmission power setting unit 18 shown in FIG.
  • a resonance coil 62 and a resonance capacitor 63 constituting a resonance circuit of the power transmission coil 2 are connected to the output circuit 5a (61 is ground) shown in FIG. 14A.
  • a series resonance circuit for the output from the output circuit 5a is configured.
  • a high resonance voltage is generated at the connection portion 64.
  • the power transmission coil is configured by a series resonance circuit that supplies power by connecting a coil and a capacitor in series has a resonance action and detects a resonance voltage. This is to facilitate the process.
  • the power transmission resonance coil 2b is electrically separated from the power transmission circuit module side. Therefore, in order to detect the resonance voltage on the power transmission circuit module 10 side, a new electrical connection is newly established. Must be set. On the other hand, in the case of a series resonant circuit, since the output circuit 5a and the resonant circuit are originally electrically connected, it is possible to construct a circuit that detects the resonant voltage and transmits it to the control unit. It becomes easy.
  • Detecting diodes 66a and 66b in the resonance voltage detecting unit 44 are connected to the connecting unit 64 through a high resistance 65 of a megohm level.
  • Capacitors 67a and 67b for accumulating detection voltages and voltage dividing resistors 68a and 68b are connected to the detection diodes 66a and 66b.
  • a bias voltage source 69 is connected to a connection point between the resistors 68a and 68b (70 is ground).
  • the voltage is accumulated in the capacitor 67b. It becomes both wave detection.
  • the voltage subjected to the two-wave detection is input to the operational amplifier 73 through the resistors 71a, 71b, 72a, 72b, is amplified, and is output to the output terminal 74 as a detection output of the resonance voltage detection unit 44.
  • a bias voltage source 69 is also connected to the operational amplifier 73.
  • FIG. 14B shows a configuration example of the resonance voltage detection unit 44 for both-wave detection, but the resonance voltage may be detected by detection on only one side.
  • An example thereof is shown as a resonance voltage detection unit 44a in FIG. 15A.
  • subjected the same reference number as FIG. 11, FIG. 14A and FIG. 14B has the same structure and effect
  • FIG. 15B An example of such a configuration is shown as a cable extension power transmission device 77 in FIG. 15B. Terminals 75a, 75b, 76a, and 76b shown in FIG. 15A are shown for easy understanding of the correspondence with the connector connection structure used in the configuration of FIG. 15B.
  • a power transmission coil module 78 in which the power transmission coil 2 and the resonance voltage detection unit 44 a are combined is disconnected from the power transmission device main body 79, which is the remaining other portion, and connected by a cable 80.
  • a resonance circuit composed of a resonance coil 62 and a resonance capacitor 63 and a resonance voltage detection unit 44a are provided. If the cable 80 connected to the resonance circuit has a structure provided with the shield 81, interference to the outside can be reduced. Also, the cable 80 for guiding the detection voltage is simultaneously accommodated in the sheath 82 to form a single cable so that the power transmission device body 79 and the power transmission coil module 78 can be easily connected via the connectors 83a and 83b. For example, cables can be collected.
  • the power transmission coil module 78 has a thin structure due to a small number of built-in circuit portions. As a result, when power is transmitted through the wall, the degree of freedom of the installation location of the coil is increased, and the power transmission device is excellent in usability.
  • FIG. 16 shows a configuration example as a cable extension power receiving device 84.
  • the power receiving coil module 85 is disconnected from the power receiving device main body 86 and connected by a cable 87.
  • the power receiving coil module 85 includes a resonance circuit composed of the power reception resonance coil 4 b and the resonance capacitor 88, a loop coil 4 a, and a detection circuit 89.
  • the power receiving device main body 86 includes the remaining portion of the power receiving coil module 85 in the power receiving device 84.
  • the detection circuit 89 is constituted by a diode bridge and a smoothing capacitor, converts received power into DC power, and supplies it to the power receiving device main body 86 via the cable 87.
  • the power reception voltage adjustment unit 90 included in the power reception device main body 86 includes a part of the power reception circuit 7 and the function of the power reception voltage setting unit 54 illustrated in FIG. 13, and keeps the power reception voltage output from the detection circuit 89 constant. While charging the power storage unit 51, the power is output to the output terminal 50.
  • the two power lines connected to the detection circuit 89 of the power receiving coil module 85 are connected to the power receiving device main body 86 via the cable 87 and the connectors 91a and 91b.
  • the cable 87 is covered with a covering 92.
  • the power receiving coil module 85 has a small number of built-in circuit portions, and therefore can be thinly shaped. Thereby, the freedom degree of the installation place through a wall etc. improves and it can construct
  • the resonance coil housed in the power transmission coil module 78 and the power reception coil module 85 needs to have a larger coil diameter as the interval between power transmission and reception becomes wider. Therefore, according to the thickness of the wall, a plurality of types of power transmission coil modules 78 and power reception coil modules 85 are prepared and connected to the power transmission device main body 79 and the power reception device main body 86 through the connectors as described above. It is desirable to replace it so that it can be used. As a result, various types of walls can be immediately handled, and convenience in installation work and the like is improved. If the frequencies of the respective resonance circuits are matched, there is no need for adjustment and the usability is improved.
  • the received power obtained by detecting the voltage appearing in the loop coil 4a shown in FIG. 16 by the detection circuit 89 is transmitted to the received voltage adjusting unit 90 via the connector 91b.
  • the SW circuit 93, the inductor 94, the PWM control circuit 95, and the flywheel diode 97 constitute a step-down DC-DC converter circuit.
  • a control signal for performing PWM control is input to the PWM control circuit 95 via the control input unit 96.
  • Resistors 98 and 99 are provided to divide the input voltage from the detection circuit 89.
  • the voltage divided by the resistors 98 and 99 is input to the negative side input terminal of the amplifier 100.
  • the voltage of the first reference voltage source 101 is input to the + side input terminal of the amplifier 100.
  • the output of the amplifier 100 is input to the control input unit 96 via a signal addition diode 102 and a signal addition resistor 103.
  • the output from the inductor 94 is supplied to the output terminal 50 and the power storage unit 51 via the diode 104.
  • the diode 104 is provided for preventing a backflow similarly to the protection circuit 56 in the configuration of FIG.
  • Resistors 105 and 106 are also connected to the output side of the diode 104 to divide the voltage of the power storage unit 51.
  • the voltage divided by the resistors 105 and 106 is input to the + side input terminal of the amplifier 107.
  • the voltage of the second reference voltage source 108 is input to the negative input terminal of the amplifier 107.
  • the output of the amplifier 107 is input to the control input unit 96 through the signal addition diode 109.
  • the on / off control of the SW circuit 93 is performed by the switching control signal of the PWM control circuit 95.
  • a current flows through the power storage unit 51 via the inductor 94 and magnetic field energy is stored in the inductor 94.
  • a current flows through the power storage unit 51 through the ground and the flywheel diode 97 so as to release the energy of the magnetic field accumulated in the inductor 94.
  • a DC-DC conversion operation for converting high voltage power on the terminal side of the connector 91b into low voltage power on the power storage unit 51 side is performed by on / off control of the SW circuit 93.
  • the PWM control circuit 95 is an IC, and in the case of DC-DC conversion operation with constant voltage control, the SW circuit 93 is controlled according to the voltage of the control input unit 96 applied by dividing the output voltage by resistance. That is, when the voltage of the control input unit 96 is lower than a reference voltage inside the IC (not shown), that is, when the output voltage is lowered, the on / off control of the SW circuit 93 is performed. As a result, electric power is supplied to the output via the inductor 94 and the output voltage is increased. On the other hand, when the output voltage is low, the output voltage is controlled to be constant by stopping the on / off control and preventing the output voltage from rising.
  • the DC-DC conversion operation is executed and stopped by the voltage of the control input unit 96.
  • the generation method of this control signal it is possible to obtain a configuration for performing control to keep the input voltage constant or performing constant voltage charge control for stopping charging when the power storage unit is sufficiently charged.
  • the output of the amplifier 100 decreases. This is input to the control input unit 96 via the diode 102 and the resistor 103, and the control input unit 96 becomes a low voltage.
  • the PWM control circuit 95 starts on / off control of the SW circuit 93 and performs a DC-DC conversion operation. For this reason, electric power flows from the terminal side of the connector 91b to the power storage unit 51, and the output voltage of the detection circuit 89 decreases. When this operation continues, the divided voltage further decreases. When the voltage finally falls below the voltage of the first reference voltage source 101, the output of the amplifier 100 increases, and the DC-DC conversion operation stops. By repeating such control, the output voltage of the detection circuit 89 is kept constant.
  • the detection voltage changes accordingly.
  • the power supply voltage can be arbitrarily set by using the reference power supply 101 as a DA output terminal of the microcomputer or voltage setting means by PWM output.
  • the power storage unit 51 when the power storage unit 51 is fully charged, the DC-DC conversion operation is stopped, so that no electric power flows out from the detection circuit 89 and the voltage rises. In that case, as described above, it is limited by the overvoltage limiting unit 53, or the power receiving side response unit 49 sends a power transmission stop signal or the like to the power transmission side response unit 47 to stop the charging so that it is not fully charged. Perform the action. As a result, a safe non-contact power transmission apparatus with stable output can be configured.
  • the power transmission side response unit 47 and the power reception side response unit 49 can use a load communication method or a known communication method using another frequency such as ZigBee.
  • the non-contact power transmission apparatus of the present invention can easily determine the optimal arrangement of the power transmission apparatus and the power reception apparatus with a power transmission apparatus having a simple configuration, and is suitable for non-contact power transmission to an air conditioner or an electric vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 送電コイル(2)を含む送電共振器を有する送電装置1と、受電コイル(4) を含む受電共振器を有する受電装置(3)とを備え、送電コイルと受電コイル間で電力を伝送する非接触電力伝送装置。送電装置は、送電共振器に供給する高周波電力の大きさ及び周波数の設定を制御する送電制御部(15)と、当該高周波電力に対する応答に基づき、送電共振器の共振周波数に対応した因子に関わる伝送特性を検出する伝送特性検出部(20)と、送電コイル前方の磁束到達範囲が基準状態にあるときの伝送特性を基準特性として記憶する基準特性記憶部(21)と、伝送特性検出部が検出する伝送特性を基準特性と比較する伝送特性比較部(22)とを備える。伝送特性比較部による比較に基づき、送電コイルからの電力伝送に影響する要因の状態を判定するための機能を有する。状態検出専用のコイルが不要な簡単な構成により、送電装置が単独で状態を検出する機能が得られる。

Description

非接触電力伝送装置及び非接触電力伝送方法
 本発明は、送電コイルと受電コイル間の電力の伝送を、非接触(ワイヤレス)で行う非接触電力伝送装置及び非接触電力伝送方法に関する。
 非接触で電力を伝送する方法として、電磁誘導(数100kHz)を利用した電磁誘導型、電界または磁界共鳴を利用した電界・磁界共鳴型、電波(数GHz)によるマイクロ波送電型、あるいは可視光領域の電磁波(光)によるレーザ送電型が知られている。この中で既に実用化されているのは、電磁誘導型である。これはトランス結合を利用した簡易な回路構成で実現可能であるが、送電距離が短いという課題もある。
 送電距離が短くても、非接触電力伝送の利点として、送電側と受電側との間に空隙や、非磁性、非金属の物体が介在しても電力を伝送できることが挙げられる。例えば、非金属の壁とか窓のガラス等を挟んでも、それに穴を開けることなく電力伝送できる。しかし、送電側と受電側の距離を大きくすると、磁束等が発散して受電側に導かれる量が少なくなり、効率よく電力を供給することが困難となってくる。
 電界・磁界共鳴型の電力伝送は、2m程度の近距離伝送が可能であり、送電距離の問題を解決するために有効である。このうち、電界共鳴型の場合、伝送経路中に手などを入れると、人体が誘電体であるため、エネルギーを熱として吸収して誘電体損失を生じる。これに対して磁界共鳴型の場合、人体がエネルギーをほとんど吸収せず、誘電体損失を避けることができる。
 図18は、従来の磁界共鳴を利用した非接触電力伝送装置の一般的な構成の概略を示した図である。送電装置1は送電コイル2を備え、受電装置3は受電コイル4を備えている。送電コイル2は、ループコイル2aと送電共振コイル2bを組み合わせて構成される。受電コイル4は、ループコイル4aと受電共振コイル4bを組み合わせて構成される。送電装置1のループコイル2aには、高周波電力ドライバーを含む給電回路5が接続され、交流電源6の電力が送電可能な高周波電力に変換されて供給される。受電装置3のループコイル4aには、整流器を含む受電回路7を介して、例えば充電池等の負荷8が接続される。
 ループコイル2aは、給電回路5から供給される電気信号により励起され、電磁誘導により送電共振コイル2bに電気信号を伝送する。送電共振コイル2bは、ループコイル2aから出力された電気信号に基づいて磁界を発生させる。送電共振コイル2bに供給された電力は、磁界共鳴により受電共振コイル4bに非接触で伝送される。伝送された電力は、受電共振コイル4bから電磁誘導によりループコイル4aへ伝送され、受電回路7の整流器により整流されて負荷8に供給される。
 送電共振コイル2bは、共振周波数f0=1/{2π(LC)1/2}(Lは送電共振コイル2bのインダクタンス、Cは浮遊容量を示す)において磁界強度が最大となる。送電共振コイル2bが構成する送電共振回路と、受電共振コイル4bが構成する受電共振回路の共振周波数は同一に設定される。更に、コイル間距離やループコイル間距離を調整し整合をとることにより、効率のよい電力伝送を行うことができる。
 このような非接触電力伝送装置は、電気自動車(EV)などへの適用が進められている。あるいは、通常の住居等に用いられている厚い壁を介在させた非接触電力伝送も可能である。但し、非接触電力伝送を行う際、送電装置と受電装置の間の空間に例えば金属が介在すると、電力伝送に対する障害要因(以下、単に「障害要因」と記述する。)となる。すなわち、磁場の影響により金属が異常加熱したり、電力伝送効率が低下してしまう惧れがある。そこで、例えば特許文献1には、送電装置と受電装置の間の空間に金属等の障害要因が存在するかどうかを検出して、もし障害要因が存在する場合には電力伝送を停止する制御を行うように構成した装置が開示されている。
 また、厚い壁を介在させた非接触電力伝送を行う場合には、屋内の送電側から容易に行き来できない屋外に受電装置を設置する機会も増加する。そのため、送電装置と受電装置の相互位置関係の視認や確認が困難であり、装置の取り付けや運転開始に困難を伴うことになる。例えば、送電を開始する際に、相手の受電装置が配置されているのか、又は、充電可能な位置に設置されているのか不明であれば、送電を不用意に開始できない。
 この問題に関連して、特許文献2には、送電コイルの近傍に磁界強度を測定するセンサを配置することが開示されている。すなわち、磁界強度センサにより、壁越しでの非接触電力伝送を行う際に双峰特性等の特性を検出し、それに応じて伝送を制御する。双峰特性の場合、2つのピーク周波数の内、高い側の周波数で電力を転送すれば、送電と受電コイル間の磁界強度が最低となる。従って、この状態に設定することにより、壁等を通した適切な電力伝送が可能であることが示唆されている。
 特許文献2の記載によれば、磁界強度測定センサ出力により双峰特性等が得られれば相手側が存在するものと判断でき、更に、高域側の周波数で送電すれば、送電コイルと受電コイルの間に磁界強度が最低となる部分が生じるので、壁越しでの給電に好適であると判断できることが示唆される。
 また、特許文献3には、送電側の電力供給コイルの背面に磁性体を、受電側の電力取出コイルの背面にも磁性体を配置した構成が開示されている。これにより、磁界の分布を、より双方の送電コイルと受電コイル側に変位させて強い結合を発生させることが可能となり、電力の伝送効率が向上する。特許文献3ではこのような構成により、壁等に送電部を埋め込む例が記載されている。
特開2012-75200号公報 特開2010-239847号公報 特開2010-239848号公報
 特許文献1及び2に開示された装置においては、電力伝送に使用する送電コイルと受電コイル以外に、障害要因の状態を検出するための専用コイル、あるいは電界強度測定センサを設ける必要があり、コスト増加や構成の煩雑さを招く。更に、電力伝送用コイルと障害要因検出用コイルは、共振周波数を異ならせる必要があり、制御系が複雑になる。従って、障害要因の存在等の、送電コイルからの電力伝送に影響する要因の状態を検出するための状態検出専用コイルを用いることは望ましくない。
 また、送電コイルと受電コイル間の空間が空気の場合には、障害要因が介在していても取り除けば問題ない。しかし、例えば壁などの介在物を介して非接触電力伝送を行う場合には、壁中に障害要因が存在しても、壁から障害要因を簡単に取り除くことができない。そこで、障害要因による影響を回避できる箇所を探して伝送を行うことになる。
 例えば、鉄筋が入ったコンクリート壁を介して非接触電力伝送を行う場合には、送電コイルと受電コイルの配置を適切に行わなければ、実用的に十分な電力伝送効率を得ることができない。しかしながら、特許文献1及び2には、そのような場合に適した非接触電力伝送方法に関する開示はない。
 更に、特許文献2の開示に従い、磁界強度が最低の部分を壁の部分に設定することは、電界強度が高くなる部分を壁の中央に設定することに相当する。そのため、壁が誘電体として作用する場合は誘電体損失を生じ、伝送効率の低下を招くことになる。従って、伝送効率の向上が困難な構成となり、無線給電に好適な方法とは言い難い。
 また、特許文献3の構成の場合は、送電装置に対して壁を挟んだ受電装置の配置を検出する手段を持たないため、受電装置の配置が適切か否かを判断することができない。従って、壁を挟んだ状態での電力伝送効率の向上には有効であっても、受電装置の設置状態が不適切であれば、それを生かすことができない。
 以上のような従来技術の問題点を解決するために、本発明は、状態検出専用のコイルが不要な簡単な構成により、送電装置が単独で電力伝送に影響する要因の状態を検出する機能を有する非接触電力伝送装置を提供することを目的とする。
 本発明は、また、鉄筋などの障害要因を含んだ介在物を介して非接触電力伝送を行う場合に、送電コイルと受電コイルの適切な配置を容易に決定して、実用的に十分な電力伝送効率を安定して得ることが可能な非接触電力伝送方法を提供することを目的とする。
 本発明は、さらに、送電装置に対する壁を隔てた受電装置の配置状態を、専用のセンサが不要な簡単な構成で検出し、安定した電力伝送を可能とした非接触電力伝送装置及び非接触電力伝送方法を提供することを目的とする。
 本発明の非接触電力伝送装置は、送電コイル及び共振容量により構成された送電共振器を有する送電装置と、受電コイル及び共振容量により構成された受電共振器を有する受電装置とを備え、前記送電コイルと前記受電コイル間の作用を介して前記送電装置から前記受電装置へ電力を伝送する。
 上記課題を解決するために、本発明の非接触電力伝送装置は、前記送電装置が、前記送電共振器に供給する高周波電力の大きさ及び周波数の設定を制御する送電制御部と、前記送電制御部が制御する高周波電力に対する応答に基づき、前記送電共振器の共振周波数に対応した因子に関わる伝送特性を検出する伝送特性検出部と、前記送電コイル前方の磁束到達範囲が基準状態にあるときの前記伝送特性を基準特性として記憶する基準特性記憶部と、前記伝送特性検出部が検出する前記伝送特性を前記基準特性と比較する伝送特性比較部とを備え、前記伝送特性比較部による比較に基づき、前記送電コイルからの電力伝送に影響する要因の状態を判定するための機能を有することを特徴とする。
 本発明の非接触電力伝送方法は、送電コイル及び共振容量により構成された送電共振器を有する送電装置と、受電コイル及び共振容量により構成された受電共振器を有する受電装置とを用い、前記送電コイルと前記受電コイル間の作用を介して前記送電装置から前記受電装置へ電力を伝送する方法である。
 上記課題を解決するために、本発明の非接触電力伝送方法は、所定の大きさ及び所定周波数に設定した高周波電力を前記送電共振器に供給し、前記送電共振器の応答に基づいて、前記送電共振器の共振周波数に対応した因子に関わる伝送特性を検出する伝送特性検出ステップと、前記送電コイル前方の磁束到達範囲が基準状態にある状態で前記伝送特性検出ステップによって測定された前記伝送特性を基準特性として記憶する基準特性記憶ステップと、前記伝送特性検出ステップによって検出される前記伝送特性を、記憶されている前記基準特性と比較する伝送特性比較ステップと、前記伝送特性比較ステップによる比較に基づき、前記送電コイルからの電力伝送に影響する要因の状態を判定する状態判定ステップとを備えたことを特徴とする。
 本発明によれば、送電コイルを利用して送電共振器の共振周波数等の伝送特性を検出し、その変化に基づいて、電力伝送に影響する要因の状態を判定する。これにより、状態検出専用のコイルが不要な簡単な構成を採用しながら、送電装置が単独で状態を検出する機能を持つことができる。
 それにより、壁などの介在物を通して非接触で電力伝送を行う前に予め、金属などの障害要因の影響を送電装置のみにより検出し、送電コイルと受電コイルの適切な配置を容易に決定して、十分な電力伝送効率を安定して得ることが可能である。
 あるいは、非接触電力伝送を行う前に、専用のセンサが不要な簡単な構成で共振電圧周波数特性を測定し、無負荷時の共振電圧周波数特性と比較して、その結果に応じた電力伝送動作の制御を行うことができる。それにより、壁を隔てて相手側を視認できなくても、安定した電力伝送が可能となる。
図1は、実施の形態1における非接触電力伝送装置の構成を示す模式断面図 図2は、同非接触電力伝送装置を構成する送電装置を示すブロック図 図3Aは、同送電装置の送電共振コイルに金属が近づいた場合のインダクタンスLの変化を調べるための測定系を示す模式断面図 図3Bは、同送電装置の送電共振コイルに金属が近づいた場合のインダクタンスLの変化を示す図 図4Aは、同送電装置の送電共振コイルに金属が近づいた場合の共振周波数frの変化を調べるための測定系を示す模式断面図 図4Bは、同送電装置の送電共振コイルに金属が近づいた場合の共振周波数frの変化を示す図 図5は、同非接触電力伝送装置における障害要因を検出する動作の一例を示すフローチャート 図6は、鉄筋が配置されたコンクリート壁を通して電力伝送する場合の配置例を示す図であり、(a)は正面図、(b)は断面図 図7Aは、実施の形態2における非接触電力伝送方法に関し、メッシュ間隔Wで配置された鉄筋に対する送電共振コイルの配置関係を示す図 図7Bは、図7Aとは異なるメッシュ間隔Wで配置された鉄筋に対する送電共振コイルの配置関係を示す図 図7Cは、更に他のメッシュ間隔Wで配置された鉄筋に対する送電共振コイルの配置関係を示す図 図8Aは、実施の形態2における非接触電力伝送方法の第1態様に基づく鉄筋に対する送電共振コイルの配置関係を示す図 図8Bは、同第1態様に基づき測定した伝送効率の比率D/Wに対する依存性を示す図 図9Aは、実施の形態2における非接触電力伝送方法の第2態様に基づく鉄筋に対する送電共振コイルの配置関係を示す図 図9Bは、同第2態様によって測定した伝送効率の比率D/Wに対する依存性を示す図 図10Aは、実施の形態2における非接触電力伝送方法の第3態様に基づく鉄筋に対する送電共振コイルの配置関係を示す図 図10Bは、同非接触電力伝送方法の第4態様に基づく鉄筋に対する送電共振コイルの配置関係を示す図 図10Cは、同非接触電力伝送方法の第5態様に基づく鉄筋に対する送電共振コイルの配置関係を示す図 図11は、実施の形態3における非接触電力伝送装置のブロック図 図12は、同非接触電力伝送装置の共振電圧の周波数特性の変化を示す波形図 図13は、実施の形態4における非接触電力伝送装置を構成する受電装置のブロック図 図14Aは、実施の形態5における非接触電力伝送装置の送電装置に含まれる給電回路を構成する出力回路を示す回路図 図14Bは、同送電装置に含まれる共振電圧検出部の構成例を示す回路図 図15Aは、同送電装置に含まれる共振電圧検出部の他の構成例を示す回路図 図15Bは、同送電装置のケーブル延長型の構成例を示す概念図 図16は、実施の形態5におけるケーブル延長型の受電装置の構成例を示す概念図 図17は、実施の形態6における受電装置に含まれる受電電圧調整部の構成例を示す回路図 図18は、従来例の非接触電力伝送装置の構成を示す模式図
 本発明の非接触電力伝送装置は、上記構成を基本として、以下のような態様をとることができる。
 すなわち、前記伝送特性として、前記送電共振器の共振周波数、前記送電コイルのインダクタンス、または、前記送電コイルの共振電圧を用いる。
 また、非接触電力伝送装置の具体的な態様の第1例として、前記基準特性記憶部は、前記送電コイル前方の磁束到達範囲に介在物が存在しない開放時の前記伝送特性を前記基準特性として記憶し、前記伝送特性比較部は、前記送電コイル前方の磁束到達範囲における介在物の存在の有無に応じた前記伝送特性の変化を検出し、前記伝送特性比較部による検出結果に基づき、前記介在物内に存在する障害要因による電力伝送に対する影響の程度を検出する構成とする。
 また、第1例の構成において、前記送電装置は、前記送電共振器の共振周波数を可変とする共振周波数調整部を備え、前記伝送特性検出部は、前記送電共振器の共振周波数を検出するように構成され、前記送電制御部は、前記介在物を介して電力伝送を行う際に、前記送電装置を前記介在物の面に固定した時に前記送電共振器の共振周波数が所定の値から変化した場合には、前記送電装置を介在物に取り付ける前の共振周波数に戻すように前記共振周波数調整部を制御する構成とする。
 上記構成において、送電共振器の共振周波数を検出する構成の例として、高周波電力ドライバーから送電コイルへの印加周波数をマイコンにより変化させ、その時の送電コイルの共振電圧が最大となる周波数をマイコンにより求める構成を採用する。即ち、送電コイルの共振電圧が最大となる時の周波数が共振周波数となる。また、共振周波数調整部として、例えば、高周波電力ドライバーの発振周波数を変えたり、送電共振器のインダクタンスや共振容量を変える構成を採用する。
 また、より具体的な態様の第2例として、前記伝送特性検出部は、前記伝送特性として前記送電共振器の共振電圧周波数特性を検出し、前記基準特性記憶部は、前記受電装置の非配置状態で測定された無負荷時の前記共振電圧周波数特性を前記基準特性として記憶し、電力伝送の開始時に、前記送電制御部は、前記伝送特性検出部により前記共振電圧周波数特性を検出させ、前記伝送特性比較部により前記基準特性と比較させて、その比較結果に応じた電力伝送動作の制御を行う構成とする。
 また、第2例の構成において、前記送電制御部は、前記送電開始前の共振電圧周波数特性が、(a)前記無負荷時の共振電圧周波数特性に相当する場合、(b)前記無負荷時の共振電圧周波数特性のピーク周波数f0と同様の周波数であってより低い電圧のピークを有する場合、または(c)単峰特性で前記ピーク周波数f0と異なる周波数にピークを有する場合は、送電を停止する制御を行う構成とする。これにより、非接触電力伝送には不適合な状態で送電を開始したために不都合な事態が発生することを回避することができる。
 また、前記送電制御部は、前記送電開始前の共振電圧周波数特性が双峰特性を示した場合は、前記高周波電力の周波数を双峰特性のピークの一方に設定して送電を開始するように制御する構成とする。これにより、非接触電力伝送には適切な状態で送電を行うことができる。
 また、前記送電装置と前記受電装置は、相互に情報通信を行うための送電側応答部及び受電側応答部を各々備え、前記送電制御部は、前記送電開始前の共振電圧周波数特性が、前記無負荷時の共振電圧周波数特性のピーク周波数f0と同等の周波数であって、より低い電圧のピークを有する場合に、前記周波数f0で小電力の送電を行い、前記小電力の送電に応じて、前記受電装置から受電中であることを示す応答を受信した場合は送電電力を増大させて通常の電力で送電を継続し、応答が無い場合は送電を停止するように制御する。これにより、非接触電力伝送には適切な状態を確認して送電を行うことができる。
 上記いずれかの構成において、前記送電制御部は、前記伝送特性を検出する際は、前記高周波電力を、通常の電力伝送中に設定する前記高周波電力よりも小さく設定するように制御する。これにより、送電コイルと受電コイルが結合していない場合等に、送電コイルの無負荷状態によって、送電共振器の共振電圧が共振容量の許容電圧値を超えてしまうことを回避することができる。
 また、前記送電制御部は、前記伝送特性を検出するときに、前記高周波電力を一定の大きさに設定し、かつ周波数をスイープさせながら前記送電共振器に供給するように制御する。
 また、前記受電装置の受電回路モジュールは、伝送される高周波の電力を整流し直流電力に変換する検波回路と、検波した出力電圧を一定に保つ制御を行う受電電圧調整部と、蓄電部とを備え、前記受電電圧調整部は、降圧型のDC-DCコンバータを備え、前記検波回路の検波電圧が設定値以上とならないように、前記DC-DCコンバータにより前記蓄電部に検波電力を伝送する制御を行う。これにより、良好な伝送効率を維持して非接触電力伝送を行うことができる。
 また、前記受電回路モジュールは、前記蓄電部の充電電圧を検出し、検出された前記充電電圧が設定値を超えたときに、前記DC-DCコンバータの変換動作を抑制するように構成される。
 また、前記受電装置は、受電電力を負荷に流して消費する過電圧制限部を備え、前記過電圧制限部は、前記検波回路の検波電圧が前記設定値を超えたときに動作して、余分の受電電力を負荷に流して消費する。これにより、受電コイルの検波出力が上昇してDC-DCコンバータの定格入力電圧を超えてしまうことによる回路の破損を回避できる。
 この場合、前記DC-DCコンバータは、前記蓄電部が満充電となったときに、変換動作を停止するように構成することができる。過電圧制限部の作用により、検波電圧の上昇によるDC-DCコンバータ回路の破損を回避できるからである。
 また、前記DC-DCコンバータと前記蓄電部の間に、前記蓄電部から前記DC-DCコンバータへの電力の逆流を防止する保護部を挿入する。
 また、前記保護部を流れる電流が順方向であるか否かを検出し、順方向であることを検出した場合に、前記保護部を短絡させる短絡制御部を備える。
 本発明の非接触電力伝送方法は、上記構成を基本として、以下のような態様をとることができる。
 すなわち、具体的な態様の第1例として、基準特性記憶ステップでは、前記送電コイル前方の磁束到達範囲に介在物が存在しない開放時の前記伝送特性を前記基準特性として記憶し、前記状態判定ステップでは、前記電力伝送に影響する要因の状態として、前記介在物内に存在する障害要因による電力伝送に対する影響の程度を検出し、非接触電力伝送を行う前に、前記送電装置のみを用いて前記状態判定ステップを行う。
 また、第1例の方法において、前記介在物を介して電力伝送を行う際に、前記送電装置のみを前記介在物の一方の側に配置し、前記介在物の他方の側には前記受電装置が配置されていない状態で、前記送電装置のみを用いて前記障害要因による電力伝送に対する影響の程度を検出する。
 また、前記状態判定ステップによる検出結果に基づき、前記送電装置を当該影響の最小の位置に配置し、前記送電装置の位置に対向させて前記受電装置を配置することにより、前記送電コイルと前記受電コイル間の電力伝送効率が最大となるように前記送電装置と前記受電装置の位置を調整する。
 また、第1例の方法により、鉄筋コンクリート造の壁のように、壁の中に鉄筋が入っている場合においても、電力伝送を適切に行うことが可能である。例えば、外壁に使われている鉄筋コンクリート内の鉄筋(主筋やあばら筋など)が異形棒鋼10D(直径は約10mm)の場合の間隔は、住宅公庫基準では300mm以内と言われている。しかし、最近ではフラット35や長期優良住宅では100mm程度と狭い間隔で施工されている住宅も多くなっている。そこで、電力伝送を行おうとする壁の中にある鉄筋の間隔に応じて送電コイルの直径を変える。具体的には、以下のとおりである。
 すなわち、前記介在物中に前記障害要因として金属がメッシュ状に配置され、かつ前記金属同士の交差部分が導通状態である場合に、前記金属のメッシュ間隔W、前記送電コイルの直径Dが、D/W≦1の関係を満足するように設定することが好ましい。これにより、実用的に十分な電力伝送効率を得ることができる。ただし、この条件は、送電コイル近くの各鉄筋が交差している部分が両方の鉄筋同士で導通している場合に適用する。この場合には、鉄筋の交差部の状態に応じて電力伝送効率が異なるので、送電装置を取り付ける際に、電力伝送効率が高い場所を探索する必要がある。
 一方、送電コイルの近辺における各鉄筋の交差部で両方の鉄筋同士が導通しないように絶縁処理が行われている場合には、より広いD/Wの範囲で実用的に十分な電力伝送効率を得ることができる。
 すなわち、前記介在物中に前記障害要因として表面を絶縁処理した金属がメッシュ状に配置された場合に、前記金属のメッシュ間隔W、前記送電コイルの直径Dが、D/W≦2の関係を満足するように設定することが好ましい。この条件を満たしていれば、どの位置に送電コイルを固定しても同様な電力伝送効率が得られる。
 この場合に、前記絶縁処理した金属が前記メッシュ状の一方向のみに配置された前記介在物を介して電力伝送を行うことができる。これにより、全ての鉄筋に絶縁処理を施したものを用いる場合に比べて、絶縁処理をした鉄筋は半分の本数で済む。一般的に鉄筋を絶縁処理する為にはコストが上昇するので、このように絶縁処理した鉄筋の本数を少なくすることが望ましい。
 また、前記絶縁処理した金属が前記メッシュ状の一方向のみに、かつ1本置きに配置された前記介在物を介して電力伝送を行うことができる。これにより、絶縁処理した鉄筋の本数を更に少なくすることができる。
 また、前記金属同士の交差部分のみが絶縁処理された前記介在物を介して電力伝送を行うことができる。これにより、鉄筋の絶縁処理に要するコストを更に低減することができる。
 非接触電力伝送を行う際に、壁が鉄筋コンクリート造の場合には電力伝送効率は下がるものの、熱を発生する金属(鉄筋)の周りがコンクリートで囲まれている為に、空気中に比べて温度上昇が抑制されるものと思われる。従って、本発明の非接触電力伝送方法を適用して、極力金属の影響の少ない場所を選んで送電コイルと受電コイルを配置することにより、実用的な電力伝送が可能になる。
 なお、介在物として、鉄筋の入ったコンクリート壁に限らず、窯業サイディングやモルタルなどを使った壁や、木材を使用した壁が介在する状況、あるいは壁の中に水が充填されている状況において、障害要因が存在する可能性がある場合にも、本発明の非接触電力伝送方法を適用することができる。
 本発明の非接触電力伝送方法の具体的な態様の第2例として、前記伝送特性検出ステップでは、前記送電コイル両端の電圧を検出し、その検出出力に基づいて前記伝送特性として前記送電共振器の共振電圧周波数特性を検出し、基準特性記憶ステップでは、前記受電装置が配置されていない状態で前記伝送特性検出ステップによって検出された無負荷時の共振電圧周波数特性を前記基準特性として記憶し、非接触電力伝送を行う前に、前記伝送特性検出ステップにより送電開始前の前記共振電圧周波数特性を検出して、前記状態判定ステップによる判定結果に応じた電力伝送動作の制御を行う。
 また第2例の方法において、電力伝送に際して、先ず小電力で送電を行いながら前記伝送特性検出ステップを実行して、前記送電開始前の共振電圧周波数特性を測定し、前記送電開始前の共振電圧周波数特性が双峰特性の場合、そのピーク周波数に合わせた周波数の高周波電力を送電し、前記送電開始前の共振電圧周波数特性が単峰特性で、そのピーク周波数が記憶した前記無負荷時の共振電圧周波数特性のピーク周波数f0と同等の場合は、前記小電力で送電を継続して前記受電装置からの応答を待ち、応答が無い場合は送電を停止し、前記送電開始前の共振電圧周波数特性が単峰特性で、そのピーク周波数が前記無負荷時の共振電圧周波数特性のピーク周波数f0とは異なる場合は送電を停止する。
 以下、本発明の実施の形態について、図面を参照しながら説明する。以下の実施の形態は、本発明を具現化した一例を示したものであり、本発明はこれに限定されるものではない。
 <実施の形態1>
 図1は、実施の形態1における非接触電力伝送装置の構成を示す模式断面図である。なお、図18に示した従来例の非接触電力伝送装置と同様の要素については、同一の参照番号を付して、説明の繰り返しを簡略化する。
 この非接触電力伝送装置は、送電装置1と受電装置3を、壁9などの介在物を介して互いに向かい合わせて配置し、送電コイルと受電コイルの間の磁気結合等の作用、例えば磁界共鳴により非接触電力伝送を行うことが容易なように構成されている。
 送電装置1は、送電共振コイル2bに送電回路モジュール10を接続して構成されている。送電回路モジュール10は、交流電源6の電力を送電可能な高周波電力に変換する高周波電力ドライバー等を含んでいる。図示を省略するが、送電装置1にはシールド機能を設けることが望ましいので、送電回路モジュール10及び送電共振コイル2bは金属で包囲されている。また、送電共振コイル2bと送電回路モジュール10の間にはフェライトシートが設けられている。
 図1の装置では、送電コイルはループコイルを用いずに送電共振コイル2bのみで構成され、高周波ドライバーからの電力は送電共振コイル2bに直接供給される(直列共振)。場合によっては、送電用のループコイル2a(図18参照)を設けても良い。図示は省略するが、送電共振コイル2bには共振容量が接続されて、送電共振器を構成している。共振容量としては、回路素子として可変コンデンサ(バリコンあるいはトリマコンデンサなど)あるいは固定コンデンサを接続してもよいし、浮遊容量を利用した構成としてもよい。
 受電装置3には、受電コイルとして受電共振コイル4bとループコイル4aが組合わされて配置され、ループコイル4aが受電回路モジュール11に接続されている。受電回路モジュール11は、検波回路、整流器等(不図示)を備えている。ループコイル4aで得られた電力は、検波回路、整流器などを経て、高周波電力から直流電力に変換されて負荷8に供給される。負荷8としては、充電池、監視カメラ、電灯などを適用することができる。
 受電共振コイル4bには共振容量(不図示)が接続されて、受電共振器を構成している。共振容量としては、回路素子として可変コンデンサ(バリコンあるいはトリマコンデンサなど)あるいは固定コンデンサを接続してもよいし、浮遊容量を利用した構成としてもよい。図示は省略するが、受電用のループコイル4aと受電回路モジュール11の間には、フェライトシートが設けられている。また、場合によっては、受電用のループコイル4aを用いないで、受電共振コイル4bと受電回路モジュール11を直接接続してもよい。
 この非接触電力伝送装置により電力伝送を行う際に、送電装置1は、壁9の内壁面12に送電共振コイル2bを対面させて設置される。受電装置3は、外壁面13に受電共振コイル4bを対面させて設置される。図示した状態では、送電共振コイル2bと受電共振コイル4bの中心軸は、ほぼ一致している。
 図2は、送電装置1のブロック図であり、送電回路モジュール10の具体的な構成が示される。送電回路モジュール10に含まれる給電回路5は、高周波電力ドライバーを含み、送電共振コイル2bに接続されている。給電回路5には電流・電圧モニター部14が接続されて、送電共振コイル2bに流れる電流や共振電圧などをモニターする。電流・電圧モニター部14の出力信号は、送電制御部15、及び特性変化検出部16に供給される。給電回路5にはさらに、送電周波数設定部17、及び送電電力設定部18が接続されている。共振周波数調整部19は、送電共振コイル2bの共振容量を調整して送電共振器の共振周波数frを可変とするために設けられている。
 送電周波数設定部17は、給電回路5の高周波発振回路を調整して高周波電力の周波数を適宜設定する機能を有する。送電電力設定部18は、給電回路5が給電する高周波電力の大きさを設定する機能を有する。高周波電力を可変とするためには、例えば、高周波電力をブリッジ回路等のスイッチング回路で生成する構成を採ることができる。その場合、高周波電力を可変とする手段としては、回路に印加する電圧を変化させるPAM制御、或いはスイッチング回路の駆動パルスのデューティ比を変更するPWM制御のいずれを採用してもよい。
 送電制御部15は、給電回路5、特性変化検出部16、送電周波数設定部17、送電周波数設定部18、及び共振周波数調整部19を制御する。それにより、送電回路モジュール10による通常の電力伝送、及び電力伝送前に行う障害検出の動作が実行される。その際、送電制御部15は、送電周波数設定部17及び送電電力設定部18を制御して、送電共振器に供給する高周波電力の大きさ及び周波数を設定させる。通常の電力伝送時には、給電回路5及び共振周波数調整部19が動作させられる。電力伝送前に行う障害検出の際には、給電回路5及び特性変化検出部16が動作させられる。
 更に、図示しないが、送電装置1と受電装置3との相互間で情報を送受信するための通信回路等も設けられる。必要に応じて送電共振器の反射電力、送電共振器のインダクタンス等をモニターする要素を含んでも良い。
 特性変化検出部16は、共振周波数検出部20、基準特性記憶部21、及び共振周波数比較部22から構成される。
 共振周波数検出部20は、送電共振器の共振周波数frを検出する。共振周波数frは、伝送特性の一例である。伝送特性は、送電共振器の共振周波数に対応した因子として定義され、送電制御部15が制御する高周波電力を送電共振コイル2bに供給したときの応答に基づいて検出される。伝送特性としては、送電共振コイル2bのインダクタンス、または、送電共振コイル2bの共振電圧等、送電共振器の共振周波数に対応した他の因子の値を用いることも可能である。従って、共振周波数検出部20は、伝送特性検出部の一例である。
 ここで、本発明においては、送電共振コイル2bの前方の磁束到達範囲内の領域が基準状態にあるときに得られる伝送特性を、基準特性として定義する。基準状態としては、電力伝送に影響する要因の状態を判定するための基準となる状態を適宜設定する。通常、電力伝送に影響する要因の存在あるいは状態の望ましい水準を、基準状態として設定する。例えば、送電共振コイル2bの前方の磁束到達範囲内の領域に、壁9のような介在物が存在しない状態を基準状態とし、その状態での伝送特性を基準特性として用いる。あるいは、送電装置1に対して、受電装置3が適切な位置関係にある場合を基準状態とし、そのときの伝送特性を基準特性として用いる場合もある。
 本実施の形態では、送電共振コイル2bの前方(受電装置3が配置される側)の磁束到達範囲に、壁9が介在しない開放状態を基準状態とする。従って、開放状態にあるときに共振周波数検出部20が検出した開放時共振周波数froを基準特性として用い、基準特性記憶部21に保存する。開放時共振周波数froは、予め、装置の製造工程等で測定して、基準特性記憶部21に記憶する。あるいは、電力伝送を行う度に測定・記憶される構成としてもよい。一方、壁9等の介在物に対面させて送電共振コイル2bを配置したときに共振周波数検出部20により検出される伝送特性として、遮蔽時共振周波数frsを定義する。
 共振周波数比較部22は、遮蔽時共振周波数frsを開放時共振周波数froと比較して、開放時共振周波数froに対する遮蔽時共振周波数frsの変化を検出する。上述の説明から判るように、共振周波数比較部22は、検出される伝送特性を基準特性と比較して、その変化を検出する伝送特性比較部の一例である。
 特性変化検出部16は、共振周波数比較部22による遮蔽時共振周波数frsの変化を検出した結果に基づき、壁9のような介在物中に存在する電力伝送に対する障害要因、例えば金属の存在、あるいはそれによる電力伝送に対する影響の程度を検出するように構成される。特性変化検出部16は、本発明における一般的な定義によれば、共振周波数比較部22が検出する伝送特性の基準特性からの変化に基づき、送電共振コイル2bの前方の磁束到達範囲内における電力伝送に影響する要因の状態を判定する機能を実現する手段である。
 共振周波数比較部22による検出結果は、表示部23に表示される。表示部23は、障害要因による電力伝送に対する影響の程度を何らかの形態で電力伝送装置の操作者に報知するものであればよい。すなわち、表示に限らず、音響等により報知する構成としてもよい。あるいは、表示部23を用いることなく、共振周波数比較部22の出力信号に基づき、送電装置1と受電装置3の配置を自動的に調整する構成とすることもできる。
 共振周波数検出部20は、上述のとおり、送電制御部15による給電回路5の制御に応じて変化する電流・電圧モニター部14の出力信号に基づき、送電共振器の共振周波数frを検出する。例えば、給電回路5から供給する高周波電力の周波数をマイコンにより特定の値で変化させ、それに応じて、送電共振コイル2bの共振電圧が最大となる周波数をマイコンにより算出する。送電共振コイル2bの共振電圧が最大となる時の周波数が、送電共振器の共振周波数frである。
 共振周波数調整部19により送電共振器の共振周波数frを可変とするためには、送電共振器のインダクタンスや共振容量を変える構成を採用することができる。送電制御部15は、電流・電圧モニター部14によって検出された、送電共振コイル2bへの供給電力の電力量、あるいは、給電回路5内で電力を生成する回路、例えば高周波電力増幅アンプ、または電力を発生させるスイッチング回路に供給される直流電流の電流値に基づいて、共振周波数調整部19の動作を制御する。すなわち、それらの値のいずれかが最大となるように、可変コンデンサなどを調整させる。
 これらの電力や電流は、共振系の周波数特性の特性曲線がピークの部分で、送信の電力値や電流値がピークとなるので、最大値制御により最も電力伝送量が増大する。送電の電力値は、給電回路5で消費される電流、電力に対応しているので、例えば電流値をモニターしておき、その電流値を最大にするように制御すれば、通常の電力伝送を最大の効率で行うことができる。このように、共振調整は最大点追跡制御を行うことになり、マイコン等を利用した制御回路の場合であれば、これに従って制御ソフトを作成しインプリメントすれば、共振調整制御系を構築できる。
 以上のように、本実施の形態の非接触電力伝送装置は、送電装置1及び受電装置3を、壁9などの介在物を介在させて配置する際の、当該介在物に含まれる障害要因による影響を検出する構成に特徴を有する。すなわち、壁9の内部や、送電装置1及び受電装置3を取付ようとする内壁面12や外壁面13周辺に、金属等の障害要因が存在することに起因する、電力伝送効率の低下の有無を検出する。障害要因による影響の検出は、送電装置1のみによって行われ、障害要因による送電共振器の共振周波数frの変化を利用する。
 例えば、送電共振コイル2bに金属が近づくとインダクタンスLが小さくなり、結果的に共振周波数が高い方向へシフトするので、この共振周波数の変化を検出することにより、障害要因による影響を検出する。場合によっては、送電共振コイル2bのインダクタンスの変化や共振電圧の変化を検出しても良い。すなわち、上述のとおり、共振周波数検出部20は、送電共振器の共振周波数に対応した因子の値である伝送特性を検出する伝送特性検出部の一例である。
 図3Aは、送電共振コイル2bに、金属24(この例では厚さ0.5mmの銅板)が近づいた場合のインダクタンスLの変化を調べるための測定系を示す。送電共振コイル2bを、インタクタンスLを測定することができるLCメータ25の測定端子に接続して測定を行う。送電共振コイル2bと金属24の間隔を距離Xとする。距離Xの変化に対する、所定の周波数(例えば約100kHz)におけるインダクタンスLの変化を求める。すなわち、金属24を、遠く離れた位置から送電共振コイル2bに近付けていくと、ある距離Xから金属24の影響を受けて、インダクタンスLが変化し始める。
 そのときのインダクタンスLの変化を図3Bに示す。図3Bに示すように、距離Xが小さくなるとともに、インダクタンスLが小さくなっていく。実験の一例では、距離Xが100mm付近からインダクタンスLが変化し始めた。このようなインダクタンスLの変化を調べることにより、金属24による影響の有無を検出することができる。
 図4Aは、送電共振コイル2bに、金属24(この例では厚さ0.5mmの銅板)が近づいた場合の共振周波数の変化を調べるための測定系を示す。この測定系では、送電共振コイル2bの両端に、共振容量としてフィルムコンデンサ(不図示)が取り付けられている。ループコイル2aの両端を、共振周波数を測ることができるVNA(ベクトルネットワークアナライザ)26の測定端子に接続して測定を行う。送電共振コイル2bと金属24の間隔を距離Xとする。距離Xの変化に対する、共振周波数の変化を測定する(Sパラメータ:S21)。すなわち、金属24を、遠く離れた位置から送電共振コイル2bに近付けていくと、ある距離から金属24の影響を受けて、共振周波数frが変化し始める。
 そのときの共振周波数frの変化を図4Bに示す。図4Bに示すように、距離Xが小さくなるとともに、共振周波数frが大きくなっていく。これは、図3Bに示したように、インダクタンスが小さくなった影響による。すなわち、共振周波数fは、f=1/{2π(LC)1/2}で決まるので、金属24が近づいてインダクタンスLが小さくなることにより、結果的に共振周波数が大きくなる。実験の一例では、インダクタンスLの変化と同様、距離Xが100mm付近から徐々に共振周波数が変化し始めた。このような共振周数の変化を調べることにより、金属24による影響の有無を検出することができる。
 実際に送電装置1を用いた場合の、送電共振器の共振周波数frを調べるためには、上述のように、給電回路5から送電共振コイル2bへの印加周波数をマイコンにより種々変化させ、その時の送電共振コイル2bの共振電圧が最大となる時の周波数をマイコンにより求めれば良い。即ち、送電共振コイル2bの共振電圧が最大となる時の周波数が送電共振器の共振周波数frである。
 図5は、本実施の形態の非接触電力伝送装置により障害要因を検出する動作の一例を示すフローチャートである。図1に示したように、送電装置1と受電装置3の間に壁9を介在させて電力伝送を行う場合に、金属24などの障害要因による影響を検出して、影響のない場所に送電装置1を取り付けるまでの手順の一例を示す。この手順により、送電装置1や受電装置3を取り付ける前に、送電装置1のみを用いて、送電共振コイル2bと受電共振コイル4b間に存在する金属24などの障害要因を検出することができる。
 まず、壁9などの介在物が存在しない状態で、送電共振器の開放時共振周波数froを求める(ステップS1)。開放時共振周波数froは、基準特性記憶部21に記憶される。なお、開放時共振周波数froは、装置の製造工程等で測定され、基準特性記憶部21に記憶されていれば、必ずしも、電力伝送を行う度にステップS1を実行する必要はない。
 次に、送電装置1を、金属などの障害要因を含む可能性のある壁9の内壁面12に対して、送電共振コイル2bが壁9に対面した状態に仮固定する(ステップS2)。障害要因検出の結果が即座に出る場合には、手で持った状態でも良く、仮固定する必要はない。次に、送電装置1を内壁面12に接触させた状態で、送電共振器の遮蔽時共振周波数frsを測定する(ステップS3)。そして、直ちに共振周波数fro及びfrsの値をマイコンにより比較する(ステップS4)。
 比較の結果、開放時共振周波数froに対する遮蔽時共振周波数frsの変化量が、予め設定した規定値(例えば1%)未満であれば(ステップS4、Yes)、その位置に送電装置1を本固定する(ステップS5)。一方、遮蔽時共振周波数frsの変化量が1%以上の場合は(ステップS4、No)、金属の影響を受けている可能性がある。従って、別の場所に送電装置1を移動させて仮固定する(ステップS6)。更に、ステップS3に戻って、その位置で遮蔽時共振周波数frsを測定し、共振周波数ft0と比較する(ステップS4)。そして、開放時共振周波数froに対する遮蔽時共振周波数frsの変化量が1%未満となるまで、ステップS6、S3、S4を繰り返す。
 開放時共振周波数froに対する遮蔽時共振周波数frsの変化量の規定値は、取り付けようとする壁9及びコイル特性に応じて予め決めておく。あるいは、ステップS4における比較では、froに対するfrsの変化量ではなく、froとfrsの差(絶対値)を算出しても良い。例えば、froが240kHzでfrsが242kHzであった場合、この差2kHzを予め決めておいた規定値と比較すればよい。
 このようにして送電装置1の位置が固定されれば、次は反対側の外壁面13に受電装置3を取り付ける。この時、受電装置3を種々移動させてその位置での受電パワーを求め、その受電パワーが最大となる最適位置で受電装置3を固定することが好ましい。最適位置を決めるための送電パワーは、実際に電力伝送を行うときの送電パワーよりも小さい方が安全面から好ましい。この時、必要に応じて受電パワーのデータを通信により送電装置1に送ってもよい。最終的には、送電装置1と受電装置3の両方を壁9に固定した後、電力伝送を開始する。
 なお、上述のようにして送電装置1を壁9に固定した時に、送電共振器の共振周波数が所定の値から変化した場合には、送電装置1を介在物に取り付ける前の共振周波数に戻すように共振周波数調整部19を制御する構成としてもよい。
 以上のように、本実施の形態によれば、障害要因検出専用のコイルが不要な簡単な構成により、送電装置1に、単独で障害要因を検出する機能を与えることができる。これにより、壁9などの介在物を介した非接触の電力伝送の実施に先立って、送電共振コイル2bと受電共振コイル4b間に介在する惧れのある金属などの障害要因を、受電装置3を配置することなく送電装置1のみで検出することができる。
 <実施の形態2>
 実施の形態2における非接触電力伝送方法について、図6~図10Cを参照して説明する。本実施の形態は、送電コイルと受電コイルとの間にメッシュ状に金属が配置された介在物、例えば、鉄筋コンクリート壁を介在させて電力伝送する場合に適した非接触電力伝送方法に関する。
 電磁誘導方式や従来の磁界共鳴方式では、送電コイルと受電コイルとの間に障害要因が検出された場合には送電は行われない。従って、鉄筋コンクリート壁のような金属が入った壁を介在させて電力伝送することは考慮されていない。しかし、本発明者らの実験に基づく知見によれば、送電に用いるコイルの大きさ、壁内にある鉄筋の間隔、あるいは鉄筋が交差している部分での接触状態(導通しているか絶縁しているか)等と、送電コイル及び受電コイルの配置の関係が、磁界共鳴方式における電力伝送効率に大きく影響している。
 図6は、実験例として、鉄筋27が配置されたコンクリート壁を介在させて電力伝送する場合の、鉄筋27と、送電共振コイル2b及び受電共振コイル4bの配置関係の一例を示す。コンクリート壁の図示は省略されている。(a)は、コンクリート壁内に鉄筋27(直径d)が、距離Wの間隔でメッシュ状に、すなわち、メッシュ間隔Wで配置されている場合の、送電共振コイル2b側から見た正面図を示す。(b)は(a)のA-A線に沿った断面図を示す。鉄筋27を介在させて、送電共振コイル2bに対向させて受電共振コイル4bが配置されている。ここでは、送電共振コイル2bの直径D(以下、「コイル径」と記述する)がメッシュ間隔Wと同じ場合が示されている(D=W)。送電共振コイル2bと受電共振コイル4b間の距離はXとし、鉄筋27は送受電コイル間の中央部に配置されている。
 図7A~図7Cに、鉄筋27がメッシュ状に挿入された壁を介在させて、非接触で電力伝送を行う場合の、種々の態様での送電共振コイル2bと鉄筋27の位置関係を示す。ここでは、コイル径Dがすべて200mmで固定であり、鉄筋27のメッシュ間隔Wのみが異なる。図7Aは、メッシュ間隔Wに対するコイル径Dの比率が、D/W=0.7の場合の一例を示す。すなわち、メッシュ間隔Wを300mmとしている。図7Bは、比率D/W=1.0の場合の一例を示す。すなわち、メッシュ間隔Wを200mmとしている。図7Cは、比率D/W=2.0の場合の一例を示す。すなわち、メッシュ間隔Wを100mmとしている。
 図7A~図7Cの(a)~(c)は各々、送電共振コイル2bが鉄筋27に対して異なる3種類の部位に配置された場合の相互関係を示す。すなわち、D/Wの各比率の場合に、(a)は送電共振コイル2bが空白部に、(b)は1本部に、(c)は十字部に配置された状態を示す。ここで、「空白部」とは、鉄筋27同士が交差しているメッシュ(四角形)の中心位置に相当する部位を意味する。「1本部」とは、鉄筋27同士が交差しているメッシュ(四角形)のうちの1本の中央部に相当する部位を意味する。「十字部」とは、鉄筋27同士が交差している交差点に相当する部位を意味する。
 図8Aは、比率D/W=1.0となるように絶縁処理なしの鉄筋28を配置した壁の「空白部」に送電共振コイル2bを配置した状態を示す。絶縁処理なし鉄筋28は、一般的に売られている安価な異形鋼棒の鉄筋(直径dが10mmのD10)である。このような鉄筋28をメッシュ状に配置し、それぞれの交差部を結束した場合、鉄筋28が導電性である為に、鉄筋28同士が接触した交差部29は多くの場所で導通状態となっている。すなわち、作製時に高温により酸化被膜が形成されている場合があるが、その厚さは薄い為に場所によって導通していることが多い。
 図8Bは、図8Aのように絶縁処理なし鉄筋28を配置したコンクリート壁を介在させて、本発明の非接触電力伝送装置を用いて電力送電を行い、電力伝送効率を測定した結果を示す。上述の3種類の部位、(a)空白部、(b)1本部、(c)十字部に、送電共振コイル2bを配置して、それぞれ測定を行った。コイル径Dは200mmで固定とし、D/W=2.0(メッシュ間隔W:100mm)、D/W=1.0(メッシュ間隔W:200mm)、D/W=0.7(メッシュ間隔W:300mm)と異ならせた。鉄筋28が無い場合の電力伝送効率は74%であり、比較の為に図中に破線で示した。
 実験の結果、D/W=2.0の条件では、「空白部」、「1本部」、「十字部」のどの位置に送電共振コイル2bを配置しても、電力伝送効率は約20%と低くなった。また、D/W=1.0の条件では、「十字部」>「1本部」>「空白部」の順番に電力伝送効率が低くなっている。更に、D/W=0.7の条件でも、「十字部」>「1本部」>「空白部」の順番に電力伝送効率が低くなっているものの、低下率は小さい。
 この結果から、「十字部」に送電共振コイル2bを配置することにより、D/W≦1.0の条件であれば、鉄筋28の無い場合に比べて10%以下の低下で電力伝送が行えることが判る。通常、鉄筋28による電力伝送効率の低下は、鉄筋28に発生している渦電流損に対応するため、鉄筋28が熱くなる。しかし、壁9が鉄筋コンクリート造の場合には、熱を発生する鉄筋28の周りがコンクリートで囲まれている為に、空気中に比べて温度上昇が低くなり問題とならないケースもある。従って、送電側にパワーの余裕があれば、コイル径Dと鉄筋28のメッシュ間隔Wとの比率、及び送電共振コイル2bを配置する位置を適当に選ぶことにより、鉄筋コンクリート造の壁を介した非接触電力伝送が可能である。
 また、送電共振コイル2bと受電共振コイル4b間に介在する鉄筋28の割合が一番少ない「空白部」の場合に、電力伝送効率が各条件中で一番低いことが判った。特に、D/W=1.0の条件において、「空白部」の場合の低下率が顕著である。このことから、電力伝送時に磁場の強度が一番強くなる送電コイルの外周部近くが、鉄筋28に囲まれていることが問題であることが判る。即ち、送電共振コイル2bの周りにある4か所の鉄筋の交差部(C1~C4)ではそれぞれ導通している為に、この鉄筋28の四角形部分は一種のコイル状態となり、渦電流が発生して熱の発生による伝送効率低下が大きくなっているものと考えられる。
 図9Aは、比率D/W=1.0となるように絶縁処理された鉄筋30を配置した壁の「空白部」に送電共振コイル2bを配置した状態を示す。図8Aの場合と異なるのは、用いた鉄筋30が、エポキシ樹脂の被覆により絶縁処理を施されていることである。これにより、縦と横に配置した鉄筋30が交差した交差部31は、確実に絶縁状態となっている。
 図9Bは、図9Aのように絶縁処理された鉄筋30を配置したコンクリート壁を介在させて、本発明の非接触電力伝送装置を用いて電力送電を行い、電力伝送効率を測定した結果を示す。上述の3種類の部位に送電共振コイル2bを配置して、それぞれ測定を行った。コイル径Dを200mmで固定とし、D/W=2.0、D/W=1.0、D/W=0.7と異ならせた。鉄筋30が無い場合の電力伝送効率は74%であり、比較の為に図中に破線で示した。
 実験の結果、D/W=2.0の条件では、鉄筋30が無い場合に比べて約10%程度低くなった。「空白部」、「1本部」、「十字部」のどの位置に送電共振コイル2bを配置しても、電力伝送効率は約65%であった。更に、D/W=1.0の条件、及びD/W=0.7の条件では、「空白部」、「1本部」では70%近くの電力伝送効率を得ている。
 この結果から、交差部31を確実に絶縁状態とすることにより、送電共振コイル2bの周りにある4か所の鉄筋の交差部(C5~C8)は導通していないので、この鉄筋30の四角形部分がコイル状態にはなっていないことが判る。送電共振コイル2bの外周付近及び内周に一種のコイル状態が形成されなければ、大きな電力伝送効率の低下は免れると考えられる。即ち、両方の鉄筋30同士が送電共振コイル2bの近傍で導通しないように、各鉄筋30の交差部31で絶縁処理が施されており、最低限D/W≦2の条件を満たしていれば、どの位置に送電共振コイル2bを固定しても、同様な電力伝送効率が得られることが判る。
 図10A~図10Cは、互いに異なる態様に絶縁処理が施された鉄筋を、比率D/W=2.0となるように設置した構造を示す。各構造に対して、(a)空白部、(b)1本部、(c)十字部のそれぞれ3ヶ所へ、送電共振コイル2bが配置されている。
 図10Aは、コストを下げる為に、メッシュの一方向(この図では横方向)のみ絶縁処理をした鉄筋30を用い、縦方向には絶縁処理なしの鉄筋28を用いた例を示す。図10A(a)~(c)から判るように、全ての交差部32において、鉄筋28と鉄筋30とは絶縁状態となっている。従って、どの場所に送電共振コイル2bを配置しても、図9Bに示したものと同様の結果が得られる。
 図10Bは、メッシュの横方向の1本置きのみに、絶縁処理した鉄筋30を配置し、鉄筋30間に絶縁処理なしの鉄筋28を配置し、メッシュの縦方向には絶縁処理なしの鉄筋28を用いた例を示す。これにより、図10Aよりもさらにコストダウンとなる。ただし、(b)十字部の配置では、図8A(b)の「空白部」と同様に、送電共振コイル2bの少なくとも四隅(例えば交差部29)が導通状態となるので、結果的に電力伝送の効率低下が起きる。従って、図10Bのような配置では、送電共振コイル2bの配置を適切に選ぶ必要がある(「空白部」や「1本部」など)。
 図10Cは、図10Bの配置の変形例であり、基本的には、絶縁処理した鉄筋34を横方向に1本置きに配置した構造である。但し、鉄筋34の絶縁処理は、絶縁処理していない鉄筋28と交差する交差部33のみに部分的に施されている。部分的に絶縁処理された鉄筋34を配置することにより、図10Bの場合と同様の効果が得られ、更に低コスト化が可能である。
 なお、以上の実施の形態では、介在物の例として、コンクリート(鉄筋入りも)の壁を通して給電する例を示したが、介在物としては、ガラス、水越し給電など他の介在物を通過させる給電にも本発明を適用可能である。
 <実施の形態3>
 図11は、実施の形態3における磁界共鳴型の非接触電力伝送装置を示すブロック図である。同装置を構成する送電装置41及び受電装置42は、図1に示した送電装置1と受電装置3に対応する。なお、図18に示した従来例の装置、及び図2に示した実施の形態1の装置と同様の要素については、同一の参照番号を付して説明の繰り返しを簡略化する。
 共鳴給電によれば、送電共振回路と受電共振回路が同じ周波数で共振することにより、距離が遠くても効率よく送電できる。この共振の状態は、共振回路どうしの結合状態や、金属の有無による周囲状況により変化する。本発明の特徴は、その共振状態を判定し、それに応じて給電を制御する構成にある。
 図11において、送電装置41は、給電回路5により交流電源(AC100V)6の電力を送電可能な高周波電力に変換して電力を伝送する。実際に送電される電力は、給電電圧を固定していても負荷の状態により変化するが、ここでは、給電電力を変更可能なように構成する手段として送電電力設定部18を用いる。給電回路5が送電する高周波電力を可変とする構成については、以下の記載では簡単のため、PAM制御を用いた構成を例として説明する。
 特性変化検出部43は、図2に示した送電装置1における特性変化検出部16と同様の機能を有し、共振電圧検出部44、基準特性記憶部45、及び共振電圧比較部46によって構成されている。
 送電制御部15が給電回路5等を動作させることにより、電流・電圧モニター部14は、電流、電圧を検出した信号を出力する。共振電圧検出部44は、電流・電圧モニター部14の出力信号に基づき、送電コイル2の共振回路の共振電圧の周波数特性(以下、「共振電圧周波数特性」と記述する)を検出する。共振電圧周波数特性は、送電共振器の伝送特性の一例であり、送電制御部15及び共振電圧比較部46に供給される。
 このように、送電制御部15は、実施の形態1の場合と同様、送電装置41の送電動作全般の制御を行い、共振電圧検出部44からの検出信号等の情報を用いて、送電周波数設定部17及び送電電力設定部18による設定を制御する機能を有する。送電制御部15は、また、共振電圧比較部46の検出出力に応じた制御も行う。送電制御部15にはさらに、受電装置42との通信を行うための送電側応答部47が接続され、受電装置42の状態に関する情報を受け取ることができる。
 本実施の形態においては、基準状態を、受電装置42が非配置状態である無負荷時の状態として定義する。送電コイル2の前方の磁束到達範囲が基準状態にあるときに、共振電圧検出部44によって得られる共振電圧周波数特性が、基準特性として基準特性記憶部45に保存される。すなわち、受電装置42の配置状態を、送電コイル2からの電力伝送に影響する要因として設定する。
 共振電圧比較部46は伝送特性比較部の一例であり、共振電圧検出部44が検出する共振電圧周波数特性を、基準特性記憶部45に保存された基準特性と比較する。この比較に基づき、受電装置42の配置状態を判定するための機能が実現される。共振電圧比較部46は、比較結果を表す信号を生成して送電制御部15に供給する。送電制御部15は、その比較結果に応じた電力伝送動作の制御を行う。制御の具体例については後述する。あるいは、共振電圧比較部46は、共振電圧検出部44が検出する共振電圧周波数特性と、基準特性記憶部45に保存された基準特性とを、表示部23に表示する構成としてもよい。すなわち、共振電圧周波数特性を基準特性と視覚的に比較することにより、受電装置42の配置状態を判定することができる。
 受電装置42の受電コイル4は、図18に示した構成と同様、受電共振コイルとループコイルを有し、受電共振コイルの共振により発生した磁界を介してループコイルに電力を伝搬させる。そのループコイル出力から、受電回路7に設けた検波回路(不図示)により略直流の受電電力を発生させる。受電共振コイルは浮遊容量Cとの組合わせにより共振回路を構成するが、受電共振コイルに共振用容量を接続して共振回路を構成してもよい。その場合、容量の耐電圧を考慮して受電回路7を構成する必要がある(送電側の共振容量についても同様)。
 受電回路7には受電検出部48が接続され、送電コイル2から電力が伝送されて受電電力が発生した状態を検出する。受電側応答部49は、送電側応答部47と通信を行うために設けられ、受電検出部48からの情報を送電側に送信する。受電回路7は出力端子50に電力を出力すると共に、キャパシタ或いは2次電池等で構成された蓄電部51に電力を供給する。
 蓄電部51は、出力端子50からの出力が増大した場合や、受電コイル4への給電電力が減少して受電回路7から出力端子50への電力供給が不足する場合に、電力を供給して出力を安定化させるために設けられる。但し、送電装置41から受電装置42への必要電力の供給制御の応答が十分早い場合は、出力端子50が必要とする電力を瞬時に可変し供給して出力の安定化が可能であるため、蓄電部51を必要としない場合もある。本実施の形態では、受電回路7の負荷の一部として取り扱う。
 送電装置41は、無負荷時の共振電圧周波数特性を、以下のようにして測定するように構成される。すなわち、送電装置41の単独の状態で、送電電力設定部18により送電電力を低めで一定に設定して、給電回路5から送電コイル2に送電する。さらに、送電周波数設定部17により送電電力の周波数を変化(スイープ)させながら、共振電圧検出部44により共振電圧を検出する。これにより、周波数対共振電圧の特性を測定し、これを無負荷時の共振電圧周波数特性として基準特性記憶部45に記憶する。
 上述の測定に際して、送電電力を低めに設定するのは、以下の理由により。つまり、送電コイル2と受電コイル4が結合していない場合は、送電コイル2単体での無負荷Qの共振特性が現れる。その際のQは高い場合が多いので、共振した場合には共振回路の共振電圧が上昇する。これは、送電コイル2の共振回路を送電共振コイルと共振容量で構成した場合、共振回路に供給する高周波電圧の約Q倍の電圧が発生することである。この状態では高周波電圧の大きさによっては共振電圧が共振容量の許容電圧値を超えてしまい、共振容量が破損する可能性がある。
 これを回避するためには、無負荷の場合の共振電圧が素子の破損を回避する範囲に抑制されるように、電力を低減して給電回路5から送り出せばよい。このような送電電力の値は、共振器や高周波ドライバーの構成により変化する。従って、実際の運用にあたっては、予め共振電圧検出部44の出力等により、共振回路電圧が共振回路を構成する素子の耐圧以下であることを確認しつつ、例えば耐圧の1/2程度の共振電圧が発生する供給電圧の値やPWM制御のデューティ値を求める。この値を設定することで、低めの送電電力を設定することができる。
 次に、送電装置41から受電装置42への送電を開始する際の、送電装置41全体の動作の流れに即して説明する。先ず、送電開始にあたり、交流電源6からの電力の供給を受けて、不図示の電源供給部から各部の回路へ電源が供給され、送電装置41の動作が開始される。これにより、送電制御部15は、送電電力設定部18を制御して低めの給電電力を発生させる。同時に、送電周波数設定部17を制御して、送電コイル2に含まれる共振回路の共振周波数を含む周波数領域で周波数をスイープさせる。これに伴い、共振電圧検出部44が出力する検出電圧を測定する。このようにして得られた周波数対共振電圧の特性を、「送電開始前の共振電圧周波数特性」と記述する。
 送電装置41の送電共振コイルから発生した磁界が、受電装置42の受電共振コイルに鎖交するなどにより結合した場合には、結合状態や共振コイル周辺の状況により、共振電圧周波数特性が変化する。変化の例を図12に示す。この変化に応じて、上記構成の非接触電力伝送装置が給電開始の制御を選択する態様について、以下に説明する。
 図12において、横軸は送電周波数設定部17で設定した送電電力の周波数、縦軸は共振電圧検出部44で検出した共振電圧を示す。周波数f0は、送電コイル2に内蔵されている共振回路、及び受電コイル4に内蔵されている共振回路の共振周波数である。共振電圧周波数特性は、送電コイル2と受電コイル4との位置関係や、周辺における金属の有無により変化する。図12の曲線a~eが示す周波数特性は、それぞれの位置関係等の状態に対応する。位置関係等の状態と各曲線a~eとの対応について、それらの状態が検出された場合の制御方法も含めて説明する。
 [曲線a:受電装置42や金属が近くにない状態]
 曲線aは、共振回路に負荷が接続されていない場合の特性、すなわち無負荷Qが示す周波数特性を示す。f0付近で急峻なピークを有する。この特性を無負荷時の共振電圧周波数特性として基準特性記憶部45に記憶する。この特性が出現した場合、受電装置42が存在しない可能性があるので、周波数f0かつ小電力で送電を行う。それに応じて、受電検出部48が電力を受電していることを検出し、受電側応答部49から送電側応答部47への応答が発生したときに、初めて送電電力を増大させる。応答が無い場合は、受電装置42が存在しないものと判断し、送電を停止する。
 [曲線b:送電コイル2と受電コイル4の距離が近付き結合が強くなった状態]
 曲線bは、ピークが2つ出現する双峰特性の共振電圧周波数特性を示す。この特性が出現した場合、受電装置42が存在し、且つ、受電可能な距離にあることを示している。従って、周波数を双峰特性のいずれかのピークの周波数に設定した後、送電電力を上昇させて給電を開始する。
 [曲線c:送電コイル2と受電コイル4の距離が更に近付き結合が強くなった状態]
 曲線cは、双峰特性のピーク周波数が曲線bの場合に比べて更に離れた共振電圧周波数特性を示す。この特性が出現した場合、受電装置42が存在し、曲線bの場合に比べてより近くに配置されていて受電可能な距離にあることを示している。この場合も、周波数を双峰特性のピークの周波数に設定した後、送電電力を上昇させて給電を開始する。
 [曲線d:送電コイル2と受電コイル4の距離が遠いがコイル間の結合が存在する状態]
 曲線dは、相手が存在しない無負荷Qの場合のピークよりも、ピーク電圧が低下することにより判別できる共振電圧周波数特性を示す。この場合、送電が可能な場合が多いので、周波数f0かつ小電力で送電を行う。それに応じて、受電検出部48が電力を受電していることを検出し、更に受電側応答部49から送電側応答部47への応答が発生したときに、初めて送電電力を上昇させる。応答が無い場合は受電装置42が無いと判断し、送電を停止する。
 [曲線e:単峰特性でピーク周波数がf0と異なる状態]
 曲線eは、送電コイル2の近辺に金属が存在する場合を示す。金属での渦電流損失により共振回路のQ値が低下するので、曲線aの特性の場合よりもピークが低下する。更に、周辺の透磁率が金属の存在により高くなるので、共振回路の共振コイルのインダクタンスが上昇して、ピーク周波数が低下する。このような場合に送電を行うと、金属の渦電流損失により発熱する可能性があるので、送電を停止する。
 以上のように、共振電圧周波数特性を送電開始前に測定することにより、「送電開始前の共振電圧周波数特性」に基づいて、送電が可能か否か、すなわち、非接触電力伝送に対する適合度を容易に判定できる。これにより、壁を挟んで相手側の視認等が不可能な場合でも、適切に送電を開始できる。
 更に、曲線a、d、eの周波数特性が現れた場合には送電を禁止する設定にすれば、受電装置42からの応答が無い場合でも、送電を安全に開始できる。
 ただし、出力端子50に負荷が接続されていない場合や、蓄電部51に十分蓄電された場合は、それ以上の給電が不必要である。従って、受電回路7によりその状態を検出して、受電側応答部49により送電側応答部47に対して送電不要であることを通知する。これを検出した送電制御部15により送電電力を遮断、或いは、低下させることにより、電力伝送を安全に且つ効率よく実施できる。
 以上のように、本実施の形態によれば、共振電圧周波数特性を参照しつつ送電開始等の判定を行う。これにより、壁を挟んだ送電のような送電コイル2と受電コイル4の相互配置の視認が出来ない場合でも、安全に非接触電力伝送を行うことが可能である。
 <実施の形態4>
 図13は、実施の形態4における磁界共鳴型の非接触電力伝送装置を構成する受電装置52を示すブロック図である。なお、図13において、図11や図18に示した構成と同様の要素については、同一の参照番号を付して、説明の繰り返しを省略する。
 実施の形態3では、電力伝送に不適当な状態の時には送電の停止や送電電力の低減を行うことで、電力伝送の安全性を確保する構成を示した。これに対して、本実施の形態は、蓄電部51の保護手段や、受電回路7の保護手段等を設けることにより、電力伝送中の安全と伝送効率をより向上させた構成を特徴とする。従って、本実施の形態は受電装置52の構成に特徴があるので、受電装置52の構成のみを示す図13を参照して説明する。
 送電装置から伝送され受電コイル4で受けた電力は、受電回路7で検波し直流電力に変換する。受電回路7に接続された過電圧制限部53は、受電コイル4からの電力を受電した際に過大な電圧が受電回路7に印加されないように制限する。具体例としては、受電回路7に対しSW用のFETを介して負荷抵抗を接続して、検波電力を消費させる構成とする。それにより、受電回路7の破損が生じるような高い電圧となる場合には、余分の受電電力を、負荷抵抗やSW用のFETのオン抵抗などにより消費させる。すなわち、検波電圧検出部(不図示)により一定電圧以上となったことを検出した場合は、FETを介して負荷抵抗に通電することにより、それ以上の昇圧を防止する。
 この過電圧制限部53のFETの制御には、例えば、ツェナーダイオードを用いた簡便な構成を採用できる。すなわち、ツェナーダイオードと抵抗を直列接続して、検波した電圧を印加し、抵抗の両端の電圧をFETのゲートに印加する。検波した電圧が一定電圧となりダイオードが通電を開始すると、抵抗に電圧が発生するので、この電圧によりFETをオンさせる。
 この構成では、FETのゲート電圧が上昇してFETが導通を開始するが、余剰電力以上に通電電流が流れるとFETのゲート電圧が低下する。このため、余剰電力を消費する程度の状態で、FETのオンとオフの中間の動作点で、FETを動作させることになる。これにより、FET自体も負荷抵抗と同じようなオーダーの抵抗として動作する。従って、負荷抵抗とFETの抵抗で電力を消費し、FET自体も発熱することになる。これを回避するためには、FETをオンとオフのいずれかの状態でのみ動作させ、負荷抵抗で大部分の余剰電力を消費させる構成とする必要がある。これには、FETの駆動パルスを生成し、PWM制御で負荷抵抗に余剰電力を消費させる回路構成が適している。
 受電回路7にはさらに、受電電圧設定部54が接続され、伝送効率を向上させるために受電コイル4からの出力電圧を一定に保つ制御を行う。受電電圧設定部54の動作は、受電制御部55により制御されて、最適な受電電圧に調整する。
 非接触電力伝送装置において伝送効率を上昇させるためには、送電コイル2と受電コイル4間を伝送路として見た場合、送電側の出力インピーダンスと受電側の入力インピーダンスを整合させる必要がある。高周波電力をFETによるスイッチングで発生させる場合、FETのオン抵抗が出力インピーダンスに相当するが、受電側も同様に一定の入力インピーダンスと見なせるように構成する必要がある。
 すなわち、受電側も整合した一定の抵抗と見なせるように回路を構成すると、インピーダンスマッチングがとれて効率が向上する。一般に、商用の交流電源から直流出力等を生成する場合、入力である交流電源側の力率を改善し、一定の抵抗と見なせるように回路を構成する、PFC回路(力率制御回路)が一般に使用されている。この場合、商用電源の周波数である50Hzとか60Hzの周波数の10倍以上の周波数でFET等のSW素子をスイッチングさせ、電力の変換を行っている。
 この手法を適用し、抵抗と見なせるように受電回路7を構成する場合、元々、100kHzのような高周波電力を非接触給電で伝送させるので、10MHz以上の周波数でSW素子をオンオフ制御させる必要がある。しかし、現状では10MHz以上の駆動周波数でSW素子を効率よく制御し、PFC回路を構成することは非常に困難であり、次善の策を取らざるを得ない。
 そこで、伝送される高周波の電力をダイオードブリッジ等による検波回路で整流し直流電力に変換する際に、検波した出力電圧を一定に保ちつつ受電する構成とする。これにより、一定の電力が伝送される場合には一定の電圧と電流が受電側に現れ、一定のインピーダンスが接続された状態と見なせるように構成すれば、インピーダンスマッチングに準じた伝送系を構築できることになる。従って、このような回路構成を利用して、送電電力に応じて検波電圧を最適に変更することにより、伝送効率の向上を図ることが可能となる。
 詳細は後述するが、このような構成例として、インダクタを用いて降圧型DC-DCコンバータを構成し、検波電圧が一定値以上とならないようにインダクタを介して検波電力を蓄電部に伝送する構成を採用できる。これにより、受電側では検波電圧を一定に保ちつつ、蓄電部側では一定電流が流入するようになるので、伝送電力等に応じて蓄電部51への定電流充電を実施できる。
 このような構成で、検波電圧を調整することにより伝送回路の整合を取れば、伝送効率の向上と共に、蓄電部の充電を適切に行うことが出来る。
 但し、蓄電部51が満充電となって、DC-DCコンバータにそれ以上の電流を流す必要が無くなった場合、受電コイル4の検波出力から電力が流出しなくなるので、検波電圧が上昇する。このような場合、DC-DCコンバータの定格入力電圧を超えてしまうことにより、回路が破損する恐れがある。そこで、上述の過電圧制限部53による余分の電力消費が機能して電圧の上昇を抑えることにより、回路の保護が可能となる。
 通常は、この保護機能の動作中に、図11に示した受電側応答部49から送電側応答部47への通信により、送電電力を低下、或いは停止させて、より安全な電力伝送が実現できるように構成する。
 以上のような受電電力が過大な場合とは逆の場合、すなわち、受電コイル4を介して伝送される電力が低下、或いは中断した場合について、以下に説明する。この場合、受電回路が降圧型のDC-DCコンバータで構成されていることに起因する問題が発生する。通常、降圧型DC-DCコンバータは電圧の高い入力側から電圧の低い出力側に電力を伝送するように構成されている。このため、入力側が低い電圧となると、蓄電部51からの電力が受電回路7のDC-DCコンバータを逆流する。このような場合、蓄電部51から大電力が流入し、回路の焼損等の危険がある。この保護を行うため、逆流防止用のダイオード等から構成される保護回路56を、受電回路7と蓄電部51の間に挿入する。
 なお、ダイオードで逆流防止を行う場合、順方向の電圧降下により電力のロスが発生する。そのため、電流が順方向に流れていることを検出した場合、ダイオードを短絡して効率の低下を防ぐ短絡制御部57を設けることが望ましい。
 <実施の形態5>
 実施の形態3に示したように、共振電圧の周波数特性を測定し、給電開始の制御に用いる場合、共振電圧自体がkVオーダーの電圧となる事態に対処する必要がある。本実施の形態は、そのような条件に適した、共振電圧周波数特性を検出するための簡単な構成を提供するものである。
 図11の構成においては、送電コイル2の共振回路部分の共振電圧を共振電圧検出部44で検出し、送電制御部15に伝達する。本実施の形態に基づくこの部分の具体的な構成について、図14A、図14Bを参照して説明する。図14Aは、給電回路5を構成する出力回路5aを示す。出力回路5aは、所謂、フルブリッジ回路によるスイッチングによって高周波電力を生成する構成である。図14Bは、両波検波方式で構成された共振電圧検出部44の例を示し、kVオーダーの高周波電圧をマイコン等で扱える直流電圧に変換する。
 図14Aに示した出力回路5aでは、電源58から供給される電圧を、模式的に示したFET等で構成されたスイッチ(SW)59a~59dによりスイッチングして、負荷60に流れる電流の向きを切換える。SW59a~59dは、不図示の制御回路からの駆動出力によりオン、オフが制御される。SW59aとSW59dがオンした場合は負荷60に矢印方向の電流が流れ、SW59bとSW59cがオンした場合は逆方向に流れる。このスイッチングの繰り返しにより高周波電力が生成される。また、電源58の電圧を可変とすることにより、出力電力を調整するPAM制御を行う。電源58の電圧の設定は、図11に示した送電電力設定部18により行われる。
 図14Bに示すように、図14Aに示した出力回路5a(61はグランド)に対して、送電コイル2の共振回路を構成する共振用コイル62及び共振用コンデンサ63が接続される。これにより、出力回路5aからの出力に対する直列共振回路が構成される。共振した場合には、接続部64に高い共振電圧が発生する。なお、図18の送電コイル2と異なり、コイルとコンデンサを直列に接続して電力を供給する直列共振回路で送電コイルを構成する例を示したのは、共振作用を有し且つ共振電圧の検出が容易に行えるようにするためである。
 図18の例では、送電共振コイル2bが送電回路モジュール側と電気的に分離されているので、送電回路モジュール10側で共振電圧を検出する為には、電気的な接続を新たに別系統で設定する必要がある。これに対して、直列共振回路で構成する場合は、出力回路5aと共振回路は元々電気的に接続されている為、共振電圧を検出し、それを制御部に伝達する回路を構築することが容易となる。
 接続部64には、メグオームレベルの高抵抗65を介して、共振電圧検出部44における検波用ダイオード66a、66bが接続されている。検波用ダイオード66a、66bには、検波電圧を蓄積するコンデンサ67a、67b、分圧用抵抗68a、68bが接続されている。抵抗68aと抵抗68bの接続点に、バイアス電圧源69が接続され(70はグランド)ている。接続部64が+側の電圧の場合、ほぼ高抵抗65と抵抗68aの分圧比で分圧された電圧がコンデンサ67aに蓄積され、-側の電圧の場合は同様に、コンデンサ67bに蓄積されて、両波検波となる。両波検波された電圧は、抵抗71a、71b、72a、72bを介してオペアンプ73に入力されて増幅され、出力端子74に共振電圧検出部44の検出出力として出力される。オペアンプ73にもバイアス電圧源69が接続されている。
 図14Bには、両波検波の共振電圧検出部44の構成例を示したが、片側のみの検波で共振電圧を検出してもよい。その例を、図15Aに共振電圧検出部44aとして示す。同図において、図11、図14A、図14Bと同一の参照番号を付した構成要素は、同一の構成及び作用を有するものであり、説明の繰り返しを省略する。この片側検波の構成は、図14Bに示した両波検波回路の一部を取り出した構成に相当するので、詳細な説明は省くが、グランド70と出力端子74の間に検出電圧が発生する。
 また、送電コイル2を含む一部の要素を、送電装置41の他の要素と分離して、コネクタ付のケーブルで相互に接続した構成とすることにより、更に利便性が向上する。そのような構成の例を、図15Bに、ケーブル延長送電装置77として示す。図15Aに示す端子75a、75b、76a、76bは、図15Bの構成に用いるコネクタ接続構造との対応を判り易くするために示したものである。この送電装置77では、送電コイル2と共振電圧検出部44aを組合せた送電コイルモジュール78が、残りの他の部分である送電装置本体部79から切り離されて、ケーブル80により接続される。
 送電コイルモジュール78の中には、共振用コイル62と共振用コンデンサ63で構成される共振回路と、共振電圧検出部44aを設ける。共振回路に接続されるケーブル80は、シールド81を設けた構造とすれば、外部への妨害を軽減できる。また検出電圧を導くケーブル80も同時に被覆82内に収容して1本のケーブルとし、送電装置本体部79と送電コイルモジュール78を、コネクタ83a、83bを介して簡便に接続可能なように構成すれば、ケーブル類を纏めることができる。
 送電コイルモジュール78は、内蔵される回路部分が僅かであるため、薄い構造になる。これにより、壁越しに電力伝送を行う際に、コイルの設置場所の自由度が増大し、使い勝手の優れた送電装置となる。
 上述の送電装置44と同様、受電装置も、ケーブルを用いて分離し延長した構造とすることができる。図16にその構成例を、ケーブル延長受電装置84として示す。この受電装置84では、受電コイルモジュール85が、受電装置本体部86から切り離されて、ケーブル87で接続される。
 受電コイルモジュール85は、受電共振コイル4bと共振用コンデンサ88で構成される共振回路と、ループコイル4aと、検波回路89を含む。受電装置本体部86は、受電装置84における受電コイルモジュール85の残りの部分を含む。検波回路89は、図に回路記号で示すように、ダイオードブリッジと平滑コンデンサで構成され、受電した電力を直流電力に変換し、ケーブル87を介して受電装置本体部86に供給する。
 受電装置本体部86に含まれる受電電圧調整部90は、図13に示した受電回路7の一部及び受電電圧設定部54の機能を含み、検波回路89の出力である受電電圧を一定に保ちつつ、蓄電部51に充電するとともに出力端子50に電力を出力する。受電コイルモジュール85の検波回路89に接続された2本の電力線は、ケーブル87、及びコネクタ91a、91bを介して、受電装置本体部86に接続される。ケーブル87は、被覆92で覆われている。
 受電コイルモジュール85は、内蔵される回路部分が僅かであるため、薄型に形状を設定可能である。それにより、壁越し等での設置場所の自由度が向上し、使い勝手のよい受電装置を構築できる。
 なお、送電コイルモジュール78や受電コイルモジュール85に収納されている共振コイルは、送受電間の間隔が広くなるほどコイル径を大きくする必要がある。そのため、壁の厚さに応じて、送電コイルモジュール78や受電コイルモジュール85を複数種類用意し、上述のようにコネクタを介して送電装置本体部79及び受電装置本体部86と接続する構成として、取り換えて使用可能とすることが望ましい。これにより、種々の種類の壁に直ちに対応でき、設置工事等での利便性が向上する。それぞれの共振回路の周波数を合わせておけば、特に調整する必要は無く、使い勝手も良好となる。
 <実施の形態6>
 図16の構成における受電電圧調整部90について、図17を参照して、具体的な構成及び動作を説明する。同図において図15、図16と同一番号の構成要素は、同一の構成及び作用を有するものであり、説明の繰り返しを省略する。
 この受電電圧調整部90には、図16に示したループコイル4aに現われる電圧を検波回路89で検波した受電電力が、コネクタ91bを経由して伝達される。この回路では、SW回路93、インダクタ94、PWM制御回路95、及びフライホイールダイオード97により、降圧型のDC-DCコンバータ回路が構成される。PWM制御回路95には、PWM制御を行うための制御信号が制御入力部96を介して入力される。
 抵抗98及び99は、検波回路89からの入力電圧を分圧するために設けられる。抵抗98、99により分圧した電圧は、アンプ100の-側入力端子に入力される。アンプ100の+側入力端子には、第1基準電圧源101の電圧が入力される。アンプ100の出力は、信号加算用のダイオード102、及び信号加算用の抵抗103を介して制御入力部96に入力される。
 インダクタ94からの出力は、ダイオード104を介して出力端子50及び蓄電部51に供給される。ダイオード104は、図13の構成における保護回路56と同様、逆流防止用に設けられる。ダイオード104の出力側にはまた、抵抗105及び106が接続されており、蓄電部51の電圧を分圧する。抵抗105、106により分圧した電圧は、アンプ107の+側入力端子に入力される。アンプ107の-側入力端子には、第2基準電圧源108の電圧が入力される。アンプ107の出力は、信号加算用のダイオード109を介して制御入力部96に入力される。
 PWM制御回路95のスイッチング制御信号により、SW回路93のオンオフ制御が行われる。オンの状態では、インダクタ94を経由して蓄電部51に電流が流れ、インダクタ94に磁界のエネルギーを蓄積する。オフの状態では、グランドとフライホイールダイオード97を経由して、インダクタ94に溜まった磁界のエネルギーを放出するように電流が蓄電部51に流れる。この動作に基づき、SW回路93のオンオフ制御により、コネクタ91bの端子側の高電圧の電力を、蓄電部51側の低電圧の電力に変換するDC-DC変換動作を行う。
 通常、PWM制御回路95はIC化されており、定電圧制御のDC-DC変換動作の場合、出力電圧を抵抗分割して印加した制御入力部96の電圧に応じてSW回路93を制御する。すなわち、制御入力部96の電圧が、不図示のIC内部の基準電圧より低い場合、即ち出力電圧が低下した場合には、SW回路93のオンオフ制御を実施する。これにより、インダクタ94を介して出力に電力が供給され、出力電圧を上昇させる。逆に、低い場合には、オンオフ制御を停止し出力電圧の上昇を阻止することにより、出力電圧を一定に保つように制御する。
 以上のように、制御入力部96の電圧によりDC-DC変換動作の実行、停止が行われる。この制御信号の生成方法を変更することにより、入力電圧を一定に保つような制御を行ったり、蓄電部に十分蓄電された場合に充電を停止する定電圧充電制御を行ったりする構成が得られる。
 これについて、図17におけるDC-DCコンバータ回路以外の構成要素も含めた回路の動作に基づいて説明する。先ず、蓄電部51の電圧が満充電の電圧より低い場合は、抵抗105と抵抗106の分圧電圧は第2基準電圧源108の電圧よりも低い。そのため、アンプ107の出力はLowとなり、ダイオード109は逆極性となる。従って、制御入力部96の電圧は低下せず、PWM制御回路95へのアンプ107からの制御は行われない。
 次に、コネクタ91bの端子側の電圧が上昇し、抵抗98と抵抗99の分圧電圧が、第1基準電圧源101の電圧をオーバーすると、アンプ100の出力が低下する。これが、ダイオード102、抵抗103を経由して制御入力部96に入力され、制御入力部96が低電圧となる。これにより、PWM制御回路95は、SW回路93のオンオフ制御を開始し、DC-DC変換動作を行う。このため、コネクタ91bの端子側から蓄電部51に電力が流れるようになり、検波回路89の出力電圧は低下する。この動作が継続すると分圧電圧は更に低下し、遂に電圧が第1基準電圧源101の電圧を下回るとアンプ100の出力は上昇するので、DC-DC変換動作が停止する。このような制御を繰り返すことにより、検波回路89の出力電圧が一定に保たれる。
 このような構成で、第1基準電圧源101の電圧を可変にすると、それに応じて検波電圧が変化する。図13に示した受電電圧設定部54において、この基準電源101をマイコンのDA出力端子、或いはPWM出力による電圧設定手段とすることにより、受電電圧の任意の設定が可能となる。
 一方、このようなDC-DC変換動作を行うと、検波回路89の受電電力に応じた電流が蓄電部51に流入し、受電電力が一定であれば、ある程度一定の電流で充電する定電流充電(CC充電)が行われることになる。これにより蓄電部51の電圧が上昇し、抵抗105と抵抗106の分圧電圧が第2基準電圧源108の電圧より高くなると、分圧電圧はアンプ107の+側入力端子に供給されているので、アンプ107の出力は上昇する。そのため、信号加算用のダイオード109を経由して制御入力部96の電圧が上昇し、DC-DC変換動作が抑制されることになる。この結果、一定電圧以上の充電を停止する定電圧充電(CV充電)動作が実行される。
 なお、ダイオード109に信号加算用抵抗103と同様の抵抗を直列に接続すれば、定電流充電から定電圧充電への切り替え特性を調整できる。
 また、蓄電部51が満充電となった場合、DC-DC変換動作が停止するので、検波回路89からの電力の流出がなくなり、電圧が上昇する。その場合は、前述したように過電圧制限部53で制限するか、あるいは受電側応答部49により、送電側応答部47へ送電停止信号等を送り、満充電とならないように充電を停止する等の動作を行う。これにより、出力が安定で、安全な非接触電力伝送装置を構成できる。
 なお、送電側応答部47及び受電側応答部49には、負荷通信方式や、ZigBee等の別の周波数を使った周知の通信方法を用いることができる。
 本発明の非接触電力伝送装置は、簡単な構成の送電装置により、送電装置と受電装置の最適配置を容易に決定可能であり、空調機器や電気自動車などに対する非接触電力伝送に好適である。
1、41、77 送電装置
2 送電コイル
2a、4a ループコイル
2b 送電共振コイル
3、42、52、84 受電装置
4 受電コイル
4b 受電共振コイル
5 給電回路
5a 出力回路
6 交流電源
7 受電回路
8、60 負荷
9 壁
10 送電回路モジュール
11 受電回路モジュール
12 内壁面
13 外壁面
14 電流・電圧モニター部
15 送電制御部
16、43 特性変化検出部
17 送電周波数設定部
18 送電電力設定部
19 共振周波数調整部
20 共振周波数検出部
21、45 基準特性記憶部
22 共振周波数比較部
23 表示部
24 金属
25 LCメータ
26 VNA
27、28、30、34 鉄筋
29、31、32、33 交差部
44、44a 共振電圧検出部
46 共振電圧比較部
47 送電側応答部
48 受電検出部
49 受電側応答部
50、74 出力端子
51 蓄電部
53 過電圧制限部
54 受電電圧設定部
55 受電制御部
56 保護回路
57 短絡制御部
58 電源
59a~59d スイッチ(SW)
61、70 グランド
62 共振用コイル
63、88 共振用コンデンサ
64 接続部
65、68a、68b、71a、71b、72a、72b、98、99、103、105、106 抵抗
66a、66b、102、104、109 ダイオード
67a、67b コンデンサ
69 バイアス電圧源
73、100、107 オペアンプ
75a、75b、76a、76b 端子
78 送電コイルモジュール
79 送電装置本体部
80、87 ケーブル
81 シールド
82、92 被覆
83a、83b、91a、91b コネクタ
85 受電コイルモジュール
86 受電装置本体部
89 検波回路
90 受電電圧調整部
93 SW回路
94 インダクタ
95 PWM制御回路
96 制御入力部
97 フライホイールダイオード
101 第1基準電圧源
108 第2基準電圧源

Claims (27)

  1.  送電コイル及び共振容量により構成された送電共振器を有する送電装置と、受電コイル及び共振容量により構成された受電共振器を有する受電装置とを備え、前記送電コイルと前記受電コイル間の作用を介して前記送電装置から前記受電装置へ電力を伝送する非接触電力伝送装置において、
     前記送電装置は、
     前記送電共振器に供給する高周波電力の大きさ及び周波数の設定を制御する送電制御部と、
     前記送電制御部が制御する高周波電力に対する応答に基づき、前記送電共振器の共振周波数に対応した因子に関わる伝送特性を検出する伝送特性検出部と、
     前記送電コイル前方の磁束到達範囲が基準状態にあるときの前記伝送特性を基準特性として記憶する基準特性記憶部と、
     前記伝送特性検出部が検出する前記伝送特性を前記基準特性と比較する伝送特性比較部とを備え、
     前記伝送特性比較部による比較に基づき、前記送電コイルからの電力伝送に影響する要因の状態を判定するための機能を有することを特徴とする非接触電力伝送装置。
  2.  前記伝送特性として、前記送電共振器の共振周波数、前記送電コイルのインダクタンス、または、前記送電コイルの共振電圧を用いる請求項1に記載の非接触電力伝送装置。
  3.  前記基準特性記憶部は、前記送電コイル前方の磁束到達範囲に介在物が存在しない開放時の前記伝送特性を前記基準特性として記憶し、
     前記伝送特性比較部は、前記送電コイル前方の磁束到達範囲における介在物の存在の有無に応じた前記伝送特性の変化を検出し、
     前記伝送特性比較部による検出結果に基づき、前記介在物内に存在する障害要因による電力伝送に対する影響の程度を検出する請求項1または2に記載の非接触電力伝送装置。
  4.  前記送電装置は、前記送電共振器の共振周波数を可変とする共振周波数調整部を備え、
     前記伝送特性検出部は、前記送電共振器の共振周波数を検出するように構成され、
     前記送電制御部は、前記介在物を介して電力伝送を行う際に、前記送電装置を前記介在物の面に固定した時に前記送電共振器の共振周波数が所定の値から変化した場合には、前記送電装置を介在物に取り付ける前の共振周波数に戻すように前記共振周波数調整部を制御する請求項3に記載の非接触電力伝送装置。
  5.  前記伝送特性検出部は、前記伝送特性として前記送電共振器の共振電圧周波数特性を検出し、
     前記基準特性記憶部は、前記受電装置の非配置状態で測定された無負荷時の前記共振電圧周波数特性を前記基準特性として記憶し、
     電力伝送の開始時に、前記送電制御部は、前記伝送特性検出部により前記共振電圧周波数特性を検出させ、前記伝送特性比較部により前記基準特性と比較させて、その比較結果に応じた電力伝送動作の制御を行う請求項1または2に記載の非接触電力伝送装置。
  6.  前記送電制御部は、前記送電開始前の共振電圧周波数特性が、(a)前記無負荷時の共振電圧周波数特性に相当する場合、(b)前記無負荷時の共振電圧周波数特性のピーク周波数f0と同様の周波数であってより低い電圧のピークを有する場合、または(c)単峰特性で前記ピーク周波数f0と異なる周波数にピークを有する場合は、送電を停止する制御を行う請求項5に記載の非接触電力伝送装置。
  7.  前記送電制御部は、前記送電開始前の共振電圧周波数特性が双峰特性を示した場合は、前記高周波電力の周波数を双峰特性のピークの一方に設定して送電を開始するように制御する請求項5に記載の非接触電力伝送装置。
  8.  前記送電装置と前記受電装置は、相互に情報通信を行うための送電側応答部及び受電側応答部を各々備え、
     前記送電制御部は、前記送電開始前の共振電圧周波数特性が、前記無負荷時の共振電圧周波数特性のピーク周波数f0と同等の周波数であって、より低い電圧のピークを有する場合に、前記周波数f0で小電力の送電を行い、前記小電力の送電に応じて、前記受電装置から受電中であることを示す応答を受信した場合は送電電力を増大させて通常の電力で送電を継続し、応答が無い場合は送電を停止するように制御する請求項5に記載の非接触電力伝送装置。
  9.  前記送電制御部は、前記伝送特性を検出する際は、前記高周波電力を、通常の電力伝送中に設定する前記高周波電力よりも小さく設定するように制御する請求項1~8のいずれか1項に記載の非接触電力伝送装置。
  10.  前記送電制御部は、前記伝送特性を検出するときに、前記高周波電力を一定の大きさに設定し、かつ周波数をスイープさせながら前記送電共振器に供給するように制御する請求項1~9のいずれか1項に記載の非接触電力伝送装置。
  11.  前記受電装置の受電回路モジュールは、伝送される高周波の電力を整流し直流電力に変換する検波回路と、検波した出力電圧を一定に保つ制御を行う受電電圧調整部と、蓄電部とを備え、
     前記受電電圧調整部は、降圧型のDC-DCコンバータを備え、前記検波回路の検波電圧が設定値以上とならないように、前記DC-DCコンバータにより前記蓄電部に検波電力を伝送する制御を行う請求項1~10のいずれか1項に記載の非接触電力伝送装置。
  12.  前記受電回路モジュールは、前記蓄電部の充電電圧を検出し、検出された前記充電電圧が設定値を超えたときに、前記DC-DCコンバータの変換動作を抑制するように構成された請求項11に記載の非接触電力伝送装置。
  13.  前記受電装置は、受電電力を負荷に流して消費する過電圧制限部を備え、
     前記過電圧制限部は、前記検波回路の検波電圧が前記設定値を超えたときに動作して、余分の受電電力を負荷に流して消費する請求項11に記載の非接触電力伝送装置。
  14.  前記DC-DCコンバータは、前記蓄電部が満充電となったときに、変換動作を停止するように構成された請求項13に記載の非接触電力伝送装置。
  15.  前記DC-DCコンバータと前記蓄電部の間に、前記蓄電部から前記DC-DCコンバータへの電力の逆流を防止する保護部が挿入された請求項11に記載の非接触電力伝送装置。
  16.  前記保護部を流れる電流が順方向であるか否かを検出し、順方向であることを検出した場合に、前記保護部を短絡させる短絡制御部を備えた請求項15に記載の非接触電力伝送装置。
  17.  送電コイル及び共振容量により構成された送電共振器を有する送電装置と、受電コイル及び共振容量により構成された受電共振器を有する受電装置とを用い、前記送電コイルと前記受電コイル間の作用を介して前記送電装置から前記受電装置へ電力を伝送する非接触電力伝送方法において、
     所定の大きさ及び所定周波数に設定した高周波電力を前記送電共振器に供給し、前記送電共振器の応答に基づいて、前記送電共振器の共振周波数に対応した因子に関わる伝送特性を検出する伝送特性検出ステップと、
     前記送電コイル前方の磁束到達範囲が基準状態にある状態で前記伝送特性検出ステップによって測定された前記伝送特性を基準特性として記憶する基準特性記憶ステップと、
     前記伝送特性検出ステップによって検出される前記伝送特性を、記憶されている前記基準特性と比較する伝送特性比較ステップと、
     前記伝送特性比較ステップによる比較に基づき、前記送電コイルからの電力伝送に影響する要因の状態を判定する状態判定ステップとを備えたことを特徴とする非接触電力伝送方法。
  18.  基準特性記憶ステップでは、前記送電コイル前方の磁束到達範囲に介在物が存在しない開放時の前記伝送特性を前記基準特性として記憶し、
     前記状態判定ステップでは、前記電力伝送に影響する要因の状態として、前記介在物内に存在する障害要因による電力伝送に対する影響の程度を検出し、
     非接触電力伝送を行う前に、前記送電装置のみを用いて前記状態判定ステップを行う請求項17に記載の非接触電力伝送方法。
  19.  前記介在物を介して電力伝送を行う際に、前記送電装置のみを前記介在物の一方の側に配置し、前記介在物の他方の側には前記受電装置が配置されていない状態で、前記送電装置のみを用いて前記障害要因による電力伝送に対する影響の程度を検出する請求項18に記載の非接触電力伝送方法。
  20.  前記状態判定ステップによる検出結果に基づき、前記送電装置を当該影響の最小の位置に配置し、前記送電装置の位置に対向させて前記受電装置を配置することにより、前記送電コイルと前記受電コイル間の電力伝送効率が最大となるように前記送電装置と前記受電装置の位置を調整する請求項19に記載の非接触電力伝送方法。
  21.  前記介在物中に前記障害要因として金属がメッシュ状に配置され、かつ前記金属同士の交差部分が導通状態である場合に、前記金属のメッシュ間隔W、前記送電コイルの直径Dが、D/W≦1の関係を満足するように設定する請求項19に記載の非接触電力伝送方法。
  22.  前記介在物中に前記障害要因として表面を絶縁処理した金属がメッシュ状に配置された場合に、前記金属のメッシュ間隔W、前記送電コイルの直径Dが、D/W≦2の関係を満足するように設定する請求項19に記載の非接触電力伝送方法。
  23.  前記絶縁処理した金属が前記メッシュ状の一方向のみに配置された前記介在物を介して電力伝送を行う請求項22に記載の非接触電力伝送方法。
  24.  前記絶縁処理した金属が前記メッシュ状の一方向のみに、かつ1本置きに配置された前記介在物を介して電力伝送を行う請求項23に記載の非接触電力伝送方法。
  25.  前記金属同士の交差部分のみが絶縁処理された前記介在物を介して電力伝送を行う請求項22に記載の非接触電力伝送方法。
  26.  前記伝送特性検出ステップでは、前記送電コイル両端の電圧を検出し、その検出出力に基づいて前記伝送特性として前記送電共振器の共振電圧周波数特性を検出し、
     基準特性記憶ステップでは、前記受電装置が配置されていない状態で前記伝送特性検出ステップによって検出された無負荷時の共振電圧周波数特性を前記基準特性として記憶し、
     非接触電力伝送を行う前に、前記伝送特性検出ステップにより送電開始前の前記共振電圧周波数特性を検出して、前記状態判定ステップによる判定結果に応じた電力伝送動作の制御を行う請求項17に記載の非接触電力伝送方法。
  27.  電力伝送に際して、先ず小電力で送電を行いながら前記伝送特性検出ステップを実行して、前記送電開始前の共振電圧周波数特性を測定し、
     前記送電開始前の共振電圧周波数特性が双峰特性の場合、そのピーク周波数に合わせた周波数の高周波電力を送電し、
     前記送電開始前の共振電圧周波数特性が単峰特性で、そのピーク周波数が記憶した前記無負荷時の共振電圧周波数特性のピーク周波数f0と同等の場合は、前記小電力で送電を継続して前記受電装置からの応答を待ち、応答が無い場合は送電を停止し、
     前記送電開始前の共振電圧周波数特性が単峰特性で、そのピーク周波数が前記無負荷時の共振電圧周波数特性のピーク周波数f0とは異なる場合は送電を停止する請求項26に記載の非接触電力伝送方法。
PCT/JP2014/050812 2013-01-31 2014-01-17 非接触電力伝送装置及び非接触電力伝送方法 WO2014119389A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-016975 2013-01-31
JP2013016975A JP6172956B2 (ja) 2013-01-31 2013-01-31 非接触電力伝送装置及び非接触電力伝送方法
JP2013-046544 2013-03-08
JP2013046544A JP6420025B2 (ja) 2013-03-08 2013-03-08 非接触電力伝送装置及び非接触電力伝送方法

Publications (1)

Publication Number Publication Date
WO2014119389A1 true WO2014119389A1 (ja) 2014-08-07

Family

ID=51262103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050812 WO2014119389A1 (ja) 2013-01-31 2014-01-17 非接触電力伝送装置及び非接触電力伝送方法

Country Status (1)

Country Link
WO (1) WO2014119389A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016119100A1 (en) * 2015-01-26 2016-08-04 The University Of Hong Kong Systems and methods for load position detection and power control of omni-directional wireless power transfer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03165013A (ja) * 1989-11-24 1991-07-17 Mitsubishi Electric Corp 壁越し電源供給装置
JPH0880042A (ja) * 1994-06-27 1996-03-22 Matsushita Electric Works Ltd 電源装置
JP2000134830A (ja) * 1998-10-28 2000-05-12 Mitsuoka Electric Mfg Co Ltd 電磁誘導電源装置
JP2011507481A (ja) * 2007-12-21 2011-03-03 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー 誘導電力転送
JP2013017379A (ja) * 2011-07-05 2013-01-24 Sony Corp 受電装置、送電装置、非接触電力伝送システム及び検知方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03165013A (ja) * 1989-11-24 1991-07-17 Mitsubishi Electric Corp 壁越し電源供給装置
JPH0880042A (ja) * 1994-06-27 1996-03-22 Matsushita Electric Works Ltd 電源装置
JP2000134830A (ja) * 1998-10-28 2000-05-12 Mitsuoka Electric Mfg Co Ltd 電磁誘導電源装置
JP2011507481A (ja) * 2007-12-21 2011-03-03 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー 誘導電力転送
JP2013017379A (ja) * 2011-07-05 2013-01-24 Sony Corp 受電装置、送電装置、非接触電力伝送システム及び検知方法
JP2013017336A (ja) * 2011-07-05 2013-01-24 Sony Corp 検知装置、受電装置、非接触電力伝送システム及び検知方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016119100A1 (en) * 2015-01-26 2016-08-04 The University Of Hong Kong Systems and methods for load position detection and power control of omni-directional wireless power transfer
GB2548755A (en) * 2015-01-26 2017-09-27 Univ Hong Kong Systems and methods for load position detection and power control of omni-directional wireless power transfer
US10270294B2 (en) 2015-01-26 2019-04-23 The University Of Hong Kong Systems and methods for load position detection and power control of omni-directional wireless power transfer
US10903692B2 (en) 2015-01-26 2021-01-26 The University Of Hong Kong Systems and methods for load position detection and power control of omni-directional wireless power transfer
GB2548755B (en) * 2015-01-26 2021-08-18 Univ Hong Kong Systems and methods for load position detection and power control of omni-directional wireless power transfer

Similar Documents

Publication Publication Date Title
US10978246B2 (en) Wireless power transmitter and method of controlling power thereof
US10186909B2 (en) Wireless power transfer system for wirelessly transferring electric power in noncontact manner by utilizing resonant magnetic field coupling
US8987941B2 (en) Power transmission system
EP3142212B1 (en) Wireless power transmission system and power transmission device of wireless power transmission system
KR20160143044A (ko) 무전전력전송 시스템 및 이의 구동 방법.
US9634636B2 (en) Non-contact power transmission device
WO2014136545A1 (ja) 非接触電力伝送装置及び非接触電力伝送方法
JP2013123306A (ja) 非接触電力伝送装置
JP6420025B2 (ja) 非接触電力伝送装置及び非接触電力伝送方法
JP6172956B2 (ja) 非接触電力伝送装置及び非接触電力伝送方法
KR102128487B1 (ko) 무선전력 송신장치 및 그의 전력 제어 방법
WO2014119389A1 (ja) 非接触電力伝送装置及び非接触電力伝送方法
KR101438883B1 (ko) 전력 공급 장치, 무선전력 송신장치 및 전력 제어 방법
KR101428162B1 (ko) 전력 공급 장치, 무선전력 송신장치 및 공진 주파수 검출 방법
KR20170139319A (ko) 무선 전력 송신기 및 수신기
JP2021103741A (ja) 非接触給電システム
KR101896944B1 (ko) 무선전력 수신장치 및 그의 전력 제어 방법
KR101993230B1 (ko) 무선전력 송신장치 및 그의 전력 제어 방법
KR101393852B1 (ko) 전력 공급 장치, 무선전력 송신장치 및 전력 공급 방법
JP2023088134A (ja) 非接触給電装置
KR20180005458A (ko) 무선 전력 송신기 및 수신기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14745755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14745755

Country of ref document: EP

Kind code of ref document: A1