WO2014119276A1 - 通信システムにおける端末装置、基地局装置およびコードブック共有方法 - Google Patents

通信システムにおける端末装置、基地局装置およびコードブック共有方法 Download PDF

Info

Publication number
WO2014119276A1
WO2014119276A1 PCT/JP2014/000397 JP2014000397W WO2014119276A1 WO 2014119276 A1 WO2014119276 A1 WO 2014119276A1 JP 2014000397 W JP2014000397 W JP 2014000397W WO 2014119276 A1 WO2014119276 A1 WO 2014119276A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
codebook
code book
terminal
precoding matrix
Prior art date
Application number
PCT/JP2014/000397
Other languages
English (en)
French (fr)
Inventor
伸一 田島
石井 直人
義一 鹿倉
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to AU2014212975A priority Critical patent/AU2014212975A1/en
Priority to EP14746286.5A priority patent/EP2953282A4/en
Priority to US14/764,736 priority patent/US9787378B2/en
Priority to JP2014559562A priority patent/JP6241623B2/ja
Publication of WO2014119276A1 publication Critical patent/WO2014119276A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • H04B7/0479Special codebook structures directed to feedback optimisation for multi-dimensional arrays, e.g. horizontal or vertical pre-distortion matrix index [PMI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a communication system using precoding, and more particularly to a terminal apparatus, a base station apparatus, and a codebook sharing method in the communication system.
  • a base station performs beamforming based on channel information fed back from a terminal to improve communication quality and system capacity.
  • FDD Frequency Division Duplexing
  • a feedback method using a code book is adopted to reduce the amount of feedback information.
  • a precoding matrix table (codebook) is shared in advance between the terminal and the base station, and the terminal uses the index of the precoding matrix having the highest correlation based on the channel response estimated in the downlink.
  • the index in this codebook is called Precoding Matrix Indicator (PMI).
  • PMI Precoding Matrix Indicator
  • Non-Patent Document 1 With respect to horizontal beamforming, for example, by using a precoding matrix described in Non-Patent Document 1, it is possible to perform codebook-based beamforming for the entire cell coverage.
  • the vertical beam angle is defined as an angle at which the main beam direction of a beam realized by a certain precoding matrix is looked down from the base station.
  • 3GPP TS 36.211 V9.1.0 (2010-03): “3rd Generation Partnership Project; Technical Technical Specification Group Radio Access Network; Evolved Universal Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (pages 50-51) "Throughput improvement in mobile communications from cells with large, medium and small cells mixed -Base station antenna vertical directivity control using precoding and adjacent base station coordinated transmission-" IEICE Tech. RCS2012-16 , Pp91-96, 2012 (pages 92-93)
  • Non-Patent Document 2 the cell environment such as the height of the base station, the cell radius, the obstacles around the base station and the distribution of the surrounding cells greatly affects the communication quality and system capacity. .
  • a codebook common to cells as described in Non-Patent Document 1 is simply expanded and used as a codebook for beamforming in the vertical direction, improvement in system capacity by beamforming is limited.
  • the codebook is determined by the beam angle interval (hereinafter referred to as the beam angle interval) and the range (hereinafter referred to as the beam angle range) realized by the precoding matrix. Problems caused by the setting of the angular interval will be described.
  • the beam angle range in horizontal plane beamforming, the horizontal plane angle of cell coverage as seen from the base phase is constant regardless of the base station height, but in vertical plane beamforming, the vertical plane angle of coverage seen from the base station is the same as the base station height. It changes depending on. For this reason, if a beam is prepared with a fixed vertical plane angle without considering the base station height and cell radius, for example, a base station installed on a higher floor has a part of the beam pointing out of the cell coverage, so Base stations installed on the floor irradiate only a part of the area within the beam coverage. It is clear that the beam pointing out of the cell coverage does not contribute to the improvement of the system capacity in a limited amount of feedback information, and may increase inter-cell interference.
  • the vertical plane angle should be increased to irradiate only the necessary area within the beam coverage. Is desirable.
  • the distance between the main beam irradiation position on the ground plane of each beam and the distance between the base stations is the same, so the path loss condition is also the same for each beam. Therefore, arranging the beams at equal intervals between the horizontal plane irradiation positions of the beams is an optimal beam arrangement for reducing the drop in the received signal strength characteristic realized by a plurality of beams (Non-patent Document 1). .
  • the received intensity characteristics realized by each beam are different, it is not necessarily the optimum beam arrangement to prepare beams at equidistant intervals.
  • the distance between the position of the ground plane irradiated by the main beam and the base station differs from beam to beam even if the beam ground plane irradiation positions L1-L3 are equally spaced. Therefore, the influence of path loss also varies from beam to beam.
  • the received signal intensity characteristic becomes slower than in the case of horizontal plane beam forming, and the difference in intensity for each beam is reduced.
  • FIG. 1C even when the same beam angle is prepared, the interval between the beam irradiation positions varies depending on the position in the cell irradiated with the beam, that is, the distance from the base station.
  • the interval between the beam irradiation positions varies even for beams having the same beam angle. That is, the beam irradiation position interval L4-L5 by the high base station shown in FIG. 2A is wider than the beam irradiation position interval L6-L7 by the low base station shown in FIG.
  • a beam is realized in a part of the area by uniformly applying the codebook common to the cells to the vertical beamforming without considering the difference in the cell environment.
  • the codebook common to the cells is uniformly applied to vertical beamforming, the distance between the main beam irradiation positions increases as the distance from the base station is irradiated (the beam angle in the vertical direction decreases). A region where a sufficient gain cannot be obtained occurs, and inter-cell interference also increases. For this reason, a terminal far from any beam irradiation position cannot obtain the gain of beam forming, and the improvement of the system capacity is limited.
  • an object of the present invention is to provide a communication system, a terminal device, a base station device, and a codebook sharing method that can improve system capacity using precoding according to a cell environment.
  • a communication system is a communication system that performs beam directivity control by precoding using a codebook common to a base station and a terminal, and the base station determines a codebook including cell environment information of the base station. And the base station and the terminal generate a common code book based on the code book determination information.
  • a terminal apparatus is a terminal apparatus in a communication system that performs beam directivity control by precoding using a codebook, and receives codebook determination information including cell environment information of the base station from a base station. It has a communication means and a code book generating means for generating a code book common to the base station based on the code book determination information.
  • a base station apparatus is a base station apparatus in a communication system that performs beam directivity control by precoding using a code book, and transmits code book determination information including cell environment information of the base station apparatus to the terminal. It has a communication means to transmit, and a code book generating means for generating a code book common to the terminal based on the code book determination information.
  • a codebook sharing method is a codebook sharing method in a communication system for performing beam directivity control by precoding using a codebook common to a base station and a terminal, wherein the base station is a cell of the base station. Code terminal determination information including environmental information is notified to the terminal, and the base station and the terminal generate a common code book based on the code book determination information.
  • a codebook sharing method is a codebook sharing method in a communication system in which beam directivity control is performed by precoding using a codebook, for determining a codebook including cell environment information of the base station from a base station. Information is received, and a code book common to the base station is generated based on the code book determination information.
  • a codebook sharing method is a codebook sharing method in a communication system that performs beam directivity control by precoding using a codebook, and the codebook determination information including cell environment information of the base station is transmitted to a terminal. And generating a code book common to the terminal based on the code book determination information.
  • the codebook determination information including the cell environment information is notified from the base station side to the terminal side, and the base station and the terminal can share a common codebook based on the codebook determination information.
  • the base station and the terminal can share a common codebook based on the codebook determination information.
  • FIG. 1A is a schematic diagram showing a case where the beam irradiation positions in the vertical plane beam forming are equally spaced
  • FIG. 1B is a graph showing a reception intensity characteristic realized by each beam in FIG. 1 (C) is a schematic diagram showing a case where the beam angle intervals in vertical plane beam forming are equal
  • FIG. 2A is a schematic diagram showing the interval between the beam irradiation positions when the height of the base station is high
  • FIG. 2B is a schematic diagram showing the interval between the beam irradiation positions when the height of the base station is low.
  • FIG. 3A is a schematic diagram of a base station and its cell in a wireless communication system according to one embodiment of the present invention
  • FIG. 3A is a schematic diagram of a base station and its cell in a wireless communication system according to one embodiment of the present invention
  • FIG. 3B is a diagram showing an example of a code book in this embodiment.
  • FIG. 4 is a block diagram showing configurations of a base station and a terminal in the wireless communication system according to the first embodiment of the present invention.
  • FIG. 5 is a schematic flowchart for explaining the system operation of the first embodiment shown in FIG.
  • FIG. 6 is a block diagram showing configurations of a base station and a terminal in a wireless communication system according to the second embodiment of the present invention.
  • FIG. 7 is a schematic flowchart for explaining the system operation of the second embodiment shown in FIG.
  • FIG. 8 is a block diagram showing configurations of a base station and a terminal in a wireless communication system according to the third embodiment of the present invention.
  • FIG. 9 is a schematic flowchart for explaining the system operation of the third embodiment shown in FIG.
  • FIG. 10 is a block diagram showing configurations of a base station and a terminal in a wireless communication system according to the fourth embodiment of the present invention.
  • FIG. 11 is a schematic flowchart for explaining the system operation of the fourth embodiment shown in FIG.
  • FIG. 12 is a block diagram showing configurations of a base station and a terminal in a wireless communication system according to the fifth embodiment of the present invention.
  • FIG. 13 is a diagram showing an example of a superset table in the fifth embodiment.
  • FIG. 14 is a schematic flowchart for explaining the system operation of the fifth embodiment shown in FIG. FIG.
  • FIG. 15 is a block diagram showing configurations of a base station and a terminal in a wireless communication system according to the sixth embodiment of the present invention.
  • FIG. 16 is a schematic flowchart for explaining the system operation of the sixth embodiment shown in FIG.
  • FIG. 17 is a block diagram showing configurations of a base station and a terminal in a wireless communication system according to the seventh embodiment of the present invention.
  • FIG. 18 is a schematic flowchart for explaining the system operation of the seventh embodiment shown in FIG.
  • FIG. 19 is a block diagram showing configurations of a base station and a terminal in a wireless communication system according to the eighth embodiment of the present invention.
  • FIG. 20 is a schematic flowchart for explaining the system operation of the eighth embodiment shown in FIG. FIG.
  • FIG. 21 is a block diagram showing configurations of a base station and a terminal in a wireless communication system according to the ninth embodiment of the present invention.
  • FIG. 22 is a block diagram showing a functional configuration of the index selection unit of the base station and terminal in FIG.
  • FIG. 23 is a flowchart showing the operation of the index selection unit shown in FIG.
  • FIG. 24 is a diagram showing the relationship between the beam pattern and the beam coverage area in the ninth embodiment.
  • FIG. 25 is a diagram showing the relationship between the beam coverage area boundary angle and the beam coverage area in the ninth embodiment.
  • FIG. 26 is a diagram showing the relationship between the beam coverage area and the metric in the ninth embodiment.
  • FIG. 27 is a schematic flowchart for explaining the system operation of the ninth embodiment shown in FIG. FIG.
  • FIG. 28 is a block diagram showing configurations of a base station and a terminal in the wireless communication system according to the tenth embodiment of the present invention.
  • FIG. 29 is a schematic flowchart for explaining the system operation of the tenth embodiment shown in FIG.
  • FIG. 30 is a block diagram showing configurations of a base station and a terminal in the wireless communication system according to the eleventh embodiment of the present invention.
  • FIG. 31 is a schematic flow chart for explaining the system operation of the eleventh embodiment shown in FIG.
  • the height of the transmitting antenna of the base station 10 from the ground (cell surface) is h, and the distance on the cell surface from the base station 10 to the end of the cell 11 (hereinafter, for convenience).
  • Cell radius is defined as dc .
  • the terminal 20 communicating with the base station 10 receives the codebook determination information including the cell environment information from the base station 10, the terminal 20 generates a cell-specific precoding matrix based on the codebook determination information.
  • the code book illustrated in FIG. 3B is determined.
  • the code book in this embodiment is not a single fixed code book but a code book reflecting the environment for each cell.
  • the terminal 20 feeds back a codebook index (PMI) as channel information to the base station 10 using such a cell-specific codebook.
  • the feedback size is Nfb.
  • the base station when a codebook reflecting a cell environment is shared between a base station and a terminal, the base station notifies the terminal of cell-specific parameters as codebook determination information, and the terminal A codebook composed of precoding matrices calculated based on cell-specific parameters is determined. As a result, it is possible to share a codebook without a useless precoding matrix, and it is possible to improve the system capacity.
  • the cell-specific parameter may be any information that reflects the cell environment, as will be described later, the height h and the cell radius d c such cell environment information of the base station 10, the beam angle is dependent on these cells environment and For example, beam angle information related to the beam angle interval can be used.
  • the cell environment information of the height h and the cell radius d c of the base station 10, a at a predetermined value depending on the cell environment such as the distribution of electromagnetic interference, neighbor in the neighborhood of the base station 10 May be.
  • the beam angle information of the cell of the limited or the like of the beam irradiation region to avoid the distribution or inter-cell interference electromagnetic interference, neighbor of neighboring base stations as well as base stations high h and cell radius d c It may depend on the specific environment.
  • embodiments of the present invention will be described in detail with reference to the drawings.
  • the base station 10_1 includes a communication unit 101 for communicating with the terminal 20_1, a database 102, a beam angle range calculation unit 103, a beam angle interval calculation unit 104, a precoding matrix calculation unit 105, an index allocation unit 106, and a codebook storage unit 107. And a control unit 108.
  • the beam angle range calculation unit 103 and the beam angle interval calculation unit 104 generate beam angle information
  • the precoding matrix calculation unit 105 and the index allocation unit 106 generate a codebook to be shared.
  • the database 102 stores cell environment information including the cell radius d c , the base station height h, the PMI feedback size Nfb [bit], and, if necessary, the obstacles around the base station and the distribution of neighboring cells.
  • Cell radius d c, the transmission power, propagation models or beam pattern to the received signal strength theoretical value calculated from the model may be defined as the radius of the region is equal to or greater than a predetermined value, the cell edge of the cell coverage that assumed at the time of cell design And the maximum value or average value of the distance between the base station position and the base station position.
  • the base station height h and the PMI feedback size Nfb are set at the time of installation or at the time of system request.
  • Beam angle range calculation unit 103 the beam angle range calculated by entering the cell radius d c and the base station height h from the database 102, the beam angle interval calculator 104 and the beam angle range ⁇ r from the beam angle range calculation unit 103
  • the beam angle interval ⁇ is calculated using the PMI feedback size Nfb from the database 102. The calculation of the beam angle range ⁇ r and the beam angle interval ⁇ will be described later.
  • the precoding matrix calculation unit 105 inputs the beam angle interval ⁇ from the beam angle interval calculation unit 104 and the beam angle range ⁇ r from the beam angle range calculation unit 103, and calculates the precoding matrix Vi.
  • the index assigning unit 106 assigns a predetermined index to the codebook precoding matrix group input from the precoding matrix calculating unit 105.
  • the control unit 108 stores the precoding matrix group and the assigned index in the codebook storage unit 107 as a codebook.
  • the control unit 108 executes communication control according to the present embodiment and controls the above-described function units (101-107), and the beam angle range ⁇ r calculated by the beam angle range calculation unit 103 and the beam angle interval calculation unit 104. Is transmitted to the terminal 20_1 as the code book determination information.
  • the terminal 20_1 includes a communication unit 201, a precoding matrix calculation unit 202, an index assignment unit 203, a codebook storage unit 204, and a control unit 205 for communicating with the base station 10_1. As will be described later, a codebook to be shared by the precoding matrix calculation unit 202 and the index allocation unit 203 is generated.
  • the control unit 205 executes communication control according to this embodiment. That is, when cell specific parameters (beam angle information: beam angle range ⁇ r and beam angle interval ⁇ ) are received from the base station 10_1 through the broadcast channel or the dedicated channel, the precoding matrix calculation unit 105 performs the beam angle interval ⁇ and the beam angle range ⁇ r. The precoding matrix Vi is calculated from the above, and the index assigning unit 106 assigns a predetermined index to the calculated precoding matrix group for the codebook. Then, the control unit 205 stores the precoding matrix group and the index in the code book storage unit 204 as a code book.
  • the precoding matrix calculation unit (105, 202), the index allocation unit (106, 203), and the codebook storage unit (107, 204) of the base station 10_1 and the terminal 20_1 basically perform the same processing.
  • control unit 108 of the base station 10_1 When the base station is installed, the control unit 108 of the base station 10_1 generates a code book according to the procedure described below and stores it in the code book storage unit 107. Thereafter, regeneration may be performed at regular intervals or when the cell environment or system requirements are changed.
  • the control unit 108 reads out the cell radius d c , the base station height h, and the PMI feedback size Nfb, which are cell environment information of the base station 10_1, from the database 102 (operation S110), the beam angle range calculation unit 103, and the beam angle
  • the interval calculation unit 104 is controlled to calculate the beam angle range ⁇ r and the beam angle interval ⁇ (operation S111).
  • the specific calculation procedure is as follows.
  • Beam angle range calculation unit 103 calculates the beam angle range ⁇ r with a cell radius d c and the base station height h obtained from the database 102.
  • ⁇ max is a fixed value ⁇ / 2
  • ⁇ min is calculated by the following equation (1).
  • the beam angle range ⁇ r is may be defined by a continuous value range between a lower limit value phi min and the upper limit value phi max, it is defined by discrete numerical ranges specify multiple beam angle Good.
  • the beam angle interval calculation unit 104 divides the beam angle range ⁇ r by the PMI feedback size 2 Nfb ⁇ 1 to calculate a beam angle interval ⁇ for arranging the beams at equal intervals within the beam angle range.
  • the beam angle interval ⁇ is calculated by the following equation (2).
  • the precoding matrix calculation unit 105 performs a codebook precoding matrix group that realizes the beam angle range and the beam angle interval based on the beam angle range ⁇ r and the beam angle interval ⁇ by the following calculation procedure. ⁇ V ⁇ is calculated (operation S121).
  • the main beam angle ⁇ i of each precoding matrix in the codebook is calculated using the beam angle range ⁇ r and the beam angle interval ⁇ .
  • the i-th main beam angle ⁇ i is calculated by the following equation (3).
  • a precoding matrix Vi corresponding to each ⁇ i is calculated.
  • the beam vertical directivity g a ( ⁇ ) with respect to an arbitrary beam angle direction ⁇ is calculated by the following equation (4).
  • N a is the number of antenna elements
  • g e ( ⁇ ) is directional beams each antenna element forms
  • [Delta] d is the interval of antennas disposed at equal intervals
  • lambda is the wavelength.
  • the vertical plane power directivity G p ( ⁇ , p) when precoding is applied can be calculated by the following equation (6).
  • the number of bits when an index indicating an arbitrary precoding matrix in the codebook is expressed in a binary number becomes a specified PMI.
  • the feedback size is Nfb or less.
  • the control unit 108 notifies the code book determination information including the beam angle range ⁇ r and the beam angle interval ⁇ described above to the terminal 20_1 in the own cell through the communication unit 101 (operation S124).
  • notification may be made using a broadcast channel (PBCH: Physical Broadcast CHannel) that notifies all terminals in the cell, or individually notified to a terminal that has made a connection request to the own cell. May be.
  • PBCH Physical Broadcast CHannel
  • the control unit 205 of the terminal 20_1 causes the precoding matrix calculation unit 202 and the index allocation unit 203 to be similar to the operations S121 to S123 on the base station 10_1 side. Control and generate codebook. That is, the precoding matrix calculation unit 202 uses the received beam angle range ⁇ r and the beam angle interval ⁇ , and for the codebook that realizes the beam angle range and the beam angle interval according to the above-described equations (3) to (7).
  • the precoding matrix group ⁇ V ⁇ is calculated (operation S221).
  • the control unit 205 stores the allocation result in the code book storage unit 204 (operation S223).
  • the same cell-specific codebook stored in the codebook storage unit 107 of the base station 10_1 is stored in the codebook recording unit 204 of the terminal 20_1.
  • the control unit 205 of the terminal 20_1 feeds back a code book index (PMI) as channel information to the base station 10_1.
  • PMI code book index
  • the cell-specific codebook is generated so as to satisfy the condition of the PMI feedback size Nfb.
  • the base station 10_1 notifies the terminal 20_1 of the beam angle range ⁇ r and the beam angle interval ⁇ calculated according to the cell environment.
  • a code book reflecting the cell environment can be shared between the base station and the terminal by the same processing. That is, a minimum necessary codebook suitable for a cell environment without useless precoding matrix and satisfying the PMI feedback condition can be shared between the base station and the terminal, and the system capacity can be improved.
  • the beam angle interval ⁇ of the base station is previously stored in the database as a fixed value, so that the beam angle interval calculation unit can be omitted.
  • the configuration and operation of the second embodiment will be described below.
  • the configuration of the terminal 20_2 in the wireless communication system according to the second embodiment of the present invention is the same as that of the terminal 20_1 in the first embodiment.
  • the base station 10_2 of the present embodiment is partially different from the base station 10_1 of the first embodiment, the same reference numerals are assigned to the same blocks, and descriptions thereof are omitted, and only different components are described. To do.
  • the base station 10_2 In the database 102b of the base station 10_2, in addition to the cell radius d c , the base station height h, and the PMI feedback size Nfb [bit], a fixed beam angle interval ⁇ indicating the cell environment of the base station 10_2 is stored. . Therefore, the base station 10_2 does not need the beam angle interval calculation unit 104 in the first embodiment.
  • the other configuration is basically the same as that of the base station 10_1 of the first embodiment shown in FIG. 4, but the operation of the precoding matrix calculation unit is partially different from that of the first embodiment.
  • control unit 108 of the base station 10_2 When the base station is installed, the control unit 108 of the base station 10_2 generates a code book according to the procedure described below and stores it in the code book storage unit 107. Thereafter, regeneration may be performed at regular intervals or when the cell environment or system requirements are changed.
  • the control unit 108 reads out the cell radius d c , the base station height h, the PMI feedback size Nfb, and the fixed beam angle interval ⁇ , which are cell environment information of the base station 10_2, from the database 102b (operation S110b).
  • the angle range calculation unit 103 is controlled to calculate the beam angle range ⁇ r (operation S111b). The specific calculation procedure is as described in the first embodiment.
  • the precoding matrix calculation unit 105b performs the calculation based on the calculated beam angle range ⁇ r and the fixed value beam angle interval ⁇ read from the database 102b according to the calculation procedure described in the first embodiment.
  • a codebook precoding matrix group ⁇ V ⁇ that realizes a beam angle range and a beam angle interval is calculated (operation S121b).
  • the precoding matrix calculation unit 105b executes control for limiting a part of the codebook so as to satisfy the condition of the PMI feedback size Nfb. Since this point is different from the first embodiment, the difference will be mainly described below, and the other operations are the same as those of the first embodiment, and the details are omitted.
  • the precoding matrix calculation unit 105b When the number of precoding matrices in the calculated codebook precoding matrix group is equal to or larger than the PMI feedback size Nfb, the precoding matrix calculation unit 105b has the beam closest to the cell center, that is, the largest vertical beam angle. The beam is deleted from the codebook precoding matrix group. Then, the precoding matrix deletion operation is repeated until the number of precoding matrices in the codebook precoding matrix becomes equal to the PMI feedback size.
  • the index assigning unit 106 sets i to the precoding matrix group V i obtained from the precoding matrix calculation unit 105 in the same manner as in the first embodiment. Allocation is performed as an index of the code book (operation S122), and the allocation result is stored in the code book storage unit 107 (operation S123).
  • the control unit 108 notifies the terminal 20_2 in the own cell through the communication unit 101 of code book determination information including the calculated beam angle range ⁇ r and a fixed beam angle interval ⁇ (operation S124).
  • notification may be made using a broadcast channel (PBCH: Physical Broadcast CHannel) that notifies all terminals in the cell, or individually notified to a terminal that has made a connection request to the own cell. May be.
  • PBCH Physical Broadcast CHannel
  • the control unit 205 of the terminal 20_2 like the operations S121b, S122, and S123 on the base station 10_2 side, the precoding matrix calculation unit 202 and the index allocation unit
  • the code book is generated by controlling 203 and stored in the code book storage unit 204 (operations S221b, S222, and S223).
  • the precoding matrix calculation unit 202 executes control for limiting a part of the codebook so as to satisfy the condition of the PMI feedback size Nfb, similarly to the operation S121b on the base station side.
  • the same cell-specific codebook stored in the codebook storage unit 107 of the base station 10_2 is stored in the codebook recording unit 204 of the terminal 20_2.
  • the control unit 205 of the terminal 20_2 feeds back a code book index (PMI) as channel information to the base station 10_2.
  • PMI code book index
  • the cell-specific codebook is generated so as to satisfy the condition of the PMI feedback size Nfb.
  • the beam angle interval is changed, that is, in order from a narrow beam angle interval to a wide beam angle interval. If the PMI feedback size condition is not satisfied even after trial, the precoding matrix can be controlled to be deleted.
  • the beam angle interval processing unit can be omitted by setting the beam angle interval ⁇ to a fixed value.
  • the point of generating a codebook from a high h and the cell radius d c a base station by the terminal side is notified is different from the first embodiment.
  • the configuration and operation of the third embodiment will be described below.
  • the configuration of the base station 10_3 in the third embodiment of the present invention is the same as that of the base station 10_1 in the first embodiment.
  • base station 10_3 is different in that notifies the code book determining information comprising a base station high h, cell radius d c and PMI feedback size Nfb to the terminal 20_3. Therefore, the beam angle range calculation unit 206 and the beam angle interval calculation unit 207 are added to the configuration of the terminal 20_1 of the first embodiment in the terminal 20_3 of the present embodiment. Since other configurations are the same as those of the first embodiment, the same reference numerals are assigned to the same blocks as those of the first embodiment, and operations different from those of the first embodiment will be mainly described.
  • the control unit 205 of the terminal 20_3 When the terminal 20_3 receives the code book determining information comprising a base station high h, cell radius d c and PMI feedback size Nfb, the control unit 205 of the terminal 20_3, like the operation S111 of the base station 10_3 side, beam angle range The calculation unit 206 and the beam angle interval calculation unit 207 are controlled to calculate the beam angle range ⁇ r and the beam angle interval ⁇ (operation S211). Subsequently, the control unit 205 controls the precoding matrix calculation unit 202 and the index allocation unit 203 to generate a codebook, similarly to the operations S121 to S123 on the base station 10_3 side.
  • the precoding matrix calculation unit 202 uses the calculated beam angle range ⁇ r and the beam angle interval ⁇ , and for the codebook that realizes the beam angle range and beam angle interval according to the above equations (3) to (7).
  • the precoding matrix group ⁇ V ⁇ is calculated (operation S221).
  • the control unit 205 stores the allocation result in the code book storage unit 204 (operation S223).
  • the same cell-specific codebook stored in the codebook storage unit 107 of the base station 10_3 is stored in the codebook recording unit 204 of the terminal 20_3.
  • the control unit 205 of the terminal 20_3 feeds back a code book index (PMI) as channel information to the base station 10_3.
  • PMI code book index
  • the cell-specific codebook is generated so as to satisfy the condition of the PMI feedback size Nfb.
  • the beam angle interval ⁇ of the base station is stored in advance in the database as a fixed value. except a codebook from a radius d c and beam angle interval ⁇ is different from the second embodiment.
  • the configuration and operation of the fourth embodiment will be described below. 4.1) System Configuration In FIG. 10, since the configuration of the base station 10_4 in the fourth embodiment of the present invention is the same as that of the base station 10_2 in the second embodiment, the same reference numerals are given and description thereof is omitted.
  • the terminal 20_4 of this embodiment has a configuration in which a beam angle range calculation unit 206 is added to the base station 10_2 of the second embodiment, and the other configurations are the same as those of the second embodiment.
  • the same reference numerals are assigned and the description is omitted, and only different components will be described.
  • the control unit 108 of the base station 10_4 generates a code book through operations S110b, S111b, S121b, S122, and S123, and stores the codebook in the codebook storage unit 107, as in the second embodiment shown in FIG. Subsequently, the control unit 108 notifies the terminal 20_4 of the base station height h, the cell radius d c , the PMI feedback size Nfb, and the beam angle interval ⁇ read from the database 102 as codebook determination information (operation S124b).
  • the control unit 205 of the terminal 20_3 calculates the beam angle range ⁇ r by controlling the beam angle range calculation unit 206, similarly to the operation S111b on the base station 10_3 side (operation S211d). Subsequently, the control unit 205 generates a code book by controlling the precoding matrix calculation unit 202 and the index allocation unit 203 in the same manner as the operations S121b, S122, and S123 on the base station 10_4 side, and stores them in the codebook recording unit 204. Store (operations S221b, S222, S223).
  • the same cell-specific codebook stored in the codebook storage unit 107 of the base station 10_4 is stored in the codebook recording unit 204 of the terminal 20_4.
  • the control unit 205 of the terminal 20_4 feeds back a code book index (PMI) as channel information to the base station 10_4.
  • PMI code book index
  • the cell-specific codebook is generated so as to satisfy the condition of the PMI feedback size Nfb.
  • the beam angle interval is changed, that is, in order from a narrow beam angle interval to a wide beam angle interval. If the PMI feedback size condition is not satisfied even after trial, the precoding matrix can be controlled to be deleted.
  • the base station height h indicating the cell environment directly in the second embodiment by notifying the cell radius d c and PMI feedback size Nfb from the base station to the terminal Similar effects can be obtained.
  • the base station 10_5 includes a communication unit 101 for communicating with the terminal 20_5, a database 102, a beam angle range calculation unit 103, a beam angle interval calculation unit 104, a superset storage unit 150, a subset extraction unit 151, an index allocation unit 106, a code A book storage unit 107 and a control unit 108 are provided.
  • the beam angle range calculation unit 103 and the beam angle interval calculation unit 104 generate beam angle information
  • the superset storage unit 150, subset extraction unit 151, and index allocation unit 106 generate codebooks to be shared.
  • the difference from the first embodiment is that a superset storage unit 150 and a subset extraction unit 151 are provided instead of the precoding matrix calculation unit 105.
  • the database 102 stores cell environment information of a cell radius d c , a base station height h, and a PMI feedback size Nfb [bit].
  • the beam angle range calculation unit 103 the beam angle range calculated by entering the cell radius d c and the base station height h from the database 102, the beam angle interval calculator 104 beam angle range from the beam angle range calculation unit 103
  • the beam angle interval ⁇ is calculated using ⁇ r and the PMI feedback size Nfb from the database 102.
  • the superset storage unit 150 stores a precoding matrix candidate group (superset) used in the codebook, as will be described later, and the subset extraction unit 151 stores the codebook precode from the superset according to the cell environment. Extract coding matrix group.
  • a subset refers to a group of precoding matrices for use in a codebook selected from a superset.
  • the index assigning unit 106 assigns a predetermined index to the extracted precoding matrix group for the codebook as in the first embodiment.
  • the control unit 108 stores the precoding matrix group and the assigned index in the codebook storage unit 107 as a codebook.
  • the control unit 108 executes communication control according to the present embodiment and controls the above-described functional units (101-104, 150, 151, 106, 107), and the beam angle range ⁇ r calculated by the beam angle range calculation unit 103. And the beam angle interval ⁇ calculated by the beam angle interval calculation unit 104 is transmitted to the terminal 20_5 as codebook determination information.
  • the terminal 20_5 includes a communication unit 201, a superset storage unit 250, a subset extraction unit 251, an index allocation unit 203, a codebook storage unit 204, and a control unit 205 for communicating with the base station 10_5.
  • a codebook to be shared by the superset storage unit 250, the subset extraction unit 251, and the index allocation unit 203 is generated.
  • the superset storage unit 250 stores a precoding matrix candidate group (superset) used in the codebook, and the subset extraction unit 251 receives the codebook determination information received from the base station 10_5. Accordingly, a precoding matrix group for the codebook is extracted from the superset. Similar to the first embodiment, the index assigning unit 203 assigns a predetermined index to the extracted codebook precoding matrix group.
  • the control unit 108 stores the precoding matrix group and the assigned index in the codebook storage unit 204 as a codebook.
  • the superset storage unit (150, 250), subset extraction unit (151, 251), index allocation unit (106, 203) and codebook storage unit (107, 204) of the base station 10_5 and the terminal 20_5 are basically the same. Execute the process.
  • FIG. 13 shows an example of a superset table stored in the superset storage unit 150.
  • the superset is a group of precoding matrix candidates used in the codebook, and is composed of a precoding matrix V, an index corresponding thereto, and a beam angle ⁇ , and is sorted in ascending order of the beam angle ⁇ .
  • Such a superset is calculated in advance and shared between the base station and the terminal. That is, they are stored in superset storage units 150 and 250 of base station 10_5 and terminal 20_5, respectively.
  • the control unit 108 of the base station 10_5 reads out the cell radius d c , the base station height h, and the PMI feedback size Nfb, which are cell environment information of the base station 10_5, from the database 102 ( (Operation S110), the beam angle range calculation unit 103 and the beam angle interval calculation unit 104 are controlled to calculate the beam angle range ⁇ r and the beam angle interval ⁇ as in the first embodiment (Operation S111).
  • the subset extraction unit 151 extracts a precoding matrix group for codebook from the superset using the calculated beam angle range ⁇ r and beam angle interval ⁇ (operation S161). Specifically, first, the beam angle group ⁇ i
  • ⁇ super, j is a beam angle corresponding to the j-th precoding matrix in the superset
  • ⁇ i is a beam angle corresponding to the i-th precoding matrix in the codebook.
  • the precoding matrix for codebook can be determined by selecting the precoding matrix corresponding to each ⁇ cb, i thus obtained with reference to a super table as shown in FIG. If there are enough precoding matrices in the superset, and those that match ⁇ i are hit, the calculation of Equation (9) is not performed and the hit precoding matrix is directly sub-set (codebook). It can also be extracted as a precoding matrix.
  • the index assigning unit 106 codes i for the precoding matrix group V i extracted by the subset extracting unit 151, as in the first embodiment. Allocation is performed as a book index (operation S122), and the allocation result is stored in the code book storage unit 107 (operation S123).
  • control unit 108 transmits the code book determination information including the calculated beam angle range ⁇ r and the fixed beam angle interval ⁇ to the terminal 20_5 in the own cell through the communication unit 101. (Operation S124).
  • the same cell-specific codebook stored in the codebook storage unit 107 of the base station 10_5 is stored in the codebook recording unit 204 of the terminal 20_5.
  • the control unit 205 of the terminal 20_5 feeds back a code book index (PMI) as channel information to the base station 10_5.
  • PMI code book index
  • the cell-specific codebook is generated so as to satisfy the condition of the PMI feedback size Nfb.
  • the codebook in addition to the effect of the first embodiment, can be generated only by the operation of extracting the codebook precoding matrix from the superset storage unit 150. There is an advantage that the calculation of the precoding matrix is not required and the processing load on the base station and the terminal is reduced.
  • the beam angle interval ⁇ of the base station is previously stored in the database as a fixed value, so that the beam angle interval calculation unit can be omitted.
  • the configuration and operation of the sixth embodiment will be described below.
  • the configuration of the terminal 20_6 in the radio communication system according to the sixth embodiment of the present invention is the same as that of the terminal 20_5 in the fifth embodiment, so that the same reference numerals are used and description thereof is omitted.
  • the base station 10_6 of this embodiment is partially different from the base station 10_5 of the fifth embodiment, the same reference numerals are assigned to the same blocks, and descriptions thereof are omitted, and only different components are described. To do.
  • the base station 10_6 In the database 102b of the base station 10_6, in addition to the cell radius d c , the base station height h, and the PMI feedback size Nfb [bit], a fixed beam angle interval ⁇ indicating the cell environment of the base station 10_6 is stored. . Therefore, the base station 10_6 does not need the beam angle interval calculation unit 104 in the fifth embodiment.
  • the other configuration is basically the same as that of the base station 10_5 of the fifth embodiment shown in FIG. 12, but the operation of the subset extracting unit 151 is partially different from that of the fifth embodiment.
  • control unit 108 of the base station 10_6 When the base station is installed, the control unit 108 of the base station 10_6 generates a code book according to the procedure described below and stores it in the code book storage unit 107. Thereafter, regeneration may be performed at regular intervals or when the cell environment or system requirements are changed.
  • the control unit 108 reads a cell radius d c , base station height h, PMI feedback size Nfb, and fixed value beam angle interval ⁇ , which are cell environment information of the base station 10_6, from the database 102b (operation S110b).
  • the angle range calculation unit 103 is controlled to calculate the beam angle range ⁇ r (operation S111b). The specific calculation procedure is as described in the first embodiment.
  • the subset extraction unit 151 extracts a precoding matrix group for the codebook from the superset using the calculated beam angle range ⁇ r and the read beam angle interval ⁇ that has been read (operation S161). ).
  • 0 ⁇ i ⁇ satisfying the beam angle range ⁇ r and the beam angle interval ⁇ using the expressions (2) and (3). 2 Nfb ⁇ 1 ⁇ is calculated, and the beam angle ⁇ cb, i of the precoding matrix closest to each ⁇ i is selected from the superset using Equation (9).
  • the precoding matrix for codebook can be determined by selecting the precoding matrix corresponding to each ⁇ cb, i thus obtained with reference to a super table as shown in FIG. If there are enough precoding matrices in the superset, and those that match ⁇ i are hit, the calculation of Equation (9) is not performed and the hit precoding matrix is directly sub-set (codebook). It can also be extracted as a precoding matrix.
  • the index assigning unit 106 codes i for the precoding matrix group V i extracted by the subset extracting unit 151, as in the fifth embodiment. Allocation is performed as a book index (operation S122), and the allocation result is stored in the code book storage unit 107 (operation S123).
  • the control unit 108 notifies the terminal 20_6 in the own cell through the communication unit 101 of code book determination information including the calculated beam angle range ⁇ r and a fixed beam angle interval ⁇ (operation S124).
  • notification may be made using a broadcast channel (PBCH: Physical Broadcast CHannel) that notifies all terminals in the cell, or individually notified to a terminal that has made a connection request to the own cell. May be.
  • PBCH Physical Broadcast CHannel
  • the same cell-specific codebook stored in the codebook storage unit 107 of the base station 10_6 is stored in the codebook recording unit 204 of the terminal 20_6.
  • the control unit 205 of the terminal 20_6 feeds back a code book index (PMI) as channel information to the base station 10_6.
  • PMI code book index
  • the cell-specific codebook is generated so as to satisfy the condition of the PMI feedback size Nfb.
  • the beam angle interval processing unit can be omitted by setting the beam angle interval ⁇ to a fixed value.
  • the point of generating a codebook from a high h and the cell radius d c a base station by the terminal side is notified is different from the fifth embodiment.
  • the configuration and operation of the seventh embodiment will be described below.
  • the control unit 205 of the terminal 20_7 When the terminal 20_7 receives the code book determining information (base station high h, cell radius d c and PMI feedback size Nfb), the control unit 205 of the terminal 20_7, like the operation S111 of the base station 10_7 side, beam angle range The calculation unit 252 and the beam angle interval calculation unit 253 are controlled to calculate the beam angle range ⁇ r and the beam angle interval ⁇ (operation S211). Subsequently, the control unit 205 controls the superset storage unit 250, the subset extraction unit 251 and the index allocation unit 203 to generate a codebook, similarly to the operations S161 and S122 to S123 on the base station 10_7 side.
  • the subset extraction unit 251 extracts the precoding matrix group for the codebook from the superset using the calculated beam angle range ⁇ r and the read fixed beam angle interval ⁇ (operation S161). .
  • 0 ⁇ i ⁇ satisfying the beam angle range ⁇ r and the beam angle interval ⁇ using the expressions (2) and (3). 2 Nfb ⁇ 1 ⁇ is calculated, and the beam angle ⁇ cb, i of the precoding matrix closest to each ⁇ i is selected from the superset using Equation (9).
  • the precoding matrix for codebook can be determined by selecting the precoding matrix corresponding to each ⁇ cb, i thus obtained with reference to a super table as shown in FIG. If there are enough precoding matrices in the superset, and those that match ⁇ i are hit, the calculation of Equation (9) is not performed and the hit precoding matrix is directly sub-set (codebook). It can also be extracted as a precoding matrix.
  • the index assigning unit 203 uses the codebook precoding matrix group V i extracted by the subset extraction unit 251 as in the fifth embodiment. Allocation as an index (operation S222), and the allocation result is stored in the codebook storage unit 204 (operation S223).
  • the same cell-specific codebook stored in the codebook storage unit 107 of the base station 10_7 is stored in the codebook recording unit 204 of the terminal 20_7.
  • the control unit 205 of the terminal 20_7 feeds back a code book index (PMI) as channel information to the base station 10_7.
  • PMI code book index
  • the cell-specific codebook is generated so as to satisfy the condition of the PMI feedback size Nfb.
  • the beam angle interval ⁇ of the base station is stored in advance in the database as a fixed value as in the sixth embodiment. except a codebook from a radius d c and beam angle interval ⁇ is different from the sixth embodiment.
  • the configuration and operation of the eighth embodiment will be described below.
  • the configuration of the base station 10_8 in the eighth embodiment of the present invention is the same as that of the base station 10_6 in the sixth embodiment, so that the same reference numerals are used and description thereof is omitted.
  • the terminal 20_7 of the present embodiment has a configuration in which a beam angle range calculation unit 252 is added to the base station 10_6 of the sixth embodiment, and other configurations are the same as those of the sixth embodiment.
  • the same reference numerals are assigned and the description is omitted, and only different components will be described.
  • the control unit 108 of the base station 10_8 generates a code book through operations S110b, S111b, S161, S122, and S123 and stores the code book in the code book storage unit 107, as in the sixth embodiment shown in FIG. Subsequently, the control unit 108 notifies the terminal 20_8 of the base station height h, the cell radius d c , the PMI feedback size Nfb, and the beam angle interval ⁇ read from the database 102b as codebook determination information (operation S124b).
  • the control unit 205 of the terminal 20_8 calculates the beam angle range ⁇ r by controlling the beam angle range calculation unit 252 as in the operation S111b on the base station 10_8 side (operation S211b). Subsequently, similarly to the operations S161, S122, and S123 on the base station 10_8 side, the control unit 205 controls the superset storage unit 250, the subset extraction unit 251, and the index allocation unit 203 to generate a codebook, The data is stored in the recording unit 204 (operations S261, S222, and S223).
  • the same cell-specific codebook stored in the codebook storage unit 107 of the base station 10_8 is stored in the codebook recording unit 204 of the terminal 20_8.
  • the control unit 205 of the terminal 20_8 feeds back a code book index (PMI) as channel information to the base station 10_8.
  • PMI code book index
  • the cell-specific codebook is generated so as to satisfy the condition of the PMI feedback size Nfb.
  • the codebook precoding matrix index is selected from the superset according to the cell environment, and the codebook is generated from the precoding matrix group of the selected index.
  • the configuration and operation of the ninth embodiment will be described below.
  • the base station 10_9 in the ninth embodiment of the present invention selects an index instead of the beam angle range calculation unit 103 and the beam angle interval calculation unit 104 on the base station side in the seventh embodiment.
  • the unit 154 is replaced with an index selection unit 254 instead of the beam angle range calculation unit 252 and the beam angle interval calculation unit 253 on the terminal side.
  • the database 102c of the base station 10_9 in addition to the information stored in the database 102 of the seventh embodiment, information on the 3 dB beam width of the vertical radiation pattern of the transmission beam generated by the base station 10_9 is held. Yes. That is, the database 102c stores the base station height h, the cell radius d c , the PMI feedback size Nfb, and the 3 dB beam width. Since the other configuration is the same as that of the seventh embodiment, the same reference numerals are assigned to the same blocks, and descriptions thereof are omitted.
  • index selection units 154 and 254 calculate, as a limited index, an index corresponding to a precoding matrix that is not used in the codebook among the precoding matrices in the superset, and other supersets in the superset. The number is determined using the index as an unrestricted index. Since the index selectors 154 and 254 have the same functional configuration, index selection will be described below with reference to FIGS.
  • the index selection units 154 and 254 have the same functional configuration, and include a metric calculation unit 901, an index restriction unit 902, and an unrestricted index number determination unit 903.
  • index selection operation a single index limiting process of determining one precoding matrix based on a metric calculation of each precoding matrix in the superset and adding this to the limited index is performed as an unrestricted precoding matrix. (I.e., the number of precoding matrices used in the codebook) matches until the PMI feedback size Nfb requirement is met.
  • the operation of the index selection unit will be described with reference to FIG.
  • the metric calculating unit 901 the base station height h and cell radius d c from the database 102c, a superset from superset storage unit 150, a non-limiting index from the non-limiting index number determination section 903, and input respectively Then, a metric is calculated for each precoding matrix corresponding to the unrestricted index of the superset (operation S910).
  • the metric calculation unit 901 calculates a metric again for the precoding matrix corresponding to the input unrestricted index. The metric calculation will be described later.
  • the index restriction unit 902 determines one restriction index based on the metric value input from the metric calculation unit 901, and outputs it to the unrestricted index number determination unit 903 (operation S911).
  • the non-restricted index number determination unit 903 determines whether or not the number of non-restricted indexes other than the limited index from the index limiting unit 902 satisfies the PMI feedback size Nfb requirement (within 2 Nfb ) (operation S912). . If the number of unrestricted indexes is 2 Nfb or less (operation S912; NO), the unrestricted PMI is output as a selection index to the subset extraction unit 151 (operation S913). Otherwise, the unrestricted index is a metric calculation unit 901. (Operation S912; YES).
  • the metric calculation unit 901 calculates a metric from the beam angle corresponding to each index in the superset acquired from the superset storage unit 150. The metric calculation procedure will be described below.
  • a beam coverage area is defined for each beam in the superset using a geometric model.
  • an angle at which the attenuation from the peak gain of each beam is 3 dB is defined as a beam coverage area boundary angle, and an area irradiated with a beam having a higher gain is defined as a beam coverage area.
  • the beam angle of the i-th beam is ⁇ i and the 3 dB attenuation angle in the vertical direction is ⁇ ⁇ , ⁇ + , [ ⁇ i + ⁇ ⁇ , ⁇ i + ⁇ + ] of the beam is irradiated.
  • the area be the vertical beam coverage area.
  • the beam coverage area may be calculated in consideration of the beam gain on the vertical plane and the horizontal plane at the same time.
  • the sum of the overlapping areas of the beam coverage area between the own beam and the adjacent beam is calculated as a metric.
  • adjacent means that an adjoining temporary index assigned in ascending order of the index in the superset with respect to an unrestricted index at the time of restriction processing with repeated index restriction processing.
  • the metric calculation for the l-th beam coverage area in the temporary index in FIG. Since the area adjacent to the l-th beam coverage area is the (l-1) th and (l + 1) th area, the area of S high, l , S low, l as the overlapping area of the lth area and each adjacent area And the sum is taken as the metric. If there is only one adjacent beam coverage area located at the center of the cell or at the cell edge of the unrestricted index, the overlap area with that one adjacent beam coverage area is calculated and used as the metric. .
  • the index restriction unit 902 sets an index in the superset corresponding to the index having the largest metric acquired from the metric calculation unit 901 as the restriction index. In other words, by removing the beam with the largest metric (here the largest overlapping area with adjacent areas), any PMI feedback while minimizing the coverage area reduction associated with the reduction of the precoding beam Can correspond to size.
  • the non-restricted index number determination unit 903 calculates the number of non-restricted indexes from the limited index acquired from the index limiting unit 902, and compares the number and the total number (2 Nfb ) based on the PMI feedback size Nfb.
  • the number of unrestricted indexes can be obtained by subtracting the number of restricted indexes from the total number of indexes in the superset. If the number of unrestricted indexes is 2 Nfb or less, the unrestricted index is output to the index assigning unit 106 and the process is terminated.
  • an unrestricted index is output to the metric calculator 901, and the same processing as described above is repeated for the unrestricted index.
  • the metric calculation unit 901 calculates a metric again for the precoding matrix corresponding to the input unrestricted index.
  • the “adjacent beam coverage area” in the metric calculation is defined within the current unrestricted index. Therefore, the limited index has increased from the previous calculation, and the index included in the unrestricted index has changed. In this calculation, the temporary index is reassigned to the current unrestricted index group, and again the adjacent index. Calculate the metric after redefining the beam coverage area.
  • the index restriction unit 902 repeats the same processing, and the non-restricted index number determination unit 903 combines the restriction index input from the index restriction unit 902 and the previously calculated restriction index into a new restriction index. Thereafter, similar processing is performed.
  • the control unit 108 of the base station 10_9 reads the base station height h, the cell radius d c , the PMI feedback size Nfb, and the 3 dB beam width information from the database 102c (operation S110c), and the index selection unit 154 performs the above-described index selection ( Operation S171). Subsequently, the subset extraction unit 151 extracts a subset (codebook precoding matrix group) from the superset according to the selected index (operation S172).
  • the index assigning unit 106 codes i for the precoding matrix group V i extracted by the subset extracting unit 151, as in the fifth embodiment. Allocation is performed as a book index (operation S122), and the allocation result is stored in the code book storage unit 107 (operation S123).
  • the control unit 108 notifies the terminal 20_9 base station height h read from the database 102c, a cell radius d c and PMI feedback size Nfb as codebook determining information (operation S124b).
  • the index selection unit 254 performs the above-described index selection as in the operation S171 on the base station 10_9 side (operation S271). Subsequently, the subset extraction unit 251 extracts a subset (codebook precoding matrix group) from the superset according to the selected index (operation S272). Subsequently, similarly to the operations S122 and S123 on the base station 10_9 side, the control unit 205 controls the index allocation unit 203 to generate a code book and stores it in the code book recording unit 204 (operations S222 and S223).
  • the same cell-specific codebook stored in the codebook storage unit 107 of the base station 10_9 is stored in the codebook recording unit 204 of the terminal 20_9.
  • the control unit 205 of the terminal 20_9 feeds back a code book index (PMI) as channel information to the base station 10_9.
  • PMI code book index
  • the cell-specific codebook is generated so as to satisfy the condition of the PMI feedback size Nfb.
  • the codebook precoding matrix index is selected from the superset according to the cell environment, and the codebook is generated from the precoding matrix group of the selected index. Calculation of the beam angle range and beam angle interval is not necessary, and the processing load can be reduced. Furthermore, cell environment directly indicating the base station high h, it is possible to obtain the same effect as the fifth embodiment by notifying the cell radius d c and PMI feedback size Nfb from the base station to the terminal.
  • Tenth Embodiment According to the tenth embodiment of the present invention, a plurality of codebooks corresponding to different cell environments are prepared in advance, and codebook selection information suitable for the cell environment of the base station is used for codebook determination. By notifying the terminal as information, a code book reflecting the cell environment of the base station is shared with the terminal.
  • codebook selection information suitable for the cell environment of the base station is used for codebook determination.
  • the base station 10_10 in the tenth embodiment of the present invention has a communication unit 101, a database 102, and a codebook storage for communicating with the terminal, as in the first embodiment.
  • Unit 107 and control unit 108, and cell 102 stores cell environment information of cell radius d c , base station height h, and PMI feedback size Nfb [bit].
  • the base station 10_10 is provided with a code book selection unit 160 and a code book candidate storage unit 161 as code book generation means.
  • the code book candidate storage unit 161 includes a plurality of different code books CB # 1 to #n. Are stored in advance.
  • a plurality of codebooks CB # 1 to #n are respectively stored in different cell parameters (cell radius d c , base station height) by the procedure described in the first to fourth embodiments (for example, operations S110 to S123 in FIG. 5). h).
  • the terminal 20_10 is provided with a communication unit 201, a code book storage unit 204, and a control unit 205, and further stores the same code book # 1 to #n as the base station 10_10.
  • a candidate storage unit 261 is provided.
  • the codebook selection unit 160 reads the cell radius d c and the base station height h is a cell-specific parameter from the database 102 (operation S180), by using the cell-specific parameter
  • the code book candidate storage unit 161 is searched, and the code book CB # i corresponding to the cell parameter that matches or is most similar to the cell specific parameter is selected (operation S181).
  • the selected code book CB # i is stored in the code book storage unit 107 (operation S182).
  • the control unit 108 notifies the terminal 20_10 of code book selection information for specifying the selected code book #i as code book determination information (operation S183).
  • the control unit 205 of the terminal 20_10 Upon receiving the code book selection information, the control unit 205 of the terminal 20_10 reads out the code book CB # i specified by the code book selection information from the code book candidate storage unit 261 and stores it in the code book storage unit 204 (Operation S280).
  • the selection of the code book is executed when the base station 10_10 is installed, and can be notified to the subordinate terminals. Thereafter, the codebook may be reselected at a fixed period or when the cell environment or system requirements are changed.
  • the processing load on the base station and the terminal is reduced by selecting an appropriate one from a plurality of codebooks according to the cell environment of the base station.
  • the same effects as those of the first embodiment described above can be obtained.
  • a plurality of supersets corresponding to different cell environments are prepared in advance, and superset selection information and cell environment information suitable for the cell environment of the base station are provided. Is notified to the terminal as the code book determination information, the code book reflecting the cell environment of the base station can be shared with the terminal.
  • the superset is as described in the fifth embodiment, and the codebook determination procedure using the selected superset is as described in the fifth to ninth embodiments. Is omitted.
  • An example of a system configuration according to the eleventh embodiment is shown in FIG.
  • the base station 10_11 in the eleventh embodiment of the present invention includes a communication unit 101, a database 102, a subset extraction unit 151, and an index allocation unit 106 for communicating with the terminal, as in the fifth embodiment.
  • the code book storage unit 107 and the control unit 108 are provided, and the database 102 stores cell environment information of a cell radius d c , a base station height h, and a PMI feedback size Nfb [bit].
  • the base station 10_11 is provided with a superset candidate storage unit 171 and a superset selection unit 172, and the superset candidate storage unit 171 stores a plurality of different supersets SS # 1 to SS # n in advance. .
  • Each of the supersets SS # 1 to SS # n has a table configuration shown in FIG. 13, and the supersets SS # 1 to SS # n are generated corresponding to different cell environments. For example, if the base station is installed on a higher floor, if many buildings are planted around the base station, or if the surrounding cells are dense, avoid beam irradiation outside the cell coverage or cell coverage. In order to realize beam irradiation to a limited area, it is necessary to prepare a superset of precoding matrix groups that increase the beam angle in the vertical direction to some extent.
  • the terminal 20_11 is provided with a communication unit 201, a subset extraction unit 251, an index allocation unit 203, a codebook storage unit 204, and a control unit 205, and a plurality of supersets that are the same as those of the base station 10_11
  • a superset candidate storage unit 271 storing SS # 1 to SS # n is provided.
  • the superset selection unit 172 reads the cell radius d c and the base station height h, which are cell specific parameters, from the database 102 (operation S180), and uses the cell specific parameters.
  • the superset candidate storage unit 171 is searched, and the superset SS # i corresponding to the cell parameter that matches or is most similar to the cell-specific parameter is selected (operation S191).
  • the codebook generated by the operations S161, S122, and S123 (see FIG. 14) in the fifth embodiment is stored in the codebook storage unit 107.
  • the control unit 108 notifies the terminal 20_10 of the SS selection information that identifies the selected superset SS # i and the read cell-specific parameter information as codebook determination information (operation S192).
  • the control unit 205 of the terminal 20_10 reads the superset SS # i specified by the SS selection information from the superset candidate storage unit 271 and uses this superset SS # i. Then, the operations S261, S222 and S223 described in the fifth embodiment are executed, and the determined codebook is stored in the codebook storage unit 204.
  • the base stations and terminals in the first to eleventh embodiments described above are provided with a CPU (Central Processing Unit) or a computer for controlling their operations, and by executing a program stored in a memory (not shown), Functions similar to the above-described operations can be realized by software.
  • a CPU Central Processing Unit
  • a computer for controlling their operations, and by executing a program stored in a memory (not shown), Functions similar to the above-described operations can be realized by software.
  • the present invention can be applied to a mobile communication system including a base station and a mobile station.

Abstract

【課題】セル環境に応じたプリコーディングを用いてシステム容量の改善を可能にする通信システム、端末装置、基地局装置およびコードブック共有方法を提供する。 【解決手段】基地局(10)および端末(20)に共通のコードブックを用いたプリコーディングによりビーム指向性制御を行う通信システムであって、基地局(10)が当該基地局のセル(11)の固有情報を含むコードブック決定用情報を端末(20)へ通知し、基地局(10)および端末(20)がコードブック決定用情報に基づいて共通のコードブックを生成する。

Description

通信システムにおける端末装置、基地局装置およびコードブック共有方法
 本発明はプリコーディングを用いた通信システムに係り、特に通信システムにおける端末装置、基地局装置およびコードブック共有方法に関する。
 送信側と受信側の双方に複数のアンテナを配置したMultiple Input Multiple Output (MIMO)通信における基地局から端末への下りリンク送信について考える。閉ループ系のMIMO通信では、基地局が端末からフィードバックされるチャネル情報に基づいてビームフォーミングを実行し、通信品質およびシステム容量の改善を図っている。たとえば、Frequency Division Duplexing (FDD)システムでは、上りリンクと下りリンクのチャネル応答が異なり、未知であるため、送信ビームフォーミングを行う際は、端末で推定したチャネル情報を基地局へフィードバックする。
 しかしながら、チャネル情報を直接フィードバックすると回線に大きな負荷となる。たとえば送信機にN本、受信機にM本のアンテナを有するMIMOシステムの場合には送受信機間のチャネルはN×M個の複素数の値となり、フィードバックの情報量が増大するからである。そこで、フィードバック情報量削減のために、コードブックを用いたフィードバック方法が採用されている。この方法では、端末と基地局との間でプリコーディング行列のテーブル(コードブック)が予め共有されており、端末は、下りリンクで推定したチャネル応答に基づいて最も相関が高いプリコーディング行列のインデックスをチャネル情報として基地局に対してフィードバックする。このコードブック内のインデックスは、Precoding Matrix Indicator(PMI)と呼ばれる。基地局は、フィードバックされたPMIに従ってコードブックからプリコーディング行列を決定し、送信信号に乗算することで端末ごとのビームフォーミング制御が可能となる。
水平方向のビームフォーミングに関しては、例えば非特許文献1に記載されているプリコーディング行列を用いることで、セルカバレッジ全体に対してコードブックベースのビームフォーミングを行うことが可能である。
 垂直方向のビームフォーミングに関しては、非特許文献2に記載されているように、所望の垂直方向のビーム角を実現するプリコーディング行列を計算することができる。ここで、垂直方向のビーム角は、あるプリコーディング行列で実現されるビームのメインビーム方向を基地局から見下ろす角度として定義される。
 しかしながら、非特許文献2に記載された垂直方向のビームフォーミングでは、基地局の高さやセル半径あるいは基地局周辺の障害物や周辺セルの分布などのセル環境が通信品質やシステム容量に大きく影響する。このために、非特許文献1に記載されたようなセル共通のコードブックを単純に拡張して垂直方向のビームフォーミング用コードブックとして用いても、ビームフォーミングによるシステム容量の改善は限定的となる。コードブックは、プリコーディング行列が実現するビーム角の間隔(以下、ビーム角間隔と称する)と範囲(以下、ビーム角レンジと称する)とにより決定されるので、以下、ビーム角レンジの設定とビーム角間隔の設定にそれぞれ起因する問題点について説明する。
 ビーム角レンジに関して、水平面ビームフォーミングでは基地局面からみたセルカバレッジの水平面角度が基地局高によらず一定であるが、垂直面ビームフォーミングでは基地局から見たカバレッジの垂直面角度が基地局高に依存して変化する。このために、基地局高やセル半径を考慮せずに固定の垂直面角度でビームを用意すると、たとえば高層階に設置された基地局は一部のビームがセルカバレッジ外へ向いてしまい、低層階に設置された基地局はビームをビームカバレッジ内の一部の領域に対してのみ照射する。セルカバレッジ外を向いているビームは、フィードバック情報量の制限がある中でシステム容量の改善に寄与していないことは明白であり、さらにセル間干渉を増大させる可能性もある。また、セルカバレッジ内の地平面にいる全端末に対してビームフォーミングを行おうとする場合にビームカバレッジ内の一部の領域に対してのみビームが照射されれば、ビームフォーミングの利得を得ることができる端末が一部に限定されるので、同様にシステム容量の改善に寄与しない。逆に、基地局周辺にビル等の電波障害物が多く存在する環境や周辺セルが密集している環境では、垂直面角度を大きくしてビームカバレッジ内の必要な領域にのみビームを照射することが望ましい。
 ビーム角間隔に関して、水平面ビームフォーミングでは、各ビームの地平面におけるメインビーム照射位置と基地局の距離が等しいため、パスロス条件も各ビームで等しい。そのため、各ビームの地平面照射位置の間隔を等距離間隔にビームを並べることが複数のビームで実現する受信信号強度特性の落ち込みを小さくするための最適なビーム配置である(非特許文献1)。
 これに対して、垂直面ビームフォーミングでは、各ビームが実現する受信強度特性が異なるため、等距離間隔のビームを用意することが必ずしも最適なビームの配置とはならない。例えば、図1(A)に示すようにビームの地平面照射位置L1-L3が等間隔であっても、メインビームが照射する地平面の位置と基地局との間の距離がビームごとに異なっているために、パスロスの影響もビームごとに変動する。また、図1(B)に示すように、受信信号強度特性が水平面ビームフォーミングの場合に比べて緩慢になり、ビームごとの強度の差異が減少する。また、図1(C)に示すように、同じビーム角を用意しても、そのビームが照射するセル内の位置、すなわち基地局からの距離によってビーム照射位置の間隔が異なってくる。
 更に、図2(A)および図2(B)に示すように、基地局の高さが異なると、同じビーム角のビームであってもビーム照射位置の間隔は変動する。すなわち、図2(A)に示す高い基地局によるビーム照射位置の間隔L4-L5は、図2(B)に示す低い基地局によるビーム照射位置の間隔L6-L7よりも広くなる。
 上述したように、フィードバックサイズが制限されたシステムにおいて、セル環境の相異を考慮せずにセル共通のコードブックを垂直方向のビームフォーミングに一律に適用すると、一部のエリアにおいてビームが実現する受信電力特性に大きな差異がなくなる。このように受信電力特性に大きな差異がなくなると、ビーム制御の際の選択肢が実質的に限定され、システム容量の改善が限定的になる。さらに、セル共通のコードブックを垂直方向のビームフォーミングに一律に適用した場合には、基地局から遠くを照射するほど(垂直方向のビーム角が小さくなるほど)メインビーム照射位置の間隔が大きくなりビームゲインを十分に得られない領域が発生し、またセル間干渉も増大する。このために、いずれのビーム照射位置からも遠い端末がビームフォーミングの利得を得られないこととなりシステム容量の改善が限定的になる。
 そこで、本発明の目的は、セル環境に応じたプリコーディングを用いてシステム容量の改善を可能にする通信システム、端末装置、基地局装置およびコードブック共有方法を提供することにある。
 本発明による通信システムは、基地局および端末に共通のコードブックを用いたプリコーディングによりビーム指向性制御を行う通信システムであって、前記基地局が当該基地局のセル環境情報を含むコードブック決定用情報を前記端末へ通知し、前記基地局および前記端末が前記コードブック決定用情報に基づいて共通のコードブックを生成する、ことを特徴とする。
 本発明による端末装置は、コードブックを用いたプリコーディングによりビーム指向性制御を行う通信システムにおける端末装置であって、基地局から当該基地局のセル環境情報を含むコードブック決定用情報を受信する通信手段と、前記コードブック決定用情報に基づいて前記基地局と共通のコードブックを生成するコードブック生成手段と、を有することを特徴とする。
 本発明による基地局装置は、コードブックを用いたプリコーディングによりビーム指向性制御を行う通信システムにおける基地局装置であって、当該基地局装置のセル環境情報を含むコードブック決定用情報を端末へ送信する通信手段と、前記コードブック決定用情報に基づいて前記端末と共通のコードブックを生成するコードブック生成手段と、を有することを特徴とする。
 本発明によるコードブック共有方法は、基地局および端末に共通のコードブックを用いたプリコーディングによりビーム指向性制御を行う通信システムにおけるコードブック共有方法であって、前記基地局が当該基地局のセル環境情報を含むコードブック決定用情報を前記端末へ通知し、前記基地局および前記端末が前記コードブック決定用情報に基づいて共通のコードブックを生成する、ことを特徴とする。
 本発明によるコードブック共有方法は、コードブックを用いたプリコーディングによりビーム指向性制御を行う通信システムにおけるコードブック共有方法であって、基地局から当該基地局のセル環境情報を含むコードブック決定用情報を受信し、前記コードブック決定用情報に基づいて前記基地局と共通のコードブックを生成する、ことを特徴とする。
 本発明によるコードブック共有方法は、コードブックを用いたプリコーディングによりビーム指向性制御を行う通信システムにおけるコードブック共有方法であって、当該基地局のセル環境情報を含むコードブック決定用情報を端末へ送信し、前記コードブック決定用情報に基づいて前記端末と共通のコードブックを生成する、ことを特徴とする。
 上述したように、本発明によれば、基地局側から端末側へセル環境情報を含むコードブック決定用情報が通知され、基地局および端末がコードブック決定用情報に基づいて共通のコードブックを生成することで、セル環境に応じたプリコーディングが実行されシステム容量の改善が可能となる。
図1(A)は垂直面ビームフォーミングにおけるビーム照射位置が等間隔である場合を示す模式図、図1(B)は図1(A)において各ビームが実現する受信強度特性を示すグラフ、図1(C)は垂直面ビームフォーミングにおけるビーム角間隔が等しい場合を示す模式図である。 図2(A)は基地局の高さが高い場合のビーム照射位置の間隔を示す模式図、図2(B)は基地局の高さ低い場合のビーム照射位置の間隔を示す模式図である。 図3(A)は本発明の一実施形態による無線通信システムにおける基地局とそのセルの模式図、図3(B)は本実施形態におけるコードブックの一例を示す図である。 図4は本発明の第1実施例による無線通信システムの基地局および端末の構成を示すブロック図である。 図5は図4に示す第1実施例のシステム動作を説明するための模式的フローチャートである。 図6は本発明の第2実施例による無線通信システムの基地局および端末の構成を示すブロック図である。 図7は図6に示す第2実施例のシステム動作を説明するための模式的フローチャートである。 図8は本発明の第3実施例による無線通信システムの基地局および端末の構成を示すブロック図である。 図9は図8に示す第3実施例のシステム動作を説明するための模式的フローチャートである。 図10は本発明の第4実施例による無線通信システムの基地局および端末の構成を示すブロック図である。 図11は図10に示す第4実施例のシステム動作を説明するための模式的フローチャートである。 図12は本発明の第5実施例による無線通信システムの基地局および端末の構成を示すブロック図である。 図13は第5実施例におけるスーパーセットテーブルの一例を示す図である。 図14は図12に示す第5実施例のシステム動作を説明するための模式的フローチャートである。 図15は本発明の第6実施例による無線通信システムの基地局および端末の構成を示すブロック図である。 図16は図15に示す第6実施例のシステム動作を説明するための模式的フローチャートである。 図17は本発明の第7実施例による無線通信システムの基地局および端末の構成を示すブロック図である。 図18は図17に示す第7実施例のシステム動作を説明するための模式的フローチャートである。 図19は本発明の第8実施例による無線通信システムの基地局および端末の構成を示すブロック図である。 図20は図19に示す第8実施例のシステム動作を説明するための模式的フローチャートである。 図21は本発明の第9実施例による無線通信システムの基地局および端末の構成を示すブロック図である。 図22は図21における基地局および端末のインデックス選択部の機能的構成を示すブロック図である。 図23は図22に示すインデックス選択部の動作を示すフローチャートである。 図24は第9実施例におけるビームパターンとビームカバレッジエリアの関係を示す図である。 図25は第9実施例におけるビームカバレッジエリア境界角とビームカバレッジエリアの関係を示す図である。 図26は第9実施例におけるビームカバレッジエリアとメトリックの関係を示す図である。 図27は図21に示す第9実施例のシステム動作を説明するための模式的フローチャートである。 図28は本発明の第10実施例による無線通信システムの基地局および端末の構成を示すブロック図である。 図29は図28に示す第10実施例のシステム動作を説明するための模式的フローチャートである。 図30は本発明の第11実施例による無線通信システムの基地局および端末の構成を示すブロック図である。 図31は図30に示す第11実施例のシステム動作を説明するための模式的フローチャートである。
 まず、図3(A)に示すように、基地局10の送信アンテナの地上(セル表面)からの高さをh、基地局10からセル11の端までのセル面上の距離(以下、便宜上、セル半径という。)をdとする。本発明の一実施形態によれば、基地局10と通信する端末20が、基地局10からセル環境情報を含むコードブック決定用情報を受信すると、それに基づいてセル固有のプリコーディング行列を生成し、図3(B)に例示するコードブックを決定する。本実施形態におけるコードブックは、1つの固定したコードブックではなく、セルごとの環境を反映したコードブックである。端末20は、このようなセル固有のコードブックを用いて、チャネル情報としてコードブックインデックス(PMI)を基地局10へフィードバックする。なお、ここではフィードバックサイズをNfbとしている。
 以下の実施例で説明するように、基地局と端末とでセル環境を反映したコードブックを共有する場合、基地局が端末に対してセル固有パラメータをコードブック決定用情報として通知し、端末がセル固有パラメータに基づいて算出されたプリコーディング行列からなるコードブックを決定する。これにより、無駄なプリコーディング行列のないコードブックを共有することができ、システム容量の改善が可能となる。
 なお、セル固有パラメータはセル環境を反映した情報であればよく、後述するように、基地局10の高さhやセル半径d等のセル環境情報、これらのセル環境に依存したビーム角および/またはビーム角間隔に関するビーム角情報等を用いることができる。また、基地局10の高さhやセル半径dのセル環境情報は、基地局10の周辺にある電波障害物や周辺セルの分布等のセル環境に依存して予め決められた値であってもよい。さらに、ビーム角情報は、基地局高hやセル半径dだけでなく基地局周辺の電波障害物や周辺セルの分布あるいはセル間干渉を回避するためのビーム照射領域の限定等の当該セルの固有環境に依存してもよい。以下、本発明の実施例について図面を参照しながら詳細に説明する。
 1.第1実施例
 1.1)システム構成
 図4において、本発明の第1実施例による無線通信システムにおける基地局10_1と端末20_1の構成は以下の通りである。
 <基地局>
 基地局10_1は、端末20_1と通信するための通信部101、データベース102、ビーム角レンジ計算部103、ビーム角間隔計算部104、プリコーディング行列計算部105、インデックス割当部106、コードブック記憶部107および制御部108を備える。後述するように、ビーム角レンジ計算部103およびビーム角間隔計算部104がビーム角情報を生成し、プリコーディング行列計算部105およびインデックス割当部106が共有すべきコードブックを生成する。
 データベース102には、セル半径d、基地局高hおよびPMIフィードバックサイズNfb[bit]、さらに必要に応じて基地局周辺の障害物や周辺セルの分布等も含めたセル環境情報が格納されている。セル半径dは、送信電力、伝搬モデルあるいはビームパターンモデルから算出した受信信号強度理論値が一定値以上である領域の半径として規定してもよいし、セル設計時に想定するセルカバレッジのセル端と基地局位置との距離の最大値や平均値として規定してもよい。基地局高hやPMIフィードバックサイズNfbは設置時またはシステム要求時に設定される。
 ビーム角レンジ計算部103はデータベース102からセル半径dおよび基地局高hを入力してビーム角レンジを計算し、ビーム角間隔計算部104はビーム角レンジ計算部103からのビーム角レンジφrとデータベース102からのPMIフィードバックサイズNfbとを用いてビーム角間隔Δφを計算する。ビーム角レンジφrおよびビーム角間隔Δφの計算については後述する。
 プリコーディング行列計算部105は、ビーム角間隔計算部104からビーム角間隔Δφ、ビーム角レンジ計算部103からビーム角レンジφrをそれぞれ入力し、プリコーディング行列Viを計算する。インデックス割当部106は、プリコーディング行列計算部105から入力したコードブック用のプリコーディング行列群に所定のインデックスを割り当てる。制御部108は、当該プリコーディング行列群と割り当てられたインデックスとをコードブックとしてコードブック記憶部107に格納する。
 制御部108は本実施例による通信制御を実行すると共に、上述した機能部(101-107)を制御し、ビーム角レンジ計算部103により計算されたビーム角レンジφrと、ビーム角間隔計算部104により計算されたビーム角間隔Δφとをコードブック決定用情報として端末20_1へ送信する。
 <端末>
 端末20_1は、基地局10_1と通信するための通信部201、プリコーディング行列計算部202、インデックス割当部203、コードブック記憶部204および制御部205を備える。後述するように、プリコーディング行列計算部202およびインデックス割当部203が共有すべきコードブックを生成する。
 制御部205は本実施例による通信制御を実行する。すなわち、基地局10_1から報知チャネルまたは個別チャネルを通してセル固有パラメータ(ビーム角情報:ビーム角レンジφrおよびビーム角間隔Δφ)を受信すると、プリコーディング行列計算部105はビーム角間隔Δφおよびビーム角レンジφrからプリコーディング行列Viを計算し、インデックス割当部106は、計算されたコードブック用のプリコーディング行列群に所定のインデックスを割り当てる。そして、制御部205は、プリコーディング行列群とインデックスとをコードブックとしてコードブック記憶部204に格納する。基地局10_1および端末20_1のプリコーディング行列計算部(105,202)、インデックス割当部(106,203)およびコードブック記憶部(107,204)は、基本的に同じ処理を実行する。
 1.2)動作
 次に、図5を参照しながら、本実施例における基地局および端末の動作について説明する。
 基地局10_1の制御部108は、基地局が設置されたときに、以下に述べる手順でコードブックを生成しコードブック記憶部107に格納する。それ以降、一定周期で、もしくはセル環境やシステム要求が変更された時点で再生成してもよい。
 <ビーム角レンジφrおよびビーム角間隔Δφの計算>
 まず、制御部108は、データベース102から当該基地局10_1のセル環境情報であるセル半径d、基地局高hおよびPMIフィードバックサイズNfbを読み出し(動作S110)、ビーム角レンジ計算部103およびビーム角間隔計算部104を制御してビーム角レンジφrおよびビーム角間隔Δφを計算する(動作S111)。具体的な計算手順は以下の通りである。
 ビーム角レンジ計算部103はデータベース102から取得したセル半径dおよび基地局高hを用いてビーム角レンジφrを計算する。ビーム角レンジφrはビーム角の下限値φminと上限値φmaxとを用いて表される(φr=φmax-φmin)。φmaxは固定値π/2とし、φminは次式(1)で算出される。
Figure JPOXMLDOC01-appb-M000001
 
 ビーム角レンジφrの下限値φminを基地局10_1からセルの端を見下ろす角度とすれば、コードブック内のビームはすべてセルカバレッジ内を向くので、システム容量の改善に寄与しない状況を回避できる。なお、ビーム角レンジφrは、下限値φminと上限値φmaxとの間の連続した数値範囲で定義されてもよいが、複数のビーム角を指定し離散的な数値範囲で定義されてもよい。
 次に、ビーム角間隔計算部104は、ビーム角レンジφrをPMIフィードバックサイズ2Nfb-1で割ることで、ビーム角レンジ内に等間隔にビームを配置するためのビーム角間隔Δφを計算する。ビーム角度間隔Δφは次式(2)で算出される。
Figure JPOXMLDOC01-appb-M000002
  
 このビーム角間隔Δφはビームレンジφr(=φmax-φmin)に対してフィードバックサイズ条件(Nfb[bit])を満たしている。
 <プリコーディング行列の計算>
 続いて、プリコーディング行列計算部105は、以下の計算手順により、ビーム角レンジφrとビーム角間隔Δφとに基づいて、当該ビーム角レンジおよびビーム角間隔を実現するコードブック用のプリコーディング行列群{V}を算出する(動作S121)。
 まず、ビーム角レンジφrとビーム角間隔Δφとを用いて、コードブック内の各プリコーディング行列のメインビーム角φiを算出する。i番目のメインビーム角φiは次式(3)で算出される。
Figure JPOXMLDOC01-appb-M000003
 
 
 
 続いて、各φiに対応するプリコーディング行列Viが計算される。任意のビーム角方向φに対するビームの垂直面指向性ga(φ)は次式(4)で計算される。
Figure JPOXMLDOC01-appb-M000004
 
                        
 
 ここでNaはアンテナ素子数、ge(φ)は各アンテナ素子が形成するビームの指向性、Δdは等間隔で配置したアンテナの間隔、λは波長である。
 また、2素子のアンテナを用い、1レイヤ伝送を行う場合のプリコーディング行列V=[1 exp(jp)]Tを適用した際の垂直面指向性gp(φ,p)は次式(5)で算出される。ただしTは転置を表し、pは0番目と1番目のアンテナ素子の位相差である。
Figure JPOXMLDOC01-appb-M000005
 
 
 
さらにプリコーディング適用時の垂直面電力指向性Gp(θ,p)は次式(6)で算出できる。
Figure JPOXMLDOC01-appb-M000006
 
 
 
 上記式(6)を用いて、任意のビーム角φiを実現するプリコーディング行列Viを次式(7)で求めることができる。
Figure JPOXMLDOC01-appb-M000007
 
 
 
 <インデックス割り当て>
 次に、インデックス割当部106は、プリコーディング行列計算部105から取得したプリコーディング行列群Vi (i=0,1,・・・,2Nfb-1)に対してiをコードブックのインデックスとして割り当て(動作S122)、この割り当て結果がコードブック記憶部107に記憶される(動作S123)。
 このように、セル固有のコードブックに対してセルごとにインデックスの割り当てを行うことで、コードブック内の任意のプリコーディング行列を示すインデックスを2進数で表したときのビット数が、規定のPMIフィードバックサイズNfb以下となる。
 <コードブック決定用情報の通知>
 制御部108は、上述したビーム角レンジφrおよびビーム角間隔Δφからなるコードブック決定用情報を通信部101を通して自セル内の端末20_1に対して通知する(動作S124)。通知方法としては、セル内のすべての端末に対して通知する報知チャネル(PBCH:Physical Broadcast CHannel)を用いて通知してもよいし、自セルに接続要求をしてきた端末に対して個別に通知してもよい。
 <端末側でのコードブック生成>
 基地局10_1から通信部201を通してコードブック決定用情報を受信すると、端末20_1の制御部205は、基地局10_1側の動作S121~S123と同様に、プリコーディング行列計算部202およびインデックス割当部203を制御してコードブックを生成する。すなわち、プリコーディング行列計算部202は、受信したビーム角レンジφrおよびビーム角間隔Δφを用い、上述した式(3)~式(7)に従って当該ビーム角レンジおよびビーム角間隔を実現するコードブック用のプリコーディング行列群{V}を算出する(動作S221)。続いて、インデックス割当部203は、算出されたプリコーディング行列群Vi (i=0,1,・・・,2Nfb-1)に対してiをコードブックのインデックスとして割り当てる(動作S222)。制御部205は、割り当て結果をコードブック記憶部204に記憶する(動作S223)。
 こうして、基地局10_1のコードブック記憶部107に格納されたセル固有のコードブックと同じものが端末20_1のコードブック記録部204に格納される。コードブックが決定されると、このコードブックを用いて、端末20_1の制御部205はチャネル情報としてコードブックインデックス(PMI)を基地局10_1へフィードバックする。セル固有のコードブックは、既に述べたように、PMIフィードバックサイズNfbの条件を満たすように生成されている。
 1.3)効果
 上述したように、本発明の第1実施例によれば、セル環境に応じて計算したビーム角レンジφrおよびビーム角間隔Δφを基地局10_1から端末20_1に通知することで、同様の処理により基地局と端末との間でセル環境を反映したコードブックを共有することができる。すなわち、無駄なプリコーディング行列のないセル環境に適し、かつ、PMIフィードバック条件を満たす必要最低限のコードブックを基地局-端末間で共有することができ、システム容量の改善が可能となる。
 2.第2実施例
 本発明の第2実施例によれば、基地局のビーム角間隔Δφを固定値としてデータベースに予め格納しておき、それによりビーム角間隔計算部を省略することができる。以下、第2実施例の構成および動作について説明する。
 2.1)システム構成
 図6において、本発明の第2実施例による無線通信システムにおける端末20_2の構成は第1実施例における端末20_1と同じであるから同一参照番号を付して説明は省略する。本実施例の基地局10_2は、第1実施例の基地局10_1と部分的な構成が異なっているので、同一ブロックには同一の参照番号を付して説明は省略し、異なる構成部分のみ説明する。
 基地局10_2のデータベース102bには、セル半径d、基地局高hおよびPMIフィードバックサイズNfb[bit]に加えて、基地局10_2のセル環境を示す固定値のビーム角間隔Δφが格納されている。したがって、基地局10_2には、第1実施例におけるビーム角間隔計算部104が不要となる。その他の構成は、図4に示す第1実施例の基地局10_1と基本的に同様であるが、プリコーディング行列計算部の動作は第1実施例と部分的に異なっている。
 2.2)動作
 次に、図7を参照しながら、本実施例における基地局および端末の動作について説明する。
 基地局10_2の制御部108は、基地局が設置されたときに、以下に述べる手順でコードブックを生成しコードブック記憶部107に格納する。それ以降、一定周期で、もしくはセル環境やシステム要求が変更された時点で再生成してもよい。
 <ビーム角レンジφrの計算>
 まず、制御部108は、データベース102bから当該基地局10_2のセル環境情報であるセル半径d、基地局高h、PMIフィードバックサイズNfbおよび固定値のビーム角間隔Δφを読み出し(動作S110b)、ビーム角レンジ計算部103を制御してビーム角レンジφrを計算する(動作S111b)。具体的な計算手順は第1実施例で説明した通りである。
 <プリコーディング行列の計算>
 続いて、プリコーディング行列計算部105bは、第1実施例で説明した計算手順により、計算されたビーム角レンジφrとデータベース102bから読み出された固定値のビーム角間隔Δφとに基づいて、当該ビーム角レンジおよびビーム角間隔を実現するコードブック用のプリコーディング行列群{V}を算出する(動作S121b)。ただし、ビーム角間隔Δφが固定値であるから、プリコーディング行列計算部105bは、PMIフィードバックサイズNfbの条件を満たすようにコードブックの一部を制限する制御を実行する。この点が第1実施例と異なっているので、以下、この相違点を中心に説明し、その他の動作は第1実施例と同様であるから詳細は省略する。
 プリコーディング行列計算部105bは、計算したコードブック用プリコーディング行列群内のプリコーディング行列の個数がPMIフィードバックサイズNfb以上だった場合、最もセル中心部に近いビーム、すなわち最も垂直方向ビーム角が大きいビームをコードブック用プリコーディング行列群から削除する。そして、コードブック用プリコーディング行列内のプリコーディング行列の個数がPMIフィードバックサイズと等しくなるまで、プリコーディング行列削除操作を繰り返す。
 こうして、コードブック用プリコーディング行列群Viが決定すると、以下第1実施例と同様に、インデックス割当部106は、プリコーディング行列計算部105から取得したプリコーディング行列群Viに対してiをコードブックのインデックスとして割り当て(動作S122)、この割り当て結果がコードブック記憶部107に記憶される(動作S123)。
 <コードブック決定用情報の通知>
 制御部108は、計算されたビーム角レンジφrと固定値のビーム角間隔Δφからなるコードブック決定用情報を通信部101を通して自セル内の端末20_2に対して通知する(動作S124)。通知方法としては、セル内のすべての端末に対して通知する報知チャネル(PBCH:Physical Broadcast CHannel)を用いて通知してもよいし、自セルに接続要求をしてきた端末に対して個別に通知してもよい。
 <端末側でのコードブック生成>
 基地局10_2から通信部201を通してコードブック決定用情報を受信すると、端末20_2の制御部205は、基地局10_2側の動作S121b、S122、S123と同様に、プリコーディング行列計算部202およびインデックス割当部203を制御してコードブックを生成しコードブック記憶部204に格納する(動作S221b、S222、S223)。その際、プリコーディング行列計算部202は、基地局側の動作S121bと同様に、PMIフィードバックサイズNfbの条件を満たすようにコードブックの一部を制限する制御を実行する。
 こうして、基地局10_2のコードブック記憶部107に格納されたセル固有のコードブックと同じものが端末20_2のコードブック記録部204に格納される。コードブックが決定されると、このコードブックを用いて、端末20_2の制御部205はチャネル情報としてコードブックインデックス(PMI)を基地局10_2へフィードバックする。セル固有のコードブックは、既に述べたように、PMIフィードバックサイズNfbの条件を満たすように生成されている。
 なお、データベース102bに異なるビーム角間隔Δφを複数用意し、上述したようにPMIフィードバックサイズ条件を満たさない場合には、ビーム角間隔を変化させ、すなわち狭いビーム角間隔から広いビーム角間隔へ順番に試行し、それでもPMIフィードバックサイズの条件を満たせなかった場合には、上述のプリコーディング行列の削除を行うように制御することもできる。
 2.3)効果
 本発明の第2実施例によれば、第1実施例の効果に加えて、ビーム角間隔Δφを固定値にすることでビーム角間隔処理部を省略することができ、基地局の装置構成を簡略化できるという利点がある。
 3.第3実施例
 本発明の第3実施例によれば、端末側が通知された基地局高hとセル半径dからコードブックを生成する点が第1実施例とは異なっている。以下、第3実施例の構成および動作について説明する。
 3.1)システム構成
 図8において、本発明の第3実施例における基地局10_3の構成は第1実施例における基地局10_1と同じであるから同一参照番号を付して説明は省略するが、基地局10_3が端末20_3に対して基地局高h、セル半径dおよびPMIフィードバックサイズNfbからなるコードブック決定用情報を通知する点が異なっている。したがって、本実施例の端末20_3には、第1実施例の端末20_1の構成にビーム角レンジ計算部206およびビーム角間隔計算部207が追加されている。その他の構成は第1実施例と同様であるから、第1実施例と同一のブロックには同一の参照番号を付し、第1実施例と異なる動作について主に説明する。
 3.2)動作
 図9において、基地局10_3の動作S110~S123は第1実施例と同じであるが、制御部108は、データベース102から読み出した基地局高h、セル半径dおよびPMIフィードバックサイズNfbをコードブック決定用情報として端末20_3へ通知する(動作S124b)。
 端末20_3が基地局高h、セル半径dおよびPMIフィードバックサイズNfbからなるコードブック決定用情報を受信すると、端末20_3の制御部205は、基地局10_3側の動作S111と同様に、ビーム角レンジ計算部206およびビーム角間隔計算部207を制御してビーム角レンジφrおよびビーム角間隔Δφを計算する(動作S211)。続いて、制御部205は、基地局10_3側の動作S121~S123と同様に、プリコーディング行列計算部202およびインデックス割当部203を制御してコードブックを生成する。すなわち、プリコーディング行列計算部202は、計算したビーム角レンジφrおよびビーム角間隔Δφを用い、上述した式(3)~式(7)に従って当該ビーム角レンジおよびビーム角間隔を実現するコードブック用のプリコーディング行列群{V}を算出する(動作S221)。続いて、インデックス割当部203は、算出されたプリコーディング行列群Vi (i=0,1,・・・,2Nfb-1)に対してiをコードブックのインデックスとして割り当てる(動作S222)。制御部205は、割り当て結果をコードブック記憶部204に記憶する(動作S223)。
 こうして、基地局10_3のコードブック記憶部107に格納されたセル固有のコードブックと同じものが端末20_3のコードブック記録部204に格納される。コードブックが決定されると、このコードブックを用いて、端末20_3の制御部205はチャネル情報としてコードブックインデックス(PMI)を基地局10_3へフィードバックする。セル固有のコードブックは、既に述べたように、PMIフィードバックサイズNfbの条件を満たすように生成されている。
 3.3)効果
 本発明の第3実施例によれば、セル環境を直接示す基地局高h、セル半径dおよびPMIフィードバックサイズNfbを基地局から端末へ通知することで第1実施例と同様の効果を得ることができる。
 4.第4実施例
 本発明の第4実施例によれば、第2実施例と同様に基地局のビーム角間隔Δφが固定値としてデータベースに予め格納されているが、端末が基地局高h、セル半径dおよびビーム角間隔Δφからコードブックを生成する点が第2実施例とは異なっている。以下、第4実施例の構成および動作について説明する。
 4.1)システム構成
 図10において、本発明の第4実施例における基地局10_4の構成は第2実施例における基地局10_2と同じであるから同一参照番号を付して説明は省略する。本実施例の端末20_4は、第2実施例の基地局10_2にビーム角レンジ計算部206が追加された構成を有し、他の構成は第2実施例と同様であるから、同一ブロックには同一の参照番号を付して説明は省略し、異なる構成部分のみ説明する。
 4.2)動作
 次に、図11を参照しながら、本実施例における基地局および端末の動作について説明する。
 基地局10_4の制御部108は、図7に示す第2実施例と同様に、動作S110b、S111b、S121b、S122、S123によりコードブックを生成しコードブック記憶部107に格納する。続いて、制御部108は、データベース102から読み出した基地局高h、セル半径d、PMIフィードバックサイズNfbおよびビーム角間隔Δφをコードブック決定用情報として端末20_4へ通知する(動作S124b)。
 端末20_4がコードブック決定用情報を受信すると、端末20_3の制御部205は、基地局10_3側の動作S111bと同様に、ビーム角レンジ計算部206を制御してビーム角レンジφrを計算する(動作S211d)。続いて、制御部205は、基地局10_4側の動作S121b、S122、S123と同様に、プリコーディング行列計算部202およびインデックス割当部203を制御してコードブックを生成し、コードブック記録部204に格納する(動作S221b、S222、S223)。
 こうして、基地局10_4のコードブック記憶部107に格納されたセル固有のコードブックと同じものが端末20_4のコードブック記録部204に格納される。コードブックが決定されると、このコードブックを用いて、端末20_4の制御部205はチャネル情報としてコードブックインデックス(PMI)を基地局10_4へフィードバックする。セル固有のコードブックは、既に述べたように、PMIフィードバックサイズNfbの条件を満たすように生成されている。
 なお、データベース102bに異なるビーム角間隔Δφを複数用意し、上述したようにPMIフィードバックサイズ条件を満たさない場合には、ビーム角間隔を変化させ、すなわち狭いビーム角間隔から広いビーム角間隔へ順番に試行し、それでもPMIフィードバックサイズの条件を満たせなかった場合には、上述のプリコーディング行列の削除を行うように制御することもできる。
 4.3)効果
 本発明の第4実施例によれば、セル環境を直接示す基地局高h、セル半径dおよびPMIフィードバックサイズNfbを基地局から端末へ通知することで第2実施例と同様の効果を得ることができる。
 5.第5実施例
 5.1)システム構成
 図12において、本発明の第5実施例による無線通信システムにおける基地局10_5と端末20_5の構成は以下の通りである。
 <基地局>
 基地局10_5は、端末20_5と通信するための通信部101、データベース102、ビーム角レンジ計算部103、ビーム角間隔計算部104、スーパーセット記憶部150、サブセット抽出部151、インデックス割当部106、コードブック記憶部107および制御部108を備える。後述するように、ビーム角レンジ計算部103およびビーム角間隔計算部104がビーム角情報を生成し、スーパーセット記憶部150、サブセット抽出部151およびインデックス割当部106が共有すべきコードブックを生成する。第1実施例との相違は、プリコーディング行列計算部105の代わりに、スーパーセット記憶部150およびサブセット抽出部151を設けた点である。
 データベース102には、第1実施例と同様に、セル半径d、基地局高hおよびPMIフィードバックサイズNfb[bit]のセル環境情報が格納されている。また、ビーム角レンジ計算部103はデータベース102からセル半径dおよび基地局高hを入力してビーム角レンジを計算し、ビーム角間隔計算部104はビーム角レンジ計算部103からのビーム角レンジφrとデータベース102からのPMIフィードバックサイズNfbとを用いてビーム角間隔Δφを計算する。
 スーパーセット記憶部150には、後述するように、コードブックで用いられるプリコーディング行列の候補群(スーパーセット)が格納され、サブセット抽出部151はセル環境に応じてスーパーセットからコードブック用のプリコーディング行列群を抽出する。したがって、サブセットとは、スーパーセットから選択されたコードブックで用いるためのプリコーディング行列群を指す。
 インデックス割当部106は、第1実施例と同様に、抽出されたコードブック用のプリコーディング行列群に所定のインデックスを割り当てる。制御部108は、当該プリコーディング行列群と割り当てられたインデックスとをコードブックとしてコードブック記憶部107に格納する。
 制御部108は本実施例による通信制御を実行すると共に、上述した機能部(101-104、150,151、106,107)を制御し、ビーム角レンジ計算部103により計算されたビーム角レンジφrと、ビーム角間隔計算部104により計算されたビーム角間隔Δφとをコードブック決定用情報として端末20_5へ送信する。
 <端末>
 端末20_5は、基地局10_5と通信するための通信部201、スーパーセット記憶部250、サブセット抽出部251、インデックス割当部203、コードブック記憶部204および制御部205を備える。後述するように、スーパーセット記憶部250、サブセット抽出部251およびインデックス割当部203が共有すべきコードブックを生成する。
 スーパーセット記憶部250には、基地局10_5と同様に、コードブックで用いられるプリコーディング行列の候補群(スーパーセット)が格納され、サブセット抽出部251は基地局10_5から受信したコードブック決定用情報に応じてスーパーセットからコードブック用のプリコーディング行列群を抽出する。インデックス割当部203は、第1実施例と同様に、抽出されたコードブック用のプリコーディング行列群に所定のインデックスを割り当てる。制御部108は、当該プリコーディング行列群と割り当てられたインデックスとをコードブックとしてコードブック記憶部204に格納する。基地局10_5および端末20_5のスーパーセット記憶部(150、250)、サブセット抽出部(151、251)、インデックス割当部(106、203)およびコードブック記憶部(107、204)は、基本的に同じ処理を実行する。
 <スーパーセット>
 図13において、スーパーセット記憶部150に格納されたスーパーセットテーブルの一例を示す。スーパーセットはコードブックで用いられるプリコーディング行列の候補群であり、プリコーディング行列Vとそれに対応するインデックスおよびビーム角φで構成され、ビーム角φの昇順にソートされている。なお、スーパーセット内のj番目のプリコーディング行列V=[1 exp(jpj)]Tに対応するビーム角φは次式(8)で計算される。
Figure JPOXMLDOC01-appb-M000008
 
 
 
 このようなスーパーセットは予め算出され、基地局と端末の間で共有されている。すなわち、基地局10_5および端末20_5のスーパーセット記憶部150および250にそれぞれ保存されている。
 5.2)動作
 図14において、まず、基地局10_5の制御部108は、データベース102から当該基地局10_5のセル環境情報であるセル半径d、基地局高hおよびPMIフィードバックサイズNfbを読み出し(動作S110)、ビーム角レンジ計算部103およびビーム角間隔計算部104を制御して、第1実施例と同様にビーム角レンジφrおよびビーム角間隔Δφを計算する(動作S111)。
 <サブセット抽出>
 続いて、サブセット抽出部151は、計算されたビーム角レンジφrおよびビーム角間隔Δφを用いて、スーパーセットからコードブック用のプリコーディング行列群を抽出する(動作S161)。具体的には、まず、既に述べた式(2)および式(3)を用いて、ビーム角レンジφrおよびビーム角間隔Δφを満たすビーム角群{φi|0≦i≦2Nfb-1}を算出する。次に、次式(9)を用いて、スーパーセットから各φiに最も近いプリコーディング行列のビーム角φcb,iを選択する。
Figure JPOXMLDOC01-appb-M000009
 
 
 
 
 ここで、φsuper,jはスーパーセットにおけるj番目のプリコーディング行列に対応するビーム角、φiはコードブック内のi番目のプリコーディング行列に対応するビーム角である。
 こうして得られた各φcb,iに対応するプリコーディング行列を図13に示すようなスーパーテーブルを参照して選択することでコードブック用プリコーディング行列を決定することができる。なお、スーパーセットに十分多くのプリコーディング行列が用意されていて、φiと一致するものがヒットした場合は、式(9)の計算を行わず、ヒットしたプリコーディング行列を直接サブセット(コードブック用プリコーディング行列)として抽出することもできる。
 こうして、コードブック用プリコーディング行列群Viが決定すると、以下第1実施例と同様に、インデックス割当部106は、サブセット抽出部151により抽出されたプリコーディング行列群Viに対してiをコードブックのインデックスとして割り当て(動作S122)、この割り当て結果がコードブック記憶部107に記憶される(動作S123)。
 <コードブック決定用情報の通知>
 また、制御部108は、第1実施例と同様に、計算されたビーム角レンジφrと固定値のビーム角間隔Δφからなるコードブック決定用情報を通信部101を通して自セル内の端末20_5に対して通知する(動作S124)。
 <端末側のコードブック決定>
 基地局10_5から通信部201を通してコードブック決定用情報を受信すると、端末20_5の制御部205は、基地局10_5側の動作S161、S122、S123と同様に、スーパーセット記憶部250、サブセット抽出部251およびインデックス割当部203を制御してコードブック用のサブセットをコードブック記憶部204に格納する(動作S261、S222、S223)。
 こうして、基地局10_5のコードブック記憶部107に格納されたセル固有のコードブックと同じものが端末20_5のコードブック記録部204に格納される。コードブックが決定されると、このコードブックを用いて、端末20_5の制御部205はチャネル情報としてコードブックインデックス(PMI)を基地局10_5へフィードバックする。セル固有のコードブックは、既に述べたように、PMIフィードバックサイズNfbの条件を満たすように生成されている。
 5.3)効果
 本発明の第5実施例によれば、第1実施例の効果に加えて、スーパーセット記憶部150からコードブック用プリコーディング行列を抽出する動作だけでコードブックを生成できるので、プリコーディング行列の計算が不要となり、基地局および端末の処理負荷が軽減されるという利点がある。
 6.第6実施例
 本発明の第6実施例によれば、基地局のビーム角間隔Δφを固定値としてデータベースに予め格納しておき、それによりビーム角間隔計算部を省略することができる。以下、第6実施例の構成および動作について説明する。
 6.1)システム構成
 図15において、本発明の第6実施例による無線通信システムにおける端末20_6の構成は第5実施例における端末20_5と同じであるから同一参照番号を付して説明は省略する。本実施例の基地局10_6は、第5実施例の基地局10_5と部分的な構成が異なっているので、同一ブロックには同一の参照番号を付して説明は省略し、異なる構成部分のみ説明する。
 基地局10_6のデータベース102bには、セル半径d、基地局高hおよびPMIフィードバックサイズNfb[bit]に加えて、基地局10_6のセル環境を示す固定値のビーム角間隔Δφが格納されている。したがって、基地局10_6には、第5実施例におけるビーム角間隔計算部104が不要となる。その他の構成は、図12に示す第5実施例の基地局10_5と基本的に同様であるが、サブセット抽出部151の動作は第5実施例と部分的に異なっている。
 6.2)動作
 次に、図16を参照しながら、本実施例における基地局および端末の動作について説明する。
 基地局10_6の制御部108は、基地局が設置されたときに、以下に述べる手順でコードブックを生成しコードブック記憶部107に格納する。それ以降、一定周期で、もしくはセル環境やシステム要求が変更された時点で再生成してもよい。
 <ビーム角レンジφrの計算>
 まず、制御部108は、データベース102bから当該基地局10_6のセル環境情報であるセル半径d、基地局高h、PMIフィードバックサイズNfbおよび固定値のビーム角間隔Δφを読み出し(動作S110b)、ビーム角レンジ計算部103を制御してビーム角レンジφrを計算する(動作S111b)。具体的な計算手順は第1実施例で説明した通りである。
 <サブセット抽出>
 続いて、サブセット抽出部151は、計算されたビーム角レンジφrと読み出された固定値のビーム角間隔Δφとを用いて、スーパーセットからコードブック用のプリコーディング行列群を抽出する(動作S161)。具体的には、第5実施例で述べたように、式(2)および式(3)を用いて、ビーム角レンジφrおよびビーム角間隔Δφを満たすビーム角群{φi|0≦i≦2Nfb-1}を算出し、式(9)を用いてスーパーセットから各φiに最も近いプリコーディング行列のビーム角φcb,iを選択する。
 こうして得られた各φcb,iに対応するプリコーディング行列を図13に示すようなスーパーテーブルを参照して選択することでコードブック用プリコーディング行列を決定することができる。なお、スーパーセットに十分多くのプリコーディング行列が用意されていて、φiと一致するものがヒットした場合は、式(9)の計算を行わず、ヒットしたプリコーディング行列を直接サブセット(コードブック用プリコーディング行列)として抽出することもできる。
 こうして、コードブック用プリコーディング行列群Viが決定すると、以下第5実施例と同様に、インデックス割当部106は、サブセット抽出部151により抽出されたプリコーディング行列群Viに対してiをコードブックのインデックスとして割り当て(動作S122)、この割り当て結果がコードブック記憶部107に記憶される(動作S123)。
 <コードブック決定用情報の通知>
 制御部108は、計算されたビーム角レンジφrと固定値のビーム角間隔Δφからなるコードブック決定用情報を通信部101を通して自セル内の端末20_6に対して通知する(動作S124)。通知方法としては、セル内のすべての端末に対して通知する報知チャネル(PBCH:Physical Broadcast CHannel)を用いて通知してもよいし、自セルに接続要求をしてきた端末に対して個別に通知してもよい。
 <端末側のコードブック決定>
 基地局10_6から通信部201を通してコードブック決定用情報を受信すると、端末20_6の制御部205は、基地局10_6側の動作S161、S122、S123と同様に、スーパーセット記憶部250、サブセット抽出部251およびインデックス割当部203を制御してコードブック用のサブセットをコードブック記憶部204に格納する(動作S261、S222、S223)。
 こうして、基地局10_6のコードブック記憶部107に格納されたセル固有のコードブックと同じものが端末20_6のコードブック記録部204に格納される。コードブックが決定されると、このコードブックを用いて、端末20_6の制御部205はチャネル情報としてコードブックインデックス(PMI)を基地局10_6へフィードバックする。セル固有のコードブックは、既に述べたように、PMIフィードバックサイズNfbの条件を満たすように生成されている。
 6.3)効果
 本発明の第6実施例によれば、第5実施例の効果に加えて、ビーム角間隔Δφを固定値にすることでビーム角間隔処理部を省略することができ、基地局の装置構成を簡略化できるという利点がある。
 7.第7実施例
 本発明の第7実施例によれば、端末側が通知された基地局高hとセル半径dからコードブックを生成する点が第5実施例とは異なっている。以下、第7実施例の構成および動作について説明する。
 7.1)システム構成
 図17において、本発明の第7実施例における基地局10_7の構成は第5実施例における基地局10_5と同じであるから同一参照番号を付して説明は省略するが、基地局10_7が端末20_7に対して基地局高h、セル半径dおよびPMIフィードバックサイズNfbからなるコードブック決定用情報を通知する点が異なっている。したがって、本実施例の端末20_7には、第5実施例の端末20_5の構成にビーム角レンジ計算部252およびビーム角間隔計算部253が追加されている。その他の構成は第5実施例と同様であるから、第5実施例と同一のブロックには同一の参照番号を付し、第5実施例と異なる動作について主に説明する。
 7.2)動作
 図18において、基地局10_7の動作S110、S111、S161、S122およびS123は第5実施例と同じであるが、制御部108は、データベース102から読み出した基地局高h、セル半径dおよびPMIフィードバックサイズNfbをコードブック決定用情報として端末20_7へ通知する(動作S124b)。
 端末20_7がコードブック決定用情報(基地局高h、セル半径dおよびPMIフィードバックサイズNfb)を受信すると、端末20_7の制御部205は、基地局10_7側の動作S111と同様に、ビーム角レンジ計算部252およびビーム角間隔計算部253を制御してビーム角レンジφrおよびビーム角間隔Δφを計算する(動作S211)。続いて、制御部205は、基地局10_7側の動作S161、S122~S123と同様に、スーパーセット記憶部250、サブセット抽出部251およびインデックス割当部203を制御してコードブックを生成する。すなわち、サブセット抽出部251は、計算されたビーム角レンジφrと読み出された固定値のビーム角間隔Δφとを用いて、スーパーセットからコードブック用のプリコーディング行列群を抽出する(動作S161)。具体的には、第5実施例で述べたように、式(2)および式(3)を用いて、ビーム角レンジφrおよびビーム角間隔Δφを満たすビーム角群{φi|0≦i≦2Nfb-1}を算出し、式(9)を用いてスーパーセットから各φiに最も近いプリコーディング行列のビーム角φcb,iを選択する。
 こうして得られた各φcb,iに対応するプリコーディング行列を図13に示すようなスーパーテーブルを参照して選択することでコードブック用プリコーディング行列を決定することができる。なお、スーパーセットに十分多くのプリコーディング行列が用意されていて、φiと一致するものがヒットした場合は、式(9)の計算を行わず、ヒットしたプリコーディング行列を直接サブセット(コードブック用プリコーディング行列)として抽出することもできる。
 コードブック用プリコーディング行列群Viが決定すると、以下第5実施例と同様に、インデックス割当部203は、サブセット抽出部251により抽出されたプリコーディング行列群Viに対してiをコードブックのインデックスとして割り当て(動作S222)、この割り当て結果がコードブック記憶部204に記憶される(動作S223)。
 こうして、基地局10_7のコードブック記憶部107に格納されたセル固有のコードブックと同じものが端末20_7のコードブック記録部204に格納される。コードブックが決定されると、このコードブックを用いて、端末20_7の制御部205はチャネル情報としてコードブックインデックス(PMI)を基地局10_7へフィードバックする。セル固有のコードブックは、既に述べたように、PMIフィードバックサイズNfbの条件を満たすように生成されている。
 7.3)効果
 本発明の第7実施例によれば、セル環境を直接示す基地局高h、セル半径dおよびPMIフィードバックサイズNfbを基地局から端末へ通知することで第5実施例と同様の効果を得ることができる。
 8.第8実施例
 本発明の第8実施例によれば、第6実施例と同様に基地局のビーム角間隔Δφが固定値としてデータベースに予め格納されているが、端末が基地局高h、セル半径dおよびビーム角間隔Δφからコードブックを生成する点が第6実施例とは異なっている。以下、第8実施例の構成および動作について説明する。
 8.1)システム構成
 図19において、本発明の第8実施例における基地局10_8の構成は第6実施例における基地局10_6と同じであるから同一参照番号を付して説明は省略する。本実施例の端末20_7は、第6実施例の基地局10_6にビーム角レンジ計算部252が追加された構成を有し、他の構成は第6実施例と同様であるから、同一ブロックには同一の参照番号を付して説明は省略し、異なる構成部分のみ説明する。
 8.2)動作
 次に、図20を参照しながら、本実施例における基地局および端末の動作について説明する。
 基地局10_8の制御部108は、図16に示す第6実施例と同様に、動作S110b、S111b、S161、S122、S123によりコードブックを生成しコードブック記憶部107に格納する。続いて、制御部108は、データベース102bから読み出した基地局高h、セル半径d、PMIフィードバックサイズNfbおよびビーム角間隔Δφをコードブック決定用情報として端末20_8へ通知する(動作S124b)。
 端末20_8がコードブック決定用情報を受信すると、端末20_8の制御部205は、基地局10_8側の動作S111bと同様に、ビーム角レンジ計算部252を制御してビーム角レンジφrを計算する(動作S211b)。続いて、制御部205は、基地局10_8側の動作S161、S122、S123と同様に、スーパーセット記憶部250、サブセット抽出部251およびインデックス割当部203を制御してコードブックを生成し、コードブック記録部204に格納する(動作S261、S222、S223)。
 こうして、基地局10_8のコードブック記憶部107に格納されたセル固有のコードブックと同じものが端末20_8のコードブック記録部204に格納される。コードブックが決定されると、このコードブックを用いて、端末20_8の制御部205はチャネル情報としてコードブックインデックス(PMI)を基地局10_8へフィードバックする。セル固有のコードブックは、既に述べたように、PMIフィードバックサイズNfbの条件を満たすように生成されている。
 8.3)効果
 本発明の第8実施例によれば、セル環境を直接示す基地局高h、セル半径dおよびPMIフィードバックサイズNfbを基地局から端末へ通知することで第5実施例と同様の効果を得ることができる。
 9.第9実施例
 本発明の第9実施例によれば、セル環境に従ってスーパーセットからコードブック用プリコーディング行列のインデックスを選択し、選択されたインデックスのプリコーディング行列群からコードブックを生成する。以下、第9実施例の構成および動作について説明する。
 9.1)システム構成
 図21において、本発明の第9実施例における基地局10_9は、第7実施例における基地局側のビーム角レンジ計算部103およびビーム角間隔計算部104の代わりにインデックス選択部154を、端末側のビーム角レンジ計算部252およびビーム角間隔計算部253の代わりにインデックス選択部254を、それぞれ置き換えた構成を有する。
 また、基地局10_9のデータベース102cには、第7実施例のデータベース102に格納された情報に加えて、基地局10_9が生成する送信ビームの垂直面放射パターンの3dBビーム幅の情報が保持されている。すなわち、データベース102cには、基地局高h、セル半径d、PMIフィードバックサイズNfbおよび3dBビーム幅が記憶されている。その他の構成は第7実施例と同様であるから、同一ブロックには同一参照番号を付して説明は省略する。
 9.2)インデックス選択
 インデックス選択部154および254は、スーパーセット内のプリコーディング行列のうちコードブック内で用いないプリコーディング行列に対応するインデックスを制限インデックスとして算出し、それ以外のスーパーセット内のインデックスを非制限インデックスとして個数判定を行う。インデックス選択部154および254は同一の機能構成を有するので、以下、図22~図26を参照しながらインデックス選択について説明する。
 図22に示すように、インデックス選択部154および254は同一の機能構成を有し、メトリック計算部901、インデックス制限部902および非制限インデックス数判定部903を備える。
 インデックス選択動作としては、スーパーセット内の各プリコーディング行列のメトリック計算に基づいて1個プリコーディング行列を決定し、これを制限インデックスに加えるという単一インデックス制限処理を、制限されていないプリコーディング行列の数(すなわちコードブックで用いられるプリコーディング行列の数)がPMIフィードバックサイズNfbの要求条件にマッチするまで繰り返す。以下、インデックス選択部の動作を図23を参照しながら説明する。
 図23において、メトリック計算部901は、データベース102cから基地局高hおよびセル半径dを、スーパーセット記憶部150からスーパーセットを、非制限インデックス数判定部903から非制限インデックスを、それぞれ入力し、当該スーパーセットの非制限インデックスに対応する各プリコーディング行列に対してメトリックを計算する(動作S910)。なお、後述するように、非制限インデックス数判定部903から非制限インデックスを入力した場合、メトリック計算部901は入力された非制限インデックスに対応するプリコーディング行列に対して再度メトリックの計算を行う。メトリック計算については後述する。
 続いて、インデックス制限部902は、メトリック計算部901から入力したメトリックの値に基づいて制限インデックスを1個決定し、非制限インデックス数判定部903へ出力する(動作S911)。
 非制限インデックス数判定部903は、インデックス制限部902からの制限インデックス以外の非制限インデックスの個数がPMIフィードバックサイズNfbの要求条件(2Nfb以内)を満たしているか否かを判定する(動作S912)。非制限インデックス数が2Nfb以下であれば(動作S912;NO)、非制限PMIを選択インデックスとしてサブセット抽出部151へ出力し(動作S913)、それ以外の場合は非制限インデックスをメトリック計算部901へ出力する(動作S912;YES)。
 <メトリック計算>
 メトリック計算部901はスーパーセット記憶部150から取得したスーパーセット内の各インデックスに対応するビーム角からメトリックの計算を行う。以下、メトリックの計算手順について説明する。
 まず、図24および図25に示すように、スーパーセット内の各ビームに対してビームカバレッジエリアを、幾何学モデルを用いて定義する。
 図24に示すように、各ビームのピークの利得からの減衰が3dBの角度をビームカバレッジエリア境界角とし、それよりも利得の高いビームが照射するエリアをビームカバレッジエリアとする。例えば、図25において、i番目のビームのビーム角をφi , 垂直方向での3dB減衰角をΔφ-, Δφ+とすると、ビームのうち[φi+Δφ-i+Δφ+]が照射するエリアを垂直面のビームカバレッジエリアとする。
 水平面に関しては、一様のビーム角を仮定すると、図26に示すようなドーナツ型の領域の面積をビームカバレッジエリアとなる。なお、垂直面と水平面のビーム利得を同時に考慮してビームカバレッジエリアを計算してもよい。
 次に自ビームと隣接するビームとのビームカバレッジエリアの重複面積の和をメトリックとして計算する。この場合の「隣接する」とは、反復されるインデックス制限処理のある制限処理時点での非制限インデックスに対してスーパーセットにおけるインデックスの昇順に割り当てられた一時的なインデックスのなかで隣接することをいう。
 例えば、図26において、一時的インデックスにおけるl番目のビームカバレッジエリアに関するメトリック計算を考える。l番目のビームカバレッジエリアに隣接するエリアは、l-1番目とl+1番目のエリアなので、l番目のエリアと各隣接エリアの重複する面積として、Shigh,l, Slow,lの面積を計算し、その和をメトリックとする。なお、非制限インデックスのうちセルの最も中心部もしくセル端に位置し隣接するビームカバレッジエリアが一つしかない場合は、その一つの隣接ビームカバレッジエリアとの重複面積を計算し、メトリックとする。
 <インデックス制限>
 インデックス制限部902は、メトリック計算部901から取得したメトリックが最も大きいインデックスに対応するスーパーセット内でのインデックスを制限インデックスとする。言い換えれば、最もメトリックが大きい(ここでは隣接エリアとの重複面積が最大の)ビームを削除することで、プリコーディング用ビームの減少に伴うカバレッジエリアの減少を最小限に抑えつつ、任意のPMIフィードバックサイズに対応することができる。
 <非制限インデックス数判定>
 非制限インデックス数判定部903は、インデックス制限部902から取得した制限インデックスから非制限インデックスの個数を計算し、その個数とPMIフィードバックサイズNfbに基づく総数(2Nfb)の大小を比較する。ここで、非制限インデックスの個数はスーパーセット内のインデックスの総数から制限インデックスの個数を差し引くことで求められる。非制限インデックスの個数が、2Nfb以下であれば、非制限インデックスをインデックス割当部106に出力し処理を終了する。その他の場合は、非制限インデックスをメトリック計算部901へ出力し、当該非制限インデックスに対して上述と同様の処理が繰り返される。非制限インデックス数判定部903から非制限インデックスが出力された場合、メトリック計算部901は入力された非制限インデックスに対応するプリコーディング行列に対して再度メトリックの計算を行う。
 上述の通り、メトリックの計算における「隣接するビームカバレッジエリア」は、現在の非制限インデックス内で定義される。よって、前回計算時から制限インデックスが増加し、非制限インデックスに含まれるインデックスが変化している今回の計算では、現在の非制限インデックス群に対して、一時的なインデックスを割り当て直し、再度、隣接ビームカバレッジエリアを定義しなおした上でメトリックの計算を行う。インデックス制限部902では同様の処理を繰り返し、非制限インデックス数判定部903では、インデックス制限部902から入力された制限インデックスと前回計算した制限インデックスとをあわせて新たな制限インデックスとする。その後、同様の処理を行う。
 9.3)動作
 次に、図27を参照しながら、本実施例における基地局および端末の動作について説明する。
 基地局10_9の制御部108はデータベース102cから基地局高h、セル半径d、PMIフィードバックサイズNfbおよび3dBビーム幅情報を読み出し(動作S110c)、インデックス選択部154が上述したインデックス選択を実行する(動作S171)。続いて、サブセット抽出部151は、選択されたインデックスに従って、スーパーセットからサブセット(コードブック用プリコーディング行列群)を抽出する(動作S172)。
 こうして、コードブック用プリコーディング行列群Viが決定すると、以下第5実施例と同様に、インデックス割当部106は、サブセット抽出部151により抽出されたプリコーディング行列群Viに対してiをコードブックのインデックスとして割り当て(動作S122)、この割り当て結果がコードブック記憶部107に記憶される(動作S123)。
 また、制御部108は、データベース102cから読み出した基地局高h、セル半径dおよびPMIフィードバックサイズNfbをコードブック決定用情報として端末20_9へ通知する(動作S124b)。
 端末20_9がコードブック決定用情報を受信すると、インデックス選択部254は、基地局10_9側の動作S171と同様に、上述したインデックス選択を実行する(動作S271)。続いて、サブセット抽出部251は、選択されたインデックスに従って、スーパーセットからサブセット(コードブック用プリコーディング行列群)を抽出する(動作S272)。続いて、制御部205は、基地局10_9側の動作S122およびS123と同様に、インデックス割当部203を制御してコードブックを生成し、コードブック記録部204に格納する(動作S222、S223)。
 こうして、基地局10_9のコードブック記憶部107に格納されたセル固有のコードブックと同じものが端末20_9のコードブック記録部204に格納される。コードブックが決定されると、このコードブックを用いて、端末20_9の制御部205はチャネル情報としてコードブックインデックス(PMI)を基地局10_9へフィードバックする。セル固有のコードブックは、既に述べたように、PMIフィードバックサイズNfbの条件を満たすように生成されている。
 9.4)効果
 本発明の第9実施例によれば、セル環境に従ってスーパーセットからコードブック用プリコーディング行列のインデックスを選択し、選択されたインデックスのプリコーディング行列群からコードブックを生成するので、ビーム角レンジやビーム角間隔などの計算が不要となり、処理負荷を軽減することができる。さらに、セル環境を直接示す基地局高h、セル半径dおよびPMIフィードバックサイズNfbを基地局から端末へ通知することで第5実施例と同様の効果を得ることができる。
 10.第10実施例
 本発明の第10実施例によれば、それぞれ異なるセル環境に対応した複数のコードブックを予め用意しておき、基地局のセル環境に適したコードブック選択情報をコードブック決定用情報として端末に通知することで、当該基地局のセル環境を反映したコードブックを端末との間で共有する。以下、第10実施例の構成および動作について説明する。
 10.1)システム構成
 図28において、本発明の第10実施例における基地局10_10には、第1実施例と同様に、端末との通信を行うための通信部101、データベース102、コードブック記憶部107および制御部108が設けられ、データベース102にはセル半径d、基地局高hおよびPMIフィードバックサイズNfb[bit]のセル環境情報が格納されている。さらに、基地局10_10には、コードブック生成手段として、コードブック選択部160とコードブック候補記憶部161とが設けられ、コードブック候補記憶部161には異なる複数のコードブックCB#1~#nが予め格納されている。複数のコードブックCB#1~#nは、上述した第1~第4実施例で説明した手順(たとえば図5の動作S110~S123)により、それぞれ異なるセルパラメータ(セル半径d、基地局高h)に対応して生成される。
 端末20_10には、第1実施例と同様に、通信部201、コードブック記憶部204および制御部205が設けられ、さらに基地局10_10と同じ複数のコードブック#1~#nを格納したコードブック候補記憶部261が設けられている。
 10.2)動作
 図29に示すように、コードブック選択部160は、データベース102からセル固有パラメータであるセル半径dおよび基地局高hを読み出し(動作S180)、当該セル固有パラメータを用いてコードブック候補記憶部161を検索し、一致したあるいは当該セル固有パラメータに最も類似したセルパラメータに対応するコードブックCB#iを選択する(動作S181)。選択されたコードブックCB#iはコードブック記憶部107に格納される(動作S182)。続いて、制御部108は、選択されたコードブック#iを特定するコードブック選択情報をコードブック決定用情報として端末20_10へ通知する(動作S183)。
 コードブック選択情報を受信すると、端末20_10の制御部205は、当該コードブック選択情報により特定されるコードブックCB#iをコードブック候補記憶部261から読み出し、コードブック記憶部204に格納する(動作S280)。
 なお、コードブックの選択は基地局10_10が設置されたときに実行され、配下の端末へ通知することができる。それ以降、一定周期で、もしくはセル環境やシステム要求が変更された時点でコードブックの再選択を行ってもよい。
 10.3)効果
 本発明の第10実施例によれば、基地局のセル環境に合わせて複数のコードブックから適切な1つを選択することで、基地局および端末の処理負荷を軽減しつつ上述した第1実施例と同様の効果を得ることができる。
 11.第11実施例
 本発明の第11実施例によれば、それぞれ異なるセル環境に対応した複数のスーパーセットを予め用意しておき、基地局のセル環境に適したスーパーセット選択情報とセル環境情報とをコードブック決定用情報として端末に通知することで、当該基地局のセル環境を反映したコードブックを端末との間で共有することもできる。なお、スーパーセットについては第5実施例で説明したとおりであり、また、選択されたスーパーセットを用いたコードブック決定手順は第5~第9実施例で述べたとおりであるから、これらの説明は省略する。第11実施例によるシステム構成の一例を図30に示す。
 図30において、本発明の第11実施例における基地局10_11には、第5実施例と同様に、端末との通信を行うための通信部101、データベース102、サブセット抽出部151,インデックス割当部106、コードブック記憶部107および制御部108が設けられ、データベース102にはセル半径d、基地局高hおよびPMIフィードバックサイズNfb[bit]のセル環境情報が格納されている。さらに、基地局10_11には、スーパーセット候補記憶部171およびスーパーセット選択部172が設けられ、スーパーセット候補記憶部171には異なる複数のスーパーセットSS#1~SS#nが予め格納されている。
 複数のスーパーセットSS#1~SS#nの各々は、図13に示すテーブル構成を有し、スーパーセットSS#1~SS#nはそれぞれ異なるセル環境に対応して生成される。たとえば基地局が高層階に設置される場合、基地局周辺に多くのビルが林立している場合、あるいは周辺セルが密集している場合には、セルカバレッジ外へのビーム照射の回避あるいはセルカバレッジ内の限定された領域へのビーム照射を実現するために垂直方向のビーム角をある程度大きくするプリコーディング行列群のスーパーセットを用意する必要がある。また、垂直方向のビーム角を小さくするとセル間干渉が増大するので、これを回避できるビーム角の範囲にある端末のみにビームを照射するようなスーパーセットが必要になる場合もある。複数のスーパーセットSS#1~SS#nを用意することで、このような種々のセル環境あるいはセル環境の変化にも柔軟に対応することが可能となる。
 端末20_11には、第5実施例と同様に、通信部201、サブセット抽出部251、インデックス割当部203、コードブック記憶部204および制御部205が設けられ、さらに基地局10_11と同じ複数のスーパーセットSS#1~SS#nを格納したスーパーセット候補記憶部271が設けられている。
 11.2)動作
 図31に示すように、スーパーセット選択部172は、データベース102からセル固有パラメータであるセル半径dおよび基地局高hを読み出し(動作S180)、当該セル固有パラメータを用いてスーパーセット候補記憶部171を検索し、一致したあるいは当該セル固有パラメータに最も類似したセルパラメータに対応するスーパーセットSS#iを選択する(動作S191)。以下、第5実施例における動作S161、S122およびS123(図14参照)により生成されたコードブックがコードブック記憶部107に格納される。続いて、制御部108は、選択されたスーパーセットSS#iを特定するSS選択情報および読み出されたセル固有パラメータ情報をコードブック決定用情報として端末20_10へ通知する(動作S192)。
 SS選択情報およびセル固有パラメータ情報を受信すると、端末20_10の制御部205は、SS選択情報により特定されるスーパーセットSS#iをスーパーセット候補記憶部271から読み出し、このスーパーセットSS#iを用いて第5実施例で述べた動作S261、S222およびS223を実行し、決定されたコードブックをコードブック記憶部204に格納する。
 11.3)効果
 本発明の第11実施例によれば、基地局のセル環境に合わせて複数のスーパーセットから適切な1つを選択することで、より柔軟に環境に対応することが可能となる。
 12.その他
 上述した第1~第11実施例における基地局および端末には、それぞれの動作を制御するCPU(Central Processing Unit)あるいはコンピュータが設けられ、図示しないメモリに格納されたプログラムを実行することにより、それぞれの上記動作と同様の機能をソフトウエアで実現することも可能である。
 本発明は基地局および移動局からなる移動通信システムに適用可能である。
10、10_1~10_11 基地局
20、20_1~20_11 端末
101 通信部
102 データベース
103 ビーム角レンジ計算部
104 ビーム角間隔計算部
105 プリコーディング行列計算部
106 インデックス割当部
107 コードブック記憶部
108 制御部
150 スーパーセット記憶部
151 サブセット抽出部
154 インデックス選択部
160 コードブック選択部
161 コードブック候補記憶部
171 スーパーセット候補記憶部
172 スーパーセット選択部
201 通信部
202 プリコーディング行列計算部
203 インデックス割当部
204 コードブック記憶部
205 制御部
250 スーパーセット記憶部
251 サブセット抽出部
254 インデックス選択部
261 コードブック候補記憶部
271 スーパーセット候補記憶部

Claims (25)

  1.  基地局および端末に共通のコードブックを用いたプリコーディングによりビーム指向性制御を行う通信システムであって、
     前記基地局が当該基地局のセル環境情報を含むコードブック決定用情報を前記端末へ通知し、
     前記基地局および前記端末が前記コードブック決定用情報に基づいて共通のコードブックを生成する、
     ことを特徴とする通信システム。
  2.  コードブックを用いたプリコーディングによりビーム指向性制御を行う通信システムにおける端末装置であって、
     基地局から当該基地局のセル環境情報を含むコードブック決定用情報を受信する通信手段と、
     前記コードブック決定用情報に基づいて前記基地局と共通のコードブックを生成するコードブック生成手段と、
     を有することを特徴とする端末装置。
  3.  前記セル環境情報は前記基地局のセル面からの高さと前記基地局からセル端までのセル面上の距離とを含むセル固有情報に依存する情報であることを特徴とする請求項2に記載の端末装置。
  4.  前記コードブック生成手段は、前記セル環境情報に依存するビーム角に関する情報に基づいて前記コードブック用のプリコーディング行列を算出することを特徴とする請求項2または3に記載の端末装置。
  5.  前記コードブック生成手段は、前記セル環境情報から前記ビーム角に関する情報を算出することを特徴とする請求項4に記載の端末装置。
  6.  前記コードブック生成手段は、
     複数のプリコーディング行列候補を格納した記憶手段と、
     前記セル環境情報を用いて前記記憶手段から前記コードブック用のプリコーディング行列を抽出する抽出手段と、
     を有することを特徴とする請求項2または3に記載の端末装置。
  7.  前記コードブック生成手段は、前記セル環境情報から前記ビーム角に関する情報を計算する計算手段を更に有し、前記抽出手段は、前記ビーム角に関する情報を用いて前記記憶手段から前記コードブック用のプリコーディング行列を抽出することを特徴とする請求項6に記載の端末装置。
  8.  前記コードブック生成手段は、
     複数のプリコーディング行列候補をビーム角に関する情報に従って格納した記憶手段と、
     前記セル環境情報を用いて他のビームとのカバレッジエリアの重なりを計算する計算手段と、
     前記カバレッジエリアの重なりが大きい順に当該ビームに対応するプリコーディング行列を削除することで所定数のプリコーディング行列からなる前記コードブックを生成する選択手段と、
     を有することを特徴とする請求項2または3に記載の端末装置。
  9.  前記コードブック生成手段は、
     複数の異なるプリコーディング行列群をコードブック用のプリコーディング行列候補として格納した記憶手段と、
     前記基地局から当該基地局が選択したプリコーディング行列群を特定する情報を含むコードブック決定用情報を受信すると、当該選択されたプリコーディング行列群を前記基地局との通信のためのコードブックとして格納する制御手段と、
     を有することを特徴とする請求項2または3に記載の端末装置。
  10.  前記コードブック生成手段は、
     複数のセル環境にそれぞれ対応する複数のプリコーディング行列群をプリコーディング行列群候補として格納した記憶手段と、
     前記基地局から当該基地局が選択したプリコーディング行列群候補を特定する情報を含むコードブック決定用情報を受信すると、当該選択されたプリコーディング行列群候補から所定数のプリコーディング行列を選択し、前記基地局との通信のためのコードブックとして格納する制御手段と、
     を有することを特徴とする請求項2または3に記載の端末装置。
  11.  コードブックを用いたプリコーディングによりビーム指向性制御を行う通信システムにおける基地局装置であって、
     当該基地局装置のセル環境情報を含むコードブック決定用情報を端末へ送信する通信手段と、
     前記コードブック決定用情報に基づいて前記端末と共通のコードブックを生成するコードブック生成手段と、
     を有することを特徴とする基地局装置。
  12.  前記セル環境情報は前記基地局のセル面からの高さと前記基地局からセル端までのセル面上の距離とを含むセル固有情報に依存する情報であることを特徴とする請求項11に記載の基地局装置。
  13.  前記コードブック生成手段は、前記セル環境情報に依存するビーム角に関する情報に基づいて前記コードブック用のプリコーディング行列を算出することを特徴とする請求項11または12に記載の基地局装置。
  14.  前記コードブック生成手段は、前記セル環境情報から前記ビーム角に関する情報を算出することを特徴とする請求項13に記載の基地局装置。
  15.  前記コードブック生成手段は、
     複数のプリコーディング行列候補を格納した記憶手段と、
     前記セル環境情報を用いて前記記憶手段から前記コードブック用のプリコーディング行列を抽出する抽出手段と、
     を有することを特徴とする請求項11または12に記載の基地局装置。
  16.  前記コードブック生成手段は、前記セル環境情報から前記ビーム角に関する情報を計算する計算手段を更に有し、前記抽出手段は、前記ビーム角に関する情報を用いて前記記憶手段から前記コードブック用のプリコーディング行列を抽出することを特徴とする請求項15に記載の基地局装置。
  17.  前記コードブック生成手段は、
     複数のプリコーディング行列候補をビーム角に関する情報に従って格納した記憶手段と、
     前記セル環境情報を用いて他のビームとのカバレッジエリアの重なりを計算する計算手段と、
     前記カバレッジエリアの重なりが大きい順に当該ビームに対応するプリコーディング行列を削除することで所定数のプリコーディング行列からなる前記コードブックを生成する選択手段と、
     を有することを特徴とする請求項11または12に記載の基地局装置。
  18.  前記コードブック生成手段は、
     複数の異なるプリコーディング行列群をコードブック用のプリコーディング行列候補として格納した記憶手段と、
     前記セル固有情報に基づいて前記プリコーディング行列候補からプリコーディング行列群を選択する選択手段と、
     を有し、前記コードブック決定用情報を前記選択したプリコーディング行列群を特定する情報を含めて前記端末へ送信することを特徴とする請求項11または12に記載の基地局装置。
  19.  前記コードブック生成手段は、
     複数のセル環境にそれぞれ対応する複数のプリコーディング行列群をプリコーディング行列群候補として格納した記憶手段と、
     前記セル固有情報に基づいてプリコーディング行列群候補を選択する選択手段と、
     を有し、前記コードブック決定用情報を前記選択したプリコーディング行列群候補を特定する情報を含めて前記端末へ送信することを特徴とする請求項11または12に記載の基地局装置。
  20.  基地局および端末に共通のコードブックを用いたプリコーディングによりビーム指向性制御を行う通信システムにおけるコードブック共有方法であって、
     前記基地局が当該基地局のセル環境情報を含むコードブック決定用情報を前記端末へ通知し、
     前記基地局および前記端末が前記コードブック決定用情報に基づいて共通のコードブックを生成する、
     ことを特徴とするコードブック共有方法。
  21.  コードブックを用いたプリコーディングによりビーム指向性制御を行う通信システムにおける無線通信装置のコードブック共有方法であって、
     基地局から当該基地局のセル環境情報を含むコードブック決定用情報を受信し、
     前記コードブック決定用情報に基づいて前記基地局と共通のコードブックを生成する、
     ことを特徴とするコードブック共有方法。
  22.  コードブックを用いたプリコーディングによりビーム指向性制御を行う通信システムにおける無線通信装置のコードブック共有方法であって、
     当該無線通信装置のセル環境情報を含むコードブック決定用情報を無線端末へ送信し、
     前記コードブック決定用情報に基づいて前記無線端末と共通のコードブックを生成する、
     ことを特徴とするコードブック共有方法。
  23.  基地局と端末で共通のコードブックを用いてプリコーディングを使った垂直面のビーム指向性制御を伴う通信システムにおけるコードブック共有方法において、
     前記基地局がビーム角レンジとビーム角間隔からなるセル固有パラメータをコードブック決定用情報として前記端末に通知し、
     前記基地局および前記端末が、前記セル固有パラメータに基づいて計算されたプリコーディング行列を用いて前記共通のコードブックを生成する、
     ことを特徴とするコードブック共有方法。
  24.  コードブックを用いたプリコーディングによりビーム指向性制御を行う通信システムにおける無線通信装置としてコンピュータを機能させるプログラムであって、
     基地局から当該基地局のセル環境情報を含むコードブック決定用情報を受信する機能と、
     前記コードブック決定用情報に基づいて前記基地局と共通のコードブックを生成する機能と、
     を前記コンピュータで実現することを特徴とするプログラム。
  25.  コードブックを用いたプリコーディングによりビーム指向性制御を行う通信システムにおける無線通信装置としてコンピュータを機能させるプログラムであって、
     当該無線通信装置のセル環境情報を含むコードブック決定用情報を無線端末へ送信する機能と、
     前記コードブック決定用情報に基づいて前記無線端末と共通のコードブックを生成する機能と、
     を前記コンピュータで実現することを特徴とするプログラム。
     
PCT/JP2014/000397 2013-01-31 2014-01-27 通信システムにおける端末装置、基地局装置およびコードブック共有方法 WO2014119276A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2014212975A AU2014212975A1 (en) 2013-01-31 2014-01-27 Terminal apparatus, base station apparatus and codebook sharing method in communication system
EP14746286.5A EP2953282A4 (en) 2013-01-31 2014-01-27 END DEVICE, BASIC STATION DEVICE AND CODEBOOK DIVISION PROCESS IN A COMMUNICATION SYSTEM
US14/764,736 US9787378B2 (en) 2013-01-31 2014-01-27 Terminal apparatus, base station apparatus, and method for sharing codebook in communication system
JP2014559562A JP6241623B2 (ja) 2013-01-31 2014-01-27 通信システムにおける端末装置、基地局装置およびコードブック共有方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013017338 2013-01-31
JP2013-017338 2013-01-31

Publications (1)

Publication Number Publication Date
WO2014119276A1 true WO2014119276A1 (ja) 2014-08-07

Family

ID=51261994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000397 WO2014119276A1 (ja) 2013-01-31 2014-01-27 通信システムにおける端末装置、基地局装置およびコードブック共有方法

Country Status (5)

Country Link
US (1) US9787378B2 (ja)
EP (1) EP2953282A4 (ja)
JP (1) JP6241623B2 (ja)
AU (1) AU2014212975A1 (ja)
WO (1) WO2014119276A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105991213A (zh) * 2015-01-30 2016-10-05 电信科学技术研究院 一种确定码本的方法及装置
WO2017003252A1 (ko) * 2015-07-01 2017-01-05 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서 코드북 구성 방법 및 이를 위한 장치
CN106685490A (zh) * 2015-11-06 2017-05-17 电信科学技术研究院 一种信道状态信息反馈、数据传输方法及装置
US9787378B2 (en) 2013-01-31 2017-10-10 Nec Corporation Terminal apparatus, base station apparatus, and method for sharing codebook in communication system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016108482A1 (ko) * 2014-12-30 2016-07-07 엘지전자(주) 무선 통신 시스템에서 코드북을 이용하여 프리코딩을 수행하기 위한 방법 및 이를 위한 장치
US10374836B2 (en) * 2015-10-28 2019-08-06 Huawei Technologies Canada Co., Ltd. Method and apparatus for downlink channel estimation in massive MIMO
JP7268139B2 (ja) * 2019-03-29 2023-05-02 本田技研工業株式会社 基地局、通信システム、通信方法、及びプログラム
US10716015B1 (en) * 2019-07-08 2020-07-14 Sprint Communications Company L.P. Broadcast beam profile assignment
WO2021142562A1 (zh) * 2020-01-13 2021-07-22 华为技术有限公司 一种干扰抑制方法以及相关装置
US20230155661A1 (en) * 2020-04-20 2023-05-18 Telefonaktiebolaget Lm Ericsson (Publ) Beam management for a radio transceiver device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110110339A1 (en) * 2009-11-10 2011-05-12 Samsung Electronics Co. Ltd. Apparatus and method for allocating resource using codebook based on resource size and burst size in broadband wireless communication system
US20110194638A1 (en) * 2010-02-10 2011-08-11 Adoram Erell Codebook adaptation in mimo communication systems using multilevel codebooks
WO2011137591A1 (zh) * 2010-05-06 2011-11-10 上海贝尔股份有限公司 多入多出系统的高秩自适应码本的生成和反馈方法及设备
US20120281783A1 (en) * 2011-05-02 2012-11-08 Alcatel-Lucent Telecom Ltd. Method of transforming pre-coded signals for multiple-in-multiple-out wireless communication

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5265657B2 (ja) * 2010-12-27 2013-08-14 シャープ株式会社 基地局装置、端末装置、通信システムおよび通信方法
WO2014119276A1 (ja) 2013-01-31 2014-08-07 日本電気株式会社 通信システムにおける端末装置、基地局装置およびコードブック共有方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110110339A1 (en) * 2009-11-10 2011-05-12 Samsung Electronics Co. Ltd. Apparatus and method for allocating resource using codebook based on resource size and burst size in broadband wireless communication system
US20110194638A1 (en) * 2010-02-10 2011-08-11 Adoram Erell Codebook adaptation in mimo communication systems using multilevel codebooks
WO2011137591A1 (zh) * 2010-05-06 2011-11-10 上海贝尔股份有限公司 多入多出系统的高秩自适应码本的生成和反馈方法及设备
US20120281783A1 (en) * 2011-05-02 2012-11-08 Alcatel-Lucent Telecom Ltd. Method of transforming pre-coded signals for multiple-in-multiple-out wireless communication

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation", 3GPP TS 36.211, March 2010 (2010-03-01), pages 50 - 51
"Throughput Improving in Cellular Mobile Communications with Various Cell Sizes - Vertical Plane Beam Control with Pre-coding and Cooperative MIMO Transmission", IEICE TECHNICAL REPORT, RCS2012-16, 2012, pages 91 - 96
INTEL CORPORATION: "Scenarios for 3D-MIMO and FD -MIMO", 3GPP TSG-RAN WG1#72 R1-130089, XP050663536, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/ TSGR1-72/Docs/R1-130089.zip> *
KENJI HOSHINO ET AL.: "Throughput Improving in Cellular Mobile Communications with Various Cell Sizes : Vertical Plane Beam Control with Pre-coding and Cooperative MIMO Transmission", IEICE TECHNICAL REPORT. RCS, vol. 112, no. 11, 12 April 2012 (2012-04-12), pages 91 - 96, XP008180131 *
See also references of EP2953282A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9787378B2 (en) 2013-01-31 2017-10-10 Nec Corporation Terminal apparatus, base station apparatus, and method for sharing codebook in communication system
CN105991213A (zh) * 2015-01-30 2016-10-05 电信科学技术研究院 一种确定码本的方法及装置
KR20170102944A (ko) * 2015-01-30 2017-09-12 차이나 아카데미 오브 텔레커뮤니케이션즈 테크놀로지 코드북 확정 방법 및 장치
JP2018509051A (ja) * 2015-01-30 2018-03-29 チャイナ アカデミー オブ テレコミュニケーションズ テクノロジー コードブック確定方法及び装置
EP3252965A4 (en) * 2015-01-30 2018-05-02 China Academy of Telecommunications Technology Method and apparatus for determining codebook
US10615855B2 (en) 2015-01-30 2020-04-07 China Academy Of Telecommunications Technology Method and device for determining codebook
KR102100308B1 (ko) * 2015-01-30 2020-04-13 차이나 아카데미 오브 텔레커뮤니케이션즈 테크놀로지 코드북 확정 방법 및 장치
WO2017003252A1 (ko) * 2015-07-01 2017-01-05 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서 코드북 구성 방법 및 이를 위한 장치
US10256880B2 (en) 2015-07-01 2019-04-09 Lg Electronics Inc. Codebook configuration method in multi-antenna wireless communication system and device for same
CN106685490A (zh) * 2015-11-06 2017-05-17 电信科学技术研究院 一种信道状态信息反馈、数据传输方法及装置
JP6998275B2 (ja) 2015-11-06 2022-01-18 ダータン モバイル コミュニケーションズ エクイップメント カンパニー リミテッド チャネル状態情報フィードバック・データ伝送方法及び装置
CN106685490B (zh) * 2015-11-06 2022-08-12 大唐移动通信设备有限公司 一种信道状态信息反馈、数据传输方法及装置

Also Published As

Publication number Publication date
AU2014212975A1 (en) 2015-08-20
US9787378B2 (en) 2017-10-10
JP6241623B2 (ja) 2017-12-06
JPWO2014119276A1 (ja) 2017-01-26
US20150372729A1 (en) 2015-12-24
EP2953282A1 (en) 2015-12-09
EP2953282A4 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
JP6241623B2 (ja) 通信システムにおける端末装置、基地局装置およびコードブック共有方法
WO2021237688A1 (en) Ris-assisted wireless communications
EP2732654B1 (en) Distributed beam selection for cellular communication
CN110999107B (zh) 发射机、接收机、无线通信网络及其操作方法
EP2481163B1 (en) Multi-user beamforming with inter-cell interference suppression
KR101859821B1 (ko) 밀리미터파 하향링크 채널에서 디지털-아날로그 하이브리드 빔포밍 방법 및 시스템
KR101527110B1 (ko) 분산 다중 입출력 무선통신 시스템에서 전력 제어 장치 및 방법
US10122426B2 (en) Method for beam steering in multiple-input multiple-output system
CN113994600A (zh) 分层码本的设计和适配
EP3411958B1 (en) A method for adapting a beam shape of a beam
CN107864000B (zh) 基于用户分布密度匹配的3d mimo码本生成方法
Ataeeshojai et al. Energy-efficient resource allocation in single-RF load-modulated massive MIMO HetNets
KR102027914B1 (ko) 무선 통신 시스템에서 셀 간 간섭 제거 방법 및 장치
KR101290918B1 (ko) 다중 셀 환경에서 간섭 정렬 기법을 이용한 통신 시스템
KR101599668B1 (ko) 빔 포밍 벡터 제공 시스템, 그 제공 장치, 그 제공 방법, 이를 수행하는 컴퓨터 프로그램 및 이를 기록한 기록매체
KR20130104369A (ko) 협력 전송 기반의 다중 안테나 시스템에서의 전송 파워 결정 방법
CN113595599B (zh) 面向5g的群簇协作通信异构系统和干扰抑制的方法
Idrees et al. Throughput maximization in clustered cellular networks by using joint resource scheduling and fractional frequency reuse-aided coordinated multipoint
Paul et al. Beamforming oriented topology control for mmwave networks
WO2017154555A1 (ja) 基地局
Lu et al. Adaptive coordinated reception for multicell MIMO uplink
KR102000667B1 (ko) 협력 전송 기반의 다중 안테나 시스템에서의 전송 파워 결정 방법
CN107276651B (zh) 一种垂直扇区劈裂的下倾角优化和功率分配方法
CN113162664A (zh) 一种波束成形预编码系统及方法
KHAVARI-MOGHADDAM et al. Effect of Users Height Distribution on the Coverage of mmWave Cellular Networks With 3D Beamforming

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14746286

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014559562

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14764736

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014212975

Country of ref document: AU

Date of ref document: 20140127

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014746286

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014746286

Country of ref document: EP