WO2014119293A1 - 非接触電力伝送装置用コイル及び非接触電力伝送装置 - Google Patents

非接触電力伝送装置用コイル及び非接触電力伝送装置 Download PDF

Info

Publication number
WO2014119293A1
WO2014119293A1 PCT/JP2014/000440 JP2014000440W WO2014119293A1 WO 2014119293 A1 WO2014119293 A1 WO 2014119293A1 JP 2014000440 W JP2014000440 W JP 2014000440W WO 2014119293 A1 WO2014119293 A1 WO 2014119293A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
power transmission
magnetic body
electric wire
contact
Prior art date
Application number
PCT/JP2014/000440
Other languages
English (en)
French (fr)
Inventor
藤田 篤志
秀樹 定方
大森 義治
裕明 栗原
別荘 大介
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014559572A priority Critical patent/JPWO2014119293A1/ja
Priority to EP14745781.6A priority patent/EP2953144B1/en
Publication of WO2014119293A1 publication Critical patent/WO2014119293A1/ja
Priority to US14/813,046 priority patent/US20150332848A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/02Coils wound on non-magnetic supports, e.g. formers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields

Definitions

  • the present invention relates to a coil for a non-contact power transmission device used for charging an electric propulsion vehicle such as an electric vehicle or a plug-in hybrid vehicle.
  • the non-contact power transmission apparatus includes a power feeding unit 101 including a coil 150 wound around an H-type core 140 and a power receiving unit 102.
  • the air gap is arranged so as to face each other (see, for example, Patent Document 1).
  • a rectangular core 170 can be used as shown in FIGS. 9 (a) and 9 (b).
  • Coils for non-contact power transmission devices used for charging electric propulsion vehicles are made thinner to avoid contact with road surface interference (eg, vehicle stops, blocks), etc. is required. Further, the vehicle height fluctuates due to people getting on and off, loading and unloading of luggage, and the like. When the power feeding unit and the power receiving unit come into contact with each other due to a change in vehicle height, the power feeding unit or the power receiving unit may be damaged. Further, in order to ensure a certain air gap between the power feeding unit and the power receiving unit, the coil for the non-contact power transmission device is required to be thin.
  • the curvature is increased at the bent portion of the coil 150 on the side surface of the core 140 in the cross-sectional short direction.
  • a high-frequency current is supplied to the coil 150 and high-efficiency power transmission is realized by a generated high-frequency magnetic field.
  • the coil 150 employs very thin stranded wires (Litz wires) insulated from each other in order to suppress heat generation due to an increase in resistance.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a coil for a non-contact power transmission device that can be reduced in thickness.
  • a coil for a non-contact power transmission device is a coil used in a non-contact power transmission device for transmitting power in a non-contact manner, and a magnetic body having a flat cross section and a coil wound around the magnetic body.
  • the electric wire is wound at a predetermined angle from a direction perpendicular to the side surface in the longitudinal direction of the cross section of the magnetic body on the side surface in the short cross section of the magnetic body. .
  • the length of the electric wire on the side surface in the short direction of the cross section of the magnetic body that is easy to bend can be set to a predetermined length or more. Therefore, the bending of the electric wire can be relaxed. Therefore, it is possible to realize a thin coil for a non-contact power transmission device that is free from wire breakage and damage to the insulating coating.
  • (A)-(c) is the schematic of the coil for non-contact electric power transmission apparatuses in one Embodiment of this invention. It is a cross-sectional enlarged view of the electric wire in this invention.
  • (A)-(c) is the schematic which showed the winding state of the electric wire in this invention.
  • (A)-(c) is the schematic of the coil for non-contact electric power transmission apparatuses in other embodiment of this invention.
  • (A)-(c) is the schematic of the coil for non-contact electric power transmission apparatuses in other embodiment of this invention.
  • (A)-(c) is the schematic of the coil for non-contact electric power transmission apparatuses in other embodiment of this invention.
  • (A), (b) is a figure which shows the H-type core in the coil for conventional non-contact electric power feeders. It is a figure which shows the electric power feeding part and power receiving part which oppose in the conventional non-contact electric power feeder.
  • (A), (b) is a figure which shows the rectangular core in the conventional non-contact electric power feeder.
  • a coil for a non-contact power transmission device is a power transmission coil or a power reception coil used in a non-contact power transmission device for transmitting power in a non-contact manner, and has a flat cross section. And an electric wire wound around the magnetic body, and the electric wire is wound at a predetermined angle other than perpendicular to the side surface in the cross-sectional longitudinal direction of the magnetic body on the side surface in the cross-sectional short direction of the magnetic body. ing.
  • the length of the electric wire on the side surface in the short direction of the cross section of the magnetic body, which is an easily bent portion, can be set to a predetermined length or more. Therefore, the bending of the electric wire can be relaxed. Therefore, it is possible to realize a thin coil for a non-contact power transmission device that is free from wire breakage and damage to the insulating coating.
  • FIG. 1A to 1C are schematic views of a coil for a non-contact power transmission device according to an embodiment of the present invention.
  • FIG. 1A is a plan view and
  • FIG. 1B is a winding axis of the coil.
  • FIG. 1C is a side view seen from the direction perpendicular to the winding axis of the coil.
  • a bobbin 2 made of an insulating resin is arranged around a magnetic body 1 that has a plurality of ferrites arranged to have a flat cross section.
  • An electric wire 3 is wound around the magnetic body 1 via a bobbin 2.
  • the magnetic body 1 and the electric wire 3 act as a coil 4 having an inductance.
  • a current is passed through the electric wire 3
  • a magnetic flux is generated in the magnetic body 1 in the winding axis direction (left-right direction) in FIG.
  • the coil 4 is installed as a power transmission coil and a power reception coil so as to face each other.
  • FIG. 2 is an enlarged cross-sectional view of the electric wire 3.
  • the electric wire 3 is a litz wire obtained by twisting a number of strands 7 composed of a conductive portion 5 made of copper wire or the like and an insulating portion 6 such as an epoxy layer provided on the surface thereof.
  • the litz wire is configured to sufficiently suppress resistance when a high-frequency current flows and reduce heat generation.
  • a high-frequency current is supplied to the electric wire 3 of the power transmission coil from a power source (not shown), and a high-frequency magnetic field generated in the power transmission coil and a power receiving coil 4 opposed to the power transmission coil are magnetically coupled, thereby enabling high-efficiency power transmission. Done.
  • the electric wire 3 By configuring the electric wire 3 with a litz wire, current concentration on the surface of the conductive part 5 (skin effect) generated when a high-frequency current is passed, or current distribution due to a magnetic field generated by the current flowing in the adjacent conductive part 5 It is possible to reduce the bias (proximity effect) and suppress an increase in resistance.
  • the conductive portion 5 constituting such a litz wire is very thin and the insulating portion 6 is also a very thin layer, if the wire 3 is handled in a bent state, the conductive portion 5 may be disconnected or insulated. The part 6 may be damaged or peeled off, and the resistance of the electric wire 3 may be increased.
  • FIG. 3A is a side view seen from a direction perpendicular to the winding axis of the coil 4 as shown in FIG. 1C, and shows the electric wire 3 wound on the short side surface of the magnetic body 1.
  • the length is L
  • the angle of the electric wire 3 from the direction perpendicular to the long side of the magnetic body 1 is ⁇
  • the winding thickness of the electric wire 3 ( ⁇ bobbin 2 thickness) is t.
  • the magnetic body 1 has a flat shape with a substantially rectangular cross section
  • the short side surface of the magnetic body 1 is the short side of the cross section of the magnetic body 1 among the side surfaces parallel to the winding axis direction of the coil 4.
  • a side surface having a side as a width is referred to
  • the long side surface of the magnetic body 1 is a side surface having a long side of a cross section of the magnetic body 1 as a width.
  • the wire 3 when the wire 3 is wound with ⁇ increased, in other words, when the wire 3 is wound so that L becomes long, the wire 3 is wound with a large bending radius as shown in FIG. It becomes possible to turn.
  • the electric wire 3 can be wound with a large bending radius, and the conductive portion 5 is disconnected or insulated. The damage of the part 6 and the occurrence of peeling can be prevented, and the reliability can be maintained high.
  • the electric wire 3 is composed of a litz wire, it is possible to suppress an increase in resistance, suppress heat generation in the coil 4, and enable highly efficient power transmission.
  • the thinning required for the coil for the non-contact power transmission device used for charging the electric propulsion vehicle can be realized, it is possible to avoid contact with road surface interferences (for example, vehicle stops, blocks), etc. It is possible to avoid damage due to contact of the power transmission coil and the power reception coil when the vehicle height fluctuates due to getting on and off, loading and unloading of luggage, and the like.
  • the insulation part 6 of the litz wire has a different bending radius and allowable bending range depending on the thickness, material, heat resistance, etc., and is related to the specifications of the electric wire 3.
  • the winding angle ⁇ of the electric wire 3 may be set according to the specifications of the electric wire 3 so as to ensure an allowable bending range of the electric wire 3 that does not damage the insulating portion 6.
  • the winding angle ⁇ of the electric wire 3 is preferably set in the range of 10 to 60 degrees, more preferably in the range of 30 to 60 degrees.
  • FIGS. 1A to 1C an example in which the outer diameter of the electric wire 3 is wound while the outer diameter is substantially constant and a space is provided between the turns of the electric wire 3 has been described. Not what you want.
  • FIGS. 4A to 4C if the electric wire 3 is deformed and wound so as to be flat on the longitudinal side surface of the coil 4, the height of the electric wire 3 is suppressed, and the coil 4 is reduced. Can be further reduced in thickness.
  • the example which wound the electric wire 3 so that the winding angle (theta) of the side surface of the transversal direction of the coil 4 becomes constant.
  • the electric wires 3 wound around the side surfaces of the magnetic body 1 in the cross-sectional short direction are connected to the ends of the bobbins 2 of the electric wires 3. It may be wound substantially perpendicular to the side surface in the longitudinal direction of the cross section. Thereby, it becomes easy to fix the end part of the electric wire 3, and the shift
  • FIG. What is necessary is just to change the winding angle of the electric wire 3 in a required part according to the objectives, such as a shift
  • the winding angle of the electric wire 3 may be changed midway.
  • the coil 4 is used as a power transmission coil or a power reception coil of a non-contact power transmission device, when the opening direction of the opening formed on both ends of the wound electric wire 3 is directed to the opposing coil, Since the magnetic field generated from the end portion is more likely to be directed toward the opposing coil, the transmission efficiency can be improved and the leakage magnetic field can be reduced.
  • the coil 4 of this embodiment can be used for one or both of a coil installed on the ground side as a power transmitting side and a coil installed on the vehicle side as a power receiving side.
  • the coil 4 of the present embodiment may be adopted only for the coil installed on the vehicle side.
  • the present invention can be applied to a power transmission coil and a power reception coil for a non-contact power transmission device used for charging an electric propulsion vehicle such as an electric vehicle or a plug-in hybrid vehicle.

Abstract

 本発明に係る非接触電力伝送装置用コイルは、電力を非接触で伝送するための非接触電力伝送装置に用いられるコイル4であって、断面が偏平形状となる磁性体1と、磁性体1に巻回された電線3とを備え、電線3は、磁性体1の短側面において、磁性体1の長側面に対して垂直方向から、所定の角度をなして巻回されている。

Description

非接触電力伝送装置用コイル及び非接触電力伝送装置
 本発明は、例えば、電気自動車やプラグインハイブリッド車のような電気推進車両の充電等に用いられる非接触電力伝送装置用コイルに関する。
 非接触電力伝送装置は、例えば、図7(a)、(b)及び図8に示すように、H型コア140に巻回されたコイル150を備えた給電部101と受電部102とが、エアギャップを挟んで互いに対向して配置された構成をなしている(例えば、特許文献1を参照)。
 また、H型コア1409の代わりに、図9(a)、(b)に示すように、矩形状コア170を用いることもできる。
特開2011-50127号公報
 電気推進車両の充電等に用いられる非接触電力伝送装置用コイル、特に、車両に装着される受電コイルは、路面の干渉物(例えば車両止め、ブロック)等との接触を避けるために、薄型化が必要である。また、車両は、人の乗り降り、荷物の積み下ろし等によって車高が変動する。車高の変動によって給電部と受電部とが接触すると、給電部あるいは受電部が破損する虞もある。また、給電部と受電部との間のエアギャップを一定以上確保するためにも、非接触電力伝送装置用コイルは薄型化が求められる。
 しかしながら、例えば、図7(a)において、H型コア140を薄くし、コイル150を巻回した場合、コア140の断面短手方向の側面において、コイル150の屈曲部で曲率が大きくなる。一般に、非接触電力伝送装置では、コイル150に高周波電流を供給して、発生する高周波磁界によって、高効率の電力伝送を実現する。コイル150は、抵抗上昇による発熱を抑制するため、互いに絶縁された非常に細い電線の撚り線(リッツワイヤ)が採用されている。
 コイル150の屈曲部で曲率が大きくなると、リッツワイヤの断線や、絶縁被膜の損傷が発生し、その結果、コイル150の抵抗上昇による発熱を抑えられず、コイル150の温度が上昇して、非接触電力伝送装置の故障につながる虞がある。
 本発明は、上記問題点に鑑みなされたもので、薄型化を可能にする非接触電力伝送装置用コイルを提供することを目的とする。
 本発明に係る非接触電力伝送装置用コイルは、電力を非接触で伝送するための非接触電力伝送装置に用いられるコイルであって、断面が偏平形状となる磁性体と、磁性体に巻回された電線とを備え、電線は、磁性体の断面短手方向の側面において、磁性体の断面長手方向の側面に対する垂直方向から、所定の角度をなして巻回されていることを特徴とする。
 本発明によれば、電線を磁性体に巻回した際に、屈曲しやすい部分である磁性体の断面短手方向の側面における電線の長さを、所定の長さ以上に設定することが可能になるため、電線の屈曲を緩和することが出来る。従って、電線の断線や、絶縁被膜の損傷のない、薄型化された非接触電力伝送装置用コイルを実現することができる。
(a)~(c)は、本発明の一実施形態における非接触電力伝送装置用コイルの概略図である。 本発明における電線の断面拡大図である。 (a)~(c)は、本発明における電線の巻回状態を示した概略図である。 (a)~(c)は、本発明の他の実施形態における非接触電力伝送装置用コイルの概略図である。 (a)~(c)は、本発明の他の実施形態における非接触電力伝送装置用コイルの概略図である。 (a)~(c)は、本発明の他の実施形態における非接触電力伝送装置用コイルの概略図である。 (a)、(b)は、従来の非接触給電装置用コイルにおけるH型コアを示す図である。 従来の非接触給電装置において対向する給電部と受電部を示す図である。 (a)、(b)は、従来の非接触給電装置における矩形状コアを示す図である。
 本発明の一実施態様における非接触電力伝送装置用コイルは、電力を非接触で伝送するための非接触電力伝送装置に用いられる送電コイルまたは受電コイルであって、断面が偏平形状となる磁性体と、磁性体に巻回された電線とを備え、電線は、磁性体の断面短手方向の側面において、磁性体の断面長手方向の側面に対して、垂直以外の所定の角度で巻回されている。
 このような構成により、電線を磁性体に巻き回した際に、屈曲しやすい部分である磁性体の断面短手方向の側面における電線の長さを、所定の長さ以上に設定することが可能になるため、電線の屈曲を緩和することが出来る。従って、電線の断線や、絶縁被膜の損傷のない、薄型化された非接触電力伝送装置用コイルを実現することができる。
 (実施の形態)
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
 図1(a)~(c)は、本発明の一実施形態における非接触電力伝送装置用コイルの概略図で、図1(a)は平面図、図1(b)はコイルの巻回軸方向から見た側面図、図1(c)はコイルの巻回軸に対して垂直な方向から見た側面図である。
 図1(a)に示すように、複数のフェライトを並べて、断面が偏平形状になるよう構成された磁性体1を中心として、絶縁性を持つ樹脂で構成されたボビン2が配置されており、ボビン2を介して磁性体1周囲に電線3を巻回している。
 磁性体1と電線3は、インダクタンスを持つコイル4として作用する。電線3に電流を流すと、図1(a)において、巻回軸方向(左右方向)に、磁性体1に磁束が発生する。非接触電力伝送装置では、このコイル4を、送電コイル及び受電コイルとして、互いに対向するように設置される。
 図2は、電線3の断面拡大図である。電線3は銅線等で構成される導電部5と、その表面に設けられるエポキシ層等の絶縁部6とからなる素線7を多数撚り合わせたリッツワイヤが用いられる。リッツワイヤは、高周波電流を流した際の抵抗を十分に抑制し、発熱を低減するように構成されている。送電コイルの電線3には、電源(図示せず)から高周波電流が供給され、送電コイルで発生する高周波磁界と、送電コイルに対向する受電コイル4が磁気結合することで高効率の電力伝送が行われる。
 電線3をリッツワイヤで構成することにより、高周波電流を流した際に発生する導電部5表面への電流集中(表皮効果)や、隣り合う導電部5に流れる電流で発生する磁界による電流分布の偏り(近接効果)を緩和し、抵抗上昇を抑制することが可能である。
 しかしながら、このようなリッツワイヤを構成する導電部5は非常に細く、また絶縁部6も非常に薄い層であるため、電線3を屈曲させる状態で扱うと、導電部5が断線したり、絶縁部6が損傷、剥離したりして、電線3の抵抗を上昇させてしまう可能性がある。
 図3(a)は、図1(c)に示したように、コイル4の巻回軸に対して垂直な方向から見た側面図で、磁性体1の短側面に巻回した電線3の長さをL、磁性体1の長側面に対して垂直方向からの電線3の角度をθ、電線3の巻き厚み(≒ボビン2厚み)をtと示している。ここで、磁性体1は、断面が略矩形の扁平形状をなしており、磁性体1の短側面とは、コイル4の巻回軸方向に平行な側面のうち、磁性体1の断面の短辺を幅とする側面をいい、磁性体1の長側面とは、磁性体1の断面の長辺を幅とする側面をいう。
 θを小さくして電線3を巻回すると、換言すると、電線3を磁性体1の短手方向の側面の垂直線に近づくように巻回すると、Lが小さくなり(≒t)、図3(c)に示すように、電線3の曲げ半径は小さくなり、屈曲部が生じ、導電部5が断線したり、絶縁部6が損傷、剥離する虞がある。
 本実施形態では、θを大きくして電線3を巻回すると、換言すると、Lが長くなるように巻回すると、図3(b)に示すように、電線3は大きな曲げ半径を持って巻回することが可能になる。
 本実施形態においては、θを大きくし、Lをtに対して大きくなるよう巻回しているため、電線3は大きな曲げ半径を持って巻回することが可能となり、導電部5の断線、絶縁部6の損傷、剥離の発生を防止でき、信頼性を高く維持することができる。
 また、電線3をリッツワイヤにより構成しているため、抵抗上昇を抑制でき、コイル4発熱を抑え、高効率の電力伝送が可能にできる。
 さらに、電気推進車両の充電等に用いられる非接触電力伝送装置用コイルに求められる薄型化を実現出来るため、路面の干渉物(例えば車両止め、ブロック)等との接触を避けることや、人の乗り降り、荷物の積み下ろし等によって車高が変動した場合の送電コイル、受電コイルの接触による破損を回避することが可能にできる。
 リッツワイヤの絶縁部6は、厚みや材質、耐熱等により、耐曲げ半径、曲げ許容範囲が異なり、電線3の仕様にも関係する。電線3の巻き角度θは、電線3の仕様に応じて、絶縁部6の損傷が発生しない電線3の曲げ許容範囲を確保出来るように設定すればよい。ここで、電線3の巻き角度θは、好ましくは、10~60度の範囲に、より好ましくは、30~60度の範囲に設定することが好ましい。
 本実施形態では、図1(a)~(c)に示すように、電線3の外径がほぼ一定のまま巻回し、電線3のターン間にスペースを設ける例を示したが、これに限定するものではない。例えば、図4(a)~(c)に示すように、電線3をコイル4の長手方向の側面で偏平になるように変形させて巻回すれば、電線3の高さを抑え、コイル4をさらに薄型にすることが可能である。
 また、本実施形態では、図1(c)及び図3(a)に示すように、コイル4の短手方向の側面の巻回角度θが一定になるように電線3を巻回した例を挙げたが、これに限定するものではない。例えば、図5(a)~(c)に示すように、電線3のボビン2の両側端部において、磁性体1の断面短手方向の側面に巻回される電線3を、磁性体1の断面長手方向の側面に対して略垂直に巻回してもよい。これにより、電線3端部を固定しやすくなり、電線3のずれや、形状の変化を防止することが出来る。また、電線3の一方の端部で、このような巻き方をしてもよい。電線3のずれ、形状保持など目的に応じて、必要な部分で電線3の巻回角度を変更すればよい。
 また、図6(a)~(c)に示すように、電線3の巻回角度を途中で変更してもよい。コイル4を、非接触電力伝送装置の送電コイル又は受電コイルとして用いる際に、巻回された電線3の両端側に形成される開口部の開口方向を、対向するコイルに向けると、電線3の端部から発生する磁界が、より対向するコイル方向に向きやすくなるため、伝送効率を向上させることが出来、漏洩磁界を低減することが可能である。
 本実施形態のコイル4は、電力を送電する側として地上側に設置するコイルと、電力を受電する側として車両側に設置するコイルの一方、又は両方に使用することが出来る。特に、車両側に設置するコイルは、路面との干渉を避けるために薄型化を望まれる場合が多いため、車両側に設置するコイルのみに本実施の形態のコイル4を採用してもよい。
 本発明は、電気自動車やプラグインハイブリッド車のような電気推進車両の充電等に用いられる非接触電力伝送装置用の送電コイル、受電コイルに適用出来る。
  1 磁性体
  2 ボビン
  3 電線
  4 コイル

Claims (4)

  1.  電力を非接触で伝送するための非接触電力伝送装置に用いられるコイルであって、
     断面が偏平形状となる磁性体と、
     前記磁性体に巻回された電線と
    を備え、
     前記電線は、前記磁性体の短側面において、前記磁性体の長側面に対して垂直方向から、所定の角度をなして巻回されている、非接触電力伝送装置用コイル。
  2.  前記電線は、その表面が絶縁部で覆われており、
     前記所定の角度は、前記磁性体の短側面において、前記絶縁物が損傷しない曲げ許容範囲内に設定されている、請求項1に記載の非接触電力伝送装置用コイル。
  3.  前記所定の角度は、10~60度の範囲にある、請求項1に記載の非接触電力伝送装置用コイル。
  4.  送電コイルを備えた給電部と、受電コイルを備えた受電部とからなる非接触電力伝送装置であって、
     前記送電コイル及び/又は前記受電コイルは、請求項1または2に記載の非接触電力伝送装置用コイルからなる、非接触電力伝送装置。
PCT/JP2014/000440 2013-01-30 2014-01-29 非接触電力伝送装置用コイル及び非接触電力伝送装置 WO2014119293A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014559572A JPWO2014119293A1 (ja) 2013-01-30 2014-01-29 非接触電力伝送装置用コイル及び非接触電力伝送装置
EP14745781.6A EP2953144B1 (en) 2013-01-30 2014-01-29 Contactless-power-transfer-device coil and contactless power-transfer device
US14/813,046 US20150332848A1 (en) 2013-01-30 2015-07-29 Coil for non-contact power transmission system and non-contact power transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013015074 2013-01-30
JP2013-015074 2013-01-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/813,046 Continuation US20150332848A1 (en) 2013-01-30 2015-07-29 Coil for non-contact power transmission system and non-contact power transmission system

Publications (1)

Publication Number Publication Date
WO2014119293A1 true WO2014119293A1 (ja) 2014-08-07

Family

ID=51262011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000440 WO2014119293A1 (ja) 2013-01-30 2014-01-29 非接触電力伝送装置用コイル及び非接触電力伝送装置

Country Status (4)

Country Link
US (1) US20150332848A1 (ja)
EP (1) EP2953144B1 (ja)
JP (1) JPWO2014119293A1 (ja)
WO (1) WO2014119293A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182869A (ja) * 1998-12-16 2000-06-30 Citizen Electronics Co Ltd 磁心入りコイルを有する回路部品とその製造方法および製造に用いるボビン
JP2011050127A (ja) 2009-08-25 2011-03-10 Saitama Univ 非接触給電装置
JP2011129747A (ja) * 2009-12-18 2011-06-30 Alps Electric Co Ltd 高周波機器用のコイル及び該コイルを備える高周波機器
JP2014011332A (ja) * 2012-06-29 2014-01-20 Toyota Motor Corp 非接触電力伝送用コイルユニット、受電装置、車両、および送電装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1506554A1 (en) * 2002-05-13 2005-02-16 Splashpower Limited Improvements relating to the transfer of electromagnetic power
GB0210886D0 (en) * 2002-05-13 2002-06-19 Zap Wireless Technologies Ltd Improvements relating to contact-less power transfer
US9105959B2 (en) * 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US20120313742A1 (en) * 2008-09-27 2012-12-13 Witricity Corporation Compact resonators for wireless energy transfer in vehicle applications
US8302286B2 (en) * 2008-09-30 2012-11-06 Denso Corporation Method for manufacturing a stator winding
US20110204845A1 (en) * 2010-02-25 2011-08-25 Evatran Llc System and method for inductively transferring ac power and self alignment between a vehicle and a recharging station
CN103339698B (zh) * 2011-01-19 2016-09-28 株式会社泰库诺瓦 非接触供电装置
JP6309517B2 (ja) * 2012-06-27 2018-04-11 ワイトリシティ コーポレーションWitricity Corporation 充電式バッテリに対する無線エネルギー伝送

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182869A (ja) * 1998-12-16 2000-06-30 Citizen Electronics Co Ltd 磁心入りコイルを有する回路部品とその製造方法および製造に用いるボビン
JP2011050127A (ja) 2009-08-25 2011-03-10 Saitama Univ 非接触給電装置
JP2011129747A (ja) * 2009-12-18 2011-06-30 Alps Electric Co Ltd 高周波機器用のコイル及び該コイルを備える高周波機器
JP2014011332A (ja) * 2012-06-29 2014-01-20 Toyota Motor Corp 非接触電力伝送用コイルユニット、受電装置、車両、および送電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2953144A4

Also Published As

Publication number Publication date
EP2953144A1 (en) 2015-12-09
US20150332848A1 (en) 2015-11-19
EP2953144B1 (en) 2017-10-11
JPWO2014119293A1 (ja) 2017-01-26
EP2953144A4 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5467569B2 (ja) 非接触給電装置
CN108063044B (zh) 一种无线充电线圈和无线充电系统
EP3144954B1 (en) Wireless power transmission device
JP2009158598A (ja) 平面コイル及びこれを用いた非接触電力伝送機器
US10270290B2 (en) Power supply device
US10256034B2 (en) Core case unit, coil component, and method for producing coil component
JP6056100B2 (ja) 渦巻型コイル
WO2019124382A1 (ja) コイルおよび非接触給電装置
US10014106B2 (en) Coil for non-contact power transmission system and non-contact power transmission system
WO2015083531A1 (ja) 伝送ケーブル
JP2017017874A (ja) コイル装置
US11710596B2 (en) Coil device
WO2013018268A1 (ja) 電力伝送コイルとそれを用いた非接触給電装置
WO2014119293A1 (ja) 非接触電力伝送装置用コイル及び非接触電力伝送装置
JP5276393B2 (ja) 非接触給電装置
JP2014063768A (ja) 非接触給電システムに用いられるコイルユニット
JP2018207060A (ja) 非接触給電装置、コイルおよびコイルの製造方法
JP2019012731A (ja) 非接触給電装置、コイルおよびコイルの製造方法
CN107146688B (zh) 绕组
JP2017063567A (ja) 無接点給電装置
WO2018138909A1 (ja) 非接触給電用コイルユニット
JP2008270403A (ja) 薄型高周波コイルおよび製造方法
JP2012134248A (ja) 共鳴コイル及びそれを有する非接触電力伝送装置
JP6262500B2 (ja) 受電装置
KR20170123679A (ko) 전기 자동차들로의 무선 에너지 송신을 위한 팬케이크 코일들의 사용 및 어셈블리

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14745781

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014559572

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014745781

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014745781

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE