WO2014118838A1 - Ultraviolet light emitting device - Google Patents

Ultraviolet light emitting device Download PDF

Info

Publication number
WO2014118838A1
WO2014118838A1 PCT/JP2013/006808 JP2013006808W WO2014118838A1 WO 2014118838 A1 WO2014118838 A1 WO 2014118838A1 JP 2013006808 W JP2013006808 W JP 2013006808W WO 2014118838 A1 WO2014118838 A1 WO 2014118838A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
ultraviolet light
lens
emitting device
mounting substrate
Prior art date
Application number
PCT/JP2013/006808
Other languages
French (fr)
Japanese (ja)
Inventor
植田 充彦
友洋 中谷
孝典 明田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014118838A1 publication Critical patent/WO2014118838A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Definitions

  • the present invention relates to an ultraviolet light emitting device.
  • an ultraviolet light emitting element package 210 having the configuration shown in FIG. 3 is known (Japanese Patent Application Publication No. 2007-311707).
  • the ultraviolet light emitting element package 210 includes an ultraviolet light emitting diode element 211, a substrate 212, lead electrodes 213 and 214, a lens holding member 215, a condensing lens 217, and a refractive index difference relaxation layer 220.
  • the electrodes 211A and 211B of the ultraviolet light-emitting diode element 211 are electrically connected to the lead electrodes 213 and 214 by an electrical bonding member such as a gold bump or silver paste.
  • the lens holding member 215 has a frame shape with an L-shaped cross section.
  • the condenser lens 217 is bonded to the lens holding member 215 with an adhesive 216 applied on the lens holding surface.
  • the condenser lens 217 has a hemispherical shape and is formed of quartz glass.
  • As the adhesive 216 an epoxy resin or a resin containing a silyl group is used.
  • an ultraviolet light emitting device 310 having a configuration shown in FIG. 4 is known (Japanese Patent Application Publication No. 2009-177098).
  • the ultraviolet light emitting device 310 includes an ultraviolet light LED chip 311 and a package 320 that houses the ultraviolet light LED chip 311.
  • the package 320 includes a mounting substrate 322 and a translucent member 323.
  • the translucent member 323 is made of a translucent substrate made of glass.
  • the translucent member 323 is formed in the same outer peripheral rectangular plate shape as the mounting substrate 322.
  • the translucent member 323 is integrally formed with a concentric plano-convex lens 323a that condenses the light emitted from the ultraviolet LED chip 311 at the center.
  • the mounting substrate 322 is formed using three silicon substrates 322a, 322b, and 322c.
  • the adhesive 216 may be deteriorated by the ultraviolet light from the ultraviolet light emitting diode element 211.
  • the condenser lens 217 in the ultraviolet light emitting device package 210 is made of quartz glass, it is presumed that it is processed into a hemisphere by grinding.
  • the ultraviolet light emitting device 310 forms a wafer level package structure by performing a bonding process for bonding the mounting substrate 322 and the translucent member 323 at the wafer level at the time of manufacture, and then the mounting substrate 322 through a dicing process. Need to be divided into sizes. For this reason, the ultraviolet light emitting device 310 is desired to be further improved in reliability.
  • the present invention has been made in view of the above reasons, and an object of the present invention is to provide an ultraviolet light emitting device capable of improving the reliability and reducing the thickness of the lens.
  • the ultraviolet light emitting device of the present invention includes a mounting substrate, an ultraviolet light emitting element mounted on the first surface side of the mounting substrate, and the ultraviolet light element disposed on the first surface side of the mounting substrate away from the ultraviolet light emitting element.
  • the lens is an aspherical lens formed of glass having a yield point of 600 ° C. or lower. The lens and the lens support member are directly joined.
  • the lens support member has a cylindrical shape, and the lens and the lens support member are formed on the outer peripheral surface of the lens and the end of the lens support member on the side far from the mounting substrate. It is preferable that the peripheral surface is directly joined.
  • the lens support member preferably has a cylindrical shape as the cylindrical shape.
  • the ultraviolet light emitting device of the present invention can improve the reliability and reduce the thickness of the lens.
  • FIG. 1 is a schematic cross-sectional view of the ultraviolet light emitting device of the embodiment.
  • FIG. 2 is a schematic perspective view of the ultraviolet light emitting device of the embodiment.
  • FIG. 3 is a schematic cross-sectional view of a conventional ultraviolet light emitting device package.
  • FIG. 4 is a schematic cross-sectional view of another conventional ultraviolet light emitting device.
  • the ultraviolet light emitting device 10 of the present embodiment will be described with reference to FIGS. 1 and 2.
  • the ultraviolet light emitting device 10 includes a mounting substrate 2, an ultraviolet light emitting element 1, a lens 32, and a lens support member 31.
  • the mounting substrate 2, the lens 32, and the lens support member 31 constitute a package for housing the ultraviolet light emitting element 1.
  • the lens support member 31 and the lens 32 constitute the lid 3.
  • the ultraviolet light emitting element 1 is a solid light emitting element that emits ultraviolet light (ultraviolet light).
  • an ultraviolet LED chip is adopted, but not limited to this, an ultraviolet semiconductor laser chip can also be adopted.
  • the mounting substrate 2 is a substrate on which the ultraviolet light emitting element 1 is mounted. “Mounting” is a concept that includes arranging and mechanically connecting the ultraviolet light emitting elements 1 and electrically connecting them. For this reason, the mounting substrate 2 has a function of mechanically holding the ultraviolet light emitting element 1 and a function of forming a wiring for supplying power to the ultraviolet light emitting element 1.
  • the ultraviolet light emitting element 1 is mounted on the first surface 2 a side of the mounting substrate 2.
  • the mounting substrate 2 is configured so that a plurality of ultraviolet light emitting elements 1 can be mounted.
  • the number of the ultraviolet light emitting elements 1 that can be mounted on the mounting substrate 2 is not particularly limited.
  • the mounting substrate 2 may have only one ultraviolet light emitting element 1 that can be mounted.
  • the lens support member 31 has a function of supporting the lens 32.
  • the lens support member 31 is made of metal.
  • the lens support member 31 is fixed to the mounting substrate 2.
  • the lens support member 31 is preferably fixed to the mounting substrate 2 by bonding to the mounting substrate 2.
  • the lens 32 has a function of controlling the light distribution of ultraviolet rays emitted from the ultraviolet light emitting element 1.
  • the lens 32 is arranged away from the ultraviolet light emitting element 1 on the first surface 2 a side of the mounting substrate 2.
  • the lens 32 is arranged away from the mounting substrate 2 and the ultraviolet light emitting element 1 in the thickness direction of the mounting substrate 2.
  • the lens 32 is an aspherical lens formed of glass having a yield point of 600 ° C. or less. Thereby, the ultraviolet light emitting device 10 can reduce the thickness of the lens 32.
  • the lens 32 and the lens support member 31 are directly joined. Thereby, the ultraviolet light emitting device 10 can improve the reliability.
  • Direct bonding means bonding without using an adhesive or the like.
  • the lens 32 is welded to the lens support member 31. Thereby, the lens 32 and the lens support member 31 are directly joined. In short, the lens 32 is directly joined to the lens support member 31 only by welding to the lens support member 31.
  • an ultraviolet LED chip that emits ultraviolet light can be employed.
  • the ultraviolet LED chip is, for example, an LED chip that employs an AlGaN-based material as the material of the light emitting layer and has an emission wavelength in the ultraviolet wavelength region of 210 nm to 360 nm.
  • the emission wavelength means the emission peak wavelength.
  • the ultraviolet LED chip has, for example, a configuration in which an AlN layer, an n-type nitride semiconductor layer, a light emitting layer, an electron block layer, a p-type nitride semiconductor layer, and a p-type contact layer are stacked on one surface side of a sapphire substrate.
  • LED chip can be adopted.
  • the LED chip includes a first electrode electrically connected to the n-type nitride semiconductor layer, and a second electrode electrically connected to the p-type nitride semiconductor layer via the p-type contact layer.
  • the n-type nitride semiconductor layer can be constituted by, for example, an n-type Al x Ga 1-x N (0 ⁇ x ⁇ 1) layer.
  • the light emitting layer has a quantum well structure made of an AlGaN-based material.
  • the quantum well structure is composed of a barrier layer and a well layer.
  • the quantum well structure may be a multiple quantum well structure or a single quantum well structure.
  • the Al composition ratio of the well layer is set so as to emit ultraviolet light having a desired emission wavelength.
  • the light emission wavelength can be set to an arbitrary light emission wavelength in the range of 210 to 360 nm by changing the Al composition ratio. For example, when the desired emission wavelength is around 265 nm, the Al composition ratio may be set to 0.50.
  • the ultraviolet LED chip may have a light emitting layer having a single layer structure, and a double hetero structure may be formed by the light emitting layer and the layers on both sides in the thickness direction of the light emitting layer.
  • a double hetero structure may be formed by the light emitting layer and the layers on both sides in the thickness direction of the light emitting layer.
  • one of the layers on both sides in the thickness direction of the light emitting layer can be an n-type nitride semiconductor layer and the other can be a p-type nitride semiconductor layer.
  • the structure of the ultraviolet LED chip is not particularly limited.
  • the ultraviolet LED chip has a chip size of 0.39 mm ⁇ (0.39 mm ⁇ 0.39 mm).
  • the chip size of the ultraviolet LED chip is not particularly limited.
  • the chip size of the ultraviolet LED chip may be, for example, 0.3 mm ⁇ (0.3 mm ⁇ 0.3 mm), 0.45 mm ⁇ (0.45 mm ⁇ 0.45 mm), 1 mm ⁇ (1 mm ⁇ 1 mm), or the like.
  • the outer peripheral shape of the ultraviolet LED chip is not limited to a square shape, and may be, for example, a rectangular shape or a regular hexagonal shape.
  • the thickness of the ultraviolet LED chip is about 0.16 mm, the thickness is not particularly limited.
  • the ultraviolet light emitting element 1 has a first electrode and a second electrode arranged on one surface side in the thickness direction of the ultraviolet light emitting element 1.
  • the ultraviolet light emitting element 1 causes the first electrode and the second electrode to be electrically conductive bumps 7a on the conductor layer (not shown) formed in the first predetermined pattern on the mounting substrate 2, respectively. 7b can be electrically connected.
  • This conductor layer (hereinafter referred to as “first conductor layer”) has a spatial relationship between the first conductor portion to which the first electrode of the ultraviolet light emitting element 1 is connected and the second conductor portion to which the second electrode is connected. So that they are separated and electrically insulated.
  • the ultraviolet light emitting device 10 may use, as the ultraviolet light emitting element 1, an ultraviolet LED chip in which the first electrode and the second electrode are arranged on one surface side in the thickness direction and take out light from the one surface side.
  • the ultraviolet light emitting device 10 electrically connects the first electrode of the ultraviolet light emitting element 1 and the first conductor part via the first wire, and connects the second electrode and the second conductor part to the second wire. You may make it electrically connect via.
  • the first wire and the second wire for example, an Au wire, an Al wire, an Al—Si wire, a Cu wire, or the like can be adopted.
  • the ultraviolet light emitting element 1 is not limited to the ultraviolet LED chip in which the first electrode and the second electrode are provided on one surface side in the thickness direction.
  • the ultraviolet light emitting element 1 may be, for example, an ultraviolet LED chip in which a first electrode is provided on one surface side in the thickness direction and a second electrode is provided on the other surface side.
  • Such an ultraviolet light emitting element 1 is formed by die-bonding one of the first electrode and the second electrode to the first conductor layer of the mounting substrate 2 through a conductive bonding material, What is necessary is just to make it electrically connect to a 1st conductor layer via a 3rd wire.
  • the conductive bonding material for example, solder, conductive paste, or the like can be employed.
  • the conductive paste for example, a silver paste, a gold paste, a copper paste, or the like can be employed.
  • the third wire for example, an Au wire, an Al wire, an Al—Si wire, a Cu wire, or the like can be used.
  • the outer peripheral shape of the mounting substrate 2 is circular.
  • the outer peripheral shape of the mounting substrate 2 is not limited to a circular shape, and may be, for example, a rectangular shape or a polygonal shape other than a rectangular shape.
  • the mounting board 2 includes a base 21 and two lead terminals 25.
  • the base 21 includes a metal plate, an electric insulation layer (not shown) formed on the first surface side of the metal plate, and a first conductor layer formed on the electric insulation layer.
  • the base 21 has a flange 21b that protrudes outward from the outer peripheral portion of the metal plate.
  • the thickness of the flange 21b is preferably set thinner than the thickness of the central portion of the metal plate. In this case, it is preferable that the flange 21b protrudes outward from a portion of the outer peripheral portion of the metal plate that is away from the first surface of the metal plate. In short, it is preferable that the flange 21b is in a position that is retracted from the first surface of the metal plate in the direction along the thickness direction of the metal plate.
  • the first conductor layer is configured such that a plurality of ultraviolet light emitting elements 1 can be connected in series.
  • the first conductor layer is not limited to this, and a plurality of ultraviolet light emitting elements 1 may be configured to be connected in parallel, or may be configured to be connected in series and parallel.
  • the ultraviolet light emitting device 10 may have a configuration in which a plurality of ultraviolet light emitting elements 1 are connected in series, or may have a configuration in which a plurality of ultraviolet light emitting elements 1 are connected in parallel.
  • a plurality of ultraviolet light emitting elements 1 may be connected in series and parallel.
  • the outer peripheral shape of the base 21 is circular.
  • the outer peripheral shape of the base 21 is not limited to a circular shape, and may be, for example, a rectangular shape or a polygonal shape other than a rectangular shape.
  • the material of the metal plate a metal having high thermal conductivity is preferable. For this reason, copper can be adopted as the material of the metal plate.
  • the material of the metal plate is not limited to copper, and for example, aluminum, aluminum alloy, silver, phosphor bronze, copper alloy (for example, 42 alloy), nickel alloy, iron, Kovar, or the like can be employed.
  • the metal plate may be provided with a surface treatment layer (not shown) on the surface of a base material made of the above-described material.
  • the surface treatment layer examples include an Au film, an Al film, an Ag film, a laminated film of an Ni film, a Pd film, and an Au film, a laminated film of an Ni film, an Au film, an Ag film, a Pd film, and an AuAg alloy film.
  • a laminated film or the like can be employed.
  • the surface treatment layer is preferably composed of a plating layer or the like. In short, the surface treatment layer is preferably formed by a plating method.
  • the material of the first conductor layer for example, copper, phosphor bronze, copper alloy (for example, 42 alloy), nickel alloy, aluminum, aluminum alloy, or the like can be employed.
  • the first conductor layer can be formed using, for example, a metal foil, a metal film, or the like.
  • the first conductor layer preferably has, for example, a laminated structure of a Cu layer, a Ni layer, and an Au layer, and the outermost surface side is preferably an Au layer.
  • the first conductor layer may have a laminated structure or a single layer structure.
  • the base 21 may include a protective layer that covers a portion of the electrical insulating layer where the first conductor layer is not formed and the first conductor layer.
  • a white resist layer can be used.
  • a material for the resist layer for example, a white resist can be employed.
  • the white resist is, for example, a resin containing a white pigment.
  • the white pigment include barium sulfate (BaSO 4 ) and titanium dioxide (TiO 2 ).
  • the resin include a silicone resin.
  • ASA COLOR (registered trademark) RESIST INK which is a white resist material made of silicone manufactured by Asahi Rubber Co., Ltd., can be used.
  • the white resist layer can be formed by, for example, a coating method.
  • the protective layer is a white resist layer
  • the light incident on the mounting substrate 2 from the ultraviolet light emitting element 1 is easily reflected on the surface of the protective layer.
  • the ultraviolet light emitting device 10 can suppress the light emitted from the ultraviolet light emitting element 1 from being absorbed by the mounting substrate 2. Therefore, the ultraviolet light emitting device 10 can improve the light output by improving the light extraction efficiency to the outside.
  • the ultraviolet light emitting device 10 may have a configuration in which the ultraviolet light emitting element 1 is mounted on a metal plate via a plate-shaped submount member (not shown) formed of a material having a higher thermal conductivity than the electrical insulating layer. Good. Thereby, in the ultraviolet light emitting device 10, the heat generated in the ultraviolet light emitting element 1 is transferred to the submount member and the metal plate without passing through the electrical insulating layer as a heat transfer path of the heat generated in the ultraviolet light emitting element 1. A heat transfer path is formed. Therefore, the ultraviolet light emitting device 10 can improve heat dissipation.
  • the planar size of the submount member is preferably set to a size that allows a plurality of ultraviolet light emitting elements 1 to be disposed. In this case, the planar size of the submount member is preferably set larger than the combined size of the plurality of ultraviolet light emitting elements 1.
  • a material of the submount member a material having a thermal conductivity higher than that of the electrical insulating layer and having a linear expansion coefficient between the linear expansion coefficient of the metal plate and the linear expansion coefficient of the ultraviolet light emitting element 1 is used. preferable.
  • the ultraviolet light emitting device 10 can suppress the occurrence of cracks due to thermal stress at the joint between the ultraviolet light emitting element 1 and the submount member (hereinafter referred to as “first joint”). It becomes possible.
  • the submount member is provided with a conductor layer (hereinafter referred to as “second conductor layer”) formed in a second predetermined pattern so that a plurality of ultraviolet light emitting elements 1 can be connected in series, for example. That's fine.
  • the first conductor layer may be formed in a third predetermined pattern so that power can be supplied to the series circuit formed on the submount member.
  • the second conductor layer may be configured so that a plurality of ultraviolet light emitting elements 1 can be connected in parallel, or may be configured so that series-parallel connection is possible.
  • the ultraviolet light emitting device 10 may have a configuration in which a plurality of ultraviolet light emitting elements 1 are connected in series on a submount member, or a plurality of ultraviolet light emitting elements 1 are connected in parallel on a submount member. Alternatively, a plurality of ultraviolet light emitting elements 1 may be connected in series and parallel on the submount member.
  • the submount member may be joined to the metal plate via a joint (hereinafter referred to as “second joint”).
  • a joint for example, lead-free solder such as AuSn or SnAgCu is preferable.
  • the ultraviolet light emitting device 10 employs AuSn as the material of the second bonding portion, it is necessary to perform a pretreatment in which a metal layer made of Au or Ag is previously formed on the bonding surface of the first surface of the metal plate at the time of manufacture.
  • the second joint portion may be formed from a conductive paste.
  • the conductive paste for example, a silver paste, a gold paste, a copper paste, or the like can be employed.
  • the material of the second conductor layer for example, Au, Ag or the like can be adopted.
  • the material of the second conductor layer is the same as the material of the bumps 7a and 7b. Is preferred.
  • the material of the second conductor layer is preferably Au.
  • the second conductor layer is not limited to a single layer structure, and may be a multilayer structure. When the second conductor layer has a multilayer structure, the outermost layer is preferably formed of the same material as that of the bumps 7a and 7b.
  • the material of the submount member is not limited to AlN, and for example, Si, CuW, composite SiC, or the like may be employed.
  • the ultraviolet light emitting device 10 employs non-insulator Si, CuW, or the like as the material of the submount member, an insulating film is provided on the surface of the base material made of Si, CuW, etc., and the second conductor layer is formed on the insulating film. What is necessary is just to set it as the formed structure.
  • the ultraviolet light emitting device 10 is an ultraviolet LED chip having the first electrode on one surface side in the thickness direction and the second electrode on the other surface side
  • the ultraviolet light emitting device 1 and the submount member are, for example, soldered. Bonding can be performed using a conductive paste or the like. Examples of solder include SnPb, AuSn, SnAgCu, and the like. Examples of the conductive paste include silver paste.
  • the ultraviolet light emitting element 1 and the second conductor layer of the submount member are preferably joined by lead-free solder such as AuSn or SnAgCu.
  • the second conductor layer is preferably composed of a metal layer such as an Au layer or an Ag layer.
  • the second conductor layer can be formed using, for example, an evaporation method, a sputtering method, a CVD (Chemical Vapor Deposition) method, or the like.
  • the submount member includes the ultraviolet light emitting element 1 and a metal plate. It has a function to relieve stress acting on the ultraviolet light emitting element 1 due to the difference in linear expansion coefficient.
  • the submount member has not only a function of relieving stress, but also a heat conduction function of transferring heat generated in the ultraviolet light emitting element 1 to a range wider than the chip size of the ultraviolet light emitting element 1 on the metal plate. Therefore, the ultraviolet light emitting device 10 can efficiently dissipate the heat generated in the ultraviolet light emitting element 1 through the submount member and the metal plate.
  • the lead terminal 25 is formed in a pin shape and penetrates in the thickness direction of the base 21.
  • the base 21 has a through hole through which the lead terminal 25 passes.
  • a sealing portion (not shown) made of an electrically insulating material (for example, glass) is provided between the lead terminal 25 and the inner peripheral surface of the through hole.
  • the two lead terminals 25 are terminals for power feeding from the outside.
  • Each lead terminal 25 is electrically connected to the first conductor layer on the first surface 21 a side of the base 21 via a wire (not shown) (hereinafter referred to as “fourth wire”).
  • a wire not shown
  • an Au wire can be adopted as the fourth wire.
  • the fourth wire is not limited to the Au wire but may be an Al wire.
  • the Au wire for example, a thin wire having a wire diameter of about 18 ⁇ m to 25 ⁇ m can be used.
  • the Al wire for example, a thin wire having a wire diameter of 25 ⁇ m to 200 ⁇ m can be adopted.
  • a larger current can be passed than when an Au wire is used.
  • the fourth wire is not limited to Au wire or Al wire, but may be Al—Si wire, Cu wire, or the like.
  • the mounting substrate 2 is not limited to the one in which the power supply terminal is configured by the pin-shaped lead terminal 25.
  • the mounting substrate 2 is a conductor layer (hereinafter referred to as “third conductor layer”) for surface mounting the ultraviolet light emitting device 10 on a printed circuit board or the like on the second surface side opposite to the first surface side of the metal plate.
  • the structure provided as a terminal for electric power feeding may be sufficient.
  • the mounting substrate 2 may be configured to include an insulating layer made of an electrically insulating material between the third conductor layer and the metal plate.
  • the mounting substrate 2 has a region exposed outside the lens support member 31 on the first surface 21a side of the base 21, and a part of the first conductor layer is provided as a power supply terminal in the region. Other configurations may be used.
  • the lens support member 31 is disposed on the first surface 2 a side of the mounting substrate 2 so as to surround the mounting region of the ultraviolet light emitting element 1 on the mounting substrate 2.
  • a region surrounded by the inner peripheral line of the lens support member 31 in a plan view constitutes a mounting region. That is, the mounting area is defined by the lens support member 31.
  • the lens support member 31 is formed in a cylindrical shape. More specifically, the lens support member 31 is formed in a cylindrical shape.
  • the lens support member 31 has a flange 31 b that protrudes outward from an end portion (hereinafter referred to as “first end portion”) 31 a on the side close to the mounting substrate 2.
  • the lens support member 31 has a flange 31 b joined to the flange 21 b of the mounting substrate 2 so as to overlap. In short, in the ultraviolet light emitting device 10, the flange 31b of the lens support member 31 and the flange 21b of the mounting substrate 2 are joined.
  • the inner diameter of the lens support member 31 is set to 3 mm, but is not limited to this value.
  • the lens support member 31 is not limited to a cylindrical shape, and may be a cylindrical shape, for example, a rectangular tube shape.
  • the outer peripheral shape of the flange 31b is circular.
  • the outer peripheral shape of the flange 31b is not limited to a circular shape, and may be, for example, an elliptical shape or a polygonal shape.
  • Stainless steel is used as the metal that is the material of the lens support member 31.
  • the ultraviolet light emitting device 10 can suppress deterioration of the lens support member 31 with time due to ultraviolet rays from the ultraviolet light emitting element 1.
  • the lens support member 31 can be made of stainless steel to improve heat dissipation, productivity, corrosion resistance, and the like.
  • the lens support member 31 may be formed, for example, by subjecting a stainless steel plate to processing such as press processing or machining.
  • As the stainless steel for example, Fe—Cr—Ni alloy steel (austenitic stainless steel) or the like can be employed.
  • As an austenitic stainless steel, SUS304 etc. are employable, for example.
  • the metal that is the material of the lens support member 31 is not limited to stainless steel, and for example, Kovar can be used.
  • Kovar is an alloy containing iron and nickel.
  • An example of the component ratio of Kovar is, by weight, iron: 53.5% by weight, nickel: 29% by weight, cobalt: 17% by weight, silicon: 0.2% by weight, manganese: 0.3% by weight. .
  • the component ratio of Kovar is not particularly limited.
  • the ultraviolet light emitting device 10 employs a configuration in which an oxide film is formed as a lens support member 31 by, for example, oxidizing the surface of a mother body made of Kovar. May be.
  • the lens 32 is a biconvex aspherical lens.
  • the lens 32 has a first lens surface 32aa located on the ultraviolet light emitting element 1 side and a second lens surface 32ab located on the opposite side to the ultraviolet light emitting element 1 side.
  • the first lens surface 32aa is an aspheric first convex curved surface.
  • the second lens surface 32ab is an aspherical second convex curved surface. The curvatures of the first convex curved surface and the second convex curved surface change continuously.
  • the first lens surface 32aa and the second lens surface 32ab may have the same shape or different shapes.
  • the aspheric lens constituting the lens 32 is not limited to a biconvex aspheric lens, and may be a plano-convex aspheric lens or a plano-concave aspheric lens, for example.
  • quartz glass is generally used as a lens material used for controlling the light distribution of ultraviolet rays.
  • the yield point of quartz glass is 1280 ° C.
  • a molding die such as a mold.
  • the mold must be provided with a release film having releasability in order to prevent sticking to the glass, but the yield point of quartz glass exceeds the heat resistance temperature of the release film.
  • the condenser lens 217 in the ultraviolet light emitting element package 210 shown in FIG. 3 is made of quartz glass, it is presumed that it is processed into a hemisphere by grinding.
  • the inventors of the present application have considered using glass having a yield point of 600 ° C. or less as the material of the lens 32 in consideration of the heat resistance of the release film.
  • glass having a yield point of 600 ° C. or less is adopted as the material of the lens 32.
  • the ultraviolet light emitting device 10 can make the lens 32 an aspherical lens formed by molding. Therefore, the ultraviolet light emitting device 10 can reduce the thickness of the lens 32 and improve the light extraction efficiency as compared with the case where the lens 32 is a hemispherical lens. It becomes possible to plan. Further, when the ultraviolet light emitting device 10 is manufactured, the lens 32 can be formed by molding, so that the productivity of the lens 32 can be improved as compared with the case where it is formed by grinding.
  • the glass that is the material of the lens 32 preferably has a transmittance of 70% or more, more preferably 80% or more, for the ultraviolet rays emitted from the ultraviolet light emitting element 1.
  • the glass used as the material of the lens 32 is borosilicate that satisfies the condition that the yield point is 600 ° C. or less and the transmittance for ultraviolet rays in the deep ultraviolet wavelength region (for example, ultraviolet rays having a wavelength of 265 nm) is 80%. Glass is used.
  • this type of borosilicate glass for example, 8337B manufactured by SCHOTT can be used.
  • the ultraviolet light emitting device 10 can make the transmittance of the lens 32 with respect to the ultraviolet rays emitted from the ultraviolet light emitting element 1 80% or more.
  • the ultraviolet light emitting element 1 emits light in the ultraviolet wavelength region of 210 nm to 280 nm. It is preferable to have. That is, it is preferable that the ultraviolet light emitting element 1 has an emission wavelength in the UV-C wavelength region.
  • the wavelength range of UV-C is, for example, 100 nm to 280 nm according to the classification by the wavelength of ultraviolet rays in the International Commission on Illumination (CIE).
  • the linear expansion coefficient of the metal that is the material of the lens support member 31 is preferably larger than the linear expansion coefficient of the borosilicate glass that is the material of the lens 32.
  • the difference in linear expansion coefficient between the borosilicate glass and the metal is small.
  • the lens 32 and the lens support member 31 are directly bonded as described above.
  • the lens 32 and the lens support member 31 include an outer peripheral surface of the lens 32 and an inner peripheral surface of an end portion (hereinafter referred to as a “second end portion”) 31 c far from the mounting substrate 2 in the lens support member 31. Direct bonding is preferred.
  • the ultraviolet light emitting device 10 is more glassy than the case where the flat portion formed integrally with the condenser lens 323a is provided like the translucent member 323 in the ultraviolet light emitting device 310 shown in FIG. It becomes possible to reduce the usage-amount of.
  • the ultraviolet light emitting device 10 By joining to the lens support member 31, the lens 32 can be tightened by the lens support member 31.
  • the lens support member 31 is preferably in a cylindrical shape, but more preferably in a cylindrical shape rather than a rectangular tube shape. This is because the lens support member 31 is cylindrical, so that the stress applied from the lens support member 31 to the lens 32 during molding of the lens 32 can be made uniform, and the quality of the lens 32 can be stabilized. This is because it becomes possible.
  • the inner peripheral shape of the lens support member 31 is a regular polygonal shape, a regular polygonal shape that is closer to a circle is more preferable in terms of stability of the quality of the lens 32.
  • the lid 3 composed of the lens support member 31 and the lens 32 is joined to the mounting substrate 2.
  • the lid 3 covers the plurality of ultraviolet light emitting elements 1 on the first surface 2 a side of the mounting substrate 2.
  • the lower mold, the upper mold, the lens material from which the lens 32 is based, and the outer frame are arranged.
  • the lower mold is a mold that is fitted into the lens support member 31 from the first end 31 a side of the lens support member 31.
  • the upper mold is a mold that faces the lower mold on the second end portion 31 c side of the lens support member 31.
  • the outer frame is a cylindrical frame into which the upper mold and the lens support member 31 are fitted.
  • the lower mold, the upper mold, and the outer frame are collectively referred to as a mold.
  • the upper surface of the lower mold constitutes a first molding surface corresponding to the shape of the first lens surface 32aa of the lens 32.
  • the lower surface forms a second molding surface corresponding to the shape of the second lens surface 32ab of the lens 32.
  • the first molding surface and the second molding surface preferably have mirror properties. “Having specularity” means, for example, that the arithmetic average roughness Ra defined by JIS B 0601-2001 and ISO 4287-1997 is 100 nm or less.
  • the material of the lens material is the above-described borosilicate glass.
  • the shape of the lens material is spherical.
  • the lens material is not limited to a spherical shape, and may be a plate shape such as a disk shape.
  • the outer frame has a cylindrical shape.
  • the outer frame has a function of aligning the center axis of the lower mold and the center axis of the upper mold in a straight line.
  • the outer frame has a function of holding the lens support member 31, the lower mold, and the upper mold.
  • the lower mold, the upper mold, and the outer frame for example, those formed from silicon nitride, silicon carbide, graphite, or the like can be used.
  • a release film is provided on the lower mold and the upper mold.
  • the lens material is heated from the outside of the outer frame to be softened and then cooled to form the lens 32 and the lens 32 and the lens support member 31 are welded together.
  • the lid 3 is removed from the lower mold, the upper mold and the outer frame. In short, in the third step, release is performed.
  • the method for manufacturing the lid 3 described above is an example and is not particularly limited.
  • the ultraviolet light emitting device 10 of the present embodiment is separated from the ultraviolet light emitting element 1 on the mounting substrate 2, the ultraviolet light emitting element 1 mounted on the first surface 2 a side of the mounting substrate 2, and the first surface 2 a side of the mounting substrate 2. And a lens 32 that controls the distribution of ultraviolet rays emitted from the ultraviolet light emitting element 1 and a metal lens support member 31 that is fixed to the mounting substrate 2 and supports the lens 32. Further, in the ultraviolet light emitting device 10, the lens 32 is an aspherical lens formed of glass having a yield point of 600 ° C. or less, and the lens 32 and the metal lens support member 31 are directly bonded. As a result, the ultraviolet light emitting device 10 can reduce the thickness of the lens and improve the reliability.
  • the lens 32 and the metal lens support member 31 are directly joined without using an adhesive, it is possible to improve the reliability. Further, since the ultraviolet light emitting device 10 does not need to be provided with a flange on the lens 32, the lens 32 can be reduced in size, and the cost can be reduced by reducing the amount of glass used.

Abstract

An ultraviolet light emitting device includes: a mounting substrate; an ultraviolet light emitting element mounted on a first surface side of the mounting substrate; a lens that is arranged on the first surface side of the mounting substrate, apart from the ultraviolet light emitting element, and controls light distribution of ultraviolet light emitted from the ultraviolet light emitting element; and a metal-made lens supporting member that is fixed on the mounting substrate and supports the lens. The lens is an aspherical lens made of glass having a yield point of 600°C or lower. The lens and the lens supporting member are directly bonded.

Description

紫外線発光装置UV light emitting device
 本発明は、紫外線発光装置に関するものである。 The present invention relates to an ultraviolet light emitting device.
 紫外線発光装置としては、図3に示す構成を有する紫外線発光素子パッケージ210が知られている(日本国特許出願公開番号2007-311707)。 As an ultraviolet light emitting device, an ultraviolet light emitting element package 210 having the configuration shown in FIG. 3 is known (Japanese Patent Application Publication No. 2007-311707).
 紫外線発光素子パッケージ210は、紫外線発光ダイオード素子211と、基板212と、リード電極213、214と、レンズ保持部材215と、集光レンズ217と、屈折率差緩和層220と、を備えている。 The ultraviolet light emitting element package 210 includes an ultraviolet light emitting diode element 211, a substrate 212, lead electrodes 213 and 214, a lens holding member 215, a condensing lens 217, and a refractive index difference relaxation layer 220.
 紫外線発光ダイオード素子211の電極211A、211Bは、金のバンプや銀ペースト等の電気的接合部材により、リード電極213、214に電気的に接続されている。 The electrodes 211A and 211B of the ultraviolet light-emitting diode element 211 are electrically connected to the lead electrodes 213 and 214 by an electrical bonding member such as a gold bump or silver paste.
 レンズ保持部材215は、断面形状がL字型の枠状のものである。レンズ保持部材215は、レンズ保持面上に塗布された接着剤216によって集光レンズ217が接着されている。集光レンズ217は、半球状であって、石英ガラスにより形成されている。接着剤216としては、エポキシ系の樹脂や、シリル基を含有する樹脂が用いられている。 The lens holding member 215 has a frame shape with an L-shaped cross section. The condenser lens 217 is bonded to the lens holding member 215 with an adhesive 216 applied on the lens holding surface. The condenser lens 217 has a hemispherical shape and is formed of quartz glass. As the adhesive 216, an epoxy resin or a resin containing a silyl group is used.
 また、紫外線発光装置としては、図4に示す構成を有する紫外線発光装置310が知られている(日本国特許出願公開番号2009-177098)。 Further, as an ultraviolet light emitting device, an ultraviolet light emitting device 310 having a configuration shown in FIG. 4 is known (Japanese Patent Application Publication No. 2009-177098).
 紫外線発光装置310は、紫外光LEDチップ311と、紫外光LEDチップ311を収納するパッケージ320と、を備えている。 The ultraviolet light emitting device 310 includes an ultraviolet light LED chip 311 and a package 320 that houses the ultraviolet light LED chip 311.
 パッケージ320は、実装基板322と、透光性部材323と、で構成されている。透光性部材323は、ガラスにより形成された透光性基板からなる。透光性部材323は、実装基板322と同じ外周形状の矩形板状に形成されている。透光性部材323は、中央部に、紫外光LEDチップ311から放射された光を集光する平凸レンズ状の集光レンズ323aが連続一体に形成されている。実装基板322は、3枚のシリコン基板322a、322b、322cを用いて形成されている。 The package 320 includes a mounting substrate 322 and a translucent member 323. The translucent member 323 is made of a translucent substrate made of glass. The translucent member 323 is formed in the same outer peripheral rectangular plate shape as the mounting substrate 322. The translucent member 323 is integrally formed with a concentric plano-convex lens 323a that condenses the light emitted from the ultraviolet LED chip 311 at the center. The mounting substrate 322 is formed using three silicon substrates 322a, 322b, and 322c.
 紫外線発光素子パッケージ210では、紫外線発光ダイオード素子211の側面からも紫外線が放射される場合、紫外線発光ダイオード素子211からの紫外線により接着剤216が劣化することが考えられる。 In the ultraviolet light emitting element package 210, when the ultraviolet light is also emitted from the side surface of the ultraviolet light emitting diode element 211, the adhesive 216 may be deteriorated by the ultraviolet light from the ultraviolet light emitting diode element 211.
 上述の紫外線発光素子パッケージ210における集光レンズ217は、石英ガラスからなるので、研削加工により半球状に加工されていると推考される。 Since the condenser lens 217 in the ultraviolet light emitting device package 210 is made of quartz glass, it is presumed that it is processed into a hemisphere by grinding.
 また、紫外線発光装置310は、製造時に、実装基板322と透光性部材323とを接合する接合工程をウェハレベルで行うことでウェハレベルパッケージ構造体を形成してから、ダイシング工程により実装基板322のサイズに分割する必要がある。このため、紫外線発光装置310は、信頼性のより一層の向上が望まれている。 In addition, the ultraviolet light emitting device 310 forms a wafer level package structure by performing a bonding process for bonding the mounting substrate 322 and the translucent member 323 at the wafer level at the time of manufacture, and then the mounting substrate 322 through a dicing process. Need to be divided into sizes. For this reason, the ultraviolet light emitting device 310 is desired to be further improved in reliability.
 本発明は上記事由に鑑みて為されたものであり、その目的は、信頼性の向上を図ることが可能で且つレンズの薄型化を図ることが可能な紫外線発光装置を提供することにある。 The present invention has been made in view of the above reasons, and an object of the present invention is to provide an ultraviolet light emitting device capable of improving the reliability and reducing the thickness of the lens.
 本発明の紫外線発光装置は、実装基板と、前記実装基板の第1面側に実装された紫外線発光素子と、前記実装基板の前記第1面側で前記紫外線発光素子から離れて配置され前記紫外線発光素子から放射される紫外線の配光を制御するレンズと、前記実装基板に固定され前記レンズを支持する金属製のレンズ支持部材と、を備える。前記レンズは、屈伏点が600℃以下のガラスにより形成された非球面レンズである。前記レンズと前記レンズ支持部材とは、直接接合されている。 The ultraviolet light emitting device of the present invention includes a mounting substrate, an ultraviolet light emitting element mounted on the first surface side of the mounting substrate, and the ultraviolet light element disposed on the first surface side of the mounting substrate away from the ultraviolet light emitting element. A lens that controls light distribution of ultraviolet rays emitted from the light emitting element; and a metal lens support member that is fixed to the mounting substrate and supports the lens. The lens is an aspherical lens formed of glass having a yield point of 600 ° C. or lower. The lens and the lens support member are directly joined.
 この紫外線発光装置において、前記レンズ支持部材が筒状の形状であり、前記レンズと前記レンズ支持部材とは、前記レンズの外周面と前記レンズ支持部材における前記実装基板から遠い側の端部の内周面とが、直接接合されているのが好ましい。 In the ultraviolet light emitting device, the lens support member has a cylindrical shape, and the lens and the lens support member are formed on the outer peripheral surface of the lens and the end of the lens support member on the side far from the mounting substrate. It is preferable that the peripheral surface is directly joined.
 この紫外線発光装置において、前記レンズ支持部材は、前記筒状の形状が円筒状の形状であるのが好ましい。 In this ultraviolet light emitting device, the lens support member preferably has a cylindrical shape as the cylindrical shape.
 本発明の紫外線発光装置は、信頼性の向上を図ることが可能で且つレンズの薄型化を図ることが可能となる。 The ultraviolet light emitting device of the present invention can improve the reliability and reduce the thickness of the lens.
図1は、実施形態の紫外線発光装置の概略断面図である。FIG. 1 is a schematic cross-sectional view of the ultraviolet light emitting device of the embodiment. 図2は、実施形態の紫外線発光装置の概略斜視図である。FIG. 2 is a schematic perspective view of the ultraviolet light emitting device of the embodiment. 図3は、従来例の紫外線発光素子パッケージの概略断面図である。FIG. 3 is a schematic cross-sectional view of a conventional ultraviolet light emitting device package. 図4は、他の従来例の紫外線発光装置の概略断面図である。FIG. 4 is a schematic cross-sectional view of another conventional ultraviolet light emitting device.
 以下では、本実施形態の紫外線発光装置10について、図1及び図2に基づいて説明する。 Hereinafter, the ultraviolet light emitting device 10 of the present embodiment will be described with reference to FIGS. 1 and 2.
 紫外線発光装置10は、実装基板2と、紫外線発光素子1と、レンズ32と、レンズ支持部材31と、を備える。紫外線発光装置10は、実装基板2とレンズ32とレンズ支持部材31とで、紫外線発光素子1を収納するパッケージを構成している。また、紫外線発光装置10は、レンズ支持部材31とレンズ32とで、蓋3を構成している。 The ultraviolet light emitting device 10 includes a mounting substrate 2, an ultraviolet light emitting element 1, a lens 32, and a lens support member 31. In the ultraviolet light emitting device 10, the mounting substrate 2, the lens 32, and the lens support member 31 constitute a package for housing the ultraviolet light emitting element 1. In the ultraviolet light emitting device 10, the lens support member 31 and the lens 32 constitute the lid 3.
 紫外線発光素子1は、紫外線(紫外光)を放射する固体発光素子である。紫外線発光素子1としては、紫外LEDチップを採用しているが、これに限らず、紫外半導体レーザチップを採用することもできる。 The ultraviolet light emitting element 1 is a solid light emitting element that emits ultraviolet light (ultraviolet light). As the ultraviolet light emitting element 1, an ultraviolet LED chip is adopted, but not limited to this, an ultraviolet semiconductor laser chip can also be adopted.
 実装基板2は、紫外線発光素子1を実装する基板である。「実装する」とは、紫外線発光素子1を配置して機械的に接続すること及び電気的に接続することを含む概念である。このため、実装基板2は、紫外線発光素子1を機械的に保持する機能と、紫外線発光素子1へ給電するための配線を形成する機能と、を備えている。紫外線発光素子1は、実装基板2の第1面2a側に実装されている。実装基板2は、複数個の紫外線発光素子1を実装できるように構成されている。実装基板2は、実装可能な紫外線発光素子1の個数を特に限定するものではない。例えば、実装基板2は、実装可能な紫外線発光素子1の個数が1個でもよい。 The mounting substrate 2 is a substrate on which the ultraviolet light emitting element 1 is mounted. “Mounting” is a concept that includes arranging and mechanically connecting the ultraviolet light emitting elements 1 and electrically connecting them. For this reason, the mounting substrate 2 has a function of mechanically holding the ultraviolet light emitting element 1 and a function of forming a wiring for supplying power to the ultraviolet light emitting element 1. The ultraviolet light emitting element 1 is mounted on the first surface 2 a side of the mounting substrate 2. The mounting substrate 2 is configured so that a plurality of ultraviolet light emitting elements 1 can be mounted. The number of the ultraviolet light emitting elements 1 that can be mounted on the mounting substrate 2 is not particularly limited. For example, the mounting substrate 2 may have only one ultraviolet light emitting element 1 that can be mounted.
 レンズ支持部材31は、レンズ32を支持する機能を有する。レンズ支持部材31は、金属製である。レンズ支持部材31は、実装基板2に固定されている。レンズ支持部材31は、実装基板2と接合することで、実装基板2に固定されているのが好ましい。 The lens support member 31 has a function of supporting the lens 32. The lens support member 31 is made of metal. The lens support member 31 is fixed to the mounting substrate 2. The lens support member 31 is preferably fixed to the mounting substrate 2 by bonding to the mounting substrate 2.
 レンズ32は、紫外線発光素子1から放射される紫外線の配光を制御する機能を有する。レンズ32は、実装基板2の第1面2a側で紫外線発光素子1から離れて配置される。レンズ32は、実装基板2の厚み方向において、実装基板2及び紫外線発光素子1から離れて配置されている。 The lens 32 has a function of controlling the light distribution of ultraviolet rays emitted from the ultraviolet light emitting element 1. The lens 32 is arranged away from the ultraviolet light emitting element 1 on the first surface 2 a side of the mounting substrate 2. The lens 32 is arranged away from the mounting substrate 2 and the ultraviolet light emitting element 1 in the thickness direction of the mounting substrate 2.
 レンズ32は、屈伏点が600℃以下のガラスにより形成された非球面レンズである。これにより、紫外線発光装置10は、レンズ32の薄型化を図ることが可能となる。 The lens 32 is an aspherical lens formed of glass having a yield point of 600 ° C. or less. Thereby, the ultraviolet light emitting device 10 can reduce the thickness of the lens 32.
 レンズ32とレンズ支持部材31とは、直接接合されている。これにより、紫外線発光装置10は、信頼性の向上を図ることが可能となる。「直接接合」とは、接着剤等を用いることなく接合されていることを意味する。レンズ32は、レンズ支持部材31に溶着されている。これにより、レンズ32とレンズ支持部材31とは、直接接合されている。要するに、レンズ32は、レンズ支持部材31への溶着のみによって、レンズ支持部材31と直接接合されている。 The lens 32 and the lens support member 31 are directly joined. Thereby, the ultraviolet light emitting device 10 can improve the reliability. “Direct bonding” means bonding without using an adhesive or the like. The lens 32 is welded to the lens support member 31. Thereby, the lens 32 and the lens support member 31 are directly joined. In short, the lens 32 is directly joined to the lens support member 31 only by welding to the lens support member 31.
 紫外線発光装置10の各構成要素については、以下に、より詳細に説明する。 Each component of the ultraviolet light emitting device 10 will be described in more detail below.
 紫外線発光素子1としては、上述のように、紫外線を放射する紫外LEDチップを採用することができる。紫外LEDチップは、例えば、発光層の材料としてAlGaN系材料を採用しており、発光波長が210nm~360nmの紫外波長領域にあるLEDチップである。発光波長は、発光ピーク波長を意味する。 As the ultraviolet light emitting element 1, as described above, an ultraviolet LED chip that emits ultraviolet light can be employed. The ultraviolet LED chip is, for example, an LED chip that employs an AlGaN-based material as the material of the light emitting layer and has an emission wavelength in the ultraviolet wavelength region of 210 nm to 360 nm. The emission wavelength means the emission peak wavelength.
 紫外LEDチップは、例えば、サファイア基板の一表面側に、AlN層、n形窒化物半導体層、発光層、電子ブロック層、p形窒化物半導体層及びp形コンタクト層が積層された構成を備えたLEDチップを採用できる。このLEDチップは、n形窒化物半導体層に電気的に接続された第1電極と、p形コンタクト層を介してp形窒化物半導体層に電気的に接続された第2電極と、を備えている。n形窒化物半導体層は、例えば、n形AlxGa1-xN(0<x<1)層により構成できる。発光層は、AlGaN系材料からなる量子井戸構造を有している。量子井戸構造は、障壁層と、井戸層と、で構成されている。量子井戸構造は、多重量子井戸構造でもよいし、単一量子井戸構造でもよい。発光層は、所望の発光波長の紫外光を発光するように井戸層のAlの組成比を設定してある。AlGaN系材料からなる発光層では、Alの組成比を変化させることにより、発光波長を210~360nmの範囲で任意の発光波長に設定することが可能である。例えば、所望の発光波長が265nm付近である場合には、Alの組成比を0.50に設定すればよい。また、紫外LEDチップは、発光層を単層構造として、発光層と、この発光層の厚み方向の両側の層と、でダブルヘテロ構造が形成されるようにしてもよい。発光層の厚み方向の両側の層は、例えば、その一方をn形窒化物半導体層とし、他方をp形窒化物半導体層とすることができる。紫外LEDチップの構造は、特に限定するものではない。 The ultraviolet LED chip has, for example, a configuration in which an AlN layer, an n-type nitride semiconductor layer, a light emitting layer, an electron block layer, a p-type nitride semiconductor layer, and a p-type contact layer are stacked on one surface side of a sapphire substrate. LED chip can be adopted. The LED chip includes a first electrode electrically connected to the n-type nitride semiconductor layer, and a second electrode electrically connected to the p-type nitride semiconductor layer via the p-type contact layer. ing. The n-type nitride semiconductor layer can be constituted by, for example, an n-type Al x Ga 1-x N (0 <x <1) layer. The light emitting layer has a quantum well structure made of an AlGaN-based material. The quantum well structure is composed of a barrier layer and a well layer. The quantum well structure may be a multiple quantum well structure or a single quantum well structure. In the light emitting layer, the Al composition ratio of the well layer is set so as to emit ultraviolet light having a desired emission wavelength. In the light emitting layer made of an AlGaN-based material, the light emission wavelength can be set to an arbitrary light emission wavelength in the range of 210 to 360 nm by changing the Al composition ratio. For example, when the desired emission wavelength is around 265 nm, the Al composition ratio may be set to 0.50. The ultraviolet LED chip may have a light emitting layer having a single layer structure, and a double hetero structure may be formed by the light emitting layer and the layers on both sides in the thickness direction of the light emitting layer. For example, one of the layers on both sides in the thickness direction of the light emitting layer can be an n-type nitride semiconductor layer and the other can be a p-type nitride semiconductor layer. The structure of the ultraviolet LED chip is not particularly limited.
 紫外LEDチップは、チップサイズを、0.39mm□(0.39mm×0.39mm)としてある。紫外LEDチップのチップサイズは、特に限定するものではない。紫外LEDチップのチップサイズは、例えば、0.3mm□(0.3mm×0.3mm)、0.45mm□(0.45mm×0.45mm)、1mm□(1mm×1mm)、等でもよい。また、紫外LEDチップの外周形状は、正方形状に限らず、例えば、長方形状や、正六角形状等でもよい。 The ultraviolet LED chip has a chip size of 0.39 mm □ (0.39 mm × 0.39 mm). The chip size of the ultraviolet LED chip is not particularly limited. The chip size of the ultraviolet LED chip may be, for example, 0.3 mm □ (0.3 mm × 0.3 mm), 0.45 mm □ (0.45 mm × 0.45 mm), 1 mm □ (1 mm × 1 mm), or the like. Further, the outer peripheral shape of the ultraviolet LED chip is not limited to a square shape, and may be, for example, a rectangular shape or a regular hexagonal shape.
 また、紫外LEDチップは、厚さを0.16mm程度としてあるが、厚さを特に限定するものではない。 Moreover, although the thickness of the ultraviolet LED chip is about 0.16 mm, the thickness is not particularly limited.
 紫外線発光素子1は、この紫外線発光素子1の厚み方向の一面側に、第1電極及び第2電極が配置されている。これにより、紫外線発光素子1は、第1電極及び第2電極それぞれを、実装基板2において第1の所定のパターンで形成された導体層(図示せず)に対して、導電性のバンプ7a、7bを介して電気的に接続することができる。この導体層(以下、「第1導体層」という。)は、紫外線発光素子1の第1電極が接続される第1導体部と第2電極が接続される第2導体部とが、空間的に分離され電気的に絶縁されるように形成されている。紫外線発光装置10は、紫外線発光素子1として、厚み方向の一面側に第1電極及び第2電極が配置され当該一面側から光を取り出す紫外LEDチップを用いてもよい。この場合、紫外線発光装置10は、紫外線発光素子1の第1電極と第1導体部とを第1ワイヤを介して電気的に接続し、第2電極と第2導体部とを第2ワイヤを介して電気的に接続するようにしてもよい。第1ワイヤ及び第2ワイヤとしては、例えば、Au線、Al線、Al-Si線、Cu線等を採用することができる。 The ultraviolet light emitting element 1 has a first electrode and a second electrode arranged on one surface side in the thickness direction of the ultraviolet light emitting element 1. As a result, the ultraviolet light emitting element 1 causes the first electrode and the second electrode to be electrically conductive bumps 7a on the conductor layer (not shown) formed in the first predetermined pattern on the mounting substrate 2, respectively. 7b can be electrically connected. This conductor layer (hereinafter referred to as “first conductor layer”) has a spatial relationship between the first conductor portion to which the first electrode of the ultraviolet light emitting element 1 is connected and the second conductor portion to which the second electrode is connected. So that they are separated and electrically insulated. The ultraviolet light emitting device 10 may use, as the ultraviolet light emitting element 1, an ultraviolet LED chip in which the first electrode and the second electrode are arranged on one surface side in the thickness direction and take out light from the one surface side. In this case, the ultraviolet light emitting device 10 electrically connects the first electrode of the ultraviolet light emitting element 1 and the first conductor part via the first wire, and connects the second electrode and the second conductor part to the second wire. You may make it electrically connect via. As the first wire and the second wire, for example, an Au wire, an Al wire, an Al—Si wire, a Cu wire, or the like can be adopted.
 紫外線発光素子1は、厚み方向の一面側に第1電極及び第2電極が設けられた紫外LEDチップに限らない。紫外線発光素子1は、例えば、厚み方向の一面側に第1電極が設けられ、他面側に第2電極が設けられた紫外LEDチップでもよい。このような紫外線発光素子1は、第1電極と第2電極とのうちの一方の電極を、導電性の接合材を介して実装基板2の第1導体層にダイボンドし、他方の電極を、第3ワイヤを介して第1導体層に電気的に接続するようにすればよい。導電性の接合材としては、例えば、半田や導電ペースト等を採用することができる。導電ペーストとしては、例えば、銀ペースト、金ペースト、銅ペースト等を採用することができる。第3ワイヤとしては、例えば、Au線、Al線、Al-Si線、Cu線等を採用することができる。 The ultraviolet light emitting element 1 is not limited to the ultraviolet LED chip in which the first electrode and the second electrode are provided on one surface side in the thickness direction. The ultraviolet light emitting element 1 may be, for example, an ultraviolet LED chip in which a first electrode is provided on one surface side in the thickness direction and a second electrode is provided on the other surface side. Such an ultraviolet light emitting element 1 is formed by die-bonding one of the first electrode and the second electrode to the first conductor layer of the mounting substrate 2 through a conductive bonding material, What is necessary is just to make it electrically connect to a 1st conductor layer via a 3rd wire. As the conductive bonding material, for example, solder, conductive paste, or the like can be employed. As the conductive paste, for example, a silver paste, a gold paste, a copper paste, or the like can be employed. As the third wire, for example, an Au wire, an Al wire, an Al—Si wire, a Cu wire, or the like can be used.
 実装基板2の外周形状は、円形状としてある。実装基板2の外周形状は、円形状に限らず、例えば、矩形状、矩形以外の多角形状等でもよい。実装基板2は、基台21と、2本のリード端子25と、を備えている。 The outer peripheral shape of the mounting substrate 2 is circular. The outer peripheral shape of the mounting substrate 2 is not limited to a circular shape, and may be, for example, a rectangular shape or a polygonal shape other than a rectangular shape. The mounting board 2 includes a base 21 and two lead terminals 25.
 基台21は、金属板と、金属板の第1面側に形成された電気絶縁層(図示せず)と、電気絶縁層上に形成された第1導体層と、を備えている。基台21は、金属板の外周部から外方へ突出したフランジ21bを有している。フランジ21bの厚さは、金属板の中央部の厚さよりも薄く設定してあるのが好ましい。この場合、フランジ21bは、金属板の外周部のうち金属板の第1面から離れた部位から外方へ突出しているのが好ましい。要するに、フランジ21bは、金属板の厚み方向に沿った方向において、金属板の第1面よりも後退した位置にあるのが好ましい。 The base 21 includes a metal plate, an electric insulation layer (not shown) formed on the first surface side of the metal plate, and a first conductor layer formed on the electric insulation layer. The base 21 has a flange 21b that protrudes outward from the outer peripheral portion of the metal plate. The thickness of the flange 21b is preferably set thinner than the thickness of the central portion of the metal plate. In this case, it is preferable that the flange 21b protrudes outward from a portion of the outer peripheral portion of the metal plate that is away from the first surface of the metal plate. In short, it is preferable that the flange 21b is in a position that is retracted from the first surface of the metal plate in the direction along the thickness direction of the metal plate.
 第1導体層は、複数個の紫外線発光素子1を直列接続可能に構成してある。第1導体層は、これに限らず、複数個の紫外線発光素子1を並列接続可能に構成してもよいし、直並列接続可能に構成してもよい。要するに、紫外線発光装置10は、複数個の紫外線発光素子1が直列接続された構成を有していてもよいし、複数個の紫外線発光素子1が並列接続された構成を有してもよいし、複数個の紫外線発光素子1が直並列接続された構成を有してもよい。 The first conductor layer is configured such that a plurality of ultraviolet light emitting elements 1 can be connected in series. The first conductor layer is not limited to this, and a plurality of ultraviolet light emitting elements 1 may be configured to be connected in parallel, or may be configured to be connected in series and parallel. In short, the ultraviolet light emitting device 10 may have a configuration in which a plurality of ultraviolet light emitting elements 1 are connected in series, or may have a configuration in which a plurality of ultraviolet light emitting elements 1 are connected in parallel. A plurality of ultraviolet light emitting elements 1 may be connected in series and parallel.
 基台21の外周形状は、円形状としてある。基台21の外周形状は、円形状に限らず、例えば、矩形状や矩形以外の多角形状等でもよい。 The outer peripheral shape of the base 21 is circular. The outer peripheral shape of the base 21 is not limited to a circular shape, and may be, for example, a rectangular shape or a polygonal shape other than a rectangular shape.
 金属板の材料としては、熱伝導率の高い金属が好ましい。このため、金属板の材料としては、銅を採用することができる。金属板の材料は、銅に限らず、例えば、アルミニウム、アルミニウム合金、銀、リン青銅、銅合金(例えば、42アロイ等)、ニッケル合金、鉄、コバール(Kovar)等を採用することができる。金属板は、上述の材料からなる母材の表面に、表面処理層(図示せず)を設けたものでもよい。表面処理層としては、例えば、Au膜、Al膜、Ag膜、Ni膜とPd膜とAu膜との積層膜、Ni膜とAu膜との積層膜、Ag膜とPd膜とAuAg合金膜との積層膜等を採用することができる。表面処理層は、めっき層等により構成することが好ましい。要するに、表面処理層は、めっき法により形成することが好ましい。 As the material of the metal plate, a metal having high thermal conductivity is preferable. For this reason, copper can be adopted as the material of the metal plate. The material of the metal plate is not limited to copper, and for example, aluminum, aluminum alloy, silver, phosphor bronze, copper alloy (for example, 42 alloy), nickel alloy, iron, Kovar, or the like can be employed. The metal plate may be provided with a surface treatment layer (not shown) on the surface of a base material made of the above-described material. Examples of the surface treatment layer include an Au film, an Al film, an Ag film, a laminated film of an Ni film, a Pd film, and an Au film, a laminated film of an Ni film, an Au film, an Ag film, a Pd film, and an AuAg alloy film. A laminated film or the like can be employed. The surface treatment layer is preferably composed of a plating layer or the like. In short, the surface treatment layer is preferably formed by a plating method.
 第1導体層の材料としては、例えば、銅、リン青銅、銅合金(例えば、42アロイ等)、ニッケル合金、アルミニウム、アルミニウム合金等を採用することができる。第1導体層は、例えば、金属箔、金属膜等を利用して形成することができる。第1導体層は、例えば、Cu層とNi層とAu層との積層構造を有し、最表面側がAu層となっているのが好ましい。第1導体層は、積層構造を有していてもよいし、単層構造でもよい。 As the material of the first conductor layer, for example, copper, phosphor bronze, copper alloy (for example, 42 alloy), nickel alloy, aluminum, aluminum alloy, or the like can be employed. The first conductor layer can be formed using, for example, a metal foil, a metal film, or the like. The first conductor layer preferably has, for example, a laminated structure of a Cu layer, a Ni layer, and an Au layer, and the outermost surface side is preferably an Au layer. The first conductor layer may have a laminated structure or a single layer structure.
 基台21は、電気絶縁層において第1導体層が形成されていない部位と第1導体層とを覆う保護層を備えてもよい。保護層としては、例えば、白色系のレジスト層により構成することができる。レジスト層の材料としては、例えば、白色レジストを採用することができる。白色レジストは、例えば、白色顔料を含有した樹脂である。白色顔料としては、例えば、硫酸バリウム(BaSO4)、二酸化チタン(TiO2)等が挙げられる。樹脂としては、例えば、シリコーン樹脂等が挙げられる。白色レジストとしては、例えば、株式会社朝日ラバーのシリコーン製の白色レジスト材である“ASA COLOR(登録商標) RESIST INK”等を採用することができる。白色系のレジスト層は、例えば、塗布法により形成することができる。 The base 21 may include a protective layer that covers a portion of the electrical insulating layer where the first conductor layer is not formed and the first conductor layer. As the protective layer, for example, a white resist layer can be used. As a material for the resist layer, for example, a white resist can be employed. The white resist is, for example, a resin containing a white pigment. Examples of the white pigment include barium sulfate (BaSO 4 ) and titanium dioxide (TiO 2 ). Examples of the resin include a silicone resin. As the white resist, for example, “ASA COLOR (registered trademark) RESIST INK”, which is a white resist material made of silicone manufactured by Asahi Rubber Co., Ltd., can be used. The white resist layer can be formed by, for example, a coating method.
 紫外線発光装置10は、保護層が白色系のレジスト層であることにより、紫外線発光素子1から実装基板2に入射する光を、保護層の表面で反射させやすくなる。これにより、紫外線発光装置10は、紫外線発光素子1から放射された光が実装基板2に吸収されるのを抑制することが可能となる。よって、紫外線発光装置10は、外部への光取り出し効率の向上による光出力の向上を図ることが可能となる。 In the ultraviolet light emitting device 10, since the protective layer is a white resist layer, the light incident on the mounting substrate 2 from the ultraviolet light emitting element 1 is easily reflected on the surface of the protective layer. Thereby, the ultraviolet light emitting device 10 can suppress the light emitted from the ultraviolet light emitting element 1 from being absorbed by the mounting substrate 2. Therefore, the ultraviolet light emitting device 10 can improve the light output by improving the light extraction efficiency to the outside.
 紫外線発光装置10は、紫外線発光素子1が、電気絶縁層よりも熱伝導率の高い材料により形成された板状のサブマウント部材(図示せず)を介して金属板に搭載された構成としてもよい。これにより、紫外線発光装置10では、紫外線発光素子1で発生した熱の伝熱経路として、紫外線発光素子1で発生した熱を、電気絶縁層を介さずにサブマウント部材及び金属板に伝熱させる伝熱経路が形成される。よって、紫外線発光装置10は、放熱性を向上させることが可能となる。 The ultraviolet light emitting device 10 may have a configuration in which the ultraviolet light emitting element 1 is mounted on a metal plate via a plate-shaped submount member (not shown) formed of a material having a higher thermal conductivity than the electrical insulating layer. Good. Thereby, in the ultraviolet light emitting device 10, the heat generated in the ultraviolet light emitting element 1 is transferred to the submount member and the metal plate without passing through the electrical insulating layer as a heat transfer path of the heat generated in the ultraviolet light emitting element 1. A heat transfer path is formed. Therefore, the ultraviolet light emitting device 10 can improve heat dissipation.
 サブマウント部材の平面サイズは、複数個の紫外線発光素子1を配置することができるサイズに設定するのが好ましい。この場合、サブマウント部材の平面サイズは、複数個の紫外線発光素子1を合わせたサイズよりも大きく設定するのが好ましい。サブマウント部材の材料としては、電気絶縁層よりも熱伝導率が高く、且つ、その線膨張係数が金属板の線膨張係数と紫外線発光素子1の線膨張係数との間の値にある材料が好ましい。これにより、紫外線発光装置10は、紫外線発光素子1とサブマウント部材との接合部(以下、「第1接合部」という。)に熱応力に起因して割れが発生するのを抑制することが可能となる。サブマウント部材の材料としては、例えば、AlNを採用することができる。サブマウント部材には、複数個の紫外線発光素子1を例えば直列接続可能となるように、第2の所定のパターンで形成された導体層(以下、「第2導体層」という。)を設ければよい。この場合、第1導体層は、サブマウント部材上に形成された直列回路に給電可能となるように第3の所定のパターンで形成すればよい。第2導体層は、複数個の紫外線発光素子1を並列接続可能に構成してもよいし、直並列接続可能に構成してもよい。要するに、紫外線発光装置10は、複数個の紫外線発光素子1がサブマウント部材上で直列接続された構成を有していてもよいし、複数個の紫外線発光素子1がサブマウント部材上で並列接続された構成を有してもよいし、複数個の紫外線発光素子1がサブマウント部材上で直並列接続された構成を有してもよい。 The planar size of the submount member is preferably set to a size that allows a plurality of ultraviolet light emitting elements 1 to be disposed. In this case, the planar size of the submount member is preferably set larger than the combined size of the plurality of ultraviolet light emitting elements 1. As a material of the submount member, a material having a thermal conductivity higher than that of the electrical insulating layer and having a linear expansion coefficient between the linear expansion coefficient of the metal plate and the linear expansion coefficient of the ultraviolet light emitting element 1 is used. preferable. As a result, the ultraviolet light emitting device 10 can suppress the occurrence of cracks due to thermal stress at the joint between the ultraviolet light emitting element 1 and the submount member (hereinafter referred to as “first joint”). It becomes possible. As a material of the submount member, for example, AlN can be adopted. The submount member is provided with a conductor layer (hereinafter referred to as “second conductor layer”) formed in a second predetermined pattern so that a plurality of ultraviolet light emitting elements 1 can be connected in series, for example. That's fine. In this case, the first conductor layer may be formed in a third predetermined pattern so that power can be supplied to the series circuit formed on the submount member. The second conductor layer may be configured so that a plurality of ultraviolet light emitting elements 1 can be connected in parallel, or may be configured so that series-parallel connection is possible. In short, the ultraviolet light emitting device 10 may have a configuration in which a plurality of ultraviolet light emitting elements 1 are connected in series on a submount member, or a plurality of ultraviolet light emitting elements 1 are connected in parallel on a submount member. Alternatively, a plurality of ultraviolet light emitting elements 1 may be connected in series and parallel on the submount member.
 サブマウント部材は、接合部(以下、「第2接合部」という。)を介して金属板と接合すればよい。第2接合部の材料としては、例えば、AuSn、SnAgCu等の鉛フリー半田が好ましい。紫外線発光装置10は、第2接合部の材料としてAuSnを採用する場合、製造時において、金属板の第1面における接合表面に予めAu又はAgからなる金属層を形成する前処理が必要である。第2接合部は、導電ペーストから形成してもよい。導電ペーストとしては、例えば、銀ペースト、金ペースト、銅ペースト等を採用することができる。 The submount member may be joined to the metal plate via a joint (hereinafter referred to as “second joint”). As a material for the second bonding portion, for example, lead-free solder such as AuSn or SnAgCu is preferable. When the ultraviolet light emitting device 10 employs AuSn as the material of the second bonding portion, it is necessary to perform a pretreatment in which a metal layer made of Au or Ag is previously formed on the bonding surface of the first surface of the metal plate at the time of manufacture. . The second joint portion may be formed from a conductive paste. As the conductive paste, for example, a silver paste, a gold paste, a copper paste, or the like can be employed.
 第2導体層の材料としては、例えば、Au、Ag等を採用することができる。紫外線発光装置10は、紫外線発光素子1がバンプ7a、7bを介して第2導体層に電気的に接続された構成の場合、第2導体層の材料がバンプ7a、7bの材料と同じであるのが好ましい。紫外線発光装置10は、例えば、バンプ7a、7bの材料がAuの場合、第2導体層の材料もAuであるのが好ましい。ただし、第2導体層は、単層構造に限らず、多層構造でもよい。第2導体層は、多層構造の場合、最表層がバンプ7a、7bの材料と同じ材料により形成されているのが好ましい。 As the material of the second conductor layer, for example, Au, Ag or the like can be adopted. In the ultraviolet light emitting device 10, when the ultraviolet light emitting element 1 is electrically connected to the second conductor layer via the bumps 7a and 7b, the material of the second conductor layer is the same as the material of the bumps 7a and 7b. Is preferred. In the ultraviolet light emitting device 10, for example, when the material of the bumps 7a and 7b is Au, the material of the second conductor layer is preferably Au. However, the second conductor layer is not limited to a single layer structure, and may be a multilayer structure. When the second conductor layer has a multilayer structure, the outermost layer is preferably formed of the same material as that of the bumps 7a and 7b.
 サブマウント部材の材料は、AlNに限らず、例えば、Si、CuW、複合SiC、等を採用してもよい。紫外線発光装置10は、サブマウント部材の材料として絶縁体でないSiやCuW等を採用する場合、SiやCuW等からなる母材の表面に絶縁膜を設け、その絶縁膜上に第2導体層を形成した構成とすればよい。 The material of the submount member is not limited to AlN, and for example, Si, CuW, composite SiC, or the like may be employed. When the ultraviolet light emitting device 10 employs non-insulator Si, CuW, or the like as the material of the submount member, an insulating film is provided on the surface of the base material made of Si, CuW, etc., and the second conductor layer is formed on the insulating film. What is necessary is just to set it as the formed structure.
 紫外線発光装置10は、紫外線発光素子1が厚み方向の一面側に第1電極、他面側に第2電極を有する紫外LEDチップの場合、紫外線発光素子1とサブマウント部材とを、例えば、半田、導電ペースト等を用いて接合することができる。半田としては、SnPb、AuSn、SnAgCu等が挙げられる。導電ペーストとしては、例えば、銀ペースト等が挙げられる。紫外線発光装置10は、紫外線発光素子1とサブマウント部材の第2導体層とが、AuSn、SnAgCu等の鉛フリー半田により接合されているのが好ましい。この場合、第2導体層は、Au層、Ag層などの金属層により構成されているのが好ましい。第2導体層は、例えば、蒸着法、スパッタ法、CVD(Chemical Vapor Deposition)法等を利用して形成することができる。 When the ultraviolet light emitting device 10 is an ultraviolet LED chip having the first electrode on one surface side in the thickness direction and the second electrode on the other surface side, the ultraviolet light emitting device 1 and the submount member are, for example, soldered. Bonding can be performed using a conductive paste or the like. Examples of solder include SnPb, AuSn, SnAgCu, and the like. Examples of the conductive paste include silver paste. In the ultraviolet light emitting device 10, the ultraviolet light emitting element 1 and the second conductor layer of the submount member are preferably joined by lead-free solder such as AuSn or SnAgCu. In this case, the second conductor layer is preferably composed of a metal layer such as an Au layer or an Ag layer. The second conductor layer can be formed using, for example, an evaporation method, a sputtering method, a CVD (Chemical Vapor Deposition) method, or the like.
 紫外線発光装置10は、紫外線発光素子1が、厚み方向の一面側に第1電極、他面側に第2電極を有する紫外LEDチップの場合、サブマウント部材が、紫外線発光素子1と金属板との線膨張率差に起因して紫外線発光素子1に働く応力を緩和する機能を有する。サブマウント部材は、応力を緩和する機能だけでなく、紫外線発光素子1で発生した熱を金属板において紫外線発光素子1のチップサイズよりも広い範囲に伝熱させる熱伝導機能を有する。したがって、紫外線発光装置10は、紫外線発光素子1で発生した熱をサブマウント部材及び金属板を介して効率良く放熱させることが可能となる。 In the ultraviolet light emitting device 10, when the ultraviolet light emitting element 1 is an ultraviolet LED chip having a first electrode on one surface side in the thickness direction and a second electrode on the other surface side, the submount member includes the ultraviolet light emitting element 1 and a metal plate. It has a function to relieve stress acting on the ultraviolet light emitting element 1 due to the difference in linear expansion coefficient. The submount member has not only a function of relieving stress, but also a heat conduction function of transferring heat generated in the ultraviolet light emitting element 1 to a range wider than the chip size of the ultraviolet light emitting element 1 on the metal plate. Therefore, the ultraviolet light emitting device 10 can efficiently dissipate the heat generated in the ultraviolet light emitting element 1 through the submount member and the metal plate.
 リード端子25は、ピン状に形成されており、基台21の厚み方向に貫通している。基台21には、リード端子25が貫通する貫通孔が形成されている。リード端子25と貫通孔の内周面との間には、電気絶縁材料(例えば、ガラス等)からなる封止部(図示せず)が設けられている。2本のリード端子25は、外部からの給電用の端子である。各リード端子25は、基台21の第1面21a側において、第1導体層と図示しないワイヤ(以下、「第4ワイヤ」という。)を介して電気的に接続されている。第4ワイヤとしては、例えば、Au線を採用することができる。第4ワイヤとしては、Au線に限らず、Al線を採用してもよい。Au線としては、例えば、線径が18μm~25μm程度の細線を採用することができる。Al線としては、例えば、線径が25μm~200μmの細線を採用することができる。第4ワイヤとしてAl線を採用した場合には、Au線を採用した場合に比べて、大電流を流すことが可能となる。なお、第4ワイヤとしては、Au線やAl線に限らず、Al-Si線、Cu線等を採用してもよい。 The lead terminal 25 is formed in a pin shape and penetrates in the thickness direction of the base 21. The base 21 has a through hole through which the lead terminal 25 passes. A sealing portion (not shown) made of an electrically insulating material (for example, glass) is provided between the lead terminal 25 and the inner peripheral surface of the through hole. The two lead terminals 25 are terminals for power feeding from the outside. Each lead terminal 25 is electrically connected to the first conductor layer on the first surface 21 a side of the base 21 via a wire (not shown) (hereinafter referred to as “fourth wire”). For example, an Au wire can be adopted as the fourth wire. The fourth wire is not limited to the Au wire but may be an Al wire. As the Au wire, for example, a thin wire having a wire diameter of about 18 μm to 25 μm can be used. As the Al wire, for example, a thin wire having a wire diameter of 25 μm to 200 μm can be adopted. When an Al wire is used as the fourth wire, a larger current can be passed than when an Au wire is used. The fourth wire is not limited to Au wire or Al wire, but may be Al—Si wire, Cu wire, or the like.
 実装基板2は、給電用の端子が、ピン状のリード端子25により構成されたものに限らない。実装基板2は、金属板の第1面側とは反対の第2面側に、紫外線発光装置10をプリント基板等に表面実装するための導体層(以下、「第3導体層」という。)が、給電用の端子として設けられた構成でもよい。この場合、実装基板2は、第3導体層と金属板との間に、電気絶縁材料からなる絶縁層を備えた構成とすればよい。また、実装基板2は、基台21の第1面21a側においてレンズ支持部材31よりも外側で露出する領域を有し、当該領域に第1導体層の一部が給電用の端子として設けられた構成でもよい。 The mounting substrate 2 is not limited to the one in which the power supply terminal is configured by the pin-shaped lead terminal 25. The mounting substrate 2 is a conductor layer (hereinafter referred to as “third conductor layer”) for surface mounting the ultraviolet light emitting device 10 on a printed circuit board or the like on the second surface side opposite to the first surface side of the metal plate. However, the structure provided as a terminal for electric power feeding may be sufficient. In this case, the mounting substrate 2 may be configured to include an insulating layer made of an electrically insulating material between the third conductor layer and the metal plate. The mounting substrate 2 has a region exposed outside the lens support member 31 on the first surface 21a side of the base 21, and a part of the first conductor layer is provided as a power supply terminal in the region. Other configurations may be used.
 レンズ支持部材31は、実装基板2の第1面2a側で実装基板2における紫外線発光素子1の実装領域を囲んで配置されている。逆に言えば、実装基板2は、平面視においてレンズ支持部材31の内周線に囲まれた領域が、実装領域を構成する。つまり、実装領域は、レンズ支持部材31により規定される。 The lens support member 31 is disposed on the first surface 2 a side of the mounting substrate 2 so as to surround the mounting region of the ultraviolet light emitting element 1 on the mounting substrate 2. In other words, in the mounting substrate 2, a region surrounded by the inner peripheral line of the lens support member 31 in a plan view constitutes a mounting region. That is, the mounting area is defined by the lens support member 31.
 レンズ支持部材31は、筒状の形状に形成されている。より具体的には、レンズ支持部材31は、円筒状の形状に形成されている。レンズ支持部材31は、実装基板2に近い側の端部(以下、「第1端部」という。)31aから外方へ突出したフランジ31bを有している。レンズ支持部材31は、フランジ31bが、実装基板2のフランジ21bに重ねて接合されている。要するに、紫外線発光装置10は、レンズ支持部材31のフランジ31bと実装基板2のフランジ21bとが接合されている。 The lens support member 31 is formed in a cylindrical shape. More specifically, the lens support member 31 is formed in a cylindrical shape. The lens support member 31 has a flange 31 b that protrudes outward from an end portion (hereinafter referred to as “first end portion”) 31 a on the side close to the mounting substrate 2. The lens support member 31 has a flange 31 b joined to the flange 21 b of the mounting substrate 2 so as to overlap. In short, in the ultraviolet light emitting device 10, the flange 31b of the lens support member 31 and the flange 21b of the mounting substrate 2 are joined.
 レンズ支持部材31の内径は、3mmに設定してあるが、この値に限定するものではない。 The inner diameter of the lens support member 31 is set to 3 mm, but is not limited to this value.
 レンズ支持部材31は、円筒状に限らず、筒状の形状であればよく、例えば、角筒状でもよい。フランジ31bの外周形状は、円形状である。フランジ31bの外周形状は、円形状に限らず、例えば、楕円形状や多角形状等でもよい。 The lens support member 31 is not limited to a cylindrical shape, and may be a cylindrical shape, for example, a rectangular tube shape. The outer peripheral shape of the flange 31b is circular. The outer peripheral shape of the flange 31b is not limited to a circular shape, and may be, for example, an elliptical shape or a polygonal shape.
 レンズ支持部材31の材料である金属としては、ステンレス鋼を採用している。これにより、紫外線発光装置10は、紫外線発光素子1からの紫外線によるレンズ支持部材31の経時劣化を抑制することが可能となる。また、レンズ支持部材31は、ステンレス鋼により形成することによって、放熱性、生産性及び耐食性等を向上させることが可能となる。レンズ支持部材31は、例えば、ステンレス鋼板に対してプレス加工や削り出し加工等の加工を施すことにより形成すればよい。ステンレス鋼としては、例えば、Fe-Cr-Ni合金鋼(オーステナイト系ステンレス鋼)等を採用することができる。オーステナイト系ステンレス鋼としては、例えば、SUS304等を採用することができる。 Stainless steel is used as the metal that is the material of the lens support member 31. Thereby, the ultraviolet light emitting device 10 can suppress deterioration of the lens support member 31 with time due to ultraviolet rays from the ultraviolet light emitting element 1. Further, the lens support member 31 can be made of stainless steel to improve heat dissipation, productivity, corrosion resistance, and the like. The lens support member 31 may be formed, for example, by subjecting a stainless steel plate to processing such as press processing or machining. As the stainless steel, for example, Fe—Cr—Ni alloy steel (austenitic stainless steel) or the like can be employed. As an austenitic stainless steel, SUS304 etc. are employable, for example.
 レンズ支持部材31の材料である金属は、ステンレス鋼に限らず、例えば、コバール(Kovar)を採用することができる。コバールは、鉄にニッケル、コバルトを配合した合金である。コバールの成分比の一例は、重量%で、鉄:53.5重量%、ニッケル:29重量%、コバルト:17重量%、シリコン:0.2重量%、マンガン:0.3重量%、である。コバールの成分比は、特に限定するものではない。紫外線発光装置10は、レンズ支持部材31の材料である金属がコバールの場合、レンズ支持部材31として、例えば、コバールからなる母体の表面を酸化することにより酸化膜が形成された構成のものを採用してもよい。 The metal that is the material of the lens support member 31 is not limited to stainless steel, and for example, Kovar can be used. Kovar is an alloy containing iron and nickel. An example of the component ratio of Kovar is, by weight, iron: 53.5% by weight, nickel: 29% by weight, cobalt: 17% by weight, silicon: 0.2% by weight, manganese: 0.3% by weight. . The component ratio of Kovar is not particularly limited. When the metal that is the material of the lens support member 31 is Kovar, the ultraviolet light emitting device 10 employs a configuration in which an oxide film is formed as a lens support member 31 by, for example, oxidizing the surface of a mother body made of Kovar. May be.
 レンズ32は、両凸型の非球面レンズである。レンズ32は、第1レンズ面32aaが紫外線発光素子1側に位置し、第2レンズ面32abが紫外線発光素子1側とは反対側に位置している。第1レンズ面32aaは、非球面の第1凸曲面である。第2レンズ面32abは、非球面の第2凸曲面である。第1凸曲面及び第2凸曲面は、それぞれ、曲率が連続的に変化している。第1レンズ面32aaと第2レンズ面32abとは、同じ形状でもよいし、異なる形状でもよい。 The lens 32 is a biconvex aspherical lens. The lens 32 has a first lens surface 32aa located on the ultraviolet light emitting element 1 side and a second lens surface 32ab located on the opposite side to the ultraviolet light emitting element 1 side. The first lens surface 32aa is an aspheric first convex curved surface. The second lens surface 32ab is an aspherical second convex curved surface. The curvatures of the first convex curved surface and the second convex curved surface change continuously. The first lens surface 32aa and the second lens surface 32ab may have the same shape or different shapes.
 レンズ32を構成する非球面レンズは、両凸型の非球面レンズに限らず、例えば、平凸型の非球面レンズや平凹型の非球面レンズでもよい。 The aspheric lens constituting the lens 32 is not limited to a biconvex aspheric lens, and may be a plano-convex aspheric lens or a plano-concave aspheric lens, for example.
 ところで、紫外線の配光を制御するために用いられるレンズの材料は、石英ガラスが一般的である。しかしながら、石英ガラスの屈伏点は、1280℃である。このため、石英ガラスを材料とするレンズは、成形型(金型等)を用いた成形により形成することが、極めて難しい。これは、成形型には、ガラスとの固着を防ぐために離型性を有する離型膜を設ける必要があるが、石英ガラスの屈伏点が離型膜の耐熱温度を超えているからである。 Incidentally, quartz glass is generally used as a lens material used for controlling the light distribution of ultraviolet rays. However, the yield point of quartz glass is 1280 ° C. For this reason, it is extremely difficult to form a lens made of quartz glass by molding using a molding die (such as a mold). This is because the mold must be provided with a release film having releasability in order to prevent sticking to the glass, but the yield point of quartz glass exceeds the heat resistance temperature of the release film.
 図3に示した紫外線発光素子パッケージ210における集光レンズ217は、石英ガラスからなるので、研削加工により半球状に加工されていると推考される。 Since the condenser lens 217 in the ultraviolet light emitting element package 210 shown in FIG. 3 is made of quartz glass, it is presumed that it is processed into a hemisphere by grinding.
 そして、本願発明者らは、離型膜の耐熱性を考慮して、レンズ32の材料として、屈伏点が600℃以下のガラスを用いることを考えた。本実施形態の紫外線発光装置10では、レンズ32の材料として、屈伏点が600℃以下のガラスを採用している。これにより、紫外線発光装置10は、レンズ32を、成形により形成された非球面レンズとすることが可能となる。よって、紫外線発光装置10は、レンズ32が非球面レンズであることにより、半球状のレンズである場合に比べて、レンズ32の薄型化を図ることが可能となり、また、光取り出し効率の向上を図ることが可能となる。また、紫外線発光装置10の製造にあたっては、レンズ32を成形により形成することができるので、研削により形成する場合に比べて、レンズ32の生産性を向上させることが可能となる。 The inventors of the present application have considered using glass having a yield point of 600 ° C. or less as the material of the lens 32 in consideration of the heat resistance of the release film. In the ultraviolet light emitting device 10 of the present embodiment, glass having a yield point of 600 ° C. or less is adopted as the material of the lens 32. Thereby, the ultraviolet light emitting device 10 can make the lens 32 an aspherical lens formed by molding. Therefore, the ultraviolet light emitting device 10 can reduce the thickness of the lens 32 and improve the light extraction efficiency as compared with the case where the lens 32 is a hemispherical lens. It becomes possible to plan. Further, when the ultraviolet light emitting device 10 is manufactured, the lens 32 can be formed by molding, so that the productivity of the lens 32 can be improved as compared with the case where it is formed by grinding.
 レンズ32の材料であるガラスとしては、紫外線発光素子1が放射する紫外線に対する透過率が70%以上であるのが好ましく、80%以上であるのがより好ましい。このため、レンズ32の材料であるガラスとしては、屈伏点が600℃以下で且つ深紫外波長域の紫外線(例えば、波長が265nmの紫外線)に対する透過率が80%であるという条件を満たす硼珪酸ガラスを採用している。この種の硼珪酸ガラスとしては、例えば、SCHOTT社製の8337Bを採用することができる。 The glass that is the material of the lens 32 preferably has a transmittance of 70% or more, more preferably 80% or more, for the ultraviolet rays emitted from the ultraviolet light emitting element 1. For this reason, the glass used as the material of the lens 32 is borosilicate that satisfies the condition that the yield point is 600 ° C. or less and the transmittance for ultraviolet rays in the deep ultraviolet wavelength region (for example, ultraviolet rays having a wavelength of 265 nm) is 80%. Glass is used. As this type of borosilicate glass, for example, 8337B manufactured by SCHOTT can be used.
 これにより、紫外線発光装置10は、紫外線発光素子1から放射される紫外線に対するレンズ32の透過率を80%以上とすることが可能となる。紫外線発光装置10は、例えば、高効率白色照明、殺菌、医療、環境汚染物質を高速で処理する用途等の分野で利用する場合、紫外線発光素子1が、210nm~280nmの紫外波長域に発光波長を有するのが好ましい。つまり、紫外線発光素子1は、UV-Cの波長域に発光波長を有するのが好ましい。UV-Cの波長域は、例えば国際照明委員会(CIE)における紫外線の波長による分類によれば、100nm~280nmである。 Thereby, the ultraviolet light emitting device 10 can make the transmittance of the lens 32 with respect to the ultraviolet rays emitted from the ultraviolet light emitting element 1 80% or more. For example, when the ultraviolet light emitting device 10 is used in fields such as high-efficiency white illumination, sterilization, medical treatment, and high-speed treatment of environmental pollutants, the ultraviolet light emitting element 1 emits light in the ultraviolet wavelength region of 210 nm to 280 nm. It is preferable to have. That is, it is preferable that the ultraviolet light emitting element 1 has an emission wavelength in the UV-C wavelength region. The wavelength range of UV-C is, for example, 100 nm to 280 nm according to the classification by the wavelength of ultraviolet rays in the International Commission on Illumination (CIE).
 レンズ支持部材31の材料である金属の線膨張係数は、レンズ32の材料である硼珪酸ガラスの線膨張係数よりも大きいのが好ましい。ただし、レンズ32とレンズ支持部材31との線膨張係数差に起因してレンズ32に発生する応力を低減する観点からは、硼珪酸ガラスと金属との線膨張係数差が小さいほうが好ましい。 The linear expansion coefficient of the metal that is the material of the lens support member 31 is preferably larger than the linear expansion coefficient of the borosilicate glass that is the material of the lens 32. However, from the viewpoint of reducing the stress generated in the lens 32 due to the difference in linear expansion coefficient between the lens 32 and the lens support member 31, it is preferable that the difference in linear expansion coefficient between the borosilicate glass and the metal is small.
 紫外線発光装置10は、上述のように、レンズ32とレンズ支持部材31とが、直接接合されている。 In the ultraviolet light emitting device 10, the lens 32 and the lens support member 31 are directly bonded as described above.
 レンズ32とレンズ支持部材31とは、レンズ32の外周面とレンズ支持部材31における実装基板2から遠い側の端部(以下、「第2端部」という。)31cの内周面とが、直接接合されているのが好ましい。これにより、紫外線発光装置10は、図4に示した紫外線発光装置310における透光性部材323のように集光レンズ323aに連続一体に形成された平坦部を備えている場合に比べて、ガラスの使用量を低減することが可能となる。また、紫外線発光装置10は、レンズ支持部材31の材料である金属の線膨張係数が、レンズ32の材料である硼珪酸ガラスの線膨張係数よりも大きいので、レンズ32の成形と同時にレンズ32をレンズ支持部材31に接合することにより、レンズ支持部材31によりレンズ32を締め付けることが可能となる。紫外線発光装置10は、レンズ支持部材31が筒状の形状であるのが好ましいが、角筒状よりも円筒状であるのが、より好ましい。これは、レンズ支持部材31が円筒状であることにより、レンズ32の成形時にレンズ支持部材31からレンズ32にかかる応力を均一化することが可能となり、レンズ32の品質の安定性を図ることが可能となるからである。レンズ支持部材31は、内周形状が正多角形状の場合、円形により近くなる正多角形状のほうが、レンズ32の品質の安定性を図るうえで好ましい。 The lens 32 and the lens support member 31 include an outer peripheral surface of the lens 32 and an inner peripheral surface of an end portion (hereinafter referred to as a “second end portion”) 31 c far from the mounting substrate 2 in the lens support member 31. Direct bonding is preferred. As a result, the ultraviolet light emitting device 10 is more glassy than the case where the flat portion formed integrally with the condenser lens 323a is provided like the translucent member 323 in the ultraviolet light emitting device 310 shown in FIG. It becomes possible to reduce the usage-amount of. Moreover, since the linear expansion coefficient of the metal which is the material of the lens support member 31 is larger than the linear expansion coefficient of the borosilicate glass which is the material of the lens 32, the ultraviolet light emitting device 10 By joining to the lens support member 31, the lens 32 can be tightened by the lens support member 31. In the ultraviolet light emitting device 10, the lens support member 31 is preferably in a cylindrical shape, but more preferably in a cylindrical shape rather than a rectangular tube shape. This is because the lens support member 31 is cylindrical, so that the stress applied from the lens support member 31 to the lens 32 during molding of the lens 32 can be made uniform, and the quality of the lens 32 can be stabilized. This is because it becomes possible. When the inner peripheral shape of the lens support member 31 is a regular polygonal shape, a regular polygonal shape that is closer to a circle is more preferable in terms of stability of the quality of the lens 32.
 レンズ支持部材31とレンズ32とからなる蓋3は、実装基板2に接合されている。蓋3は、実装基板2の第1面2a側で複数個の紫外線発光素子1を覆っている。 The lid 3 composed of the lens support member 31 and the lens 32 is joined to the mounting substrate 2. The lid 3 covers the plurality of ultraviolet light emitting elements 1 on the first surface 2 a side of the mounting substrate 2.
 蓋3の製造にあたっては、下記の第1ステップ、第2ステップ及び第3ステップを順次行う。 In manufacturing the lid 3, the following first step, second step and third step are sequentially performed.
 第1ステップでは、下型、上型、レンズ32の元になるレンズ素材、及び外枠、を配置する。下型は、レンズ支持部材31の第1端部31a側からレンズ支持部材31の内側に嵌め込まれる型である。上型は、レンズ支持部材31の第2端部31c側で下型に対向する型である。外枠は、上型とレンズ支持部材31とが嵌め込まれる筒状の枠である。本明細書では、下型と上型と外枠とを併せて成形型と称する。 In the first step, the lower mold, the upper mold, the lens material from which the lens 32 is based, and the outer frame are arranged. The lower mold is a mold that is fitted into the lens support member 31 from the first end 31 a side of the lens support member 31. The upper mold is a mold that faces the lower mold on the second end portion 31 c side of the lens support member 31. The outer frame is a cylindrical frame into which the upper mold and the lens support member 31 are fitted. In this specification, the lower mold, the upper mold, and the outer frame are collectively referred to as a mold.
 下型は、上面が、レンズ32の第1レンズ面32aaの形状に対応した第1成形面を構成する。上型は、下面が、レンズ32の第2レンズ面32abの形状に対応した第2成形面を構成する。第1成形面及び第2成形面は、鏡面性を有するのが好ましい。「鏡面性を有する」とは、例えば、JIS B 0601-2001及びISO 4287-1997で規定されている算術平均粗さRaが100nm以下であることを意味する。 The upper surface of the lower mold constitutes a first molding surface corresponding to the shape of the first lens surface 32aa of the lens 32. In the upper mold, the lower surface forms a second molding surface corresponding to the shape of the second lens surface 32ab of the lens 32. The first molding surface and the second molding surface preferably have mirror properties. “Having specularity” means, for example, that the arithmetic average roughness Ra defined by JIS B 0601-2001 and ISO 4287-1997 is 100 nm or less.
 レンズ素材の材料は、上述の硼珪酸ガラスである。これにより、蓋3の製造方法では、レンズ32における第1レンズ面32aa及び第2レンズ面32abの形状精度の高精度化を図ることが可能となる。 The material of the lens material is the above-described borosilicate glass. Thereby, in the manufacturing method of the lid | cover 3, it becomes possible to achieve the high precision of the shape accuracy of the 1st lens surface 32aa and the 2nd lens surface 32ab in the lens 32. FIG.
 レンズ素材の形状は、球状としている。レンズ素材は、球状に限らず、例えば、円板状等の板状としてもよい。 The shape of the lens material is spherical. The lens material is not limited to a spherical shape, and may be a plate shape such as a disk shape.
 外枠は、円筒状の形状としてある。外枠は、下型の中心軸と上型の中心軸とを一直線上に揃える機能を有する。また、外枠は、レンズ支持部材31、下型及び上型を保持する機能を有する。 The outer frame has a cylindrical shape. The outer frame has a function of aligning the center axis of the lower mold and the center axis of the upper mold in a straight line. The outer frame has a function of holding the lens support member 31, the lower mold, and the upper mold.
 下型、上型及び外枠は、例えば、窒化珪素、炭化珪素、グラファイト等から形成されたものを採用することができる。下型及び上型には、離型膜が設けられている。 As the lower mold, the upper mold, and the outer frame, for example, those formed from silicon nitride, silicon carbide, graphite, or the like can be used. A release film is provided on the lower mold and the upper mold.
 第2ステップでは、外枠の外側からレンズ素材を加熱して軟化させてから冷却することによりレンズ32を成形し且つレンズ32とレンズ支持部材31とを溶着させる。 In the second step, the lens material is heated from the outside of the outer frame to be softened and then cooled to form the lens 32 and the lens 32 and the lens support member 31 are welded together.
 第3ステップでは、蓋3を下型、上型及び外枠から取り外す。要するに、第3ステップでは、離型を行う。 In the third step, the lid 3 is removed from the lower mold, the upper mold and the outer frame. In short, in the third step, release is performed.
 以上説明した蓋3の製造方法は、一例であり、特に限定するものではない。 The method for manufacturing the lid 3 described above is an example and is not particularly limited.
 本実施形態の紫外線発光装置10は、実装基板2と、実装基板2の第1面2a側に実装された紫外線発光素子1と、実装基板2の第1面2a側で紫外線発光素子1から離れて配置され紫外線発光素子1から放射される紫外線の配光を制御するレンズ32と、実装基板2に固定されレンズ32を支持する金属製のレンズ支持部材31と、を備える。また、紫外線発光装置10は、レンズ32が、屈伏点が600℃以下のガラスにより形成された非球面レンズであり、レンズ32と金属製のレンズ支持部材31とが、直接接合されている。これにより、紫外線発光装置10は、レンズの薄型化を図ることが可能で且つ信頼性の向上を図ることが可能となる。 The ultraviolet light emitting device 10 of the present embodiment is separated from the ultraviolet light emitting element 1 on the mounting substrate 2, the ultraviolet light emitting element 1 mounted on the first surface 2 a side of the mounting substrate 2, and the first surface 2 a side of the mounting substrate 2. And a lens 32 that controls the distribution of ultraviolet rays emitted from the ultraviolet light emitting element 1 and a metal lens support member 31 that is fixed to the mounting substrate 2 and supports the lens 32. Further, in the ultraviolet light emitting device 10, the lens 32 is an aspherical lens formed of glass having a yield point of 600 ° C. or less, and the lens 32 and the metal lens support member 31 are directly bonded. As a result, the ultraviolet light emitting device 10 can reduce the thickness of the lens and improve the reliability.
 紫外線発光装置10は、レンズ32と金属製のレンズ支持部材31とが、接着剤を介さずに直接接合されているので、信頼性の向上を図ることが可能となる。また、紫外線発光装置10は、レンズ32にフランジを設ける必要がないので、レンズ32の小型化を図れ、ガラスの使用量の低減による低コスト化を図ることが可能となる。 In the ultraviolet light emitting device 10, since the lens 32 and the metal lens support member 31 are directly joined without using an adhesive, it is possible to improve the reliability. Further, since the ultraviolet light emitting device 10 does not need to be provided with a flange on the lens 32, the lens 32 can be reduced in size, and the cost can be reduced by reducing the amount of glass used.
 上述の実施形態等において説明した各図は、模式的なものであり、各構成要素の大きさや厚さそれぞれの比が、必ずしも実際のものの寸法比を反映しているとは限らない。また、実施形態等に記載した材料、数値等は、好ましいものを例示しているだけであり、それに限定するものではない。更に、本願発明は、その技術的思想の範囲を逸脱しない範囲で、構成に適宜変更を加えることが可能である。 The drawings described in the above-described embodiments and the like are schematic, and the ratio of the size and thickness of each component does not necessarily reflect the actual dimensional ratio. In addition, the materials, numerical values, and the like described in the embodiments and the like are merely preferable examples and are not limited thereto. Furthermore, the present invention can be appropriately modified in configuration without departing from the scope of its technical idea.

Claims (3)

  1.  実装基板と、前記実装基板の第1面側に実装された紫外線発光素子と、前記実装基板の前記第1面側で前記紫外線発光素子から離れて配置され前記紫外線発光素子から放射される紫外線の配光を制御するレンズと、前記実装基板に固定され前記レンズを支持する金属製のレンズ支持部材と、を備え、前記レンズは、屈伏点が600℃以下のガラスにより形成された非球面レンズであり、前記レンズと前記レンズ支持部材とは、直接接合されていることを特徴とする紫外線発光装置。 A mounting substrate; an ultraviolet light emitting element mounted on the first surface side of the mounting substrate; and an ultraviolet ray emitted from the ultraviolet light emitting element disposed away from the ultraviolet light emitting element on the first surface side of the mounting substrate. A lens for controlling light distribution; and a metal lens support member that is fixed to the mounting substrate and supports the lens. The lens is an aspherical lens formed of glass having a yield point of 600 ° C. or less. And the lens and the lens support member are directly bonded to each other.
  2.  前記レンズ支持部材が筒状の形状であり、前記レンズと前記レンズ支持部材とは、前記レンズの外周面と前記レンズ支持部材における前記実装基板から遠い側の端部の内周面とが、直接接合されていることを特徴とする請求項1記載の紫外線発光装置。 The lens support member has a cylindrical shape, and the lens and the lens support member are formed by directly connecting an outer peripheral surface of the lens and an inner peripheral surface of an end portion of the lens support member on the side far from the mounting substrate. The ultraviolet light emitting device according to claim 1, wherein the ultraviolet light emitting device is bonded.
  3.  前記レンズ支持部材は、前記筒状の形状が円筒状の形状であることを特徴とする請求項2記載の紫外線発光装置。 3. The ultraviolet light emitting device according to claim 2, wherein the cylindrical supporting member has a cylindrical shape.
PCT/JP2013/006808 2013-01-29 2013-11-20 Ultraviolet light emitting device WO2014118838A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013014310 2013-01-29
JP2013-014310 2013-01-29

Publications (1)

Publication Number Publication Date
WO2014118838A1 true WO2014118838A1 (en) 2014-08-07

Family

ID=51261589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006808 WO2014118838A1 (en) 2013-01-29 2013-11-20 Ultraviolet light emitting device

Country Status (2)

Country Link
TW (1) TW201434171A (en)
WO (1) WO2014118838A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5838357B1 (en) * 2015-01-13 2016-01-06 パナソニックIpマネジメント株式会社 Light emitting device and manufacturing method thereof
JP2016051798A (en) * 2014-08-29 2016-04-11 大日本印刷株式会社 Method of manufacturing mounting board and mounting board
JP2016207683A (en) * 2015-04-15 2016-12-08 エヌイーシー ショット コンポーネンツ株式会社 Through electrode substrate and semiconductor package
JP2017139444A (en) * 2016-01-29 2017-08-10 セイコーエプソン株式会社 Light source device, method for manufacturing light source device, and projector
JP2017138566A (en) * 2016-01-29 2017-08-10 セイコーエプソン株式会社 Light source device, manufacturing method for light source device, and projector
US9818923B2 (en) 2014-12-26 2017-11-14 Panasonic Intellectual Property Management Co., Ltd. Light emitting device and method for manufacturing same
JP2017216389A (en) * 2016-06-01 2017-12-07 信越石英株式会社 Silica glass member for hermetic seal of ultraviolet smd type led element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6558259B2 (en) * 2016-02-03 2019-08-14 ウシオ電機株式会社 Semiconductor laser device and manufacturing method thereof
CN108461613A (en) * 2018-05-31 2018-08-28 深圳市瑞丰光电紫光技术有限公司 A kind of UV-LED light sources and its lamps and lanterns

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619685A (en) * 1979-07-25 1981-02-24 Nec Home Electronics Ltd Manufacture of lens cap for optical semiconductor
JP2002121032A (en) * 2000-10-06 2002-04-23 Hoya Corp Method of manufacturing glass gob, method of manufacturing glass formed parts and apparatus for manufacturing glass gob
JP2007250817A (en) * 2006-03-16 2007-09-27 Stanley Electric Co Ltd Led
JP2008171883A (en) * 2007-01-09 2008-07-24 Matsushita Electric Ind Co Ltd Lid with lens
JP2009188217A (en) * 2008-02-07 2009-08-20 Panasonic Corp Lid with lens
JP2012211041A (en) * 2011-03-31 2012-11-01 Nihon Yamamura Glass Co Ltd Optical glass

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619685A (en) * 1979-07-25 1981-02-24 Nec Home Electronics Ltd Manufacture of lens cap for optical semiconductor
JP2002121032A (en) * 2000-10-06 2002-04-23 Hoya Corp Method of manufacturing glass gob, method of manufacturing glass formed parts and apparatus for manufacturing glass gob
JP2007250817A (en) * 2006-03-16 2007-09-27 Stanley Electric Co Ltd Led
JP2008171883A (en) * 2007-01-09 2008-07-24 Matsushita Electric Ind Co Ltd Lid with lens
JP2009188217A (en) * 2008-02-07 2009-08-20 Panasonic Corp Lid with lens
JP2012211041A (en) * 2011-03-31 2012-11-01 Nihon Yamamura Glass Co Ltd Optical glass

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016051798A (en) * 2014-08-29 2016-04-11 大日本印刷株式会社 Method of manufacturing mounting board and mounting board
US9818923B2 (en) 2014-12-26 2017-11-14 Panasonic Intellectual Property Management Co., Ltd. Light emitting device and method for manufacturing same
JP5838357B1 (en) * 2015-01-13 2016-01-06 パナソニックIpマネジメント株式会社 Light emitting device and manufacturing method thereof
JP2016127249A (en) * 2015-01-13 2016-07-11 パナソニックIpマネジメント株式会社 Light emission device and manufacturing method for the same
JP2016207683A (en) * 2015-04-15 2016-12-08 エヌイーシー ショット コンポーネンツ株式会社 Through electrode substrate and semiconductor package
JP2017139444A (en) * 2016-01-29 2017-08-10 セイコーエプソン株式会社 Light source device, method for manufacturing light source device, and projector
JP2017138566A (en) * 2016-01-29 2017-08-10 セイコーエプソン株式会社 Light source device, manufacturing method for light source device, and projector
JP2017216389A (en) * 2016-06-01 2017-12-07 信越石英株式会社 Silica glass member for hermetic seal of ultraviolet smd type led element

Also Published As

Publication number Publication date
TW201434171A (en) 2014-09-01

Similar Documents

Publication Publication Date Title
WO2014118838A1 (en) Ultraviolet light emitting device
JP5877487B1 (en) Light emitting device
JP6048880B2 (en) LIGHT EMITTING ELEMENT PACKAGE AND LIGHT EMITTING DEVICE USING THE SAME
TWI442594B (en) Luminescence device and manufacturing method of the same
US20180182928A1 (en) Light emitting device
WO2013168802A1 (en) Led module
JP2011035264A (en) Package for light emitting element and method of manufacturing light emitting element
US9559265B2 (en) Flip-chip LED, method for manufacturing the same and flip-chip package of the same
WO2014118835A1 (en) Ultraviolet light emitting device
JP2016219505A (en) Light-emitting device
JP5838357B1 (en) Light emitting device and manufacturing method thereof
JP2014157948A (en) Semiconductor light-emitting element and light-emitting device
KR20190029399A (en) Light emitting device package
JP6431603B2 (en) Interposer
JP2016219504A (en) Light-emitting device
JP2014007204A (en) Led module
JP2016129215A (en) Light emission device
JP2019207956A (en) Light-emitting device
KR20190031087A (en) Light emitting device package
TWI407603B (en) Package of light emitting device and fabrication thereof
JP2017059617A (en) Light emitting device
JP6249348B2 (en) Light emitting device
KR101248607B1 (en) Led array module having heat sink structure using heat well
JP2015050278A (en) Light irradiation device and light irradiation module
JP2020150184A (en) Laser device and lid used therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13873669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP