WO2014119161A1 - Sheet for optical semiconductor, and optical semiconductor device - Google Patents

Sheet for optical semiconductor, and optical semiconductor device Download PDF

Info

Publication number
WO2014119161A1
WO2014119161A1 PCT/JP2013/083869 JP2013083869W WO2014119161A1 WO 2014119161 A1 WO2014119161 A1 WO 2014119161A1 JP 2013083869 W JP2013083869 W JP 2013083869W WO 2014119161 A1 WO2014119161 A1 WO 2014119161A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical semiconductor
adhesive layer
sheet
silicone resin
optical
Prior art date
Application number
PCT/JP2013/083869
Other languages
French (fr)
Japanese (ja)
Inventor
はるか 小名
広和 松田
片山 博之
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2014119161A1 publication Critical patent/WO2014119161A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/25Plastics; Metallised plastics based on macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/14Semiconductor wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2483/00Presence of polysiloxane
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2483/00Presence of polysiloxane
    • C09J2483/006Presence of polysiloxane in the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations

Definitions

  • the present invention relates to an optical semiconductor sheet and an optical semiconductor device, and more particularly to an optical semiconductor sheet including an optical semiconductor sheet and an optical semiconductor element sealed thereby.
  • Rubbery silicone resin sheets are used in various applications because of their excellent durability and heat resistance.
  • silicone resin sheet Since such a silicone resin sheet has adhesiveness on the surface, the silicone resin sheet adheres to other members during transportation, contaminates the surroundings, or separately laminates a release sheet to cover the surface. It needs to be protected. Moreover, when surface adhesiveness is too high, the release property at the time of releasing a release sheet from a silicone resin sheet may fall.
  • thermocompression bonding obtained by dusting scaly powder such as talc or mica on the surface has been proposed (for example, see Patent Document 1 below).
  • the silicone rubber sheet for thermocompression bonding of Patent Document 1 is reduced in surface adhesiveness by dusted powder, reduces contamination to the surroundings, and further improves the releasability.
  • An object of the present invention is to provide an optical semiconductor sheet that is excellent in transparency while reducing non-adhesiveness by reducing contamination to the surroundings, and an optical semiconductor device in which a decrease in luminous efficiency is suppressed. is there.
  • the sheet for optical semiconductors of the present invention comprises an adhesive layer made of a first silicone resin, and a non-adhesive layer made of a second silicone resin, provided on one surface in the thickness direction of the adhesive layer. .
  • This optical semiconductor sheet is provided with a non-adhesive layer on one surface in the thickness direction of the adhesive layer, thereby reducing contamination caused by the adhesion layer adhering to surrounding members and improving non-adhesiveness.
  • transparency can be improved.
  • the second silicone resin is solid at room temperature and is thermoplastic.
  • the second silicone resin is thermoplastic
  • the non-adhesive layer can be adhered to the adhesive layer by heating. Therefore, it is possible to prevent a gap from being generated between the non-adhesive layer and the adhesive layer. As a result, the transparency of the optical semiconductor sheet can be further improved.
  • the first silicone resin is a B-stage thermosetting silicone resin.
  • the first silicone resin is a B-stage thermosetting silicone resin, so that the object can be easily and reliably coated. After covering the object, the object can be reliably sealed by heating the sheet for optical semiconductors to the C stage.
  • the second silicone resin is silsesquioxane.
  • the second silicone resin is silsesquioxane, it is possible to easily ensure thermoplasticity while being excellent in durability and transparency.
  • the silsesquioxane contains a functional group that reacts with the first silicone resin.
  • silsesquioxane contains a functional group that reacts with the first silicone resin, so that the second silicone resin reacts with the first silicone resin, thereby causing adhesion.
  • the adhesion between the layer and the non-adhesive layer can be further improved.
  • the optical semiconductor sheet of the present invention is preferably used for sealing an optical semiconductor element.
  • this optical semiconductor sheet is used for sealing an optical semiconductor element, it is possible to improve the reliability of the optical semiconductor element and suppress a decrease in light emission efficiency.
  • the non-adhesive layer is formed of a sheet made of the second silicone resin.
  • the non-adhesive layer is formed from a sheet made of the second silicone resin, the thickness of the non-adhesive layer can be ensured uniformly, and the long-term storage stability is excellent. .
  • the non-adhesive layer is formed in a layer form from particles made of the second silicone resin.
  • the non-adhesive layer is formed in a layer form from the particles, so that the process can be simplified.
  • the optical semiconductor device of the present invention includes an optical semiconductor sheet and an optical semiconductor element sealed with the optical semiconductor sheet, and the optical semiconductor sheet includes an adhesive layer made of a first silicone resin, And a non-adhesive layer made of a second silicone resin, provided on one surface in the thickness direction of the adhesive layer.
  • this optical semiconductor device includes an optical semiconductor element sealed with an optical semiconductor sheet having excellent transparency, it is possible to suppress a decrease in light emission efficiency.
  • the optical semiconductor sheet of the present invention can improve the transparency while reducing the contamination caused by the adhesion layer adhering to surrounding members and improving the non-adhesiveness.
  • the optical semiconductor device of the present invention can suppress a decrease in light emission efficiency.
  • FIG. 1 is a process diagram illustrating a method for producing the first embodiment of the optical semiconductor sheet of the present invention.
  • FIG. 1 (a) is a process of preparing an adhesive layer and a non-adhesive layer, respectively. b) shows the process of bonding the adhesive layer and the non-adhesive layer together.
  • FIG. 2 is a process diagram illustrating a method of manufacturing an optical semiconductor device using the optical semiconductor sheet shown in FIG. 1B as a sealing sheet, and FIG. 2A is a second release sheet.
  • FIG. 2B shows a step of sealing the optical semiconductor element with the optical semiconductor sheet.
  • FIG. 1 is a process diagram illustrating a method for producing the first embodiment of the optical semiconductor sheet of the present invention.
  • FIG. 1 (a) is a process of preparing an adhesive layer and a non-adhesive layer, respectively. b) shows the process of bonding the adhesive layer and the non-adhesive layer together.
  • FIG. 2 is a process diagram illustrating
  • FIG. 3 is a process diagram for explaining a modification of the method of manufacturing an optical semiconductor device using the first embodiment of the optical semiconductor sheet of the present invention as a sealing sheet
  • FIG. 3B shows a step of sealing the optical semiconductor element with the optical semiconductor sheet, in which the optical semiconductor sheet and the substrate from which the release sheet 1 is peeled are disposed to face each other.
  • FIG. 4 shows a cross-sectional view of a second embodiment of the sheet for optical semiconductors of the present invention.
  • FIG. 5 is a process diagram for explaining a method of manufacturing an optical semiconductor device using the optical semiconductor sheet of FIG. 4 as a sealing sheet.
  • FIG. 5A shows a state in which the second release sheet is peeled off.
  • FIG. 5B shows a step of sealing the optical semiconductor element with the optical semiconductor sheet.
  • FIG. 6 is a process diagram illustrating a modified example of a method of manufacturing an optical semiconductor device using the second embodiment of the optical semiconductor sheet of the present invention as a sealing sheet
  • FIG. FIG. 6B shows a step of sealing the optical semiconductor element with the sheet for optical semiconductor, in which the optical semiconductor sheet from which the release sheet is peeled and the substrate are disposed to face each other.
  • the vertical direction of the paper is the vertical direction (thickness direction, first direction)
  • the horizontal direction of the paper is the horizontal direction (second direction, the direction perpendicular to the first direction)
  • the paper thickness direction is the front-back direction (third direction).
  • an optical semiconductor sheet 1 includes an adhesive layer 2 and a non-adhesive layer 3 provided on the upper surface (one surface in the thickness direction) of the adhesive layer 2.
  • a first release sheet 4 is provided under the adhesive layer 2.
  • a second release sheet 5 is provided on the adherend layer 3.
  • the pressure-sensitive adhesive layer 2 is laminated on the upper surface of the first release sheet 4 and extends from the first silicone resin in the surface direction (direction orthogonal to the thickness direction, that is, both the left-right direction and the front-rear direction). Is formed.
  • the first silicone resin examples include a thermoplastic silicone resin and a thermosetting silicone resin.
  • a thermosetting silicone resin is used.
  • thermosetting silicone resin examples include a two-stage curable silicone resin and a one-stage curable silicone resin.
  • the two-stage curable silicone resin has a two-stage reaction mechanism, and is heat-cured by B-stage (semi-curing) by the first-stage reaction and C-stage (full-curing) by the second-stage reaction. It is a functional silicone resin.
  • the one-step curable silicone resin has a one-step reaction mechanism and is a thermosetting silicone resin that is completely cured by the first-step reaction.
  • the B stage is a state between the A stage in which the thermosetting silicone resin is in a liquid state and the fully cured C stage. Curing and gelation proceed slightly, and the elastic modulus is that of the C stage. The state is smaller than the elastic modulus.
  • thermosetting silicone resin is preferably a two-stage curable silicone resin.
  • the first silicone resin (specifically, thermosetting silicone resin) may be prepared from a silicone resin composition (specifically, thermosetting silicone resin composition) containing a plurality of types of components. it can.
  • Examples of the uncured body of the two-stage curable silicone resin composition include a condensation reaction / addition reaction curable silicone resin composition.
  • the condensation reaction / addition reaction curable silicone resin composition is a thermosetting silicone resin composition that can undergo a condensation reaction and an addition reaction by heating, and more specifically, a condensation reaction by heating, Thermosetting silicone that can be B-staged (semi-cured), and then further heated to an addition reaction (specifically, for example, hydrosilylation reaction) to be C-staged (fully cured) It is a resin composition.
  • an addable or condensable functional group preferably remains, and more preferably an addable functional group remains.
  • Examples of the functional group capable of addition reaction include alkenyl groups having 2 to 10 carbon atoms such as vinyl group, allyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, for example, cyclohexenyl group. And cycloalkenyl groups having 3 to 10 carbon atoms such as norbornenyl group. An alkenyl group having 2 to 5 carbon atoms is preferable, and a vinyl group is more preferable. Furthermore, examples of the functional group capable of addition reaction include a hydrosilyl group (—SiH).
  • the functional group capable of addition reaction can be used alone or in combination.
  • a combination of an alkenyl group and a hydrosilyl group is preferable.
  • examples of functional groups capable of condensation reaction include hydrosilyl groups, silanol groups (—Si—OH), halogen atoms (specifically, bromine atoms, chlorine atoms, fluorine atoms, iodine atoms, etc.), alkoxy groups ( Specific examples include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a pentyloxy group, and a hexyloxy group), a phenoxy group, and an acetoxy group.
  • hydrosilyl groups silanol groups (—Si—OH)
  • halogen atoms specifically, bromine atoms, chlorine atoms, fluorine atoms, iodine atoms, etc.
  • alkoxy groups Specific examples include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobut
  • Preferred examples of the functional group capable of condensation reaction include a hydrosilyl group and a silanol group.
  • the hydrosilyl group can also serve as a functional group capable of addition reaction and a functional group capable of condensation reaction.
  • the functional group capable of condensation reaction can be used alone or in combination.
  • the functional group capable of condensation reaction is preferably a combination of a hydrosilyl group and a silanol group.
  • condensation reaction / addition reaction curable silicone resin composition for example, a silicone resin composition described in JP 2012-82320 A and the like can be mentioned.
  • the adhesive layer 2 is preferably formed from a B-stage thermosetting silicone resin (composition).
  • the elastic modulus at 25 ° C. of the adhesive layer 2 is, for example, 0.01 MPa or more, preferably 0.025 MPa or more, and, for example, 1.0 MPa or less, preferably 0.5 MPa or less.
  • the elastic modulus of the adhesive layer 2 is measured using a nanoindenter.
  • the elastic modulus of the non-adhesive layer 3 described later is also measured by the same method.
  • the shape retaining property of the adhesive layer 2 can be secured and the handleability of the adhesive layer 2 can be improved. If the elastic modulus of the adhesive layer 2 is less than or equal to the above upper limit, the optical semiconductor element 8 can be reliably covered when the optical semiconductor element 8 (see FIG. 2) described later is sealed.
  • the light transmittance of the adhesive layer 2 is, for example, 80% or more, preferably 85% or more, more preferably 90% or more, further preferably, with respect to light having a wavelength of 500 nm. , 95% or more, and 99.99% or less.
  • the light transmittance of the adhesive layer 2 is measured by a spectrophotometer equipped with an integrating sphere according to the description of “Testing method of total light transmittance of plastic-transparent material” of JIS K 7361-1 (1997 edition). Is done.
  • the light transmittance of the non-adhesive layer 3 to be described later is also measured by the same method.
  • the adhesive layer 2 has tack (adhesiveness) at room temperature (specifically, 25 ° C., the same applies hereinafter).
  • the peel adhesive strength at 25 ° C. with respect to the polypropylene (PP) sheet (non-stretched, thickness 50 ⁇ m) of the adhesive layer 2 is, for example, 0.3 N / 2 cm or more, preferably 1 N / 2 cm or more. It is 8 N / 2 cm or less, preferably 5 N / 2 cm or less.
  • peeling adhesive force of the adhesive layer 2 will be described in detail in a later example.
  • the peeling adhesive strength of the non-adhesive layer 3 and the optical semiconductor sheet 1 described later is also measured by the same method.
  • the thickness of the adhesive layer 2 is, for example, 50 ⁇ m or more, preferably 100 ⁇ m or more, and, for example, 2000 ⁇ m or less, preferably 1500 ⁇ m or less.
  • the non-adhesive layer 3 is formed from a sheet made of the second silicone resin.
  • Examples of the second silicone resin include silsesquioxane and silicone particles. Preferably, silsesquioxane is used.
  • the structure of the “Si—O—Si” skeleton of silsesquioxane is not particularly limited, and examples thereof include a cage shape, a ladder shape, and a random shape.
  • silsesquioxane examples include polymethylsilsesquioxane, polymethylphenylsilsesquioxane, polyphenylsilsesquioxane, and the like. Preferably, polymethylsilsesquioxane is used.
  • Silsesquioxane can also contain a functional group that reacts with the functional group of the first silicone resin in the molecule. Specifically, silsesquioxane can contain a functional group that reacts with an addable or condensable functional group of the first silicone resin in the molecule.
  • Examples of the functional group contained in silsesquioxane include a vinyl group and a hydroxyl group. Preferably, a vinyl group is used.
  • the second silicone resin a commercially available product can be used.
  • polymethylsilsesquioxane examples include KR-220L (manufactured by Shin-Etsu Chemical Co., Ltd.), and vinyl group-containing polymethylsil
  • sesquioxane examples include product number 52365-8 (manufactured by Aldrich), OL1123 (manufactured by Hybrid Plastics), and the like.
  • the second silicone resin is solid at room temperature and is thermoplastic.
  • the softening point of the second silicone resin is, for example, 60 ° C. or higher, preferably 70 ° C. or higher, and for example, 200 ° C. or lower, preferably 150 ° C. or lower.
  • the softening point is not more than the above upper limit, the non-adhesive layer 3 can be surely softened during thermocompression bonding described later. Furthermore, when the non-adhesive layer 3 is easily softened and melted and an optical semiconductor element 8 described later is wire-bonded to the substrate 7, damage to the wire can be prevented. On the other hand, if the softening point is not less than the above lower limit, the handleability at room temperature can be improved.
  • the softening point of the second silicone resin is that about 1 g of the second silicone resin is placed on the hot plate, and the hot silicone is heated at a temperature rising temperature of 5 ° C./min, so that the second silicone resin is softened. This is measured by visually observing this.
  • non-adhesive layer 3 is tack-free at normal temperature (that is, has no adhesiveness).
  • the elastic modulus at 25 ° C. of the non-adhesive layer 3 is, for example, 0.5 MPa or more, preferably 1 MPa or more, and for example, 15 MPa or less, preferably 10 MPa or less.
  • the light transmittance of the non-adhesive layer 3 is, for example, 80% or more, preferably 85% or more, more preferably 90% or more, further preferably, with respect to light having a wavelength of 500 nm. It is 95% or more and 99.99% or less.
  • the thickness of the non-adhesive layer 3 is, for example, 0.1 ⁇ m or more, preferably 1 ⁇ m or more, and for example, 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • first release sheet 4 examples include polymer sheets such as polyolefin sheets (such as polyethylene sheets and PP sheets) and polyester sheets (such as PET sheets), such as ceramic sheets, such as metal foil.
  • polymer sheets such as polyolefin sheets (such as polyethylene sheets and PP sheets) and polyester sheets (such as PET sheets), such as ceramic sheets, such as metal foil.
  • a polymer sheet is used.
  • the surface (lower surface) of the first release sheet 4 can be subjected to a peeling treatment such as a fluorine treatment.
  • the second release sheet 5 is formed from the same material as the first release sheet 4. Further, the second release sheet 5 can be subjected to the same release treatment as that of the first release sheet 4.
  • the adhesive layer 2 is laminated on the first release sheet 4 as shown in the lower view of FIG.
  • the adhesive layer 2 is formed on the first release sheet 4 by applying a varnish made of the first silicone resin to the upper surface of the first release sheet 4 and then heating the coating film. To do.
  • the first silicone resin contains a condensation reaction / addition reaction curable silicone resin composition
  • the condensation reaction is advanced by heating the coating film.
  • the adhesion layer 2 is formed from the thermosetting silicone resin of a B stage.
  • a non-adhesive layer 3 is prepared.
  • the non-adhesive layer 3 is placed on the second release sheet 5 (however, in FIG. 1A, the relative position with the adhesive layer 2 is clearly shown). In order to achieve this, for convenience, it is laminated “under”.
  • the second silicone resin is dissolved in a solvent, Then, the solution is applied to the upper surface of the second release sheet 5 to form a coating film.
  • the solvent examples include hydrocarbon solvents such as hexane and heptane, and ketone solvents such as acetone and methyl ethyl ketone.
  • the solid content (second silicone resin) concentration in the solution is, for example, 10% by mass or more, preferably 25% by mass or more, and for example, 90% by mass or less, preferably 75% by mass or less.
  • heating time is, for example, 0.1 minute or more, preferably 0.5 minutes or more, and for example, 100 minutes or less, preferably 50 minutes or less.
  • heating temperature is 50 degreeC or more, for example, Preferably, it is 75 degreeC or more, for example, is 150 degrees C or less, Preferably, it is 120 degrees C or less.
  • the non-adhesive layer 3 is formed on the upper surface of the second release sheet 5.
  • the adhesive layer 2 and the non-adhesive layer 3 are bonded together.
  • the adhesive layer 2 laminated on the first release sheet 4 and the non-adhesive layer 3 laminated on the second release sheet 5 (non-adhesive layer laminated on the upper surface of the second release sheet 5) 3) is attached.
  • the pressure in the pressure bonding is, for example, 0.001 MPa or more, and, for example, 300 MPa or less, preferably 50 MPa or less.
  • the non-adhesive layer 3 may be simply laminated (specifically, placed) on the adhesive layer 2 based on the adhesiveness of the adhesive layer 2. it can.
  • the optical semiconductor sheet 1 composed of the adhesive layer 2 and the non-adhesive layer 3 is obtained by being sandwiched between the first release sheet 4 and the second release sheet 5 in the thickness direction.
  • a second release sheet 5 is laminated on the upper surface of the non-adhesive layer 3, and a first release sheet 4 is laminated on the lower surface of the adhesive layer 2.
  • the upper surface of the optical semiconductor sheet 1, that is, a polypropylene (PP) sheet (non-stretched, thickness 50 ⁇ m) on the side surface of the non-adhesive layer 3 is 25 ° C.
  • the peel adhesive strength is, for example, 0.40 N / 2 cm or less, preferably 0.20 N / 2 cm or less, more preferably 0.10 N / 2 cm or less, and further preferably 0.05 N / 2 cm or less. For example, it is 0.001 N / 2 cm or more.
  • the light transmittance of the optical semiconductor sheet 1 immediately after manufacture (the optical semiconductor sheet 1 excluding the first release sheet 4 and the second release sheet 5) with respect to light having a wavelength of 500 nm is, for example, 80.0% or more, preferably Is 90.0% or more, more preferably 92.5% or more, still more preferably 95.0% or more, and less than 100%.
  • the optical semiconductor sheet 1 shown in FIG. 1B immediately after manufacture is handled, that is, specifically, stored and / or transported (distributed) for a long period of time.
  • at least the second release sheet 5 is provided on the optical semiconductor sheet 1 from the production of the optical semiconductor sheet 1 shown in FIG.
  • the second release sheet 5 is peeled from the non-adhesive layer 3 as indicated by the phantom line of FIG.
  • the second release sheet 5 is peeled from the non-adhesive layer 3 as shown by the phantom line in FIG.
  • the optical semiconductor sheet 1 from which the second release sheet 5 has been peeled and the substrate 7 are arranged to face each other.
  • the optical semiconductor sheet 1 obtained by inverting the optical semiconductor sheet 1 from which the second release sheet 5 shown by the phantom line in FIG.
  • the adhesive layer 3 and the optical semiconductor element 8 mounted on the upper surface of the substrate 7 are opposed to each other.
  • the substrate 7 has a substantially flat plate shape. Specifically, a conductor layer (not shown) including electrode pads (not shown) and wiring (not shown) is laminated on the insulating substrate as a circuit pattern. It is formed from the laminated board.
  • the insulating substrate is made of, for example, a silicon substrate, a ceramic substrate, a polyimide resin substrate, or the like, and is preferably made of a ceramic substrate, specifically, a sapphire substrate.
  • the conductor layer is formed of a conductor such as gold, copper, silver, or nickel.
  • the electrode pad is preferably made of silver or copper from the viewpoint of electrical conductivity.
  • substrate 7 is 30 micrometers or more, for example, Preferably, it is 50 micrometers or more, for example, is 1500 micrometers or less, Preferably, it is 1,000 micrometers or less.
  • the optical semiconductor element 8 is a light emitting diode element or a laser diode provided on the upper surface of the substrate 7.
  • the optical semiconductor element 8 is connected to the electrode pad of the substrate 7 by flip chip mounting or wire bonding, thereby being electrically connected to the conductor layer.
  • the optical semiconductor element 8 is, for example, an element that emits blue light (specifically, a blue LED).
  • the thickness of the optical semiconductor element 8 is, for example, not less than 0.05 mm and not more than 1 mm.
  • the optical semiconductor element 8 is embedded (covered) with the optical semiconductor sheet 1.
  • the optical semiconductor sheet 1 is thermocompression bonded to the substrate 7.
  • the optical semiconductor sheet 1 and the substrate 7 are pressed flat.
  • the temperature is a temperature at which the non-adhesive layer 3 is plasticized or higher, specifically, the softening point of the second silicone resin of the non-adhesive layer 3 or higher, and more specifically, for example, It is 80 ° C. or higher, preferably 100 ° C. or higher, and for example, 220 ° C. or lower, preferably 200 ° C. or lower.
  • the pressure is, for example, 0.01 MPa or more, and for example, 1 MPa or less, preferably 0.5 MPa or less.
  • the pressing time is, for example, 1 to 10 minutes.
  • the non-adhesive layer 3 is softened and melted to be compatible with the adhesive layer 2, and more specifically, the sealing layer 9 that is harmoniously integrated is formed.
  • the sealing layer 9 that is harmoniously integrated is formed.
  • the optical semiconductor element 8 is embedded in the sealing layer 9. That is, the upper surface and side surfaces of the optical semiconductor element 8 are covered with the sealing layer 9.
  • the optical semiconductor sheet 1 (sealing layer 9) is adhered to the optical semiconductor element 8 and the substrate 7.
  • the adhesive layer 2 contains a B-stage thermosetting silicone resin
  • the adhesive layer 2 becomes a C-stage state (completely cured).
  • the pressure-sensitive adhesive layer 2 is a condensation reaction / addition reaction curable silicone resin composition
  • a remaining functional group capable of addition reaction specifically, a hydroxyl group
  • the addition reaction proceeds in the adhesive layer 2 and the non-adhesive layer 3 contains the above-described functional groups (specifically, vinyl groups), the functional groups of the adhesive layer 2 and the functionalities of the non-adhesive layer 3 The group undergoes an addition reaction (specifically, a hydrosilyl addition reaction).
  • the sealing layer 9 is tack free at room temperature.
  • the elastic modulus at 25 ° C. of the sealing layer 9 is, for example, 0.001 MPa or more, and, for example, 0.3 MPa or less, preferably 0.1 MPa or less.
  • the elastic modulus at 25 ° C. of the sealing layer 9 the elastic modulus of the sealing layer 9 after heating the optical semiconductor sheet 1 at 150 ° C. for 3 hours, as referred to in the evaluation of examples described later.
  • the elastic modulus is, for example, 0.5 MPa or more, preferably 1 MPa or more, and for example, 15 MPa or less, preferably 10 MPa or less.
  • the light transmittance for light having a wavelength of 500 nm when the thickness of the sealing layer 9 is 600 ⁇ m is, for example, 80% or more, preferably 85% or more, and for example, 99.9% or less, preferably 99% or less.
  • optical semiconductor device 6 in which the optical semiconductor element 8 is sealed by the optical semiconductor sheet 1 is obtained.
  • the first release sheet 4 is peeled off from the non-adhesive layer 3 as indicated by the phantom lines in FIG.
  • this non-adhesive layer 3 is provided in the upper surface of the adhesion layer 2 in this sheet
  • the second release sheet 5 prevents foreign substances such as dust from adhering to the adhesive layer 2, and further prevents light from external impact during transportation.
  • the semiconductor sheet 1 can also be protected.
  • a space necessary for transporting the optical semiconductor sheet 1 specifically, conventionally, a space for preventing adhesion to other members is narrowed or eliminated, so that a large amount of the optical semiconductor sheet 1 can be efficiently used. Can be well stored or transported.
  • the transparency of the optical semiconductor sheet 1 can be improved.
  • the non-adhesion layer 3 may closely_contact
  • FIG. it can. Therefore, it is possible to prevent a gap from being generated between the non-adhesive layer 3 and the adhesive layer 2. As a result, the transparency of the optical semiconductor sheet 1 can be further improved.
  • the optical semiconductor element 8 In the optical semiconductor sheet 1, if the first silicone resin is a B-stage thermosetting silicone resin, the object, specifically, the optical semiconductor element 8 can be embedded (covered) easily and reliably. can do. Then, after the covering of the object, specifically, after the optical semiconductor element 8 is sealed, the optical semiconductor element 8 can be reliably sealed by heating the optical semiconductor sheet 1 to a C stage. it can.
  • the silsesquioxane contains a functional group that reacts with the first silicone resin
  • the second silicone resin reacts with the first silicone resin.
  • the adhesion between the adhesive layer 2 and the non-adhesive layer 3 can be further improved.
  • the optical semiconductor sheet 1 is used for sealing the optical semiconductor element 8, it is possible to improve the reliability of the optical semiconductor element 8 and to suppress a decrease in light emission efficiency.
  • the non-adhesive layer 3 is formed from a sheet made of the second silicone resin, the thickness of the non-adhesive layer 3 can be ensured uniformly, Excellent long-term storage.
  • this optical semiconductor device 6 includes the optical semiconductor element 8 sealed with the optical semiconductor sheet 1 having excellent transparency, it is possible to suppress a decrease in light emission efficiency.
  • the optical semiconductor sheet 1 in which the second release sheet 5 is laminated on the non-adhesive layer 3 is handled (specifically, long-term storage). And / or transport).
  • the second release sheet 5 is provided on the optical semiconductor sheet 1 from the production of the optical semiconductor sheet 1 shown by the solid line in FIG. .
  • the second release sheet 5 is peeled off from the non-adhesive layer 3 of the optical semiconductor sheet 1 immediately after manufacture, and then the second release sheet 5
  • the peeled sheet for optical semiconductors 1 can be handled as it is.
  • seat 1 for optical semiconductors is wound, specifically, as FIG.1 (b) refers, the adhesion layer 2 and the 1st release sheet 4 (not shown) laminated
  • stacked on it are laminated
  • the second release sheet 5 is peeled in advance, so that the thickness is reduced and the optical semiconductor sheet 1 can be efficiently stored in a roll shape. it can.
  • the adhesive layer 2 and the non-adhesive layer 3 are compatible when the optical semiconductor element 8 is sealed.
  • the non-adhesive layer 3 is continuously formed on the upper surface and side surface of the optical semiconductor element 8 and the upper surface of the substrate 7 exposed from the optical semiconductor element 8.
  • the optical semiconductor element 8 pre-mounted on the substrate 7 is embedded and sealed with the optical semiconductor sheet 1, but for example, although not illustrated,
  • the optical semiconductor element 8 that is not yet mounted on the substrate 7 and supported by a support base (not shown) or the like can be attached to the optical semiconductor sheet 1.
  • the non-adhesive layer 3 and the optical semiconductor element 8 are opposed to each other as shown in FIG. 2A.
  • the semiconductor element 8 can also be opposed.
  • the optical semiconductor sheet 1 in FIG. 1B is not turned upside down, and the adhesive layer 2 in the optical semiconductor sheet 1 is indicated by an imaginary line and an imaginary line arrow in FIG.
  • the 1st release sheet 4 is peeled. Thereby, the lower surface of the adhesion layer 2 is exposed.
  • the adhesive layer 2 and the optical semiconductor element 8 are opposed to each other.
  • the optical semiconductor element 8 is embedded (covered) with the optical semiconductor sheet 1. Specifically, the optical semiconductor sheet 1 is thermocompression bonded to the substrate 7.
  • the adhesive layer 2 covers and seals the upper surface and side surfaces of the optical semiconductor element 8.
  • the optical semiconductor device 6 is obtained.
  • a filler and / or a phosphor (described later) can be added to the first silicone resin and / or the second silicone resin.
  • filler examples include silica (silicon dioxide), barium sulfate, barium carbonate, barium titanate, titanium oxide, zirconium oxide, magnesium oxide, zinc oxide, iron oxide, aluminum hydroxide, calcium carbonate, layered mica, and carbon black. Diatomaceous earth, glass fiber, silicone resin fine particles and the like.
  • the phosphor is a particle having a wavelength conversion function and is not particularly limited as long as it is a known phosphor used in the optical semiconductor device 6 (see FIG. 2B).
  • blue light is converted into yellow light.
  • Known phosphors such as a yellow phosphor that can be converted and a red phosphor that can convert blue light into red light can be used.
  • the yellow phosphor for example, Y 3 Al 5 O 12: Ce (YAG ( yttrium aluminum garnet): Ce), Tb 3 Al 3 O 12: Ce (TAG ( terbium-aluminum-garnet): Ce), etc.
  • Garnet-type phosphors having a garnet-type crystal structure such as oxynitride phosphors such as Ca- ⁇ -SiAlON.
  • red phosphor examples include nitride phosphors such as CaAlSiN 3 : Eu and CaSiN 2 : Eu.
  • the filler and the phosphor are in the form of particles, and the shape thereof is not particularly limited, and examples thereof include a substantially spherical shape, a substantially flat plate shape, and a substantially needle shape.
  • the average value of the maximum length of the filler and the phosphor and the average particle diameter is, for example, 0.1 ⁇ m or more, preferably 0.2 ⁇ m or more. For example, it is 500 ⁇ m or less, preferably 200 ⁇ m or less.
  • the blending ratio of the filler and the phosphor is adjusted to such an extent that the excellent effect (specifically, transparency) of the present invention is not hindered, and specifically, the first silicone resin and / or the second silicone resin.
  • the amount is, for example, 0.01 parts by mass or more, preferably 1 part by mass or more, and for example, 80 parts by mass or less, preferably 70 parts by mass or less with respect to 100 parts by mass of the silicone resin.
  • Second Embodiment 4 and 5 members similar to those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the non-adhesive layer 3 is formed from a sheet, but as shown in FIG. 4, it can also be formed from particles as a layer.
  • the optical semiconductor sheet 1 includes an adhesive layer 2 and a non-adhesive layer 3 provided in a layered manner on the upper surface of the adhesive layer 2.
  • a second release sheet 5 is provided on the conductive layer 3.
  • a first release sheet 4 is provided under the adhesive layer 2.
  • the non-adhesive layer 3 is formed in a layer shape that spreads in the surface direction from particles made of the second silicone resin.
  • each particle made of the second silicone resin is not particularly limited, and examples thereof include a substantially spherical shape, a substantially plate shape (or a substantially scaly shape), a substantially needle shape, and an indefinite shape (lump shape).
  • the particles are drawn with a substantially spherical cross section, but the shape is not limited as described above.
  • the average value of the maximum length of particles is, for example, 0.01 ⁇ m or more, preferably 1 ⁇ m or more, and, for example, 100 ⁇ m or less, preferably 50 ⁇ m or less. It is.
  • relatively large particles can be formed into the above shape by pulverization (including grinding).
  • relatively large particles are formed into the above shape by pulverization.
  • the particles cover the upper surface of the pressure-sensitive adhesive layer 2 without substantially exposing the particles, and the particles are laminated in close contact with the upper surface of the pressure-sensitive adhesive layer 2.
  • the plurality of particles are arranged adjacent to each other in the plane direction. Furthermore, although not shown in FIG. 4, the particles may overlap each other in the thickness direction.
  • the average thickness of the non-adhesive layer 3 is, for example, 0.1 ⁇ m or more, preferably 1 ⁇ m or more, and for example, 50 ⁇ m or less, preferably 30 ⁇ m or less.
  • the average thickness of the non-adhesive layer 3 is calculated, for example, by observing the cross section of the layer.
  • the adhesive layer 2 is laminated on the first release sheet 4.
  • the non-adhesive layer 3 is laminated on the upper surface of the adhesive layer 2.
  • particles made of the second silicone resin are applied to the upper surface of the adhesive layer 2. Specifically, particles are adhered and absorbed in advance on a cotton cloth such as gauze, and the gauze is rubbed against the upper surface of the adhesive layer 2. Alternatively, the particles are sprinkled from above the adhesive layer 2.
  • the second release sheet 5 is laminated on the non-adhesive layer 3.
  • the optical semiconductor sheet 1 composed of the adhesive layer 2 and the non-adhesive layer 3 is obtained by being sandwiched between the first release sheet 4 and the second release sheet 5 in the thickness direction.
  • the optical transmittance of the optical semiconductor sheet 1 immediately after production (the optical semiconductor sheet 1 excluding the first release sheet 4 and the second release sheet 5) with respect to light having a wavelength of 500 nm is such that the non-adhesive layer 3 is layered from particles. In consideration of the formation, it is lower than the light transmittance of the first embodiment, and is, for example, 95% or less, further 90% or less with respect to the light transmittance of the first embodiment. % Or more.
  • the light transmittance of the optical semiconductor sheet 1 with respect to light having a wavelength of 500 nm is, for example, 60% or more, preferably 70% or more, and, for example, 99% or less, preferably 90% or less. It is.
  • the peel adhesive strength at 25 ° C. with respect to the upper surface of the optical semiconductor sheet 1 immediately after manufacture, that is, the polypropylene (PP) sheet (non-stretched, thickness 50 ⁇ m) on the side surface of the non-adhesive layer 3 is, for example, 0.40 N / 2 cm or less, preferably Is 0.20 N / 2 cm or less, for example, 0.001 N / 2 cm or more.
  • this optical semiconductor sheet 1 as a sealing sheet, the optical semiconductor element 8 is sealed to manufacture the optical semiconductor device 6 except that the first release sheet 4 is peeled off. This is the same as in the first embodiment.
  • the elastic modulus at 25 ° C. of the sealing layer 9 is, for example, 0.5 MPa or more, preferably 1 MPa or more, and for example, 15 MPa or less, preferably 10 MPa or less.
  • the light transmittance of the sealing layer 9 with respect to light having a wavelength of 500 nm is, for example, 80% or more, preferably 90% or more, and, for example, 99.9% or less, preferably 99% or less. .
  • the non-adhesive layer 3 is formed in a layer form from particles, and therefore the process can be simplified. That is, since the non-adhesive layer 3 can be formed by applying particles, the manufacturing process can be simplified.
  • the second release sheet 5 is provided on the optical semiconductor sheet 1 as shown by the solid line in FIG. 4.
  • the second release sheet 5 can be peeled from the sheet 1 for use, and then the optical semiconductor sheet 1 from which the second release sheet 5 has been peeled can be handled (specifically, long-term storage and / or transportation). .
  • the non-adhesive layer 3 and the optical semiconductor element 8 are opposed to each other as shown in FIG. 5A.
  • the optical semiconductor element 8 can be made to face each other.
  • the adhesive layer 2 and the optical semiconductor element 8 are opposed to each other.
  • the optical semiconductor element 8 is embedded (covered) by the optical semiconductor sheet 1. Specifically, the optical semiconductor sheet 1 is thermocompression bonded to the substrate 7.
  • the adhesive layer 2 covers and seals the upper surface and side surfaces of the optical semiconductor element 8.
  • the optical semiconductor device 6 is obtained.
  • Example 1 (Corresponding to the first embodiment) 1.
  • Preparation of Adhesive Layer An adhesive layer was formed on the upper surface of the first release sheet made of a PET sheet according to Example 1 of JP2012-82320A (see the lower diagram in FIG. 1 (a)). .
  • the adhesive layer was prepared with a thickness of 600 ⁇ m from a B-stage thermosetting silicone resin (first silicone resin, condensation reaction / addition reaction curable silicone resin composition, unreacted hydrosilyl group remained) ( (See the lower view of FIG. 1 (a)).
  • first silicone resin condensation reaction / addition reaction curable silicone resin composition, unreacted hydrosilyl group remained
  • second silicone resin polymethylsilsesquioxane, softening point 75 ° C.
  • the coating film was heated at 100 ° C. for 30 minutes to remove acetone, thereby preparing a non-adhesive layer on the upper surface of the second release sheet (see the upper view of FIG. 1A).
  • the adhesive layer and the non-adhesive layer were bonded together at a pressure of 0.01 MPa (see FIG. 1B).
  • an optical semiconductor sheet composed of an adhesive layer and a non-adhesive layer was produced between the first release sheet and the second release sheet.
  • Example 2 (Corresponding to the first embodiment) A sheet for optical semiconductors was produced in the same manner as in Example 1 except that vinyl group-containing polymethylsilsesquioxane (second silicone resin, softening point 70 ° C.) was used instead of KR-220L. .
  • vinyl group-containing polymethylsilsesquioxane second silicone resin, softening point 70 ° C.
  • Example 3 (Corresponding to the second embodiment) 1.
  • Preparation of adhesive layer The adhesive layer was prepared like Example 1 (refer FIG. 4). 2.
  • Preparation of non-adhesive layer KR-220L second silicone resin, polymethylsiloxane, softening point 75 ° C.
  • KR-220L second silicone resin, polymethylsiloxane, softening point 75 ° C.
  • a non-adhesive layer was formed on the upper surface of the adhesive layer (see FIG. 4).
  • the average thickness of the non-adhesive layer was 30 ⁇ m.
  • an optical semiconductor sheet composed of an adhesive layer and a non-adhesive layer was produced between the first release sheet and the second release sheet (see FIG. 4).
  • Example 4 (Corresponding to the second embodiment) A sheet for optical semiconductors was produced in the same manner as in Example 3 except that vinyl group-containing polymethylsilsesquioxane (second silicone resin, softening point 70 ° C.) was used instead of KR-220L. (See FIG. 4).
  • vinyl group-containing polymethylsilsesquioxane second silicone resin, softening point 70 ° C.
  • Comparative Example 1 An optical semiconductor sheet was produced in the same manner as in Example 1 except that the non-adhesive layer was not provided.
  • Comparative Example 2 An optical semiconductor sheet was produced in the same manner as in Example 3 except that talc (particulate, spherical, average particle diameter 10 ⁇ m) was used instead of KR-220L (see FIG. 4). (Evaluation) The following items were evaluated. The results are shown in Table 1. 1. Light transmittance 1-1. Initial light transmittance (immediately after production) A. Optical Semiconductor Sheet Using a spectrophotometer as the initial total light transmittance, the light transmittance for light with a wavelength of 500 nm of the optical semiconductor sheet (adhesive layer and non-adhesive layer) immediately after production of each Example and each Comparative Example Measured.
  • a spectrophotometer equipped with an integrating sphere (U-4100, Hitachi, in accordance with the description of “Testing method of total light transmittance of plastic-transparent material” in JIS K 7361-1 (1997 edition).
  • the light transmittance of the sheet for optical semiconductors from which the first release sheet and the second release sheet were peeled was measured by Seisakusho Co., Ltd.
  • Adhesive layer and non-adhesive layer The light transmittances of the adhesive layer prepared in Examples 1 to 4 and Comparative Examples 1 and 2 and the non-adhesive layer prepared in Examples 1 and 2 were determined in the same manner as described above. It was measured.
  • the sample was subjected to a 180-degree peel test in which the separator was peeled from the optical semiconductor sheet at an angle of 180 degrees using a universal testing machine (Autograph, manufactured by Shimadzu Corporation).
  • the separator peeling rate was 30 cm / min.
  • the temperature during the test was 25 ° C.
  • the optical semiconductor sheet is used for sealing semiconductor elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Led Device Packages (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

This sheet for optical semiconductor is provided with: an adhesive layer formed of a first silicone resin; and a non-adhesive layer, which is provided on one surface in the thickness direction of the adhesive layer, and which is formed of a second silicone resin.

Description

光半導体用シートおよび光半導体装置Sheet for optical semiconductor and optical semiconductor device
 本発明は、光半導体用シートおよび光半導体装置、詳しくは、光半導体用シート、および、それにより封止される光半導体素子を備える光半導体装置に関する。 The present invention relates to an optical semiconductor sheet and an optical semiconductor device, and more particularly to an optical semiconductor sheet including an optical semiconductor sheet and an optical semiconductor element sealed thereby.
 ゴム状のシリコーン樹脂シートは、耐久性、耐熱性などに優れることから、種々の用途に用いられている。 Rubbery silicone resin sheets are used in various applications because of their excellent durability and heat resistance.
 そのようなシリコーン樹脂シートは、表面に粘着性があるため、輸送時に、シリコーン樹脂シートが他の部材に付着して、周囲を汚染したり、あるいは、別途、剥離シートを積層して、表面を保護する必要がある。また、表面の粘着性が過度に高い場合には、離型シートをシリコーン樹脂シートから離型する際の離型性が低下する場合もある。 Since such a silicone resin sheet has adhesiveness on the surface, the silicone resin sheet adheres to other members during transportation, contaminates the surroundings, or separately laminates a release sheet to cover the surface. It needs to be protected. Moreover, when surface adhesiveness is too high, the release property at the time of releasing a release sheet from a silicone resin sheet may fall.
 そこで、例えば、表面に、タルクやマイカなどの鱗片状の粉を打粉して得られる熱圧着用シリコーンゴムシートが提案されている(例えば、下記特許文献1参照。)。 Therefore, for example, a silicone rubber sheet for thermocompression bonding obtained by dusting scaly powder such as talc or mica on the surface has been proposed (for example, see Patent Document 1 below).
 特許文献1の熱圧着用シリコーンゴムシートは、打粉された粉によって、表面の粘着性を低減させて、周囲への汚染を低減させ、さらに、離型性を向上させている。 The silicone rubber sheet for thermocompression bonding of Patent Document 1 is reduced in surface adhesiveness by dusted powder, reduces contamination to the surroundings, and further improves the releasability.
特開平10-219199号公報JP-A-10-219199
 しかし、特許文献1に記載の熱圧着用シリコーンゴムシートは、打粉された粉に起因して透明性が不十分となるため、これによって光半導体素子を封止して得られる光半導体装置は、発光効率が低下するという不具合がある。 However, since the silicone rubber sheet for thermocompression bonding described in Patent Document 1 has insufficient transparency due to the dusted powder, an optical semiconductor device obtained by sealing an optical semiconductor element thereby can be obtained by: There is a problem that the luminous efficiency is lowered.
 本発明の目的は、周囲への汚染を低減して、非粘着性を向上させつつ、透明性に優れる光半導体用シート、および、発光効率の低下が抑制された光半導体装置を提供することにある。 An object of the present invention is to provide an optical semiconductor sheet that is excellent in transparency while reducing non-adhesiveness by reducing contamination to the surroundings, and an optical semiconductor device in which a decrease in luminous efficiency is suppressed. is there.
 本発明の光半導体用シートは、第1のシリコーン樹脂からなる粘着層と、前記粘着層の厚み方向一方面に設けられ、第2のシリコーン樹脂からなる非粘着層とを備えることを特徴としている。 The sheet for optical semiconductors of the present invention comprises an adhesive layer made of a first silicone resin, and a non-adhesive layer made of a second silicone resin, provided on one surface in the thickness direction of the adhesive layer. .
 この光半導体用シートには、粘着層の厚み方向一方面に、非粘着層が設けられるので、粘着層が周囲の部材に付着することに起因する汚染を低減して、非粘着性を向上させつつ、透明性を向上させることができる。 This optical semiconductor sheet is provided with a non-adhesive layer on one surface in the thickness direction of the adhesive layer, thereby reducing contamination caused by the adhesion layer adhering to surrounding members and improving non-adhesiveness. However, transparency can be improved.
 また、本発明の光半導体用シートでは、前記第2のシリコーン樹脂は、常温で固形状であり、かつ、熱可塑性であることが好適である。 In the sheet for optical semiconductors of the present invention, it is preferable that the second silicone resin is solid at room temperature and is thermoplastic.
 この光半導体用シートでは、第2のシリコーン樹脂は、熱可塑性であるので、加熱により、非粘着層が粘着層に密着することができる。そのため、非粘着層と粘着層との間に隙間が生じることを防止することができる。その結果、光半導体用シートの透明性をより一層向上させることができる。 In this optical semiconductor sheet, since the second silicone resin is thermoplastic, the non-adhesive layer can be adhered to the adhesive layer by heating. Therefore, it is possible to prevent a gap from being generated between the non-adhesive layer and the adhesive layer. As a result, the transparency of the optical semiconductor sheet can be further improved.
 また、本発明の光半導体用シートでは、前記第1のシリコーン樹脂は、Bステージの熱硬化性シリコーン樹脂であることが好適である。 In the optical semiconductor sheet of the present invention, it is preferable that the first silicone resin is a B-stage thermosetting silicone resin.
 この光半導体用シートによれば、第1のシリコーン樹脂は、Bステージの熱硬化性シリコーン樹脂であるので、対象物を容易かつ確実に被覆することができる。対象物の被覆後に、光半導体用シートを加熱してCステージにすることにより、対象物を確実に封止することができる。 According to this sheet for optical semiconductors, the first silicone resin is a B-stage thermosetting silicone resin, so that the object can be easily and reliably coated. After covering the object, the object can be reliably sealed by heating the sheet for optical semiconductors to the C stage.
 また、本発明の光半導体用シートでは、前記第2のシリコーン樹脂は、シルセスキオキサンであることが好適である。 In the optical semiconductor sheet of the present invention, it is preferable that the second silicone resin is silsesquioxane.
 この光半導体用シートによれば、第2のシリコーン樹脂は、シルセスキオキサンであるので、耐久性および透明性に優れながら、熱可塑性を容易に担保することができる。 According to this optical semiconductor sheet, since the second silicone resin is silsesquioxane, it is possible to easily ensure thermoplasticity while being excellent in durability and transparency.
 また、本発明の光半導体用シートでは、前記シルセスキオキサンは、前記第1のシリコーン樹脂と反応する官能基を含有することが好適である。 In the optical semiconductor sheet of the present invention, it is preferable that the silsesquioxane contains a functional group that reacts with the first silicone resin.
 この光半導体用シートでは、シルセスキオキサンは、第1のシリコーン樹脂と反応する官能基を含有するので、第2のシリコーン樹脂と、第1のシリコーン樹脂とを反応させて、これによって、粘着層と非粘着層との密着性をより一層向上させることができる。 In this sheet for optical semiconductors, silsesquioxane contains a functional group that reacts with the first silicone resin, so that the second silicone resin reacts with the first silicone resin, thereby causing adhesion. The adhesion between the layer and the non-adhesive layer can be further improved.
 また、本発明の光半導体用シートは、光半導体素子の封止に用いられることが好適である。 The optical semiconductor sheet of the present invention is preferably used for sealing an optical semiconductor element.
 この光半導体用シートは、光半導体素子の封止に用いられるので、光半導体素子の信頼性を向上させつつ、発光効率の低下を抑制することができる。 Since this optical semiconductor sheet is used for sealing an optical semiconductor element, it is possible to improve the reliability of the optical semiconductor element and suppress a decrease in light emission efficiency.
 また、本発明の光半導体用シートでは、前記非粘着層は、前記第2のシリコーン樹脂からなるシートから形成されていることが好適である。 In the optical semiconductor sheet of the present invention, it is preferable that the non-adhesive layer is formed of a sheet made of the second silicone resin.
 この光半導体用シートによれば、非粘着層は、第2のシリコーン樹脂からなるシートから形成されているので、非粘着層の厚みを均一に確保することができ、また、長期保存性に優れる。 According to this optical semiconductor sheet, since the non-adhesive layer is formed from a sheet made of the second silicone resin, the thickness of the non-adhesive layer can be ensured uniformly, and the long-term storage stability is excellent. .
 また、本発明の光半導体用シートでは、前記非粘着層は、前記第2のシリコーン樹脂からなる粒子から層状に形成されていることが好適である。 Further, in the optical semiconductor sheet of the present invention, it is preferable that the non-adhesive layer is formed in a layer form from particles made of the second silicone resin.
 この光半導体用シートによれば、非粘着層は、粒子から層状に形成されているので、プロセスを簡易にすることができる。 According to this optical semiconductor sheet, the non-adhesive layer is formed in a layer form from the particles, so that the process can be simplified.
 また、本発明の光半導体装置は、光半導体用シートと、前記光半導体用シートにより封止される光半導体素子とを備え、前記光半導体用シートは、第1のシリコーン樹脂からなる粘着層と、前記粘着層の厚み方向一方面に設けられ、第2のシリコーン樹脂からなる非粘着層とを備えることを特徴としている。 The optical semiconductor device of the present invention includes an optical semiconductor sheet and an optical semiconductor element sealed with the optical semiconductor sheet, and the optical semiconductor sheet includes an adhesive layer made of a first silicone resin, And a non-adhesive layer made of a second silicone resin, provided on one surface in the thickness direction of the adhesive layer.
 この光半導体装置は、透明性に優れる光半導体用シートにより封止される光半導体素子を備えるので、発光効率の低下を抑制することができる。 Since this optical semiconductor device includes an optical semiconductor element sealed with an optical semiconductor sheet having excellent transparency, it is possible to suppress a decrease in light emission efficiency.
 本発明の光半導体用シートは、粘着層が周囲の部材に付着することに起因する汚染を低減して、非粘着性を向上させつつ、透明性を向上させることができる。 The optical semiconductor sheet of the present invention can improve the transparency while reducing the contamination caused by the adhesion layer adhering to surrounding members and improving the non-adhesiveness.
 本発明の光半導体装置は、発光効率の低下を抑制することができる。 The optical semiconductor device of the present invention can suppress a decrease in light emission efficiency.
図1は、本発明の光半導体用シートの第1実施形態を製造する方法を説明する工程図であり、図1(a)は、粘着層および非粘着層をそれぞれ用意する工程、図1(b)は、粘着層および非粘着層を貼り合わせる工程を示す。FIG. 1 is a process diagram illustrating a method for producing the first embodiment of the optical semiconductor sheet of the present invention. FIG. 1 (a) is a process of preparing an adhesive layer and a non-adhesive layer, respectively. b) shows the process of bonding the adhesive layer and the non-adhesive layer together. 図2は、図1(b)に示す光半導体用シートを封止シートとして用いて、光半導体装置を製造する方法を説明する工程図であり、図2(a)は、第2離型シートが剥離された光半導体用シートと基板とを対向配置させる工程、図2(b)は、光半導体用シートによって光半導体素子を封止する工程を示す。FIG. 2 is a process diagram illustrating a method of manufacturing an optical semiconductor device using the optical semiconductor sheet shown in FIG. 1B as a sealing sheet, and FIG. 2A is a second release sheet. FIG. 2B shows a step of sealing the optical semiconductor element with the optical semiconductor sheet. 図3は、本発明の光半導体用シートの第1実施形態を封止シートとして用いて、光半導体装置を製造する方法の変形例を説明する工程図であり、図3(a)は、第1離型シートが剥離された光半導体用シートと基板とを対向配置させる工程、図3(b)は、光半導体用シートによって光半導体素子を封止する工程を示す。FIG. 3 is a process diagram for explaining a modification of the method of manufacturing an optical semiconductor device using the first embodiment of the optical semiconductor sheet of the present invention as a sealing sheet, and FIG. FIG. 3B shows a step of sealing the optical semiconductor element with the optical semiconductor sheet, in which the optical semiconductor sheet and the substrate from which the release sheet 1 is peeled are disposed to face each other. 図4は、本発明の光半導体用シートの第2実施形態の断面図を示す。FIG. 4 shows a cross-sectional view of a second embodiment of the sheet for optical semiconductors of the present invention. 図5は、図4の光半導体用シートを封止シートとして用いて、光半導体装置を製造する方法を説明する工程図であり、図5(a)は、第2離型シートが剥離された光半導体用シートと基板とを対向配置させる工程、図5(b)は、光半導体用シートによって光半導体素子を封止する工程を示す。FIG. 5 is a process diagram for explaining a method of manufacturing an optical semiconductor device using the optical semiconductor sheet of FIG. 4 as a sealing sheet. FIG. 5A shows a state in which the second release sheet is peeled off. FIG. 5B shows a step of sealing the optical semiconductor element with the optical semiconductor sheet. 図6は、本発明の光半導体用シートの第2実施形態を封止シートとして用いて、光半導体装置を製造する方法の変形例を説明する工程図であり、図6(a)は、第1離型シートが剥離された光半導体用シートと基板とを対向配置させる工程、図6(b)は、光半導体用シートによって光半導体素子を封止する工程を示す。FIG. 6 is a process diagram illustrating a modified example of a method of manufacturing an optical semiconductor device using the second embodiment of the optical semiconductor sheet of the present invention as a sealing sheet, and FIG. FIG. 6B shows a step of sealing the optical semiconductor element with the sheet for optical semiconductor, in which the optical semiconductor sheet from which the release sheet is peeled and the substrate are disposed to face each other.
 <第1実施形態>
 図1において、紙面上下方向を上下方向(厚み方向、第1方向)、紙面左右方向を左右方向(第2方向、第1方向に直交する方向)、紙面紙厚方向を前後方向(第3方向、第1方向および第2方向に直交する方向)とする。図2以降の各図は、上記した方向に準拠する。
<First Embodiment>
In FIG. 1, the vertical direction of the paper is the vertical direction (thickness direction, first direction), the horizontal direction of the paper is the horizontal direction (second direction, the direction perpendicular to the first direction), and the paper thickness direction is the front-back direction (third direction). , A direction orthogonal to the first direction and the second direction). Each figure after FIG. 2 is based on the above-mentioned direction.
 図1(b)において、光半導体用シート1は、粘着層2と、粘着層2の上面(厚み方向一方面)に設けられる非粘着層3とを備える。また、粘着層2の下には、第1離型シート4が設けられている。また、被粘着層3の上には、第2離型シート5が設けられている。 1B, an optical semiconductor sheet 1 includes an adhesive layer 2 and a non-adhesive layer 3 provided on the upper surface (one surface in the thickness direction) of the adhesive layer 2. A first release sheet 4 is provided under the adhesive layer 2. A second release sheet 5 is provided on the adherend layer 3.
 粘着層2は、第1離型シート4の上面に積層されており、第1のシリコーン樹脂から、面方向(厚み方向に直交する方向、すなわち、左右方向および前後方向の両方向)に広がるシート状に形成されている。 The pressure-sensitive adhesive layer 2 is laminated on the upper surface of the first release sheet 4 and extends from the first silicone resin in the surface direction (direction orthogonal to the thickness direction, that is, both the left-right direction and the front-rear direction). Is formed.
 第1のシリコーン樹脂としては、例えば、熱可塑性シリコーン樹脂、熱硬化性シリコーン樹脂などが挙げられる。好ましくは、熱硬化性シリコーン樹脂が挙げられる。 Examples of the first silicone resin include a thermoplastic silicone resin and a thermosetting silicone resin. Preferably, a thermosetting silicone resin is used.
 熱硬化性シリコーン樹脂としては、例えば、2段階硬化型シリコーン樹脂、1段階硬化型シリコーン樹脂などが挙げられる。 Examples of the thermosetting silicone resin include a two-stage curable silicone resin and a one-stage curable silicone resin.
 2段階硬化型シリコーン樹脂は、2段階の反応機構を有しており、1段階目の反応でBステージ化(半硬化)し、2段階目の反応でCステージ化(完全硬化)する熱硬化性シリコーン樹脂である。一方、1段階硬化型シリコーン樹脂は、1段階の反応機構を有しており、1段階目の反応で完全硬化する熱硬化性シリコーン樹脂である。 The two-stage curable silicone resin has a two-stage reaction mechanism, and is heat-cured by B-stage (semi-curing) by the first-stage reaction and C-stage (full-curing) by the second-stage reaction. It is a functional silicone resin. On the other hand, the one-step curable silicone resin has a one-step reaction mechanism and is a thermosetting silicone resin that is completely cured by the first-step reaction.
 また、Bステージは、熱硬化性シリコーン樹脂が、液状であるAステージと、完全硬化したCステージとの間の状態であって、硬化およびゲル化がわずかに進行し、弾性率がCステージの弾性率よりも小さい状態である。 The B stage is a state between the A stage in which the thermosetting silicone resin is in a liquid state and the fully cured C stage. Curing and gelation proceed slightly, and the elastic modulus is that of the C stage. The state is smaller than the elastic modulus.
 熱硬化性シリコーン樹脂として、好ましくは、2段階硬化型シリコーン樹脂が挙げられる。 The thermosetting silicone resin is preferably a two-stage curable silicone resin.
 なお、第1のシリコーン樹脂(具体的には、熱硬化性シリコーン樹脂)を、複数種類の成分を含むシリコーン樹脂組成物(具体的には、熱硬化性シリコーン樹脂組成物)から調製することもできる。 The first silicone resin (specifically, thermosetting silicone resin) may be prepared from a silicone resin composition (specifically, thermosetting silicone resin composition) containing a plurality of types of components. it can.
 2段階硬化型シリコーン樹脂組成物の未硬化体(1段階目の硬化前)としては、例えば、縮合反応・付加反応硬化型シリコーン樹脂組成物が挙げられる。 Examples of the uncured body of the two-stage curable silicone resin composition (before the first stage curing) include a condensation reaction / addition reaction curable silicone resin composition.
 縮合反応・付加反応硬化型シリコーン樹脂組成物は、加熱によって、縮合反応および付加反応することができる熱硬化性シリコーン樹脂組成物であって、より具体的には、加熱によって、縮合反応して、Bステージ(半硬化)となることができ、次いで、さらなる加熱によって、付加反応(具体的には、例えば、ヒドロシリル化反応)して、Cステージ(完全硬化)となることができる熱硬化性シリコーン樹脂組成物である。 The condensation reaction / addition reaction curable silicone resin composition is a thermosetting silicone resin composition that can undergo a condensation reaction and an addition reaction by heating, and more specifically, a condensation reaction by heating, Thermosetting silicone that can be B-staged (semi-cured), and then further heated to an addition reaction (specifically, for example, hydrosilylation reaction) to be C-staged (fully cured) It is a resin composition.
 このような縮合反応・付加反応硬化型シリコーン樹脂組成物は、好ましくは、付加可能なまたは縮合可能な官能基が残存しており、より好ましくは、付加可能な官能基が残存している。 In such a condensation reaction / addition reaction curable silicone resin composition, an addable or condensable functional group preferably remains, and more preferably an addable functional group remains.
 付加反応可能な官能基としては、例えば、ビニル基、アリル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基などの炭素数2~10のアルケニル基、例えば、シクロヘキセニル基、ノルボルネニル基などの炭素数3~10のシクロアルケニル基などが挙げられる。好ましくは、炭素数2~5のアルケニル基、より好ましくは、ビニル基が挙げられる。さらに、付加反応可能な官能基としては、例えば、ヒドロシリル基(-SiH)も挙げられる。 Examples of the functional group capable of addition reaction include alkenyl groups having 2 to 10 carbon atoms such as vinyl group, allyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, for example, cyclohexenyl group. And cycloalkenyl groups having 3 to 10 carbon atoms such as norbornenyl group. An alkenyl group having 2 to 5 carbon atoms is preferable, and a vinyl group is more preferable. Furthermore, examples of the functional group capable of addition reaction include a hydrosilyl group (—SiH).
 付加反応可能な官能基は、単独使用または併用することができる。 The functional group capable of addition reaction can be used alone or in combination.
 付加反応可能な官能基としては、好ましくは、アルケニル基とヒドロシリル基との組合せが挙げられる。 As the functional group capable of addition reaction, a combination of an alkenyl group and a hydrosilyl group is preferable.
 一方、縮合反応可能な官能基としては、例えば、ヒドロシリル基、シラノール基(-Si-OH)、ハロゲン原子(具体的には、臭素原子、塩素原子、フッ素原子、ヨウ素原子など)、アルコキシ基(具体的には、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、ペンチルオキシ基、ヘキシルオキシ基など)、フェノキシ基、または、アセトキシ基などが挙げられる。 On the other hand, examples of functional groups capable of condensation reaction include hydrosilyl groups, silanol groups (—Si—OH), halogen atoms (specifically, bromine atoms, chlorine atoms, fluorine atoms, iodine atoms, etc.), alkoxy groups ( Specific examples include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a pentyloxy group, and a hexyloxy group), a phenoxy group, and an acetoxy group.
 縮合反応可能な官能基として、好ましくは、ヒドロシリル基、シラノール基が挙げられる。 Preferred examples of the functional group capable of condensation reaction include a hydrosilyl group and a silanol group.
 なお、ヒドロシリル基は、付加反応可能な官能基および縮合反応可能な官能基を兼ねることできる。 The hydrosilyl group can also serve as a functional group capable of addition reaction and a functional group capable of condensation reaction.
 縮合反応可能な官能基は、単独使用または併用することができる。 The functional group capable of condensation reaction can be used alone or in combination.
 縮合反応可能な官能基としては、好ましくは、ヒドロシリル基とシラノール基との組合せが挙げられる。 The functional group capable of condensation reaction is preferably a combination of a hydrosilyl group and a silanol group.
 このような縮合反応・付加反応硬化型シリコーン樹脂組成物としては、例えば、特開2012-82320号公報などに記載されるシリコーン樹脂用組成物などが挙げられる。 As such a condensation reaction / addition reaction curable silicone resin composition, for example, a silicone resin composition described in JP 2012-82320 A and the like can be mentioned.
 粘着層2は、好ましくは、Bステージの熱硬化性シリコーン樹脂(組成物)から形成されている。 The adhesive layer 2 is preferably formed from a B-stage thermosetting silicone resin (composition).
 粘着層2の25℃における弾性率は、例えば、0.01MPa以上、好ましくは、0.025MPa以上であり、また、例えば、1.0MPa以下、好ましくは、0.5MPa以下である。粘着層2の弾性率は、ナノインデンタを用いて測定される。後述する非粘着層3の弾性率も同様の方法によって測定される。 The elastic modulus at 25 ° C. of the adhesive layer 2 is, for example, 0.01 MPa or more, preferably 0.025 MPa or more, and, for example, 1.0 MPa or less, preferably 0.5 MPa or less. The elastic modulus of the adhesive layer 2 is measured using a nanoindenter. The elastic modulus of the non-adhesive layer 3 described later is also measured by the same method.
 粘着層2の弾性率が上記下限以上であれば、粘着層2の形状保持性を確保して、粘着層2の取扱性を向上させることができる。粘着層2の弾性率が上記上限以下であれば、後述する光半導体素子8(図2参照)の封止時に、光半導体素子8を確実に被覆することができる。 If the elastic modulus of the adhesive layer 2 is not less than the above lower limit, the shape retaining property of the adhesive layer 2 can be secured and the handleability of the adhesive layer 2 can be improved. If the elastic modulus of the adhesive layer 2 is less than or equal to the above upper limit, the optical semiconductor element 8 can be reliably covered when the optical semiconductor element 8 (see FIG. 2) described later is sealed.
 また、粘着層2の光透過率は、厚みが600μmの場合に、波長500nmの光に対して、例えば、80%以上、好ましくは、85%以上、より好ましくは、90%以上、さらに好ましくは、95%以上であり、また、99.99%以下である。粘着層2の光透過率は、JIS K 7361-1(1997年版)の「プラスチック-透明材料の全光線透過率の試験方法」の記載に準拠して、積分球を装備する分光光度計によって測定される。後述する非粘着層3の光透過率についても、同様の方法によって測定される。 Further, when the thickness is 600 μm, the light transmittance of the adhesive layer 2 is, for example, 80% or more, preferably 85% or more, more preferably 90% or more, further preferably, with respect to light having a wavelength of 500 nm. , 95% or more, and 99.99% or less. The light transmittance of the adhesive layer 2 is measured by a spectrophotometer equipped with an integrating sphere according to the description of “Testing method of total light transmittance of plastic-transparent material” of JIS K 7361-1 (1997 edition). Is done. The light transmittance of the non-adhesive layer 3 to be described later is also measured by the same method.
 また、粘着層2は、常温(具体的には、25℃、以下同様)時において、タック(粘着性)を有する。例えば、粘着層2のポリプロピレン(PP)シート(無延伸。厚み50μm)に対する25℃の剥離粘着力が、例えば、0.3N/2cm以上、好ましくは、1N/2cm以上であり、また、例えば、8N/2cm以下、好ましくは、5N/2cm以下である。 The adhesive layer 2 has tack (adhesiveness) at room temperature (specifically, 25 ° C., the same applies hereinafter). For example, the peel adhesive strength at 25 ° C. with respect to the polypropylene (PP) sheet (non-stretched, thickness 50 μm) of the adhesive layer 2 is, for example, 0.3 N / 2 cm or more, preferably 1 N / 2 cm or more. It is 8 N / 2 cm or less, preferably 5 N / 2 cm or less.
 なお、粘着層2の剥離粘着力は、後の実施例において詳述される。後述する非粘着層3および光半導体用シート1の剥離粘着力についても同様の方法によって測定される。 In addition, the peeling adhesive force of the adhesive layer 2 will be described in detail in a later example. The peeling adhesive strength of the non-adhesive layer 3 and the optical semiconductor sheet 1 described later is also measured by the same method.
 粘着層2の厚みは、例えば、50μm以上、好ましくは、100μm以上であり、また、例えば、2000μm以下、好ましくは、1500μm以下である。 The thickness of the adhesive layer 2 is, for example, 50 μm or more, preferably 100 μm or more, and, for example, 2000 μm or less, preferably 1500 μm or less.
 非粘着層3は、第2のシリコーン樹脂からなるシートから形成されている。 The non-adhesive layer 3 is formed from a sheet made of the second silicone resin.
 第2のシリコーン樹脂としては、例えば、シルセスキオキサン、シリコーン粒子などが挙げられる。好ましくは、シルセスキオキサンが挙げられる。 Examples of the second silicone resin include silsesquioxane and silicone particles. Preferably, silsesquioxane is used.
 シルセスキオキサンの「Si-O-Si」骨格の構造は、特に限定されず、例えば、かご形、はしご形、ランダム形などが挙げられる。 The structure of the “Si—O—Si” skeleton of silsesquioxane is not particularly limited, and examples thereof include a cage shape, a ladder shape, and a random shape.
 シルセスキオキサンとしては、例えば、ポリメチルシルセスキオキサン、ポリメチルフェニルシルセスキオキサン、ポリフェニルシルセスキオキサンなどが挙げられる。好ましくは、ポリメチルシルセスキオキサンが挙げられる。 Examples of the silsesquioxane include polymethylsilsesquioxane, polymethylphenylsilsesquioxane, polyphenylsilsesquioxane, and the like. Preferably, polymethylsilsesquioxane is used.
 また、シルセスキオキサンは、分子内に、第1のシリコーン樹脂の官能基と反応する官能基を含有することもできる。具体的には、シルセスキオキサンは、分子内に、第1のシリコーン樹脂の付加可能なまたは縮合可能な官能基と反応する官能基を含有することができる。 Silsesquioxane can also contain a functional group that reacts with the functional group of the first silicone resin in the molecule. Specifically, silsesquioxane can contain a functional group that reacts with an addable or condensable functional group of the first silicone resin in the molecule.
 シルセスキオキサンに含有される官能基としては、例えば、ビニル基、ヒドロキシル基などが挙げられる。好ましくは、ビニル基が挙げられる。 Examples of the functional group contained in silsesquioxane include a vinyl group and a hydroxyl group. Preferably, a vinyl group is used.
 第2のシリコーン樹脂は、市販品を用いることができ、具体的には、ポリメチルシルセスキオキサンとして、KR-220L(信越化学社製)などが挙げられ、また、ビニル基含有ポリメチルシルセスキオキサンとして、製品番号52365-8(Aldrich製)、OL1123(ハイブリットプラスチックス製)などが挙げられる。 As the second silicone resin, a commercially available product can be used. Specific examples of polymethylsilsesquioxane include KR-220L (manufactured by Shin-Etsu Chemical Co., Ltd.), and vinyl group-containing polymethylsil Examples of sesquioxane include product number 52365-8 (manufactured by Aldrich), OL1123 (manufactured by Hybrid Plastics), and the like.
 第2のシリコーン樹脂は、常温で固形状であり、かつ、熱可塑性である。 The second silicone resin is solid at room temperature and is thermoplastic.
 具体的には、第2のシリコーン樹脂の軟化点は、例えば、60℃以上、好ましくは、70℃以上であり、また、例えば、200℃以下、好ましくは、150℃以下である。 Specifically, the softening point of the second silicone resin is, for example, 60 ° C. or higher, preferably 70 ° C. or higher, and for example, 200 ° C. or lower, preferably 150 ° C. or lower.
 軟化点が上記上限以下であれば、後述する熱圧着時に、非粘着層3を確実に軟化させることができる。さらには、非粘着層3を容易に軟化・溶融させて、後述する光半導体素子8が基板7にワイヤボンディングされる場合に、ワイヤの損傷を防止することができる。一方、軟化点が上記下限以上であれば、常温における取扱性を向上させることができる。 If the softening point is not more than the above upper limit, the non-adhesive layer 3 can be surely softened during thermocompression bonding described later. Furthermore, when the non-adhesive layer 3 is easily softened and melted and an optical semiconductor element 8 described later is wire-bonded to the substrate 7, damage to the wire can be prevented. On the other hand, if the softening point is not less than the above lower limit, the handleability at room temperature can be improved.
 第2のシリコーン樹脂の軟化点は、約1gの第2のシリコーン樹脂をホットプレートに載置し、ホットプレートを昇温温度5℃/分で加熱することにより、第2のシリコーン樹脂が軟化することを目視にて観察することにより、測定される。 The softening point of the second silicone resin is that about 1 g of the second silicone resin is placed on the hot plate, and the hot silicone is heated at a temperature rising temperature of 5 ° C./min, so that the second silicone resin is softened. This is measured by visually observing this.
 また、非粘着層3は、常温において、タックフリーである(つまり、粘着性を有していない)。 Further, the non-adhesive layer 3 is tack-free at normal temperature (that is, has no adhesiveness).
 非粘着層3の25℃における弾性率は、例えば、0.5MPa以上、好ましくは、1MPa以上であり、また、例えば、15MPa以下、好ましくは、10MPa以下である。 The elastic modulus at 25 ° C. of the non-adhesive layer 3 is, for example, 0.5 MPa or more, preferably 1 MPa or more, and for example, 15 MPa or less, preferably 10 MPa or less.
 非粘着層3の光透過率は、厚みが10μmの場合に、波長500nmの光に対して、例えば、80%以上、好ましくは、85%以上、より好ましくは、90%以上、さらに好ましくは、95%以上であり、また、99.99%以下である。 When the thickness is 10 μm, the light transmittance of the non-adhesive layer 3 is, for example, 80% or more, preferably 85% or more, more preferably 90% or more, further preferably, with respect to light having a wavelength of 500 nm. It is 95% or more and 99.99% or less.
 非粘着層3の厚みは、例えば、0.1μm以上、好ましくは、1μm以上であり、また、例えば、100μm以下、好ましくは、50μm以下である。 The thickness of the non-adhesive layer 3 is, for example, 0.1 μm or more, preferably 1 μm or more, and for example, 100 μm or less, preferably 50 μm or less.
 第1離型シート4としては、例えば、ポリオレフィンシート(ポリエチレンシート、PPシートなど)、ポリエステルシート(PETシートなど)などのポリマーシート、例えば、セラミクスシート、例えば、金属箔などが挙げられる。好ましくは、ポリマーシートが挙げられる。また、第1離型シート4の表面(下面)には、フッ素処理などの剥離処理を施すこともできる。 Examples of the first release sheet 4 include polymer sheets such as polyolefin sheets (such as polyethylene sheets and PP sheets) and polyester sheets (such as PET sheets), such as ceramic sheets, such as metal foil. Preferably, a polymer sheet is used. Further, the surface (lower surface) of the first release sheet 4 can be subjected to a peeling treatment such as a fluorine treatment.
 第2離型シート5は、第1離型シート4と同様の材料から形成されている。また、第2離型シート5に、第1離型シート4と同様の剥離処理を施すこともできる。 The second release sheet 5 is formed from the same material as the first release sheet 4. Further, the second release sheet 5 can be subjected to the same release treatment as that of the first release sheet 4.
 次に、この光半導体用シート1の製造方法について説明する。 Next, a method for manufacturing the optical semiconductor sheet 1 will be described.
 この方法では、まず、図1(a)の下側図に示すように、粘着層2を第1離型シート4の上に積層する。 In this method, first, the adhesive layer 2 is laminated on the first release sheet 4 as shown in the lower view of FIG.
 具体的には、第1のシリコーン樹脂からなるワニスを第1離型シート4の上面に塗布し、その後、塗膜を加熱することにより、粘着層2を第1離型シート4の上に形成する。なお、第1のシリコーン樹脂が、縮合反応・付加反応硬化型シリコーン樹脂組成物を含有する場合には、塗膜を加熱することにより、縮合反応を進行させる。これにより、粘着層2は、Bステージの熱硬化性シリコーン樹脂から形成される。 Specifically, the adhesive layer 2 is formed on the first release sheet 4 by applying a varnish made of the first silicone resin to the upper surface of the first release sheet 4 and then heating the coating film. To do. In the case where the first silicone resin contains a condensation reaction / addition reaction curable silicone resin composition, the condensation reaction is advanced by heating the coating film. Thereby, the adhesion layer 2 is formed from the thermosetting silicone resin of a B stage.
 また、別途、非粘着層3を用意する。 Separately, a non-adhesive layer 3 is prepared.
 具体的には、図1(a)の上側図に示すように、非粘着層3を第2離型シート5の上(但し、図1(a)では、粘着層2との相対位置を明瞭にするために、便宜上、「下」に形成される)に積層する。 Specifically, as shown in the upper view of FIG. 1A, the non-adhesive layer 3 is placed on the second release sheet 5 (however, in FIG. 1A, the relative position with the adhesive layer 2 is clearly shown). In order to achieve this, for convenience, it is laminated “under”.
 非粘着層3を第2離型シート5の上に形成するには、図1(a)の上側図が参照されるように、まず、第2のシリコーン樹脂を溶媒に溶解させて、溶液を調製し、次いで、溶液を、第2離型シート5の上面に塗布して、塗膜を形成する。 In order to form the non-adhesive layer 3 on the second release sheet 5, as shown in the upper view of FIG. 1A, first, the second silicone resin is dissolved in a solvent, Then, the solution is applied to the upper surface of the second release sheet 5 to form a coating film.
 溶媒としては、例えば、ヘキサン、ヘプタンなどの炭化水素系溶媒、例えば、アセトン、メチルエチルケトンなどのケトン系溶媒が挙げられる。 Examples of the solvent include hydrocarbon solvents such as hexane and heptane, and ketone solvents such as acetone and methyl ethyl ketone.
 溶液における固形分(第2のシリコーン樹脂)濃度は、例えば、10質量%以上、好ましくは、25質量%以上であり、また、例えば、90質量%以下、好ましくは、75質量%以下である。 The solid content (second silicone resin) concentration in the solution is, for example, 10% by mass or more, preferably 25% by mass or more, and for example, 90% by mass or less, preferably 75% by mass or less.
 その後、塗膜中の溶媒を加熱により除去する。 Thereafter, the solvent in the coating film is removed by heating.
 加熱時間は、例えば、0.1分間以上、好ましくは、0.5分間以上であり、また、例えば、100分間以下、好ましくは、50分間以下である。また、加熱温度は、例えば、50℃以上、好ましくは、75℃以上であり、また、例えば、150℃以下、好ましくは、120℃以下である。 The heating time is, for example, 0.1 minute or more, preferably 0.5 minutes or more, and for example, 100 minutes or less, preferably 50 minutes or less. Moreover, heating temperature is 50 degreeC or more, for example, Preferably, it is 75 degreeC or more, for example, is 150 degrees C or less, Preferably, it is 120 degrees C or less.
 これによって、非粘着層3を第2離型シート5の上面に形成する。 Thereby, the non-adhesive layer 3 is formed on the upper surface of the second release sheet 5.
 次いで、図1(b)に示すように、粘着層2と非粘着層3とを貼り合わせる。 Next, as shown in FIG. 1B, the adhesive layer 2 and the non-adhesive layer 3 are bonded together.
 具体的には、第1離型シート4に積層される粘着層2と、第2離型シート5に積層される非粘着層3(第2離型シート5の上面に積層された非粘着層3を上下反転させたもの)とを貼着する。 Specifically, the adhesive layer 2 laminated on the first release sheet 4 and the non-adhesive layer 3 laminated on the second release sheet 5 (non-adhesive layer laminated on the upper surface of the second release sheet 5) 3) is attached.
 粘着層2と非粘着層3との貼着では、それらを圧着する。圧着における圧力は、例えば、0.001MPa以上、また、例えば、300MPa以下、好ましくは、50MPa以下である。 In adhering the adhesive layer 2 and the non-adhesive layer 3, they are pressure-bonded. The pressure in the pressure bonding is, for example, 0.001 MPa or more, and, for example, 300 MPa or less, preferably 50 MPa or less.
 一方、粘着層2と非粘着層3との貼着では、粘着層2の粘着性に基づいて、単に、粘着層2に非粘着層3を積層(具体的には、載置)することもできる。 On the other hand, in sticking the adhesive layer 2 and the non-adhesive layer 3, the non-adhesive layer 3 may be simply laminated (specifically, placed) on the adhesive layer 2 based on the adhesiveness of the adhesive layer 2. it can.
 これにより、第1離型シート4および第2離型シート5により厚み方向に挟まれ、粘着層2および非粘着層3からなる光半導体用シート1を得る。非粘着層3の上面に第2離型シート5が積層され、また、粘着層2の下面には、第1離型シート4が積層されている。 Thus, the optical semiconductor sheet 1 composed of the adhesive layer 2 and the non-adhesive layer 3 is obtained by being sandwiched between the first release sheet 4 and the second release sheet 5 in the thickness direction. A second release sheet 5 is laminated on the upper surface of the non-adhesive layer 3, and a first release sheet 4 is laminated on the lower surface of the adhesive layer 2.
 製造直後(具体的には、作製から30分以内、以下同義)の光半導体用シート1の上面、つまり、非粘着層3側面のポリプロピレン(PP)シート(無延伸。厚み50μm)に対する25℃の剥離粘着力は、例えば、0.40N/2cm以下、好ましくは、0.20N/2cm以下、より好ましくは、0.10N/2cm以下、さらに好ましくは、0.05N/2cm以下であり、また、例えば、0.001N/2cm以上である。 Immediately after production (specifically, within 30 minutes from production, hereinafter the same), the upper surface of the optical semiconductor sheet 1, that is, a polypropylene (PP) sheet (non-stretched, thickness 50 μm) on the side surface of the non-adhesive layer 3 is 25 ° C. The peel adhesive strength is, for example, 0.40 N / 2 cm or less, preferably 0.20 N / 2 cm or less, more preferably 0.10 N / 2 cm or less, and further preferably 0.05 N / 2 cm or less. For example, it is 0.001 N / 2 cm or more.
 製造直後の光半導体用シート1(第1離型シート4および第2離型シート5を除く光半導体用シート1)の波長500nmの光に対する光透過率は、例えば、80.0%以上、好ましくは、90.0%以上、より好ましくは、92.5%以上、さらに好ましくは、95.0%以上であり、また、100%未満である。 The light transmittance of the optical semiconductor sheet 1 immediately after manufacture (the optical semiconductor sheet 1 excluding the first release sheet 4 and the second release sheet 5) with respect to light having a wavelength of 500 nm is, for example, 80.0% or more, preferably Is 90.0% or more, more preferably 92.5% or more, still more preferably 95.0% or more, and less than 100%.
 その後、製造直後の図1(b)の光半導体用シート1を取り扱う、つまり、具体的には、長期保存および/または輸送する(流通させる)。すなわち、図1(b)に示す光半導体用シート1の製造後から輸送、さらには、使用の直前に至るまで、少なくとも、第2離型シート5を光半導体用シート1に設けておく。換言すれば、図1(b)の光半導体用シート1を使用する直前に、図1(b)の仮想線で示すように、第2離型シート5を非粘着層3から剥離する。 Thereafter, the optical semiconductor sheet 1 shown in FIG. 1B immediately after manufacture is handled, that is, specifically, stored and / or transported (distributed) for a long period of time. In other words, at least the second release sheet 5 is provided on the optical semiconductor sheet 1 from the production of the optical semiconductor sheet 1 shown in FIG. In other words, immediately before using the optical semiconductor sheet 1 of FIG. 1B, the second release sheet 5 is peeled from the non-adhesive layer 3 as indicated by the phantom line of FIG.
 次に、この光半導体用シート1を封止シートとして用いて、光半導体素子8を封止して、光半導体装置6を製造する方法について、図2を参照して説明する。 Next, a method for manufacturing the optical semiconductor device 6 by sealing the optical semiconductor element 8 using the optical semiconductor sheet 1 as a sealing sheet will be described with reference to FIG.
 この方法では、まず、図1(b)の仮想線で示すように、第2離型シート5を非粘着層3から剥離する。 In this method, first, the second release sheet 5 is peeled from the non-adhesive layer 3 as shown by the phantom line in FIG.
 その後、図2(a)に示すように、第2離型シート5が剥離された光半導体用シート1と、基板7とを対向配置する。 Thereafter, as shown in FIG. 2A, the optical semiconductor sheet 1 from which the second release sheet 5 has been peeled and the substrate 7 are arranged to face each other.
 具体的には、図1(b)の仮想線で示す第2離型シート5が剥離された光半導体用シート1を上下反転させた光半導体用シート1(図2(a)参照)の非粘着層3と、基板7の上面に実装される光半導体素子8とを対向させる。 Specifically, the optical semiconductor sheet 1 (see FIG. 2A) obtained by inverting the optical semiconductor sheet 1 from which the second release sheet 5 shown by the phantom line in FIG. The adhesive layer 3 and the optical semiconductor element 8 mounted on the upper surface of the substrate 7 are opposed to each other.
 基板7は、略平板状をなし、具体的には、絶縁基板の上に、電極パッド(図示せず)および配線(図示せず)を含む導体層(図示せず)が回路パターンとして積層された積層板から形成されている。絶縁基板は、例えば、シリコン基板、セラミックス基板、ポリイミド樹脂基板などからなり、好ましくは、セラミックス基板、具体的には、サファイア基板からなる。 The substrate 7 has a substantially flat plate shape. Specifically, a conductor layer (not shown) including electrode pads (not shown) and wiring (not shown) is laminated on the insulating substrate as a circuit pattern. It is formed from the laminated board. The insulating substrate is made of, for example, a silicon substrate, a ceramic substrate, a polyimide resin substrate, or the like, and is preferably made of a ceramic substrate, specifically, a sapphire substrate.
 導体層は、例えば、金、銅、銀、ニッケルなどの導体から形成されている。なお、電極パッドは、好ましくは、電気伝導性の観点から、銀、銅から形成されている。基板7の厚みは、例えば、30μm以上、好ましくは、50μm以上であり、また、例えば、1,500μm以下、好ましくは、1,000μm以下である。 The conductor layer is formed of a conductor such as gold, copper, silver, or nickel. The electrode pad is preferably made of silver or copper from the viewpoint of electrical conductivity. The thickness of the board | substrate 7 is 30 micrometers or more, for example, Preferably, it is 50 micrometers or more, for example, is 1500 micrometers or less, Preferably, it is 1,000 micrometers or less.
 光半導体素子8は、基板7の上面に設けられている発光ダイオード素子あるいはレーザーダイオードである。光半導体素子8は、基板7の電極パッドに対して、フリップチップ実装接続またはワイヤボンディング接続され、これによって、導体層と電気的に接続されている。光半導体素子8は、例えば、青色光を発光する素子(具体的には、青色LED)である。光半導体素子8の厚みは、例えば、0.05mm以上、1mm以下である。 The optical semiconductor element 8 is a light emitting diode element or a laser diode provided on the upper surface of the substrate 7. The optical semiconductor element 8 is connected to the electrode pad of the substrate 7 by flip chip mounting or wire bonding, thereby being electrically connected to the conductor layer. The optical semiconductor element 8 is, for example, an element that emits blue light (specifically, a blue LED). The thickness of the optical semiconductor element 8 is, for example, not less than 0.05 mm and not more than 1 mm.
 次いで、図2(b)に示すように、光半導体用シート1によって、光半導体素子8を埋設(被覆)する。 Next, as shown in FIG. 2B, the optical semiconductor element 8 is embedded (covered) with the optical semiconductor sheet 1.
 具体的には、光半導体用シート1を基板7に対して熱圧着させる。 Specifically, the optical semiconductor sheet 1 is thermocompression bonded to the substrate 7.
 好ましくは、光半導体用シート1および基板7を平板プレスする。 Preferably, the optical semiconductor sheet 1 and the substrate 7 are pressed flat.
 プレス条件としては、温度が、非粘着層3が可塑化する温度またはそれ以上、具体的には、非粘着層3の第2のシリコーン樹脂の軟化点またはそれ以上であり、詳しくは、例えば、80℃以上、好ましくは、100℃以上であり、また、例えば、220℃以下、好ましくは、200℃以下である。また、圧力は、例えば、0.01MPa以上であり、また、例えば、1MPa以下、好ましくは、0.5MPa以下である。プレス時間は、例えば、1~10分間である。 As the pressing condition, the temperature is a temperature at which the non-adhesive layer 3 is plasticized or higher, specifically, the softening point of the second silicone resin of the non-adhesive layer 3 or higher, and more specifically, for example, It is 80 ° C. or higher, preferably 100 ° C. or higher, and for example, 220 ° C. or lower, preferably 200 ° C. or lower. The pressure is, for example, 0.01 MPa or more, and for example, 1 MPa or less, preferably 0.5 MPa or less. The pressing time is, for example, 1 to 10 minutes.
 この熱圧着により、図2(b)に示すように、非粘着層3が軟化・溶融して、粘着層2と相溶し、より具体的には、渾然一体となった封止層9を形成する。そして、光半導体素子8が封止層9に埋設される。つまり、光半導体素子8の上面および側面が、封止層9に被覆される。 By this thermocompression bonding, as shown in FIG. 2 (b), the non-adhesive layer 3 is softened and melted to be compatible with the adhesive layer 2, and more specifically, the sealing layer 9 that is harmoniously integrated is formed. Form. Then, the optical semiconductor element 8 is embedded in the sealing layer 9. That is, the upper surface and side surfaces of the optical semiconductor element 8 are covered with the sealing layer 9.
 なお、光半導体素子8から露出する基板7の上面は、封止層9によって被覆される。 Note that the upper surface of the substrate 7 exposed from the optical semiconductor element 8 is covered with a sealing layer 9.
 これによって、光半導体用シート1(封止層9)が、光半導体素子8および基板7に粘着される。 Thus, the optical semiconductor sheet 1 (sealing layer 9) is adhered to the optical semiconductor element 8 and the substrate 7.
 そして、この熱圧着によって、粘着層2がBステージの熱硬化性シリコーン樹脂を含有する場合には、粘着層2がCステージ状態となる(完全硬化する)。 Then, by this thermocompression bonding, when the adhesive layer 2 contains a B-stage thermosetting silicone resin, the adhesive layer 2 becomes a C-stage state (completely cured).
 より具体的には、粘着層2が縮合反応・付加反応硬化型シリコーン樹脂組成物である場合には、残存する付加反応可能な官能基(具体的には、ヒドロキシル基)が残存するときに、粘着層2内で付加反応が進行するとともに、非粘着層3が上記した官能基(具体的には、ビニル基)を含有する場合には、粘着層2の官能基と非粘着層3の官能基とが付加反応(具体的には、ヒドロシリル付加反応)する。 More specifically, when the pressure-sensitive adhesive layer 2 is a condensation reaction / addition reaction curable silicone resin composition, when a remaining functional group capable of addition reaction (specifically, a hydroxyl group) remains, When the addition reaction proceeds in the adhesive layer 2 and the non-adhesive layer 3 contains the above-described functional groups (specifically, vinyl groups), the functional groups of the adhesive layer 2 and the functionalities of the non-adhesive layer 3 The group undergoes an addition reaction (specifically, a hydrosilyl addition reaction).
 封止層9は、常温においてタックフリーである。封止層9の25℃における弾性率は、例えば、0.001MPa以上、また、例えば、0.3MPa以下、好ましくは、0.1MPa以下である。 The sealing layer 9 is tack free at room temperature. The elastic modulus at 25 ° C. of the sealing layer 9 is, for example, 0.001 MPa or more, and, for example, 0.3 MPa or less, preferably 0.1 MPa or less.
 なお、封止層9の25℃における弾性率として、後述する実施例の評価が参照されるように、光半導体用シート1を150℃で3時間加熱した後の封止層9の弾性率で評価することができ、その場合の弾性率は、例えば、0.5MPa以上、好ましくは、1MPa以上であり、また、例えば、15MPa以下、好ましくは、10MPa以下である。 In addition, as the elastic modulus at 25 ° C. of the sealing layer 9, the elastic modulus of the sealing layer 9 after heating the optical semiconductor sheet 1 at 150 ° C. for 3 hours, as referred to in the evaluation of examples described later. In this case, the elastic modulus is, for example, 0.5 MPa or more, preferably 1 MPa or more, and for example, 15 MPa or less, preferably 10 MPa or less.
 また、封止層9の厚みが600μmの場合の波長500nmの光に対する光透過率は、例えば、80%以上、好ましくは、85%以上であり、また、例えば、99.9%以下、好ましくは、99%以下である。 The light transmittance for light having a wavelength of 500 nm when the thickness of the sealing layer 9 is 600 μm is, for example, 80% or more, preferably 85% or more, and for example, 99.9% or less, preferably 99% or less.
 これによって、光半導体用シート1によって光半導体素子8が封止された光半導体装置6を得る。 Thereby, the optical semiconductor device 6 in which the optical semiconductor element 8 is sealed by the optical semiconductor sheet 1 is obtained.
 その後、必要により、図2(b)の仮想線で示すように、第1離型シート4を非粘着層3から剥離する。 Thereafter, if necessary, the first release sheet 4 is peeled off from the non-adhesive layer 3 as indicated by the phantom lines in FIG.
 そして、この光半導体用シート1には、図1(b)に示すように、粘着層2の上面に、非粘着層3が設けられるので、粘着層2が周囲の部材に付着することに起因する汚染を低減して、非粘着性を向上させることができる。具体的には、第2離型シート5に対する非粘着性や、第1離型シート4に対する非粘着性(巻回ロールから光半導体用シート1を引き出す時の非粘着性)を向上させることができる。 And since this non-adhesive layer 3 is provided in the upper surface of the adhesion layer 2 in this sheet | seat 1 for optical semiconductors as shown in FIG.1 (b), it originates in the adhesion layer 2 adhering to a surrounding member. It is possible to reduce contamination and improve non-stickiness. Specifically, non-adhesiveness to the second release sheet 5 and non-adhesiveness to the first release sheet 4 (non-adhesiveness when the optical semiconductor sheet 1 is pulled out from the winding roll) can be improved. it can.
 また、図1(b)に示す光半導体用シート1では、第2離型シート5によって、塵埃などの異物の粘着層2への付着を防止し、さらには、輸送時における外部の衝撃から光半導体用シート1を保護することもできる。 Further, in the optical semiconductor sheet 1 shown in FIG. 1B, the second release sheet 5 prevents foreign substances such as dust from adhering to the adhesive layer 2, and further prevents light from external impact during transportation. The semiconductor sheet 1 can also be protected.
 また、光半導体用シート1の輸送に必要な空間、具体的には、従来は、他の部材と付着することを防止するためのスペースを狭くまたはなくして、大量の光半導体用シート1を効率よく保存または輸送することができる。 Further, a space necessary for transporting the optical semiconductor sheet 1, specifically, conventionally, a space for preventing adhesion to other members is narrowed or eliminated, so that a large amount of the optical semiconductor sheet 1 can be efficiently used. Can be well stored or transported.
 また、光半導体用シート1の透明性を向上させることができる。 Moreover, the transparency of the optical semiconductor sheet 1 can be improved.
 また、この光半導体用シート1では、第2のシリコーン樹脂は、熱可塑性であるので、光半導体素子8の封止におけるプレス時の加熱により、非粘着層3が粘着層2に密着することができる。そのため、非粘着層3と粘着層2との間に隙間が生じることを防止することができる。その結果、光半導体用シート1の透明性をより一層向上させることができる。 Moreover, in this sheet | seat 1 for optical semiconductors, since the 2nd silicone resin is thermoplasticity, the non-adhesion layer 3 may closely_contact | adhere to the adhesion layer 2 by the heating at the time of sealing in sealing of the optical semiconductor element 8. FIG. it can. Therefore, it is possible to prevent a gap from being generated between the non-adhesive layer 3 and the adhesive layer 2. As a result, the transparency of the optical semiconductor sheet 1 can be further improved.
 また、この光半導体用シート1において、第1のシリコーン樹脂が、Bステージの熱硬化性シリコーン樹脂であれば、対象物、具体的には、光半導体素子8を容易かつ確実に埋設(被覆)することができる。そして、対象物の被覆後、具体的には、光半導体素子8の封止後に、光半導体用シート1を加熱してCステージにすることにより、光半導体素子8を確実に封止することができる。 In the optical semiconductor sheet 1, if the first silicone resin is a B-stage thermosetting silicone resin, the object, specifically, the optical semiconductor element 8 can be embedded (covered) easily and reliably. can do. Then, after the covering of the object, specifically, after the optical semiconductor element 8 is sealed, the optical semiconductor element 8 can be reliably sealed by heating the optical semiconductor sheet 1 to a C stage. it can.
 また、この光半導体用シート1では、非粘着層3の第2のシリコーン樹脂が、シルセスキオキサンであれば、耐久性および透明性に優れながら、上記した熱可塑性を容易に担保することができる。 Moreover, in this sheet | seat 1 for optical semiconductors, when the 2nd silicone resin of the non-adhesion layer 3 is silsesquioxane, it can ensure the above-mentioned thermoplasticity easily, being excellent in durability and transparency. it can.
 この光半導体用シート1では、シルセスキオキサンは、第1のシリコーン樹脂と反応する官能基を含有すれば、第2のシリコーン樹脂と、第1のシリコーン樹脂とを反応させて、これによって、粘着層2と非粘着層3との密着性をより一層向上させることができる。 In this sheet for optical semiconductors 1, if the silsesquioxane contains a functional group that reacts with the first silicone resin, the second silicone resin reacts with the first silicone resin. The adhesion between the adhesive layer 2 and the non-adhesive layer 3 can be further improved.
 また、この光半導体用シート1は、光半導体素子8の封止に用いられるので、光半導体素子8の信頼性を向上させつつ、発光効率の低下を抑制することができる。 In addition, since the optical semiconductor sheet 1 is used for sealing the optical semiconductor element 8, it is possible to improve the reliability of the optical semiconductor element 8 and to suppress a decrease in light emission efficiency.
 また、この光半導体用シート1によれば、非粘着層3は、第2のシリコーン樹脂からなるシートから形成されているので、非粘着層3の厚みを均一に確保することができ、また、長期保存性に優れる。 Moreover, according to this optical semiconductor sheet 1, since the non-adhesive layer 3 is formed from a sheet made of the second silicone resin, the thickness of the non-adhesive layer 3 can be ensured uniformly, Excellent long-term storage.
 また、この光半導体装置6は、透明性に優れる光半導体用シート1により封止される光半導体素子8を備えるので、発光効率の低下を抑制することができる。 Moreover, since this optical semiconductor device 6 includes the optical semiconductor element 8 sealed with the optical semiconductor sheet 1 having excellent transparency, it is possible to suppress a decrease in light emission efficiency.
 <変形例>
 第1実施形態では、図1(b)の実線で示すように、非粘着層3に第2離型シート5が積層された光半導体用シート1を取り扱っている(具体的には、長期保存および/または輸送している)。つまり、図1(b)の実線で示す光半導体用シート1の製造後から輸送、さらには、使用の直前に至るまで、少なくとも、第2離型シート5を光半導体用シート1に設けている。
<Modification>
In the first embodiment, as shown by the solid line in FIG. 1B, the optical semiconductor sheet 1 in which the second release sheet 5 is laminated on the non-adhesive layer 3 is handled (specifically, long-term storage). And / or transport). In other words, at least the second release sheet 5 is provided on the optical semiconductor sheet 1 from the production of the optical semiconductor sheet 1 shown by the solid line in FIG. .
 しかしながら、図1(b)の仮想線で示すように、まず、製造直後の光半導体用シート1の非粘着層3から第2離型シート5を剥離し、次いで、第2離型シート5が剥離された光半導体用シート1をそのまま取り扱うこともできる。 However, as shown by the phantom lines in FIG. 1B, first, the second release sheet 5 is peeled off from the non-adhesive layer 3 of the optical semiconductor sheet 1 immediately after manufacture, and then the second release sheet 5 The peeled sheet for optical semiconductors 1 can be handled as it is.
 また、光半導体用シート1を巻回して、具体的には、図1(b)が参照されるように、粘着層2と、その上に積層される第1離型シート4(図示しない)との間に、非粘着層3を介在させて、ロール状(図1(b)において図示せず)に収納することができ、かかるロールから、光半導体用シート1を円滑に引き出すことができる。 Moreover, the sheet | seat 1 for optical semiconductors is wound, specifically, as FIG.1 (b) refers, the adhesion layer 2 and the 1st release sheet 4 (not shown) laminated | stacked on it are laminated | stacked. Can be accommodated in a roll shape (not shown in FIG. 1B) with the non-adhesive layer 3 interposed therebetween, and the optical semiconductor sheet 1 can be smoothly drawn out from the roll. .
 このような光半導体用シート1であれば、第2離型シート5が予め剥離されているので、薄型化が図られており、光半導体用シート1をロール状に効率的に収納することができる。 In such an optical semiconductor sheet 1, the second release sheet 5 is peeled in advance, so that the thickness is reduced and the optical semiconductor sheet 1 can be efficiently stored in a roll shape. it can.
 また、第1実施形態では、光半導体素子8の封止時に、粘着層2および非粘着層3が相溶しているが、例えば、図2(b)の破線で示すように、互いに相溶せず、区別されていてもよい。その場合には、非粘着層3は、光半導体素子8の上面および側面と、光半導体素子8から露出する基板7の上面とに、連続して形成される。 In the first embodiment, the adhesive layer 2 and the non-adhesive layer 3 are compatible when the optical semiconductor element 8 is sealed. For example, as shown by the broken line in FIG. And may be distinguished. In that case, the non-adhesive layer 3 is continuously formed on the upper surface and side surface of the optical semiconductor element 8 and the upper surface of the substrate 7 exposed from the optical semiconductor element 8.
 さらに、第1実施形態では、図2に示すように、基板7に予め実装された光半導体素子8を、光半導体用シート1によって埋設して封止しているが、例えば、図示しないが、基板7にまだ実装されず、例えば、支持台(図示せず)などによって支持された光半導体素子8を、光半導体用シート1に貼着することもできる。 Furthermore, in the first embodiment, as shown in FIG. 2, the optical semiconductor element 8 pre-mounted on the substrate 7 is embedded and sealed with the optical semiconductor sheet 1, but for example, although not illustrated, For example, the optical semiconductor element 8 that is not yet mounted on the substrate 7 and supported by a support base (not shown) or the like can be attached to the optical semiconductor sheet 1.
 第1実施形態では、図2(a)に示すように、非粘着層3と光半導体素子8とを対向させているが、例えば、図3(a)に示すように、粘着層2と光半導体素子8とを対向させることもできる。 In the first embodiment, the non-adhesive layer 3 and the optical semiconductor element 8 are opposed to each other as shown in FIG. 2A. For example, as shown in FIG. The semiconductor element 8 can also be opposed.
 この場合には、まず、図1(b)の光半導体用シート1を上下反転させず、かかる光半導体用シート1における粘着層2から、図3(a)の仮想線および仮想線矢印で示すように、第1離型シート4を剥離する。これにより、粘着層2の下面を露出させる。 In this case, first, the optical semiconductor sheet 1 in FIG. 1B is not turned upside down, and the adhesive layer 2 in the optical semiconductor sheet 1 is indicated by an imaginary line and an imaginary line arrow in FIG. Thus, the 1st release sheet 4 is peeled. Thereby, the lower surface of the adhesion layer 2 is exposed.
 次いで、粘着層2と光半導体素子8とを対向させる。 Next, the adhesive layer 2 and the optical semiconductor element 8 are opposed to each other.
 次いで、図3(b)に示すように、光半導体用シート1によって、光半導体素子8を埋設(被覆)する。具体的には、光半導体用シート1を基板7に対して熱圧着する。 Next, as shown in FIG. 3B, the optical semiconductor element 8 is embedded (covered) with the optical semiconductor sheet 1. Specifically, the optical semiconductor sheet 1 is thermocompression bonded to the substrate 7.
 これによって、粘着層2が光半導体素子8の上面および側面を被覆および封止する。 Thereby, the adhesive layer 2 covers and seals the upper surface and side surfaces of the optical semiconductor element 8.
 これによって、光半導体装置6を得る。 Thus, the optical semiconductor device 6 is obtained.
 また、第1のシリコーン樹脂および/または第2のシリコーン樹脂に、充填剤および/または蛍光体(後述)を添加することもできる。 Further, a filler and / or a phosphor (described later) can be added to the first silicone resin and / or the second silicone resin.
 充填剤としては、例えば、シリカ(二酸化ケイ素)、硫酸バリウム、炭酸バリウム、チタン酸バリウム、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化亜鉛、酸化鉄、水酸化アルミニウム、炭酸カルシウム、層状マイカ、カーボンブラック、珪藻土、ガラス繊維、シリコーン樹脂微粒子などが挙げられる。 Examples of the filler include silica (silicon dioxide), barium sulfate, barium carbonate, barium titanate, titanium oxide, zirconium oxide, magnesium oxide, zinc oxide, iron oxide, aluminum hydroxide, calcium carbonate, layered mica, and carbon black. Diatomaceous earth, glass fiber, silicone resin fine particles and the like.
 蛍光体は、波長変換機能を有する粒子であって、光半導体装置6(図2(b)参照)に用いられる公知の蛍光体であれば、特に制限されず、例えば、青色光を黄色光に変換することのできる黄色蛍光体、青色光を赤色光に変換することのできる赤色蛍光体などの公知の蛍光体が挙げられる。 The phosphor is a particle having a wavelength conversion function and is not particularly limited as long as it is a known phosphor used in the optical semiconductor device 6 (see FIG. 2B). For example, blue light is converted into yellow light. Known phosphors such as a yellow phosphor that can be converted and a red phosphor that can convert blue light into red light can be used.
 黄色蛍光体としては、例えば、YAl12:Ce(YAG(イットリウム・アルミニウム・ガーネット):Ce)、TbAl12:Ce(TAG(テルビウム・アルミニウム・ガーネット):Ce)などのガーネット型結晶構造を有するガーネット型蛍光体、例えば、Ca-α-SiAlONなどの酸窒化物蛍光体などが挙げられる。 The yellow phosphor, for example, Y 3 Al 5 O 12: Ce (YAG ( yttrium aluminum garnet): Ce), Tb 3 Al 3 O 12: Ce (TAG ( terbium-aluminum-garnet): Ce), etc. Garnet-type phosphors having a garnet-type crystal structure, such as oxynitride phosphors such as Ca-α-SiAlON.
 赤色蛍光体としては、例えば、CaAlSiN:Eu、CaSiN:Euなどの窒化物蛍光体などが挙げられる。 Examples of the red phosphor include nitride phosphors such as CaAlSiN 3 : Eu and CaSiN 2 : Eu.
 また、充填剤および蛍光体は、粒子状であり、その形状は、特に限定されず、例えば、略球形状、略平板形状、略針形状などが挙げられる。充填剤および蛍光体の最大長さの平均値平均粒子径(略球形状である場合には、平均粒子径)は、例えば、0.1μm以上、好ましくは、0.2μm以上であり、また、例えば、500μm以下、好ましくは、200μm以下である。 Further, the filler and the phosphor are in the form of particles, and the shape thereof is not particularly limited, and examples thereof include a substantially spherical shape, a substantially flat plate shape, and a substantially needle shape. The average value of the maximum length of the filler and the phosphor and the average particle diameter (in the case of a substantially spherical shape) is, for example, 0.1 μm or more, preferably 0.2 μm or more. For example, it is 500 μm or less, preferably 200 μm or less.
 充填剤および蛍光体の配合割合は、本発明の優れた効果(具体的には、透明性)を阻害しない程度に調節されており、具体的には、第1のシリコーン樹脂および/または第2のシリコーン樹脂100質量部に対して、例えば、0.01質量部以上、好ましくは、1質量部以上であり、また、例えば、80質量部以下、好ましくは、70質量部以下である。 The blending ratio of the filler and the phosphor is adjusted to such an extent that the excellent effect (specifically, transparency) of the present invention is not hindered, and specifically, the first silicone resin and / or the second silicone resin. The amount is, for example, 0.01 parts by mass or more, preferably 1 part by mass or more, and for example, 80 parts by mass or less, preferably 70 parts by mass or less with respect to 100 parts by mass of the silicone resin.
 <第2実施形態>
 図4および図5において、第1実施形態と同様の部材については、同一の参照符号を付し、その詳細な説明を省略する。
Second Embodiment
4 and 5, members similar to those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 第1実施形態では、図1に示すように、非粘着層3をシートから形成しているが、図4に示すように、粒子から層状に形成することもできる。 In the first embodiment, as shown in FIG. 1, the non-adhesive layer 3 is formed from a sheet, but as shown in FIG. 4, it can also be formed from particles as a layer.
 図4に示すように、光半導体用シート1は、粘着層2と、粘着層2の上面に層状に設けられる非粘着層3とを備える。また、導電層3の上には、第2離型シート5が設けられている。粘着層2の下には、第1離型シート4が設けられている。 As shown in FIG. 4, the optical semiconductor sheet 1 includes an adhesive layer 2 and a non-adhesive layer 3 provided in a layered manner on the upper surface of the adhesive layer 2. A second release sheet 5 is provided on the conductive layer 3. A first release sheet 4 is provided under the adhesive layer 2.
 非粘着層3は、第2のシリコーン樹脂からなる粒子から、面方向に広がる層状に形成されている。 The non-adhesive layer 3 is formed in a layer shape that spreads in the surface direction from particles made of the second silicone resin.
 第2のシリコーン樹脂からなる各粒子の形状は、特に限定されず、例えば、略球形状、略板形状(あるいは略鱗片形状)、略針形状、不定形状(塊状)などが挙げられる。なお、図4において、粒子を断面略球形状で描画しているが、その形状は、上記したように、限定されない。 The shape of each particle made of the second silicone resin is not particularly limited, and examples thereof include a substantially spherical shape, a substantially plate shape (or a substantially scaly shape), a substantially needle shape, and an indefinite shape (lump shape). In FIG. 4, the particles are drawn with a substantially spherical cross section, but the shape is not limited as described above.
 粒子の最大長さの平均値(球形状である場合には、平均粒子径)は、例えば、0.01μm以上、好ましくは、1μm以上であり、また、例えば、100μm以下、好ましくは、50μm以下である。 The average value of the maximum length of particles (in the case of a spherical shape, the average particle diameter) is, for example, 0.01 μm or more, preferably 1 μm or more, and, for example, 100 μm or less, preferably 50 μm or less. It is.
 このような粒子は、予め、上記形状に成形されたものを用いることができ、あるいは、比較的大きな粒子を、粉砕(すり潰しを含む)により、上記形状に成形することもできる。好ましくは、比較的大きな粒子を粉砕により上記形状に成形する。 As such particles, those previously formed into the above shape can be used, or relatively large particles can be formed into the above shape by pulverization (including grinding). Preferably, relatively large particles are formed into the above shape by pulverization.
 粒子は、粘着層2の上面を実質的に露出させることなく、被覆しており、粒子は、粘着層2の上面に密着状に積層されている。また、複数の粒子は、面方向に互いに隣接配置されている。さらに、図4において図示しないが、粒子は、厚み方向に互いに重複していてもよい。 The particles cover the upper surface of the pressure-sensitive adhesive layer 2 without substantially exposing the particles, and the particles are laminated in close contact with the upper surface of the pressure-sensitive adhesive layer 2. The plurality of particles are arranged adjacent to each other in the plane direction. Furthermore, although not shown in FIG. 4, the particles may overlap each other in the thickness direction.
 非粘着層3の平均厚みは、例えば、0.1μm以上、好ましくは、1μm以上であり、また、例えば、50μm以下、好ましくは、30μm以下である。非粘着層3の平均厚みは、例えば、層の断面観察により算出される。 The average thickness of the non-adhesive layer 3 is, for example, 0.1 μm or more, preferably 1 μm or more, and for example, 50 μm or less, preferably 30 μm or less. The average thickness of the non-adhesive layer 3 is calculated, for example, by observing the cross section of the layer.
 次に、図4に示す光半導体用シート1の製造方法について説明する。 Next, a method for manufacturing the optical semiconductor sheet 1 shown in FIG. 4 will be described.
 まず、図4が参照されるように、粘着層2を第1離型シート4の上に積層する。 First, as shown in FIG. 4, the adhesive layer 2 is laminated on the first release sheet 4.
 次いで、非粘着層3を粘着層2の上面に積層する。 Next, the non-adhesive layer 3 is laminated on the upper surface of the adhesive layer 2.
 非粘着層3を粘着層2の上面に積層するには、第2のシリコーン樹脂からなる粒子を粘着層2の上面に塗布する。具体的には、予め、ガーゼなどの綿布に粒子を付着・吸収させておき、かかるガーゼを粘着層2の上面に擦り付ける。あるいは、粒子を、粘着層2の上から振りかける。 In order to laminate the non-adhesive layer 3 on the upper surface of the adhesive layer 2, particles made of the second silicone resin are applied to the upper surface of the adhesive layer 2. Specifically, particles are adhered and absorbed in advance on a cotton cloth such as gauze, and the gauze is rubbed against the upper surface of the adhesive layer 2. Alternatively, the particles are sprinkled from above the adhesive layer 2.
 その後、第2離型シート5を非粘着層3の上に積層する。 Thereafter, the second release sheet 5 is laminated on the non-adhesive layer 3.
 これにより、第1離型シート4と第2離型シート5とにより厚み方向に挟まれ、粘着層2および非粘着層3からなる光半導体用シート1を得る。 Thus, the optical semiconductor sheet 1 composed of the adhesive layer 2 and the non-adhesive layer 3 is obtained by being sandwiched between the first release sheet 4 and the second release sheet 5 in the thickness direction.
 製造直後の光半導体用シート1(第1離型シート4および第2離型シート5を除く光半導体用シート1)の波長500nmの光に対する光透過率は、非粘着層3が粒子から層状に形成されていることを考慮すると、第1実施形態の光透過率より低く、第1実施形態の光透過率に対して、例えば、95%以下、さらには、90%以下であり、また、60%以上である。具体的には、光半導体用シート1の波長500nmの光に対する光透過率は、例えば、60%以上、好ましくは、70%以上であり、また、例えば、99%以下、好ましくは、90%以下である。 The optical transmittance of the optical semiconductor sheet 1 immediately after production (the optical semiconductor sheet 1 excluding the first release sheet 4 and the second release sheet 5) with respect to light having a wavelength of 500 nm is such that the non-adhesive layer 3 is layered from particles. In consideration of the formation, it is lower than the light transmittance of the first embodiment, and is, for example, 95% or less, further 90% or less with respect to the light transmittance of the first embodiment. % Or more. Specifically, the light transmittance of the optical semiconductor sheet 1 with respect to light having a wavelength of 500 nm is, for example, 60% or more, preferably 70% or more, and, for example, 99% or less, preferably 90% or less. It is.
 製造直後の光半導体用シート1の上面、つまり、非粘着層3側面のポリプロピレン(PP)シート(無延伸。厚み50μm)に対する25℃の剥離粘着力は、例えば、0.40N/2cm以下、好ましくは、0.20N/2cm以下であり、また、例えば、0.001N/2cm以上である。 The peel adhesive strength at 25 ° C. with respect to the upper surface of the optical semiconductor sheet 1 immediately after manufacture, that is, the polypropylene (PP) sheet (non-stretched, thickness 50 μm) on the side surface of the non-adhesive layer 3 is, for example, 0.40 N / 2 cm or less, preferably Is 0.20 N / 2 cm or less, for example, 0.001 N / 2 cm or more.
 その後、この光半導体用シート1を封止シートとして用いて、光半導体素子8を封止して、光半導体装置6を製造する方法は、第1離型シート4を剥離する工程以外は、第1実施形態と同様である。 Then, using this optical semiconductor sheet 1 as a sealing sheet, the optical semiconductor element 8 is sealed to manufacture the optical semiconductor device 6 except that the first release sheet 4 is peeled off. This is the same as in the first embodiment.
 封止層9の25℃の弾性率は、例えば、0.5MPa以上、好ましくは、1MPa以上であり、また、例えば、15MPa以下、好ましくは、10MPa以下である。 The elastic modulus at 25 ° C. of the sealing layer 9 is, for example, 0.5 MPa or more, preferably 1 MPa or more, and for example, 15 MPa or less, preferably 10 MPa or less.
 また、封止層9の波長500nmの光に対する光透過率は、例えば、80%以上、好ましくは、90%以上であり、また、例えば、99.9%以下、好ましくは、99%以下である。 The light transmittance of the sealing layer 9 with respect to light having a wavelength of 500 nm is, for example, 80% or more, preferably 90% or more, and, for example, 99.9% or less, preferably 99% or less. .
 そして、この光半導体用シート1によれば、非粘着層3は、粒子から層状に形成されているので、プロセスを簡易にすることができる。つまり、粒子を塗布することにより、非粘着層3を形成することができるので、その製造工程を簡易にすることができる。 And according to the sheet 1 for optical semiconductors, the non-adhesive layer 3 is formed in a layer form from particles, and therefore the process can be simplified. That is, since the non-adhesive layer 3 can be formed by applying particles, the manufacturing process can be simplified.
 <変形例>
 第2実施形態では、図4の実線で示すように、光半導体用シート1に第2離型シート5を設けているが、例えば、図4の仮想線で示すように、製造直後の光半導体用シート1から第2離型シート5を剥離し、その後、第2離型シート5が剥離された光半導体用シート1を取り扱う(具体的には、長期保存および/または輸送する)こともできる。
<Modification>
In the second embodiment, the second release sheet 5 is provided on the optical semiconductor sheet 1 as shown by the solid line in FIG. 4. For example, as shown by the virtual line in FIG. The second release sheet 5 can be peeled from the sheet 1 for use, and then the optical semiconductor sheet 1 from which the second release sheet 5 has been peeled can be handled (specifically, long-term storage and / or transportation). .
 また、第2実施形態では、図5(a)に示すように、非粘着層3と光半導体素子8とを対向させているが、例えば、図6(a)に示すように、粘着層2と光半導体素子8とを対向させることもできる。 In the second embodiment, the non-adhesive layer 3 and the optical semiconductor element 8 are opposed to each other as shown in FIG. 5A. For example, as shown in FIG. And the optical semiconductor element 8 can be made to face each other.
 この場合には、まず、粘着層2と光半導体素子8とを対向させる。 In this case, first, the adhesive layer 2 and the optical semiconductor element 8 are opposed to each other.
 次いで、図6(b)に示すように、光半導体用シート1によって、光半導体素子8を埋設(被覆)する。具体的には、光半導体用シート1を基板7に対して熱圧着する。 Next, as shown in FIG. 6B, the optical semiconductor element 8 is embedded (covered) by the optical semiconductor sheet 1. Specifically, the optical semiconductor sheet 1 is thermocompression bonded to the substrate 7.
 これによって、粘着層2が光半導体素子8の上面および側面を被覆および封止する。 Thereby, the adhesive layer 2 covers and seals the upper surface and side surfaces of the optical semiconductor element 8.
 これによって、光半導体装置6を得る。 Thus, the optical semiconductor device 6 is obtained.
 以下に示す実施例等の数値は、上記の実施形態において記載される数値(すなわち、上限値または下限値)に代替することができる。 The numerical values in the following examples and the like can be substituted for the numerical values (that is, the upper limit value or the lower limit value) described in the above embodiment.
  実施例1
(第1実施形態に対応)
1. 粘着層の調製
 特開2012-82320号公報の実施例1に準拠して、PETシートからなる第1離型シートの上面に、粘着層を形成した(図1(a)の下側図参照)。
Example 1
(Corresponding to the first embodiment)
1. Preparation of Adhesive Layer An adhesive layer was formed on the upper surface of the first release sheet made of a PET sheet according to Example 1 of JP2012-82320A (see the lower diagram in FIG. 1 (a)). .
 なお、粘着層は、Bステージの熱硬化性シリコーン樹脂(第1のシリコーン樹脂、縮合反応・付加反応硬化型シリコーン樹脂組成物、未反応のヒドロシリル基が残存。)から、厚み600μmで調製した(図1(a)の下側図参照)。
2. 非粘着層の調製
 KR-220L(第2のシリコーン樹脂、ポリメチルシルセスキオキサン、軟化点75℃)をアセトンに、固形分濃度が50質量%となるように溶解させて溶液を調製し、続いて、調製した溶液を、PETシートからなる第2離型シートの非処理面に、加熱後の厚みが約10μmとなるように塗布した。
The adhesive layer was prepared with a thickness of 600 μm from a B-stage thermosetting silicone resin (first silicone resin, condensation reaction / addition reaction curable silicone resin composition, unreacted hydrosilyl group remained) ( (See the lower view of FIG. 1 (a)).
2. Preparation of non-adhesive layer KR-220L (second silicone resin, polymethylsilsesquioxane, softening point 75 ° C.) was dissolved in acetone to a solid content concentration of 50 mass% to prepare a solution, Then, the prepared solution was apply | coated to the non-processed surface of the 2nd release sheet which consists of PET sheets so that the thickness after a heating might be set to about 10 micrometers.
 その後、塗膜を、100℃で30分間、加熱して、アセトンを除去することにより、非粘着層を第2離型シートの上面に調製した(図1(a)の上側図参照)。
3. 光半導体用シートの作製
 その後、粘着層と非粘着層とを、圧力0.01MPaで貼り合わせた(図1(b)参照)。
Thereafter, the coating film was heated at 100 ° C. for 30 minutes to remove acetone, thereby preparing a non-adhesive layer on the upper surface of the second release sheet (see the upper view of FIG. 1A).
3. Production of Sheet for Optical Semiconductor Thereafter, the adhesive layer and the non-adhesive layer were bonded together at a pressure of 0.01 MPa (see FIG. 1B).
 これにより、第1離型シートと第2離型シートとにより挟まれ、粘着層および非粘着層からなる光半導体用シートを作製した。 Thus, an optical semiconductor sheet composed of an adhesive layer and a non-adhesive layer was produced between the first release sheet and the second release sheet.
  実施例2
(第1実施形態に対応)
 KR-220Lに代えてビニル基含有ポリメチルシルセスキオキサン(第2のシリコーン樹脂、軟化点70℃)を用いた以外は、実施例1と同様に処理して、光半導体用シートを作製した。
Example 2
(Corresponding to the first embodiment)
A sheet for optical semiconductors was produced in the same manner as in Example 1 except that vinyl group-containing polymethylsilsesquioxane (second silicone resin, softening point 70 ° C.) was used instead of KR-220L. .
  実施例3
(第2実施形態に対応)
1. 粘着層の調製
 実施例1と同様にして、粘着層を調製した(図4参照)。
2. 非粘着層の調製
 KR-220L(第2のシリコーン樹脂、ポリメチルシロキサン、軟化点75℃)を、乳鉢および乳棒を用いて、すり潰して、最大長さの平均値が10μmである粒子状にし、これをガーゼに付着・吸収させ、かかるガーゼによって、粒子状のKR-220Lを、粘着層の上面全面に均一に(むらなく)塗布した。
Example 3
(Corresponding to the second embodiment)
1. Preparation of adhesive layer The adhesive layer was prepared like Example 1 (refer FIG. 4).
2. Preparation of non-adhesive layer KR-220L (second silicone resin, polymethylsiloxane, softening point 75 ° C.) was ground using a mortar and pestle to form particles having an average maximum length of 10 μm. This was adhered to and absorbed by the gauze, and particulate KR-220L was uniformly (evenly) applied to the entire upper surface of the adhesive layer with the gauze.
 これにより、非粘着層を粘着層の上面に形成した(図4参照)。なお、非粘着層の平均厚みは、30μmであった。 Thereby, a non-adhesive layer was formed on the upper surface of the adhesive layer (see FIG. 4). The average thickness of the non-adhesive layer was 30 μm.
 これにより、第1離型シートと第2離型シートとにより挟まれ、粘着層および非粘着層からなる光半導体用シートを作製した(図4参照)。 Thus, an optical semiconductor sheet composed of an adhesive layer and a non-adhesive layer was produced between the first release sheet and the second release sheet (see FIG. 4).
  実施例4
(第2実施形態に対応)
 KR-220Lに代えてビニル基含有ポリメチルシルセスキオキサン(第2のシリコーン樹脂、軟化点70℃)を用いた以外は、実施例3と同様に処理して、光半導体用シートを作製した(図4参照)。
Example 4
(Corresponding to the second embodiment)
A sheet for optical semiconductors was produced in the same manner as in Example 3 except that vinyl group-containing polymethylsilsesquioxane (second silicone resin, softening point 70 ° C.) was used instead of KR-220L. (See FIG. 4).
  比較例1
 非粘着層を設けなかった以外は、実施例1と同様に処理して、光半導体用シートを作製した。
Comparative Example 1
An optical semiconductor sheet was produced in the same manner as in Example 1 except that the non-adhesive layer was not provided.
  比較例2
 KR-220Lに代えてタルク(粒子状、球形状、平均粒子径10μm)を用いた以外は、実施例3と同様に処理して、光半導体用シートを作製した(図4参照)。
(評価)
 下記の項目について評価した。それらの結果を表1に示す。
1.光透過率
 1-1.初期(作製・製造直後)の光透過率
  A. 光半導体用シート
 各実施例および各比較例の作製直後の光半導体用シート(粘着層および非粘着層)の波長500nmの光に対する光透過率を、初期の全光線透過率として分光光度計を用いて測定した。
Comparative Example 2
An optical semiconductor sheet was produced in the same manner as in Example 3 except that talc (particulate, spherical, average particle diameter 10 μm) was used instead of KR-220L (see FIG. 4).
(Evaluation)
The following items were evaluated. The results are shown in Table 1.
1. Light transmittance 1-1. Initial light transmittance (immediately after production) A. Optical Semiconductor Sheet Using a spectrophotometer as the initial total light transmittance, the light transmittance for light with a wavelength of 500 nm of the optical semiconductor sheet (adhesive layer and non-adhesive layer) immediately after production of each Example and each Comparative Example Measured.
 具体的には、JIS K 7361-1(1997年版)の「プラスチック-透明材料の全光線透過率の試験方法」の記載に準拠して、積分球を装備する分光光度計(U-4100、日立製作所社製)によって、第1離型シートおよび第2離型シートを剥離した光半導体用シートの光透過率を測定した。 Specifically, a spectrophotometer equipped with an integrating sphere (U-4100, Hitachi, in accordance with the description of “Testing method of total light transmittance of plastic-transparent material” in JIS K 7361-1 (1997 edition). The light transmittance of the sheet for optical semiconductors from which the first release sheet and the second release sheet were peeled was measured by Seisakusho Co., Ltd.
  B. 粘着層および非粘着層
 実施例1~4および比較例1、2において調製した粘着層と、実施例1および2において調製した非粘着層とのそれぞれの光透過率を、上記と同様の方法によって測定した。
B. Adhesive layer and non-adhesive layer The light transmittances of the adhesive layer prepared in Examples 1 to 4 and Comparative Examples 1 and 2 and the non-adhesive layer prepared in Examples 1 and 2 were determined in the same manner as described above. It was measured.
 1-2.加熱後の光透過率
 各実施例および各比較例の光半導体用シートの、150℃で、3時間で加熱した後の光透過率についても、上記と同様の方法によって測定した。
2.剥離試験(剥離粘着力)
 2-1. 光半導体用シートの剥離粘着力
 実施例1~4および比較例2の作製直後の光半導体用シートにおける粘着層側面に、PPからなるセパレータを貼り合せ、それらを2cm幅に切断加工して、サンプルを調製した。
1-2. Light transmittance after heating The light transmittance of the sheet for optical semiconductor of each example and each comparative example after heating at 150 ° C. for 3 hours was also measured by the same method as described above.
2. Peel test (peel adhesion)
2-1. Peeling adhesive strength of optical semiconductor sheet A sample made of PP was bonded to the side surface of the adhesive layer in the optical semiconductor sheet immediately after production of Examples 1 to 4 and Comparative Example 2, and cut into a width of 2 cm. Was prepared.
 その後、サンプルを、万能試験機(オートグラフ、島津製作所社製)を用い、セパレータを光半導体用シートに対して180度の角度で剥離する180度剥離試験を実施した。なお、セパレータの剥離速度は、30cm/分であった。また、試験時の温度は、25℃であった。 Thereafter, the sample was subjected to a 180-degree peel test in which the separator was peeled from the optical semiconductor sheet at an angle of 180 degrees using a universal testing machine (Autograph, manufactured by Shimadzu Corporation). The separator peeling rate was 30 cm / min. The temperature during the test was 25 ° C.
 また、比較例1については、粘着層の上面に、セパレータを貼り合せた以外は、上記と同様の方法によって剥離試験を実施した。 For Comparative Example 1, a peel test was performed by the same method as above except that a separator was bonded to the upper surface of the adhesive layer.
 2-2. 粘着層の剥離粘着力
 実施例1~4および比較例1、2において調製した粘着層について、上記と同様の方法によって、180度剥離試験を実施した。
3.弾性率(インデンター法)
 3-1. 粘着層
 実施例1~4および比較例1、2において調製した粘着層について、ナノインデンタを用いて、25℃における弾性率を測定した。
2-2. Peeling adhesive strength of adhesive layer The adhesive layers prepared in Examples 1 to 4 and Comparative Examples 1 and 2 were subjected to a 180-degree peeling test by the same method as described above.
3. Elastic modulus (indenter method)
3-1. Adhesive Layer The elastic modulus at 25 ° C. of the adhesive layers prepared in Examples 1 to 4 and Comparative Examples 1 and 2 was measured using a nanoindenter.
 3-2. 非粘着層
 実施例1および2において調製した非粘着層について、ナノインデンタを用いて、25℃における弾性率を測定した。
3-2. Non-adhesive layer About the non-adhesive layer prepared in Example 1 and 2, the elasticity modulus in 25 degreeC was measured using the nanoindenter.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記特許請求の範囲に含まれる。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be interpreted in a limited manner. Variations of the present invention that are apparent to one of ordinary skill in the art are within the scope of the following claims.
 光半導体用シートは、半導体素子の封止に用いられる。 The optical semiconductor sheet is used for sealing semiconductor elements.
1     光半導体用シート
2     粘着層
3     非粘着層
6     光半導体装置
8     光半導体素子
DESCRIPTION OF SYMBOLS 1 Sheet | seat for optical semiconductors 2 Adhesion layer 3 Non-adhesion layer 6 Optical semiconductor device 8 Optical semiconductor element

Claims (9)

  1.  第1のシリコーン樹脂からなる粘着層と、
     前記粘着層の厚み方向一方面に設けられ、第2のシリコーン樹脂からなる非粘着層と
    を備えることを特徴とする、光半導体用シート。
    An adhesive layer made of a first silicone resin;
    A sheet for optical semiconductors, comprising: a non-adhesive layer made of a second silicone resin, provided on one surface in the thickness direction of the adhesive layer.
  2.  前記第2のシリコーン樹脂は、常温で固形状であり、かつ、熱可塑性である
    ことを特徴とする、請求項1に記載の光半導体用シート。
    2. The sheet for optical semiconductors according to claim 1, wherein the second silicone resin is solid at normal temperature and is thermoplastic.
  3.  前記第1のシリコーン樹脂は、Bステージの熱硬化性シリコーン樹脂である
    ことを特徴とする、請求項1に記載の光半導体用シート。
    2. The optical semiconductor sheet according to claim 1, wherein the first silicone resin is a B-stage thermosetting silicone resin. 3.
  4.  前記第2のシリコーン樹脂は、シルセスキオキサンである
    ことを特徴とする、請求項1に記載の光半導体用シート。
    The sheet for optical semiconductors according to claim 1, wherein the second silicone resin is silsesquioxane.
  5.  前記シルセスキオキサンは、前記第1のシリコーン樹脂と反応する官能基を含有する
    ことを特徴とする、請求項4に記載の光半導体用シート。
    The sheet for optical semiconductors according to claim 4, wherein the silsesquioxane contains a functional group that reacts with the first silicone resin.
  6.  光半導体素子の封止に用いられる
    ことを特徴とする、請求項1に記載の光半導体用シート。
    The optical semiconductor sheet according to claim 1, wherein the optical semiconductor sheet is used for sealing an optical semiconductor element.
  7.  前記非粘着層は、前記第2のシリコーン樹脂からなるシートから形成されている
    ことを特徴とする、請求項1に記載の光半導体用シート。
    2. The optical semiconductor sheet according to claim 1, wherein the non-adhesive layer is formed of a sheet made of the second silicone resin. 3.
  8.  前記非粘着層は、前記第2のシリコーン樹脂からなる粒子から層状に形成されている
    ことを特徴とする、請求項1に記載の光半導体用シート。
    2. The optical semiconductor sheet according to claim 1, wherein the non-adhesive layer is formed into a layer from particles made of the second silicone resin. 3.
  9.  光半導体用シートと、
     前記光半導体用シートにより封止される光半導体素子と
    を備え、
     前記光半導体用シートは、
     第1のシリコーン樹脂からなる粘着層と、
     前記粘着層の厚み方向一方面に設けられ、第2のシリコーン樹脂からなる非粘着層と
    を備える
    ことを特徴とする、光半導体装置。
    A sheet for optical semiconductors;
    An optical semiconductor element sealed by the optical semiconductor sheet,
    The optical semiconductor sheet is:
    An adhesive layer made of a first silicone resin;
    An optical semiconductor device comprising: a non-adhesive layer made of a second silicone resin, provided on one surface in the thickness direction of the adhesive layer.
PCT/JP2013/083869 2013-02-04 2013-12-18 Sheet for optical semiconductor, and optical semiconductor device WO2014119161A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-019431 2013-02-04
JP2013019431A JP2014150221A (en) 2013-02-04 2013-02-04 Sheet for optical semiconductor and optical semiconductor device

Publications (1)

Publication Number Publication Date
WO2014119161A1 true WO2014119161A1 (en) 2014-08-07

Family

ID=51235809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083869 WO2014119161A1 (en) 2013-02-04 2013-12-18 Sheet for optical semiconductor, and optical semiconductor device

Country Status (4)

Country Link
JP (1) JP2014150221A (en)
CN (2) CN203923079U (en)
TW (1) TW201431693A (en)
WO (1) WO2014119161A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016062908A (en) * 2014-09-12 2016-04-25 日東電工株式会社 Method for manufacturing sealing layer-covered optical semiconductor element, and method for manufacturing optical semiconductor device
JP6269527B2 (en) * 2015-02-19 2018-01-31 信越化学工業株式会社 Manufacturing method of solar cell module
JP6887766B2 (en) * 2016-07-19 2021-06-16 日東電工株式会社 Adhesive sheet
CN110760271A (en) * 2019-09-12 2020-02-07 上海仪电特镭宝信息科技有限公司 Double-viscose adhesive for luggage labels
CN112462554B (en) * 2020-07-16 2024-05-17 江西晶亮光电科技协同创新有限公司 Novel light-emitting device, preparation method thereof and backlight module
JP7092247B1 (en) 2021-09-24 2022-06-28 Agc株式会社 Laminated body and method for manufacturing the laminated body

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115358A (en) * 1989-09-28 1991-05-16 Shin Etsu Chem Co Ltd Thermosetting silicone rubber composition and cured product thereof
JPH115887A (en) * 1997-04-21 1999-01-12 Toray Ind Inc Resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JPH11100515A (en) * 1997-07-29 1999-04-13 Toray Ind Inc Resin composition for fiber-reinforced composite material, prepreg and preparation of prepreg
JPH11338243A (en) * 1998-05-25 1999-12-10 Nitto Kogyo Co Ltd Developing roller
JP2004327623A (en) * 2003-04-23 2004-11-18 Three M Innovative Properties Co Film adhesive for sealing, film laminate for sealing and method for sealing
JP2007001995A (en) * 2005-06-21 2007-01-11 Nippon Futsuso Kogyo Kk Coating layer and coating material
JP2008130861A (en) * 2006-11-22 2008-06-05 Sony Corp Silicon rubber layer laminate and its manufacturing method, abutting device, mounting method of article onto mounting substrate as well as manufacturing method of light emitting diode display device
JP2008214547A (en) * 2007-03-06 2008-09-18 Toray Ind Inc Prepreg for fiber-reinforced composite material, and fiber-reinforced composite material
JP2010123802A (en) * 2008-11-20 2010-06-03 Nitto Denko Corp Sealing sheet for optical semiconductor
JP2012082320A (en) * 2010-10-12 2012-04-26 Nitto Denko Corp Semi-cured silicone resin sheet
JP2013021284A (en) * 2011-06-14 2013-01-31 Nitto Denko Corp Sealing sheet and optical semiconductor element device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115358A (en) * 1989-09-28 1991-05-16 Shin Etsu Chem Co Ltd Thermosetting silicone rubber composition and cured product thereof
JPH115887A (en) * 1997-04-21 1999-01-12 Toray Ind Inc Resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JPH11100515A (en) * 1997-07-29 1999-04-13 Toray Ind Inc Resin composition for fiber-reinforced composite material, prepreg and preparation of prepreg
JPH11338243A (en) * 1998-05-25 1999-12-10 Nitto Kogyo Co Ltd Developing roller
JP2004327623A (en) * 2003-04-23 2004-11-18 Three M Innovative Properties Co Film adhesive for sealing, film laminate for sealing and method for sealing
JP2007001995A (en) * 2005-06-21 2007-01-11 Nippon Futsuso Kogyo Kk Coating layer and coating material
JP2008130861A (en) * 2006-11-22 2008-06-05 Sony Corp Silicon rubber layer laminate and its manufacturing method, abutting device, mounting method of article onto mounting substrate as well as manufacturing method of light emitting diode display device
JP2008214547A (en) * 2007-03-06 2008-09-18 Toray Ind Inc Prepreg for fiber-reinforced composite material, and fiber-reinforced composite material
JP2010123802A (en) * 2008-11-20 2010-06-03 Nitto Denko Corp Sealing sheet for optical semiconductor
JP2012082320A (en) * 2010-10-12 2012-04-26 Nitto Denko Corp Semi-cured silicone resin sheet
JP2013021284A (en) * 2011-06-14 2013-01-31 Nitto Denko Corp Sealing sheet and optical semiconductor element device

Also Published As

Publication number Publication date
JP2014150221A (en) 2014-08-21
CN203923079U (en) 2014-11-05
CN103965794A (en) 2014-08-06
TW201431693A (en) 2014-08-16

Similar Documents

Publication Publication Date Title
WO2014119161A1 (en) Sheet for optical semiconductor, and optical semiconductor device
JP5569126B2 (en) Adhesive composition, adhesive sheet, and method for manufacturing semiconductor device
JP6902838B2 (en) Sheet for coating optical semiconductor devices
JP5544766B2 (en) Adhesive film laminate for semiconductor processing
JP5680210B2 (en) Sealing layer-covered semiconductor element and semiconductor device manufacturing method
JPWO2008084811A1 (en) Circuit member connecting adhesive and semiconductor device using the same
WO2015033824A1 (en) Wavelength conversion sheet, sealed optical semiconductor element and optical semiconductor element device
JP6313165B2 (en) Thermosetting sealing resin sheet, sealing sheet with separator, semiconductor device, and method for manufacturing semiconductor device
JP2010056409A (en) Adhesive film for processing semiconductor wafer
JPWO2019049791A1 (en) Method for manufacturing encapsulated optical semiconductor device
JP2017163105A (en) Optical semiconductor device covering sheet, adhesion layer-covering layer-attached optical semiconductor device and manufacturing method thereof, and method for manufacturing adhesion layer-attached optical semiconductor device
WO2017221606A1 (en) Optical semiconductor element having phosphor layer, and method for manufacturing optical semiconductor element
JP2011171712A (en) Adhesive tape for semiconductor wafer processing, method of manufacturing semiconductor wafer with adhesive tape for semiconductor wafer processing, method of manufacturing semiconductor device, and semiconductor device
TWM537717U (en) Optical semiconductor element covered with phosphor layer
WO2015029664A1 (en) Method for producing sealed semiconductor element and method for manufacturing semiconductor device
JP2011074246A (en) Film like adhesive
WO2017221608A1 (en) Phosphor layer sheet, and manufacturing method of optical semiconductor element with phosphor layer
JP5375351B2 (en) Manufacturing method of semiconductor circuit member
JP5762680B2 (en) Semiconductor chip manufacturing method and processing film
TWI509043B (en) Adhesive composition, method for manufacturing connection of circuit member and semiconductor device
JP2018041857A (en) Optical semiconductor element coated with phosphor layer and light diffusion layer
TWI824331B (en) Thin sheet for covering the optical semiconductor element
WO2023068277A1 (en) Adhesive tape for circuit connection, connection structure, and method for producing connection structure
JP2011155065A (en) Adhesive film for processing semiconductor wafer, and manufacturing method thereof
JP5728810B2 (en) Semiconductor chip manufacturing method using semiconductor wafer processing film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13873219

Country of ref document: EP

Kind code of ref document: A1