WO2014119330A1 - 栽培システム、栽培プログラム、および栽培方法 - Google Patents

栽培システム、栽培プログラム、および栽培方法 Download PDF

Info

Publication number
WO2014119330A1
WO2014119330A1 PCT/JP2014/000517 JP2014000517W WO2014119330A1 WO 2014119330 A1 WO2014119330 A1 WO 2014119330A1 JP 2014000517 W JP2014000517 W JP 2014000517W WO 2014119330 A1 WO2014119330 A1 WO 2014119330A1
Authority
WO
WIPO (PCT)
Prior art keywords
cultivation
cloud
control information
growth
communication terminal
Prior art date
Application number
PCT/JP2014/000517
Other languages
English (en)
French (fr)
Inventor
礼彦 杉本
Original Assignee
株式会社ブリリアントサービス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2013/000582 external-priority patent/WO2014118825A1/ja
Priority claimed from PCT/JP2013/000583 external-priority patent/WO2014118826A1/ja
Application filed by 株式会社ブリリアントサービス filed Critical 株式会社ブリリアントサービス
Priority to JP2014559599A priority Critical patent/JP6049767B2/ja
Priority to US14/765,083 priority patent/US20160000020A1/en
Publication of WO2014119330A1 publication Critical patent/WO2014119330A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/02Receptacles, e.g. flower-pots or boxes; Glasses for cultivating flowers

Definitions

  • the present invention relates to a cultivation system, a cultivation program, and a cultivation method in a cultivation apparatus for growing plants such as vegetables, fruits, and flowers.
  • Patent Document 1 discloses a plant cultivation system provided with a light source that artificially controls the cultivation environment and achieves both growth and observation.
  • the plant cultivation system described in Patent Document 1 is a plant cultivation system that grows plants indoors, and includes a cultivation cell that is a partitioned space for cultivating plants, and a management means that manages cultivation of plants.
  • the cultivation cell includes a cultivation rack that is a movable rack for cultivating a plant, and a light shielding means that blocks sunlight from entering the partitioned space, and the cultivation rack includes a cultivation shelf for cultivating the plant, And a light control means for controlling the light applied to the plant, and the cultivation shelf irradiates the plant with light by adjusting the amount of irradiation of the light emitter module having a plurality of light emitting diodes under the control of the light control means.
  • the illuminator module includes a first spectrum.
  • n is an integer of 2 or more third light-emitting diodes arranged on the circumference of a second circle centered on the first light-emitting diodes and emitting light of the third spectrum
  • the first spectrum, the second spectrum, and the third spectrum are different from each other, and the second light emitting diode has a first circle divided by a half line passing through each third light emitting diode starting from the first light emitting diode.
  • the management unit is arranged so that the number is equal to each of the n arcs, the management unit acquires the observation data from the observation unit, the library that records the observation data acquired by the reception unit, and the reception unit Observation day By comparing the historical observation data of a plant of the same type as plant library was recorded, but with a computing means for predicting the harvest date plants.
  • Patent Literature 2 discloses a cultivation unit that can be easily installed on a home veranda, a balcony or the like and can be cultivated and managed by computer control.
  • the cultivation bed filled with the cultivation soil, the cover material that covers at least the upper part of the cultivation bed, the water tank, the liquid fertilizer tank, the water tank and the liquid fertilizer tank are connected to the cultivation soil.
  • Irrigation / fertilization means equipped with pipes for supplying water and liquid fertilizer, moisture meter for measuring the water retention amount of the soil, and water and liquid fertilizer supplied from the irrigation / fertilization means based on the measured value input from the moisture meter
  • a computer that records a cultivation management program that adjusts the supply amount and supply time for each plant to be cultivated, maintains the water retention amount in the cultivation soil at a set amount, and controls the drainage from the cultivation bed.
  • the cover material is equipped with a transparent part, a mesh stretcher with a mesh that can prevent the invasion of pests, and an opening / closing part. Is attached to the lower part of the cultivation bed and assembled in advance, and the computer is attached at a position where the grower can operate, or can be connected to the grower's computer, and the grower sets the cultivation conditions. It can be changed.
  • Patent Document 3 discloses a plant cultivation system that can be widely applied to various types of plants and that can suppress the propagation of germs and the like, promote the growth of plants, and efficiently cultivate them. Yes.
  • the cultivated plants are planted, the cultivation beds are arranged and held in a plurality of upper and lower stages, respectively, and substantially horizontally, and provided above each cultivation bed. It has an artificial light source that can be moved up and down according to the growth and an air outlet or fan, and the temperature, humidity, CO2 concentration, etc.
  • the objective of this invention is providing the cultivation system, cultivation program, and cultivation method which can implement
  • the cultivation system includes a cultivation device capable of communicating with the cloud and a communication terminal.
  • the cultivation apparatus performs plant growth, transmission of growth information to the cloud, and reception of growth control information from the cloud.
  • the communication terminal receives an analysis result regarding at least one of the growth information and the growth control information analyzed by the cloud, and transmits the growth control information based on the analysis result to the cultivation apparatus via the cloud.
  • the growth information transmitted by the cultivation device controlled by the user and the growth control information transmitted to the cultivation device are analyzed by the cloud.
  • the analysis results of the growth information and the growth control information are reduced in a manner that can be used by the user for the control of the cultivation apparatus in the system. Thereby, the utilization of the cultivation system by the user is promoted, and a virtuous cycle for creating more useful plants occurs.
  • the communication terminals include digital communication devices capable of cloud communication, such as smartphones, tablet terminals, and personal computers.
  • the recording device for recording the growth information transmitted from the cultivation device, the analysis information by the cloud, and the growth control information transmitted from the communication terminal to the cloud is included in the cloud.
  • the analysis result analyzed by the cloud may be a breeding control plan proposed by automatic feedback by the cloud.
  • the cloud automatically proposes the growth control conditions according to the growth state
  • the user selects the proposed growth control information, so that the analysis result by the cloud can be used to control the cultivation device that the user controls. can do. Therefore, the user can entrust at least one of all or some of the growing processes and all or some of the plurality of growing conditions to be simultaneously provided to the cloud.
  • the analysis result analyzed by the cloud may be information obtained by converting the analysis result of the growth information into a simple display format.
  • the analysis result on the growth state is displayed in a format that is easy to grasp at first glance, so that the growth state can be easily grasped.
  • a general user who has no specialized knowledge can easily handle useful information related to the growth state that has been handled (as specialized information or intuition) by experts such as researchers and producers. Therefore, the user can set the breeding control condition by himself / herself based on the information converted in the simple display format.
  • a part of the growth control information transmitted from the communication terminal to the cultivation device may be based on the growth control information plan proposed by the automatic feedback by the cloud.
  • the user can leave the breeding control information to the cloud in at least one of the growing processes and at least one of the growing conditions to be provided at the same time.
  • other processes and / or other conditions for example, own judgment, own experience rule, other user judgment, and other user experience rule (including growth control information obtained from other users) ) Can be set based on at least one of the following. In this way, user-original breeding control information can be easily constructed.
  • One communication terminal that controls one cultivation device via the cloud may be able to obtain the growth control information in the other cultivation device controlled by the other communication terminal via the cloud.
  • a part of the growth control information transmitted from one communication terminal to one cultivation device is the obtained growth control information.
  • the user may use the breeding control information obtained from other users in at least one of the growing processes and at least one of the growing conditions to be provided at the same time. it can.
  • the breeding control information can be set based on at least one of its own judgment, its own rule of thumb, and cloud judgment.
  • the acquisition of the breeding control information may be paid (by purchase) or free of charge (by donation).
  • One communication terminal that controls one cultivation device via the cloud may be able to purchase the cultivation control information in the other cultivation device controlled by the other communication terminal via the cloud.
  • the purchased growth control information includes the taste, nutrients, appearance, size, shape, number of purchases, repurchase rate and purchase layer of the harvested plant, and the purchase number and purchase layer of the growth control information. Different prices will be attached depending on at least one of the following.
  • the purchase class includes general households, restaurants, researchers, and agricultural workers.
  • the price of the breeding control information is a price for the breeding control information that is traded by at least one of cash and virtual currency.
  • the growth information transmitted from the cultivation device may include a plurality of images at different times in one growth process of a plant controlled by one communication terminal.
  • an animation object composed of the plurality of images is created by the cloud and displayed on another communication terminal.
  • Other communication terminals may display plant animation objects controlled by a plurality of communication terminals including one communication terminal so that they can be compared with each other.
  • the user can confirm the present conditions of the plurality of growth controlled by the plurality of other users with the respective animation objects displayed in a comparatively efficient manner. Therefore, for example, when it is desired to purchase the growth control information by another user, it is possible to efficiently access the growth control information for obtaining a good growth result.
  • the cultivation device may include a lighting device that performs light irradiation on the plant, and the growth control information may include light irradiation control information in the lighting device.
  • the illumination device includes a light source and a substrate that fixes the light source, and the substrate is configured by an illumination unit having a shape that can be expanded by coupling with another substrate.
  • a lighting device having a desired size and shape can be configured by the lighting unit according to various situations such as a plant to be irradiated with light and a cultivation device in which the lighting device is installed. Therefore, for example, it is possible to ensure good irradiation efficiency and prevent uneven irradiation.
  • the cultivation system of the present invention may further include a short-range wireless communication device having plant growth control information.
  • the communication terminal receives the growth control information from the short-range wireless communication device, and receives the received growth control information.
  • the cultivation apparatus is controlled via the cloud.
  • the cultivation apparatus transmits the growth information to the cloud and receives the growth control information from the cloud; and the cloud analyzes the growth information and / or the growth control information. And a process in which the communication terminal receives the analysis result by the cloud and transmits the growth control information based on the analysis result to the cultivation apparatus via the cloud.
  • the cultivation method includes a step in which the cultivation apparatus transmits growth information to the cloud and receives growth control information from the cloud; the cloud analyzes at least one of the growth information and the growth control information. And a step in which the communication terminal receives the analysis result by the cloud and transmits the growth control information based on the analysis result to the cultivation apparatus via the cloud.
  • the growth information transmitted by the cultivation device controlled by the user and the cultivation control information transmitted to the cultivation device are analyzed by the cloud by the cultivation program and the cultivation method.
  • the analysis results of the growth information and the growth control information are reduced in a manner that can be used by the user for the control of the cultivation apparatus in the system. Thereby, the utilization of the cultivation system by the user is promoted, and a virtuous cycle for creating more useful plants occurs.
  • FIG. 1 is a schematic diagram for explaining a basic schematic configuration of a cultivation system 100 according to an embodiment
  • FIG. 2 is a schematic diagram for explaining an overall outline of the cultivation system 100 in FIG. 1. .
  • the cultivation system 100 includes a mobile communication terminal 200, a cultivation device 300, and a recording device 400.
  • Application software 700 is installed in the mobile communication terminal 200.
  • the app 700 is displayed as an icon on the display screen 210 before activation.
  • An icon badge may be displayed on the icon when information is received from the cloud 500 as described later.
  • the cultivation apparatus 300 performs plant growth, transmission of growth information to the cloud 500, and reception of growth control information from the cloud 500.
  • the cloud 500 analyzes plant growth information transmitted from the cultivation apparatus 300.
  • the mobile communication terminal 200 receives the analysis result from the cloud 500.
  • the communication terminal 200 transmits the cultivation control information based on the analysis result to the cultivation apparatus 300 via the cloud 500.
  • the growth control information transmitted to the cultivation device 300 is also used for analysis by the cloud 500.
  • the cultivation apparatus 300 controls various devices provided in the cultivation apparatus 300 according to the cultivation control information received from the mobile communication terminal 200, and grows a plant. Details of the various devices will be described later.
  • Information transmitted / received via the cloud 500 is recorded and stored in the recording device 400 (existing in the cloud 500). Therefore, the recording device 400 records the growth information of the plant transmitted from the cultivation device 300 and the movable state of the cultivation device 300, and also records the growth control information transmitted from the mobile communication terminal 200 to the cultivation device 300 as needed. The growth information and the growth control information recorded as needed are accumulated as the growth history information and the control history information. In the cultivation system 100, since information is transmitted / received via the cloud 500, even when there are many access fluctuations, it can be easily handled.
  • the actual cultivation system 100 owns a user's portable communication terminal 200 and the said user.
  • a large number of one or a plurality of cultivation apparatuses 300 are connected via the cloud 500.
  • the cloud 500 analyzes the growth information of the plant transmitted from the cultivation device 300 each time, analyzes the growth history information and the control history information using big data, and transmits the analysis result to the mobile communication terminal 200. By doing this, the analysis result is returned to the user in such a manner that the user of the mobile communication terminal 200 can easily use it in the cultivation system 100.
  • the use of the cultivation system 100 by the user is promoted by returning the analysis result by the cloud 500 to the user.
  • plant factories could not be harvested in the same way (in terms of size, color, shape, type, and recall). Promoting the creation of crops that could not be harvested by crops, alley cultivation, or house cultivation (for example, plants containing specific components that are useful in the fields of medical care, beauty care, health aid, etc.) I can expect.
  • the growth information of the plant which is an example of the analysis target by the cloud 500, includes information on the current growth state and information on the growth change in the growth process.
  • Information on the current growth state includes the size, number, shape and color of each organ (leaves, axes, flowers, fruits, roots), nutritional status contained in each organ, presence or absence of disease, and growth Information such as the presence / absence or degree of failure.
  • Such information can be obtained by analyzing information sources such as image data of plants, measurement data regarding the environment in the plant or the cultivation apparatus 300, and the like.
  • the cloud 500 analyzes these information sources and transmits them to the communication terminal 200 as growth information.
  • Information on growth changes in the breeding process is derived as the amount of change in the growth state described above. This changes the size, number, shape and color of each part of the plant, changes in the nutritional status contained in each part, progression or healing of the disease, progression or healing of growth disorders, and nutrients taken by the plant (water, dioxide) Carbon, nutrients, etc.).
  • Such information analyzed by the cloud can be displayed after being converted into a simple format so that a general user using the communication terminal 200 can easily understand at a glance. Even if there is not, growth information can be handled easily. For this reason, the cultivation control information which a user should transmit to the cultivation apparatus 300 next can be set by himself.
  • the simple display format include a format indicated by an icon, text, a numerical value, a graph, and the like obtained by simplifying the analysis result.
  • the growth control information which is another example of the analysis target by the cloud 500, includes the control conditions for each device provided in the cultivation apparatus 3300, the timing for performing the control, and the timing for releasing the control and ending (harvesting) the growth. Contains information.
  • the cloud 500 analyzes the growth information received from the cultivation device 300 in consideration of the growth information and the growth control information already accumulated in the storage device 400, and then proposes a recommended growth control plan by automatic feedback. . For this reason, the user can leave the growth control information to be transmitted to the cultivation apparatus 300 next to the determination of the cloud.
  • FIG. 3 is a schematic diagram illustrating an example of the cultivation apparatus 300.
  • the cultivation device 300 includes an illumination device 310, a frame body 320, an imaging device 330, a cultivation container 340, and environment control devices 350 and 360.
  • the frame 320 of the cultivation apparatus 300 has a structure that constitutes a sealed space or an open space as a cultivation space, and the cultivation spaces are arranged in upper and lower stages, and one cultivation container 340 is arranged in each cultivation space.
  • Each cultivation space is preferably shielded from sunlight.
  • Plants cultivated in the cultivation container 340 include vegetables, flowers, grass, fruits and the like. These plants are not limited to those that are known to be harvested in so-called plant factories, but can be harvested in alley or house cultivations as well in so-called plant factories (size, color, shape, type and reproduction) Plants that are unknown to be harvested (in terms of rate, etc.) and plants that could not be harvested by alley cultivation or house cultivation (for example, specific ingredients useful in fields such as medicine, beauty, health assistance) Plant in a characteristic amount.
  • the lighting device 310, the imaging device 330, the cultivation container 340, and the environment control devices 350 and 360 can be customized by the user selecting a desired type.
  • an imaging device 330 is disposed in each of the upper and lower cultivation spaces.
  • the imaging device 330 may be, for example, a video camera or a digital camera, or may be an infrared camera, a thermo camera, a photosynthetic amount measuring camera, or any other camera capable of measuring growth. Images obtained by these cameras are recorded in the recording device 400 in the cloud 500, and the size, number, shape, and color of each organ (leave, axis, flower, fruit, root) of the plant are also recorded by the cloud 500. , Qualitative and / or quantitative analysis of nutritional status, illness, and growth disorders contained in each organ. The result of the automatic analysis is recorded in the recording device 400 and returned to the user as a growth control plan or as a simple display format. Therefore, for example, useful information regarding the growth state that has been handled (as specialized information or as intuition) by experts such as researchers and producers can be used even by users who do not have specialized knowledge.
  • the image pickup device 330 can pick up images of plant growth conditions continuously or at predetermined intervals.
  • the cultivation container 340 is a glass or plastic container for hydroponics.
  • the cultivation container 340 may be appropriately selected depending on the type of plant to be cultivated, such as a plant pot in which artificial soil or natural soil is placed, in addition to a hydroponics container.
  • the environment control device 350 is installed in the gas phase portion of the cultivation space, and measures, for example, carbon dioxide concentration, temperature, humidity, illuminance, and fine particulate matter. Furthermore, it has a mechanism for controlling gas phase components such as carbon dioxide concentration, temperature, humidity, and fine particulate matter.
  • examples of the environment control device 350 include a carbon dioxide concentration measuring device and a carbon dioxide supply device, a thermometer and an air conditioner, a hygrometer and a humidifier and / or a dehumidifier, and an air cleaner.
  • examples of the environment control device 350 include a blower fan capable of airflow control.
  • the environment control device 360 is installed in the vicinity of the rhizosphere of the cultivation space, and measures, for example, water temperature, underwater components, and the like. Furthermore, it has a mechanism for controlling rhizosphere environmental components such as water temperature and nutrients.
  • the environmental control device 360 includes a water temperature meter, a water temperature heater, and / or a water temperature cooler, an underwater component measuring device, a nutrient solution supply device, and / or an underwater component removal device.
  • examples of the environment control device 360 include a water flow generator capable of water flow control.
  • radiation dose meters may be provided.
  • an alarm may be transmitted to the mobile communication terminal 200 when a predetermined dose is exceeded.
  • a weighing scale may be provided in each cultivation space.
  • an automatic harvester may be provided in each cultivation space.
  • the illumination device 310 may be selected as a light source from, for example, a light emitting diode (hereinafter simply abbreviated as LED), organic electroluminescence, a high-pressure sodium lamp, a metal halide lamp, and a fluorescent lamp.
  • a light emitting diode hereinafter simply abbreviated as LED
  • organic electroluminescence organic electroluminescence
  • high-pressure sodium lamp a high-pressure sodium lamp
  • metal halide lamp a metal halide lamp
  • fluorescent lamp a fluorescent lamp.
  • the lighting device 310 may be configured by a lighting unit 3100 shown in FIG.
  • FIG. 4 is a schematic front view of the lighting unit 3100.
  • the lighting unit 3100 includes a substrate 3110 and an LED 3120 mounted on the substrate 3110.
  • FIG. 5 is a schematic front view of an illumination device 310 configured by connecting and expanding a plurality of illumination units 3100.
  • the substrate 3110 is a rigid circuit board, a flexible circuit board, or a rigid flexible board having a regular hexagonal shape. As for the size of the substrate 3110, a regular hexagonal piece is 2.5 cm.
  • the material of the substrate 3110 may include, for example, a material appropriately selected by those skilled in the art from ceramics, synthetic resins, and metals. More specifically, composite materials such as a glass epoxy substrate and a glass composite substrate may be used. Further, it may have been subjected to a surface processing treatment such as application of a thermal barrier paint or a lamination treatment using an insulating layer or the like.
  • LEDs 3121, 3122, 3123, and 3124 are fixed to one surface of the substrate 3110 as LEDs 3120.
  • these LEDs surface mount type LEDs in which LED elements are mounted in a package material provided with electrodes are used.
  • the main wavelengths of light emitted from the LEDs 3121, 3122, 3123, and 3124 are different from each other.
  • the LED 3121 is red light (hereinafter abbreviated as red LED 3121)
  • the LED 3122 is blue light (hereinafter abbreviated as blue LED 3122)
  • the LED 3123 is infrared light (hereinafter abbreviated as infrared LED 3123)
  • the LED 3124 Emits white light (hereinafter abbreviated as white LED 3124).
  • a total of six red LEDs 3121, blue LEDs 3122, and infrared LEDs 3123 are fixed, two for each substrate 3110.
  • the six LEDs are all arranged at an equal distance from the center of the substrate 3110, and are arranged at equal intervals near each vertex of the regular hexagon so that different types of LEDs are adjacent to each other.
  • One white LED 3124 is arranged per substrate 3110 and is fixed in the center of the substrate 3110.
  • red light, blue light and infrared light are recognized by specific receptors possessed by plants.
  • Specific dominant wavelengths of light recognized by plant receptors and specific growth responses e.g., biological reactions leading to photomorphogenesis including seed germination, flower bud differentiation, flowering, cotyledon development, chlorophyll synthesis, and internode elongation, and A correlation has been found with photosynthesis.
  • a terminal 3130 is provided on each side of the substrate 3100. Further, the circuit of the substrate 3110 electrically connects the terminal 3130 and the package electrodes of the red LED 3121, the blue LED 3122, the infrared LED 3123, and the white LED 3124.
  • the circuit of the substrate 3110 and the terminal 3130 are designed so that the red LED 3121, the blue LED 3122, the infrared LED 3123, and the white LED 3124 can be controlled independently.
  • LEDs of the same color may be designed to be controllable in conjunction with each other, or may be designed to be independently controllable.
  • the design that can be controlled independently is made by providing a number of control systems according to the type and / or number of LEDs to be controlled independently so that each control system functions in parallel.
  • the lighting unit 3100 is configured such that a substrate 3110 is coupled to another substrate 3110 so that each side is abutted with each other, thereby forming a lighting device 310.
  • the surface of the substrate 3110 is expanded two-dimensionally, and the substrate 3110 is spread all over. For this reason, arrangement
  • the terminal 3130 of the substrate 3110 and the terminal 3130 of the other substrate 3110 are connected.
  • a male coupling portion 3111 and a female coupling portion 3112 may be formed on each side so that the substrates 3110 can be mechanically coupled to each other.
  • the illumination unit 3100 and the other illumination unit 3100 are directly and electrically connected.
  • All the lighting units 3100 in the lighting device 310 are daisy chain connected. Specifically, only two of the terminals 3130 provided in one lighting unit 3100 contribute to electrical and mechanical coupling. In the side where the other terminal 3130 exists, it is mechanically coupled only by the male coupling portion 3111 and the female coupling portion 3112. Further, one lighting device 310 may have only one series circuit by daisy chain connection, or may have a plurality of individually controllable series circuits.
  • the mobile communication terminal 200 controls the red LED 3121, the blue LED 3122, the infrared LED 3123, and the white LED 3124 independently.
  • LEDs of the same color may be controlled in conjunction with each other or may be controlled independently.
  • the brightness is mainly adjusted.
  • the brightness is controlled by changing the current value or pulse width in 256 gradations (0 to 255).
  • 256 gradations (0 to 255).
  • the portable communication terminal 200 can also control each series circuit independently, when the one illuminating device 310 has a several series circuit. Control as described above is performed by remote operation via the cloud 500 by the mobile communication terminal 200.
  • FIG. 6 is a schematic front view of an illumination unit 3100a which is another example of the illumination unit 3100.
  • the illumination unit 3100a uses a square substrate 3110a instead of the regular hexagonal substrate 3110.
  • a total of four red LEDs 3121 and blue LEDs 3122 are fixed, two each for one substrate 3110a.
  • Each of the four LEDs is arranged at equal intervals in the vicinity of each vertex of the square so that different kinds of LEDs are adjacent to each other.
  • One white LED 3124 per one substrate 3110a is arranged and fixed at the center of the square.
  • FIG. 7 is a schematic front view of an illumination unit 3100b that is another example of the illumination unit 3100.
  • the illumination unit 3100b uses a deformed rectangular substrate 3110b whose outer periphery is composed of four identical point-symmetric curves instead of the regular hexagonal substrate 3110.
  • Five types of single color LEDs, red LED 3121, blue LED 3122, infrared LED 3123, white LED 3124, and green LED 3125, are fixed to one surface of substrate 3110b.
  • Green light like red light, blue light, and infrared light, is also involved in plant growth reactions.
  • One red LED 3121, blue LED 3122, infrared LED 3123, and green LED 3125 are arranged at equal intervals in the vicinity of each vertex of the deformed rectangle, one for each substrate 3110 b.
  • One white LED 3124 is disposed and fixed at the center of the deformed rectangle, one for each substrate 3110b.
  • a terminal 3130b that enables electrical and mechanical connection with the other substrate 3110b, a male coupling portion 3111b that enables mechanical connection with the other substrate 3110b, and a female die.
  • a coupling portion 3112b is formed.
  • FIG. 8 is a schematic front view of an illumination unit 3100c which is another example of the illumination unit 3100.
  • the lighting unit 3100c uses a substrate 3110c having a notch 3113 instead of the regular hexagonal substrate 3110.
  • the notch 3113 is provided at each of the hexagonal apexes of the substrate 3110c.
  • a male coupling portion 3111c and a female coupling portion 3112c that allow mechanical connection with another substrate 3110c are formed.
  • FIG. 9 is a schematic front view of an illumination device 310c, which is another example of the illumination device 310.
  • the lighting device 310c is configured by connecting a plurality of lighting units 3100c.
  • the plurality of substrates 3110c are coupled to each other so that the expanded surface is not covered with the substrate 3110c, and the opening S surrounded by the notch 3113 formed in the substrate 3110c is formed.
  • the formation of the opening S may be preferable from the viewpoint of heat release.
  • FIG. 10 is a schematic front view of an illumination device 310d as another example of the illumination device 310.
  • the illumination device 310d forms a ring shape as a whole by connecting a plurality of illumination units 3100 to each other. Thereby, it is possible to irradiate a wide range with a small number of illumination units. Further, as a similar aspect, when a ring-shaped lighting device (or a circular shape in which the inside is laid by the lighting unit 3100) is configured using a smaller number of lighting units 3100, the light is cultivated with a small plant cultivation device. The plant can be irradiated evenly.
  • FIG. 11 is a schematic perspective view of a lighting device 310e which is another example of the lighting device 310.
  • lighting units 3100 and 3100e having substrates 3110 and 3110e having different shapes are combined and connected.
  • the surfaces of the substrates 3110 and 3110e are three-dimensionally expanded to form at least a part of the polyhedron (hereinafter referred to as a plane structure).
  • the surface structure is formed such that the LED 3120 is fixed to the outer surface of the surface structure.
  • LED3120 fixed to the external surface of a surface structure has faced many directions outside a surface structure. For this reason, even if it uses what has a strong directivity as LED3120, it is possible to irradiate a wide range easily.
  • FIG. 12 is a schematic partially cutaway perspective view of a lighting device 310f, which is another example of the lighting device 310.
  • FIG. In the lighting device 310f, lighting units 3100 and 3100e each having substrates 3110 and 3110e having different shapes are combined and connected. Thus, the surfaces of the substrates 3110 and 3110e are three-dimensionally expanded to form at least a part of the polyhedron (hereinafter referred to as a plane structure).
  • the planar structure is formed such that the LED 3120 is fixed to the inner surface of the planar structure.
  • all of LED3120 fixed to the internal surface of a surface structure has faced the inside of a surface structure.
  • a plant to be irradiated inside the planar structure it is possible to surround or cover the irradiation target and perform intensive irradiation.
  • the surface structure is configured with a size close to the irradiation target, it is possible to perform near-field irradiation evenly.
  • the substrates 3110, 3110a, and 3110e are square, regular pentagon, and regular hexagon.
  • other polygons preferably regular polygons, may be used.
  • the polygon may be any shape that can be expanded by being joined to each other, and may be a convex polygon or a concave polygon.
  • the deformed rectangular shape is used as the shape of the substrate 3110b
  • the deformed regular hexagon is used as the shape of the substrate 3110c.
  • other deformed polygons may be used.
  • the deformed polygon includes a shape formed by connecting vertices of a polygon with a curved line instead of a straight line, and a polygon in which each cut portion is formed in a part of the polygon.
  • the notch 3113 is formed as a recess at the apex of the regular polygon (regular hexagon) of the substrate 3110c.
  • the position and shape of the notch 3113 on the substrate are limited to this. Not.
  • it may be a through hole formed inside the substrate, or a recess formed at an end other than the apex in the shape of the substrate.
  • the concave polygon is an example of a substrate shape having a notch.
  • an opening is inevitably formed by combining a plurality of substrates so that the expanded surface is not all covered with the substrate. The formation of such an opening may be preferable from the viewpoint of heat release or the like.
  • the surface mount type LED 3120 is used as the LED 3120, but a bullet type LED or any other shape LED may be used.
  • the fixing aspect of LED3120 may be detachable, for example, using a socket.
  • a monochromatic light source is used as the light source, but the light source may be a monochromatic light source or a multicolor light source.
  • a monochromatic light source has one main wavelength of light that can be developed by one light source, whereas a multicolor light source has a plurality of main wavelengths of light that can be developed by one light source. Control of the dominant wavelength emitted by the multicolor light source is appropriately performed by those skilled in the art.
  • Some or all of the light sources fixed on the substrate may be multicolor light sources.
  • all of the light sources fixed on the substrate are multicolor light sources, at least two light sources are independently controlled to emit at least main wavelengths different from each other.
  • the dominant wavelength of light emitted from each light source to be controlled independently, or the dominant wavelength and brightness are controlled.
  • light having a plurality of main wavelengths can be generated in one illumination unit.
  • the number of light sources fixed to the substrate is not limited to the above example. Specifically, it may vary depending on factors such as the surface area of the substrate, but may be, for example, 2 or more and 20 or less, 2 or more and 15 or less, or 2 or more and 10 or less.
  • the surface area of one substrate is not particularly limited, but is, for example, 150 cm 2 or less.
  • the upper limit value included in the range may be 130 cm 2 , 100 cm 2 , 50 cm 2 , 30 cm 2 , 15 cm 2 , 10 cm 2, or 5 cm 2 .
  • Lower limit contained in the range is not particularly limited, for example, 1cm 2, 5cm 2, 10cm 2, 15cm 2, 30cm 2, 50cm 2, may be 100 cm 2 or 130 cm 2.
  • a lighting unit with a smaller surface area of the substrate is preferable in that the degree of freedom in configuring the lighting device is increased.
  • the outer periphery and / or inner periphery of a specific planar shape such as the ring shape illustrated in FIG. 10 can be configured to be closer to a smooth curve.
  • the outer surface of the specific three-dimensional shape illustrated in FIG. 11 and the inner surface of the specific three-dimensional shape illustrated in FIG. 12 can be configured to be closer to a smooth curved surface.
  • the arrangement pitch of each light source fixed to the substrate is not particularly limited. Specifically, although it may vary depending on the size of the light source, the average of the shortest center distance between adjacent light sources in the illumination unit or the entire illumination device is, for example, 5 times or less and 3 times or less of the maximum diameter of the light source. It is preferably 2 times or less, 1.5 times or less, or 1.3 times or less. Although the lower limit contained in the said range is not specifically limited, For example, it is the same length as the maximum diameter of a light source.
  • the shortest center distance between the light sources is a distance connecting the centers of one light source and the light source closest to the one light source among other light sources adjacent to the one light source. It is. In the lighting device, the one light source and the other adjacent light source may both exist in the same lighting unit, or may exist in different lighting units adjacent to each other.
  • the maximum diameter of the light source is the maximum diameter in the direction parallel to the substrate surface.
  • the average value of the shortest center distance between adjacent light sources in the lighting unit or in the entire lighting device may be 50 mm or less, 30 mm or less, 20 mm or less, 10 mm or less, or 5 mm or less.
  • the lower limit value included in the range is preferably as small as possible, and is not particularly limited, but is, for example, 0.1 mm.
  • the distribution of the light source is nearly uniform in the entire lighting device. That is, it is preferable that the light sources are arranged so that the light beams having different main wavelengths emitted from the light source of the illumination device are mixed with each other on the surface of the irradiation target. Specifically, it is preferable that the shortest center distance between all the light sources is the same in the entire lighting device. That is, it is most preferable that the standard deviation of the shortest center distance between the light sources in the entire lighting device is 0, and it is more preferable that the standard deviation is close to 0.
  • the ratio of the maximum value of the shortest center distance to the minimum value of the shortest center distance is 1 to 1.5.
  • they are 1 or more and 1.3 or less, More preferably, they are 1 or more and 1.2 or less. This makes it possible to equalize a plurality of light beams having different main wavelengths. By making the light uniform, the growth reproducibility can be improved when plant growth is controlled under the same conditions.
  • the daisy chain connection is exemplified as the electrical connection between the respective lighting units 3100, 3100c, and 3100e in the lighting devices 310, 310c, 310d, 310e, and 310f.
  • a star-type connection may be used.
  • the surface structures of the lighting devices 310e and 310f are configured by combining the lighting units 3100 and 3100e having the plurality of shapes of the substrates 3110 and 3110e.
  • the surface structures have the same shape. You may comprise from a lighting unit.
  • the following effects are produced by the lighting units 3100, 3100a, 3100b, 3100c, and 3100e.
  • a single lighting unit 3100 includes a plurality of types of LEDs 3120 that emit light having different main wavelengths, and substrates 3110, 3110a, 3110b, 3110c, and 3110e are included. Since it is expandable, by combining a plurality of lighting units 3100, 3100a, 3100b, 3100c, and 3100e, a lighting device having a desired size and shape can be obtained according to various situations such as plants and / or plant growing places. Can be configured.
  • the substrates 3110, 3110a, and 3110e are polygonal, the shapes of the lighting units 3100, 3100a, and 3100e can be simplified, and the lighting units 3100, 3100a, and 3100e can be easily expanded.
  • the substrate 3100 is a hexagon and the substrate 3100c is a deformed regular hexagon, a high degree of freedom can be obtained with respect to the shapes of the illumination devices 310, 310c, and 310d configured by extending the illumination unit 3100.
  • the LED 3120 emits light selected from red light, blue light, green light, and infrared light, and thus can be preferably applied to plant growth applications. Further, by using the white LED 3124, the color of the growing plant can be easily identified.
  • the brightness of each of the plurality of types of LEDs 3120 is individually controlled, so that various patterns of colors can be emitted depending on the type of plant and / or the growth stage. It becomes easy.
  • the LED 3120 is used as a light source. Therefore, the lighting units 3100, 3100a, 3100b, 3100c, and 3100e can save energy and extend their life.
  • the lighting devices 310, 310c, 310d, 310e, and 310f can simplify the electrical path because the lighting units 3100, 3100c, and 3100e are daisy chain connected to each other.
  • the lighting devices 310e and 310f have different shapes on the substrates 3110 and 3110e, and the degree of freedom of shape is high due to the combination expansion of the lighting units 3100 and 3100e.
  • FIG. 13 is a flowchart illustrating an example of control in the cultivation system 100.
  • 14 is a schematic diagram illustrating an example of the display screen 210 of the mobile communication terminal 200
  • FIG. 15 is a schematic diagram illustrating another example of the display screen 210 of the mobile communication terminal 200
  • FIG. 12 is a schematic diagram illustrating another example of the display screen 210 of the mobile communication terminal 200.
  • FIG. 13 is a flowchart illustrating an example of control in the cultivation system 100.
  • 14 is a schematic diagram illustrating an example of the display screen 210 of the mobile communication terminal 200
  • FIG. 15 is a schematic diagram illustrating another example of the display screen 210 of the mobile communication terminal 200
  • FIG. 12 is a schematic diagram illustrating another example of the display screen 210 of the mobile communication terminal 200.
  • FIG. 12 is a schematic diagram illustrating another example of the display screen 210 of the mobile communication terminal 200.
  • the process is started as shown in FIG. First, the growth information about the current state of the plant is transmitted from the cultivation device 300 to the mobile communication terminal 200 via the cloud 500 (step S1).
  • the growth information transmitted from the cultivation device 300 to the cloud 500 and the growth information transmitted from the cloud 500 to the mobile communication terminal 200 are recorded in the recording device 400.
  • the mobile communication terminal 200 displays the received plant growth information on the display screen 210 (step S2). For example, as shown in FIG. 14, an observation screen is displayed on the display screen 210 of the mobile communication terminal 200. On the display screen 210 in FIG. 14, an upper plant image 241 and current measurement results 242 of the environmental control devices 350 and 360 are displayed.
  • the screen switching command 243 it is possible to switch to the lower plant information.
  • image data of the past day, the past week, and the past January can be continuously displayed, and the growth of the plant can be observed in a short time.
  • the image 241 is moving image data, fast-forward playback, pause, etc. can be selected.
  • the measurement results of the environmental control devices 350 and 360 may be the current ones as shown in FIG. 14, or are displayed over time based on the past measurement results (for example, a simple display such as a graph display). It may be a thing. Thereby, the user can easily grasp the environmental change.
  • the measurement results of the environment control devices 350 and 360 are displayed as automatic analysis results by the cloud 500.
  • an icon that can access the growth control plan presented by the cloud 500 may be displayed.
  • One or more breeding control plans may be presented. When a plurality of growth control plans are presented, a plurality of plant growth states are assumed, and a recommended growth control plan may be presented to derive each assumed growth state. The user can determine the breeding control information for performing the process after step S3 described later by selecting the presented breeding control plan.
  • an icon for accessing a market site described later may be displayed.
  • the user can determine the breeding control information for performing the process after step S3 described later by purchasing the breeding control information from the market site.
  • an automatic analysis result by the cloud 500 may be displayed (preferably simple display).
  • the user can grasp the growth situation and determine and determine the growth control information for performing the processing after Step S3 described later.
  • the user confirms the display screen 210 of the mobile communication terminal 200, grasps the growth status of the plant, and determines the growth control information.
  • the user can select the complete manual mode, the complete auto mode, and the hybrid mode in order to determine the growth control information.
  • the user decides all the growth control information by himself / herself in all the steps of the growth process. Therefore, the user's original breeding control information is constructed. In this case, it can be set so that the growth control plan by the cloud 500 is not displayed.
  • the user entrusts all the growth control information to the growth control plan by the cloud 500 or the purchased growth control information in all the steps of the growth process. Therefore, the breeding control information that has already been constructed is reproduced.
  • the user can arbitrarily combine the breeding control information determined by his / her own judgment, the breeding control plan presented by the cloud 500, and the purchased breeding control information as the breeding control information to be instructed. . Therefore, the growth control information determined by a different method is used for a part of the growth process and / or a part of the plurality of growth control information transmitted at the same time. As a result, a huge variation of the breeding control information is newly constructed from the already constructed breeding control information.
  • a control screen is displayed on the display screen 210 (step S3).
  • the mobile communication terminal 200 operates the control screen to adjust to a desired growth control condition and / or permits the growth control condition automatically adjusted on the control screen, and performs the growth control.
  • Information is given to the cultivation apparatus 300 via the cloud 500 (step S4).
  • the cultivation apparatus 300 receives an instruction from the mobile communication terminal 200 (step S5).
  • the cultivation device 300 controls the illumination device 310, the imaging device 330, and the environment control devices 350 and 360 according to the growth control information (step S6).
  • step S3 to step S6 a specific example of processing from step S3 to step S6 will be described.
  • the adjustment of the red LED 3121 is performed by the adjustment unit 225
  • the adjustment of the blue LED 3122 is performed by the adjustment unit 226, and the adjustment of the infrared LED 3123 is performed.
  • the white LED 3124 is adjusted by the adjusting unit 228, and the irradiation time of the day is adjusted by the adjusting unit 229.
  • the setting of the imaging device 330 on the display screen 210 includes a selection box 231 for selecting a second unit, a minute unit, an hour unit, a day unit, a week unit, a month unit, and a year unit, An input box 232 for inputting a numerical value and a check box 233 for determining whether or not the white LED 3124 emits light in conjunction with the timing of imaging. Interlocking lighting of the white LED 3124 is preferable in that the color of the plant can be clearly imaged when image data is imaged.
  • the cultivation apparatus 300 controls the imaging apparatus 330 according to the growth control information instructed on the display screen 210 in FIG.
  • the image data is not limited to data obtained by capturing images at a predetermined interval, and may be moving image data captured continuously.
  • the application 700 of the mobile communication terminal 200 can also display a control screen for controlling the environment control devices 350 and 360 on the display screen 210.
  • the specific contents of the display screen 210 can be appropriately determined by those skilled in the art according to FIG.
  • the cultivation device 300 controls the environment control devices 350 and 360 according to the growth control information instructed on the display screen 210.
  • the above-mentioned cultivation control information can be independently controlled by being transmitted individually to each of the cultivation spaces arranged in the upper and lower stages of the cultivation apparatus 300.
  • the mobile communication terminal 200 transmits the growth control information to the cultivation device 300 via the cloud 500 (step S7), and all the growth control information transmitted to the cultivation device 300 is recorded in the recording device 400 (step S8). ).
  • the situation of the cultivation apparatus 300 after the growth control information is transmitted may be confirmed in the same manner as in Step S1 and Step S2.
  • step S9 it is determined whether or not the application 700 of the mobile communication terminal 200 has ended. If it is determined that the application 700 has not been terminated, the process is repeated again from the process of step S1. On the other hand, if it is determined that the application 700 has ended, the process ends.
  • FIG. 17 is a flowchart illustrating an example of data mining regarding the growth control information of the recording apparatus 400.
  • the growth control information recorded in the recording device 400 in the cloud 500 is collected (step S11).
  • the collected growth control information is classified according to the result by the item of the plant type, the growth stage of the plant, and the final form of the plant (step S12).
  • Examples of the classification of plant types include vegetables, fruits, grass, trees, and flowers in large categories, and cabbage, lettuce, and sunny lettuce in small categories.
  • Examples of plant growth stage classification include seed sowing stage, seedling stage, growth period, harvesting period, and the like.
  • Examples of the classification of the final form of the plant include the size, shape, color, and ingredients (nutrients such as sugar and acid) of the harvest.
  • the classification may be performed according to taste (taste such as sweetness, acidity, bitterness, pungent taste, astringency, and smell).
  • step S13 statistical processing, for example, optimization of the breeding control information divided by these sections is performed.
  • the statistical processing method is not limited to this, and averaging and other statistical processing methods may be arbitrarily performed.
  • the result of data mining is recorded in the recording device 400 via the cloud 500 as the analysis result of the breeding control information (step S14).
  • FIG. 18 is a flowchart illustrating an example in which the short-range wireless communication device is used in the cultivation system 100.
  • an NFC (Near field communication) tag which is a short-range wireless communication device, is attached to a shelf of a store that sells plant seedlings, a bag of seedlings of the plant, or the like.
  • the NFC tag stores the growth control information related to the displayed shelf or the seedlings contained in the bag.
  • the user When purchasing a seedling, the user reads the attached NFC tag with the mobile communication terminal 200 (step S21). Next, the growth control information is recorded in the mobile communication terminal 200 (step S22). Next, the application 700 is activated and the training control information is selected (step S23). Finally, the said growth control information can be transmitted to the cultivation apparatus 300 which planted the purchased seedling (step S24), and can be grown. In this case, the user may reproduce all of the purchased growth control information in the fully automatic mode, or may modify a part of the growth control information in the hybrid mode.
  • an address for accessing the breeding control information may be recorded in the NFC tag.
  • the user can acquire the address and obtain the growth control information by accessing the address.
  • the breeding control information may be transmitted and received between users.
  • FIG. 19 shows an example of the display screen 210 of the mobile communication terminal 200 when browsing the growth information and the growth control information of other users in the cultivation system 100.
  • the display screen 210 displays the growth information of the plants in the cultivation device 300 controlled by the plurality of users A, B, C, and D using the respective mobile communication terminals 200.
  • As the growth information for example, an image 241A of a plant grown by the user A and a measurement result 242A are displayed, and the same display is performed for other users.
  • the plant image 241A is displayed as a GIF animation object in which a plurality of images at different times in the growing process are displayed frame by frame in chronological order.
  • the number of images constituting the GIF animation object is, for example, 4 or more and 8 or less, preferably 5 or more and 7 or less, and 6 as an example.
  • the last image displayed in chronological order is the latest image. Since the image 241A is created by the cloud 500 processing the image data received by the cloud 500 from the cultivation device 300, the image 241A is not likely to be altered by the user.
  • Such GIF animation objects are displayed in the same manner for other users, and are displayed side by side so that they can be compared. For this reason, it can grasp
  • the user accesses and obtains the breeding control information instructed by other users to grow by selecting the display portion of the data determined to be preferably grown on the display screen 210 of FIG. can do.
  • the breeding control information may be paid or free.
  • the user who provided the breeding control information can select whether it is paid or not.
  • the breeding control information is initially provided free of charge, and the breeding control information may be used in a complete playback mode by other users. In this case, an evaluation is made on the growth process and / or the crop brought about by the growth control information by the complete reproduction mode by another user, and a certain evaluation standard (for example, obtaining a predetermined number of positive evaluations) is cleared. It can be paid on the condition. As a result, the reliability of the paid growth control information can be ensured.
  • the user can also select whether or not to allow the provided growth control information to be modified by another user.
  • the user may declare that his / her breeding control information may be disclosed to an unspecified number of other users, and the other users are kept secret so that the information can be disclosed only to specific other users. You may set a password that you know.
  • the price may be attached according to various conditions. Conditions for differentiating the price include evaluation results such as taste, nutrients, appearance, size, and shape of the crops grown by the growth control information. Each of these conditions is ranked, and different prices can be assigned according to the rank.
  • the evaluation may be a subjective evaluation made by the user that has been statistically processed by averaging or the like, may have been made fairly by the evaluation organization, or acquired from the cultivation apparatus 300 It may be automatically evaluated by the cloud 500 from the analysis of the image data.
  • the number of purchases, repurchase rate, purchase layer, etc. of the crops cultivated by the growth control information and the purchase record of the number of purchases and purchase layers of the growth control information itself are also included.
  • the price can be assigned such that the higher the number of purchases and / or the re-purchase rate, the higher the price.
  • the purchase class includes general households, restaurants, researchers, and farmers. For example, information purchased in a general household is set at a lower price, information purchased at a luxury store such as a restaurant in a restaurant is set at a higher price, and rare information purchased by a researcher is set at a higher price. be able to.
  • breeding control information may be traded using at least one of cash and virtual currency.
  • the virtual currency may be a point that can be acquired by the user based on the usage record of the cultivation system 100, the purchase record of the cultivation control information, the achievement of free provision of the cultivation control information to other users, and the like.
  • the breeding control information that has passed a certain period since it was first provided to the cultivation system 100 can be made free as a public domain. Thereby, a search for new growth control conditions is induced by the user, and the plant growth technology can be improved efficiently.
  • FIG. 20 is a schematic diagram showing an example of a market site map for obtaining the breeding control information.
  • the market site 555 can be accessed by the user through the mobile communication terminal 200 in the cultivation system 100, and desired growth control information can be obtained from a large number of growth control information accumulated in the recording device 400 by following desired items. Can be selected.
  • the market site 555 may be a site of the owner of the cultivation system 100, a seedling dealer or an agricultural cooperative site, or a social network site.
  • “vegetables”, “flowers”, “plants”, and “fruits” can be selected as plant species.
  • vegetable types such as “lettuce” and “petit tomato” can be selected.
  • tastes such as “sweet” and “bitter” and sizes such as “large” and “small” can be selected.
  • “sweetness” a plurality of pieces of growth control information for growing lettuce characterized by sweetness can be selected.
  • the growth control information free information A, 50 yen information B, 10,000 yen information C, and the like are presented.
  • the evaluation by the user may be displayed in conjunction with the icon format.
  • the user can select one of the plurality of breeding control information and download it to the mobile communication terminal 200.
  • the downloaded information can be used as the growth control information to be transmitted to the cultivation apparatus 300.
  • the growth information transmitted by the cultivation device 300 controlled by the user and the growth control information transmitted to the cultivation device are analyzed by the cloud 500, and the growth information and The analysis result of the cultivation control information is reduced in a manner that can be used by the user for the control of the cultivation apparatus 300 in the cultivation system 100.
  • utilization of the cultivation system 100 by a user is promoted, and a virtuous cycle for more useful plant creation occurs.
  • the growth control plan is proposed by the automatic feedback by the cloud 500, the user can select all or some of the growing processes and all or a plurality of growing conditions to be provided simultaneously. At least one of some conditions can be left to the cloud.
  • the analysis result of the growth information by the cloud 500 is converted into a simple display format and can be displayed on the display screen 210 of the user's mobile communication terminal 200.
  • Useful information regarding the growth state that has been handled (as specialized information or intuition) by a specialist can be easily handled by general users without specialized knowledge, and the growth control conditions can be set by themselves.
  • a part of the cultivation control information transmitted from the communication terminal 200 to the cultivation apparatus 300 can be based on the proposed cultivation control information proposed by the automatic feedback by the cloud 500.
  • the user can use the growth control information obtained from other users in at least one of some of the growing processes and at least some of the plurality of growing conditions to be provided at the same time. . For this reason, user's original breeding control information can be constructed easily.
  • the purchased growth control information includes the taste, nutrients, appearance, size, shape, number of purchases, re-purchase rate, purchase layer, and purchase layer, and the growth control information. Since different prices are attached according to the number of purchases and at least one of the purchase layers, it is possible to set prices according to the evaluation of the harvest.
  • the growth information transmitted from the cultivation device 300 of another user is displayed on the display screen 210 of the mobile communication terminal 200 as animation objects 241A,..., 241D created by the cloud 500. Therefore, the current state of growth controlled by other users can be confirmed in a very short time in a highly reliable state. Furthermore, when it is desired to purchase growth control information by other users, it is possible to efficiently access the growth control information for obtaining a good growth result.
  • the lighting devices 310, 310c, 310d, 310e, and 310f in the cultivation device 300 include a light source and substrates 3110, 3110a, 3110b, 3110c, and 3110e that fix the light source, and the substrate 3110, Since 3110a, 3110b, 3110c, and 3110e are constituted by illumination units 3100, 3100a, 3100b, 3100c, and 3100e having shapes that can be expanded by coupling with other substrates, the illumination units 3100, 3100a, 3100b, 3100c, and 3100e are By combining a plurality, it is possible to configure a lighting device having a desired size and shape according to various situations such as plants and / or plant growth places. Therefore, for example, it is possible to ensure good irradiation efficiency and prevent uneven irradiation.
  • the communication terminal 200 receives the growth control information from the short-range wireless communication device, and transmits the received growth control information to the cultivation device 300 via the cloud 500, so that it does not exist in the cloud. It is also possible to acquire the breeding control information.
  • the cultivation system 100 corresponds to a “cultivation system”
  • the cultivation device 300 corresponds to a “cultivation device”
  • the mobile communication terminal 200 corresponds to a “communication terminal”
  • the recording device 400 corresponds to a “recording device”.
  • the cloud 500 corresponds to the “cloud”
  • the illumination devices 310, 310c, 310d, 310e, and 310f correspond to the “illumination device”
  • the images 241A to 241D correspond to “animation objects”.
  • 13, 17, and 18 correspond to the cultivation program and cultivation method.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Mining & Mineral Resources (AREA)
  • Agronomy & Crop Science (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Animal Husbandry (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Cultivation Of Plants (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

ユーザが栽培装置に対して行った制御に関する情報をビッグデータとして活用し、自動解析によって栽培システム内で利用可能な態様でユーザに還元することで、栽培システムの利用を促進し、より有用な植物創出への好循環を生じさせる栽培システム、栽培プログラム、および栽培方法を提供する。栽培システムは100、クラウド500との通信が可能な栽培装置300と通信端末200と含む。栽培装置300は、植物の生育、およびクラウド500への生育情報の送信ならびにクラウドからの育成制御情報の受信を行う。通信端末200は、クラウド500により解析された、生育情報ならびに育成制御情報の少なくともいずれかに関する解析結果の受信、および解析結果に基づく育成制御情報のクラウド500を介した栽培装置300への送信を行う。

Description

栽培システム、栽培プログラム、および栽培方法
 本発明は、野菜、果物、草花等の植物を生育するための栽培装置における栽培システム、栽培プログラム、および栽培方法に関する。
 従来から、栽培装置について多種多様の実験および研究が行われている。特許文献1には、栽培環境を人工的に制御し、育成と観測とを両立する光源を備えた植物栽培システムについて開示されている。
 特許文献1記載の植物栽培システムは、屋内で植物を栽培する植物栽培システムであって、植物を栽培するための仕切られた空間である栽培セルと、植物の栽培を管理する管理手段とを備え、栽培セルは、植物を栽培するための移動可能なラックである栽培ラックと、仕切られた空間への太陽光の入射を遮断する遮光手段を備え、栽培ラックは、植物を栽培する栽培棚と、植物に照射する光を制御する光制御手段とを備え、栽培棚は、光制御手段の制御の下で、複数の発光ダイオードを有する発光体モジュールの照射量を調整することにより植物に光を照射する光源と、発光体モジュールの照射の下で植物を観測して観測データを取得し、取得した観測データを管理部に送信する観測手段とを備え、発光体モジュールは、第1のスペクトルの光を発する1つの第1発光ダイオードと、第1発光ダイオードを中心とする第1円の円周上に配置され、第2のスペクトルの光を発するm(mは2以上の整数)個の第2発光ダイオードと第1発光ダイオードを中心とする第2円の円周上に配置され、第3のスペクトルの光を発するn(nは2以上の整数)個の第3発光ダイオードとを有し、第1のスペクトルと第2のスペクトルと第3のスペクトルとは互いに異なり、第2発光ダイオードは、第1発光ダイオードを始点として各第3発光ダイオードを通る半直線で分割された第1円のn個の弧のそれぞれに数が等しくなるように配置され、管理手段は、観測データを観測手段から取得する受信手段と、受信手段が取得した観測データを記録するライブラリと、受信手段が取得した観測データとライブラリが記録している植物と同種の植物の過去の観測データとを比較して、植物の収穫日を予測する計算手段を備えるものである。
 また、特許文献2には、家庭のベランダやバルコニー等に簡単に設置でき、コンピュータ制御により栽培管理できる栽培ユニットについて開示されている。
 特許文献2記載の栽培ユニットにおいては、培土を充填する栽培ベッドと、栽培ベッドの少なくとも上部に被せるカバー材と、水タンク、液体肥料タンク、該水タンクと該液体肥料タンクに接続して培土に水および液体肥料を供給する配管を備えた灌水・施肥手段と、培土の保水量を測定する水分計と、水分計から入力される測定値に基づいて灌水・施肥手段から供給する水および液体肥料の供給量並びに供給時を、栽培する植物毎に調整して、培土中の保水量を設定量に保持し、栽培ベッドから排水を生じさせないように制御をする栽培管理プログラムを記録するコンピュータを備え、カバー材に透明部と、害虫の侵入を阻止できる網目としたメッシュ張架部と、開閉部を備え、灌水・施肥手段はカバー材若しくは栽培ベッドの外側面、または栽培ベッドの下部に付設して予め一体的に組み立てており、かつ、コンピュータを栽培者が操作可能な位置に付設し、あるいは栽培者のコンピュータと接続可能とし、栽培者が栽培条件の設定を変更可能としているものである。
 さらに特許文献3には、様々な種類の植物に幅広く適用が可能であるとともに、雑菌等の繁殖を抑え、植物の成長を促進して効率良く栽培をおこなうことができる植物栽培システムについて開示されている。
 特許文献3記載の植物栽培システムにおいては、栽培植物が植え付けられ、上下複数段に、且つそれぞれ略水平をなして配設保持される栽培ベッドと、各栽培ベッドの上方に設けられ、栽培植物の成長に応じて上下に移動させられる人工光源と、送風口または送風ファンを有し、各栽培ベッドの一方側から他方側に向かって形成される空気通路に、温度、湿度、CO2濃度等が調整された空気を順次送り込む空調装置と、を備えた植物栽培システムであって、該栽培ベッドが、上部開放箱型の栽培槽と、該栽培槽の上部に嵌着され、該栽培槽の底面との間に、養液の流路を形成するとともに、該流路に向けて植物根が露出するようにして栽培植物を植付状態とする植付パネルと、から構成され、該栽培ベッドに供給される養液が、該流路を連続的に通過して排出された後に循環して再利用されるとともに、該養液が、該流路に間欠的に流入するように制御されているものである。
特開2012-39996号公報 特開2011-36145号公報 特開2010-88425号公報
 しかしながら、特許文献1乃至3の栽培システムのいずれも、身近に栽培装置を設置し、植物の栽培を実施するものである。また、特許文献1乃至3の栽培システムのいずれも、単に各個人が独りで栽培を行なうことができる栽培システムである。
 本発明の目的は、栽培ユニットから遠方にいる場合であっても記録された履歴情報を確認できるとともに植物の生育を実現できる栽培システム、栽培プログラム、および栽培方法を提供することである。
 さらに本発明の目的は、栽培システム、栽培プログラム、および栽培方法が、ユーザが栽培装置に対して行った制御に関する情報をビッグデータとして活用し、自動解析によって栽培システム内で利用可能な態様でユーザに還元することで、栽培システム、栽培プログラム、および栽培方法の利用を促進し、より有用な植物創出への好循環を生じさせることにある。
(1)
 一局面に従う栽培システムは、クラウドとの通信が可能な栽培装置と通信端末と含む。
 栽培装置は、植物の生育、およびクラウドへの生育情報の送信ならびにクラウドからの育成制御情報の受信を行う。
 通信端末は、クラウドにより解析された、生育情報ならびに育成制御情報の少なくともいずれかに関する解析結果の受信、および解析結果に基づく育成制御情報のクラウドを介した栽培装置への送信を行う。
 これによって、ユーザによって制御される栽培装置が送信した生育情報および当該栽培装置へ送信された育成制御情報がクラウドにより解析される。なおかつ、生育情報および育成制御情報の解析結果が、システム内の栽培装置への制御のためにユーザ自身で利用可能な態様で還元される。これによって、ユーザによる栽培システムの利用が促進され、より有用な植物創出への好循環が起こる。
 なお、通信端末には、スマートフォン、タブレット端末、パーソナルコンピュータなどの、クラウド通信可能なデジタル通信機器が含まれる。
 栽培装置から送信された生育情報、クラウドによる解析情報、および通信端末からクラウドへ送信した育成制御情報を記録する記録装置は、クラウドに含まれることが好ましい。
(2)
 クラウドにより解析された解析結果は、クラウドによる自動フィードバックによって提案された育成制御案であってよい。
 この場合、生育状態に応じて育成制御条件をクラウドが自動的に提案するため、ユーザは提案された育成制御情報を選択することにより、クラウドによる解析結果を自身が制御する栽培装置の制御に利用することができる。したがって、ユーザは、育成工程のうち全部または一部の工程、および同時に供すべき複数の育成条件のうち全部または一部の条件の少なくともいずれかを、クラウドの判断に委ねることができる。
(3)
 クラウドにより解析された解析結果は、生育情報の解析結果が簡易表示形式に変換された情報であってよい。
 この場合、生育状態についての解析結果が、ユーザが一見して把握容易な形式で表示されるため、生育状態を容易に把握することができる。特に、たとえば研究者および生産者などの専門家によって(専門情報として、または勘として)扱われていた生育状態に関する有用な情報を、専門知識のない一般ユーザが容易に扱うことができる。
 したがって、簡易表示形式で変換された情報に基づいてユーザが育成制御条件を自ら設定することができる。
 (4)
 通信端末から栽培装置へ送信される育成制御情報のうちの一部は、クラウドによる自動フィードバックによって提案された育成制御情報案に基づいてよい。
 この場合、ユーザは、育成工程のうち一部の工程のみ、および同時に供すべき複数の育成条件のうち一部の条件の少なくともいずれかにおいて、育成制御情報をクラウドの判断に委ねることができる。なお、他の工程および/または他の条件においては、たとえば、自らの判断、自らの経験則、他のユーザの判断、および他のユーザの経験則(他のユーザから入手した育成制御情報を含む)の少なくともいずれかに基づいて育成制御条件を設定することができる。このようにして、ユーザオリジナルの育成制御情報を容易に構築することができる。
(5)
 クラウドを介して一の栽培装置を制御する一の通信端末は、他の通信端末がクラウドを介して制御した他の栽培装置における育成制御情報を入手可能であってよい。この場合において、一の通信端末から一の栽培装置へ送信される育成制御情報のうちの一部が、入手された育成制御情報である。
 この場合、ユーザは、育成工程のうち一部の工程のみ、および同時に供すべき複数の育成条件のうち一部の条件の少なくともいずれかにおいて、他のユーザから入手した育成制御情報を利用することができる。一方、他の工程および/または他の条件においては、たとえば、自らの判断、自らの経験則、およびクラウドの判断の少なくともいずれかに基づいて育成制御情報を設定することができる。なお、育成制御情報の入手には、有償(購入によるもの)および無償(寄贈によるもの)を問わない。
(6)
 クラウドを介して一の栽培装置を制御する一の通信端末は、他の通信端末がクラウドを介して制御した他の栽培装置における育成制御情報を購入可能であてよい。この場合、購入された育成制御情報が、植物の生育による収穫物の味覚、栄養素、外観、大きさ、形状、購入数、再購入率ならびに購入層、および当該育成制御情報の購入数ならびに購入層の少なくともいずれかに応じて異なる値段が付される。
 これによって、収穫物の評価に応じた値段設定が可能である。なお、購入層としては、一般家庭、飲食店、研究者、および農業従事者が挙げられる。また、育成制御情報の値段は、現金および仮想通貨の少なくともいずれかによって取引される、育成制御情報に対する対価である。
(7)
 栽培装置から送信される生育情報は、一の通信端末によって制御される植物の、一の生育過程における異なる時期の複数の画像を含んでよい。この場合、当該複数の画像で構成されるアニメーションオブジェクトがクラウドにより作成され、他の通信端末に表示される。
 これによって、他のユーザは、一のユーザによって制御される生育の現状を、アニメーションオブジェクトによって、きわめて短時間で確認することができる。また、アニメーションオブジェクトはクラウドにより作成されるため、ユーザによる改変のおそれがなく、データの信頼性を担保することができる。
(8)
 他の通信端末は、一の通信端末を含む複数の通信端末によって制御される植物のアニメーションオブジェクトを、互いに比較可能に表示してよい。
 これによって、ユーザは、他の複数のユーザによって制御される複数の生育の現状を、比較可能に表示されたそれぞれのアニメーションオブジェクトによって、きわめて効率よく確認することができる。
 したがって、たとえば他のユーザによる育成制御情報を購入したい場合に、良好な生育結果を得るための育成制御情報に効率よくアクセスすることができる。
(9)
 栽培装置は、植物への光照射を行う照明装置を含み、育成制御情報は、照明装置における光照射制御情報を含んでよい。この場合、照明装置は、光源と、光源を固定する基板とを含み、基板が他の基板との結合により拡張可能な形状を有する照明ユニットにより構成される。
 照明ユニットによって、光照射対象となる植物、および照明装置が設置された栽培装置等の様々な状況に応じ、所望の大きさおよび形状を有する照明装置を構成することができる。したがって、たとえば、良好な照射効率の確保、および照射むらの防止等が可能になる。
(10)
 本発明の栽培システムは、植物の育成制御情報を有する近距離無線通信装置をさらに含んでよく、この場合通信端末は、近距離無線通信装置から育成制御情報を受信し、受信した育成制御情報をクラウドを介して前記栽培装置を制御する。
 これによって、クラウドを介さずに育成制御情報を取得することも可能になる。たとえば、育成の全過程にわたって適用可能な育成制御情報を効率よく習得し、栽培システムで利用することができる。またたとえば、もともとクラウドに蓄積されていない植物についての希少な育成制御情報を近距離無線通信装置から取得し、栽培システムで利用することができる。
(11)
 他の局面に従う栽培プログラムは、栽培装置が、クラウドへの生育情報の送信とクラウドからの育成制御情報の受信を行う処理と;クラウドが、生育情報ならびに育成制御情報の少なくともいずれかを解析する処理と;通信端末が、クラウドによる解析結果の受信、および解析結果に基づく育成制御情報のクラウドを介した栽培装置への送信を行う処理とを含む。
(12)
 さらに他の局面に従う栽培方法は、栽培装置が、クラウドへの生育情報の送信とクラウドからの育成制御情報の受信を行う工程と;クラウドが、生育情報ならびに育成制御情報の少なくともいずれかを解析する工程と;通信端末が、クラウドによる解析結果の受信、および解析結果に基づく育成制御情報のクラウドを介した栽培装置への送信を行う工程とを含む。
 これら栽培プログラムおよび栽培方法によって、ユーザによって制御される栽培装置が送信した生育情報および当該栽培装置へ送信された育成制御情報がクラウドにより解析される。なおかつ、生育情報および育成制御情報の解析結果が、システム内の栽培装置への制御のためにユーザ自身で利用可能な態様で還元される。これによって、ユーザによる栽培システムの利用が促進され、より有用な植物創出への好循環が起こる。
一実施の形態にかかる栽培システムの基本概略の構成を説明するための模式図である。 図1の栽培システムの全体概略を説明するための模式図である。 栽培装置の一例を示す模式図である。 第1実施形態の照明ユニットの模式的正面図である。 照明ユニットを複数連結させた照明装置の一部を示す模式的正面図である。 第1実施形態の照明ユニットの他の例の模式的正面図である。 第1実施形態の照明ユニットのさらなる他の例の模式的正面図である。 第1実施形態の照明ユニットのさらなる他の例の模式的正面図である。 照明装置の他の例の一部を示す模式的正面図である。 照明装置のさらなる他の例の一部を示す模式的正面図である。 照明装置のさらなる他の例の一部を示す模式的斜視図である。 照明装置のさらなる他の例の一部を示す模式的一部切り欠き斜視図である。 栽培システムにおける制御の一例を示すフローチャートである。 携帯通信端末の表示画面の一例を示す模式図である。 携帯通信端末の表示画面の他の例を示す模式図である。 携帯通信端末の表示画面の他の例を示す模式図である。 記録装置の育成制御情報のデータマイニングの一例を示すフローチャートである。 近距離無線通信装置を用いる一例を説明するためのフローチャートである。 携帯通信端末の表示画面の他の例を示す模式図である。 育成制御情報のマーケットのサイトマップの一例を示す模式図である。
 100 栽培システム
 200 携帯通信端末
 300 栽培装置
 310 照明装置
 400 記録装置
 500 クラウド
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
(栽培システムの構成概略)
 図1は、一実施の形態にかかる栽培システム100の基本概略の構成を説明するための模式図であり、図2は、図1の栽培システム100の全体概略を説明するための模式図である。
 図1に示すように、栽培システム100は、携帯通信端末200、栽培装置300および記録装置400を含む。
 携帯通信端末200には、アプリケーションソフトウェア(アプリケーションプログラムとも称呼される、以下、単にアプリと略記する)700がインストールされる。アプリ700は、起動前においては、表示画面210にアイコンとして表示されている。アイコンには、後述のようにクラウド500から情報を受信した場合にアイコンバッジが表示されてもよい。アプリ700を起動させることにより、携帯通信端末200のユーザが自らの操作により栽培装置300を遠隔制御して植物を育成できる。
 栽培装置300は、植物の生育と、クラウド500への生育情報の送信と、クラウド500からの育成制御情報の受信を行う。クラウド500は、栽培装置300から送信された植物の生育情報を解析する。
 携帯通信端末200は、クラウド500による解析結果を受信する。通信端末200は、当該解析結果に基づく育成制御情報をクラウド500を介して栽培装置300へ送信する。栽培装置300へ送信された育成制御情報もまた、クラウド500による解析に用いられる。栽培装置300は、携帯通信端末200から受信した育成制御情報に従い、栽培装置300に設けられた各種機器の制御を行い、植物を育成する。各種機器の詳細については、後述する。
 クラウド500を介して送受信される情報は記録装置400(クラウド500内に存在)に記録され、蓄積される。したがって、記録装置400は、栽培装置300から送信された植物の生育情報および栽培装置300の可動状況を記録するとともに、携帯通信端末200から栽培装置300に送信された育成制御情報を随時記録する。随時記録された生育情報および育成制御情報は、育成履歴情報および制御履歴情報として蓄積される。
 栽培システム100においてはクラウド500を介して情報が送受信されるため、アクセス変動の多い場合であっても容易に対応することができる。
 なお、図1においては、便宜上、1個の栽培装置300で生育する場合について明示したが、実際の栽培システム100は、図2に示すように、ユーザの携帯通信端末200と当該ユーザの所有する1または複数の栽培装置300とがクラウド500を介して多数接続される。
 携帯通信端末200のユーザそれぞれが図1に示したようにクラウド500を介して栽培装置300の制御を行うことにより、記録装置400には、クラウド500を介して送受信されたさまざまなユーザによる膨大量の情報がビッグデータとして蓄積される。クラウド500は、栽培装置300から都度送信された植物の生育情報の解析を行うほか、ビッグデータを利用して生育履歴情報育および制御履歴情報について解析を行い、解析結果を携帯通信端末200に送信することによって、携帯通信端末200のユーザが栽培システム100内で容易に利用することができる態様で解析結果をユーザに還元する。
 このような態様でクラウド500による解析結果がユーザに還元されることにより、ユーザによる栽培システム100の利用が促進される。その結果、たとえば、路地栽培またはハウス栽培で収穫可能であってもいわゆる植物工場では同じように(大きさ、色、形状、種類および再現率などの観点で)収穫することが不可能であった収穫物、路地栽培およびハウス栽培のいずれでも収穫不可能であった収穫物(たとえば、医療、美容、健康補助などの分野で有用な特定の成分を特徴的な量で含む植物)の創出促進が期待できる。
 クラウド500による解析対象の一例である植物の生育情報には、現状の生育状態に関する情報、および育成過程における生育変化に関する情報を含む。
 現状の生育状態に関する情報としては、植物の各器官(葉、軸、花、実、根)の大きさ、数、形状ならびに色、各器官に含まれる栄養状態、病気の有無または程度、および成長障害の有無または程度などの情報が挙げられる。これらの情報は、植物の画像データ、植物または栽培装置300内の環境に関する計量データなどの情報源を解析することにより得ることができる。クラウド500は、これらの情報源を解析して、生育情報として通信端末200へ送信する。
 育成過程における生育変化に関する情報は、上述の生育状態の変化量として導かれる。これにより、植物の各部の大きさ、数、形状ならびに色の変化、各部に含まれる栄養状態の変化、病気の進行または治癒、成長障害の進行または治癒、および植物が取り入れた養分(水、二酸化炭素、養分など)の量を知ることができる。
 クラウドにより解析されたこれらの情報は、通信端末200を利用する一般ユーザが一見して把握容易であるように簡易形式に変換されて表示されることができるため、たとえ一般ユーザが植物について専門知識がなくとも、生育情報を容易に扱うことができる。このため、ユーザが次に栽培装置300に送信すべき育成制御情報を自力で設定することができる。
 なお、簡易表示形式としては、解析結果を単純化して示したアイコン、テキスト、数値、およびグラフ等により示された形式が挙げられる。
 クラウド500による解析対象の他の例である育成制御情報は、栽培装置3300に設けられた各機器に対する制御条件、制御を行うタイミング、および制御を解除して育成を終了(収穫)するタイミングについての情報を含む。クラウド500は、栽培装置300から受信した生育情報について、すでに記憶装置400に蓄積された生育情報および育成制御情報を加味して分析を行い、次に推奨される育成制御案を自動フィードバックにより提案する。このため、ユーザは、次に栽培装置300に送信すべき育成制御情報をクラウドの判断に委ねることができる。
(栽培装置)
 図3は、栽培装置300の一例を示す模式図である。
 図3に示すように、栽培装置300は、照明装置310、枠体320、撮像装置330、栽培容器340、環境制御装置350,360を含む。
 栽培装置300の枠体320は、栽培空間として密閉空間または開放空間を構成する構造を有し、栽培空間を上下段に配し、それぞれの栽培空間に栽培容器340をそれぞれ1個配設する。それぞれの栽培空間は、太陽光が遮断されていることが好ましい。
 栽培容器340で栽培される植物は、野菜、花、草、果物などを含む。これらの植物は、いわゆる植物工場で収穫できることがわかっているものに限られず、路地栽培またはハウス栽培で収穫可能であってもいわゆる植物工場では同じように(大きさ、色、形状、種類および再現率などの観点で)収穫することが未知である植物、および、路地栽培およびハウス栽培のいずれでも収穫不可能であった植物(たとえば、医療、美容、健康補助などの分野で有用な特定の成分を特徴的な量で含む植物)であってもよい。
 照明装置310、撮像装置330、栽培容器340、環境制御装置350,360は、ユーザが所望の種類のものを選択することでカスタマイズすることもできる。
 図3に示すように、上下段の栽培空間それぞれに撮像装置330が配設される。撮像装置330は、例えば、ビデオカメラ、デジタルカメラであってもよいし、赤外線カメラ、サーモカメラ、光合成量測定カメラ、その他生育測定が可能なカメラであってもよい。これらのカメラによって得られる画像は、クラウド500内の記録装置400に記録されるとともに、クラウド500によって、植物の各器官(葉、軸、花、実、根)の大きさ、数、形状ならびに色、各器官に含まれる栄養状態、病気、および成長障害について定性的および/または定量的に自動解析される。自動解析の結果は、記録装置400に記録されるとともに、育成制御案として、または簡易表示形式として、ユーザへ還元される。したがって、たとえば研究者および生産者などの専門家によって(専門情報として、または勘として)扱われていた生育状態に関する有用な情報を、専門知識のないユーザでも利用することが可能になる。
 撮像装置330は、植物の生育状況を連続して、または所定の間隔で撮像することができる。
 栽培容器340は、ガラスまたはプラスチック製の水耕栽培用の容器である。栽培容器340は、水耕栽培の容器の他、人工土壌または天然土壌を入れる植木鉢など、栽培する植物の種類などによって適宜選択されてよい。
 環境制御装置350は、栽培空間の気相部分に設置されるものであり、たとえば、二酸化炭素濃度、気温、湿度、照度、微小粒子状物質などを計測する。さらに、二酸化炭素濃度、気温、湿度、微小粒子状物質などの気相構成要素を制御する機構を有する。具体的に環境制御装置350としては、二酸化炭素濃度測定器と二酸化炭素供給装置、温度計とエアコン、湿度計と加湿器および/または除湿器、空気清浄機が挙げられる。
 上述の他、環境制御装置350としては、気流制御が可能な送風ファンも挙げられる。
 環境制御装置360は、栽培空間の根圏付近に設置されるものであり、たとえば、水温、水中成分などを測定する。さらに、水温、養分などの根圏環境構成要素を制御する機構を有する。具体的に環境制御装置360としては、水温計と水温ヒータおよび/または水温クーラ、水中成分測定器と養液供給装置および/または水中成分除去装置が挙げられる。
 上述の他、環境制御装置360としては、水流制御が可能な水流発生装置も挙げられる。
 環境制御装置350,360としては、放射線量計が設けられていてもよい。この場合、所定の線量を超えるとアラームが携帯通信端末200に送信されてもよい。
 さらに、それぞれの栽培空間には、重量計が設けられてもよい。また、それぞれの栽培空間には、自動収穫機が設けられてもよい。
 照明装置310は、光源として、たとえば、発光ダイオード(以下、単にLEDと略記する)、有機エレクトロルミネッセンス、高圧ナトリウムランプ、メタルハライドランプ、および蛍光ランプから選択されてよい。
 照明装置310の一例として、図4に示す照明ユニット3100から構成されるものであってよい。図4は、照明ユニット3100の模式的正面図である。照明ユニット3100は、基板3110と、基板3110に実装されたLED3120とを含む。図5は、照明ユニット3100を複数連結させて拡張することにより構成される照明装置310の模式的正面図である。
 基板3110は、正六角形の形状を有するリジッド回路基板、フレキシブル回路基板、またはリジッドフレキシブル基板である。基板3110の大きさは、正六角形の一片が2.5cmである。
 基板3110の材料には、例えば、セラミックス、合成樹脂および金属から当業者によって適宜選択されるものが含まれてよい。より具体的には、ガラスエポキシ基板及びガラスコンポジット基板などの複合材料が用いられてよい。また、遮熱塗料の塗布等による表面加工処理、絶縁層等による積層処理がなされたものであってよい。
 基板3110の一方の面に、LED3120として、LED3121,3122,3123,3124の4種類の単色LEDが固定される。これらLEDとしては、電極を備えたパッケージ材料内にLED素子が実装された、表面実装型のものが用いられる。LED3121,3122,3123,3124がそれぞれ発する光の主波長は互いに異なる。具体的には、LED3121は赤色光(以下、赤色LED3121と略記する)、LED3122は青色光(以下、青色LED3122と略記する)、LED3123は赤外光(以下、赤外LED3123と略記する)、LED3124は白色光(以下、白色LED3124と略記する)を発する。
 赤色LED3121、青色LED3122および赤外LED3123は、1枚の基板3110につきそれぞれ2個ずつ、合計6個固定される。6個のLEDはいずれも基板3110の中心から等しい距離で配置され、それぞれ、異種のLEDが隣り合うように、正六角形の各頂点付近に互いに等間隔で配置される。白色LED3124は1枚の基板3110につき1個、基板3110の中央に配置されて固定される。
 赤色光、青色光および赤外光は、植物が持つ特定の受容体によって認識されることが知られている。植物受容体に認識される光の特定の主波長と特定の生育反応(たとえば、種子発芽、花芽分化、開花、子葉展開、葉緑素合成、および節間伸長を含む光形態形成をもたらす生体反応、ならびに光合成)との間には相関関係が見出されている。
 基板3100の各辺には端子3130が設けられる。さらに基板3110の回路は、端子3130と赤色LED3121、青色LED3122、赤外LED3123および白色LED3124それぞれのパッケージ電極との間を電気的に接続する。基板3110の回路および端子3130は、赤色LED3121、青色LED3122、赤外LED3123および白色LED3124がそれぞれ独立して制御可能であるように設計される。一方、同じ色のLEDは、それぞれ連動して制御可能であるように設計されてもよいし、それぞれ独立して制御可能であるように設計されてもよい。
 独立して制御可能であるような設計は、独立制御すべきLEDの種類および/または数に応じた数の制御系を、それぞれの制御系が並列して機能するように備えることによってなされる。
 照明ユニット3100は、図5に示すように、基板3110が、他の基板3110と、各辺が互いに突き合わされるように結合され、照明装置310を構成する。基板3110が互いに結合されることにより、基板3110表面が二次元的に拡張され、基板3110が一面に敷き詰められる態様となる。このため、照明装置310全体におけるLED3120の配置が好ましく分散され、照射光の均一化を図ることができる。
 この場合においては、基板3110の端子3130と、他の基板3110の端子3130とが接続される。各辺には、基板3110同士が互いに機械的結合が可能となるよう、雄型結合部3111および雌型結合部3112が形成されていてよい。これにより、照明ユニット3100と他の照明ユニット3100とは、直接、電気的および機械的に連結される。
 照明装置310における各照明ユニット3100は、すべてデイジーチェーン接続されている。具体的には、1個の照明ユニット3100に設けられた端子3130のうち2個のみが、電気的および機械的な結合に寄与する。その他の端子3130が存在する辺においては、雄型結合部3111および雌型結合部3112によって機械的にのみ結合している。
 また、一の照明装置310には、デイジーチェーン接続による直列回路がただ1つ存在してもよいし、個別に制御可能な直列回路が複数存在してもよい。
 携帯通信端末200は、赤色LED3121、青色LED3122、赤外LED3123および白色LED3124それぞれを独立して制御する。一方、同じ色のLEDは、それぞれ連動して制御してもよいし、それぞれ独立して制御してもよい。
 光源の制御においては、主として明るさを調節する。明るさの制御は、電流値またはパルス幅を256階調(0から255)で変えることによって行われる。具体的には、開花時期、結実時期、植物形態および栄養成分等の調節を行う目的で、植物の様々な光応答反応(生育反応)を利用し、植物の種類および生育ステージ等に応じて特定の主波長の光を単独または組み合わせて照射することができる。
 また、携帯通信端末200は、一の照明装置310が複数の直列回路を有する場合、それぞれの直列回路を独立して制御することもできる。
 上述のような制御は、携帯通信端末200によるクラウド500を介した遠隔操作によって行われる。
[他の例]
 図6は、照明ユニット3100の他の例である照明ユニット3100aの模式的正面図である。照明ユニット3100aは、正六角形の基板3110の代わりに正方形の基板3110aを用いるものである。基板3110aの一方の面には、赤色LED3121、青色LED3122、白色LED3124の3種類の単色LEDが固定される。このうち、赤色LED3121および青色LED3122は、1枚の基板3110aにつきそれぞれ2個ずつ、合計4個固定される。4個のLEDそれぞれは、異種のものが隣り合うように、正方形の各頂点付近に互いに等間隔で配置される。白色LED3124は1枚の基板3110aにつき1個、正方形の中央に配置されて固定される。
 図7は、照明ユニット3100の他の例である照明ユニット3100bの模式的正面図である。照明ユニット3100bは、正六角形の基板3110の代わりに、同形の点対称曲線4本で外周が構成される変形矩形状の基板3110bを用いるものである。基板3110bの一方の面には、赤色LED3121、青色LED3122、赤外LED3123、白色LED3124および緑色LED3125の5種類の単色LEDが固定される。緑色光も、赤色光、青色光および赤外光と同様、植物の生育反応に関与するものである。赤色LED3121、青色LED3122、赤外LED3123および緑色LED3125は、1枚の基板3110bにつき1個ずつ、それぞれ変形矩形の各頂点付近に等間隔で配置される。白色LED3124は1枚の基板3110bにつき1個、変形矩形の中心に配置されて固定される。
 また、基板3110bの外周には、他の基板3110bとの電気的および機械的接続を可能にする端子3130bと、他の基板3110bとの機械的接続を可能にする雄型結合部3111bおよび雌型結合部3112bが形成される。
 図8は、照明ユニット3100の他の例である照明ユニット3100cの模式的正面図である。照明ユニット3100cは、正六角形の基板3110の代わりに、欠切部3113を有する基板3110cを用いるものである。欠切部3113は、基板3110cの六角形の頂点部それぞれに設けられている。
 また、基板3110cの外周には、他の基板3110cとの機械的接続を可能にする雄型結合部3111cおよび雌型結合部3112cが形成される。
 図9は、照明装置310の他の例である照明装置310cの模式的正面図である。照明装置310cは、照明ユニット3100cが複数連結されて構成されるものである。照明装置310cは、複数の基板3110cが結合されることによって、拡張された表面が全て基板3110cで敷き詰められることなく、基板3110cに形成された欠切部3113によって囲まれた開口部Sが形成される。このような開口部Sの形成は、熱放出の観点から好ましい場合がある。
 図10は、照明装置310の他の例である照明装置310dの模式的正面図である。照明装置310dは、照明ユニット3100同士が複数個連結されることによって、全体としてリング状を形成しているものである。
 これによって、少ない照明ユニット数で広い範囲を照射することができる。また、類似の態様として、より少ない数の照明ユニット3100を用いてリング状(または内側が照明ユニット3100によって敷き詰められた円状)の照明装置を構成した場合、小型の植物栽培装置で栽培される植物に対してまんべんなく照射することができる。
 図11は、照明装置310の他の例である照明装置310eの模式的斜視図である。照明装置310eは、互いに異なる形状の基板3110,3110eをそれぞれ有する照明ユニット3100,3100eが互いに組み合わされて連結される。これによって、基板3110,3110eの表面が三次元的に拡張され、多面体の少なくとも一部(以下、面構造体と記載する)を形成する。このとき、面構造体は、LED3120が面構造体外部表面に固定されているように形成される。これにより、照明装置310eにおいては、面構造体の外部表面に固定されたLED3120が面構造体外部の多くの方向を向いている。このため、LED3120として指向性が強いものを使用したものであっても、容易に広範囲を照射することが可能である。
 図12は、照明装置310の他の例である照明装置310fの模式的一部切り欠き斜視図である。照明装置310fは、互いに異なる形状の基板3110,3110eをそれぞれ有する照明ユニット3100,3100eが互いに組み合わされて連結される。これによって、基板3110,3110eの表面が三次元的に拡張され、多面体の少なくとも一部(以下、面構造体と記載する)を形成する。このとき、面構造体は、LED3120が面構造体内部表面に固定されているように形成される。これにより、照明装置310fにおいては、面構造体の内部表面に固定されたLED3120の全てが面構造体内部を向いている。したがって、面構造体内部に照射対象である植物を配置することによって、照射対象を包囲または被覆し、集中的な照射を行うことが可能である。面構造体を照射対象に近い大きさで構成すると、まんべんなく近接照射を行うことが可能である。
[変形例]
 上述の照明装置の例において、基板3110,3110a,3110eの形状として正方形、正五角形、正六角形を挙げたが、他の多角形、好ましくは正多角形であってもよい。また、多角形としては、互いに結合することにより拡張可能な形状であればどのような形状で合ってもよく、凸多角形及び凹多角形も問わない。
 さらに、上述の例において、基板3110bの形状として変形矩形状を、基板3110cの形状として変形正六角形を挙げたが、他の変形多角形であってもよい。変形多角形には、多角形の頂点同士を直線の代わりに曲線で結んで構成される形状、および多角形の一部に各切部が形成された多角形が含まれる。
 上述の例において、欠切部3113が、基板3110cの正多角形(正六角形)の頂点に凹部として形成された例を挙げたが、欠切部3113の基板上の位置および形状はこれに限定されない。たとえば、基板内部に形成された貫通孔であってもよいし、基板の形状における頂点以外の端部に形成された凹部であってもよい。たとえば凹多角形は、欠切部を有する基板形状の一例である。欠切部を有する基板を用いる場合、複数の基板が結合されることにより、拡張された表面が全て基板で敷き詰められることなく必然的に開口部が形成される。このような開口部の形成は、熱放出等の観点から好ましい場合がある。
 上述の例において、LED3120としては表面実装型のものを挙げたが、砲弾型LEDその他いかなる形状のLEDであってもよい。また、固定方法としては基板表面に直接実装する態様を挙げたが、LED3120の固定態様は着脱可能のもの、例えばソケットを使用するものであってもよい。
 上述の例において、光源として単色光源を挙げたが、光源は、単色光源および複色光源を問わない。単色光源は、1個の光源が発色可能な光の主波長が1種であることに対し、複色光源は、1個の光源が発色可能な光の主波長が複数である。複色光源が発する主波長の制御は、当業者によって適宜行われる。
 基板上に固定される光源は、一部またはすべてが複色光源であってよい。基板上に固定される光源のすべてが複色光源である場合、少なくとも2個の光源がそれぞれ独立して、少なくとも互いに異なる主波長の光を発するように制御される。具体的には、独立して制御すべき光源それぞれが発する光の主波長、または主波長および明るさが制御される。
 これによって、例えば図4、図6、図7、図8に示すように1個の照明ユニット内で複数の主波長を有する光を発生させることができる。
 また、基板に固定される光源の数は上述の例に限定されない。具体的には基板の表面積などの要因によって異なり得るが、例えば、2個以上20個以下、2個以上15個以下、または2個以上10個以下であってよい。
 1個の基板の表面積も特に限定されないが、例えば、150cm以下である。当該範囲に含まれる上限値は、130cm、100cm、50cm、30cm、15cm、10cmまたは5cmであってもよい。当該範囲に含まれる下限値は特に限定されないが、例えば、1cm、5cm、10cm、15cm、30cm、50cm、100cmまたは130cmであってもよい。基板の表面積が小さい照明ユニットほど、照明装置を構成する際の自由度が大きくなる点で好ましい。たとえば、図10に例示するリング状など特定の平面形状の外周および/または内周を、滑らかな曲線により近くなるように構成することができる。また、図11に例示する特定の立体形状の外表面及び図12に例示する特定の立体形状の内表面を、滑らかな曲面により近くなるように構成することができる。さらに、複雑な凹凸外周および/または凹凸内周を有する平面形状、または複雑な凹凸表面を有する立体形状を構成することがより容易になる。
 基板に固定された各光源の配置ピッチも特に限定されない。具体的には光源の大きさによって異なりうるが、照明ユニット内で、または照明装置全体で、隣り合う光源間の最短中心間距離の平均が、たとえば光源の最大径の5倍以下、3倍以下、2倍以下、1.5倍以下または1.3倍以下であることが好ましい。当該範囲に含まれる下限値は特に限定されないが、例えば光源の最大径と同じ長さである。
 ここで、光源間の最短中心間距離とは、一の光源と、当該一の光源と隣り合う他の光源のうち当該一の光源の最も近くに存在する光源との、それぞれの中心を結ぶ距離である。照明装置においては、当該一の光源と当該隣り合う他の光源とは、両方とも同一照明ユニット内に存在する場合と、それぞれ隣接する異なる照明ユニット内に存在する場合とがある。また、光源の最大径とは、基板面と並行な方向における最大径である。
 あるいは、照明ユニット内で、または照明装置全体で、隣り合う光源間の最短中心間距離の平均値が、50mm以下、30mm以下、20mm以下、10mm以下または5mm以下であってよい。当該範囲に含まれる下限値は小さいほど好ましい場合があり、特に限定されるものではないが、たとえば0.1mmである。
 さらに、照明装置全体において、光源の配置の分散は均一に近いことが好ましい。つまり、照明装置の光源から発せられる異なる主波長の光それぞれが、照射対象表面において互いに混合されるように、光源が配置されていることが好ましい。具体的には、照明装置全体において、全ての光源間の最短中心間距離が同じであるほど好ましい。つまり、照明装置全体における光源間の最短中心間距離の標準偏差が0であることが最も好ましく、0に近いほど好ましい。
 たとえば、照明装置全体において、最短中心間距離の最小値に対する最短中心間距離の最大値の比(最短中心間距離の最大値/最短中心間距離の最小値)が、1以上1.5以下、好ましくは1以上1.3以下、より好ましくは1以上1.2以下である。
 これによって、複数の異なる主波長の光の均一化を図ることができる。光の均一化によって、同じ条件で植物生育を制御した場合の生育再現性を良くすることができる。
 上述の例において、照明装置310,310c,310d,310e,310fにおけるそれぞれの照明ユニット3100,3100c,3100e同士の電気的接続としてデイジーチェーン接続を挙げたが、スター型接続であってもよい。
 上述の例において、照明装置310e,310fの面構造体は、複数の形状の基板3110,3110eを有する照明ユニット3100,3100eの組み合わせで構成されるものを挙げたが、同一の形状の基板を有する照明ユニットから構成されてもよい。
 照明ユニット3100,3100a,3100b,3100c,3100eによって、以下の効果が奏される。
 照明ユニット3100,3100a,3100b,3100c,3100eにおいては、1つの照明ユニット3100中に、互いに異なる主波長の光を発する複数種のLED3120が含まれ、且つ基板3110,3110a,3110b,3110c,3110eが拡張可能であるため、照明ユニット3100,3100a,3100b,3100c,3100eを複数結合させることにより、植物および/または植物生育場所等の様々な状況に応じ、所望の大きさおよび形状を有する照明装置を構成することができる。
 また、基板3110,3110a,3110eが多角形であるため、照明ユニット3100,3100a,3100eの形状を単純にすることができ、照明ユニット3100,3100a,3100eの拡張も容易に行うことができる。
 特に、基板3100は六角形であり、基板3100cは変形正六角形であるため、照明ユニット3100の拡張により構成される照明装置310,310c,310dの形状について高い自由度を得られる。
 照明ユニット3100,3100a,3100b,3100c,3100eにおいては、LED3120が赤色光、青色光、緑光および赤外光から選ばれる光を発するため、植物生育用途に好ましく適用できる。また、白色LED3124を使用することにより、生育中の植物の色の識別が容易になる。
 照明ユニット3100,3100a,3100b,3100c,3100eにおいては、複数種のLED3120がそれぞれ個別に明るさ制御されるため、植物の種類および/または生育ステージに応じて様々なパターンの色を照射することが容易になる。
 照明ユニット3100,3100a,3100b,3100c,3100eにおいては、光源としてLED3120が用いられているため、照明ユニット3100,3100a,3100b,3100c,3100eの省エネルギー化および長寿命化を図ることができる。
 照明装置310,310c,310d,310e,310fは、照明ユニット3100,3100c,3100eが互いにデイジーチェーン接続されているため、電気経路を簡素にすることができる。
 照明装置310e,310fは、基板3110,3110eが互いに異なる形状を有しており、照明ユニット3100,3100eの組み合わせ拡張により形状の自由度が高い。
(栽培システムの基本プログラム)
 続いて、栽培システムの動作概略について説明を行なう。まず、図13は、栽培システム100における制御の一例を示すフローチャートである。また、図14は、携帯通信端末200の表示画面210の一例を示す模式図であり、図15は、携帯通信端末200の表示画面210の他の例を示す模式図であり、図16は、携帯通信端末200の表示画面210の他の例を示す模式図である。
 図1に示した、携帯通信端末200の表示画面210のアプリ700が、ユーザにより起動された場合、図13に示すように、処理が開始される。
 まず、栽培装置300からクラウド500を介して、植物の現状についての生育情報を携帯通信端末200へ送信する(ステップS1)。栽培装置300からクラウド500へ送信された生育情報およびクラウド500から携帯通信端末200へ送信された生育情報は、記録装置400に記録される。
 携帯通信端末200は、受信した植物の生育情報を表示画面210に表示する(ステップS2)。
 例えば、図14に示すように、携帯通信端末200の表示画面210には、観察画面が表示される。図14の表示画面210には、上段の植物の画像241、現在の環境制御装置350,360の計測結果242が表示される。
 また、画面切替えコマンド243を選択することにより、下段の植物の情報に切り替えることができる。画像241を選択することにより、過去1日、過去1週間、過去1月の画像データを連続表示させ、植物が生長する様を短時間で観察することができる。また、画像241が動画データの場合には、早送り再生、一時停止などを選択することができる。
 環境制御装置350,360の測定結果は、図14に示すように現状のもののみであってもよいし、過去の測定結果に基づいて経時的に表示(たとえばグラフ表示などの簡易表示)されたものであってもよい。これによって、ユーザは、環境変化を容易に把握することができる。環境制御装置350,360の測定結果は、クラウド500による自動解析結果として表示される。
 さらに、図14の表示画面210においては、クラウド500によって提示される育成制御案にアクセスできるアイコンが表示されてもよい。育成制御案は1または複数が提示されてよい。育成制御案が複数提示される場合は、植物の生育状態を複数想定し、想定されたそれぞれの生育状態を導くために推奨される育成制御案が提示されてよい。ユーザは、提示された育成制御案を選択することによって、後述のステップS3以降の処理を行うための育成制御情報を決定することができる。
 上記の育成制御案に代えて、またはそれに加えて、後述のマーケットサイトへアクセスできるアイコンが表示されていてもよい。ユーザは、マーケットサイトから育成制御情報を購入することによって、後述のステップS3以降の処理を行うための育成制御情報を決定することができる。
 さらに、図14に示す画像241に加えて、クラウド500による自動解析結果が表示(好ましくは簡易表示)されていてもよい。これによって、ユーザは生育状況を把握し、後述のステップS3以降の処理を行うための育成制御情報を自力で判断して決定することができる。
 以上のようにして、ユーザは、携帯通信端末200の表示画面210を確認し、植物の生育状況を把握し、育成制御情報を決定する。
 なお、栽培システム100において、ユーザは、育成制御情報を決定するために、完全マニュアルモード、完全オートモード、およびハイブリッドモードを選択することができる。
 完全マニュアルモードにおいては、ユーザは、育成過程の全ての工程において全ての育成制御情報の決定を自力で行う。したがって、ユーザオリジナルの育成制御情報が構築される。この場合、クラウド500による育成制御案が表示されないように設定することができる。
 完全オートモードにおいては、ユーザは、育成過程の全ての工程において全ての育成制御情報をクラウド500による育成制御案、または、購入した育成制御情報に委ねる。したがって、すでに構築されている育成制御情報が再生される。
 ハイブリッドモードにおいては、ユーザは、指示すべき育成制御情報として、自力での判断によって決定する育成制御情報、クラウド500によって提示される育成制御案、および購入した育成制御情報を任意に組み合わせることができる。したがって、育成過程の一部の工程、および/または同時に送信する複数の育成制御情報の一部に、異なる手法で決定された育成制御情報が用いられる。これによって、すでに構築されている育成制御情報から膨大な育成制御情報のバリエーションがあらたに構築される。
 育成制御情報の決定の際、たとえば図15に示すように、表示画面210にコントロール画面が表示される(ステップS3)。
 図13に示すように、携帯通信端末200は、コントロール画面を操作して所望の育成制御条件に調整し、および/または、コントロール画面において自動的に調整された育成制御条件を許可し、育成制御情報をクラウド500経由で栽培装置300へ与える(ステップS4)。
 栽培装置300は、携帯通信端末200からの指示を受信する(ステップS5)。栽培装置300は、育成制御情報に従い、照明装置310、撮像装置330、環境制御装置350,360を制御する(ステップS6)。
 ここで、ステップS3乃至ステップS6までの処理の具体例について説明する。例えば、図15に示すように、栽培装置300の照明装置310の設定を制御する場合、赤色LED3121の調整を調整部225で行い、青色LED3122の調整を調整部226で行い、赤外LED3123の調整を調整部227で行い、白色LED3124の調整を調整部228で行い、一日の照射時間を調整部229で行なう。
 また、図16で示すように、表示画面210の撮像装置330の設定は、秒単位、分単位、時単位、日単位、週単位、月単位、年単位を選択する選択ボックス231、各単位の数値を入力する入力ボックス232および白色LED3124を撮像のタイミングに連動して発光させるか否かのチェックボックス233を有する。
 白色LED3124の連動点灯は、画像データを撮像する場合に、植物の色を明確に撮像することができる点で好ましい。
 例えば、入力ボックス232に「1」を入力し、秒単位の選択ボックスにチェックを入れた場合、1秒毎に撮像が行なわれ、入力ボックス232に「3」を入力し、分単位の選択ボックスにチェックを入れた場合、3分毎に撮像が行なわれる。
 栽培装置300は、図16の表示画面210で指示された育成制御情報に従い撮像装置330を制御する。
 なお、画像データは所定の間隔で撮像することにより得られるものに限られず、連続的に撮影された動画データであってもよい。
 また、携帯通信端末200のアプリ700は、表示画面210に、環境制御装置350,360を制御するためのコントロール画面も表示可能である。この場合、表示画面210の具体的内容は、図15に準じて当業者が適宜決定できるため説明を省略する。栽培装置300は、表示画面210で指示された育成制御情報に従い環境制御装置350,360を制御する。
 上述の育成制御情報は、栽培装置300の上下段に配置された栽培空間それぞれに対して個々に送信されることによって、それぞれの栽培空間を独立して制御することができる。
 携帯通信端末200は、クラウド500を介して育成制御情報を栽培装置300へ送信し(ステップS7)、栽培装置300へ送信された育成制御情報の全ては、記録装置400に記録される(ステップS8)。
 さらに、育成制御情報送信後の栽培装置300の状況を、ステップS1およびステップS2と同様にして確認してもよい。
 最後に、図13に示すように、携帯通信端末200のアプリ700が終了したか否かを判定する(ステップS9)。アプリ700が終了されていないと判定された場合には、ステップS1の処理から再度、処理を繰り返す。一方、アプリ700が終了したと判定された場合には、処理を終了する。
(育成制御情報のデータマイニング)
 記録装置400に記録された育成制御情報は、クラウド500による解析において、データマイニングが行われる。図17は、記録装置400の育成制御情報に関するデータマイニングの一例を示すフローチャートである。
 図17に示すように、クラウド500内の記録装置400に記録された育成制御情報を収集する(ステップS11)。
 収集された育成制御情報は、その実績に従い、植物の種別、植物の生育段階、植物の最終形態の項目で区分される(ステップS12)。
 植物の種別の区分の例としては、大区分で野菜、果物、草、木、および花等、小区分でキャベツ、レタス、およびサニーレタス等が挙げられる。植物の生育段階の区分の例としては、種蒔期、苗期、成長期、収穫期等が挙げられる。植物の最終形態の区分の例としては、収穫物の大きさ、形状、色、成分(糖分、酸などの栄養素)が挙げられる。成分による区分に加えて、またはそれに代えて、嗜好(甘味、酸味、苦味、辛味、渋味などの味覚、および嗅覚など)で区分されてもよい。
 次に、それらの区分により分けられた育成制御情報の統計的処理、たとえば最適化を行う(ステップS13)。なお、統計的処理の手法はこれに限定されるものではなく、平均化その他の統計的処理法が任意に行われてよい。
 データマイニングの結果は、育成制御情報の解析結果としてクラウド500を介し記録装置400に記録される(ステップS14)。
(近距離無線通信装置から育成制御情報を読み込む)
 図18は、栽培システム100において近距離無線通信装置を用いる一例を説明するフローチャートである。
 例えば、近距離無線通信装置であるNFC(Near field communication)タグは、植物の種苗を販売する販売店の棚、または当該植物の種苗の袋等に取り付けられている。
 この場合、NFCタグには、陳列されている棚、または袋内に収容された種苗に関する育成制御情報が記録されている。
 ユーザは、種苗を購入する場合、取り付けられたNFCタグを携帯通信端末200で読み取る(ステップS21)。次いで、生育制御情報を携帯通信端末200内に記録する(ステップS22)。
 次いで、アプリ700を起動し、当該育成制御情報を選択する(ステップS23)。
 最後に、当該育成制御情報を、購入した種苗を植えた栽培装置300へ送信(ステップS24)し、生育を行うことができる。この場合、ユーザは、購入した育成制御情報の全てを完全オートモードで再生してもよいし、育成制御情報の一部をハイブリッドモードで改変してもよい。
 上記の他、NFCタグに育成制御情報にアクセスするためのアドレスが記録されていてもよい。この場合、ユーザは当該アドレスを取得し、当該アドレスにアクセスすることで育成制御情報を入手することができる。
 さらに上述の他、携帯通信端末200にNFCの通信装置が取り付けられている場合には、ユーザ間で育成制御情報を送受信してもよい。
(他のユーザの生育情報および育成制御情報の閲覧)
 図19に、栽培システム100において他のユーザの生育情報および育成制御情報を閲覧する場合の携帯通信端末200の表示画面210の一例を示す。
 表示画面210には、複数のユーザA,B,C,Dがそれぞれの携帯通信端末200で制御している栽培装置300内の植物の生育情報が表示される。生育情報としては、たとえばユーザAが育成している植物の画像241Aおよび計測結果242Aが表示され、他のユーザについても同様の表示がされる。
 この場合、植物の画像241Aは、育成過程における異なる時期の複数の画像が時系列順にコマ送り表示されるGIFアニメーションオブジェクトとして表示される。GIFアニメーションオブジェクトを構成する画像の数は、たとえば4枚以上8枚以下、好ましくは5以上7枚以下、一例として6枚である。時系列順で最後に表示される画像を、最新の画像とする。画像241Aは、栽培装置300からクラウド500が受信した画像データをクラウド500が加工して作成するものであるため、当該ユーザよって改変されるおそれがない。このようなGIFアニメーションオブジェクトは、他のユーザについても同様に表示され、それらが比較可能に並べられて表示される。このため、どのユーザが育成している植物が現在までどのように生長しているかを互いに比較しながら、容易にかつ効率よく把握することができる。
 ユーザは、図19の表示画面210において、好ましく育成されていると判断したデータの表示部分を選択することによって、他のユーザがそのように育成するために指示した育成制御情報にアクセスし、入手することができる。
(育成制御情報の提供および入手)
 育成制御情報は有償および無償を問わない。
 有償か無償であるかは、育成制御情報を提供したユーザ自身が選択することができる。
 あるいは、提供された当初は育成制御情報は無償であり、当該育成制御情報が他のユーザによって完全再生モードで用いられるようにしてもよい。この場合、他のユーザによって完全再生モードにより当該育成制御情報がもたらす育成過程および/または収穫物について評価がなされ、一定の評価基準(たとえば、所定の数だけ肯定的な評価を得ること)をクリアしたことを条件に、有償化することができる。これによって、有償の育成制御情報の信頼性を担保することができる。
 さらに、提供した育成制御情報が他のユーザによって改変されることを許可するか否かについても、ユーザが選択することができる。
 ユーザは、不特定多数の他のユーザに自らの育成制御情報を開示してよいことを宣言してもよいし、特定の他のユーザのみに開示が出来るように、当該他のユーザが極秘に知り得るパスワードを設定してもよい。
 育成制御情報が有償である場合、値段は、さまざまな条件に応じて付されてよい。
 値段を差別化する条件としては、当該育成制御情報によって育成された収穫物の味覚、栄養素、外観、大きさ、および形状などの評価実績が挙げられる。これらの条件それぞれにランク付けがされており、ランクに従って異なる値段を付すことができる。なお、評価は、ユーザによってなされた主観的な評価が平均化などにより統計処理されたものであってもよいし、評価機関によって公正になされたものであってもよいし、栽培装置300から取得した画像データの解析からクラウド500によって自動的に評価されたものであってもよい。
 また、値段を差別化する条件としては、当該育成制御情報によって育成された収穫物の購入数、再購入率、購入層など、および当該育成制御情報自体の購入数および購入層などの購入実績も挙げられる。たとえば、購入数および/または再購入率がより高いものがより高額となるように値段を付すことができる。購入層としては、一般家庭、飲食店、研究者、農業従事者などが挙げられる。たとえば、一般家庭で購入された情報はより低額に、飲食店のうちたとえば料亭などの高級店で購入された情報はより高額に、研究者によって購入されたたとえば希少な情報はより高額に設定することができる。
 また、育成制御情報は、現金および仮想通貨の少なくともいずれかによって取引されてよい。仮想通貨は、栽培システム100の利用実績、育成制御情報の購入実績、他のユーザへの育成制御情報の無償提供の実績などによりユーザが取得できるポイントであってもよい。
 また、栽培システム100に最初に提供された時から一定の期間が経過した育成制御情報は、パブリックドメインとして無償化することもできる。これによって、ユーザによって新たな育成制御条件の探索が誘発され、植物育成技術を効率的に向上させることができる。
 図20は、育成制御情報を入手するためのマーケットのサイトマップの一例を示す模式図である。
 マーケットサイト555は、栽培システム100において携帯通信端末200によってユーザがアクセス可能であり、所望の項目をたどっていくことにより、記録装置400に蓄積された多数の育成制御情報から、所望の育成制御情報を選定することができる。
 マーケットサイト555は、栽培システム100のオーナーのサイトであってもよいし、種苗販売業者または農業協同組合のサイトでもよいし、ソーシャルネットワークのサイトであってもよい。
 例えば、図20に示すように、植物種として「野菜」、「花」、「草木」、「果物」が選択可能である。たとえば「野菜」を選択した場合、「レタス」、「プチトマト」等の野菜種が選択可能となる。たとえば「レタス」を選択した場合、「甘味」、「苦味」等の味覚、および、「大きい」、「小さい」などの大きさの選択が可能となる。たとえば「甘味」を選択した場合、甘味が特徴的なレタスを育成するための育成制御情報が複数選択可能となる。育成制御情報としては、無料の情報A、50円の情報B、1万円の情報C等が提示される。育成制御情報には、ユーザによる評価がアイコンの形式で連動表示されてよい。
 ユーザは、複数の育成制御情報から一つを選択し、携帯通信端末200にダウンロードすることができる。ダウンロードした情報は、栽培装置300へ送信すべき育成制御情報として利用することができる。
 以上のように、本発明の栽培システム100においては、ユーザによって制御される栽培装置300が送信した生育情報および当該栽培装置へ送信された育成制御情報がクラウド500により解析され、かつ、生育情報および育成制御情報の解析結果が、栽培システム100内の栽培装置300への制御のためにユーザ自身で利用可能な態様で還元される。これによって、ユーザによる栽培システム100の利用が促進され、より有用な植物創出への好循環が起こる。
 本発明の栽培システム100においては、クラウド500による自動フィードバックによって育成制御案が提案されるため、ユーザは、育成工程のうち全部または一部の工程、および同時に供すべき複数の育成条件のうち全部または一部の条件の少なくともいずれかを、クラウドの判断に委ねることができる。
 本発明の栽培システム100においては、クラウド500による生育情報の解析結果が簡易表示形式に変換されてユーザの携帯通信端末200の表示画面210に表示可能であるため、、たとえば研究者および生産者などの専門家によって(専門情報として、または勘として)扱われていた生育状態に関する有用な情報を、専門知識のない一般ユーザが容易に扱い、育成制御条件を自ら設定することができる。
 本発明の栽培システム100においては、通信端末200から栽培装置300へ送信される育成制御情報のうちの一部は、クラウド500による自動フィードバックによって提案された育成制御情報案に基づくことができる。また、ユーザは、育成工程のうち一部の工程のみ、および同時に供すべき複数の育成条件のうち一部の条件の少なくともいずれかにおいて、他のユーザから入手した育成制御情報を利用することができる。このため、ユーザオリジナルの育成制御情報を容易に構築することができる。
 本発明の栽培システム100においては、購入された育成制御情報が、植物の生育による収穫物の味覚、栄養素、外観、大きさ、形状、購入数、再購入率ならびに購入層、および当該育成制御情報の購入数ならびに購入層の少なくともいずれかに応じて異なる値段が付されるため、収穫物の評価に応じた値段設定が可能である。
 本発明の栽培システム100においては、他のユーザの栽培装置300から送信される生育情報が、クラウド500によって作成されたアニメーションオブジェクト241A,~,241Dとして携帯通信端末200の表示画面210に表示されるため、他のユーザによって制御される生育の現状を、信頼性高い状態で、きわめて短時間で確認することができる。さらに、他のユーザによる育成制御情報を購入したい場合に、良好な生育結果を得るための育成制御情報に効率よくアクセスすることができる。
 本発明の栽培システム100においては、栽培装置300における照明装置310,310c,310d,310e,310fが、光源と、光源を固定する基板3110,3110a,3110b,3110c,3110eとを含み、基板3110,3110a,3110b,3110c,3110eが他の基板との結合により拡張可能な形状を有する照明ユニット3100,3100a,3100b,3100c,3100eにより構成されるため、照明ユニット3100,3100a,3100b,3100c,3100eを複数結合させることにより、植物および/または植物生育場所等の様々な状況に応じ、所望の大きさおよび形状を有する照明装置を構成することができる。したがって、たとえば、良好な照射効率の確保、および照射むらの防止等が可能になる。
 本発明の栽培システム100においては、通信端末200が、近距離無線通信装置から育成制御情報を受信し、受信した育成制御情報をクラウド500経由で栽培装置300へ送信することにより、クラウドに存在しない育成制御情報を取得することも可能になる。
 本発明においては、栽培システム100が「栽培システム」に相当し、栽培装置300が「栽培装置」に相当し、携帯通信端末200が「通信端末」に相当し、記録装置400が「記録装置」に相当し、クラウド500が「クラウド」に相当し、照明装置310,310c,310d,310e,310fが「照明装置」に相当し、画像241A,~,241Dが「アニメーションオブジェクト」に相当し、図13、17、18が栽培用プログラムおよび栽培方法に相当する。
 本発明の好ましい一実施の形態は上記の通りであるが、本発明はそれだけに制限されない。本発明の精神と範囲から逸脱することのない様々な実施形態が他になされることは理解されよう。さらに、本実施形態において、本発明の構成による作用および効果を述べているが、これら作用および効果は、一例であり、本発明を限定するものではない。
 
 

Claims (12)

  1.  植物の生育、およびクラウドへの生育情報の送信ならびに前記クラウドからの育成制御情報の受信を行う栽培装置と、
     前記クラウドにより解析された、前記生育情報ならびに前記育成制御情報の少なくともいずれかに関する解析結果の受信、および前記解析結果に基づく育成制御情報の前記クラウドを介した前記栽培装置への送信を行う通信端末とを含む栽培システム。
  2.  前記クラウドにより解析された前記解析結果が、前記クラウドによる自動フィードバックによって提案された育成制御案である、請求項1に記載の栽培システム。
  3.  前記クラウドにより解析された前記解析結果が、前記生育情報の解析結果が簡易表示形式に変換された情報である、請求項1または2に記載の栽培システム。
  4.  前記通信端末から前記栽培装置へ送信される育成制御情報のうちの一部が、前記クラウドによる自動フィードバックによって提案された育成制御情報案に基づく、請求項2または3に記載の栽培システム。
  5.  前記クラウドを介して一の栽培装置を制御する一の通信端末が、他の通信端末が前記クラウドを介して制御した他の栽培装置における育成制御情報を入手可能であり、
     前記一の通信端末から前記一の栽培装置へ送信される育成制御情報のうちの一部が、入手された育成制御情報である、1から4のいずれか1項に記載の栽培システム。
  6.  前記クラウドを介して一の栽培装置を制御する一の通信端末が、他の通信端末が前記クラウドを介して制御した他の栽培装置における育成制御情報を購入可能であり、
     前記購入された育成制御情報が、前記植物の生育による収穫物の味覚、栄養素、外観、大きさ、形状、購入数、再購入率ならびに購入層、および前記育成制御情報の購入数ならびに購入層の少なくともいずれかに応じて異なる値段が付されている、請求項1から5のいずれか1項に記載の栽培システム。
  7.  前記生育情報が、一の通信端末によって制御される前記植物の、一の生育過程における異なる時期の複数の画像を含み、
     前記クラウドにより作成された、前記複数の画像で構成されるアニメーションオブジェクトを、他の通信端末に表示する、請求項1から6のいずれか1項に記載の栽培システム。
  8.  前記他の通信端末が、前記一の通信端末を含む複数の通信端末によって制御される前記植物の前記アニメーションオブジェクトを、互いに比較可能に表示する、請求項7に記載の栽培システム。
  9.  前記栽培装置が、前記植物への光照射を行う照明装置であって、光源と、前記光源を固定する基板とを含み、前記基板が他の基板との結合により拡張可能な形状を有する照明ユニットにより構成される照明装置を含み、
     前記育成制御情報が前記照明装置における光照射制御情報を含む、請求項1から8のいずれか1項に記載の栽培システム。
  10.  前記植物の育成制御情報を有する近距離無線通信装置をさらに含み、
     前記通信端末が、前記近距離無線通信装置から前記育成制御情報を受信し、受信した前記育成制御情報を前記クラウドを介して前記栽培装置を制御する、請求項1から9のいずれか1項に記載の栽培システム。
  11.  植物の生育を行う栽培装置が、クラウドへの生育情報の送信と前記クラウドからの育成制御情報の受信を行う処理と、
     前記クラウドが、生育情報ならびに育成制御情報の少なくともいずれかを解析する処理と、
     通信端末が、前記クラウドによる解析結果の受信、および前記解析結果に基づく育成制御情報の前記クラウドを介した前記栽培装置への送信を行う処理とを含む、栽培装置のプログラム。
  12.  植物の生育を行う栽培装置が、クラウドへの生育情報の送信と前記クラウドからの育成制御情報の受信を行う工程と、
     前記クラウドが、生育情報ならびに育成制御情報の少なくともいずれかを解析する工程と、
     通信端末が、前記クラウドによる解析結果の受信、および前記解析結果に基づく育成制御情報の前記クラウドを介した前記栽培装置への送信を行う工程とを含む、栽培装置の方法。
PCT/JP2014/000517 2013-02-01 2014-01-31 栽培システム、栽培プログラム、および栽培方法 WO2014119330A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014559599A JP6049767B2 (ja) 2013-02-01 2014-01-31 栽培システム、栽培プログラム、および栽培方法
US14/765,083 US20160000020A1 (en) 2013-02-01 2014-01-31 Cultivation system, cultivation program, and cultivation method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/JP2013/000582 WO2014118825A1 (ja) 2013-02-01 2013-02-01 栽培システム、栽培用プログラム、および栽培方法
PCT/JP2013/000583 WO2014118826A1 (ja) 2013-02-01 2013-02-01 照明ユニットおよび照明装置
JPPCT/JP2013/000583 2013-02-01
JPPCT/JP2013/000582 2013-02-01

Publications (1)

Publication Number Publication Date
WO2014119330A1 true WO2014119330A1 (ja) 2014-08-07

Family

ID=51262044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000517 WO2014119330A1 (ja) 2013-02-01 2014-01-31 栽培システム、栽培プログラム、および栽培方法

Country Status (3)

Country Link
US (1) US20160000020A1 (ja)
JP (1) JP6049767B2 (ja)
WO (1) WO2014119330A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105806999A (zh) * 2016-03-15 2016-07-27 宁德师范学院 一种植物生长测试系统及方法
JP2017520278A (ja) * 2015-06-10 2017-07-27 シャオミ・インコーポレイテッド 植物生長環境調整方法、装置、プログラム及び記録媒体
JP2018038329A (ja) * 2016-09-08 2018-03-15 株式会社ノーユー社 植物管理システム
CN107943167A (zh) * 2017-11-17 2018-04-20 云士康(深圳)智能科技有限公司 智能化植物管理系统及方法
WO2021152741A1 (ja) * 2020-01-29 2021-08-05 株式会社ナイルワークス 農作物育成システム
JP7367482B2 (ja) 2019-11-18 2023-10-24 株式会社大林組 苗木生育方法及び苗木生育システム

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9396354B1 (en) 2014-05-28 2016-07-19 Snapchat, Inc. Apparatus and method for automated privacy protection in distributed images
US9537811B2 (en) 2014-10-02 2017-01-03 Snap Inc. Ephemeral gallery of ephemeral messages
US9693512B2 (en) * 2014-07-26 2017-07-04 Aessense Technology Hong Kong Limited Wireless sensor systems for hydroponics
KR20240064012A (ko) 2015-03-18 2024-05-10 스냅 인코포레이티드 지오-펜스 인가 프로비저닝
CN109153713B (zh) 2016-03-10 2022-12-27 艾科赛扬制药股份有限公司 活化素2型受体结合蛋白及其用途
CN106613439A (zh) * 2016-11-22 2017-05-10 京东方科技集团股份有限公司 智能容器
US10455779B2 (en) * 2017-07-24 2019-10-29 Osram Sylvania Inc. Irradiance-controlled fixture for horticultural applications
US10438302B2 (en) * 2017-08-28 2019-10-08 The Climate Corporation Crop disease recognition and yield estimation
US10423850B2 (en) 2017-10-05 2019-09-24 The Climate Corporation Disease recognition from images having a large field of view
US20210315170A1 (en) * 2018-10-08 2021-10-14 Mjnn Llc Control of latent and sensible loads in controlled environment agriculture
US20200170205A1 (en) * 2018-12-02 2020-06-04 Itay Tayas Zamir Indoor Plant Growing System
KR20200100495A (ko) 2019-02-18 2020-08-26 엘지전자 주식회사 식물 재배 장치
KR20200100496A (ko) 2019-02-18 2020-08-26 엘지전자 주식회사 식물 재배 장치
KR20200100499A (ko) * 2019-02-18 2020-08-26 엘지전자 주식회사 식물 재배 장치
KR20200100494A (ko) 2019-02-18 2020-08-26 엘지전자 주식회사 식물 재배 장치
US11610158B2 (en) 2019-05-02 2023-03-21 Mjnn Llc Automated placement of plant varieties for optimum performance within a grow space subject to environmental condition variability
US11803172B2 (en) 2019-05-10 2023-10-31 Mjnn Llc Efficient selection of experiments for enhancing performance in controlled environment agriculture
KR102188768B1 (ko) * 2019-11-22 2020-12-09 (주)아페스 시설 운영 이력을 저장할 수 있는 스마트팜 운영 시스템
KR102188774B1 (ko) * 2019-11-22 2020-12-09 (주)아페스 재배 이력을 추적할 수 있는 스마트팜 운영 시스템
KR102652680B1 (ko) * 2023-05-03 2024-03-28 (주)이코모스 딸기재배시스템

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261039A (ja) * 2005-03-18 2006-09-28 Koizumi Sangyo Corp 照明装置および多点光源ユニット
JP2012044930A (ja) * 2010-08-27 2012-03-08 Nec Corp 情報処理システム、情報処理装置、情報処理装置の制御方法及び制御プログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261039A (ja) * 2005-03-18 2006-09-28 Koizumi Sangyo Corp 照明装置および多点光源ユニット
JP2012044930A (ja) * 2010-08-27 2012-03-08 Nec Corp 情報処理システム、情報処理装置、情報処理装置の制御方法及び制御プログラム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Android OS to Cloud System ni Taio shita LED Shokubutsu Kojo 'farmbox' o Happyo- Doji ni 'farmbox Alliance' o Kabushiki Kaisha", BRILLIANT SERVICE, PRESS RELEASE, 1 May 2011 (2011-05-01), Retrieved from the Internet <URL:http://wwwatpress.ne.jp/Default/PrPrint/window/popup/prid/20310> [retrieved on 20130514] *
"LED Shokubutsu Kojo farmbox", 16 November 2012 (2012-11-16), Retrieved from the Internet <URL:https://web.archive.org/web/20121116083559> [retrieved on 20140418] *
HAYATO SHIBAHARA: "Dosa no Tomonau Yasai no Ikusei Joho o Enkatsu ni Kyoyu Kano ni suru Yasai Ikusei Joho Jido Kyoyu System no Teian to Hyoka", SHUSHI RONBUN, 1 August 2012 (2012-08-01), pages 18 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017520278A (ja) * 2015-06-10 2017-07-27 シャオミ・インコーポレイテッド 植物生長環境調整方法、装置、プログラム及び記録媒体
CN105806999A (zh) * 2016-03-15 2016-07-27 宁德师范学院 一种植物生长测试系统及方法
JP2018038329A (ja) * 2016-09-08 2018-03-15 株式会社ノーユー社 植物管理システム
CN107943167A (zh) * 2017-11-17 2018-04-20 云士康(深圳)智能科技有限公司 智能化植物管理系统及方法
JP7367482B2 (ja) 2019-11-18 2023-10-24 株式会社大林組 苗木生育方法及び苗木生育システム
WO2021152741A1 (ja) * 2020-01-29 2021-08-05 株式会社ナイルワークス 農作物育成システム

Also Published As

Publication number Publication date
US20160000020A1 (en) 2016-01-07
JP6049767B2 (ja) 2016-12-21
JPWO2014119330A1 (ja) 2017-01-26

Similar Documents

Publication Publication Date Title
JP6049767B2 (ja) 栽培システム、栽培プログラム、および栽培方法
US11663414B2 (en) Controlled agricultural systems and methods of managing agricultural systems
US20200134741A1 (en) Controlled Agricultural Systems and Methods of Managing Agricultural Systems
JP4876439B2 (ja) 植物育成情報の提供方法
Harun et al. Improved Internet of Things (IoT) monitoring system for growth optimization of Brassica chinensis
CA3130218A1 (en) Controlled agricultural systems and methods of managing agricultural systems
US20140344100A1 (en) Produce production system and process
JP3870967B2 (ja) 植物育成情報の取得方法及びそれを用いた植物育成制御システム
WO2014118825A1 (ja) 栽培システム、栽培用プログラム、および栽培方法
Rankothge et al. IOT based smart microgreen sprouter
Lee et al. Determination of LEDs arrangement in a plant factory using a 3D ray-tracing simulation and evaluation on growth of Cucurbitaceae seedlings
JP3705106B2 (ja) 植物育成事業システム
Singh et al. GREENBOX Technology I-Technical Feasibility and Performance in Warehouse Environment
US20230128621A1 (en) Red and far-red light ratio during growth of basil
US20220095440A1 (en) Dynamic user interface
JP4645248B2 (ja) 植物育成情報の提供方法
CN115471353A (zh) 一种植物自动化种植的研究或应用系统及方法
Perera et al. Identification of the Optimum Light Conditions and Development of an Iot Based Setup to Monitor a Household Indoor Hydroponic Tomato Cultivation
Buffon et al. Transforming a home refrigerator into a BOD prototype for statice vernalization
Carpineti et al. Guidelines for cultivation in a vertical farm
Kaveesha et al. Optimizing Indoor Lettuce Cultivation: Evaluating the Impact of Artificial Light and Parameter Monitoring Using an IoT Device
KR20220169017A (ko) 하이브리드 식물 재배기 및 식물 재배 방법
KR20220168268A (ko) 식물 재배기 및 식물 재배 방법
Goh Indoor hydroponics farming system monitoring via internet of things (IoT)
TR202005800A2 (tr) Yapay zekayla si̇müle edi̇lerek bi̇tki̇ fi̇desi̇ yeti̇şti̇ren maki̇ne

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14745828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014559599

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14765083

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14745828

Country of ref document: EP

Kind code of ref document: A1