WO2014117314A1 - 基于超材料结构的石墨烯晶体管光探测器及其应用 - Google Patents

基于超材料结构的石墨烯晶体管光探测器及其应用 Download PDF

Info

Publication number
WO2014117314A1
WO2014117314A1 PCT/CN2013/001294 CN2013001294W WO2014117314A1 WO 2014117314 A1 WO2014117314 A1 WO 2014117314A1 CN 2013001294 W CN2013001294 W CN 2013001294W WO 2014117314 A1 WO2014117314 A1 WO 2014117314A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
layer
metamaterial structure
source
drain
Prior art date
Application number
PCT/CN2013/001294
Other languages
English (en)
French (fr)
Inventor
陈沁�
宋世超
Original Assignee
中国科学院苏州纳米技术与纳米仿生研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院苏州纳米技术与纳米仿生研究所 filed Critical 中国科学院苏州纳米技术与纳米仿生研究所
Priority to US14/761,907 priority Critical patent/US9444002B2/en
Publication of WO2014117314A1 publication Critical patent/WO2014117314A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a photodetector device, and more particularly to a graphene field effect transistor photodetector based on enhanced absorption of a micro/nano structure and its imaging application. Background technique
  • Graphene is a two-dimensional layered material structure of carbon.
  • the thickness of single-layer graphite is about 0.35 nm, which has extraordinary electrical, optical and mechanical properties.
  • Graphite below ten layers is considered to be graphene. Since the successful development of single-layer graphene in 2004, graphene has attracted widespread attention.
  • Graphene has a linear band structure due to its Dirac-Fermi property, and has the highest carrier mobility among the materials discovered so far.
  • one of the main purposes of the present invention is to provide a graphene transistor photodetector based on a metamaterial structure, which comprises a substrate, a gate metal layer, and a gate dielectric disposed in this order from bottom to top. a layer, a graphene layer, and a source and drain metal layer;
  • At least a local region of the source and drain metal layers has a periodic micro-nano structure, and the periodic micro-nano structure cooperates with the gate metal layer and the gate dielectric layer to form a meta-material structure having near-complete absorption characteristics .
  • the impedance Z of the metamaterial structure is equal to or close to (for example, the deviation amplitude can be controlled within ⁇ 10%), and the vacuum impedance is 376.7 ⁇ , wherein Z - ⁇ A, ⁇ and ⁇ are the metamaterial structures, respectively. Dielectric constant and permeability.
  • the lower end faces of the source and drain metal layers are in contact with the graphene layer to form a conductive channel for connecting the source and the drain of the transistor.
  • the source and drain metal layers include a source and a drain, wherein at least the source The local regions of the pole and drain are staggered and form a periodic micro-nano structure.
  • the source and drain metal layers have a thickness of 20 - 200
  • the thickness of the gate metal layer should be sufficient to completely block light transmission, and it is particularly preferably 50 nm or more.
  • the graphene layer comprises a single layer of graphene, a multilayer ( ⁇ 10 layers) of graphene or a graphite micro-nanostructure layer. It is selected from, but not limited to, silicon oxide, silicon nitride or aluminum oxide.
  • the graphene layer is selected from the group consisting of a single layer of graphene, a multilayer graphene (less than or equal to 10 layers), or a graphene micro/nanostructure layer.
  • Still another object of the present invention is to provide the use of the aforementioned metamaterial structure-based graphene transistor photodetector in a spectrum detecting and analyzing device or an image sensing device.
  • the advantages of the present invention are at least:
  • the metamaterial structure can be constructed by using two metal layers as the gate and source and drain of the transistor structure, respectively, and sandwiching the graphene layer as a conductive channel between the two layers of metal. Combined with the transistor structure to form a high speed transistor detector;
  • the multilayer graphene in the graphene layer has an adjustable band gap and absorption in visible light, infrared or even longer wavelengths, and the metamaterial structure also has adjustable working wavelength, so that it can be obtained through optimized design.
  • Ultra-wideband, high-speed, high-sensitivity graphene transistor photodetectors by integrating different bands of graphene photodetectors, can also form a monolithic broadband photodetection array with multi-band imaging capabilities.
  • FIG. 1 is a longitudinal cross-sectional view of a graphene transistor photodetector based on a metamaterial structure in an alternative embodiment of the present invention
  • FIG. 2 is a top plan view of a graphene transistor photodetector based on a metamaterial structure in an alternative embodiment of the present invention
  • FIG. 3 is a top plan view of a graphene transistor photodetector based on a metamaterial structure in still another alternative embodiment of the present invention.
  • FIG. 4 is a top plan view of an alternative embodiment of a graphene transistor photodetector based on a metamaterial structure in an imaging application of the present invention
  • FIG. 5 is a longitudinal cross-sectional view showing still another alternative embodiment of a graphene transistor photodetector based on a metamaterial structure in an imaging application
  • FIG. 7 is an absorption spectrum diagram of a graphene transistor photodetector based on a metamaterial structure according to Embodiment 1 of the present invention.
  • FIG. 8 is an absorption spectrum diagram of a graphene transistor photodetector based on a metamaterial structure under different polarized light conditions according to Embodiment 2 of the present invention.
  • FIG. 9 is an absorption spectrum diagram of still another graphene transistor photodetector based on a metamaterial structure according to Embodiment 3 of the present invention.
  • FIG. 10 is still another graphene based on metamaterial structure according to Embodiment 4 of the present invention. Absorption spectrum of a transistor photodetector. detailed description
  • An aspect of the present invention is directed to a graphene transistor photodetector based on a metamaterial structure, which may have a field effect transistor structure, and may include a gate metal layer, a gate electrode sequentially formed on a substrate from bottom to top. a dielectric layer, a graphene layer, a source and a drain metal layer, wherein a partial structure of the source and drain metal layers forms a periodic metal micro/nano structure, and is formed together with the gate metal layer and the gate dielectric layer A metamaterial structure that is nearly completely absorbed.
  • the period of the aforementioned periodic micro-nanostructure should be smaller than the working wavelength of the photodetector, thereby ensuring its metamaterial structural characteristics, but for the morphology of the periodic unit of the periodic micro-nano structure. There are no restrictions, which can be determined according to the needs of the actual application.
  • the foregoing substrate may be selected from, but not limited to, a rigid or flexible substrate such as silicon wafer, glass, plastic, stainless steel, etc., for supporting the graphene transistor structure.
  • the foregoing gate metal layer may be a continuous metal film, and the material thereof may be selected from, but not limited to, gold, silver, copper, aluminum, platinum, titanium, etc., and the thickness thereof is preferably 50 nm or more, especially 50 to 300.
  • the material of the foregoing gate dielectric layer is preferably a low light absorbing dielectric material (e.g., in the visible light range), such as, but not limited to, silicon dioxide, silicon nitride, aluminum oxide, and the like.
  • the foregoing graphene layer may adopt a graphene or graphene micro/nano structure of less than 10 layers, which is located on the gate metal layer and the gate dielectric layer, and is in contact with the lower surface of the source and drain metal layers to form a source.
  • the foregoing source and drain metal layers may be selected from, but not limited to, a single metal layer of gold, silver, copper, aluminum, platinum, titanium or the like, an alloy layer or a plurality of single metal layers or alloy layers, and the thickness thereof is preferably 20 - 200nm.
  • At least the partial regions of the source and the drain are intersected. Misaligned and constitute a periodic micro-nano structure.
  • the gate metal layer, the gate dielectric layer, and the source and drain metal layers together form a metamaterial structure having near complete absorption. Further, by adjusting the refractive index and thickness of the gate dielectric layer, the periodic structure and thickness of the source and the drain, it is possible to optimize the near-completely absorbed metamaterial structure operating in different wavelength bands.
  • the aforementioned graphene layer is located in the metamaterial structure, but is very thin ( ⁇ 5 nm), so it does not affect the electromagnetic properties of the metamaterial structure.
  • the incident electromagnetic wave interacts with the metamaterial structure and is completely localized in the metamaterial structure, so the interaction between the incident electromagnetic wave and the graphene layer is greatly increased. Further, the absorption of incident electromagnetic waves by the graphene layer is greatly improved.
  • the contact between the source and the drain changes the Fermi level of the underlying graphene to form a built-in electric field with the graphene channel, and the periodic micro/nano structure of the source and drain metal layers Staggered, even in the case of passive drain bias, photogenerated carriers can flow to the source and drain very quickly in the conductive channel of the graphene layer.
  • the whole process improves the graphite germanium transistor photodetector. Photoelectric conversion efficiency. If a voltage is properly applied between the source and the drain, the photoelectric response is further improved.
  • graphene can have uniform light absorption in visible light to infrared or even longer wavelengths
  • the graphene transistor photodetector of the present invention can be optimized to work in visible to infrared or even longer wavelengths.
  • Another aspect of the present invention is directed to an imaging application of the foregoing graphene transistor photodetector based on a metamaterial structure. Further, the principle is:
  • the absorption band of metamaterial structure can realize the regulation of visible light to terahertz band by optimizing structural parameters. Combining these two points can work in different bands with different metamaterial structures.
  • the graphene transistors or photodetectors are integrated into an array to obtain a single-spectrum broad-spectrum optical-analytic capability, and a different-band detector-like visible-color image sensor can be combined into one pixel, and the pixels are periodically arranged to form Multi-band image sensor.
  • Still another aspect of the present invention is directed to a method of preparing the foregoing graphene transistor photodetector based on a super material structure, as one of the embodiments, the method may include the following steps:
  • a source and a drain window are formed on the graphene layer by exposure and development, and are connected by a graphene conductive channel, and then a source and drain metal layer is formed by a lift-off and metal thin film deposition method.
  • the graphene transistor photodetector adopts a transistor structure, which uses graphene as a conductive channel to achieve ultra-fast photocarrier collection, and utilizes ultra-wideband light absorption of graphene to obtain a single-chip broadband light detection. ability;
  • the periodic micro-nano structure, the gate dielectric layer and the gate metal layer of the source and drain metal layers together form a meta-material structure with near-complete absorption, thereby improving the structure in the meta-material structure.
  • Light absorption of graphene layer The efficiency of the acquisition, and the operating frequency of the metamaterial structure can optimize the design of the ultra-wide band from visible light to terahertz;
  • the graphene transistor photodetector of the present invention is expected to exhibit high speed, high bandwidth and high sensitivity performance, and the super pixel is formed by using a graphene transistor photodetector having different metamaterial structures and operating in different wavelength bands, and The array of images is periodically arranged to obtain a multi-band imaging capability of a single piece.
  • Embodiment 1 Referring to FIG. 1 is a longitudinal sectional view of a graphene transistor photodetector based on a metamaterial structure of the present embodiment, which includes a substrate 11 , a gate metal layer 22, a gate dielectric layer 33, and graphene. Layer 44, source 55 and drain 66 metal layers are shown as arrows 77 in the figure.
  • the gate metal layer 22 constitutes a reflective layer of a metamaterial
  • the metal layer of the source 55 and the drain 66 constitute a surface impedance matching layer of the metamaterial
  • the gate dielectric layer 3 3 and the source 5 5 and the drain are optimized by design.
  • the periodic structure of the pole 66 provides near-complete absorption of the preset band.
  • the gate metal layer 22 can regulate the forbidden band of the graphene layer 44 as a gate of the transistor and form a carrier conductive channel to obtain photoelectric conversion.
  • the interaction between the incident light and the graphene is improved, that is, the photoelectric conversion efficiency is improved; the compatibility between the metamaterial and the transistor structure is ensured, and the field effect transistor is ensured.
  • the photogenerated carriers can be quickly separated to obtain the conversion of the optical signal to the electrical signal.
  • the graphene layer 44 forms a connection between the source 55 and the drain 66 to form a conductive channel, and the source 5 5 and the drain 66 form a one-dimensional periodic structure, which facilitates the collection of photogenerated carriers and constitutes a super
  • the surface impedance matching layer of the material forms a near-zero reflection of the incident light wave whose polarization direction is perpendicular to the one-dimensional grating structure, thereby improving the photoelectric conversion efficiency of the detector.
  • the material of the gate metal layer 22 is Gold, at least 50 nm thick, the gate dielectric layer 33 is made of aluminum oxide (Al2 2 0 3 ), the thickness is 10 nm, the source 55 and the drain 66 are made of gold, the thickness is 70 nm, and the source 55 is
  • the partial structure of the metal layer of the drain 66 forms a periodic metal micro-nano structure having a width of 170 nm and a period of 300 nm.
  • the arrow 77 indicates that the TM is incident polarized light, that is, the direction of the incident light is flat to the source 55.
  • Periodic metal micro-nanostructure with drain 66 is Gold, at least 50 nm thick
  • the gate dielectric layer 33 is made of aluminum oxide (Al2 2 0 3 )
  • the thickness is 10 nm
  • the source 55 and the drain 66 are made of gold
  • the thickness is 70 nm
  • the source 55 is
  • the partial structure of the metal layer of the drain 66
  • the effective dielectric constant and effective permeability of the metamaterial structure in this example as shown in Fig. 6, at a wavelength of 1.605 ⁇ , the impedance of the overall metamaterial structure is 388.0 ⁇ , which is very close to the optimum value.
  • the absorption spectra of the graphene layer (dotted line) and the overall device structure (dashed line) are shown in Fig. 7. It can be seen that the absorption of the entire metamaterial structure at the wavelength of 1.605 ⁇ is nearly 100%, while the absorption of the graphene layer exceeds 30%. , which is much higher than the 2.3% absorption of the single-layer graphene without the metamaterial structure, confirms the substantial improvement in the light absorption efficiency of the structure of the present invention, thereby improving the photoelectric efficiency of the photodetector.
  • Embodiment 2 A longitudinal sectional view of this embodiment can be referred to FIG. 1.
  • a top view is a schematic view of FIG. 3.
  • the difference from Embodiment 1 is mainly that the source 55 and the drain 66 form a two-dimensional period in this embodiment.
  • the structure, the super-material surface impedance matching layer of the super-material can form near-zero reflection for incident light of different polarization directions, thereby further improving the photoelectric conversion efficiency of the detector.
  • the material of the gate metal layer 22 is gold, the thickness is at least 50 nm, and the material of the gate dielectric layer 33 is aluminum oxide ( ⁇ 1 2 0 3 ), the thickness is 10 nm, and the source is 55.
  • the material of the drain 66 is gold and has a thickness of 70 nm.
  • the partial structure of the source and drain metal layers forms a periodic metal micro-nano structure with a side length of 170 nm and a period of 300 nm. In this example, the polarization is different.
  • the absorption rate under the conditions is as shown in Fig. 8 (curve example 2), wherein the comparison curve example 1 is an absorption spectrum chart of the same polarization condition of Example 1 in Example 2.
  • Embodiment 3 Referring to FIG. 4 is a top view of a graphene transistor photodetector based on a metamaterial structure for imaging applications, wherein A, B, C, and D are graphenes operating in different preset wavelength bands, respectively.
  • the transistor photodetector may be of any one of Embodiment 1 and Embodiment 2.
  • Multi-band imaging can be obtained by integrating the A, B, C, and D detectors into one pixel I and periodically arranging the entire image sensor.
  • a and D are blue and red band graphene transistor photodetectors
  • B and C are green band graphene transistor photodetectors, which constitute an RGB (red, green and blue) color image sensor.
  • the structure includes a substrate U, a gate metal 22, a gate dielectric layer 33, a graphene layer 44, a source 55, and a drain 66.
  • the material of the gate metal layer 22 is gold, the thickness is at least 50 nm, the material of the gate dielectric layer 33 is aluminum oxide (Al2 2 0 3 ), the thickness is 10 nm, and the material of the source 55 and the drain 66 is gold.
  • the thickness of the two-dimensional metal micro-nanostructure of the source 55 and the drain 66 is 300 nm, and the side length of the two-dimensional periodic metal micro-nanostructure in the source 55 is 170 nm, and the drain 66 is The dimension of the periodic metal micro-nanostructure is 110 nm.
  • Figure 9 is an absorption optical diagram of the overall structure (hollow pattern) and the graphene layer (solid pattern) of the present embodiment. As shown in Fig. 9, different formant wavelengths correspond to different periodic structures, wherein the formant at 1.308 ⁇ corresponds to a two-dimensional periodic structure with a side length of 110 nm, and the formant at 1.533 ⁇ corresponds to a side length of 170 nm.
  • the two-dimensional periodic structure therefore, can achieve multi-band light absorption and light detection through such an integrated method, and finally achieve multi-band imaging.
  • Embodiment 4 Referring to FIG. 5 is a schematic longitudinal cross-sectional view of a graphene transistor photodetector based on a metamaterial structure for imaging applications.
  • the source and gate structure layers may be referred to FIG. 2, which includes a substrate 11.
  • the incident light is indicated by the arrow 77 in the figure.
  • the metamaterial structures of different wavelength bands are cascaded perpendicular to the direction of the graphene layer to form a multi-band graphene photodetector.
  • the incident light 77 of different wavelength bands is photoelectrically converted in different graphene layers 440, 441 and 442, and spectral information of different wavelength bands can be respectively obtained, thereby realizing color imaging in visible light band or spectral imaging in broad spectrum range.
  • the in-plane space is saved and the spatial resolution is improved.
  • the gate metal layer 22 is made of gold and has a thickness of at least 50 nm
  • the gate dielectric layers 330, 331 and 332 are made of aluminum oxide (Al2 2 0 3 ) having a thickness of 6 8, 10, 10 nm, sources 550, 551, 552 are 20, 30, 40 nm thick, drains 660, 661, 662 are 20, 30, 40 nm, respectively, sources 550, 551, 552 and drain
  • the metal micro/nano structures of 660, 661, and 662 have a period of 300 nm.
  • the graphene layers 440, 441, 442 are respectively located between the gate dielectric layer 330 and the source 550 drain 660, between the dielectric layer 331 and the source 551 drain 661, between the dielectric layer 332 and the source 552 drain 662.
  • the arrow 77 is incident on the polarized light as indicated by the arrow 77.
  • Fig. 10 is an absorption spectrum diagram of the entire structure (hollow pattern) and the graphene layer (solid pattern) of the present embodiment. As shown in Fig. 10, there are three resonance peak positions in the figure, which are 1.203 ⁇ , 1.578 ⁇ , 2.022 ⁇ , respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一种基于超材料结构的石墨烯晶体管、光探测器及其应用。该石墨烯晶体管包括自下而上依次设置的衬底(11)、栅极金属层(22)、栅极介质层(33)、石墨烯层(44)和源极(55)与漏极(66)金属层;其中至少源极(55)与漏极(66)金属层的局部区域具有周期性微纳米结构,所述周期性微纳米结构与栅极金属层(22)及栅极介质层(33)配合形成具有完全吸收特性的超材料结构,通过改变周期性微纳米结构以及栅极介质层材料的折射率和厚度等,可以调控超材料结构的光吸收频段。超材料结构的波长选择性完美吸收特性,具有更高灵敏度和窄带响应,通过选择不同超材料结构可以工作在可见光到红外甚至更长波段,通过将工作在不同波段的光探测器集成设置,还可以构成超宽带工作的图像传感器、光谱检测分析设备等。

Description

基于超材料结构的石墨烯晶体管光探测器及其应用 技术领域
本发明涉及一种光探测器件, 具体涉及一种基于微纳结构增 强吸收的石墨烯场效应晶体管光探测器和其成像应用。 背景技术
石墨烯是一种碳元素的二维层状材料结构,单层石墨的厚度 约为 0.35 纳米, 具有非凡的电学、 光学和机械等特性。 十层以 下的石墨都被认为是石墨烯。 自从 2004 年单层石墨烯被成功研 制, 石墨烯引起了广泛关注。 石墨烯因其 Dirac-Fermi 性质, 具 有线性的能带结构, 具有迄今已发现材料中最高的载流子迁移率
( 200000cm2 V s ), 因此被广泛的应用于高频纳米电子器件领 域。 石墨烯同样具有非凡的光学特性, 在紫外、 可见光到红外波 段 ( 300nm到 6μηι ) 具有平坦的吸收带, 而且吸收特性可以通过 加电压来调控 (《Science》, 第 320卷, 第 206页 ), 因此可以实 现宽带高速的光电转换。 尽管石墨烯与光具有非常强的相互作 用, 单层石墨烯 ( 0.34 ii 厚) 在上述波段的吸收就达到了惊人 的 2.3% "(Physical Review Letters », 第 101 卷, 第 196405 页;
《Science》, 第 320卷, 第 1308 页 ), 然而由于石墨烯太薄, 利 用单层或者多层 ( <10层) 的石墨烯对光的有效吸收还远低于目 前的其他体材料或者量子阱结构的效率。
近年, 各种增强石墨烯与光相互作用, 特别是光吸收的研究 越来越多。 2012年澳大利亚 Mueller教授小组提出将石墨烯放在 两个一维布拉格光栅反射镜中间, 通过微腔增强光子态密度的办 法来增强石墨烯与近红外光的相互作用, 与没有微腔结构的情况 相比, 观察到 26倍的光吸收增强 (《Nano Letters)), 第 12卷, 第 2773 页 ); 而在 《Nano Letters》 同一卷的第 3808页公布了利 用金属纳米结构的表面等离激元效应来增强光吸收的另一个技 术, 实验结果获得 8 倍的可见光波段光电流提高; 20 1 2 年美英 德三国的联合研究小组提出用金属微腔结合晶体管结构来提高 石墨烯光探测器的灵敏度, 观察到 20 倍的可见光波段光电流提 高 (《 Nature Communications》, 第 3 卷, 第 906页 )。 此外, 20 1 1 年美国科学家采用石墨烯晶体管观察到二维电子气导致的太赫 兹波的吸收现象(《 Nature Nanotechnology》, 第 6卷, 第 630页 )。 可以看到基于石墨烯的探测器已经展示了从可见光到太赫兹波 的超宽工作范围, 虽然上述这些技术通过微腔或者等离激元等效 应都展示了一定程度的石墨烯光吸收性能提升, 然而技术工艺的 复杂度以及性能提升的限制需要业界进一步探索更有效的技术 方案。 发明内容
针对现有技术的不足, 本发明的主要目 的之一在于提供一种 基于超材料结构的石墨烯晶体管光探测器, 它包括自下而上依次 设置的衬底、 栅极金属层、 栅极介质层、 石墨烯层以及源极与漏 极金属层;
其中, 至少所述源极与漏极金属层的局部区域具有周期性微 纳米结构, 所述周期性微纳米结构与柵极金属层及栅极介质层配 合形成具有近完全吸收特性的超材料结构。
进一步的, 所述超材料结构的阻抗 Z等于或接近于 (例如, 偏差幅度可控制在 ± 10 %以内 )真空阻抗 376.7Ω, 其中, Z - ^A, ε和 μ分别为所述超材料结构的介电常数和磁导率。
进一步的, 所述源极与漏极金属层的下端面与石墨烯层接 触, 形成用于连接所述晶体管的源极与漏极的导电沟道。
所述源极与漏极金属层包括源极和漏极, 其中, 至少所述源 极和漏极的局部区域交错排布并形成周期性微纳米结构。
作为较为优选的实施方案之一, 所述源极与漏极金属层的厚 度为 20 -200
作为较为优选的实施方案之一, 所述栅极金属层的厚度应足 以完全阻止光线透过, 尤其优选为 50 nm 以上。
所述石墨烯层包括单层石墨烯、 多层 (≤10层) 石墨烯或者 石墨玲微纳米结构层。 选自但不限于氧化硅、 氮化硅或三氧化二铝等。
所述石墨烯层选自单层石墨烯、 多层石墨烯(小于或等于 1 0 层)或者石墨烯微纳米结构层。
本发明的又一目 的在于提供前述基于超材料结构的石墨烯 晶体管光探测器在光谱检测分析设备或图像传感设备中的应用。
本发明的再一目 的在于提供一种图像传感设备或光谱检测 分析设备, 它包括阵列分布的复数个如上所述的基于超材料结构 的石墨烯晶体管光探测器。
与现有技术相比, 本发明的优点至少在于:
通过将石墨烯层集成在具有近完全吸收特性的超材料结构 中, 从而提高石墨烯对光的吸收, 即探测器的灵敏度;
同时, 由于超材料的特有结构, 通过采用两个金属层分别作 为晶体管结构的柵极以及源极与漏极, 而将石墨烯层作为导电沟 道夹在两层金属中间, 可以把超材料结构和晶体管结构结合起来 构成高速的晶体管探测器;
此外, 石墨烯层中的多层石墨烯的禁带宽度可调, 且在可见 光、 红外甚至更长波段都有吸收, 而超材料结构也具有工作波段 的可调性, 因此通过优化设计可以获得超宽带的高速高灵敏石墨 烯晶体管光探测器, 再通过将不同波段的石墨烯光探测器集成, 还可以形成单片的宽带光探测阵列, 并且具有多波段成像能力。 附图说明
以下结合附图进一步解释说明本发明的内容。 但是, 以下附 图仅仅是本发明的理想化实施例的示意图, 其中为了清楚展示本 发明所涉及器件的结构, 对其中选定的层和区域的厚度进行了适 当放大,但其作为示意图不应该被认为严格反映了几何尺寸的比 例关系。 另外, 本发明所示的实施例亦不应该被认为仅限于图中 所示的区域的特定形状。 概言之, 如下附图是示意性的, 不应该 被认为限制本发明的范围。
图 1 为本发明一可选实施方案中基于超材料结构的石墨烯 晶体管光探测器的纵向剖面示意图;
图 2 为本发明一可选实施方案中基于超材料结构的石墨烯 晶体管光探测器的俯视示意图;
图 3 为本发明又一可选实施方案中基于超材料结构的石墨 烯晶体管光探测器的俯视示意图;
图 4 为本发明的一种基于超材料结构的石墨烯晶体管光探 测器于成像应用时的一可选实施例的俯视图;
图 5 为本发明的一种基于超材料结构的石墨烯晶体管光探 测器于成像应用时的又一可选实施例的纵向剖面示意图;
图 6为本发明实施例 1的一种基于超材料结构的石墨烯晶体 管光探测器的有效介电常数和有效磁导率;
图 7为本发明实施例 1 的一种基于超材料结构的石墨烯晶体 管光探测器的吸收光谱图;
图 8为本发明实施例 2的一种基于超材料结构的石墨烯晶体 管光探测器在不同偏振光条件下的吸收光谱图;
图 9为本发明实施例 3的又一种基于超材料结构的石墨烯晶 体管光探测器的吸收光谱图;
图 1 0为本发明实施例 4 的再一种基于超材料结构的石墨烯 晶体管光探测器的吸收光谱图。 具体实施方式
本发明的一个方面 旨在提供一种基于超材料结构的石墨烯 晶体管光探测器, 其可具有场效应晶体管结构, 并可包括从下至 上依次形成在衬底上的栅极金属层、 栅极介质层、 石墨烯层、 源 极与漏极金属层, 其中, 源极与漏极金属层的部分结构形成周期 性的金属微纳米结构, 并且与栅极金属层和栅极介质层一起构成 具有近完全吸收特性的超材料结构。
当应用前述石墨烯晶体管光探测器时, 前述周期性微纳米结 构的周期应小于光探测器的工作波长, 从而保证其超材料结构特 性, 但对于前述周期性微纳米结构的周期单元的形态而言, 并不 存在限制, 其可以根据实际应用的需要而定。
前述衬底可选用但不限于硅片 、 玻璃、 塑料、 不锈钢等硬质 或柔性村底, 用于支撑石墨烯晶体管结构。
前述栅极金属层可以采用一层连续的金属薄膜, 其材料可选 用但不限于金、 银、 铜、 铝、 铂、 钛等, 其厚度优选在 50nm以 上, 尤其是 50賺 - 300歸。
前述的栅极介质层的材质优选为低光吸收的介电材料(例如 在可见光波段), 比如, 可选用但不限于二氧化硅、 氮化硅、 三 氧化二铝等。
前述的石墨烯层可采用 1 0 层以下的石墨烯或石墨烯微纳米 结构, 其位于栅极金属层与栅极介质层上, 并且与源极与漏极金 属层的下表面接触, 形成源极与漏极间的导电沟道。
前述源极与漏极金属层可选自且不限于金、 银、 铜、 铝、 铂、 钛等单一金属层、 合金层或多种单一金属层或合金层的叠加结 构, 其厚度优选为 20- 200nm。
作为较佳实施方案之一, 至少前述源极与漏极的局部区域交 错排列并构成周期性的微纳米结构。
前述栅极金属层、 栅极介质层、 源极与漏极金属层一起构成 具有近完全吸收的超材料结构。 进一步的, 通过调控前述栅极介 质层的折射率和厚度, 源极与漏极的周期结构和厚度, 可以优化 设计工作在不同波段的近完全吸收的超材料结构。 例如, 作为较 佳的应用方案之一, 可以通过电磁场数值分析方法优化超材料结 构的介电常数 ε和磁导率 μ,使得超材料结构的阻抗 Ζ = ν.'' 7^等于 或接近于 376.7Ω, 从而获得表面的阻抗匹配, 抑制反射损耗, 获得近 1 00 %完全陷光。
前述石墨烯层位于超材料结构中, 但很薄(<5 nm) , 所以并不 影响超材料结构的电磁特性。
通过调控前迷超材料结构的吸收频段, 可以构成不同波段的 超高灵敏度高速光探测器。
该基于超材料结构的石墨烯晶体管光探测器在工作时,入射 电磁波与前述超材料结构相互作用并被完全局域在超材料结构 中, 因此入射电磁波与石墨烯层的相互作用得到大大增加, 进而 极大提高了石墨烯层对入射电磁波的吸收。
又及, 由于源极与漏极的接触对其下石墨烯的费米能级的改 变, 使其与石墨烯沟道形成了 内建电场, 并且源极与漏极金属层 的周期微纳米结构交错排列, 即使在无源漏极偏压的情况下, 光 生载流子在石墨烯层导电沟道内也可以非常快速的分别流向源 极与漏极, 整个过程提高了石墨浠晶体管光探测器的光电转换效 率。若在源极与漏极之间适当加上电压,将进一步提高光电响应。
由于石墨烯可以在可见光到红外甚至更长波段具有均匀的 光吸收, 因此本发明的石墨烯晶体管光探测器可以优化设计工作 在可见光到红外甚至更长波段,
由于不同波段光探测器共享相同的材料和器件设计, 完全可 以将不同波段的光探测器集成起来, 形成单片的宽带光探测阵 列, 并且具有多波段成像能力。 有鉴于此, 本发明的另一个方面 旨在提供前述基于超材料结构的石墨烯晶体管光探测器的成像 应用。 进一步的讲, 其原理在于:
由于石墨烯具有可见光到太赫兹波段的吸收特性, 而超材料 结构的吸收带可以通过优化结构参数实现可见光到太赫兹波段 的调控, 综合这两点可以将具有不同超材料结构的工作在不同波 段的石墨烯晶体管或光探测器集成为阵列, 获得单片的宽光谱的 光语分析能力, 并且也可以把不同波段探测器类似可见光彩色图 像传感器组成一个像素, 将此像素再进行周期排列, 构成多波段 的图像传感器。
再及, 本发明的又一个方面旨在提供一种制备前述基于超材 料结构的石墨烯晶体管光探测器的方法,作为其中的可实施方案 之一, 该方法可以包括如下步骤:
( 1 ) 在村底上通过金属薄膜沉积的方法制备栅极金属层; ( 2 ) 在栅极金属层上通过薄膜沉积方法制备栅极介质层; ( 3 ) 通过气相沉积方法、 机械剥离法、 氧化还原法、 溶剂 剥离法或溶剂热法配合衬底转移技术在栅极介质层上制作石墨 烯层;
( 4 )在石墨烯层上通过曝光与显影制作出源极与漏极窗口, 由石墨烯导电沟道连接, 然后通过剥离与金属薄膜沉积方法制备 源极与漏极金属层。
综述之, 本发明的特点主要在于:
首先, 该石墨烯晶体管光探测器采用了晶体管结构, 其以石 墨烯作为导电沟道, 实现超快的光生载流子收集, 并且利用石墨 烯的超宽带光吸收, 获得单片的宽带光探测能力;
其次, 通过优化设计晶体管结构使其源极与漏极金属层的周 期性微纳米结构、栅极介质层和栅极金属层一起构成具有近完全 吸收的超材料结构, 从而提高位于超材料结构中石墨烯层的光吸 收效率, 而且超材料结构的工作频率可以优化设计工作在可见光 到太赫兹的超宽波段;
结合上述两点, 本发明的石墨烯晶体管光探测器有望展现高 速高带宽高灵敏的性能, 且通过将具有不同超材料结构的、 工作 在不同波段的石墨烯晶体管光探测器组成超级像素, 并周期排列 形成图像传感器阵列, 获得单片的多波段成像能力。
下面结合若千较佳实施例及相关附图对本发明的技术方案 进 详细说明:
实施例 1 : 参阅图 1 所示系本实施例基于超材料结构的石墨 烯晶体管光探测器纵向剖面图, 其包括衬底 1 1、 栅极金属层 22、 栅极介质层 3 3、 石墨烯层 44、 源极 55和漏极 66金属层, 图中 箭头 77所示系入射光。 该实施例中栅极金属层 22构成超材料的 反射层,源极 55与漏极 66金属层构成超材料的表面阻抗匹配层, 通过优化设计柵极介质层 3 3和源极 5 5 与漏极 66 的周期结构, 可得到预设波段的近完全吸收。 同时栅极金属层 22 可以作为晶 体管的栅极对石墨烯层 44 的禁带进行调控并且形成载流子导电 沟道, 获得光电转换。 本实施例通过将石墨烯层集成到超材料结 构中, 从而提高了入射光与石墨烯的相互作用, 即提高光电转换 效率; 超材料与晶体管结构的兼容性, 又保证了采用场效应晶体 管, 可以快速分离光生载流子, 获得光信号到电信号的转换。 其 源极与漏极如图 2 所示基于超材料结构的石墨烯晶体管光探测 器的俯视示意图, 其包括石墨烯层 44、 源极 55和漏极 66。 可以 看到石墨烯层 44在源极 55与漏极 66间形成连接构成导电沟道, 并且源极 5 5与漏极 66形成一維周期结构, 有利于光生载流子的 收集, 同时组成超材料的表面阻抗匹配层, 对偏振方向垂直于此 一维光栅结构的入射光波形成近零的反射, 从而提高探测器的光 电转换效率。
当选取如下具体材料与结构, 其中栅极金属层 22 的材料为 金,厚度至少 50纳米,栅极介质层 33材料为三氧化二铝( A1203 ), 厚度为 10纳米, 源极 55和漏极 66材料为金, 厚度为 70纳米, 源极 55与漏极 66金属层的部分结构形成周期性的金属微纳米结 构的宽度均为 170纳米, 周期均为 300纳米, 箭头 77所示系 TM 入射偏振光, 即入射光的磁场方向平于源极 55与漏极 66周期性 金属微纳米结构。 该实例中的超材料结构的有效介电常数和有效 磁导率, 如图 6所示, 在波长 1.605μΐΏ处, 整体超材料结构的阻 抗为 388.0Ω, 非常接近最优值。 石墨烯层 (点线) 和整体器件 结构 (虚线) 的吸收光谱如图 7所示, 可以看到在波长 1.605μηι 处整个超材料结构的吸收近 100%, 而石墨烯层的吸收超过 30%, 远高于没有超材料结构的单层石墨烯 2.3%的吸收, 证实了本发 明结构在光吸收效率方面的大幅提高, 进而提高光探测器的光电 效率。
实施例 2: 本实施例的纵向剖面图可参阅图 1, 俯视示意图 参阅图 3 , 其与实施例.1 的不同之处主要在于, 本实施例中源极 55和漏极 66形成二维周期结构, 其构成的超材料的表面阻抗匹 配层对不同偏振方向的入射光均能形成近零的反射,从而进一步 提高探测器的光电转换效率。
当选取如下具体材料与结构, 其中栅极金属层 22 的材料为 金,厚度至少 50纳米,栅极介质层 33材料为三氧化二铝( Α1203 ), 厚度为 10纳米, 源极 55和漏极 66材料为金, 厚度为 70纳米, 源极与漏极金属层的部分结构形成周期性的金属微纳米结构边 长均为 170纳米, 周期均为 300纳米, 该实例中在不同偏振条件 下的吸收率如图 8所示( 曲线 example 2 ),其中对比曲线 example 1 系实施例 1在实施例 2 中相同的偏振条件下的吸收光谱图。 可 以看到 example 1的吸收具有非常明显的偏振相关性,而 example 2由于是二维结构具有偏振无关性, 即对不同偏振方向的电磁波 的吸收率相同。 实施例 3: 参阅图 4所示系本实施例基于超材料结构的石墨 烯晶体管光探测器做成像应用的俯视示意图, 其中 A、 B、 C、 D 分别是工作在不同预设波段的石墨烯晶体管光探测器, 其结构可 以为实施例 1 和实施例 2 中的任一个。 通过将 A、 B、 C、 D探测 器集成为一个像素 I, 并周期排列构成整个图像传感器, 就可以 获得多波段的成像。 比如, A和 D分别是蓝色和红色波段石墨烯 晶体管光探测器, B和 C均为绿色波段石墨烯晶体管光探测器, 就构成了一个类似 RGB (红绿蓝) 彩色图像传感器。 优化不同 波段的石墨烯晶体管光探测器的各种集成方案, 可以获得多波段 组合的超级相机。
纵向剖面图可参阅图 1, 当选取如下具体材料与结构, 其结 构包括衬底 U, 栅极金属 22, 柵极介质层 33, 石墨烯层 44, 源 极 55, 漏极 66。 其中栅极金属层 22 的材料为金, 厚度至少 50 纳米, 栅极介质层 33材料为三氧化二铝 ( A1203 ), 厚度为 10纳 米, 源极 55和漏极 66材料为金, 厚度为 70纳米, 源极 55和漏 极 66的二维金属微纳米结构的周期均为 300纳米, 源极 55 中二 维周期性金属微纳米结构的边长为 170纳米, 漏极 66 中二維周 期性金属微纳米结构的边长为 110纳米。 图 9 系本实施例的整体 结构(空心图形)和石墨烯层 ( 实心图形 ) 的吸收光语图。 如图 9 所示, 不同共振峰波长对应不同的周期性结构, 其中在 1.308μπι 处的共振峰对应边长为 110纳米的二维周期性结构, 1.533μηι处 的共振峰对应边长为 170纳米的二维周期性结构, 因此可通过此 种集成的方法来获得多波段的光吸收和光探测, 最终实现多波段 成像。
实施例 4: 参阅图 5所示系本实施例基于超材料结构的石墨 烯晶体管光探测器做成像应用的纵向剖面示意图, 源极和栅极结 构层可参阅图 2, 其包括衬底 11, 栅极金属层 22, 栅极介质层 330、 331 和 332, 石墨烯层 440、 441 和 442, 源极 550、 551 和 13001294
552, 漏极 660、 661 和 662。 图中箭头 77 所示系入射光。 不同 于实施例 3 中将不同波段的石墨烯光探测器进行平面内的集成, 本实施例将不同波段的超材料结构在垂直于石墨烯层方向级联 并构成多波段石墨烯光探测器, 使得不同波段的入射光 77 在不 同石墨烯层 440、 441 和 442进行光电转换, 可分别获得不同波 段的光谱信息, 实现可见光波段的彩色成像或者宽谱范围的光谱 成像。 本实施例由于不需要在平面内集成不同波段石墨烯光探测 器, 因此节省了平面内空间, 提高了空间分辨率。
当选取如下具体材料与结构, 其中栅极金属层 22材料为金, 厚度至少 50纳米, 栅极介质层 330、 331、 和 332材料为三氧化 二铝 ( A1203 ), 厚度分别为 6、 8、 10纳米, 源极 550、 551、 552 厚度分别为 20、 30、 40 纳米, 漏极 660、 661、 662厚度分别为 20、 30、 40 纳米, 源极 550、 551、 552 和漏极 660、 661、 662 的金属微纳米结构的周期均为 300 纳米。 石墨烯层 440、 441、 442分别位于栅极介质层 330和源极 550漏极 660之间、 介质层 331 和源极 551 漏极 661 之间、 介质层 332和源极 552漏极 662 之间, 箭头 77所示系 TM入射偏振光。 图 10 系本实施例的整体 结构(空心图形)和石墨烯层 ( 实心图形 ) 的吸收光谱图。 如图 10 所示, 图 中存在 3 个共振峰位, 分别为 1.203μηι、 1.578μπι、 2.022μηι, 通过设计垂直于石墨烯层方向的级联结构, 可以获得 多波段的光吸收, 因而可获得多波段的光傳信息。
需要说明的是, 上述实施例仅为说明本发明的技术构思及特 点, 其旨在让熟悉此项技术的人士能够了解本发明内容并据以实 施, 并不能以此限制本发明的保护范围。 凡根据本发明精神实质 所作的等效变化或修饰, 都应涵盖在本发明的保护范围之内。

Claims

权利要求
1 . 一种基于超材料结构的石墨烯晶体管光探测器, 其特征 在于, 它包括自下而上依次设置的衬底、 栅极金属层、 栅极介质 层、 石墨烯层以及源极与漏极金属层;
其中, 至少所述源极与漏极金属层的局部区域具有周期性微 纳米结构, 所述周期性微纳米结构与栅极金属层及栅极介质层配 合形成具有近完全吸收特性的超材料结构。
2. 根据权利要求 1 所述的基于超材料结构的石墨烯晶体管 光探测器, 其特征在于, 所述超材料结构的阻抗 Z等于或接近于 真空阻抗 3 76.7Ω , 其中, Ζ = '^, ε和 μ分别为所述超材料结 构的介电常数和磁导率。
3 . 根据权利要求 1 所述的基于超材料结构的石墨烯晶体管 光探测器, 其特征在于, 所述源极与漏极金属层的下端面与石墨 烯层接触, 形成用于连接所述晶体管的源极与漏极的导电沟道。
4 . 根据权利要求 1 或 3 所述的基于超材料结构的石墨烯晶 体管光探测器, 其特征在于, 所述源极与漏极金属层包括源极和 漏极, 其中, 至少所述源极和漏极的局部区域交错排布并形成周 期性微纳米结构。
5 . 根据权利要求 4 所述的基于超材料结构的石墨烯晶体管 光探测器, 其特征在于, 所述源极与漏极金属层的厚度为 20 -200 nm。
6. 根据权利要求 1 所述的基于超材料结构的石墨烯晶体管 光探测器, 其特征在于, 所述栅极金属层的厚度在 50nm以上。
7. 根据权利要求 1 所述的基于超材料结构的石墨烯晶体管 光探测器, 其特征在于, 所述栅极介质层的材料釆用低光吸收的 介电材料, 所述低光吸收的介电材料包括氧化硅、 氮化硅或三氧 化二铝。
8 . 根据权利要求 1 所述的基于超材料结构的石墨烯晶体管 光探测器, 其特征在于, 所述石墨烯层至少选自单层石墨烯、 层 数 10层的多层石墨烯或者石墨烯微纳米结构层。
9. 权利要求 〖-8 中任一项所述基于超材料结构的石墨烯晶 体管光探测器在光谱检测分析设备或图像传感设备中的应用。
10. 一种图像传感设备或光谱检测分析设备, 其特征在于, 它包括阵列分布的复数权利要求 1-8所述的基于超材料结构的石 墨烯晶体管光探测器。
PCT/CN2013/001294 2013-01-30 2013-10-28 基于超材料结构的石墨烯晶体管光探测器及其应用 WO2014117314A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/761,907 US9444002B2 (en) 2013-01-30 2013-10-28 Graphene transistor optical detector based on metamaterial structure and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310036555.7A CN103117316B (zh) 2013-01-30 2013-01-30 基于超材料结构的石墨烯晶体管、光探测器及其应用
CN201310036555.7 2013-01-30

Publications (1)

Publication Number Publication Date
WO2014117314A1 true WO2014117314A1 (zh) 2014-08-07

Family

ID=48415637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001294 WO2014117314A1 (zh) 2013-01-30 2013-10-28 基于超材料结构的石墨烯晶体管光探测器及其应用

Country Status (3)

Country Link
US (1) US9444002B2 (zh)
CN (1) CN103117316B (zh)
WO (1) WO2014117314A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9620597B2 (en) 2014-12-25 2017-04-11 National Cheng Kung University Graphene optoelectronic detector and method for detecting photonic and electromagnetic energy by using the same
CN107978871A (zh) * 2017-12-27 2018-05-01 厦门大学 基于石墨烯多谐振结构的极化不依赖宽带太赫兹吸波器
CN109148640A (zh) * 2018-09-28 2019-01-04 河南大学 一种多孔有源层场效应紫外探测器及其制备方法
CN110471137A (zh) * 2019-09-17 2019-11-19 厦门理工学院 一种双频段红外吸波器
CN112993075A (zh) * 2021-02-07 2021-06-18 西安交通大学 一种含有插层的石墨烯/硅肖特基结光电探测器及制备工艺
CN113686809A (zh) * 2021-07-30 2021-11-23 北京航空航天大学青岛研究院 像素单元及形成方法、显示器及太赫兹成像系统

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160172527A1 (en) * 2012-12-03 2016-06-16 Sandia Corporation Photodetector with Interdigitated Nanoelectrode Grating Antenna
CN103117316B (zh) * 2013-01-30 2015-08-05 中国科学院苏州纳米技术与纳米仿生研究所 基于超材料结构的石墨烯晶体管、光探测器及其应用
TWI493739B (zh) * 2013-06-05 2015-07-21 Univ Nat Taiwan 熱載子光電轉換裝置及其方法
CN103515406B (zh) * 2013-09-25 2015-12-23 中国科学院苏州纳米技术与纳米仿生研究所 集成型双带cmos数字图像传感器
CN104570402B (zh) * 2013-10-12 2018-05-29 中国科学院苏州纳米技术与纳米仿生研究所 基于超颖材料结构的空间光调制器及其制备方法
JP6172522B2 (ja) * 2013-12-04 2017-08-02 ソニー株式会社 赤外線検出素子およびその検出方法、並びに電子機器
CN103811568B (zh) * 2014-02-21 2016-04-20 中国科学院半导体研究所 一种基于一维光栅的表面入射石墨烯光电探测器
CN104766902B (zh) * 2014-06-16 2017-04-12 南京大学 基于石墨烯碳纳米管复合吸收层的红外光探测晶体管
CN104049426B (zh) * 2014-07-11 2017-04-19 南京大学 一种基于多孔石墨烯透明电极的宽带可调液晶太赫兹波片
CN104241414B (zh) * 2014-09-09 2016-08-24 华中科技大学 基于超材料的毫米波单谱信号探测器及其制备方法
US11782057B2 (en) 2014-12-18 2023-10-10 Cardea Bio, Inc. Ic with graphene fet sensor array patterned in layers above circuitry formed in a silicon based cmos wafer
US10006910B2 (en) 2014-12-18 2018-06-26 Agilome, Inc. Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same
US9618474B2 (en) 2014-12-18 2017-04-11 Edico Genome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US11921112B2 (en) 2014-12-18 2024-03-05 Paragraf Usa Inc. Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same
CN106688108B (zh) * 2014-12-31 2019-08-27 华为技术有限公司 一种石墨烯槽波导光探测器
US10217819B2 (en) * 2015-05-20 2019-02-26 Samsung Electronics Co., Ltd. Semiconductor device including metal-2 dimensional material-semiconductor contact
KR102434697B1 (ko) * 2015-06-02 2022-08-22 삼성전자주식회사 2d 물질을 포함하는 광학소자 및 그 제조방법
CN105023969B (zh) * 2015-06-11 2018-02-02 上海电力学院 一种基于金属纳米结构的光吸收增强型石墨烯晶体管
CN104993022B (zh) * 2015-08-12 2017-03-08 福州大学 一种基于喷墨打印技术制备量子点光探测阵列器件的方法
CN106684172B (zh) * 2015-11-09 2018-04-27 中蕊(武汉)光电科技有限公司 一种硅雪崩光电二极管组件及其制作方法
EP3459115A4 (en) * 2016-05-16 2020-04-08 Agilome, Inc. GRAPHEN-FET DEVICES, SYSTEMS AND METHODS FOR USE THEREOF FOR SEQUENCING NUCLEIC ACIDS
CN105870226B (zh) * 2016-06-02 2017-05-03 厦门大学 基于超材料结构的石墨烯光探测器
CN105895729B (zh) * 2016-06-03 2017-06-30 泰州巨纳新能源有限公司 石墨烯光电探测器
US10755866B2 (en) * 2016-06-07 2020-08-25 The University Of Hong Kong Graphene-semiconductor based wavelength selective photodetector for sub-bandgap photo detection
CN106257692A (zh) * 2016-07-29 2016-12-28 东南大学 一种偏振敏感型光电探测器
WO2018051739A1 (ja) * 2016-09-13 2018-03-22 ソニー株式会社 電磁波検出素子、電磁波センサ、電子機器及び構造体
CN106569248B (zh) * 2016-11-02 2019-03-01 清华大学 切伦科夫辐射器件、制备方法及提取辐射的方法
KR102650654B1 (ko) * 2016-11-08 2024-03-25 삼성전자주식회사 높은 광전변환 효율과 낮은 암전류를 구현할 수 있는 이미지 센서
KR102651544B1 (ko) * 2016-11-21 2024-03-28 삼성전자주식회사 광대역 다기능 광학소자와 그 제조 및 동작방법
CN106784115B (zh) * 2017-01-23 2018-08-14 电子科技大学 费米能级可调的pin结构石墨烯光探测器及其制备方法
CN106711271B (zh) * 2017-02-03 2019-09-06 江西师范大学 基于半导体超表面结构的三频带近红外吸收器
US10957810B2 (en) * 2017-03-10 2021-03-23 Mitsubishi Electric Corporation Electromagnetic wave detector, electromagnetic wave detector array, and electromagnetic wave detection method
US11233332B2 (en) * 2017-05-02 2022-01-25 Electronics And Telecommunications Research Institute Light absorber
WO2018223068A1 (en) 2017-06-01 2018-12-06 The Regents Of The University Of California Metallo-graphene nanocomposites and methods for using metallo-graphene nanocomposites for electromagnetic energy conversion
CN107561028B (zh) * 2017-06-30 2020-09-01 国家纳米科学中心 用于增强红外光谱探测的金属-石墨烯等离激元器件及制备方法
US10256306B1 (en) * 2017-11-30 2019-04-09 International Business Machines Corporation Vertically integrated multispectral imaging sensor with graphene as electrode and diffusion barrier
CN107991263B (zh) * 2017-12-28 2023-09-22 中国计量大学 基于石墨烯太赫兹源和探测器的癌细胞波谱分析装置及方法
CN108389930B (zh) * 2018-02-05 2020-07-31 国家纳米科学中心 一种柔性石墨烯等离激元器件及其制备方法
US10580924B2 (en) * 2018-04-04 2020-03-03 The Florida International University Board Of Trustees Graphene devices for terahertz detection and emission
US10598838B2 (en) * 2018-06-29 2020-03-24 Intel Corporation Pixel level polarizer for flexible display panels
CN109273554A (zh) * 2018-08-30 2019-01-25 上海电力学院 一种石墨烯基内建电场铟镓砷探测器
CN109256436A (zh) * 2018-09-03 2019-01-22 中国电子科技集团公司第十研究所 一种石墨烯红外探测单元及其制备方法
CN109273561B (zh) * 2018-11-20 2020-04-10 电子科技大学 一种msm光电探测器的制备方法
CN109586042B (zh) * 2018-12-03 2020-08-28 中国科学技术大学 一种吸波器及其制备方法
CN109781255B (zh) * 2018-12-24 2021-03-09 广东工业大学 基于超材料的金属栅mosfet栅极光栅化的探测器
CN109738063B (zh) * 2019-01-10 2021-02-19 南京工业职业技术大学 一种增强热量吸收的亚太赫兹波探测器
CN109916513B (zh) * 2019-03-12 2021-06-29 中国科学院重庆绿色智能技术研究院 可调谐高光谱红外探测器及探测功能结构、高光谱成像设备
CN110047957B (zh) * 2019-04-01 2021-03-30 南京邮电大学 一种中红外光探测器及其制备方法
CN110174719A (zh) * 2019-05-06 2019-08-27 南京邮电大学 基于双曲超材料的柱矢量光束亚波长聚焦透镜
CN110361331B (zh) * 2019-06-11 2021-12-21 重庆工商大学融智学院 基于rs/gis的城市地质环境动态监测与评价方法
CN110311010B (zh) * 2019-06-28 2022-06-07 西安交通大学 一种基于石墨烯纳米带的红外宽光谱探测器
CN110346997B (zh) * 2019-07-08 2023-04-07 深圳大学 一种谐振腔型太赫兹器件及其制备方法
CN110473957B (zh) * 2019-09-04 2023-04-07 哈尔滨理工大学 一种基于选择性静电掺杂石墨烯的可动态调控太赫兹环偶极子超材料器件及其制备方法
CN110702206B (zh) * 2019-09-29 2021-06-08 西南大学 基于石墨烯约翰逊噪声测量的红外探测器及系统
CN110707216B (zh) * 2019-10-24 2023-06-13 宁波石墨烯创新中心有限公司 石墨烯薄膜晶体管、其制备方法及显示装置
CN110749946B (zh) * 2019-12-06 2021-12-03 陕西师范大学 基于金属-介质-金属的增强吸收的结构、装置及系统
CN111192891B (zh) * 2020-01-15 2023-08-04 宁波飞芯电子科技有限公司 硅光检测器、测距方法及装置
CN111599889A (zh) * 2020-05-25 2020-08-28 华南师范大学 一种自驱动光电探测器及其光通信系统
CN112242456B (zh) * 2020-09-15 2023-12-26 中国科学院上海技术物理研究所 一种基于光学微带天线非对称集成的二维材料探测器
CN112420809A (zh) * 2020-11-10 2021-02-26 浙江大学杭州国际科创中心 含有金属硅化物红外吸收层的石墨烯场效应电荷耦合器件
CN112636002B (zh) * 2020-12-18 2022-02-01 北京航空航天大学青岛研究院 一种基于tft工艺的可调谐超材料器件及其制作方法
CN112820782A (zh) * 2021-01-05 2021-05-18 黄俊雄 一种石墨烯硅基太阳能电池及其制造方法
CN113219383B (zh) * 2021-05-25 2022-12-06 韩山师范学院 一种磁场的测量装置
CN113423257A (zh) * 2021-07-16 2021-09-21 中国人民解放军国防科技大学 中远红外双波段可调谐超宽带吸收器
CN114203837B (zh) * 2021-11-11 2024-04-26 复旦大学 一种光子筛选型太赫兹光晶体管及其多光子探测方法
EP4199115A1 (en) * 2021-12-17 2023-06-21 IMEC vzw Transistor with low parasitic capacitance
CN114582990B (zh) * 2022-02-17 2022-08-30 浙江大学 基于超表面的超宽带随机光谱场效应管
CN114895396B (zh) * 2022-05-27 2023-11-21 中国计量大学 基于硅与锗锑碲复合纳米柱阵列可调谐的红外窄带滤光片
CN116544256B (zh) * 2023-07-05 2023-10-10 苏州多感科技有限公司 光学传感器及成像设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102376624A (zh) * 2010-08-11 2012-03-14 中国科学院微电子研究所 一种石墨烯器件及其制造方法
CN102820324A (zh) * 2011-06-10 2012-12-12 三星电子株式会社 具有多层栅极绝缘层的石墨烯电子器件
CN103117316A (zh) * 2013-01-30 2013-05-22 中国科学院苏州纳米技术与纳米仿生研究所 基于超材料结构的石墨烯晶体管、光探测器及其应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8110883B2 (en) * 2007-03-12 2012-02-07 Nantero Inc. Electromagnetic and thermal sensors using carbon nanotubes and methods of making same
WO2010005707A1 (en) * 2008-06-16 2010-01-14 The Board Of Trustees Of The University Of Illinois Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates
CN101552294B (zh) * 2009-05-05 2011-12-07 友达光电股份有限公司 底栅极薄膜晶体管与主动阵列基板
CN101954499A (zh) 2010-08-11 2011-01-26 哈尔滨锅炉厂有限责任公司 超超临界锅炉二级混合器内锥形孔加工设备及方法
US8344358B2 (en) * 2010-09-07 2013-01-01 International Business Machines Corporation Graphene transistor with a self-aligned gate
CN102479820A (zh) * 2010-11-30 2012-05-30 中国科学院微电子研究所 场效应晶体管及其制备方法
KR101736970B1 (ko) * 2010-12-17 2017-05-30 삼성전자주식회사 그래핀 전자 소자 및 제조방법
WO2012154726A1 (en) * 2011-05-08 2012-11-15 Honda Motor Co., Ltd. Method of enhanced detection for nanomaterial-based molecular sensors
WO2013172784A1 (en) * 2012-05-15 2013-11-21 Nanyang Technological University Device and structure and method for forming the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102376624A (zh) * 2010-08-11 2012-03-14 中国科学院微电子研究所 一种石墨烯器件及其制造方法
CN102820324A (zh) * 2011-06-10 2012-12-12 三星电子株式会社 具有多层栅极绝缘层的石墨烯电子器件
CN103117316A (zh) * 2013-01-30 2013-05-22 中国科学院苏州纳米技术与纳米仿生研究所 基于超材料结构的石墨烯晶体管、光探测器及其应用

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9620597B2 (en) 2014-12-25 2017-04-11 National Cheng Kung University Graphene optoelectronic detector and method for detecting photonic and electromagnetic energy by using the same
CN107978871A (zh) * 2017-12-27 2018-05-01 厦门大学 基于石墨烯多谐振结构的极化不依赖宽带太赫兹吸波器
CN109148640A (zh) * 2018-09-28 2019-01-04 河南大学 一种多孔有源层场效应紫外探测器及其制备方法
CN110471137A (zh) * 2019-09-17 2019-11-19 厦门理工学院 一种双频段红外吸波器
CN110471137B (zh) * 2019-09-17 2024-02-13 厦门理工学院 一种双频段红外吸波器
CN112993075A (zh) * 2021-02-07 2021-06-18 西安交通大学 一种含有插层的石墨烯/硅肖特基结光电探测器及制备工艺
CN112993075B (zh) * 2021-02-07 2022-08-16 西安交通大学 一种含有插层的石墨烯/硅肖特基结光电探测器及制备工艺
CN113686809A (zh) * 2021-07-30 2021-11-23 北京航空航天大学青岛研究院 像素单元及形成方法、显示器及太赫兹成像系统

Also Published As

Publication number Publication date
CN103117316A (zh) 2013-05-22
US20150357504A1 (en) 2015-12-10
CN103117316B (zh) 2015-08-05
US9444002B2 (en) 2016-09-13

Similar Documents

Publication Publication Date Title
WO2014117314A1 (zh) 基于超材料结构的石墨烯晶体管光探测器及其应用
Cheng et al. Optically switchable broadband metasurface absorber based on square ring shaped photoconductive silicon for terahertz waves
Cheng et al. Broadband tunable terahertz metasurface absorber based on complementary-wheel-shaped graphene
Liu et al. Ultra-broadband terahertz absorber based on a multilayer graphene metamaterial
Chen et al. Graphene hybrid structures for integrated and flexible optoelectronics
Wu et al. Independently tunable perfect absorber based on the plasmonic properties in double-layer graphene
Ye et al. Broadband optical waveguide modulators based on strongly coupled hybrid graphene and metal nanoribbons for near-infrared applications
Zhou et al. Tunable broadband terahertz absorber based on graphene metamaterials and VO2
Ghobadi et al. Strong light–matter interaction in lithography-free planar metamaterial perfect absorbers
Cen et al. Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays
Cai et al. Plasmon-enhanced terahertz photodetection in graphene
Sensale-Rodriguez et al. Graphene for reconfigurable terahertz optoelectronics
Cheng et al. A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films
US9157789B2 (en) Electromagnetic wave detector and electromagnetic wave detector array
Chen et al. Wideband tunable cross polarization converter based on a graphene metasurface with a hollow-carved “H” array
Luo et al. Broadband tunable terahertz polarization converter based on graphene metamaterial
Chen et al. Dual-band ultrasensitive terahertz sensor based on tunable graphene metamaterial absorber
Yuan et al. Room temperature graphene mid-infrared bolometer with a broad operational wavelength range
Moradiani et al. A multimode graphene plasmonic perfect absorber at terahertz frequencies
CN111554757A (zh) 一种基于等离激元增强的石墨烯中红外光探测器及制备方法
CN103943715A (zh) 集成分布布拉格反射光栅的增强型石墨烯波导探测器
Zhan et al. Tunable multiple band THz perfect absorber with InSb metamaterial for enhanced sensing application
Liu et al. Tunable multi-band terahertz absorber based on a one-dimensional heterostructure containing semiconductor
Zhou et al. Cavity coupled plasmonic resonator enhanced infrared detectors
Zhang et al. Tunable multiple broadband terahertz perfect absorber based on vanadium dioxide

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14761907

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873565

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13873565

Country of ref document: EP

Kind code of ref document: A1